
IBM MQ

Programming
Version 8 Release 0

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 1365.

This edition applies to version 8 release 0 of WebSphere MQ and to all subsequent releases and modifications until
otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2007, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xiii

Developing applications 1
Application development concepts 1

Linux on POWER Systems - Little Endian
applications. 3
Application programs using the MQI 3
IBM MQ messages 4
Preparing and running Microsoft Transaction
Server applications 36
Using IBM MQ with WebSphere Application
Server 36
IMS and IMS bridge applications on IBM MQ for
z/OS 37

Actions that your applications can perform 49
Designing IBM MQ applications 51

Should I use IBM MQ classes for Java or IBM
MQ classes for JMS? 54
Designing your messages 55
Application design and performance 56
Application design and performance on IBM i. . 57
Setting up IBM MQ on IBM i with Java and JMS 59
Design considerations for IBM MQ for z/OS
applications 66
Advanced IBM MQ techniques 70

Developing MQI applications with IBM MQ . . . 72
IBM MQ data definition files 72
Writing a procedural application for queuing . . 76

Local units of work 230
Global units of work 230
Interfaces to external syncpoint managers 232

Interfaces to the IBM i external
syncpoint manager 235

Starting IBM MQ applications using
triggers 237
Prerequisites for triggering 241
Conditions for a trigger event 243
Controlling trigger events 247
Designing an application that uses triggered
queues 249
Trigger monitors 251

Trigger monitors on UNIX and Windows
systems 251
IBM MQ for IBM i trigger monitors 253

Properties of trigger messages 254
When triggering does not work 256

Working with the MQI and clusters 257
MQOPEN and clusters 257
MQPUT, MQPUT1 and clusters 259

MQINQ and clusters 259
MQSET and clusters 260
Return codes 260

Using and writing applications on IBM
MQ for z/OS 263
Environment-dependent IBM MQ for z/OS
functions 263
Debugging facilities, syncpoint support, and
recovery support 264
The IBM MQ for z/OS interface with the
application environment. 265

The batch adapter 265
The RRS batch adapter 266
The IMS adapter 267

Writing z/OS UNIX System Services applications 267
The API-crossing exit for z/OS 268

Writing your own exit program 268
The sample API-crossing exit program,
CSQCAPX 269
Preparing and using the API-crossing exit . . . 270

IBM MQ Workflow 271
Application programming with shared queues . . 272

Serializing your applications 272
Applications that are not suitable for use with
shared queues 273
Deciding whether to share non-application
queues 273
Migrating your existing applications to use
shared queues 274

IMS and IMS bridge applications on
IBM MQ for z/OS 277
Writing IMS applications using IBM MQ 277

Syncpoints in IMS applications 278
MQI calls in IMS applications 279

Writing IMS bridge applications 282
How the IMS bridge deals with messages . . . 282
Writing IMS transaction programs through IBM
MQ. 289

Writing client procedural applications 293
Using the message queue interface (MQI) in a
client application 294

Limiting the size of a message in a client
application 294
Choosing client or server coded character set
identifier (CCSID) 294
Using MQINQ in a client aplication 295
Using sync point coordination in a client
application 295
Using read ahead in a client application . . . 296
Using asynchronous put in a client application 296
Using sharing conversations in a client
application 297

© Copyright IBM Corp. 2007, 2018 iii

Using MQCONNX 298
Building applications for IBM MQ MQI clients . . 299

Linking C applications with the IBM MQ MQI
client code 300
Linking C++ applications with the IBM MQ
MQI client code 300
Linking COBOL applications with the IBM MQ
MQI client code 301
Linking Visual Basic applications with the IBM
MQ MQI client code 301

Running applications in the IBM MQ MQI client
environment. 302

Connecting IBM MQ MQI client applications to
queue managers 302
Triggering in the client environment. 313

Preparing and running CICS and Tuxedo
applications 314

CICS and Tuxedo sample programs 315
Error message AMQ5203, as modified for CICS
and Tuxedo applications. 316

Preparing and running Microsoft Transaction
Server applications 317
Preparing and running IBM MQ JMS applications 317

User exits, API exits, and IBM MQ
installable services 319
Writing exits and installable services on UNIX,
Linux and Windows 319

API exits not linked with an MQI library . . . 322
Installable services and components for UNIX,
Linux and Windows 322

Writing a service component 323
Configuring services and components 330

Installable services and components for IBM i . . 333
Functions and components 334
Initialization. 335
Configuring services and components 336
Creating your own service component 337
Authorization service. 337

Writing and compiling API exits 340
Writing API exits 341
Compiling API exits 342
Configuring API exits 346

Channel-exit programs for messaging channels . . 349
Processing overview 350
Writing channel-exit programs. 351
Compiling channel exit programs on Windows,
UNIX and Linux systems 370
Configuring channel exits 371

Writing data-conversion exits 371
Invoking the data-conversion exit 372
Writing a data-conversion exit program for IBM
MQ for IBM i 373
Writing a data-conversion exit program for IBM
MQ for z/OS 375
Writing a data-conversion exit for IBM MQ on
UNIX and Linux systems 376
Writing a data-conversion exit for IBM MQ for
Windows 379
Exit and switch load files on Windows
operating systems 380

Referencing connection definitions using a
pre-connect exit from a repository 381
Writing and compiling publish exits 383

Configuring publish exits 385
Writing and compiling cluster workload exits . . 385

Sample cluster workload exit 387
Cluster workload exit programming for IBM
MQ for z/OS 388

Building a procedural application. . . 389
Building your procedural application on AIX . . . 389

Preparing C programs in AIX 389
Preparing COBOL programs in AIX 391
Preparing CICS application programs in AIX 393

Building your procedural application on HP
Integrity NonStop Server 395

OSS and Guardian headers and public libraries 395
Preparing C programs in HP Integrity NonStop
Server 397
Preparing COBOL programs 398
Preparing pTAL programs 399

Building your procedural application on HP-UX 400
Preparing C programs in HP-UX 400
Preparing COBOL programs in HP-UX 402
Preparing CICS programs in HP-UX. 404
Address Space models supported by IBM MQ
for HP-UX on IA64 (IPF) 405

Building your procedural application on Linux . . 405
Preparing C programs in Linux 405
Preparing COBOL programs in Linux 409

Building your procedural application on IBM i . . 410
Preparing C programs in IBM i 411
Preparing COBOL programs in IBM i 412
Preparing CICS programs in IBM i 413
Preparing RPG programs in IBM i 413
SQL programming considerations 413
IBM i programming considerations 414

Building your procedural application on Solaris 414
Preparing C programs in Solaris 414
Preparing COBOL programs in Solaris 417
Preparing CICS programs in Solaris 418

Building your procedural application on Windows
systems 419

Building 64-bit applications on Windows . . . 420
Preparing C programs in Windows 420
Preparing COBOL programs in Windows . . . 421
Preparing Visual Basic programs in Windows 423
SSPI security exit 424

Building your procedural application on z/OS . . 426
Preparing your program to run 427
Dynamically calling the IBM MQ stub 433
Debugging your programs 439

Handling procedural program errors 443
Locally determined errors 443
Using report messages for problem determination 445
Remotely determined errors 446

Using the dead-letter (undelivered message)
queue 447

iv IBM MQ: Programming

Multicast programming 449
Multicast and the Message Queue Interface . . . 449
High availability for multicast 451
Data conversion in the MQI for multicast
messaging 452
Multicast exception reporting 452

Coding in C 455

Coding in Visual Basic 459

Coding in COBOL 461

Coding in System/390 assembler
language 463
Using the MQI calls 466

Coding in RPG 467

Coding in pTAL 469

Coding in PL/I 471

Sample IBM MQ procedural programs 473
Sample procedural programs (platforms except
z/OS). 473

Features demonstrated in the sample programs 475
Preparing and running the sample programs 485
The API exit sample program 490
The Asynchronous consumption sample
program 491
The Asynchronous Put sample program . . . 492
The Browse sample programs 493
The Browser sample program 494
The CICS transaction sample 495
The Connect sample program 496
The Data-Conversion sample program 497
Database coordination samples 497
Dead-letter queue handler sample 504
The Distribution List sample program 504
The Echo sample programs. 505
The Get sample programs 506
High availability sample programs 507
The Inquire sample programs 511
The Inquire Properties of a Message Handle
sample program 512
The Publish/Subscribe sample programs . . . 512
The Publish Exit sample program 516
The Put sample programs 517
The Reference Message sample programs . . . 519
The Request sample programs. 526
The Set sample programs 531
The SSL/TLS sample program. 532
The Triggering sample programs 535
TUXEDO samples 537
Using the SSPI security exit on Windows
systems 549
Running the samples using remote queues . . 550

The Cluster Queue Monitoring sample program
(AMQSCLM) 550
Sample program for Connection Endpoint
Lookup (CEPL). 560

Sample programs for IBM MQ for z/OS 578
Features demonstrated in the sample
applications 579
Preparing and running sample applications for
the batch environment 583
Preparing sample applications for the TSO
environment. 586
Preparing the sample applications for the CICS
environment. 588
Preparing the sample application for the IMS
environment. 591
The Put samples 592
The Get samples 594
The Browse sample 596
The Print Message sample 598
The Queue Attributes sample 602
The Mail Manager sample 603
The Credit Check sample 610
The Message Handler sample 623
The Asynchronous Put sample 627
The Batch Asynchronous Consumption sample 628
The CICS Asynchronous Consumption and
Publish/Subscribe sample 629
The Publish/Subscribe Sample 632
The Set and Inquire message property sample 634

Developing object-oriented
applications with IBM MQ 637
The IBM MQ Object Model. 638
Using .NET 640

Getting started with IBM MQ classes for .NET 641
Writing and deploying IBM MQ .NET programs 656

Using the Component Object Model Interface (
IBM MQ Automation Classes for ActiveX). . . . 690

Designing and programming using IBM MQ
Automation Classes for ActiveX 691
IBM MQ Automation Classes for ActiveX
reference 697
Troubleshooting 785
ActiveX interface to the MQAI 791
About the IBM MQ Automation Classes for
ActiveX Starter samples 800

Using C++ 805
C++ sample programs 807
C++ language considerations 812
Messaging in C++ 816
Building IBM MQ C++ programs. 823

Using IBM MQ classes for Java 832
Why should I use IBM MQ classes for Java? . . 833
Prerequisites for IBM MQ classes for Java . . . 834
Running IBM MQ classes for Java applications
within Java EE 834
Character string conversions in IBM MQ classes
for Java 836
Installation and configuration of IBM MQ
classes for Java 837
Using IBM MQ classes for Java 850

Contents v

Writing IBM MQ classes for Java applications 852
IBM MQ classes for Java environment-
dependent behavior 895

Developing JMS and Java Platform,
Enterprise Edition applications. . . . 903
Using IBM MQ classes for JMS 903

Why should I use IBM MQ classes for JMS? . . 904
Prerequisites for IBM MQ classes for JMS . . . 906
Installation and configuration of IBM MQ
classes for JMS 908
Obtaining the IBM MQ classes for JMS
separately 943
Overview of IBM MQ classes for JMS object
pooling 945
Introduction to automatic client reconnection in
Java EE environments 948
Character string conversions in IBM MQ classes
for JMS 948
Writing IBM MQ classes for JMS applications 950
IBM MQ classes for JMS Application Server
Facilities. 1079
Using IBM MQ classes for JMS in a CICS OSGi
JVM server 1087
Using IBM MQ classes for JMS in IMS . . . 1091
Using the IBM MQ JMS administration tool 1097
Configuring JMS objects using MQ Explorer 1099

Using the IBM MQ resource adapter 1099
IBM MQ resource adapter statement of support 1101
Limitations of the IBM MQ resource adapter 1103
WebSphere Application Server and the IBM
MQ resource adapter 1103
WebSphere Application Server Liberty and the
IBM MQ resource adapter 1104
Installing the IBM MQ resource adapter . . . 1105
Configuring the IBM MQ resource adapter 1108
The installation verification test program for
the IBM MQ resource adapter 1139
Installing and testing the resource adapter in
GlassFish Server 1142
Installing and testing the resource adapter in
Wildfly 1146

Using the IBM MQ Headers package 1147
Using with IBM MQ classes for Java 1148
Using with IBM MQ classes for JMS 1149

Developing applications for IBM MQ
Telemetry 1151
IBM MQ Telemetry Transport sample programs 1151

MQTTV3Sample program 1151
Creating your first IBM MQ Telemetry Transport
publisher application using Java. 1152
Creating an asynchronous publisher for IBM MQ
Telemetry Transport using Java 1158
Creating a recoverable asynchronous publisher for
IBM MQ Telemetry Transport using Java 1163
Creating a subscriber for IBM MQ Telemetry
Transport using Java 1169
Authenticating an MQTT Java client using JAAS 1175

Authenticating an SSL telemetry connection using
self-signed certificates 1182

Modifying PubSync.java to use SSL 1183
Authenticating the telemetry channel 1184
Authenticating the telemetry channel and
clients 1185

Authenticating an SSL telemetry connection using
a certificate chain. 1186

Authenticating the telemetry channel 1187
Authenticating the telemetry channel and
clients 1189

Creating your first IBM MQ Telemetry Transport
publisher application using C 1191
Creating an asynchronous publisher for IBM MQ
Telemetry Transport using C 1195
Creating a subscriber for IBM MQ Telemetry
Transport using C 1199

Receiving messages 1201
MQTT client programming concepts 1204

Callbacks and synchronization in MQTT client
applications 1205
Clean sessions. 1207
Client identifier 1208
Delivery tokens 1209
Last will and testament publication 1210
Message persistence in MQTT clients 1210
Publications 1212
Qualities of service provided by an MQTT
client 1213
Retained publications and MQTT clients . . . 1214
Subscriptions 1215
Topic strings and topic filters in MQTT clients 1216

C client programming concepts 1217

Developing MQ Light applications 1221
AMQP and IBM MQ application interaction. . . 1222

AMQP messages 1223

Developing Microsoft Windows
Communication Foundation (WCF)
applications with IBM MQ 1231
Introduction to the use of IBM MQ custom
channel for WCF with .NET 3 1231

What is the IBM MQ custom channel for WCF? 1231
When and why do I use the IBM MQ custom
channel for WCF? 1232
Software requirements and installation
instructions for the IBM MQ custom channel
for WCF. 1233
IBM MQ custom channel for WCF: What's
installed? 1234
WCF architecture. 1235

Using IBM MQ custom channels for WCF . . . 1236
WCF Custom channel features and capabilities 1237
WCF Connection options 1243
Creating and configuring the IBM MQ custom
channel for WCF 1244
Building and hosting services for WCF . . . 1251
Building client applications for WCF 1253

Using the WCF samples 1256

vi IBM MQ: Programming

Simple one-way client and server WCF sample 1256
Simple request-reply client and server WCF
sample 1257
WCF client to a .NET service hosted by IBM
MQ sample. 1258
WCF client to an Axis Java service hosted by
IBM MQ sample 1259
WCF client to Java service hosted by
WebSphere Application Server sample. . . . 1260

Problem determination on the WCF custom
channel for IBM MQ 1262

WCF custom channel exception hierarchy . . 1263
WCF trace configuration 1264
WCF XMS First Failure Support Technology (
FFST) 1267
WCF version information 1268
WCF hints and tips 1268

Developing web services with IBM
MQ 1271
IBM MQ transport for SOAP 1271

Introduction to IBM MQ transport for SOAP 1272
Installing and verifying IBM MQ Web services 1282
Developing Web services for IBM MQ
transport for SOAP 1285
Developing IBM MQ Web service clients for
IBM MQ transport for SOAP 1292

Deploying Web services using the IBM MQ
transport for SOAP 1322
Deploying Web service clients to use IBM MQ
transport for SOAP 1327
Connect an Axis2 client to a JAX-WS service
using W3C SOAP over JMS and WebSphere
Application Server 1336

IBM MQ bridge for HTTP 1337
Introduction to IBM MQ bridge for HTTP . . 1337
Installing, configuring, and verifying IBM MQ
bridge for HTTP 1340
Publish/subscribe using the IBM MQ bridge
for HTTP 1343
Running the IBM MQ bridge for HTTP
samples 1344
Security considerations for WebSphere bridge
for HTTP 1346

Index 1347

Notices 1365
Programming interface information 1366
Trademarks 1367

Sending your comments to IBM 1369

Contents vii

viii IBM MQ: Programming

Figures

1. Queues, messages, and applications 3
2. Representation of a message 4
3. Selection using MQSUB call 19
4. Selection using MQOPEN call 20
5. Standard Message Driven application

consuming from two queues 29
6. Single Threaded Message Driven application

consuming from two queues 30
7. Group of logical messages 31
8. Segmented messages 31
9. How distribution lists work. 125

10. Opening a distribution list in C 127
11. Opening a distribution list in COBOL 127
12. Putting a message to a distribution list in C 129
13. Putting a message to a distribution list in

COBOL 129
14. Logical order on a queue 137
15. Physical order on a queue 138
16. Skipping backout using

MQGMO_MARK_SKIP_BACKOUT 165
17. Simple IBM MQ publisher to a fixed topic. 177
18. Sample output from first publisher example 178
19. Simple IBM MQ publisher to a variable topic. 181
20. Sample output from second publisher

example 182
21. Topic object associations 183
22. MQ publication consumer. 186
23. Output from MQ publication consumer 187
24. Managed MQ subscriber - part 1: declarations

and parameter handling. 189
25. Managed MQ subscriber - part 2: code body. 191
26. Output from managed MQ subscriber 192
27. Unmanaged MQ subscriber - part 1:

declarations. 197
28. Unmanaged MQ subscriber - part 2:

parameter handling. 198
29. Unmanaged MQ subscriber - part 3: code

body. 200
30. Publish 130 to NYSE/IBM/PRICE 201
31. Receive the retained publication 201
32. Resume subscription 202
33. Receive retained publication with new

unmanaged non durable subscription . . . 202
34. Overlapping subscriptions 202
35. Subscription topics cannot be changed 203
36. Managed non-durable subscriber lifelines 205
37. Managed durable subscriber lifelines 206
38. Unmanaged durable subscriber lifelines 207
39. Sequence of intercepting subscribers 210
40. Preprocessor directives 213
41. Declarations 213
42. Initializations 214
43. Preparing to intercept publications 215
44. Intercept publication and republish 216
45. Completion 216
46. Interception and Publish exit in a cluster 217

47. Complex deployment of intercepting
subscribers 218

48. Flow of application and trigger messages 239
49. Relationship of queues within triggering 240
50. Queue manager groups 305
51. MQCONN example 310
52. Understanding services, components, and

entry points 324
53. UNIX and Linux authorization service stanzas

in qm.ini 332
54. Name service stanzas in qm.ini (for UNIX

and Linux systems) 333
55. IBM MQ for IBM i authorization service

stanzas in qm.ini 338
56. Compile and link amqsaxe0.c on 32 bit

Windows 345
57. Compile and link amqsaxe0.c on 64 bit

Windows 346
58. Security exit loop 350
59. Example of a send exit at the sender end of

message channel 350
60. Example of a receive exit at the receiver end

of message channel 351
61. Sample source code for a channel exit 355
62. Sample DEF file for Windows 356
63. Sender-initiated exchange with agreement 358
64. Sender-initiated exchange with no agreement 359
65. Receiver-initiated exchange with agreement 360
66. Receiver-initiated exchange with no

agreement 361
67. Security exit skeleton code 362
68. Fragments of JCL to link-edit the object

module in the batch environment, using
single-phase commit 428

69. Fragments of JCL to link-edit the object
module in the batch environment, using
two-phase commit 429

70. Fragments of JCL to link-edit the object
module in the CICS environment 431

71. Fragments of JCL to link-edit the object
module in the IMS environment 432

72. Dynamic linking using COBOL in the batch
environment 435

73. Dynamic linking using COBOL in the CICS
environment 435

74. Dynamic linking using COBOL in the IMS
environment 436

75. Dynamic linking using assembly language in
the batch environment 436

76. Dynamic linking using assembly language in
the CICS environment 436

77. Dynamic linking using assembly language in
the IMS environment 436

78. Dynamic linking using C language in the
batch environment 437

© Copyright IBM Corp. 2007, 2018 ix

79. Dynamic linking using C language in the
CICS environment 437

80. Dynamic linking using C language in the IMS
environment 437

81. Dynamic linking using PL/I in the batch
environment 437

82. Dynamic linking using PL/I in the IMS
environment 438

83. The database coordination samples 498
84. Reconnectable client samples 509
85. File system import 515
86. Running the Reference Message samples 520
87. Request and Inquire samples using triggering 528
88. Sample IBM i Client/Server (Echo) program

flowchart 531
89. Example of ubbstxcn.cfg file for IBM MQ for

Windows 544
90. Sample TUXEDO makefile for IBM MQ for

Windows 545
91. Example of ubbstxcn.cfg file for IBM MQ for

Windows 546
92. Sample TUXEDO makefile for IBM MQ for

Windows 547
93. How TUXEDO samples work together 548
94. Example of a report from the Print Message

sample application 600
95. Programs and panels for the TSO versions of

the Mail Manager 606
96. Programs and panels for the CICS version of

the Mail Manager 607
97. Example of a panel showing a list of waiting

messages 608
98. Example of a panel showing the contents of a

message 609
99. Immediate Inquiry panel for the Credit Check

sample application 611
100. Programs and queues for the Credit Check

sample application (COBOL programs only) . 613
101. Initial screen for Message Handler sample 623
102. Message list screen for Message Handler

sample 624
103. Chosen message is displayed 625
104. Supplied IBM MQ constants for encoding 694
105. IBM MQ C++ classes (item handling) 805
106. IBM MQ C++ classes (queue management) 806
107. JMS objects and their relationships 951
108. How messages are transformed between JMS

and IBM MQ using the MQRFH2 header . . 958
109. How JMS messages are transformed to IBM

MQ messages with no MQRFH2 header . . 971
110. Enable queue manager data conversion 976
111. Code snippet from amqsget0.c 979
112. Sending a String in a JMSBytesMessage 980
113. Receiving a String from a JMSBytesMessage 980
114. Sending and receiving a JMSObjectMessage 983
115. Send text message in the character set defined

by the destination 983
116. Send text message in ccsid 37 983
117. Receive text message 983
118. Send data in JMSStreamMessage and

JMSMapMessage 984

119. Sending a String in a JMSBytesMessage 984
120. Receiving a String from a JMSBytesMessage 984
121. Send a JMSBytesMessage using a

DataOutputStream 985
122. Receive a JMSBytesMessage using a

DataInputStream 985
123. Incorrect code page conversion 988
124. Writing bytes representing a string in a

JMSStreamMessage using the destination
character set 989

125. Send text message in the character set defined
by the destination 990

126. Send text message in ccsid 37 990
127. Receive text message 990
128. Sending a number using the destination

encoding in a JMSStreamMessage 990
129. Sending a number using the destination

encoding in a JMSBytesMessage 991
130. Sending a String in a JMSBytesMessage 991
131. Receiving a String from a JMSBytesMessage 991
132. Enable queue manager data conversion 992
133. Set target coded character set for queue

manager conversion 992
134. Code snippet from amqsget0.c 993
135. RECORD.h 995
136. Modify amqsget0.c 996
137. TryMyRecord 1004
138. RECORD 1005
139. MyRecord 1006
140. EndPoint 1007
141. MyProducer 1008
142. MyConsumer 1008
143. Inconsistently coded MQMD and message data 1045
144. Send a message with an MQ message body. 1045
145. ServerSessionPool and ServerSession

functionality 1086
146. The initial page of the IVT program 1140
147. Page showing the results of a successful IVT 1141
148. Page showing the results of an IVT that

failed 1142
149. Successful IVT output 1145
150. mqttExampleTopic.txt 1156
151. PubSync.java 1157
152. Example.java 1158
153. mqttExampleTopic.txt 1160
154. PubAsync.java 1161
155. CallBack.java 1162
156. Example.java 1163
157. Reusable client identifier 1164
158. mqttExampleTopic.txt 1166
159. PubAsyncRestartable.java 1167
160. CallBack.java 1168
161. Example.java 1169
162. Reusable client identifier 1170
163. Subscribe.java 1173
164. CallBack.java 1174
165. Example.java 1175
166. Console output from PubSyncJAAS.java 1178
167. MyLogin.log. 1178
168. MyLogin.java 1179
169. JAASLoginPrincipal.java 1180

x IBM MQ: Programming

170. PubSyncJAAS.Java 1181
171. Example.java 1182
172. PubSyncSSL.Java 1184
173. Modifications to Example.java 1184
174. pubsync.c 1194
175. settings.h 1194
176. pubasync.c 1197
177. callback.h 1197
178. callback.c 1198
179. settings.h 1198
180. subscriber.c 1203
181. callback.h 1204
182. settings.h 1204
183. WCF architecture for the SOAP/JMS

interface 1235
184. WCF architecture for the

Non-SOAP/Non-JMS interface 1236
185. SOAP envelope 1276
186. Overview of IBM MQ transport for SOAP 1277
187. Queues used by SOAP/IBM MQ (single

queue manager) 1278
188. Queues used by SOAP/IBM MQ (separate

queue managers) 1279
189. Inline service: StockQuoteDotNet.asmx 1287
190. Code-behind: Design SQDNNonInline.asmx 1288
191. Code-behind: Implementation:

SQDNNonInline.asmx.cs 1288
192. SQAxis2Axis.java 1298
193. SQAxis2DotNet.java 1298
194. WsdlClient.java 1299
195. Static client using Eclipse generated proxy 1299
196. Static client using amqwdeployWMQService

generated proxy 1300
197. Dynamic client using Eclipse generated

proxy 1300
198. Dynamic client using

amqwdeployWMQService generated proxy . 1300
199. DII client (No proxy) 1301
200. SQA2StaticClient.java 1304

201. SQA2DynamicClient.java 1305
202. SQA2CallbackHandler.java 1306
203. SQA2AsyncClient.java 1307
204. Console output from SQA2AsyncClient.java 1307
205. DynamicProxyClientSync.java 1309
206. DynamicProxyClientAsyncPolling.java 1310
207. DynamicProxyClientAsyncCallback.java 1311
208. DispatchClientSync.java 1313
209. DispatchClientAsyncPolling.java 1315
210. DispatchClientAsyncCallback.java 1317
211. HTTP StockQuoteClientDotNet program 1319
212. Modified StockQuoteClientDotNet program 1319
213. SQVB2Axis 1321
214. SQVB2DotNet 1321
215. SQCS2Axis 1321
216. SQCS2DotNet 1322
217. Build command for .NET Framework V2

service 1325
218. Service definition 1328
219. Axis 1.4 Java client 1328
220. Client configuration and output 1329
221. Output from running SQA2AsyncClient 1331
222. runpojo.bat: Windows, using a classpath 1331
223. runpojo.sh: Linux, using a classpath. 1331
224. runaxis2.bat: Windows, using axis2.bat 1332
225. runaxis2.sh: Linux, using axis2.sh 1332
226. URL from StockQuoteAxis.wsdl 1333
227. Static client proxy constructor. 1335
228. Client program 1335
229. Configuration and output 1335
230. IBM MQ bridge for HTTP 1338
231. Example of an HTTP POST request to a

queue. 1338
232. Example of an HTTP POST response 1339
233. Example of an HTTP DELETE request 1339
234. Example of an HTTP DELETE response 1339
235. Example of an HTTP GET request 1340
236. Example of an HTTP GET response 1340

Figures xi

xii IBM MQ: Programming

Tables

1. Boolean operator outcome when logic is A AND
B 26

2. Boolean operator outcome when logic is A OR
B 26

3. Boolean operator outcome when logic is NOT A 26
4. Mapping IBM MQ messages to IMS

transaction types 43
5. Library files for non-threaded IBM i

applications 82
6. Library files for threaded IBM i applications 82
7. Library files for Windows applications . . . 82
8. Library files for non-threaded AIX applications 84
9. Library files for threaded AIX applications 84

10. Library files for non-threaded HP-UX
applications 85

11. Library files for threaded HP-UX applications 85
12. Library files for non-threaded Linux

applications 86
13. Library files for threaded Linux applications 86
14. Library files for Solaris applications 87
15. The MQ_CONNECT_TYPE environment

variable 100
16. Resolving queue names when using

MQOPEN. 104
17. How queue attributes and options of the

MQOPEN call affect access to queues . . . 109
18. MQPUT options relating to messages in

groups and segments of logical messages . . 140
19. Outcome when MQPUT or MQCLOSE call is

not consistent with group and segment
information 142

20. Using message and correlation identifiers 148
21. Using the group identifier 148
22. MQGET options and read ahead 151
23. Point to point versus publish/subscribe IBM

MQ program pattern. 175
24. Point to point vs. subscribe IBM MQ program

patterns. 184
25. Errors from MQSUB with different queue

handles and subscription combinations . . . 196
26. Publication properties. 209
27. Subscription options for intercepting

subscribers 211
28. MQPUT values for republished messages 212
29. z/OS environmental features 264
30. When to use a shared-initiation queue 274
31. Mapping IBM MQ messages to IMS

transaction types 284
32. Programming languages supported in client

environments 299
33. Client system libraries on AIX, HP-UX, and

Solaris 315
34. Client system libraries on Windows systems 315
35. Sample programs for AIX, HP-UX, and

Solaris client systems 315
36. Sample programs for Windows client systems 316

37. Installable service components summary 323
38. Example of entry-points for an installable

service 330
39. Authorization service components summary 334
40. Libraries that are now in the client and server

packages 343
41. Channel exits available for each channel type 349
42. Libraries that are now in the client and server

packages 372
43. Sample cluster workload exit program

location (not z/OS) 387
44. Essential code for CICS application programs

on AIX: XA initialization routine 393
45. OSS headers 395
46. OSS public executable and public import

libraries 396
47. Guardian headers 396
48. Guardian public executable and public import

libraries 397
49. 397
50. 398
51. 399
52. Essential code for CICS applications (HP-UX) 404
53. Example of CRTPGM in the nonthreaded

environment 411
54. Example of CRTPGM in the threaded

environment 411
55. Non-threaded environment 411
56. Threaded environment 411
57. Essential code for CICS applications (Solaris) 418
58. Location of IBM MQ libraries 420
59. Context initiators and their associated context

acceptors 425
60. Side-deck name required for each

coordination semantic. 427
61. 429
62. Call names for dynamic linking 434
63. CICS adapter trace entries 439
64. MQI concepts and how they relate to

multicast 449
65. Multicast event code descriptions 453
66. IBM MQ on UNIX and Linux sample

programs demonstrating use of the MQI (C
and COBOL) 475

67. IBM MQ on HP Integrity NonStop Server
sample programs demonstrating use of C,
COBOL, and pTAL. 477

68. IBM MQ for Windows sample programs
demonstrating use of the MQI (C and
COBOL) 481

69. IBM MQ for Windows sample programs
demonstrating use of the MQI (Visual Basic) . 483

70. IBM MQ for IBM i sample programs
demonstrating use of the MQI (C and
COBOL) 483

© Copyright IBM Corp. 2007, 2018 xiii

71. Where to find the samples for IBM MQ on
UNIX and Linux systems 488

72. Where to find the samples for IBM MQ for
Windows 488

73. Categories of legacy publish/subscribe
sample C programs 513

74. IBM MQ client channel directory string
attributes 568

75. IBM MQ client channel directory integer
attributes 569

76. IBM MQ client channel boolean attribute 569
77. IBM MQ client channel list attributes 570
78. Source for the distributed queuing exit

samples 582
79. Source for the data conversion exit samples

(assembler language only) 582
80. Batch Put and Get samples 584
81. Batch Browse sample 584
82. Batch Print Message sample (C language

only) 585
83. Publish/Subscribe samples 585
84. Other samples 585
85. TSO Mail Manager sample 586
86. TSO Message Handler sample 587
87. CICS Put and Get samples 589
88. CICS Queue Attributes sample. 589
89. CICS Mail Manager sample (COBOL only) 589
90. CICS Credit Check sample 590
91. CICS Asynchronous Consumption and

Publish/Subscribe samples 590
92. Source and JCL for the Credit Check IMS

sample (C only) 591
93. IBM MQ and Microsoft.NET mapping table 676
94. Location of sample applications for

implementing SSL in managed .NET 683
95. Properties defined in the mqtrace.config file 689
96. Location of sample programs 808
97. C/C++ header files 812
98. z/OS sample program files 831
99. IBM MQ classes for Java installation

directories 839
100. Samples directories 839
101. JRE directories 840
102. CLASSPATH setting to run IBM MQ classes

for Java applications, including the IBM MQ
classes for Java sample applications 840

103. The location of the IBM MQ classes for Java
libraries for each platform 841

104. Which stanza of the client configuration file
contains which attribute 845

105. The directory for channel exit programs 875
106. CipherSpecs supported by IBM MQ and the

equivalent CipherSuites 893
107. CipherSuites and their supported and

unsupported CipherSpecs 895
108. IBM MQ classes for JMS installation

directories 909
109. Samples directories 910
110. CLASSPATH setting to compile and run IBM

MQ classes for JMS applications, including
the sample applications 912

111. The location of the IBM MQ classes for JMS
libraries for each platform 914

112. Which stanza of the client configuration file
contains which attribute. 917

113. Scripts provided with IBM MQ classes for
JMS 940

114. The JMS domain independent and domain
specific interfaces 952

115. Possible values for NameValueCCSID field 959
116. mcd property name, synonym, data type, and

folder 960
117. mqext property name, synonym, data type,

and folder 960
118. mqps property name, synonym, data type, and

folder 960
119. MQRFH2 folders and properties used by JMS 961
120. Property data types 962
121. JMS header fields mapping to MQMD fields 963
122. JMS properties mapping to MQMD fields 963
123. JMS provider-specific properties mapping to

MQMD fields 963
124. Outgoing message field mapping 964
125. Outgoing message JMS property mapping 965
126. Outgoing message JMS provider-specific

property mapping 965
127. Incoming message JMS header field mapping 969
128. Incoming message property mapping 970
129. Incoming message provider-specific JMS

property mapping 970
130. Message types and conversion types 978
131. Message types and conversion types 985
132. Message types and conversion types 987
133. Supported conversions from one data type

to another 1014
134. Property names and valid values for use in

queue and topic URIs 1025
135. Property names and descriptions 1040
136. Property names, values, and set methods 1041
137. Property names, descriptions, and types 1043
138. Property names and descriptions 1046
139. Property names, values, and set methods 1047
140. CipherSpecs supported by IBM MQ and the

equivalent CipherSuites. 1054
141. CipherSuites and their supported and

unsupported CipherSpecs 1056
142. The IBM MQ exits directory 1059
143. Possible CLIENTRECCECTOPTIONS

property values. 1063
144. Possible CLIENTRECCECTOPTIONS

property 1065
145. PUTASYNCALLOWED and DEFPRESP

properties determining if messages are put
asynchronously. 1071

146. READAHEADALLOWED and DEFREADA
properties determining if read ahead is used
when receiving or browsing non-persistent
messages outside of a transaction. 1072

147. Considerations when you are choosing
between shared subscriptions and cloned
subscriptions 1078

xiv IBM MQ: Programming

148. The directory containing wmq.jmsra.rar for
each platform 1105

149. Properties of the ResourceAdapter object that
are associated with the connection pool . . 1110

150. Properties of an ActivationSpec object that
are used to create a JMS connection 1112

151. Properties of an ActivationSpec object that
are used to create a JMS connection
consumer 1119

152. Properties of a ConnectionFactory object 1126
153. Properties that are common to a Queue

object and a Topic object 1135
154. Properties that are specific to a Queue object 1138
155. Properties that are specific to a Topic object 1138
156. Synchronization behavior of methods that

result in requests to the server 1207
157. Header field mappings 1224
158. Properties field mappings 1225
159. Message descriptor for AMQP message 1226
160. 1227
161. Key classes required for using the custom

channel 1234
162. New binding element fields 1245

163. New binding configuration fields 1245
164. New client endpoint fields 1246
165. New service endpoint fields 1246
166. Values of binding properties when setting

administratively or programmatically . . . 1250
167. IBM MQ required configuration 1260
168. WCF trace configuration variables 1265
169. WCF trace enablement combinations. 1266
170. IBM MQ transport for SOAP application

environments 1272
171. Windows installation directories 1283
172. AIX installation directories. 1283
173. HP-UX, Solaris, and Linux (all platforms)

installation directories 1283
174. Top down EJB Web service configuration 1290
175. WebSphere JAX-WS JMS Binding

Configuration 1291
176. Additional JNDI parameters 1333
177. IBM MQ bridge for HTTP verbs 1338
178. Queue manager configuration 1342
179. Set or modify the following fields 1342
180. Publish/subscribe configuration modes 1344
181. Location of HTTP samples 1344

Tables xv

xvi IBM MQ: Programming

Developing applications

You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM® MQ support applications written in procedural languages, and object oriented
languages and frameworks.

Before you develop applications for IBM MQ, ensure you are familiar with the concepts in IBM MQ
Technical overview.

IBM MQ provides support for the following procedural programming languages:
v C
v Visual Basic (Windows systems only)
v COBOL

v z/OS Assembler language (IBM MQ for z/OS® only)

v RPG (IBM MQ for IBM i only)

v z/OS PL/I (IBM MQ for z/OS only)

These languages use the message queue interface (MQI) to access message queuing services. For more
information, see “Developing MQI applications with IBM MQ” on page 72.

IBM MQ also provides support for the following object-oriented programming languages and
frameworks:
v .NET
v ActiveX
v C++
v Java™

v JMS

These languages and frameworks use the IBM MQ Object Model, which provides classes that provide the
same functionality as IBM MQ calls and structures, but that are a more natural way of programming in
an object-oriented environment. Some of the languages and frameworks that use the IBM MQ Object
Model provide additional functions that are not available to the procedural languages using the MQI. For
more information, see “Developing object-oriented applications with IBM MQ” on page 637.
Related information:
Security

Application development concepts
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.

Before you start to design and write your IBM MQ applications, familiarize yourself with the basic IBM
MQ concepts, see the topics in Technical overview. For information about the types of application you
can write for IBM MQ, see “Developing applications.”

Use the following links to find out about IBM MQ concepts specific to application development:

© Copyright IBM Corp. 2007, 2018 1

Related concepts:
“Using the message queue interface (MQI) in a client application” on page 294
This collection of topics considers the differences between writing your IBM MQ application to run in an
IBM MQ MQI client environment and to run in the full IBM MQ queue manager environment.
“Developing web services with IBM MQ” on page 1271
You can develop IBM MQ applications for Web services using the IBM MQ transport for SOAP or the
IBM MQ bridge for HTTP.
“Channel-exit programs for messaging channels” on page 349
This collection of topics contains information about IBM MQ channel-exit programs for messaging
channels.
“Designing IBM MQ applications” on page 51
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Sample IBM MQ procedural programs” on page 473
This set of sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.
“Writing a procedural application for queuing” on page 76
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Writing client procedural applications” on page 293
What you need to know to write client applications on IBM MQ using a procedural language.
“Developing MQI applications with IBM MQ” on page 72
IBM MQ provides support for C, Visual Basic, COBOL, Assembler, RPG, pTAL, and PL/I. These
procedural languages use the message queue interface (MQI) to access message queuing services.
“Developing object-oriented applications with IBM MQ” on page 637
IBM MQ provides support for .NET, ActiveX, C++, Java, and JMS. These languages and frameworks use
the IBM MQ Object Model, which provides classes that provide the same functionality as IBM MQ calls
and structures. Some of the languages and frameworks that use the IBM MQ Object Model provide
additional functions that are not available when you use procedural languages with the message queue
interface (MQI).
“Using IBM MQ classes for JMS” on page 903
IBM MQ classes for Java Message Service (IBM MQ classes for JMS) is the JMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for JMS provides two sets of extensions to the JMS API.
“Using the Component Object Model Interface (IBM MQ Automation Classes for ActiveX)” on page 690
The IBM MQ Automation Classes for ActiveX (MQAX) are ActiveX components that provide classes that
you can use in your application to access IBM MQ.
“Using IBM MQ classes for Java” on page 832
IBM MQ classes for Java enable you to use IBM MQ in a Java environment. IBM MQ classes for Java
allow a Java application to connect to IBM MQ as an IBM MQ client, or connect directly to an IBM MQ
queue manager.
“Using .NET” on page 640
IBM MQ classes for .NET allow a program written in the .NET programming framework to connect to
IBM MQ as an IBM MQ MQI client or to connect directly to an IBM MQ server.
“Using C++” on page 805
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQI.
“Building a procedural application” on page 389
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
Related information:
Transactional support scenarios

2 IBM MQ: Programming

Linux on POWER Systems - Little Endian applications

As Linux on POWER® Systems - Little Endian supports 64-bit applications only, there is no support
provided in IBM MQ for 32-bit applications.
Related concepts:
“Designing IBM MQ applications” on page 51
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

Application programs using the MQI
IBM MQ application programs need certain objects before they can run successfully.

Figure 1 shows an application that removes messages from a queue, processes them, and then sends some
results to another queue on the same queue manager.

Whereas applications can put messages onto local or remote queues (using MQPUT), they can only get
messages directly from local queues (using MQGET).

Before this application can run, the following conditions must be satisfied:
v The queue manager must exist and be running.
v The first application queue, from which the messages are to be removed, must be defined.
v The second queue, on which the application puts the messages, must also be defined.
v The application must be able to connect to the queue manager. To do this it must be linked to IBM

MQ. See “Building a procedural application” on page 389.
v The applications that put the messages on the first queue must also connect to a queue manager. If

they are remote, they must also be set up with transmission queues and channels. This part of the
system is not shown in Figure 1.

Figure 1. Queues, messages, and applications

Developing applications 3

IBM MQ messages
This information introduces the IBM MQ message concept, message parts, and the message descriptor.

IBM MQ messages consist of two parts:
v Message properties
v Application data

Figure 2 represents a message and shows how it is logically divided into message properties and
application data.

The application data that is carried in an IBM MQ message is not changed by a queue manager unless
data conversion is carried out on it. Also, IBM MQ does not put any restrictions on the content of this
data. The length of the data in each message cannot exceed the value of the MaxMsgLength attribute of
both the queue and queue manager.

On IBM MQ for AIX®,

IBM MQ for IBM i, IBM MQ for HP-UX, IBM MQ for Linux, IBM
MQ for Solaris, and IBM MQ for Windows, the MaxMsgLength defaults to 100 MB (104 857 600 bytes).

Note: If you are intending to use IBM MQ messages greater than 15 MB on IBM i, see
“Building your procedural application on IBM i” on page 410.

z/OS

On IBM MQ for z/OS, the MaxMsgLength attribute of the queue manager is fixed at 100 MB and

the MaxMsgLength attribute of the queue defaults to 4 MB (4 194 304 bytes) which you can change up to a
maximum of 100 MB if required.

Make your messages slightly shorter than the value of the MaxMsgLength attribute in some circumstances.
For more information, see “The data in your message” on page 118.

You create a message when you use the MQPUT or MQPUT1 MQI calls. As input to these calls, you
supply the control information (such as the priority of the message and the name of a reply queue) and
your data, and the call then puts the message on a queue. See MQPUT and MQPUT1 for more
information about these calls.

Message descriptor
You can access message control information by using the MQMD structure, which defines the
message descriptor.

For a full description of the MQMD structure, see MQMD - Message descriptor.

See “Message context” on page 34 for a description of how to use the fields within the MQMD
that contain information about the origin of the message.

Message description

(MQMD)

Message properties Application data

Message ID

Persistence ...

ARM correlator

Customer number

Address

Claim details ...

Figure 2. Representation of a message

4 IBM MQ: Programming

There are different versions of the message descriptor. Additional information for grouping and
segmenting messages (see “Message groups” on page 30) is provided in Version 2 of the message
descriptor (or the MQMDE). This is the same as the Version 1 message descriptor but has extra
fields. These fields are described in the MQMDE - Message descriptor extension.

Types of message
There are four types of messages defined by IBM MQ.

These four messages are:
v Datagram
v Request messages
v Reply messages
v Report messages

– Types of report message
– Report message options

Applications can use the first three types of messages to pass information between themselves. The fourth
type, report, is for applications and queue managers to use to report information about events such as the
occurrence of an error.

Each type of message is identified by an MQMT_* value. You can also define your own types of message.
For the range of values you can use, see MsgType.

Datagrams

Use a datagram when you do not require a reply from the application that receives the message (that is,
gets the message from the queue).

An example of an application that might use datagrams is one that displays flight information in an
airport lounge. A message might contain the data for a whole screen of flight information. Such an
application is unlikely to request an acknowledgment for a message because it probably does not matter
if a message is not delivered. The application sends an update message after a short time.

Request messages

Use a request message when you want a reply from the application that receives the message.

An example of an application that could use request messages is one that displays the balance of a
checking account. The request message could contain the number of the account, and the reply message
would contain the account balance.

If you want to link your reply message with your request message, there are two options:
v Make the application that handles the request message responsible for ensuring that it puts information

into the reply message that relates to the request message.
v Use the report field in the message descriptor of your request message to specify the content of the

MsgId and CorrelId fields of the reply message:
– You can request that either the MsgId or the CorrelId of the original message is to be copied into

the CorrelId field of the reply message (the default action is to copy MsgId).
– You can request that either a new MsgId is generated for the reply message, or that the MsgId of the

original message is to be copied into the MsgId field of the reply message (the default action is to
generate a new message identifier).

Developing applications 5

Reply messages

Use a reply message when you reply to another message.

When you create a reply message, respect any options that were set in the message descriptor of the
message to which you are replying. Report options specify the content of the message identifier (MsgId)
and correlation identifier (CorrelId) fields. These fields allow the application that receives the reply to
correlate the reply with its original request.

Report messages

Report messages inform applications about events such as the occurrence of an error when processing a
message.

They can be generated by:
v A queue manager,
v A message channel agent (for example, if they cannot deliver the message), or
v An application (for example, if it cannot use the data in the message).

Report messages can be generated at any time, and might arrive on a queue when your application is not
expecting them.

Types of report message

When you put a message on a queue, you can select to receive:
v An exception report message. This is sent in response to a message with the exceptions flag set.

It is generated by the message channel agent (MCA) or the application.
v An expiry report message. This indicates that an application attempted to retrieve a message that

had reached its expiry threshold; the message is marked to be discarded. This type of report is
generated by the queue manager.

v A confirmation of arrival (COA) report message. This indicates that the message has reached its
target queue. It is generated by the queue manager.

v A confirmation of delivery (COD) report message. This indicates that the message has been
retrieved by a receiving application. It is generated by the queue manager.

v A positive action notification (PAN) report message. This indicates that a request has been
successfully serviced (that is, the action requested in the message has been performed
successfully). This type of report is generated by the application.

v A negative action notification (NAN) report message. This indicates that a request has not been
successfully serviced (that is, the action requested in the message has not been performed
successfully). This type of report is generated by the application.

Note: Each type of report message contains one of the following:
v The entire original message
v The first 100 bytes of data in the original message
v No data from the original message

You can request more than one type of report message when you put a message on a queue. If
you select the delivery confirmation report message and the exception report message options, if
the message fails to be delivered, you receive an exception report message. However, if you select
only the delivery confirmation report message option and the message fails to be delivered, you
do not get an exception report message.

The report messages that you request, when the criteria for generating a particular message are
met, are the only ones that you receive.

6 IBM MQ: Programming

Report message options

You can discard a message after an exception has arisen. If you select the discard option, and have
requested an exception report message, the report message goes to the ReplyToQ and ReplyToQMgr,
and the original message is discarded.

Note: A benefit of this is that you can reduce the number of messages going to the dead-letter
queue. However, it does mean that your application, unless it sends only datagram messages, has
to deal with returned messages. When an exception report message is generated, it inherits the
persistence of the original message.

If a report message cannot be delivered (if the queue is full, for instance), the report message is
placed on the dead-letter queue.

If you want to receive a report message, specify the name of your reply-to queue in the ReplyToQ
field; otherwise the MQPUT or MQPUT1 of your original message fails with
MQRC_MISSING_REPLY_TO_Q.

You can use other report options in the message descriptor (MQMD) of a message to specify the
content of the MsgId and CorrelId fields of any report messages that are created for the message:
v You can request that either the MsgId or the CorrelId of the original message is to be copied

into the CorrelId field of the report message. The default action is to copy the message
identifier. Use MQRO_COPY_MSG_ID_TO_CORRELID because it enables the sender of a
message to correlate the reply or report message with the original message. The correlation
identifier of the reply or report message is identical to the message identifier of the original
message.

v You can request that either a new MsgId is generated for the report message, or that the MsgId
of the original message is to be copied into the MsgId field of the report message. The default
action is to generate a new message identifier. Use MQRO_NEW_MSG_ID because it ensures
that each message in the system has a different message identifier, and can be distinguished
unambiguously from all other messages in the system.

v Specialized applications might need to use MQRO_PASS_MSG_ID or
MQRO_PASS_CORREL_ID. However, you need to design the application that reads the
messages from the queue to ensure that it works correctly when, for example, the queue
contains multiple messages with the same message identifier.
Server applications must check the settings of these flags in the request message, and set the
MsgId and CorrelId fields in the reply or report message appropriately.
Applications that act as intermediaries between a requester application and a server application
do not need to check the settings of these flags. This is because these applications typically
need to forward the message to the server application with the MsgId, CorrelId, and Report
fields unchanged. This allows the server application to copy the MsgId from the original
message in the CorrelId field of the reply message.

When generating a report about a message, server applications must test to see if any of these
options have been set.

For more information about how to use report messages, see Report.

To indicate the nature of the report, queue managers use a range of feedback codes. They put
these codes in the Feedback field of the message descriptor of a report message. Queue managers
can also return MQI reason codes in the Feedback field. IBM MQ defines a range of feedback
codes for applications to use.

For more information about feedback and reason codes, see Feedback.

An example of a program that could use a feedback code is one that monitors the workloads of
other programs serving a queue. If there is more than one instance of a program serving a queue,
and the number of messages arriving on the queue no longer justifies this, such a program can
send a report message (with the feedback code MQFB_QUIT) to one of the serving programs to

Developing applications 7

indicate that the program should terminate its activity. (A monitoring program could use the
MQINQ call to find out how many programs are serving a queue.)

Reports and segmented messages:

Not supported on IBM MQ for z/OS.

If a message is segmented (see “Message segmentation” on page 155 for a description of segmented
messages) and you ask for reports to be generated, you might receive more reports than you would have
done had the message not been segmented.

For reports generated by IBM MQ

If you segment your messages or allow the queue manager to do so, there is only one case in which you
can expect to receive a single report for the entire message. This is when you have requested only COD
reports, and you have specified MQGMO_COMPLETE_MSG on the getting application.

In other cases your application must be prepared to deal with several reports; usually one for each
segment.

Note: If you segment your messages, and you need only the first 100 bytes of the original message data
to be returned, change the setting of the report options to ask for reports with no data for segments that
have an offset of 100 or more. If you do not do this, and you leave the setting so that each segment
requests 100 bytes of data, and you retrieve the report messages with a single MQGET specifying
MQGMO_COMPLETE_MSG, the reports assemble into a large message containing 100 bytes of read data
at each appropriate offset. If this happens, you need a large buffer or you need to specify
MQGMO_ACCEPT_TRUNCATED_MSG.

For reports generated by applications

If your application generates reports, always copy the IBM MQ headers that are present at the start of the
original message data to the report message data.

Then add none, 100 bytes, or all of the original message data (or whatever other amount you would
usually include) to the report message data.

You can recognize the IBM MQ headers that must be copied by looking at the successive Format names,
starting with the MQMD and continuing through any headers present. The following Format names
indicate these IBM MQ headers:
v MQMDE
v MQDLH
v MQXQH
v MQIIH
v MQH*

MQH* means any name that starts with the characters MQH.

The Format name occurs at specific positions for MQDLH and MQXQH, but for the other IBM MQ
headers it occurs at the same position. The length of the header is contained in a field that also occurs at
the same position for MQMDE, MQIMS™, and all MQH* headers.

If you are using a Version 1 MQMD, and you are reporting on a segment, or a message in a group, or a
message for which segmentation is allowed, the report data must start with an MQMDE. Set the
OriginalLength field to the length of the original message data excluding the lengths of any IBM MQ
headers that you find.

8 IBM MQ: Programming

Retrieving reports

If you ask for COA or COD reports, you can ask for them to be reassembled for you with
MQGMO_COMPLETE_MSG.

An MQGET with MQGMO_COMPLETE_MSG is satisfied when enough report messages (of a single
type, for example COA, and with the same GroupId) are present on the queue to represent one complete
original message. This is true even if the report messages themselves do not contain the complete original
data; the OriginalLength field in each report message gives the length of original data represented by
that report message, even if the data itself is not present.

You can use this technique even if there are several different report types present on the queue (for
example, both COA and COD), because an MQGET with MQGMO_COMPLETE_MSG reassembles report
messages only if they have the same Feedback code. However, you cannot usually use this technique for
exception reports, because, in general, these have different Feedback codes.

You can use this technique to get a positive indication that the entire message has arrived. However, in
most circumstances you need to cater for the possibility that some segments arrive while others might
generate an exception (or expiry, if you have allowed this). You cannot use MQGMO_COMPLETE_MSG
in this case, because, in general, you might get different Feedback codes for different segments and, you
might get more than one report for a segment. You can, however, use
MQGMO_ALL_SEGMENTS_AVAILABLE.

To allow for this you might need to retrieve reports as they arrive, and build up a picture in your
application of what happened to the original message. You can use the GroupId field in the report
message to correlate reports with the GroupId of the original message, and the Feedback field to identify
the type of each report message. The way in which you do this depends on your application
requirements.

One approach is as follows:
v Ask for COD reports and exception reports.
v After a specific time, check whether a complete set of COD reports has been received using

MQGMO_COMPLETE_MSG. If so, your application knows that the entire message has been processed.
v If not, and exception reports relating to this message are present, handle the problem as for

unsegmented messages, but ensure that you clean up orphan segments at some point.
v If there are segments for which there are no reports of any kind, the original segments (or the reports)

might be waiting for a channel to be reconnected, or the network might be overloaded at some point.
If no exception reports at all have been received (or if you think that the ones you have might be
temporary only), you might decide to let your application wait a little longer.
As before, this is similar to the considerations you have when dealing with unsegmented messages,
except that you must also consider the possibility of cleaning up orphan segments.

If the original message is not critical (for example, if it is a query, or a message that can be repeated
later), set an expiry time to ensure that orphan segments are removed.

Back-level queue managers

When a report is generated by a queue manager that supports segmentation, but is received on a queue
manager that does not support segmentation, the MQMDE structure (which identifies the Offset and
OriginalLength represented by the report) is always included in the report data, in addition to zero, 100
bytes, or all of the original data in the message.

However, if a segment of a message passes through a queue manager that does not support
segmentation, if a report is generated there, the MQMDE structure in the original message is treated

Developing applications 9

purely as data. It is not therefore included in the report data if zero bytes of the original data have been
requested. Without the MQMDE, the report message might not be useful.

Request at least 100 bytes of data in reports if there is a possibility that the message might travel through
a back-level queue manager.

Format of message control information and message data
The queue manager is only interested in the format of the control information within a message, whereas
applications that handle the message are interested in the format of both the control information and the
data.

Format of message control information

Control information in the character-string fields of the message descriptor must be in the character set
used by the queue manager.

The CodedCharSetId attribute of the queue manager object defines this character set. Control information
must be in this character set because, when applications pass messages from one queue manager to
another, message channel agents that transmit the messages use the value of this attribute to determine
what data conversion to perform.

Format of message data

You can specify any of the following things:
v The format of the application data
v The character set of the character data
v The format of numeric data

To do this, use these fields:

Format This indicates to the receiver of a message the format of the application data in the message.

When the queue manager creates a message, in some circumstances it uses the Format field to
identify the format of that message. For example, when a queue manager cannot deliver a
message, it puts the message on a dead-letter (undelivered message) queue. It adds a header
(containing more control information) to the message, and changes the Format field to show this.

The queue manager has a number of built-in formats with names beginning MQ, for example
MQFMT_STRING. If these do not meet your needs, you can define your own formats (
user-defined formats), but you must not use names beginning with MQ for these.

When you create and use your own formats, you must write a data-conversion exit to support a
program getting the message using MQGMO_CONVERT.

CodedCharSetId
This defines the character set of character data in the message. If you want to set this character
set to that of the queue manager, you can set this field to the constant MQCCSI_Q_MGR or
MQCCSI_INHERIT.

When you get a message from a queue, compare the value of the CodedCharSetId field with the
value that your application is expecting. If the two values differ, you might need to convert any
character data in the message or use a data-conversion message exit if one is available.

Encoding
This describes the format of numeric message data that contains binary integers, packed-decimal
integers, and floating point numbers. It is typically encoded according to the particular machine
on which the queue manager is running.

10 IBM MQ: Programming

When you put a message on a queue, you typically specify the constant MQENC_NATIVE in the
Encoding field. This means that the encoding of your message data is the same as that of the
machine on which your application is running.

When you get a message from a queue, compare the value of the Encoding field in the message
descriptor with the value of the constant MQENC_NATIVE on your machine. If the two values
differ, you might need to convert any numeric data in the message or use a data-conversion
message exit if one is available.

Application data conversion:

Application data might need to be converted to the character set and the encoding required by another
application where different platforms are concerned.

It can be converted at the sending queue manager, or at the receiving queue manager. If the library of
built-in formats does not meet your needs, you can define your own. The type of conversion depends on
the message format that is specified in the format field of the message descriptor, MQMD.

Note: Messages with MQFMT_NONE specified are not converted.

Conversion at the sending queue manager

Set the CONVERT channel attribute to YES if you need the sending message channel agent (MCA) to
convert the application data.

The conversion is performed at the sending queue manager for certain built-in formats and for
user-defined formats if a suitable user exit is supplied.

Built-in formats

These include:
v Messages that are all characters (using the format name MQFMT_STRING)
v IBM MQ defined messages, for example Programmable Command Formats

IBM MQ uses Programmable Command Format messages for administration messages and
events (the format name used is MQFMT_ADMIN in this case). You can use the same format
(using the format name MQFMT_PCF) for your own messages, and take advantage of the
built-in data conversion.

The queue manager built-in formats all have names beginning with MQFMT. They are listed and
described in Format.

Application-defined formats

For user-defined formats, application data conversion must be performed by a data-conversion
exit program (for more information, see “Writing data-conversion exits” on page 371). In a
client-server environment, the exit is loaded at the server and conversion takes place there.

Conversion at the receiving queue manager

Application message data can be converted by the receiving queue manager for both built-in and
user-defined formats.

The conversion is performed during the processing of an MQGET call if you specify the
MQGMO_CONVERT option. For details, see the Options

Developing applications 11

Coded character sets

IBM MQ products support the coded character sets that are provided by the underlying operating
system.

When you create a queue manager, the queue manager coded character set ID (CCSID) used is based on
that of the underlying environment. If this is a mixed code page, IBM MQ uses the SBCS part of the
mixed code page as the queue manager CCSID.

For general data conversion, if the underlying operating system supports DBCS code pages, IBM MQ can
use it.

See the documentation for your operating system for details of the coded character sets that it supports.

You need to consider application data conversion, format names, and user exits when writing
applications that span multiple platforms. See “Writing data-conversion exits” on page 371 for
information about invoking and writing data-conversion exits.

Message priorities

You set the priority of a message (in the Priority field of the MQMD structure) when you put the
message on a queue. You can set a numeric value for the priority, or you can let the message take the
default priority of the queue.

The MsgDeliverySequence attribute of the queue determines whether messages on the queue are stored in
FIFO (first in, first out) sequence, or in FIFO within priority sequence. If this attribute is set to
MQMDS_PRIORITY, messages are enqueued with the priority specified in the Priority field of their
message descriptors; but if it is set to MQMDS_FIFO, messages are enqueued with the default priority of
the queue. Messages of equal priority are stored on the queue in order of arrival.

The DefPriority attribute of a queue sets the default priority value for messages being put on that
queue. This value is set when the queue is created, but it can be changed afterward. Alias queues, and
local definitions of remote queues, can have different default priorities from the base queues to which
they resolve. If there is more than one queue definition in the resolution path (see “Name resolution” on
page 104), the default priority is taken from the value (at the time of the put operation) of the
DefPriority attribute of the queue specified in the open command.

The value of the MaxPriority attribute of the queue manager is the maximum priority that you can
assign to a message processed by that queue manager. You cannot change the value of this attribute. In
IBM MQ, the attribute has the value 9; you can create messages having priorities between 0 (the lowest)
and 9 (the highest).

12 IBM MQ: Programming

Message properties
Use message properties to allow an application to select messages to process, or to retrieve information
about a message without accessing MQMD or MQRFH2 headers. They also facilitate communication
between IBM MQ and JMS applications.

A message property is data associated with a message, consisting of a textual name and a value of a
particular type. Message properties are used by message selectors to filter publications to topics or to
selectively get messages from queues. Message properties can be used to include business data or state
information without having to store it in the application data. Applications do not have to access data in
the MQ Message Descriptor (MQMD) or MQRFH2 headers because fields in these data structures can be
accessed as message properties using Message Queue Interface (MQI) function calls.

The use of message properties in IBM MQ mimics the use of properties in JMS. This means that you can
set properties in a JMS application and retrieve them in a procedural IBM MQ application, or the other
way round. To make a property available to a JMS application, assign it the prefix "usr"; it is then
available (without the prefix) as a JMS message user property. For example, the IBM MQ property
usr.myproperty (a character string) is accessible to a JMS application using the JMS call
message.getStringProperty(’myproperty’). Note that JMS applications are unable to access properties
with the prefix "usr" if they contain two or more U+002E (".") characters. A property with no prefix and
no U+002E (".") character is treated as if it had the prefix "usr". Conversely, a user property set in a JMS
application can be accessed in an IBM MQ application by adding the "usr." prefix to the property name
inquired on in an MQINQMP call.

Message properties and message length:

Use the queue manager attribute MaxPropertiesLength to control the size of the properties that can flow
with any message in an IBM MQ queue manager.

In general, when you use MQSETMP to set properties, the size of a property is the length of the property
name in bytes, plus the length of the property value in bytes as passed into the MQSETMP call. It is
possible for the character set of the property name and the property value to change during transmission
of the message to its destination because these can be converted into Unicode; in this case the size of the
property might change.

On an MQPUT or MQPUT1 call, properties of the message do not count toward the length of the
message for the queue and the queue manager, but they do count toward the length of the properties as
perceived by the queue manager (whether they were set using the message property MQI calls or not).

If the size of the properties exceeds the maximum properties length, the message is rejected with
MQRC_PROPERTIES_TOO_BIG. Because the size of the properties is dependent on its representation,
you should set the maximum properties length at a gross level.

It is possible for an application to successfully put a message with a buffer that is larger than the value of
MaxMsgLength, if the buffer includes properties. This is because, even when represented as MQRFH2
elements, message properties do not count toward the length of the message. The MQRFH2 header fields
add to the properties length only if one or more folders are contained and every folder in the header
contains properties. If one or more folders are contained in the MQRFH2 header and any folder does not
contain properties, the MQRFH2 header fields count toward the message length instead.

On an MQGET call, properties of the message do not count toward the length of the message as far as
the queue and the queue manager are concerned. However, because the properties are counted separately
it is possible that the buffer returned by an MQGET call is larger than the value of the MaxMsgLength
attribute.

Developing applications 13

Do not have your applications query the value of MaxMsgLength and then allocate a buffer of this size
before calling MQGET; instead, allocate a buffer you consider large enough. If the MQGET fails, allocate a
buffer guided by the size of the DataLength parameter.

The DataLength parameter of the MQGET call returns the length in bytes of the application data and any
properties returned in the buffer you have provided, if a message handle is not specified in the MQGMO
structure.

The Buffer parameter of the MQPUT call contains the application message data to be sent and any
properties represented in the message data.

When flowing to a queue manager that is earlier than Version 7.0 of the product, properties of the
message, except those in the message descriptor, count toward the length of the message. Therefore, you
should either raise the value of the MaxMsgLength attribute of channels going to a system earlier than
Version 7.0 as necessary, to compensate for the fact that more data might be sent for each message.
Alternatively, you can lower the queue or queue manager MaxMsgLength, so that the overall level of data
being sent around the system remains the same.

There is a length limit of 100 MB for message properties, excluding the message descriptor or extension
for each message.

The size of a property in its internal representation is the length of the name, plus the size of its value,
plus some control data for the property. There is also some control data for the set of properties after one
property is added to the message.

Property names:

A property name is a character string. Certain restrictions apply to its length and the set of characters
that can be used.

A property name is a case-sensitive character string, limited to +4095 characters unless otherwise
restricted by the context. This limit is contained in the MQ_MAX_PROPERTY_NAME_LENGTH constant.

If you exceed this maximum length when using a message property MQI call, the call fails with reason
code MQRC_PROPERTY_NAME_LENGTH_ERR.

Because there is no maximum property name length in JMS, it is possible for a JMS application to set a
valid JMS property name that is not a valid IBM MQ property name when stored in an MQRFH2
structure.

In this case, when parsed, only the first 4095 characters of the property name are used; the following
characters are truncated. This could cause an application using selectors to fail to match a selection string,
or to match a string when not expecting to, since more than one property might truncate to the same
name. When a property name is truncated, WebSphere®MQ issues an error log message.

All property names must follow the rules defined by the Java Language Specification for Java Identifiers,
with the exception that Unicode character U+002E (.) is permitted as part of the name - but not the start.
The rules for Java Identifiers equate to those contained in the JMS specification for property names.

White space characters and comparison operators are prohibited. Embedded nulls are allowed in a
property name but not recommended. If you use embedded nulls, this prevents the use of the
MQVS_NULL_TERMINATED constant when used with the MQCHARV structure to specify variable
length strings.

14 IBM MQ: Programming

Keep property names simple because applications can select messages based on the property names and
the conversion between the character set of the name and of the selector might cause the selection to fail
unexpectedly.

IBM MQ property names use character U+002E (.) for logical grouping of properties. This divides up the
namespace for properties. Properties with the following prefixes, in any mixture of lowercase or
uppercase are reserved for use by the product:
v mcd

v jms

v usr

v mq

v sib

v wmq

v Root

v Body

v Properties

A good way to avoid name clashes is to ensure that all applications prefix their message properties with
their Internet domain name. For example, if you are developing an application using domain name
ourcompany.com you could name all properties with the prefix com.ourcompany. This naming convention
also allows for easy selection of properties; for example, an application can inquire on all message
properties starting com.ourcompany.%.

See Property name restrictions for further information about the use of property names.

Property name restrictions:

When you name a property, you must observe certain rules.

The following restrictions apply to property names:
1. A property must not begin with the following strings:
v "JMS" - reserved for use by IBM MQ classes for JMS.
v "usr.JMS" - not valid.

The only exceptions are the following properties providing synonyms for JMS properties:

Property Synonym for

JMSCorrelationID Root .MQMD.CorrelId or jms.Cid

JMSDeliveryMode Root .MQMD.Persistence or jms.Dlv

JMSDestination jms.Dst

JMSExpiration Root .MQMD.Expiry or jms.Exp

JMSMessageID Root .MQMD.MsgId

JMSPriority Root .MQMD.Priority or jms.Pri

JMSRedelivered Root .MQMD.BackoutCount

JMSReplyTo (a string encoded as a
URI)

Root .MQMD.ReplyToQ or Root .MQMD.ReplyToQMgr or jms.Rto

JMSTimestamp Root .MQMD.PutDate or Root .MQMD.PutTime or jms.Tms

JMSType mcd.Type or mcd.Set or mcd.Fmt

JMSXAppID Root .MQMD.PutApplName

Developing applications 15

Property Synonym for

JMSXDeliveryCount Root .MQMD.BackoutCount

JMSXGroupID Root .MQMD.GroupId or jms.Gid

JMSXGroupSeq Root .MQMD.MsgSeqNumber or jms.Seq

JMSXUserID Root .MQMD.UserIdentifier

These synonyms allow an MQI application to access JMS properties in a similar fashion to IBM MQ
classes for JMS client application. Of these properties, only JMSCorrelationID, JMSReplyTo, JMSType,
JMSXGroupID, and JMSXGroupSeq can be set using the MQI.
Note that the JMS_IBM_* properties available from within IBM MQ classes for JMS are not available
using the MQI. The fields that the JMS_IBM_* properties reference can be accessed in other ways by
MQI applications.

2. A property must not be called, in any mixture of lower or uppercase, "NULL", "TRUE", "FALSE",
"NOT", "AND", "OR", "BETWEEN", "LIKE", "IN", "IS" and "ESCAPE". These are the names of SQL
keywords used in selection strings.

3. A property name beginning " mq " in any mixture of lowercase or uppercase and not beginning
"mq_usr" can contain only one "." character (U+002E). Multiple "." characters are not allowed in
properties with those prefixes.

4. Two "." characters must contain other characters in between; you cannot have an empty point in the
hierarchy. Similarly a property name cannot end in a "." character.

5. If an application sets the property "a.b" and then the property "a.b.c", it is unclear whether in the
hierarchy "b" contains a value or another logical grouping . Such a hierarchy is "mixed content" and
this is not supported. Setting a property that causes mixed content is not allowed.

These restrictions are enforced by the validation mechanism as follows:
v Property names are validated when setting a property using the MQSETMP - Set message property

call, if validation was requested when the message handle was created . If an attempt to validate a
property is undertaken and fails due to an error in the specification of the property name, the
completion code is MQCC_FAILED with reason:
– MQRC_PROPERTY_NAME_ERROR for reasons 1-4.
– MQRC_MIXED_CONTENT_NOT_ALLOWED for reason 5.

v The names of properties specified directly as MQRFH2 elements are not guaranteed to be validated by
the MQPUT call.

Message descriptor fields as properties:

Most message descriptor fields can be treated as properties. The property name is constructed by adding
a prefix to the message descriptor field's name.

If an MQI application wants to identify a message property contained in a message descriptor field, for
example, in a selector string or using the message property APIs, use the following syntax:

Property name Message descriptor field

Root.MQMD.<Field> <Field>

Specify <Field> with the same case as for the MQMD structure fields in the C language declaration. For
example, the property name Root.MQMD.AccountingToken accesses the AccountingToken field of the
message descriptor.

The StrucId and Version fields of the message descriptor are not accessible using the syntax shown.

Message descriptor fields are never represented in an MQRFH2 header as for other properties.

16 IBM MQ: Programming

If the message data starts with an MQMDE that is honored by the queue manager, the MQMDE fields
can be accessed using the Root.MQMD.<Field> notation described. In this case the MQMDE fields are
treated as logically part of the MQMD from a properties perspective. See Overview of MQMDE.

Property data types and values:

A property can be a boolean, a byte string, a character string, or a floating-point or integer number. The
property can store any valid value in the range of the data type unless otherwise restricted by the
context.

The data type of a property value must be one of the following values:
v MQBOOL
v MQBYTE[]
v MQCHAR[]
v MQFLOAT32
v MQFLOAT64
v MQINT8
v MQINT16
v MQINT32
v MQINT64

A property can exist but have no defined value; it is a null property. A null property is different from a
byte property (MQBYTE[]) or character string property (MQCHAR[]) in that it has a defined but empty
value, that is, one with a zero-length value.

Byte string is not a valid property data type in JMS or XMS. You are advised not to use byte string
properties in the <usr> folder.

Selecting messages from queues
You can select messages from queues using the MsgId and CorrelId fields on an MQGET call, or by using
a SelectionString on an MQOPEN or MQSUB call.

Selectors:

A message selector is a variable-length string used by an application to register its interest in only those
messages that have properties that satisfy the Structured Query Language (SQL) query that the selection
string represents.

Selection using the MQSUB and MQOPEN function calls

You use the SelectionString, which is a structure of type MQCHARV, to make selections using the
MQSUB and MQOPEN calls.

The SelectionString structure is used to pass a variable-length selection string to the queue manager.

The CCSID associated with the selector string is set via the VSCCSID field of the MQCHARV structure.
The value used must be a CCSID that is supported for selector strings. See Code page conversion for a
list of supported code pages.

Specifying a CCSID for which there is no IBM MQ supported Unicode conversion, results in an error of
MQRC_SOURCE_CCSID_ERROR. This error is returned at the time that the selector is presented to the
queue manager, that is, on the MQSUB, MQOPEN, or MQPUT1 call.

Developing applications 17

The default value for the VSCCSID field is MQCCSI_APPL, which indicates that the CCSID of the selection
string is equal to the queue manager CCSID, or the client CCSID if connected through a client. The
MQCCSI_APPL constant can however be overridden by an application redefining it before compiling.

If the MQCHARV selector represents a NULL string, no selection takes place for that message consumer
and messages are delivered as if a selector had not been used.

The maximum length of a selection string is limited only by what can be described by the MQCHARV
field VSLength.

The SelectionString is returned on the output from an MQSUB call using the MQSO_RESUME subscribe
option, if you have provided a buffer and there is a positive buffer length in VSBufSize. If you do not
provide a buffer, only the length of the selection string is returned in the VSLength field of the
MQCHARV. If the buffer provided is smaller than the space required to return the field, only VSBufSize
bytes are returned in the provided buffer.

An application cannot alter a selection string without first closing either the handle to the queue (for
MQOPEN), or subscription (for MQSUB). A new selection string can then be specified on a subsequent
MQOPEN or MQSUB call.

MQOPEN
Use MQCLOSE to close the opened handle, then specify a new selection string on a subsequent
MQOPEN call.

MQSUB
Use MQCLOSE to close the returned subscription handle (hSub), then specify a new selection
string on a subsequent MQSUB call.

Figure 3 on page 19 shows the process of selection using the MQSUB call.

18 IBM MQ: Programming

A selector can be passed in on the call to MQSUB by using the SelectionString field in the MQSD
structure. The effect of passing in a selector on the MQSUB is that only those messages published to the
topic being subscribed to, that match a supplied selection string, are made available on the destination
queue.

Figure 4 on page 20 shows the process of selection using the MQOPEN call.

MyDestQ

MyDestQ

MyDestQ

MyDestQ

MyDestQ

MyDestQ

MyDestQ

ResultsTopic

ResultsTopic

ResultsTopic

ResultsTopic

Message

Message

Message

Message

Message

DELIVERED

DELIVERED

NOT DELIVERED

DELIVERED

DELIVERED

League = 'Premiership'
Sport = 'Football'

League = 'Div 2'
Sport = 'Football'

League = 'Premiership'
Sport = 'Cricket'

League = 'Premiership'
Sport = 'Football'

League = 'Div 2'
Sport = 'Football'

ObjectName = "MyDestQ"
hObj

SelectionString = "Sport = 'Football'"
hObj
TopicString = "ResultsTopic"

MQOPEN

MQSUB

MQGET

(APP 1)

(APP 1)

(APP 1) hObj

Figure 3. Selection using MQSUB call

Developing applications 19

A selector can be passed in on the call to MQOPEN by using the SelectionString field in the MQOD
structure. The effect of passing in a selector on the MQOPEN call is that only those messages on the
opened queue, that match a selector, are delivered to the message consumer.

The main use for the selector on the MQOPEN call is for the point-to-point case where an application can
elect to receive only those messages on a queue that match a selector. The previous example shows a
simple scenario where two messages are put to a queue opened by MQOPEN but only one is received by
the application getting it, as it is the only one that matches a selector.

Note that subsequent MQGET calls result in MQRC_NO_MSG_AVAILABLE as no further messages exist
on the queue that match the given selector.

SportQ

SportQ

SportQ

SportQ

SportQ

SportQ

Application 2

Application 2

Message

Message

Message

Message

MQPUT

NOT DELIVERED

DELIVERED

MQRC_NO_MSG_AVAILABLE

MQPUT

League = 'Div 2'
Sport = 'Football'

League = 'Div 2'
Sport = 'Football'

League = 'Premiership'
Sport = 'Football'

League = 'Premiership'
Sport = 'Football'

SelectorString = "League = 'Premiership'"
ObjectName = "SportQ"
hObj

MQOPEN

MQGET

(APP 1)

(APP 1) hObj

Figure 4. Selection using MQOPEN call

20 IBM MQ: Programming

Related concepts:
“Selection string rules and restrictions” on page 27
Familiarize yourself with these rules about how selection strings are interpreted and character restrictions
to avoid potential problems when using selectors.

Selection behavior:

Overview of IBM MQ selection behavior.

The fields in an MQMDE structure are considered to be the message properties for the corresponding
message descriptor properties if the MQMD:
v Has format MQFMT_MD_EXTENSION
v Is immediately followed by a valid MQMDE structure
v Is version one or contains the default version two fields only

It is possible for a selection string to resolve to either TRUE or FALSE before any matching against
message properties takes place. For example, it might be the case if the selection string is set to “TRUE
<>FALSE”. Such early evaluation is guaranteed to take place only when there are no message property
references in the selection string.

If a selection string resolves to TRUE before any message properties are considered, all messages
published to the topic subscribed to by the consumer are delivered. If a selection string resolves to FALSE
before any message properties are considered, a reason code of MQRC_SELECTOR_ALWAYS_FALSE, and
completion code MQCC_FAILED are returned on the function call that presented the selector.

Even if a message contains no message properties (other than header properties) then it can still be
eligible for selection. If a selection string references a message property that does not exist, this property
is assumed to have the value of NULL or 'Unknown'.

For example, a message might still satisfy a selection string like ’Color IS NULL’, where ’Color’ does not
exist as a message property in the message.

Selection can be performed only on the properties that are associated with a message, not the message
itself, unless an extended message selection provider is available. Selection can be performed on the
message payload only if an extended message selection provider is available.

Each message property has a type associated with it. When you perform a selection, you must ensure
that the values used in expressions to test message properties are of the correct type. If a type mismatch
occurs, the expression in question resolves to FALSE.

It is your responsibility to ensure that the selection string and message properties use compatible types.

Selection criteria continue to be applied on behalf of inactive durable subscribers, so that only messages
that match the selection string that was originally supplied are kept.

Selection strings are non-alterable when a durable subscription is resumed with alter (MQSO_ALTER). If
a different selection string is presented when a durable subscriber resumes activity, then
MQRC_SELECTOR_NOT_ALTERABLE is returned to the application.

Applications receive a return code of MQRC_NO_MSG_AVAILABLE if there is no message on a queue
that meets the selection criteria.

If an application has specified a selection string containing property values then only those messages that
contain matching properties are eligible for selection. For example, a subscriber specifies a selection string

Developing applications 21

of "a = 3" and a message is published containing no properties, or properties where 'a' does not exist or is
not equal to 3. The subscriber does not receive that message to its destination queue.

Messaging performance

Selecting messages from a queue requires IBM MQ to sequentially inspect each message on the queue.
Messages are inspected until a message is found that matches the selection criteria or there are no more
messages to examine. Therefore, messaging performance suffers if message selection is used on deep
queues.

To optimize message selection on deep queues when selection is based on JMSCorrelationID or
JMSMessageID, use a selection string of the form JMSCorrelationID = ... or JMSMessageID = ... and
reference only one property.

This method offers a significant improvement in performance for selection on JMSCorrelationID and
offers a marginal performance improvement for JMSMessageID.

Using complex selectors

Selectors can contain many components, for example:

a and b or c and d or e and f or g and h or i and j... or y and z

Use of such complex selectors can have serious performance implications and excessive resource
requirements. As such, IBM MQ will protect the system by failing to process overly complex selectors
that could result in a system resource shortage. Protection can occur on selection strings that contain
more than 100 tests, or when IBM MQ detects that the limit on the size of the operating system stack is
being approached. You should thoroughly try and test the use of selection strings with many
components, on the appropriate platforms, to ensure that the protection limits are not reached.

The performance and complexity of selectors can be improved by simplifying them using additional
parenthesis to combine components. For example:

(a and b or c and d) or (e and f or g and h) or (i and j) ...
Related concepts:
“Selection string rules and restrictions” on page 27
Familiarize yourself with these rules about how selection strings are interpreted and character restrictions
to avoid potential problems when using selectors.

Message selector syntax:

An IBM MQ message selector is a string with syntax that is based on a subset of the SQL92 conditional
expression syntax.

The order in which a message selector is evaluated is from left to right within a precedence level. You can
use parentheses to change this order. Predefined selector literals and operator names are written here in
uppercase; however, they are not case-sensitive.

IBM MQ verifies the syntactic correctness of a message selector at the time it is presented. If the syntax of
the selection string is incorrect or a property name is not valid, and an extended message selection
provider is not available, MQRC_SELECTION_NOT_AVAILABLE is returned to the application. If the syntax of
the selection string is incorrect or a property name is not valid when a subscription is resumed, a
MQRC_SELECTOR_SYNTAX_ERROR is returned to the application. If property name validation was disabled
when the property was set (by setting MQCMHO_NONE instead of MQCMHO_VALIDATE) and an application
subsequently puts a message with in invalid property name, this message is never selected.

22 IBM MQ: Programming

A selector can contain:
v Literals:

– String literals are enclosed in single quotation marks. Two consecutive single quotation marks
represent a single quotation mark. Examples are 'literal' and 'literal''s'. Like Java string literals, these
use the Unicode character encoding. You cannot use double quotation marks to enclose a string
literal. Any sequence of bytes can be used between the single quotation marks.

– A byte string is one or more pair of hexadecimal characters enclosed in double quotation marks and
prefixed by 0x. Examples are “0x2F1C” or “0XD43A”. The length of a byte string must be at least one
byte. If a selector byte string is matched to a message property of type MQTYPE_BYTE_STRING, no
special action is taken on leading or trailing zero. The bytes are treated as another character.
Endianness is also not considered. The length of both selector and property byte strings must be
equal, and the sequence of bytes must be the same.
Examples of byte string selections (assume myBytes = 0AFC23) which match are:
- “myBytes = “0x0AFC23”” = TRUE

The following string selections do not match:
- “myBytes = “0xAFC23”” = MQRC_SELECTOR_SYNTAX_ERROR (because number of bytes is not

multiple of two)
- “myBytes = “0x0AFC2300”” = FALSE (because the trailing zero is significant in the comparison)
- “myBytes = “0x000AFC23”” = FALSE (because leading zero is significant in the comparison)
- “myBytes = “0x23FC0A”” = FALSE (because endianness is not considered)

– Hex numbers begin with a zero, followed by an uppercase or lowercase x. The remainder of the
literal contains one or more valid hex characters. Examples are 0xA, 0xAF, 0X2020.

– A leading zero followed by one or more digits in the range 0-7 is always interpreted as being the
start of an octal number. You cannot represent a zero-prefixed decimal number like this, for
example, 09 returns a syntax error because 9 is not a valid octal digit. Examples of octal numbers
are 0177, 0713.

– An exact numeric literal is a numeric value without a decimal point, such as 57, -957, and +62. An
exact numeric literal can have a trailing uppercase or lowercase L; this does not affect how the
number is stored or interpreted. IBM MQ supports exact numerals in the range
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

– An approximate numeric literal is a numeric value in scientific notation, such as 7E3 or -57.9E2, or a
numeric value with a decimal, such as 7., -95.7, or +6.2. IBM MQ supports numbers in the range
-1.797693134862315E+308 to 1.797693134862315E+308.
The significand should follow an optional sign character (+ or -). The significand should be either
an integer or a fraction. A fractional part of the significand need not have a leading digit.
An uppercase or lowercase E indicates the start of an optional exponent. The exponent has a decimal
radix and the number part of the exponent can be prefixed by an optional sign character.
Approximate numeric literals can be terminated by an F or a D character (not case-sensitive). This
syntax exists to support the cross-language method of tagging single or double precision numbers.
These characters are optional and do not affect how an approximate numeric literal is stored or
processed. These numbers are always stored and processed using double-precision.

– The boolean literals TRUE and FALSE.

Note: Non-finite IEEE-754 representations such as NaN, +Infinity, -Infinity are not supported in
selection strings. It is therefore not possible to use these values as operands in an expression. Negative
zero is treated the same as positive zero for mathematical operations.

v Identifiers:
An identifier is a variable-length character sequence that must begin with a valid identifier start
character, followed by zero or more valid identifier part characters. The rules for identifier names are
the same as those for message property names, see “Property names” on page 14 and “Property name
restrictions” on page 15 for more information.

Developing applications 23

Note: Selection can be performed on the message payload only if an extended message selection
provider is available.
Identifiers are either header field references or property references. The type of a property value in a
message selector must correspond to the type used to set the property, although numeric promotion is
performed where possible. If a type mismatch occurs then the result of the expression is FALSE. If a
property that does not exist in a message is referenced, its value is NULL.
Type conversions that apply to the get methods for properties do not apply when a property is used in
a message selector expression. For example, if you set a property as a string value and then use a
selector to query it as a numeric value, the expression returns FALSE.
JMS field and property names that map to property names or MQMD field names are also valid
identifiers in a selection string. IBM MQ maps the recognized JMS field and property names to the
message property values. See “Message selectors in JMS” on page 954 for more information. As an
example, the selection string “JMSPriority >=” selects on the Pri property found in the jms folder of
the current message.

v Overflow/underflow:
For both decimal and approximate numeric numbers, the following are undefined:
– Specifying a number that is out of the defined range
– Specifying an arithmetic expression which would cause overflow or underflow

No checks are performed for these conditions.
v White space:

Defined as a space, form-feed, newline, carriage return, horizontal tab, or vertical tab. The following
Unicode characters are recognized as white space:
– \u0009 to \u000D

– \u0020

– \u001C

– \u001D

– \u001E

– \u001F

– \u1680

– \u180E

– \u2000 to \u200A
– \u2028

– \u2029

– \u202F

– \u205F

– \u3000

v Expressions:
– A selector is a conditional expression. A selector that evaluates to true matches; a selector that

evaluates to false or unknown does not match.
– Arithmetic expressions are composed of themselves, arithmetic operations, identifiers (identifier

value is treated as a numeric literal), and numeric literals.
– Conditional expressions are composed of themselves, comparison operations, and logical operations.

v Standard bracketing (), to set the order in which expressions are evaluated, is supported.
v Logical operators in precedence order: NOT, AND, OR.
v Comparison operators: =, >, >=, <, <=, <> (not equal).

– Two byte strings are equal only if the strings are of the same length and the sequence of bytes is
equal.

24 IBM MQ: Programming

– Only values of the same type can be compared. One exception is that it is valid to compare exact
numeric values and approximate numeric values, (the type conversion required is defined by the
rules of Java numeric promotion). If there is an attempt to compare different types, the selector is
always false.

– String and boolean comparison is restricted to = and <>. Two strings are equal only if they contain
the same sequence of characters.

v Arithmetic operators in precedence order:
– +, - unary.
– * multiplication, and / division.
– + addition, and - subtraction.
– Arithmetic operations on a NULL value are not supported. If they are attempted, the complete

selector is always false.
– Arithmetic operations must use Java numeric promotion.

v arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3 comparison operator:
– Age BETWEEN 15 and 19 is equivalent to age>= 15 AND age <= 19.
– Age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age > 19.
– If any of the expressions of a BETWEEN operation are NULL, the value of the operation is false. If any

of the expressions of a NOT BETWEEN operation are NULL, the value of the operation is true.
v identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator where identifier has

a String or NULL value.
– Country IN (’UK’, ’US’, ’France’) is true for ’UK’ and false for ’Peru’. It is equivalent to the

expression (Country = ’UK’) OR (Country = ’US’) OR (Country = ’France’).
– Country NOT IN (’UK’, ’US’, ’France’) is false for ’UK’ and true for ’Peru’. It is equivalent to the

expression NOT ((Country = ’UK’) OR (Country = ’US’) OR (Country = ’France’)).
– If the identifier of an IN or NOT IN operation is NULL, the value of the operation is unknown.

v identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison operator, where
identifier has a string value. pattern-value is a string literal, where _ stands for any single character
and % stands for any sequence of characters (including the empty sequence). All other characters stand
for themselves. The optional escape-character is a single character string literal that is used to escape the
special meaning of the _ and % in pattern-value. The LIKE operator must be used only to compare two
string values.
– phone LIKE ’12%3’ is true for 123 and 12993 and false for 1234.
– word LIKE ’l_se’ is true for lose and false for loose.
– underscored LIKE ’_%’ ESCAPE ’\’ is true for _foo and false for bar.
– phone NOT LIKE ’12%3’ is false for 123 and 12993 and true for 1234.
– If the identifier of a LIKE or NOT LIKE operation is NULL, the value of the operation is unknown.

Note: The LIKE operator must be used to compare two string values. The value of Root.MQMD.CorrelId
is a 24-byte byte array, not a character string. The selector string Root.MQMD.CorrelId LIKE ’ABC%’ is
accepted by the parser as syntactically valid, but it is evaluated to false. When you are comparing a
byte array with a character string, LIKE therefore cannot be used.

v identifier IS NULL comparison operator tests for a NULL header field value, or a missing property
value.

v identifier IS NOT NULL comparison operator tests for the existence of a non-null header field value or
a property value.

v Null values
The evaluation of selector expressions that contain NULL values is defined by SQL 92 NULL semantics, in
summary:
– SQL treats a NULL value as unknown.

Developing applications 25

– Comparison or arithmetic with an unknown value always yields an unknown value.
– The IS NULL and IS NOT NULL operators convert an unknown value into TRUE and FALSE values.

The boolean operators use three-valued logic (T=TRUE, F=FALSE, U=UNKNOWN)

Table 1. Boolean operator outcome when logic is A AND B

Operator A Operator B Outcome (A AND B)

T F F

T U U

T T T

F T F

F U F

F F F

U T U

U U U

U F F

Table 2. Boolean operator outcome when logic is A OR B

Operator A Operator B Outcome (A OR B)

T F T

T U T

T T T

F T T

F U U

F F F

U T T

U U U

U F U

Table 3. Boolean operator outcome when logic is NOT A

Operator A Outcome (NOT A)

T F

F T

U U

The following message selector selects messages with a message type of car, color of blue, and weight
greater than 2500 lbs:
"JMSType = ’car’ AND color = ’blue’ AND weight > 2500"

Although SQL supports fixed decimal comparison and arithmetic, message selectors do not. This is why
exact numeric literals are restricted to those without a decimal. It is also why there are numerics with a
decimal as an alternative representation for an approximate numeric value.

SQL comments are not supported.

26 IBM MQ: Programming

Related concepts:
“Message properties” on page 13
Use message properties to allow an application to select messages to process, or to retrieve information
about a message without accessing MQMD or MQRFH2 headers. They also facilitate communication
between IBM MQ and JMS applications.
Related information:
MsgHandle
MQBUFMH - Convert buffer into message handle

Selection string rules and restrictions:

Familiarize yourself with these rules about how selection strings are interpreted and character restrictions
to avoid potential problems when using selectors.
v Message selection for publish/subscribe messaging occurs on the message as sent by the publisher. See

Selection strings.
v Equivalence is tested using a single equals character; for example, a = b is correct, whereas a == b is

incorrect.
v An operator used by many programming languages to represent 'not equal to' is !=. This

representation is not a valid synonym for <> ; for example, a <> b is valid, whereas a != b is not valid.
v Single quotation marks are recognized only if the ' (U+0027) character is used. Similarly, double

quotation marks, valid only when used to enclose byte strings, must use the " (U+0022) character.
v The symbols &, &&, | and || are not synonyms for logical conjunction/disjunction; for example, a && b

must be specified as a AND b.
v The wildcard characters * and ? are not synonyms for % and _.
v Selectors containing compound expressions such as 20 < b < 30 are not valid. The parser evaluates

operators that have the same precedence from left to right. The example would therefore become (20 <
b) < 30, which does not make sense. Instead the expression must be written as (b > 20) AND (b < 30).

v Byte strings must be enclosed in double quotation marks; if single quotation marks are used, the byte
string is taken to be a string literal. The number of characters (not the number that the characters
represent) following the 0x must be a multiple of two.

v The keyword IS is not a synonym for the equals character. Thus the selection strings a IS 3 and b IS
’red’ are not valid. The IS keyword exists only to support IS NULL and IS NOT NULL cases.

Related concepts:
“Selection behavior” on page 21
Overview of IBM MQ selection behavior.
Related information:
Selection strings

UTF-8 and Unicode considerations when using message selectors:

Characters, not enclosed in single quotation marks, that make up the reserved keywords of a selection
string must be entered in Basic Latin Unicode (ranging from character U+0000 to U+0007F). It is not valid
to use other code point representations of alphanumeric characters. For example, the number 1 must be
expressed as U+0031 in Unicode, it is not valid to use the Fullwidth Digit equivalent U+FF11 or the
Arabic equivalent U+0661.

Message property names can be specified using any valid sequence of Unicode characters. Message
property names contained within selection strings that are encoded in UTF-8 will be validated even if
they contain multi-byte characters. Validation of multi-byte UTF-8 is strict and you must ensure that valid
UTF-8 sequences are used for message property names.

Developing applications 27

No extra processing is performed on property names or values when comparing for equality. This means
for example that no pre/de-composition takes place and ligatures are not given any special meaning. For
example, the pre-composed umlaut character U+00FC is not considered to be equivalent to U+0075 +
U+0308 and the character sequence ff is not considered to be equivalent to the Unicode U+FB00 (LATIN
SMALL LIGATURE FF)

Property data enclosed in single quotation marks can be represented by any sequence of bytes and is not
validated.

Selecting on the content of a message:

It is possible to subscribe based on a selection of message payload content (also known as content
filtering), but the decision about which messages should be delivered to such a subscription cannot be
performed directly by IBM MQ; instead an extended message selection provider, for example IBM
Integration Bus, is required to process the messages.

When an application publishes on a topic string, where one or more subscribers have a selection string
selecting on the content of the message, IBM MQ will request that the extended message selection
provider parse the publication and inform IBM MQ whether the publication matches the selection criteria
specified by each subscriber with a content filter.

If the extended message selection provider determines that the publication matches the subscriber's
selection string, the message will continue to be delivered to the subscriber.

If the extended message selection provider determines that the publication does not match, the message
is not delivered to the subscriber. This might cause the MQPUT or MQPUT1 call to fail with reason code
MQRC_PUBLICATION_FAILURE. If the extended message selection provider is unable to parse the
publication, reason code MQRC_CONTENT_ERROR is returned and the MQPUT or MQPUT1 call fails.

If the extended message selection provider is unavailable or is unable to determine whether the
subscriber should receive the publication, reason code MQRC_SELECTION_NOT_AVAILABLE is
returned and the MQPUT or MQPUT1 call fails.

When a subscription is being created with a content filter and the extended message selection provider is
not available, the MQSUB call fails with reason code MQRC_SELECTION_NOT_AVAILABLE. If a
subscription with a content filter is being resumed and the extended message selection provider is not
available, the MQSUB call returns a warning of MQRC_SELECTION_NOT_AVAILABLE, but the
subscription is allowed to be resumed.
Related information:
Selection strings

Asynchronous consumption of IBM MQ messages
Asynchronous consumption uses a set of Message Queue Interface (MQI) extensions, the MQI calls
MQCB and MQCTL, which allow an MQI application to be written to consume messages from a set of
queues. Messages are delivered to the application by invoking a 'unit of code', identified by the
application passing either the message, or a token representing the message.

In the most straightforward of application environments, the unit of code is defined by a function pointer,
however in other environments the unit of code can be defined by a program or module name.

In asynchronous consumption of messages, the following terms are used:

Message consumer
A programming construct that allows you to define a program, or function, to be invoked with a
message when one which matches the applications requirement becomes available.

28 IBM MQ: Programming

Event handler
A programming construct that allows you to define a program or function to invoke when an
asynchronous event, such as queue manager quiescing, occurs.

Callback
A generic term used to refer to either a Message Consumer or an Event Handler routine.

Asynchronous consumption can simplify the design and implementation of new applications, especially
those that process multiple input queues or subscriptions. However, if you are using more than one input
queue and you are processing messages in priority sequence, priority sequence is observed independently
within each queue: you might get low-priority messages from one queue ahead of high-priority messages
from another. Message order across multiple queues is not guaranteed. Also note that if you use API
exits, you might need to change them to include the MQCB and MQCTL calls.

The following illustrations give an example of how you can use this function.

Figure 5 shows a multithreaded application consuming messages from two queues. The example shows
all of the messages being delivered to a single function.

z/OS

On z/OS, the main control thread must issue an MQDISC call before ending. This allows any

callback threads to end and release system resources.

MQCONN

MQDISC

Pause, perform non MQ
function. or use a
different hConn.

Process message

OPEN (QUEUE1, &hObj1)

OPEN (QUEUE2, &hObj2)

MQCB(hObj1, func1)

MQCB(hObj2, func1)

MQCTL(CONSUME_START)

MQPUT1(md.ReplyQ, ...)

MQCTL(CONSUME_STOP)

Func1(...)

return

Figure 5. Standard Message Driven application consuming from two queues

Developing applications 29

Figure 6 This sample flow shows a single threaded application consuming messages from two queues.
The example shows all of the messages being delivered to a single function.

The difference from the asynchronous case is that control does not return to the issuer of MQCTL until all
of the consumers have deactivated themselves; that is one consumer has issued an MQCTL STOP request
or the queue manager quiesces.

Message groups
Messages can occur within groups to allow ordering of messages.

Message groups allow multiple messages to be marked as related to one another, and a logical order to
be applied to the group (see “Logical and physical ordering” on page 136). On platforms other than
z/OS, a related concept, “Message segmentation” on page 155 enables large messages to be broken up
into smaller segments. You cannot use grouped or segmented messages when putting to a topic.

The hierarchy within a group is as follows:

Group
This is the highest level in the hierarchy and is identified by a GroupId. It consists of one or more
messages that contain the same GroupId. These messages can be stored anywhere on the queue.

Note: The term message is used here to denote one item on a queue, such as would be returned
by a single MQGET that does not specify MQGMO_COMPLETE_MSG.

Figure 7 on page 31 shows a group of logical messages:

MQCONN

MQDISC

Process message

OPEN (QUEUE1, &hObj1)

OPEN (QUEUE2, &hObj2)

MQCB(hObj1, func1)

MQCB(hObj2, func1)

MQCTL(CONSUME_START-WAIT) MQPUT1(md.ReplyQ, ...)

Func1(...)

return

Figure 6. Single Threaded Message Driven application consuming from two queues

30 IBM MQ: Programming

By opening a queue and specifying MQOO_BIND_ON_GROUP, you force all messages in a
group that are sent to this queue to be sent to the same instance of the queue. For more
information on the BIND_ON_GROUP option, see Handling message affinities.

Logical message
Logical messages within a group are identified by the GroupId and MsgSeqNumber fields. The
MsgSeqNumber starts at 1 for the first message within a group, and if a message is not in a group,
the value of the field is 1.

Use logical messages within a group to:
v Ensure ordering (if this is not guaranteed under the circumstances in which the message is

transmitted).
v Allow applications to group similar messages (for example, those that must all be processed by

the same server instance).

Each message within a group consists of one physical message, unless it is split into segments.
Each message is logically a separate message, and only the GroupId and MsgSeqNumber fields in
the MQMD need to bear any relationship to other messages in the group. Other fields in the
MQMD are independent; some might be identical for all messages in the group whereas others
might be different. For example, messages in a group can have different format names, CCSIDs,
and encodings.

Segment
Segments are used to handle messages that are too large for either the putting or getting
application or the queue manager (including intervening queue managers through which the
message passes). For more information, see “Message segmentation” on page 155.

An individual message is broken down into smaller messages called segments. A segment of a
message is identified by the GroupId, MsgSeqNumber, and Offset fields. The Offset field starts at
zero for the first segment within a message.

Each segment consists of one physical message that might belong to a group (Figure 8 shows an
example of messages within a group). A segment is logically part of a single message, so only the
MsgId, Offset, and MsgFlags fields in the MQMD should differ between separate segments of the
same message. If a segment fails to arrive, reason code MQRC_INCOMPLETE_GROUP or
MQRC_INCOMPLETE_MSG is returned as appropriate.

Figure 8 shows a group of logical messages, some of which are segmented:

Group

LOGMSG2LOGMSG1 LOGMSG3

Figure 7. Group of logical messages

Group

LOGMSG2LOGMSG1 LOGMSG3

SEG1 SEG3SEG2SEG1 SEG2

Figure 8. Segmented messages

Developing applications 31

z/OS Segmentation is not supported on IBM MQ for z/OS.

You cannot use segmented or grouped messages with Publish/Subscribe.
Related concepts:
“Message segmentation” on page 155
Use this information to learn about segmenting messages.
Related reference:
Logical and physical ordering of messages
Messages on queues can occur (within each priority level) in physical or logical order.
Related information:
MQMD - Message descriptor

Message persistence
Persistent messages are written to logs and queue data files.

If a queue manager is restarted after a failure, it recovers these persistent messages as necessary from the
logged data. Messages that are not persistent are discarded if a queue manager stops, whether the
stoppage is as a result of an operator command or because of the failure of some part of your system.

z/OS Nonpersistent messages for IBM MQ for z/OS stored in a coupling facility (CF) are an
exception to this. They persist as long as the CF remains available.

When you create a message, if you initialize the message descriptor (MQMD) using the defaults, the
persistence for the message is taken from the DefPersistence attribute of the queue specified in the
MQOPEN command. Alternatively, you can set the persistence of the message using the Persistence
field of the MQMD structure to define the message as persistent or nonpersistent.

The performance of your application is affected when you use persistent messages; the extent of the effect
depends on the performance characteristics of the machine's I/O subsystem and how you use the sync
point options on each platform:
v A persistent message, outside the current unit of work, is written to disk on every put and get

operation. See “Committing and backing out units of work” on page 224.

v In IBM MQ on UNIX systems, IBM MQ on Linux systems, z/OS

IBM MQ for z/OS, and IBM MQ

for Windows, a persistent message within the current unit of work is logged only when the unit of
work is committed (and the unit of work could contain many queue operations).

Nonpersistent messages can be used for fast messaging. See Safety of messages for further information
about fast messages.

Note: A combination of writing persistent messages within a unit of work, and writing persistent
messages outside a unit or work, can cause potentially severe performance problems for your
applications. This is particularly true when the same target queue is used for both operations.

32 IBM MQ: Programming

Messages that fail to be delivered
When a queue manager cannot put a message on a queue, you have various options.

You can:
v Attempt to put the message on the queue again.
v Request that the message is returned to the sender.
v Put the message on the dead-letter queue.

See“Handling procedural program errors” on page 443for more information.

Messages that are backed out

When processing messages from a queue under the control of a unit of work, the unit of work can consist
of one or more messages. If a backout occurs, the messages that were retrieved from the queue are
reinstated on the queue, and they can be processed again in another unit of work. If the processing of a
particular message is causing the problem, the unit of work is backed out again. This can cause a
processing loop. Messages that were put to a queue are removed from the queue.

An application can detect messages that are caught up in such a loop by testing the BackoutCount field of
MQMD. The application can either correct the situation, or issue a warning to an operator.

z/OS

In IBM MQ for z/OS, to ensure that the backout count for private queues survives restarts of the queue
manager, set the HardenGetBackout attribute to MQQA_BACKOUT_HARDENED; otherwise, if the queue
manager has to restart, it does not maintain an accurate backout count for each message. Setting the
attribute this way adds the penalty of extra processing.

On IBM MQ for

IBM i, IBM MQ for Windows, IBM MQ on UNIX systems, IBM MQ on
Linux systems z/OS , and shared queues on z/OS, the backout count always survives restarts of the
queue manager. Any change to the HardenGetBackout attribute is ignored.

For more information on committing and backing out messages, see “Committing and backing out units
of work” on page 224.

Reply-to queue and queue manager

There are occasions when you might receive messages in response to a message you send:
v A reply message in response to a request message
v A report message about an unexpected event or expiry
v A report message about a COA (Confirmation Of Arrival) or a COD (Confirmation Of Delivery) event
v A report message about a PAN (Positive Action Notification) or a NAN (Negative Action Notification)

event

Using the MQMD structure, specify the name of the queue to which you want reply and report messages
sent, in the ReplyToQ field. Specify the name of the queue manager that owns the reply-to queue in the
ReplyToQMgr field.

If you leave the ReplyToQMgr field blank, the queue manager sets the contents of the following fields in
the message descriptor on the queue:

ReplyToQ
If ReplyToQ is a local definition of a remote queue, the ReplyToQ field is set to the name of the
remote queue; otherwise this field is not changed.

Developing applications 33

ReplyToQMgr
If ReplyToQ is a local definition of a remote queue, the ReplyToQMgr field is set to the name of the
queue manager that owns the remote queue; otherwise the ReplyToQMgr field is set to the name of
the queue manager to which your application is connected.

Note: You can request that a queue manager makes more than one attempt to deliver a message, and
you can request that the message is discarded if it fails. If the message, after failing to be delivered, is not
to be discarded, the remote queue manager puts the message on its dead-letter (undelivered message)
queue (see “Using the dead-letter (undelivered message) queue” on page 447).

Message context
Message context information allows the application that retrieves the message to find out about the
originator of the message.

The retrieving application might want to:
v Check that the sending application has the correct level of authority
v Perform some accounting function so that it can charge the sending application for any work that it

has to perform
v Keep an audit trail of all the messages that it has worked with

When you use the MQPUT or MQPUT1 call to put a message on a queue, you can specify that the queue
manager is to add some default context information to the message descriptor. Applications that have the
appropriate level of authority can add extra context information. For more information about how to
specify context information, see “Controlling message context information” on page 120.

The user context is used by the queue manager when generating the following types of report message:
v Confirm on delivery
v Expiry

When these report messages are generated, the user context is checked for +put and +passid authority on
the destination of the report. Where the user context has insufficient authority, the report message is
placed on the dead-letter queue if one has been defined. Where there is no dead-letter queue, the report
message is discarded.

All context information is stored in the context fields of the message descriptor. The type of information
falls into identity, origin, and user context information.

Identity context

Identity context information identifies the user of the application that first put the message on a queue.
Suitably authorized applications can set the following fields:
v The queue manager fills the UserIdentifier field with a name that identifies the user; the way that

the queue manager can do this depends on the environment in which the application is running.
v The queue manager fills the AccountingToken field with a token or number that it determined from

the application that put the message.
v Applications can use the ApplIdentityData field for any extra information that they want to include

about the user (for example, an encrypted password).

A Windows systems security identifier (SID) is stored in the AccountingToken field when a message is
created under IBM MQ for Windows. The SID can be used to supplement the UserIdentifier field and
to establish the credentials of a user.

For information about how the queue manager fills the UserIdentifier and AccountingToken fields, see
the descriptions of these fields in UserIdentifier and AccountingToken.

34 IBM MQ: Programming

Applications that pass messages from one queue manager to another should also pass on the identity
context information so that other applications know the identity of the originator of the message.

Origin context

Origin context information describes the application that put the message on the queue on which the
message is currently stored. The message descriptor contains the following fields for origin context
information:

PutApplType The type of application that put the message (for example, a CICS® transaction).

PutApplName The name of the application that put the message (for example, the name of a job or
transaction).

PutDate The date on which the message was put on the queue.

PutTime The time at which the message was put on the queue.

ApplOriginData Any extra information that an application wants to include about the origin of the
message. For example, it could be set by suitably authorized applications to indicate
whether the identity data is trusted.

Origin context information is typically supplied by the queue manager. Greenwich Mean Time (GMT) is
used for the PutDate and PutTime fields. See the descriptions of these fields in PutDate and PutTime.

An application with enough authority can provide its own context. This allows accounting information to
be preserved when a single user has a different user ID on each of the systems that process a message
that they have originated.

IBM MQ objects

This information provides details on IBM MQ objects which include: queue managers, queue-sharing
groups, queues, administrative topic objects, namelists, process definitions, authentication information
objects, channels, storage classes, listeners, and services.

Queue managers define the properties (known as attributes) of these objects. The values of these
attributes affect the way in which IBM MQ processes these objects. From your applications, you use the
Message Queue Interface (MQI) to control these objects. Objects are identified by an object descriptor
(MQOD) when addressed from a program.

When you use IBM MQ commands to define, alter, or delete objects, for example, the queue manager
checks that you have the required level of authority to perform these operations. Similarly, when an
application uses the MQOPEN call to open an object, the queue manager checks that the application has
the required level of authority before it allows access to that object. The checks are made on the name of
the object being opened.

Developing applications 35

Related concepts:
“Controlling message context information” on page 120
When you use the MQPUT or MQPUT1 call to put a message on a queue, you can specify that the queue
manager is to add some default context information to the message descriptor. Applications that have the
appropriate level of authority can add extra context information. You can use the options field in the
MQPMO structure to control context information.
Related reference:
“MQOPEN options relating to message context” on page 110
If you want to be able to associate context information with a message when you put it on a queue, you
must use one of the message context options when you open the queue.

Preparing and running Microsoft Transaction Server applications
To prepare an MTS application to run as an IBM MQ MQI client application, follow these instructions as
appropriate for your environment.

For general information about how to develop Microsoft Transaction Server (MTS) applications that
access IBM MQ resources, see the section on MTS in the IBM MQ Help Center.

To prepare an MTS application to run as an IBM MQ MQI client application, do one of the following for
each component of the application:
v If the component uses the C language bindings for the MQI, follow the instructions in “Preparing C

programs in Windows” on page 420 but link the component with the library mqicxa.lib instead of
mqic.lib.

v If the component uses the IBM MQ C++ classes, follow the instructions in “Building C++ programs on
Windows” on page 829 but link the component with the library imqx23vn.lib instead of imqc23vn.lib.

v If the component uses the Visual Basic language bindings for the MQI, follow the instructions in the
“Preparing Visual Basic programs in Windows” on page 423 but when you define the Visual Basic
project, type MqType=3 in the Conditional Compilation Arguments field.

v If the component uses the IBM MQ Automation Classes for ActiveX (MQAX), define an environment
variable, GMQ_MQ_LIB, with the value mqic32xa.dll.
You can define the environment variable from within your application, or you can define it so that its
scope is system wide. However, defining it as system wide can cause any existing MQAX application,
that does not define the environment variable from within the application, to behave incorrectly.

Using IBM MQ with WebSphere Application Server
Use this topic to understand the use of IBM MQ with WebSphere Application Server.

Applications that are written in Java that are running under WebSphere Application Server can use the
Java Messaging Service (JMS) specification to perform messaging. Messaging in this environment can be
provided by an IBM MQ queue manager.

A benefit of using an IBM MQ queue manager is that connecting JMS applications can participate fully in
the functionality of an IBM MQ network, which allows the applications to exchange messages with queue
managers that are running on a multitude of platforms.

Applications can use either the client transport or bindings transport for the queue connection factory
object. For bindings transport, the queue manager must exist locally to the application that requires a
connection.

By default, JMS messages that are held on IBM MQ queues use an MQRFH2 header to hold some of the
JMS message header information. Many legacy IBM MQ applications cannot process messages with these
headers, and require their own characteristic headers, for example the MQCIH for CICS Bridge, or
MQWIH for IBM MQ Workflow applications. For more information about these special considerations,

36 IBM MQ: Programming

see Mapping JMS messages onto IBM MQ messages.

IMS and IMS bridge applications on IBM MQ for z/OS
This information helps you to write IMS applications using IBM MQ.
v To use syncpoints and MQI calls in IMS applications, see “Writing IMS applications using IBM MQ.”
v To write applications that use the IBM MQ - IMS bridge, see “Writing IMS bridge applications” on

page 42.

Use the following links to find out more about IMS and IMS bridge applications on IBM MQ for z/OS:
v “Writing IMS applications using IBM MQ”
v “Writing IMS bridge applications” on page 42
Related concepts:
“The Message Queue Interface overview” on page 76
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 92
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 101
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 113
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 130
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 220
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 224
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 237
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 257
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 263
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

Writing IMS applications using IBM MQ
There are further considerations when using IBM MQ in IMS applications These include which MQ API
calls can be used and the mechanism used for syncpoint.

Use the following links to find out more about writing IMS applications on IBM MQ for z/OS:
v “Syncpoints in IMS applications” on page 38
v “MQI calls in IMS applications” on page 38

Restrictions

There are restrictions on which IBM MQ API calls can used by an application using the IMS adapter.

The following IBM MQ API calls are not supported within an application using the IMS adapter:
v MQCB
v MQCB_FUNCTION

Developing applications 37

v MQCTL
Related concepts:
“Writing IMS bridge applications” on page 42
This topic contains information about writing applications to use the IBM MQ - IMS bridge.

Syncpoints in IMS applications:

In an IMS application, you establish a syncpoint by using IMS calls such as GU (get unique) to the
IOPCB and CHKP (checkpoint).

To back out all changes since the previous checkpoint, you can use the IMS ROLB (rollback) call. For
more information, see the following:
v IMS/ESA Application Programming: Transaction Manager

v IMS/ESA Application Programming: Design Guide

The queue manager is a participant in a two-phase commit protocol; the IMS syncpoint manager is the
coordinator.

All open handles are closed by the IMS adapter at a syncpoint (except in a batch or non-message driven
BMP environment). This is because a different user could initiate the next unit of work and IBM MQ
security checking is performed when the MQCONN, MQCONNX, and MQOPEN calls are made, not
when the MQPUT or MQGET calls are made.

However, in a Wait-for-Input (WFI) or pseudo Wait-for-Input (PWFI) environment IMS does not notify
IBM MQ to close the handles until either the next message arrives or a QC status code is returned to the
application. If the application is waiting in the IMS region and any of these handles belong to triggered
queues, triggering will not occur because the queues are open. For this reason, applications running in a
WFI or PWFI environment should explicitly MQCLOSE the queue handles before doing the GU to the
IOPCB for the next message.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open queues are closed but no
implicit syncpoint is taken. If the application ends normally, any open queues are closed and an implicit
commit occurs. If the application ends abnormally, any open queues are closed and an implicit backout
occurs.

MQI calls in IMS applications:

Use this information to learn about the use of MQI calls on Server applications and Enquiry applications.

This section covers the use of MQI calls in the following types of IMS applications:
v “Server applications”
v “Inquiry applications” on page 41

Server applications

Here is an outline of the MQI server application model:
Initialize/Connect
.
Open queue for input shared
.
Get message from IBM MQ queue
.
Do while Get does not fail
.
If expected message received
Process the message

38 IBM MQ: Programming

Else
Process unexpected message
End if
.
Commit
.
Get next message from IBM MQ queue
.
End do
.
Close queue/Disconnect
.
END

Sample program CSQ4ICB3 shows the implementation, in C/370™, of a BMP using this model. The
program establishes communication with IMS first, and then with IBM MQ:
main()

Call InitIMS
If IMS initialization successful
Call InitMQM
If IBM MQ initialization successful
Call ProcessRequests
Call EndMQM
End-if
End-if

Return

The IMS initialization determines whether the program has been called as a message-driven or a
batch-oriented BMP and controls IBM MQ queue manager connection and queue handles accordingly:
InitIMS

Get the IO, Alternate and Database PCBs
Set MessageOriented to true

Call ctdli to handle status codes rather than abend
If call is successful (status code is zero)
While status code is zero
Call ctdli to get next message from IMS message queue
If message received
Do nothing
Else if no IOPBC
Set MessageOriented to false
Initialize error message
Build ’Started as batch oriented BMP’ message
Call ReportCallError to output the message
End-if
Else if response is not ’no message available’
Initialize error message
Build ’GU failed’ message
Call ReportCallError to output the message
Set return code to error
End-if
End-if
End-while
Else
Initialize error message
Build ’INIT failed’ message
Call ReportCallError to output the message
Set return code to error
End-if

Return to calling function

Developing applications 39

The IBM MQ initialization connects to the queue manager and opens the queues. In a message-driven
BMP this is called after each IMS syncpoint is taken; in a batch-oriented BMP, this is called only during
program startup:
InitMQM

Connect to the queue manager
If connect is successful
Initialize variables for the open call
Open the request queue
If open is not successful
Initialize error message
Build ’open failed’ message
Call ReportCallError to output the message
Set return code to error
End-if
Else
Initialize error message
Build ’connect failed’ message
Call ReportCallError to output the message
Set return code to error
End-if

Return to calling function

The implementation of the server model in an MPP is influenced by the fact that the MPP processes a
single unit of work per invocation. This is because, when a syncpoint (GU) is taken, the connection and
queue handles are closed and the next IMS message is delivered. This limitation can be partially
overcome by one of the following:
v Processing many messages within a single unit-of-work

This involves:
– Reading a message
– Processing the required updates
– Putting the reply

in a loop until all messages have been processed or until a set maximum number of messages has been
processed, at which time a syncpoint is taken.
Only certain types of application (for example, a simple database update or inquiry) can be approached
in this way. Although the MQI reply messages can be put with the authority of the originator of the
MQI message being handled, the security implications of any IMS resource updates need to be
addressed carefully.

v Processing one message per invocation of the MPP and ensuring multiple scheduling of the MPP to
process all available messages.

Use the IBM MQ IMS trigger monitor program (CSQQTRMN) to schedule the MPP transaction when
there are messages on the IBM MQ queue and no applications serving it.
If trigger monitor starts the MPP, the queue manager name and queue name are passed to the
program, as shown in the following COBOL code extract:
* Data definition extract
01 WS-INPUT-MSG.
05 IN-LL1 PIC S9(3) COMP.
05 IN-ZZ1 PIC S9(3) COMP.
05 WS-STRINGPARM PIC X(1000).
01 TRIGGER-MESSAGE.
COPY CMQTMC2L.
*
* Code extract
GU-IOPCB SECTION.
MOVE SPACES TO WS-STRINGPARM.
CALL ’CBLTDLI’ USING GU,
IOPCB,

40 IBM MQ: Programming

WS-INPUT-MSG.
IF IOPCB-STATUS = SPACES
MOVE WS-STRINGPARM TO MQTMC.
* ELSE handle error
*
* Now use the queue manager and queue names passed
DISPLAY ’MQTMC-QMGRNAME =’
MQTMC-QMGRNAME OF MQTMC ’=’.
DISPLAY ’MQTMC-QNAME =’
MQTMC-QNAME OF MQTMC ’=’.

The server model, which is expected to be a long running task, is better supported in a batch processing
region, although the BMP cannot be triggered using CSQQTRMN.

Inquiry applications

A typical IBM MQ application initiating an inquiry or update works as follows:
v Gather data from the user
v Put one or more IBM MQ messages
v Get the reply messages (you might have to wait for them)
v Provide a response to the user

Because messages put on to IBM MQ queues do not become available to other IBM MQ applications until
they are committed, they must either be put out of syncpoint, or the IMS application must be split into
two transactions.

If the inquiry involves putting a single message, you can use the no syncpoint option; however, if the
inquiry is more complex, or resource updates are involved, you might get consistency problems if failure
occurs and you do not use syncpointing.

To overcome this, you can split IMS MPP transactions using MQI calls using a program-to-program
message switch; see IMS/ESA Application Programming: Data Communication for information about this.
This allows an inquiry program to be implemented in an MPP:
Initialize first program/Connect
.
Open queue for output
.
Put inquiry to IBM MQ queue
.
Switch to second IBM MQ program, passing necessary data in save
pack area (this commits the put)
.
END
.
.
Initialize second program/Connect
.
Open queue for input shared
.
Get results of inquiry from IBM MQ queue
.
Return results to originator
.
END

Developing applications 41

Writing IMS bridge applications
This topic contains information about writing applications to use the IBM MQ - IMS bridge.

For information about the IBM MQ - IMS bridge, see The IMS bridge.

Use the following links to find out more about writing IMS bridge applications on IBM MQ for z/OS:
v “How the IMS bridge deals with messages”
v “Writing IMS transaction programs through IBM MQ” on page 289
Related concepts:
“Writing IMS applications using IBM MQ” on page 37
There are further considerations when using IBM MQ in IMS applications These include which MQ API
calls can be used and the mechanism used for syncpoint.

How the IMS bridge deals with messages:

When you use the IBM MQ - IMS bridge to send messages to an IMS application, you need to construct
your messages in a special format.

You must also put your messages on IBM MQ queues that have been defined with a storage class that
specifies the XCF group and member name of the target IMS system. These are known as MQ-IMS bridge
queues, or simply bridge queues.

The IBM MQ-IMS bridge requires exclusive input access (MQOO_INPUT_EXCLUSIVE) to the bridge
queue if it is defined with QSGDISP(QMGR), or if it is defined with QSGDISP(SHARED) together with
the NOSHARE option.

A user does not need to sign on to IMS before sending messages to an IMS application. The user ID in
the UserIdentifier field of the MQMD structure is used for security checking. The level of checking is
determined when IBM MQ connects to IMS, and is described in Application access control for the IMS
bridge. This enables a pseudo signon to be implemented.

The IBM MQ - IMS bridge accepts the following types of message:
v Messages containing IMS transaction data and an MQIIH structure (described in MQIIH):

MQIIH LLZZ<trancode><data>[LLZZ<data>][LLZZ<data>]

Note:

1. The square brackets, [], represent optional multi-segments.
2. Set the Format field of the MQMD structure to MQFMT_IMS to use the MQIIH structure.

v Messages containing IMS transaction data but no MQIIH structure:
LLZZ<trancode><data> \
[LLZZ<data>][LLZZ<data>]

IBM MQ validates the message data to ensure that the sum of the LL bytes plus the length of the MQIIH
(if it is present) is equal to the message length.

When the IBM MQ - IMS bridge gets messages from the bridge queues, it processes them as follows:
v If the message contains an MQIIH structure, the bridge verifies the MQIIH (see MQIIH), builds the

OTMA headers, and sends the message to IMS. The transaction code is specified in the input message.
If this is an LTERM, IMS replies with a DFS1288E message. If the transaction code represents a
command, IMS executes the command; otherwise the message is queued in IMS for the transaction.

v If the message contains IMS transaction data, but no MQIIH structure, the IMS bridge makes the
following assumptions:
– The transaction code is in bytes 5 through 12 of the user data

42 IBM MQ: Programming

– The transaction is in nonconversational mode
– The transaction is in commit mode 0 (commit-then-send)
– The Format in the MQMD is used as the MFSMapName (on input)
– The security mode is MQISS_CHECK
The reply message is also built without an MQIIH structure, taking the Format for the MQMD from the
MFSMapName of the IMS output.

The IBM MQ - IMS bridge uses one or two Tpipes for each IBM MQ queue:
v A synchronized Tpipe is used for all messages using Commit mode 0 (COMMIT_THEN_SEND) (these

show with SYN in the status field of the IMS /DIS TMEMBER client TPIPE xxxx command)
v A non-synchronized Tpipe is used for all messages using Commit mode 1 (SEND_THEN_COMMIT)

The Tpipes are created by IBM MQ when they are first used. A non-synchronized Tpipe exists until IMS
is restarted. Synchronized Tpipes exist until IMS is cold started. You cannot delete these Tpipes yourself.

See the following topics for more information about how the IBM MQ - IMS bridge deals with messages:
v “Mapping IBM MQ messages to IMS transaction types”
v “If the message cannot be put to the IMS queue” on page 44
v “IMS bridge feedback codes” on page 44
v “The MQMD fields in messages from the IMS bridge” on page 45
v “The MQIIH fields in messages from the IMS bridge” on page 46
v “Reply messages from IMS” on page 47
v “Using alternate response PCBs in IMS transactions” on page 47
v “Sending unsolicited messages from IMS” on page 47
v “Message segmentation” on page 48
v “Data conversion” on page 48
Related concepts:
“Writing IMS transaction programs through IBM MQ” on page 289
The coding required to handle IMS transactions through IBM MQ depends on the message format
required by the IMS transaction and the range of responses it can return. However, there are several
points to consider when your application handles IMS screen formatting information.

Mapping IBM MQ messages to IMS transaction types:

A table describing the mapping of IBM MQ messages to IMS transaction types.

Table 4. Mapping IBM MQ messages to IMS transaction types

IBM MQ message type Commit-then-send (mode 0) - uses
synchronized IMS Tpipes

Send-then-commit (mode 1) - uses
non-synchronized IMS Tpipes

Persistent IBM MQ messages v Recoverable full function
transactions

v Unrecoverable transactions are
rejected by IMS

v Fastpath transactions

v Conversational transactions

v Full function transactions

Nonpersistent IBM MQ messages v Unrecoverable full function
transactions

v Recoverable transactions are
permitted with IMS V8 and APAR
PQ61404 and all later versions of
IMS

v Fastpath transactions

v Conversational transactions

v Full function transactions

Developing applications 43

Note: IMS commands cannot use persistent IBM MQ messages with commit mode 0. See the IMS/ESA
Open Transaction Manager Access User's Guide for more information.

If the message cannot be put to the IMS queue:

Learn about actions to take if the message cannot be put to the IMS queue.

If the message cannot be put to the IMS queue, the following action is taken by IBM MQ:
v If a message cannot be put to IMS because the message is invalid, the message is put to the dead-letter

queue, and a message is sent to the system console.
v If the message is valid, but is rejected by IMS, IBM MQ sends an error message to the system console,

the message includes the IMS sense code, and the IBM MQ message is put to the dead-letter queue. If
the IMS sense code is 001A, IMS sends an IBM MQ message containing the reason for the failure to the
reply-to queue.

Note: In the circumstances listed previously, if IBM MQ cannot put the message to the dead-letter
queue for any reason, the message is returned to the originating IBM MQ queue. An error message is
sent to the system console, and no further messages are sent from that queue.

To resend the messages, do one of the following:
– Stop and restart the Tpipes in IMS corresponding to the queue
– Alter the queue to GET(DISABLED), and again to GET(ENABLED)
– Stop and restart IMS or the OTMA
– Stop and restart your IBM MQ subsystem

v If the message is rejected by IMS for anything other than a message error, the IBM MQ message is
returned to the originating queue, IBM MQ stops processing the queue, and an error message is sent to
the system console.
If an exception report message is required, the bridge puts it to the reply-to queue with the authority
of the originator. If the message cannot be put to the queue, the report message is put to the
dead-letter queue with the authority of the bridge. If it cannot be put to the DLQ, it is discarded.

IMS bridge feedback codes:

IMS sense codes are typically output in hexadecimal format in IBM MQ console messages such as
CSQ2001I (for example, sense code 0x001F). IBM MQ feedback codes as seen in the dead-letter header of
messages put to the dead-letter queue are decimal numbers.

The IMS bridge feedback codes are in the range 301 through 399, or 600 through 855 for NACK sense
code 0x001A. They are mapped from the IMS-OTMA sense codes as follows:
1. The IMS-OTMA sense code is converted from a hexadecimal number to a decimal number.
2. 300 is added to the number resulting from the calculation in 1, giving the IBM MQ Feedback code.
3. The IMS-OTMA sense code 0x001A, decimal 26 is a special case. A Feedback code in the range 600-855

is generated.
a. The IMS-OTMA reason code is converted from a hexadecimal number to a decimal number.
b. 600 is added to the number resulting from the calculation in a, giving the IBM MQ Feedback code.

For information about IMS-OTMA sense codes, see the IMS Messages and Codes.

44 IBM MQ: Programming

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/common/mc.htm

The MQMD fields in messages from the IMS bridge:

Learn about the MQMD fields in messages from the IMS bridge.

The MQMD of the originating message is carried by IMS in the User Data section of the OTMA headers.
If the message originates in IMS, this is built by the IMS Destination Resolution Exit. The MQMD of a
message received from IMS is built as follows:

StrucID
"MD "

Version
MQMD_VERSION_1

Report
MQRO_NONE

MsgType
MQMT_REPLY

Expiry If MQIIH_PASS_EXPIRATION is set in the Flags field of the MQIIH, this field contains the
remaining expiry time, else it is set to MQEI_UNLIMITED

Feedback
MQFB_NONE

Encoding
MQENC.Native (the encoding of the z/OS system)

CodedCharSetId
MQCCSI_Q_MGR (the CodedCharSetID of the z/OS system)

Format
MQFMT_IMS if the MQMD.Format of the input message is MQFMT_IMS, otherwise
IOPCB.MODNAME

Priority
MQMD.Priority of the input message

Persistence
Depends on commit mode: MQMD.Persistence of the input message if CM-1; persistence matches
recoverability of the IMS message if CM-0

MsgId MQMD.MsgId if MQRO_PASS_MSG_ID, otherwise New MsgId (the default)

CorrelId
MQMD.CorrelId from the input message if MQRO_PASS_CORREL_ID, otherwise MQMD.MsgId
from the input message (the default)

BackoutCount
0

ReplyToQ
Blanks

ReplyToQMgr
Blanks (set to local qmgr name by the queue manager during the MQPUT)

UserIdentifier
MQMD.UserIdentifier of the input message

AccountingToken
MQMD.AccountingToken of the input message

Developing applications 45

ApplIdentityData
MQMD.ApplIdentityData of the input message

PutApplType
MQAT_XCF if no error, otherwise MQAT_BRIDGE

PutApplName
<XCFgroupName><XCFmemberName> if no error, otherwise QMGR name

PutDate
Date when message was put

PutTime
Time when message was put

ApplOriginData
Blanks

The MQIIH fields in messages from the IMS bridge:

Learn about the MQIIH fields in messages from the IMS bridge.

The MQIIH of a message received from IMS is built as follows:

StrucId
"IIH "

Version
1

StrucLength
84

Encoding
MQENC_NATIVE

CodedCharSetId
MQCCSI_Q_MGR

Format
MQIIH.ReplyToFormat of the input message if MQIIH.ReplyToFormat is not blank, otherwise
IOPCB.MODNAME

Flags 0

LTermOverride
LTERM name (Tpipe) from OTMA header

MFSMapName
Map name from OTMA header

ReplyToFormat
Blanks

Authenticator
MQIIH.Authenticator of the input message if the reply message is being put to an MQ-IMS
bridge queue, otherwise blanks.

TranInstanceId
Conversation ID / Server Token from OTMA header if in conversation, otherwise nulls

TranState
"C" if in conversation, otherwise blank

CommitMode
Commit mode from OTMA header ("0" or "1")

46 IBM MQ: Programming

SecurityScope
Blank

Reserved
Blank

Reply messages from IMS:

When an IMS transaction ISRTs to its IOPCB, the message is routed back to the originating LTERM or
TPIPE.

These are seen in IBM MQ as reply messages. Reply messages from IMS are put onto the reply-to queue
specified in the original message. If the message cannot be put onto the reply-to queue, it is put onto the
dead-letter queue using the authority of the bridge. If the message cannot be put onto the dead-letter
queue, a negative acknowledgment is sent to IMS to say that the message cannot be received.
Responsibility for the message is then returned to IMS. If you are using commit mode 0, messages from
that Tpipe are not sent to the bridge, and remain on the IMS queue; that is, no further messages are sent
until restart. If you are using commit mode 1, other work can continue.

If the reply has an MQIIH structure, its format type is MQFMT_IMS; if not, its format type is specified by
the IMS MOD name used when inserting the message.

Using alternate response PCBs in IMS transactions:

When an IMS transaction uses alternate response PCBs (ISRTs to the ALTPCB, or issues a CHNG call to a
modifiable PCB), the pre-routing exit (DFSYPRX0) is invoked to determine if the message should be
rerouted.

If the message is to be rerouted, the destination resolution exit (DFSYDRU0) is invoked to confirm the
destination and prepare the header information See Using OTMA exits in IMS and The pre-routing exit
DFSYPRX0 for information about these exit programs.

Unless action is taken in the exits, all output from IMS transactions initiated from an IBM MQ queue
manager, whether to the IOPCB or to an ALTPCB, will be returned to the same queue manager.

Sending unsolicited messages from IMS:

To send messages from IMS to an IBM MQ queue, you need to invoke an IMS transaction that ISRTs to
an ALTPCB.

You need to write pre-routing and destination resolution exits to route unsolicited messages from IMS
and build the OTMA user data, so that the MQMD of the message can be built correctly. See The
pre-routing exit DFSYPRX0 and The destination resolution user exit for information about these exit
programs.

Note: The IBM MQ - IMS bridge does not know whether a message that it receives is a reply or an
unsolicited message. It handles the message the same way in each case, building the MQMD and MQIIH
of the reply based on the OTMA UserData that arrived with the message

Unsolicited messages can create new Tpipes. For example, if an existing IMS transaction switched to a
new LTERM (for example PRINT01), but the implementation requires that the output be delivered
through OTMA, a new Tpipe (called PRINT01 in this example) is created. By default, this is a
non-synchronized Tpipe. If the implementation requires the message to be recoverable, set the destination
resolution exit output flag. See the IMS Customization Guide for more information.

Developing applications 47

Message segmentation:

You can define IMS transactions as expecting single- or multi-segment input.

The originating IBM MQ application must construct the user input following the MQIIH structure as one
or more LLZZ-data segments. All segments of an IMS message must be contained in a single IBM MQ
message sent with a single MQPUT.

The maximum length of an LLZZ-data segment is defined by IMS/OTMA (32767 bytes). The total IBM
MQ message length is the sum of the LL bytes, plus the length of the MQIIH structure.

All the segments of the reply are contained in a single IBM MQ message.

There is a further restriction on the 32 KB limitation on messages with format
MQFMT_IMS_VAR_STRING. When the data in an ASCII-mixed CCSID message is converted to an
EBCDIC-mixed CCSID message, a shift-in byte or a shift-out byte is added every time that there is a
transition between SBCS and DBCS characters. The 32 KB restriction applies to the maximum size of the
message. That is, because the LL field in the message cannot exceed 32 KB, the message must not exceed
32 KB including all shift-in and shift-out characters. The application building the message must allow for
this.

Data conversion:

The data conversion is performed by either the distributed queuing facility (which may call any
necessary exits) or by the intra group queuing agent (which does not support the use of exits) when it
puts a message to a destination queue that has XCF information defined for its storage class.

Any exits needed must be available to the distributed queuing facility in the data set referenced by the
CSQXLIB DD statement. This means that you can send messages to an IMS application using the IBM
MQ - IMS bridge from any IBM MQ platform.

If there are conversion errors, the message is put to the queue unconverted; this results eventually in it
being treated as an error by the IBM MQ - IMS bridge, because the bridge cannot recognize the header
format. If a conversion error occurs, an error message is sent to the z/OS console.

See “Writing data-conversion exits” on page 371 for detailed information about data conversion in
general.

Sending messages to the IBM MQ - IMS bridge

To ensure that conversion is performed correctly, you must tell the queue manager what the format of the
message is.

If the message has an MQIIH structure, the Format in the MQMD must be set to the built-in format
MQFMT_IMS, and the Format in the MQIIH must be set to the name of the format that describes your
message data. If there is no MQIIH, set the Format in the MQMD to your format name.

If your data (other than the LLZZs) is all character data (MQCHAR), use as your format name (in the
MQIIH or MQMD, as appropriate) the built-in format MQFMT_IMS_VAR_STRING. Otherwise, use your
own format name, in which case you must also provide a data-conversion exit for your format. The exit
must handle the conversion of the LLZZs in your message, in addition to the data itself (but it does not
have to handle any MQIIH at the start of the message).

If your application uses MFSMapName, you can use messages with the MQFMT_IMS instead, and define the
map name passed to the IMS transaction in the MFSMapName field of the MQIIH.

48 IBM MQ: Programming

Receiving messages from the IBM MQ - IMS bridge

If an MQIIH structure is present on the original message that you are sending to IMS, one is also present
on the reply message.

To ensure that your reply is converted correctly:
v If you have an MQIIH structure on your original message, specify the format that you want for your

reply message in the MQIIH ReplytoFormat field of the original message. This value is placed in the
MQIIH Format field of the reply message. This is particularly useful if all your output data is of the
form LLZZ<character data>.

v If you do not have an MQIIH structure on your original message, specify the format that you want for
the reply message as the MFS MOD name in the IMS application's ISRT to the IOPCB.

Actions that your applications can perform
You can develop applications to send and receive messages that you need to support your business
processes. You can also develop applications to manage your queue managers and related resources.

Actions that your applications can perform on IBM MQ platforms other than z/OS

With IBM MQ for platforms other than z/OS, you can write applications that perform the following
actions:
v Send messages to other applications running under the same operating systems. The applications can

be on either the same or another system.
v Send messages to applications that run on other IBM MQ platforms.

v Use message queuing from within CICS for

IBM i, TXSeries® for AIX, HP-UX, Solaris,
and Windows systems.

v Use message queuing from within Encina for AIX, HP-UX, Solaris, and Windows systems.
v Use message queuing from within Tuxedo for AIX, AT&T, HP-UX, Solaris, and Windows systems.
v Use IBM MQ as a transaction manager, coordinating updates made by external resource managers

within IBM MQ units of work. The following external resource managers are supported and comply
with the X/OPEN XA interface
– DB2®

– Informix®

– Oracle
– Sybase

v Process several messages together as a single unit of work that can be committed or backed out.
v Run from a full IBM MQ environment, or run from an IBM MQ client environment.

z/OS

Actions that your applications can perform on IBM MQ for z/OS

With IBM MQ for z/OS, you can write applications that perform the following actions:
v Use message queuing within CICS or IMS.
v Send messages between batch, CICS, and IMS applications, selecting the most appropriate environment

for each function.
v Send messages to applications that run on other IBM MQ platforms.
v Process several messages together as a single unit of work that can be committed or backed out.
v Send messages to, and interact with, IMS applications by means of the IMS bridge.

Developing applications 49

v Participate in units of work coordinated by RRS.

Each environment within z/OS has its own characteristics, advantages, and disadvantages. The
advantage of IBM MQ for z/OS is that applications are not tied to any one environment, but can be
distributed to take advantage of the benefits of each environment. For example, you can develop
end-user interfaces using TSO or CICS, you can run processing-intensive modules in z/OS batch, and
you can run database applications in IMS or CICS. In all cases, the various parts of the application can
communicate using messages and queues.

Designers of IBM MQ applications must be aware of the differences and limitations imposed by these
environments. For example:
v IBM MQ provides facilities that allow intercommunication between queue managers (this is known as

distributed queuing).
v Methods of committing and backing out changes differ between the batch and CICS environments.
v IBM MQ for z/OS provides support in the IMS environment for online message processing programs

(MPPs), interactive fast path programs (IFPs), and batch message processing programs (BMPs). If you
are writing batch DL/I programs, follow the guidance given in topics such as “Building z/OS batch
applications” on page 428 and “z/OS batch considerations” on page 88 for z/OS batch programs.

v Although multiple instances of IBM MQ for z/OS can exist on a single z/OS system, a CICS region
can connect to only one queue manager at a time. However, more than one CICS region can be
connected to the same queue manager. In the IMS and z/OS batch environments, programs can
connect to more than one queue manager.

v IBM MQ for z/OS allows local queues to be shared by a group of queue managers, giving improved
throughput and availability. Such queues are called shared queues, and the queue managers form a
queue-sharing group, which can process messages on the same shared queues. Batch applications can
connect to one of several queue managers within a queue-sharing group by specifying the
queue-sharing group name, instead of a particular queue manager name. This is known as group batch
attach, or more simply group attach. See Shared queues and queue-sharing groups.

z/OS

The differences between the supported environments, and their limitations, are explained

further in “Using and writing applications on IBM MQ for z/OS” on page 263.
Related concepts:
“Application development concepts” on page 1
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.
“Designing IBM MQ applications” on page 51
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Sample IBM MQ procedural programs” on page 473
This set of sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.
“Writing a procedural application for queuing” on page 76
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Writing client procedural applications” on page 293
What you need to know to write client applications on IBM MQ using a procedural language.
“Using IBM MQ classes for JMS” on page 903
IBM MQ classes for Java Message Service (IBM MQ classes for JMS) is the JMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for JMS provides two sets of extensions to the JMS API.
“Using the Component Object Model Interface (IBM MQ Automation Classes for ActiveX)” on page 690
The IBM MQ Automation Classes for ActiveX (MQAX) are ActiveX components that provide classes that

50 IBM MQ: Programming

you can use in your application to access IBM MQ.
“Using IBM MQ classes for Java” on page 832
IBM MQ classes for Java enable you to use IBM MQ in a Java environment. IBM MQ classes for Java
allow a Java application to connect to IBM MQ as an IBM MQ client, or connect directly to an IBM MQ
queue manager.
“Using .NET” on page 640
IBM MQ classes for .NET allow a program written in the .NET programming framework to connect to
IBM MQ as an IBM MQ MQI client or to connect directly to an IBM MQ server.
“Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ” on page
1231
The Microsoft Windows Communication Foundation (WCF) custom channel for IBM MQ sends and
receives messages between WCF clients and services.
“Using C++” on page 805
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQI.
“Building a procedural application” on page 389
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
Related information:
Security

Designing IBM MQ applications
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

When designing an IBM MQ application consider the following questions and options:

Type of application
What is the purpose of your application? See the following links for information about that
different types of application you can develop:
v Server
v Client
v Publish/subscribe
v Web services
v User exits, API exits, and installable services

Additionally, you can also write your own applications to automate administration of IBM MQ.
For more information, see Introduction to the IBM MQ Administration Interface (MQAI) and
Automating administration tasks.

Programming language
IBM MQ supports a number of procedural and object-oriented programming languages for
writing applications. For more information see, “Developing applications” on page 1.

Applications for more than one platform

Will your application run on more than one platform? Do you have a strategy to move to a
different platform from the one that you use today? If the answer to either of these questions is
yes, ensure that you code your programs for platform independence.

For example if you are using C, code in ANSI standard C. Use a standard C library function
rather than an equivalent platform-specific function even if the platform-specific function is faster
or more efficient. The exception is when efficiency in the code is paramount, when you should
code for both situations using #ifdef. For example:

Developing applications 51

#ifdef _AIX
AIX specific code

#else
generic code

#endif

Types of queues
Do you want to create a queue each time that you need one, or do you want to use queues that
have already been set up? Do you want to delete a queue when you have finished using it, or is
it going to be used again? Do you want to use alias queues for application independence? To see
what types of queues are supported, refer to Queues.

z/OS Using shared queues, queue-sharing groups, and queue-sharing group clusters (IBM MQ for
z/OS only)

You might want to take advantage of the increased availability, scalability, and workload
balancing that are possible when you use shared queues with queue-sharing groups. See Shared
queues and queue-sharing groups for more information.

You might also want to estimate the average and peak message flows and consider using
queue-sharing group clusters to spread the workload. See Shared queues and queue-sharing
groups for more information.

Using queue manager clusters
You might want to take advantage of the simplified system administration, and increased
availability, scalability, and workload balancing that are possible when you use clusters.

Types of messages
You might want to use datagrams for simple messages, but request messages (for which you
expect replies) for other situations. You might want to assign different priorities to some of your
messages. For more information about designing messages, see “Designing your messages” on
page 55.

Using publish/subscribe or point-to-point messaging
Using publish/subscribe messaging, a sending application sends the information that it wants to
share in an IBM MQ message to a standard destination managed by IBM MQ publish?subscribe,
and lets IBM MQ handle the distribution of that information. The target application does not
have to know anything about the source of the information it receives, it just registers an interest
in one or more topics and receives that information when it is available. For more information
about publish/subscribe messaging, see Publish/subscribe messaging.

Using point-to-point messaging, a sending application sends a message to a specific queue, from
where it knows a receiving application will retrieve it. A receiving application gets messages from
a specific queue and acts on their contents. An application will often function both as a sender
and a receiver, sending a query to another application and receiving a response.

Controlling your IBM MQ programs
You might want to start some programs automatically or make programs wait until a particular
message arrives on a queue (using the IBM MQ triggering feature, see “Starting IBM MQ
applications using triggers” on page 237). Alternatively, you might want to start another instance
of an application when the messages on a queue are not getting processed fast enough (using the
IBM MQ instrumentation events feature as described in Instrumentation events).

Running your application on an IBM MQ client
The full MQI is supported in the client environment, and almost any IBM MQ application written
in a procedural language can be relinked to run on an IBM MQ MQI client. Link the application
on the IBM MQ MQI client to the MQIC library, rather than to the MQI library.

z/OS Get(signal) on z/OS is not supported.

Note: An application running on an IBM MQ client can connect to more than one queue
manager concurrently, or use a queue manager name with an asterisk (*) on an MQCONN or

52 IBM MQ: Programming

MQCONNX call. Change the application if you want to link to the queue manager libraries
instead of the client libraries, as this function will not be available.

See “Running applications in the IBM MQ MQI client environment” on page 302 for more
information.

Application performance
Design decisions can impact your application performance, for suggestions for enhancing
performance of IBM MQ applications, see “Application design and performance” on page 56

and “Application design and performance on IBM i” on page 57.

Advanced IBM MQ techniques
For more advanced applications you might want to use some advanced IBM MQ techniques such
as correlating replies, and generating and sending IBM MQ context information. For more
information, see “Advanced IBM MQ techniques” on page 70.

Securing your data and maintaining its integrity
You can use the context information that is passed with a message to test that the message has
been sent from an acceptable source. You can use the syncpointing facilities provided by IBM MQ
or your operating system to ensure that your data remains consistent with other resources (see
“Committing and backing out units of work” on page 224 for further details). You can use the
persistence feature of IBM MQ messages to assure the delivery of important messages.

Testing IBM MQ applications

The application development environment for IBM MQ programs is no different from that for
any other application, so you can use the same development tools as well as the IBM MQ trace
facilities.

z/OS

When testing CICS applications with IBM MQ for z/OS, you can use the CICS

Execution Diagnostic Facility (CEDF). CEDF traps the entry and exit of every MQI call as well as
calls to all CICS services. Also, in the CICS environment, you can write an API-crossing exit
program to provide diagnostic information before and after every MQI call. For information
about how to do this, see “Using and writing applications on IBM MQ for z/OS” on page 263.

When testing IBM i applications, you can use the standard Debugger. To start this,
use the STRDBG command.

Handling exceptions and errors
You need to consider how to process messages that cannot be delivered, and how to resolve error
situations that are reported to you by the queue manager. For some reports, you must set report
options on MQPUT.

Developing applications 53

Related concepts:

z/OS “Design considerations for IBM MQ for z/OS applications” on page 66
Application design is one of the most important factors affecting performance. Use this topic to
understand some of the design factors involved in performance.
“Developing applications” on page 1
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ support applications written in procedural languages, and object oriented
languages and frameworks.
“Application development concepts” on page 1
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.
“Writing a procedural application for queuing” on page 76
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Writing client procedural applications” on page 293
What you need to know to write client applications on IBM MQ using a procedural language.
“Using .NET” on page 640
IBM MQ classes for .NET allow a program written in the .NET programming framework to connect to
IBM MQ as an IBM MQ MQI client or to connect directly to an IBM MQ server.
“Using C++” on page 805
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQI.
“Using IBM MQ classes for JMS” on page 903
IBM MQ classes for Java Message Service (IBM MQ classes for JMS) is the JMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for JMS provides two sets of extensions to the JMS API.
“Using IBM MQ classes for Java” on page 832
IBM MQ classes for Java enable you to use IBM MQ in a Java environment. IBM MQ classes for Java
allow a Java application to connect to IBM MQ as an IBM MQ client, or connect directly to an IBM MQ
queue manager.
“Using the Component Object Model Interface (IBM MQ Automation Classes for ActiveX)” on page 690
The IBM MQ Automation Classes for ActiveX (MQAX) are ActiveX components that provide classes that
you can use in your application to access IBM MQ.
Related information:
IBM MQ technical overview

Should I use IBM MQ classes for Java or IBM MQ classes for JMS?
A Java application can use either IBM MQ classes for Java or IBM MQ classes for JMS to access IBM MQ
resources. Each approach has its advantages.

IBM MQ classes for Java encapsulates the Message Queue Interface (MQI), the native IBM MQ API, and
uses the same object model as other object-oriented interfaces, whereas IBM MQ classes for Java Message
Service implements Oracle's Java Message Service (JMS) interfaces.

If you are familiar with IBM MQ in environments other than Java, using either procedural or
object-oriented languages, you can transfer your existing knowledge to the Java environment by using
IBM MQ classes for Java. You can also exploit the full range of features of IBM MQ, not all of which are
available in IBM MQ classes for JMS.

If you are not familiar with IBM MQ, or already have JMS experience, you might find it easier to use the
familiar JMS API to access IBM MQ resources, by using IBM MQ classes for JMS. JMS is also an integral
part of the Java Platform, Enterprise Edition (Java EE) platform. Java EE applications can use

54 IBM MQ: Programming

message-driven beans (MDBs) to process messages asynchronously. JMS is also the standard mechanism
for Java EE to interact with asynchronous messaging systems such as IBM MQ. Every application server
that is Java EE compliant must include a JMS provider, therefore you can use JMS to communicate
between different application servers or you can port an application from one JMS provider to another
without any change to the application.

“Using IBM MQ classes for Java” on page 832
IBM MQ classes for Java enable you to use IBM MQ in a Java environment. IBM MQ classes for Java
allow a Java application to connect to IBM MQ as an IBM MQ client, or connect directly to an IBM
MQ queue manager.
“Using IBM MQ classes for JMS” on page 903
IBM MQ classes for Java Message Service (IBM MQ classes for JMS) is the JMS provider that is
supplied with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM
MQ classes for JMS provides two sets of extensions to the JMS API.
Scenarios: WebSphere Application Server with IBM MQ
Scenarios: WebSphere Application Server Liberty profile with IBM MQ

Designing your messages
Consider the aspects given in this information to help you design messages.

You create a message when you use an MQI call to put the message on a queue. As input to the call, you
supply some control information in a message descriptor (MQMD) and the data that you want to send to
another program. But at the design stage, you need to consider the following, because they affect the way
that you create your messages:

Type of message to use
Are you designing a simple application in which you can send a message, then take no further
action? Or are you asking for a reply to a question? If you are asking a question, you might
include in the message descriptor the name of the queue on which you want to receive the reply.

Do you want your request and reply messages to be synchronous? This implies that you set a
timeout period for the reply to answer your request, and if you do not receive the reply within
that period, it is treated as an error.

Or would you prefer to work asynchronously, so that your processes do not have to depend
upon the occurrence of specific events, such as common timing signals?

Another consideration is whether you have all your messages inside a unit of work.

Assigning different priorities to messages
You can assign a priority value to each message, and define the queue so that it maintains its
messages in order of their priority. If you do this, when another program retrieves a message
from the queue, it always gets the message with the highest priority. If the queue does not
maintain its messages in priority order, a program that retrieves messages from the queue will
retrieve them in the order in which they were added to the queue.

Programs can also select a message using the identifier that the queue manager assigned when
the message was put on the queue. Alternatively, you can generate your own identifiers for each
of your messages.

Effect of restarting queue manager on messages
The queue manager preserves all persistent messages, recovering them when necessary from the
IBM MQ log files, when it is restarted. Nonpersistent messages and temporary dynamic queues
are not preserved. Any messages that you do not want discarded must be defined as persistent
when they are created. When writing an application for IBM MQ for Windows or IBM MQ on
UNIX and Linux systems, make sure that you know how your system has been set up in respect
of log file allocation to reduce the risk of designing an application that will run to the log file
limits.

Developing applications 55

z/OS Because messages on shared queues (only available on IBM MQ for z/OS) are held in
the coupling facility (CF), nonpersistent messages are preserved across restarts of a queue
manager as long as the CF remains available. If the CF fails, nonpersistent messages are lost.

Giving information about yourself to the recipient of messages
Usually, the queue manager sets the user ID, but suitably authorized applications can also set this
field, so that you can include your own user ID and other information that the receiving program
can use for accounting or security purposes.

Amount of receiving queues

If a message might need to be put on several queues, you can use a distribution list z/OS (not
on z/OS), or publish to a topic.

Application design and performance
There are a number of ways in which poor program design can affect performance. These can be difficult
to detect because the program can appear to perform well itself, but affect the performance of other tasks.
Several problems specific to programs making IBM MQ calls are explained in this topic.

Here are a few ideas to help you to design efficient applications:
v Design your application so that processing goes on in parallel with a user's thinking time:

– Display a panel and allow the user to start typing while the application is still initializing.
– Get the data that you need in parallel from different servers.

v Keep connections and queues open if you are going to reuse them instead of repeatedly opening and
closing, connecting and disconnecting.

v However, a server application that is putting only one message should use MQPUT1.
v Queue managers are optimized for messages between 4 KB and 100 KB in size. Very large messages

are inefficient; it is probably better to send 100 messages of 1 MB each than a single 100 MB message.
Very small messages are also inefficient. The queue manager does the same amount of work for a
single-byte message as for a 4 KB message.

v Keep your messages within a unit of work so that they can be committed or backed out
simultaneously.

v Use the nonpersistent option for messages that do not need to be recoverable.
v If you need to send a message to a number of target queues, consider using a distribution list.

Effect of message length

The amount of data in a message can affect the performance of the application that processes the
message. To achieve the best performance from your application, send only the essential data in a
message. For example, in a request to debit a bank account, the only information that might need to be
passed from the client to the server application is the account number and the amount of the debit.

Effect of message persistence

Persistent messages are usually logged. Logging messages reduces the performance of your application,
so use persistent messages for essential data only. If the data in a message can be discarded if the queue
manager stops or fails, use a nonpersistent message.

z/OS

MQPUT and MQGET operations for persistent messages will block when there is insufficient

recovery log space to record the operations. Such a condition is indicated in the queue manager job log
by messages CSQJ110E and CSQJ111A. Ensure monitoring processes are in place so that such conditions
are managed and avoided.

56 IBM MQ: Programming

Searching for a particular message

The MQGET call usually retrieves the first message from a queue. If you use the message and correlation
identifiers (MsgId and CorrelId) in the message descriptor to specify a particular message, the queue
manager has to search the queue until it finds that message. Using the MQGET call in this way affects
the performance of your application.

Queues that contain messages of different lengths

If your application cannot use messages of a fixed length, grow and shrink the buffers dynamically to
suit the typical message size. If the application issues an MQGET call that fails because the buffer is too
small, the size of the message data is returned. Add code to your application so that the buffer is resized
accordingly and the MQGET call is re-issued.

Note: if you do not set the MaxMsgLength attribute explicitly, it defaults to 4 MB, which might be very
inefficient if this is used to influence the application buffer size.

Frequency of sync points

Programs that issue very large numbers of MQPUT or MQGET calls within sync point, without
committing them, can cause performance problems. Affected queues can fill up with messages that are
currently inaccessible, while other tasks might be waiting to get these messages. This has implications in
terms of storage, and in terms of threads tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call

Use the MQPUT1 call only if you have a single message to put on a queue. If you want to put more than
one message, use the MQOPEN call, followed by a series of MQPUT calls and a single MQCLOSE call.

Number of threads in use

For IBM MQ for Windows, an application might require a large number of threads. Each queue manager
process is allocated a maximum allowable number of application threads.

Applications might use too many threads. Consider whether the application takes into account this
possibility and that it takes actions either to stop or to report this type of occurrence.

Application design and performance on IBM i
Use this information to understand how application design, threads, and storage, can affect performance.

This information is split into two sections:
v “Application design considerations”
v “Specific performance problems” on page 58

Application design considerations

There are a number of ways in which poor program design can affect performance. These problems can
be difficult to detect because the program can appear to perform well, while affecting the performance of
other tasks. Several problems specific to programs making IBM MQ for IBM i calls are explained in the
following sections.

For more information about application design, see “Designing IBM MQ applications” on page 51.

Effect of message length
Although IBM MQ for IBM i allows messages to hold up to 100 MB of data, the amount of data

Developing applications 57

in a message affects the performance of the application that processes the message. To achieve the
best performance from your application, send only the essential data in a message; for example,
in a request to debit a bank account, the only information that might need to be passed from the
client to the server application is the account number and the amount of the debit.

Effect of message persistence
Persistent messages are journaled. Journaling messages reduces the performance of your
application, so use persistent messages for essential data only. If the data in a message can be
discarded if the queue manager stops or fails, use a nonpersistent message.

Searching for a particular message
The MQGET call usually retrieves the first message from a queue. If you use the message and
correlation identifiers (MsgId and CorrelId) in the message descriptor to specify a particular
message, the queue manager must search the queue until it finds that message. The use of the
MQGET call in this way affects the performance of your application.

Queues that contain messages of different lengths
If the messages on a queue are of different lengths, to determine the size of a message, your
application can use the MQGET call with the BufferLength field set to zero so that, even though
the call fails, it returns the size of the message data. The application can then repeat the call,
specifying the identifier of the message it measured in its first call and a buffer of the correct size.
However, if there are other applications serving the same queue, you might find that the
performance of your application is reduced because its second MQGET call spends time
searching for a message that another application has retrieved in the time between your two calls.

If your application cannot use messages of a fixed length, another solution to this problem is to
use the MQINQ call to find the maximum size of messages that the queue can accept, then use
this value in your MQGET call. The maximum size of messages for a queue is stored in the
MaxMsgLen attribute of the queue. This method might use large amounts of storage, however,
because the value of this queue attribute can be the maximum allowed by IBM MQ for IBM i,
which might be greater than 2 GB.

Frequency of sync points
Programs that issue numerous MQPUT calls within sync point, without committing them, can
cause performance problems. Affected queues can fill up with messages that are currently
unusable, while other tasks might be waiting to get these messages. This problem has
implications in terms of storage, and in terms of threads tied up with tasks that are attempting to
get messages.

Use of the MQPUT1 call
Use the MQPUT1 call only if you have a single message to put on a queue. If you want to put
more than one message, use the MQOPEN call, followed by a series of MQPUT calls and a single
MQCLOSE call.

Number of threads in use
An application might require many threads. Each queue manager process is allocated a maximum
allowable number of threads. If some applications are troublesome, it might be due to their
design using too many threads. Consider whether the application takes into account this
possibility and that it takes actions either to stop or to report this type of occurrence. The
maximum number of threads that IBM i allows is 4,095. However, the default is 64. IBM MQ
makes available up to 63 threads to its processes.

Specific performance problems

This section explains the problems of storage and poor performance.

Storage problems
If you receive the system message CPF0907. Serious storage condition may exist it is possible
that you are filling up the space associated with the IBM MQ for IBM i queue managers.

58 IBM MQ: Programming

Is your application or IBM MQ for IBM i running slowly?
If your application is running slowly, it might indicate that it is in a loop, or waiting for a
resource that is not available. This slow running might also be caused by a performance problem.
Perhaps it is because your system is operating near the limits of its capacity. This type of problem
is probably worst at peak system load times, typically at mid-morning and mid-afternoon. (If
your network extends across more than one time zone, peak system load might seem to you to
occur at some other time.)

If you find that performance degradation is not dependent on system loading, but happens
sometimes when the system is lightly loaded, a poorly designed application program is probably
to blame. This problem might manifest itself as a problem that only occurs when certain queues
are accessed.

QTOTJOB and QADLTOTJ are system values worth investigating.

The following symptoms might indicate that IBM MQ for IBM i is running slowly:
v If your system is slow to respond to MQSC commands.
v If repeated displays of the queue depth indicate that the queue is being processed slowly for

an application with which you would expect a large amount of queue activity.
v Is IBM MQ trace running?

Setting up IBM MQ on IBM i with Java and JMS

This collection of topics gives an overview of how you set up and test IBM MQ with Java and JMS on
IBM i using CL commands or the qshell environment.

Note: From IBM MQ Version 8.0, ldap.jar, jndi.jar and jta.jar are part of the JDK.

Using CL commands

The CLASSPATH that you set, is for testing with MQ base Java, JMS with JNDI, and JMS without JNDI.

If you do not use a .profile file under your /home/Userprofile directory, you will need to set the system
level environment variables below. You can check to see if they are set using the WRKENVVAR command.
1. To view the environment variables for the entire system issue the command: WRKENVVAR

LEVEL(*SYS)

2. To view the environment variables specific to your job issue the command : WRKENVVAR
LEVEL(*JOB)

3. If the CLASSPATH is not set, do the following:
ADDENVVAR ENVVAR(CLASSPATH)

VALUE(’.:/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar
:/QIBM/ProdData/mqm/java/lib/connector.jar:/QIBM/ProdData/mqm/java/lib
:/QIBM/ProdData/mqm/java/samples/base
:/QIBM/ProdData/mqm/java/lib/com.ibm.mqjms.jar
:/QIBM/ProdData/mqm/java/lib/jms.jar
:/QIBM/ProdData/mqm/java/lib/providerutil.jar
:/QIBM/ProdData/mqm/java/lib/fscontext.jar:’) LEVEL(*SYS)

4. If QIBM_MULTI_THREADED is not set, issue the following command:
ADDENVVAR ENVVAR(QIBM_MULTI_THREADED) VALUE(’Y’) LEVEL(*SYS)

5. If QIBM_USE_DESCRIPTOR_STDIO is not set, issue the following command:
ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO) VALUE(’I’) LEVEL(*SYS)

6. If QSH_REDIRECTION_TEXTDATA is not set , issue the following command:
ADDENVVAR ENVVAR(QSH_REDIRECTION_TEXTDATA) VALUE(’Y’) LEVEL(*SYS)

Developing applications 59

Using the qshell environment

If you use the QSHELL environment, you can setup a .profile in your /home/Userprofile directory. For
more information reference the Qshell Interpreter (qsh) documentation.

Specify the following in the .profile. Note that the CLASSPATH statement must be on a single line, or
separated onto different lines using the \ character as shown.
CLASSPATH=.:/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar: \
/QIBM/ProdData/mqm/java/lib/connector.jar: \
/QIBM/ProdData/mqm/java/lib: \
/QIBM/ProdData/mqm/java/samples/base: \
/QIBM/ProdData/mqm/java/lib/com.ibm.mqjms.jar: \
/QIBM/ProdData/mqm/java/lib/jms.jar: \
/QIBM/ProdData/mqm/java/lib/providerutil.jar: \
/QIBM/ProdData/mqm/java/lib/fscontext.jar:
HOME=/home/XXXXX
LOGNAME=XXXXX
PATH=/usr/bin:
QIBM_MULTI_THREADED=Y QIBM_USE_DESCRIPTOR_STDIO=I
QSH_REDIRECTION_TEXTDATA=Y
TERMINAL_TYPE=5250

Ensure that the QMQMJAVA library is in the library list by issuing the command DSPLIBL.

If the QMQMJAVA library is not in the list, add it using the following command: ADDLIBLE
LIB(QMQMJAVA)

Testing IBM MQ on IBM i with Java

How you test IBM MQ with Java using the MQIVP sample program.

Testing IBM MQ base Java

Carry out the following procedure:
1. Verify that the queue manager is started, and that the state of the queue manager is ACTIVE, by

issuing the following command:
WRKMQM MQMNAME(QMGRNAME)

2. Verify that the JAVA.CHANNEL server connection channel has been created by issuing the following
command:
WRKMQMCHL CHLNAME(JAVA.CHANNEL) CHLTYPE(*SVRCN) MQMNAME(QMGRNAME)

a. If the JAVA.CHANNEL does not exist, issue the following command:
CRTMQMCHL CHLNAME(JAVA.CHANNEL) CHLTYPE(*SVRCN) MQMNAME(QMGRNAME)

3. Verify the queue manager listener is running for port 1414 or whichever port you are using, by
issuing the WRKMQMLSR command.
a. If no listener has been started for the queue manager, issue the following command:

STRMQMLSR PORT(xxxx) MQMNAME(QMGRNAME)

Running the MQIVP sample test program

1. Start the qshell, from the command line by issuing the command STRQSH
2. Verify that the correct CLASSPATH is set by issuing the export command, and then issue the cd

command as follows:
cd /qibm/proddata/mqm/java/samples/wmqjava/samples

3. Run the java program by issuing the following command:
java MQIVP

60 IBM MQ: Programming

You can press the ENTER key when prompted for:
v Type of connection
v IP address
v Queue manager name

to use the default values. This verifies the product bindings, which can be found in the QMQMJAVA
library.

You receive output similar to the following example. Note that the copyright statement depends upon the
version of the product that you are using.
> java MQIVP
MQSeries for Java Installation Verification Program
5724-H72 (C) Copyright IBM Corp. 2011. All Rights Reserved.
===

Please enter the IP address of the MQ server :
>
Please enter the queue manager name :
>
Attaching Java program to QIBM/ProdData/mqm/java/lib/connector.JAR.
Success: Connected to queue manager.
Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Disconnected from queue manager

Tests complete -
SUCCESS: This MQ Transport is functioning correctly.
Press Enter to continue ...
>
$

Testing IBM MQ Java client connection

You must specify the:
v Connection type
v IP address
v Port
v Server connection channel
v Queue manager

You receive output similar to the following example. Note that the copyright statement depends upon the
version of the product that you are using.
> java MQIVP
MQSeries for Java Installation Verification Program
5724-H72 (C) Copyright IBM Corp. 2011. All Rights Reserved.
===

Please enter the IP address of the MQ server :
> x.xx.xx.xx
Please enter the port to connect to : (1414)
> 1470
Please enter the server connection channel name :
> JAVA.CHANNEL
Please enter the queue manager name :
> KAREN01
Success: Connected to queue manager.
Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE

Developing applications 61

Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Disconnected from queue manager

Tests complete -
SUCCESS: This MQ Transport is functioning correctly.
Press Enter to continue ...
>
$

Testing IBM MQ on IBM i with JMS

How you test IBM MQ with JMS with and without JNDI

Testing JMS without JNDI using the IVTRun sample

Carry out the following procedure:
1. Verify that the queue manager is started, and that the state of the queue manager is ACTIVE, by

issuing the following command:
WRKMQM MQMNAME(QMGRNAME)

2. Start the qshell, from the command line, by issuing the STRQSH command.
3. Use the cd command to change directory as follows:

cd /qibm/proddata/mqm/java/bin

4. Run the script file:
IVTRun -nojndi [-m qmgrname]

You receive output similar to the following example. Note that the copyright statements depend upon the
versions of the products that you are using:
> IVTRun -nojndi -m ELCRTP19

Attaching Java program to
/QIBM/ProdData/mqm/java/lib/com.ibm.mqjms.JAR.
Attaching Java program to
/QIBM/ProdData/mqm/java/lib/jms.JAR.

5724-H72, 5724-B41, 5655-F10 (c) Copyright IBM Corp. 2011.
All Rights Reserved.
WebSphere MQ classes for Java(tm) Message Service 5.300
Installation Verification Test

Creating a QueueConnectionFactory
Creating a Connection
Creating a Session
Creating a Queue
Creating a QueueSender
Creating a QueueReceiver
Creating a TextMessage
Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE
Reading the message back again

Got message:
JMS Message class: jms_text
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: ID:c1d4d840c5d3c3d9e3d7f1f9404040403ccf041f0000c012

62 IBM MQ: Programming

JMSTimestamp: 1020273404500
JMSCorrelationID:null
JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE
JMSReplyTo: null
JMSRedelivered: false
JMS_IBM_PutDate:20040326
JMSXAppID:QP0ZSPWT STANLEY 170302
JMS_IBM_Format:MQSTR
JMS_IBM_PutApplType:8
JMS_IBM_MsgType:8
JMSXUserID:STANLEY
JMS_IBM_PutTime:13441354
JMSXDeliveryCount:1
A simple text message from the MQJMSIVT program
Reply string equals original string
Closing QueueReceiver
Closing QueueSender
Closing Session
Closing Connection
IVT completed OK
IVT finished
$
>
$

Testing IBM MQ JMS client mode without JNDI

Carry out the following procedure:
1. Verify that the queue manager is started, and that the state of the queue manager is ACTIVE, by

issuing the following command:
WRKMQM MQMNAME(QMGRNAME)

2. Verify that the server connection channel is created, by issuing the following command:
WRKMQMCHL CHLNAME(SYSTEM.DEF.SVRCONN) CHLTYPE(*SVRCN)
MQMNAME(QMGRNAME)

3. Verify that the listener is started for the correct port, by issuing the WRKMQMLSR command
4. Start the qshell, from the command line, by issuing the STRQSH command.
5. Verify that the CLASSPATH is correct by issuing the export command.
6. Use the cd command to change directory as follows:

cd /qibm/proddata/mqm/java/bin

7. Run the script file:
IVTRun -nojndi -client -m <qmgrname> -host <hostname> [-port <port>] [-channel <channel>]

You receive output similar to the following example. Note that the copyright statements depend upon the
versions of the products that you are using.
> IVTRun -nojndi -client -m ELCRTP19 -host ELCRTP19 -port 1414 -channel SYSTEM.DEF.SVRCONN

5724-H72, 5724-B41, 5655-F10 (c) Copyright IBM Corp. 2011.
All Rights Reserved.
WebSphere MQ classes for Java(tm) Message Service 5.300
Installation Verification Test

Creating a QueueConnectionFactory
Creating a Connection
Creating a Session
Creating a Queue
Creating a QueueSender
Creating a QueueReceiver
Creating a TextMessage
Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE

Developing applications 63

Reading the message back again

Got message:
JMS Message class: jms_text
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: ID:c1d4d840c5d3c3d9e3d7f1f9404040403ccf041f0000d012
JMSTimestamp: 1020274009970
JMSCorrelationID:null
JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE
JMSReplyTo: null
JMSRedelivered: false
JMS_IBM_PutDate:20040326
JMSXAppID:MQSeries Client for Java
JMS_IBM_Format:MQSTR
JMS_IBM_PutApplType:28
JMS_IBM_MsgType:8
JMSXUserID:QMQM
JMS_IBM_PutTime:14085237
JMSXDeliveryCount:1
A simple text message from the MQJMSIVT program
Reply string equals original string
Closing QueueReceiver
Closing QueueSender
Closing Session
Closing Connection
IVT completed OK
IVT finished
$

Testing IBM MQ JMS with JNDI

Verify that the queue manager is started, and that the state of the queue manager is ACTIVE, by issuing
the following command:
WRKMQM MQMNAME(QMGRNAME)

Using the IVTRun sample test script

Carry out the following procedure:
1. Make the appropriate changes to the JMSAdmin.config file. To edit this file use the EDTF (Edit File)

command from an IBM i command line
EDTF ’/qibm/proddata/mqm/java/bin/JMSAdmin.config’

.
a. To use LDAP for Weblogic, remove the comment from:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory

b. To use LDAP for WebSphere Application Server, remove the comment from:
INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory

c. To test the file system, remove the comment from:
INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory

d. Ensure that you have selected the correct PROVIDER_URL, by removing the comment from the
appropriate line.

e. Comment out all other lines using the # symbol.
f. When you have completed all your changes, press F2=Save and F3=Exit.

2. Start the qshell, from the command line, by issuing the STRQSH command.
3. Verify that the CLASSPATH is correct by issuing the export command.

64 IBM MQ: Programming

4. Use the cd command to change directory as follows:
cd /qibm/proddata/mqm/java/bin

5. Start the IVTSetup script to create the administered objects (MQQueueConnectionFactory and MQQueue),
by issuing the IVTSetup command.

6. Run the IVTRun script by issuing the following command:
IVTRun -url <providerURL> [-icf <initCtxFact>]

You receive output similar to the following example. Note that the copyright statements depend upon the
versions of the products that you are using.
> IVTSetup
+ Creating script for object creation within JMSAdmin
+ Calling JMSAdmin in batch mode to create objects
Ignoring unknown flag: -i

5724-H72 (c) Copyright IBM Corp. 2011. All Rights Reserved.
Starting WebSphere MQ classes for Java(tm) Message Service Administration

InitCtx>
InitCtx>
InitCtx>
InitCtx>
InitCtx>
Stopping MQSeries classes for Java(tm) Message Service Administration

+ Administration done; tidying up files
+ Done!
$

> IVTRun -url file:////tmp/mqjms -icf com.sun.jndi.fscontext.RefFSContextFactory

5724-H72 (c) Copyright IBM Corp. 2011. All Rights Reserved.
MQSeries classes for Java(tm) Message Service
Installation Verification Test

Using administered objects, please ensure that these are available

Retrieving a QueueConnectionFactory from JNDI
Creating a Connection
Creating a Session
Retrieving a Queue from JNDI
Creating a QueueSender
Creating a QueueReceiver
Creating a TextMessage
Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE
Reading the message back again

Got message:
JMS Message class: jms_text
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: ID:c1d4d840c5d3c3d9e3d7f1f9404040403ccf041f0000e012
JMSTimestamp: 1020274903770
JMSCorrelationID:null
JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE
JMSReplyTo: null
JMSRedelivered: false
JMS_IBM_Format:MQSTR
JMS_IBM_PutApplType:8
JMSXDeliveryCount:1
JMS_IBM_MsgType:8
JMSXUserID:STANLEY
JMSXAppID:QP0ZSPWT STANLEY 170308

Developing applications 65

A simple text message from the MQJMSIVT program
Reply string equals original string
Closing QueueReceiver
Closing QueueSender
Closing Session
Closing Connection
IVT completed OK
IVT finished
$

Design considerations for IBM MQ for z/OS applications
Application design is one of the most important factors affecting performance. Use this topic to
understand some of the design factors involved in performance.

There are a number of ways in which poor program design can affect performance. These problems can
be difficult to detect because the program can appear to perform well, while affecting the performance of
other tasks. Several problems specific to programs making MQI calls are demonstrated in the following
sections.

For more information about application design, see “Designing IBM MQ applications” on page 51.

Effect of message length

Although IBM MQ for z/OS allows messages to hold up to 100 MB of data, the amount of data in a
message affects the performance of the application that processes the message. To achieve the best
performance from your application, send only the essential data in a message. For example, in a request
to debit a bank account, the only information that might need to be passed from the client to the server
application is the account number and the amount to debit.

Effect of message persistence

Persistent messages are logged. Logging messages reduces the performance of your application, so use
persistent messages for essential data only. If the data in a message can be discarded if the queue
manager stops or fails, use a nonpersistent message.

Data for persistent messages is written to log buffers. These buffers are written to the log data sets when:
v A commit occurs
v A message is got or put out of syncpoint
v WRTHRSH buffers are filled

Processing many messages in one unit of work can cause less input/output than if the messages were
processed one for each unit of work, or out of syncpoint.

Searching for a particular message

The MQGET call typically retrieves the first message from a queue. If you use the message and
correlation identifiers (MsgId and CorrelId) in the message descriptor to specify a particular message,
the queue manager searches the queue until it finds that message. Using MQGET in this way affects the
performance of your application because, to find a particular message, IBM MQ might have to scan the
entire queue.

You can use the IndexType queue attribute to specify that you want the queue manager to maintain an
index that can be used to increase the speed of MQGET operations on the queue. However, there is a
small performance reduction for maintaining an index, so only generate one if you need to use it. You
can choose to build an index of message identifiers or of correlation identifiers, or you can choose not to
build an index for queues where messages are retrieved sequentially. Try to have many different key

66 IBM MQ: Programming

values, not lots with the same value. For example Balance1, Balance2, and Balance3, not three with
Balance. For shared queues, you must have the correct IndexType. For details of the IndexType queue
attribute, see IndexType.

To avoid affecting queue manager restart time by using indexed queues, use the QINDXBLD(NOWAIT)
parameter in the CSQ6SYSP macro. This allows the queue manager restart to complete without waiting
for queue index building to complete.

For a full description of the IndexType attribute, and other object attributes see Attributes of objects.

Queues that contain messages of different lengths

Get a message, using a buffer size matching the expected size of the message. If you receive the return
code indicating that the message is too long, get a bigger buffer. When the get fails in this way, the data
length returned is the size of the unconverted message data. If you specify MQGMO_CONVERT on the
MQGET call, and the data expands during conversion, it still might not fit in the buffer, in which case
you need to further increase the size of the buffer.

If you issue the MQGET with a buffer length of zero, it returns the size of the message and the
application can then get a buffer of this size and reissue the get. If you have multiple applications
processing the queue, another application might have already processed the message when the original
application reissued the get. If you occasionally have large messages, you might need to get a large buffer
just for these messages, and release it after the message has been processed. This should help reduce
virtual storage problems if all applications have large buffers.

If your application cannot use messages of a fixed length, another solution to this problem is to use the
MQINQ call to find the maximum size of messages that the queue can accept, then use this value in
your MQGET call. The maximum size of messages for a queue is stored in the MaxMsgL attribute of the
queue. This method could use large amounts of storage, however, because the value of MaxMsgL could be
as high as 100 MB, the maximum allowed by IBM MQ for z/OS.

Note: You can lower the MaxMsgL parameter after large messages have been put to the queue. For
example you can put a 100 MB message, then set MaxMsgL to 50 bytes. This means that it is still possible
to get bigger messages than the application expected.

Frequency of syncpoints

Programs that issue many MQPUT calls within syncpoint, without committing them, can cause
performance problems. Affected queues can fill up with messages that are currently unusable, while other
tasks might be waiting to get these messages. This has implications in terms of storage, and in terms of
threads tied up with tasks that are attempting to get messages.

As a rule if you have multiple applications processing a queue you typically get the best performance
when you have either
v 100 short messages (less than 1 KB), or
v One message for larger messages (100 KB)

for each syncpoint. If there is only one application processing the queue, you must have more messages
for each unit of work.

You can limit the number of messages that a task can get or put within a single unit of recovery with the
MAXUMSGS queue manager attribute. For information about this attribute, see the ALTER QMGR command in
Script (MQSC) Commands.

Developing applications 67

Advantages of the MQPUT1 call

Use the MQPUT1 call only if you have a single message to put on a queue. If you want to put more than
one message, use the MQOPEN call, followed by a series of MQPUT calls and a single MQCLOSE call.

How many messages can a queue manager contain

Local Queues

The number of local messages a queue manager can hold is basically the size of the page sets.
You can have up to 100 page sets (though it is recommended page set 0 and page set 1 are for
system related objects and queues). You can use a page set with extended format and increase the
capacity of a page set.

Shared Queues

The capacity for shared queues depends on the size of the coupling facility (CF). IBM MQ uses
CF list structures where fundamental storage units are entries and elements. Each message is
stored as 1 entry and multiple elements containing the associated MQMD and other message
data. The number of elements consumed by a single message depends on the size of the message
and, for CFLEVEL(5), the offload rules in effect at MQPUT time. Fewer elements are needed
when message data is offloaded to either Db2 or SMDS. Message data access is slower when the
message has been offloaded. See Performance Supportpac MP1H for further comparison of
performance and CPU overhead associated with message offload.

What affects performance

Performance can mean how fast messages can be processed, and it can also mean how much CPU is
needed per message.

What affects how fast messages can be processed

For persistent messages the biggest impact is the speed of the log data sets. The speed of the log
data sets depends on the DASD they are on. Therefore care should be taken to put log dataset on
low used volumes to reduce contention. Striping the MQ logs improves the log performance
when there are multiple pages written per I/O. Z High Performance Fibre connection (zHPF) also
has a significant performance to I/O response time when the I/O subsystem is busy. See
http://www.ibm.com/support/docview.wss?uid=swg27015698.

When there is a request to get and put a message, access to the queue is locked during the
request to preserve integrity of the queue. For planning purposes consider the queue locked for
the whole request. So if the time for a put is 100 microseconds, and you have more than 10,000
requests a second you might experience delays. You might achieve better than this in practice, but
it is a good general rule. You can use different queues to improve performance.

Possible reasons for this can be:
v use a common reply queue which every CICS transaction uses
v each CICS transaction is given a unique reply to queue
v a reply to a queue for CICS region and all transactions in the CICS region use this queue.

The answer depends on the number of requests a second, and the response time of the requests.

If messages have to be read from a page set, they will be slower compared to when the messages
are in the buffer pool. If you have more messages than fit into a buffer pool, then they will spill
to disk. So you need to ensure that the buffer pool is big enough for your short lived messages. If
you have messages that you process many hours later, these are likely to spill to disk, so you
should expect a get for these messages to be slower than if they were in the buffer pool.

For a shared queue, the speed of the messages depends on the speed of the Coupling Facility. A
CF within the physical processor is likely to be faster than an external CF. The CF response time

68 IBM MQ: Programming

http://www.ibm.com/support/docview.wss?uid=swg27015698

depends on how busy the CF is. For example on the Hursley systems, when the CF was 17%
busy the response time was 14 microseconds. When the CF was 95% busy the response time was
45 microseconds.

If your MQ requests use a lot of CPU, this can affect how fast messages are processed. Because if
the Logical Partition (LPAR) is constrained for CPU, applications will be delayed waiting for
CPU.

How much CPU per message

In general bigger messages use more CPU, so avoid large (x MB) messages if possible.

When getting specific messages from queues, the queue should be indexed so the queue manager
can go directly to the message (and so avoids potentially an entire scan of the queue). If the
queue is not indexed then the queue is scanned from the beginning looking for the message. If
there are 1000 messages on the queue, it may have to scan all 1000 messages. The result is a lot of
unnecessary CPU usage.

Channels using SSL have an additional cost due to the encryption of the message.

In MQ V7 you can select messages by a selector string in addition to the CORRELID or MSGID.
Every message has to be looked in, so if there are many messages on the queue this is expensive.

It is more efficient for an application to do OPEN PUT PUT CLOSE than PUT1 PUT1.

Triggering in CICS

When the message arrival rate of messages for a triggered queue is low, it is efficient to use
trigger first. When the message arrival rate is more than 10 messages a second, it is more efficient
to trigger the first transaction, then have the transaction process a message and get the next
message, and so on. If a message has not arrived in a short period (say between 0.1 and 1
second) the transaction ends. At high throughput you might need multiple transactions running
to process the messages and to prevent a build up of messages. For every trigger message
produced, this requires a put and a get of a trigger message, which in effect doubles the cost of
the message.

How many connections or concurrent users are supported

Each connection uses virtual storage within the queue manager, so the more concurrent users the
more storage used. If you need a very large buffer pool and large number of users, then you
might be constrained for virtual storage, and you might need to reduce the size of your buffer
pools.

If security is being used, the queue manager caches information within the queue manager for a
long period. The amount of virtual storage that is used within the queue manager is affected.

The CHINIT can support up to about 10,000 connections. This is limited by virtual storage. If a
connection uses more storage, for example using by SSL, the storage per connection increases,
which therefore means the CHINIT can support less connections. If you are processing large
messages, these will require more storage for buffers in the CHINIT, so the CHINIT can support less
messages.

Connections to a remote queue manager are more efficient than client connections. For example,
every MQ client requests requires two network flows (one for the request and one for the
response). With a channel to a remote queue manager, there may be 50 sends over the network
before a response comes back. If you are considering a large client network, it may be more
efficient to use a concentrator queue manager on a distributed box, and have one channel coming
in and out of the concentrator.

Other things affecting performance

Log dataset should be at least 1000 cylinders in size. If the logs are smaller than this, checkpoint activity
may be too frequent. On a busy system a checkpoint typically should be every 15 minutes or longer, at

Developing applications 69

very high throughputs it may less than this. When a checkpoint occurs the buffer pools are scanned and
'old' messages and changed pages are written to disk. If checkpoints are too frequent, this can impact
performance. The value of LOGLOAD can also affect checkpoint frequency. If the queue manager
abnormally ends, then at restart it may have to read back to 3 checkpoints. The best checkpoint interval is
a balance between the activity when a checkpoint is taken, and the amount of log data that may need to
be read when the queue manager restarts.

There is a significant overhead incurred when starting a channel. It is usually better to start a channel
and leave it connected, rather than frequent starts and stops of the channel.
Related information:

MP1H: IBM MQ for z/OS V7.1.0 Performance Report

Advanced IBM MQ techniques
For a simple IBM MQ application, you need to decide which IBM MQ objects to use in your application,
and which types of message you want to use. For a more advanced application, you might want to use
some of the techniques introduced in the following sections.

Waiting for messages

A program that is serving a queue can await messages by:
v Waiting until either a message arrives, or a specified time interval expires (see “Waiting for messages”

on page 161).

v z/OS Setting a signal so that the program is informed when a message arrives (IBM MQ for z/OS
only). For information about this, see “Signaling” on page 162.

v Establishing a callback exit to be driven when a message arrives; see “Asynchronous consumption of
IBM MQ messages” on page 28.

v Making periodic calls on the queue to see whether a message has arrived (polling). This is not
typically advisable because it can have performance implications.

Correlating replies

In IBM MQ applications, when a program receives a message that requests it to do some work, the
program typically sends one or more reply messages to the requester.

To help the requester to associate these replies with its original request, an application can set a correlation
identifier field in the descriptor of each message. Programs then copy the message identifier of the request
message into the correlation identifier field of their reply messages.

Setting and using context information

Context information is used for associating messages with the user who generated them, and for
identifying the application that generated the message. Such information is useful for security,
accounting, auditing, and problem determination.

When you create a message, you can specify an option that requests that the queue manager associates
default context information with your message.

For more information about using and setting context information, see “Message context” on page 34.

70 IBM MQ: Programming

http://www.ibm.com/support/docview.wss?uid=swg24031663

Starting IBM MQ programs automatically

Use IBM MQ triggering to start a program automatically when messages arrive on a queue.

You can set trigger conditions on a queue so that a program starts to process that queue:
v Every time that a message arrives on the queue
v When the first message arrives on the queue
v When the number of messages on the queue reaches a predefined number

For more information about triggering, see “Starting IBM MQ applications using triggers” on page 237.
Triggering is just one way of starting a program automatically. For example, you can start a program
automatically on a timer using non-IBM MQ facilities.

On platforms other than z/OS, IBM MQ can define service objects to start IBM MQ programs when the
queue manager starts; see Service objects.

Generating IBM MQ reports

You can request the following reports within an application:
v Exception reports
v Expiry reports
v Confirm-on-arrival (COA) reports
v Confirm-on-delivery (COD) reports
v Positive action notification (PAN) reports
v Negative action notification (NAN) reports

These are described in “Report messages” on page 6.

Clusters and message affinities

Before starting to use clusters with multiple definitions for the same queue, examine your applications to
see whether there are any that require an exchange of related messages.

Within a cluster, a message can be routed to any queue manager that hosts an instance of the appropriate
queue. Therefore, the logic of applications with message affinities can be upset.

For example, you might have two applications that rely on a series of messages flowing between them in
the form of questions and answers. It might be important that all the questions are sent to the same
queue manager and that all the answers are sent back to the other queue manager. In this situation, it is
important that the workload management routine does not send the messages to any queue manager that
just happens to host an instance of the appropriate queue.

Where possible, remove the affinities. Removing message affinities improves the availability and
scalability of applications.

For more information, see Handling message affinities.

Developing applications 71

Developing MQI applications with IBM MQ
IBM MQ provides support for C, Visual Basic, COBOL, Assembler, RPG, pTAL, and PL/I. These
procedural languages use the message queue interface (MQI) to access message queuing services.

For detailed information about how to write your applications in your chosen language, see the
subtopics.

For an overview of the call interface for procedural languages, see Call descriptions. This topic contains a
list of the MQI calls, and each call shows you how to code the calls in each of these languages.

IBM MQ provides data definition files to help you to write your applications. For a full description, see
“IBM MQ data definition files.”

To help you choose which procedural language to code your programs in, consider the maximum length
of the messages that your programs will process. If your programs will process only messages of a
known maximum length, you can code them in any of the supported languages. If you do not know the
maximum length of the messages that the programs will have to process, the language you choose will
depend on whether you are writing a CICS, IMS, or batch application:

IMS and batch
Code the programs in C, PL/I, or assembler language to use the facilities these languages offer
for obtaining and releasing arbitrary amounts of memory. Alternatively, you could code your
programs in COBOL, but use assembler language, PL/I, or C subroutines to get and release
storage.

CICS Code the programs in any language supported by CICS. The EXEC CICS interface provides the
calls for managing memory, if necessary.

Related concepts:
“Developing object-oriented applications with IBM MQ” on page 637
IBM MQ provides support for .NET, ActiveX, C++, Java, and JMS. These languages and frameworks use
the IBM MQ Object Model, which provides classes that provide the same functionality as IBM MQ calls
and structures. Some of the languages and frameworks that use the IBM MQ Object Model provide
additional functions that are not available when you use procedural languages with the message queue
interface (MQI).
“Application development concepts” on page 1
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.
Related information:
Technical overview
Application development reference

IBM MQ data definition files
IBM MQ provides data definition files to help you to write your applications.

Data definition files are also known as:

72 IBM MQ: Programming

Language Data definitions
C Include files or header files
Visual Basic Module files (32-bit versions only)
COBOL Copy files
Assembler Macros
PL/I Include files

The data definition files to help you to write channel exits are described in IBM MQ COPY, header,
include, and module files.

The data definition files to help you to write installable services exits are described in “User exits, API
exits, and IBM MQ installable services” on page 319.

For data definition files supported on C++, see Using C++.

For data definition files supported on RPG, see the IBM i Application Programming Reference
(ILE/RPG).

The names of the data definition files have the prefix CMQ, and a suffix that is determined by the
programming language:

Suffix Language

a Assembler language

b Visual Basic

c C

l COBOL (without initialized values)

p PL/I

v COBOL (with default values set)

Installation library

The name thlqual is the high-level qualifier of the installation library on z/OS.

This topic introduces IBM MQ data definition files, under these headings:
v “C language include files”
v “Visual Basic module files” on page 74
v “COBOL copy files” on page 74

v z/OS “System/390 assembler-language macros” on page 75

v z/OS “PL/I include files” on page 75

C language include files

The IBM MQ C include files are listed in C header files. They are installed in the following directories or
libraries:

Developing applications 73

Platform Installation directory or library

IBM i
QMQM/H

UNIX platforms MQ_INSTALLATION_PATH/inc/
Windows systems MQ_INSTALLATION_PATH\Tools\c\include

z/OS z/OS thlqual.SCSQC370

where MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Note: For UNIX platforms, the include files are symbolically linked into /usr/include.

For more information about the structure of directories, see Planning file system support.

Visual Basic module files

IBM MQ for Windows provides four Visual Basic module files.

They are listed in Visual Basic module files and installed in
MQ_INSTALLATION_PATH\Tools\Samples\VB\Include

COBOL copy files

For COBOL, IBM MQ provides separate copy files containing the named constants, and two copy files for
each of the structures.

There are two copy files for each structure because each is provided both with and without initial values:
v In the WORKING-STORAGE SECTION of a COBOL program, use the files that initialize the structure

fields to default values. These structures are defined in the copy files that have names suffixed with the
letter V (values).

v In the LINKAGE SECTION of a COBOL program, use the structures without initial values. These
structures are defined in copy files that have names suffixed with the letter L (linkage).

Copy files containing data and interface definitions for IBM MQ for IBM i are provided for

ILE COBOL programs using prototyped calls to the MQI. The files exist in QMQM/QCBLLESRC with
member names that have a suffix of L (for structures without initial values) or a suffix of V (for structures
with initial values).

The IBM MQ COBOL copy files are listed in COBOL COPY files. They are installed in the following
directories:

Platform Installation directory or library

Other UNIX platforms MQ_INSTALLATION_PATH/inc/

IBM i
QMQM/QCBLLESRC

Windows MQ_INSTALLATION_PATH\Tools\cobol\copybook (for Micro Focus COBOL)
MQ_INSTALLATION_PATH\Tools\cobol\copybook\VAcobol (for IBM VisualAge®

COBOL)

z/OS z/OS thlqual.SCSQCOBC

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Include in your program only those files that you need. Do this with one or more COPY statements after
a level-01 declaration. This means that you can include multiple versions of the structures in a program if
necessary. Note that CMQV is a large file.

74 IBM MQ: Programming

Here is an example of COBOL code to include the CMQMDV copy file:
01 MQM-MESSAGE-DESCRIPTOR.
COPY CMQMDV.

Each structure declaration begins with a level-01 item; you can declare several instances of the structure
by coding the level-01 declaration followed by a COPY statement to copy in the remainder of the
structure declaration. To refer to the appropriate instance, use the IN keyword.

Here is an example of COBOL code to include two instances of CMQMDV:
* Declare two instances of MQMD
01 MY-CMQMD.
COPY CMQMDV.
01 MY-OTHER-CMQMD.
COPY CMQMDV.
*
* Set MSGTYPE field in MY-OTHER-CMQMD
MOVE MQMT-REQUEST TO MQMD-MSGTYPE IN MY-OTHER-CMQMD.

Align the structures on 4-byte boundaries. If you use the COPY statement to include a structure following
an item that is not the level-01 item, ensure that the structure is a multiple of 4-bytes from the start of the
level-01 item. If you do not do this, you might reduce the performance of your application.

The structures are described in Data types used in the MQI. The descriptions of the fields in the
structures show the names of fields without a prefix. In COBOL programs, prefix the field names with
the name of the structure followed by a hyphen, as shown in the COBOL declarations. The fields in the
structure copy files are prefixed in this way.

The field names in the declarations in the structure copy files are in uppercase. You can use mixed case
or lowercase instead. For example, the field StrucId of the MQGMO structure is shown as
MQGMO-STRUCID in the COBOL declaration and in the copy file.

The V-suffix structures are declared with initial values for all the fields, so you need to set only those
fields where the value required is different from the initial value.

z/OS

System/390 assembler-language macros

IBM MQ for z/OS provides two assembler-language macros containing the named constants, and one
macro to generate each structure.

They are listed in z/OS Assembler COPY files and installed in thlqual.SCSQMACS.

These macros are called using code like this:
MY_MQMD CMQMDA EXPIRY=0,MSGTYPE=MQMT_DATAGRAM

z/OS

PL/I include files

IBM MQ for z/OS provides include files that contain all the definitions that you need when you write
IBM MQ applications in PL/I.

The files are listed in PL/I include files and installed in the thlqual.SCSQPLIC directory:

Include these files in your program if you are going to link the IBM MQ stub to your program (see
“Preparing your program to run” on page 427). Include only CMQP if you intend to link the IBM MQ
calls dynamically (see “Dynamically calling the IBM MQ stub” on page 433). Dynamic linking can be

Developing applications 75

performed for batch and IMS programs only.

Writing a procedural application for queuing
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.

Use the following links to find out more about writing applications:
v “The Message Queue Interface overview”
v “Connecting to and disconnecting from a queue manager” on page 92
v “Opening and closing objects” on page 101
v “Putting messages on a queue” on page 113
v “Getting messages from a queue” on page 130
v “Writing publish/subscribe applications” on page 174
v “Inquiring about and setting object attributes” on page 220
v “Committing and backing out units of work” on page 224
v “Starting IBM MQ applications using triggers” on page 237
v “Working with the MQI and clusters” on page 257

v z/OS “Using and writing applications on IBM MQ for z/OS” on page 263

v z/OS “IMS and IMS bridge applications on IBM MQ for z/OS” on page 37
Related concepts:
“Application development concepts” on page 1
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.
“Developing applications” on page 1
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ support applications written in procedural languages, and object oriented
languages and frameworks.
“Designing IBM MQ applications” on page 51
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Sample IBM MQ procedural programs” on page 473
This set of sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.
“Writing client procedural applications” on page 293
What you need to know to write client applications on IBM MQ using a procedural language.
“Developing web services with IBM MQ” on page 1271
You can develop IBM MQ applications for Web services using the IBM MQ transport for SOAP or the
IBM MQ bridge for HTTP.
“Building a procedural application” on page 389
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
“Handling procedural program errors” on page 443
This information explains errors associated with your applications MQI calls either when it makes a call,
or when its message is delivered to its final destination.

The Message Queue Interface overview
Learn about the Message Queue Interface (MQI) components.

The Message Queue Interface consists of the following:
v Calls through which programs can access the queue manager and its facilities

76 IBM MQ: Programming

v Structures that programs use to pass data to, and get data from, the queue manager
v Elementary data types for passing data to, and getting data from, the queue manager

z/OS

IBM MQ for z/OS also supplies:

v Two extra calls through which z/OS batch programs can commit and back out changes.
v Data definition files (sometimes known as copy files, macros, include files, and header files) that define

the values of constants supplied with IBM MQ for z/OS.
v Stub programs to link-edit to your applications.
v A suite of sample programs that demonstrate how to use the MQI on the z/OS platform. For further

information about these samples, see “Sample programs for IBM MQ for z/OS” on page 578.

IBM MQ for IBM i also supplies:

v Data definition files (sometimes known as copy files, macros, include files, and header files) that define
the values of constants supplied with IBM MQ for IBM i.

v Three stub programs to link-edit to your ILE C, ILE COBOL, and ILE RPG applications.
v A suite of sample programs that demonstrate how to use the MQI on the IBM i platform.

IBM MQ for Windows and IBM MQ on UNIX and Linux systems also supply:
v Calls through which IBM MQ for Windows and IBM MQ on UNIX and Linux systems programs can

commit and back out changes.
v Include files that define the values of constants supplied on these platforms.
v Library files to link your applications.
v A suite of sample programs that demonstrate how to use the MQI on these platforms. For further

information about these samples, see “Sample procedural programs (platforms except z/OS)” on page
473.

v Sample source and executable code for bindings to external transaction managers.

Use the following links to find out more about the MQI:
v “MQI calls” on page 78
v “Sync point calls” on page 79
v “Data conversion, data types, data definitions, and structures” on page 80
v “IBM MQ stub programs and library files” on page 81
v “Parameters common to all the calls” on page 87
v “Specifying buffers” on page 88

v z/OS “z/OS batch considerations” on page 88
v “UNIX and Linux signal handling” on page 89

Developing applications 77

Related concepts:
“Connecting to and disconnecting from a queue manager” on page 92
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 101
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 113
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 130
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 220
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 224
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 237
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 257
There are special options on calls and return codes that relate to clustering.

z/OS “Using and writing applications on IBM MQ for z/OS” on page 263
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

z/OS “IMS and IMS bridge applications on IBM MQ for z/OS” on page 37
This information helps you to write IMS applications using IBM MQ.

MQI calls:

Use this information to learn about calls in the Message Queue Interface (MQI).

The calls in the MQI can be grouped as follows:

MQCONN, MQCONNX, and MQDISC
Use these calls to connect a program to (with or without options), and disconnect a program
from, a queue manager. If you write CICS programs for z/OS, you do not need to use these calls.
However, you are recommended to use them if you want to port your application to other
platforms.

MQOPEN and MQCLOSE
Use these calls to open and close an object, such as a queue.

MQPUT and MQPUT1
Use these calls to put a message on a queue.

MQGET
Use this call to browse messages on a queue, or to remove messages from a queue.

MQSUB, MQSUBRQ
Use these calls to register a subscription to a topic, and to request publications matching the
subscription.

MQINQ
Use this call to inquire about the attributes of an object.

MQSET
Use this call to set some of the attributes of a queue. You cannot set the attributes of other types
of object.

78 IBM MQ: Programming

MQBEGIN, MQCMIT, and MQBACK
Use these calls when IBM MQ is the coordinator of a unit of work. MQBEGIN starts the unit of
work. MQCMIT and MQBACK end the unit of work, either committing or rolling back the

updates made during the unit of work.

IBM i commitment controller is used to
coordinate global units of work on IBM MQ for IBM i. Native start commitment control, commit,
and rollback commands are used.

MQCRTMH, MQBUFMH, MQMHBUF, MQDLTMH
Use these calls to create a message handle, to convert a message handle to a buffer or a buffer to
a message handle, and to delete a message handle.

MQSETMP, MQINQMP, MQDLTMP
Use these calls to set a message property on a message handle, inquire on a message property,
and delete a property from a message handle.

MQCB, MQCB_FUNCTION, MQCTL
Use these calls to register and control a callback function.

MQSTAT
Use this call to retrieve status information about previous asynchronous put operations.

See Call descriptions for a description of the MQI calls.

Sync point calls:

Use this information to find out about sync point calls on different platforms.

Sync point calls are available as follows:

z/OS

IBM MQ for z/OS calls

IBM MQ for z/OS provides the MQCMIT and MQBACK calls.

Use these calls in z/OS batch programs to tell the queue manager that all the MQGET and MQPUT
operations since the last sync point are to be made permanent (committed) or are to be backed out. To
commit and back out changes in other environments:

CICS Use commands such as EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK.

IMS Use the IMS sync point facilities, such as the GU (get unique) to the IOPCB, CHKP (checkpoint),
and ROLB (rollback) calls.

RRS Use MQCMIT and MQBACK or SRRCMIT and SRRBACK as appropriate. (See “Transaction
management and recoverable resource manager services” on page 228.)

Note: SRRCMIT and SRRBACK are native RRS commands, they are not MQI calls.

IBM i calls

IBM MQ for IBM i provides the MQCMIT and MQBACK commands. You can also use the IBM i
COMMIT and ROLLBACK commands, or any other commands or calls that initiate the IBM i
commitment control facilities (for example, EXEC CICS SYNCPOINT).

Windows UNIX Linux

Developing applications 79

IBM MQ calls on Windows, UNIX and Linux platforms

The following products provide the MQCMIT and MQBACK calls:
v IBM MQ for Windows
v IBM MQ on UNIX and Linux systems

Use sync point calls in programs to tell the queue manager that all the MQGET and MQPUT operations
since the last sync point are to be made permanent (committed) or are to be backed out. To commit and
back out changes in the CICS environment, use commands such as EXEC CICS SYNCPOINT and EXEC
CICS SYNCPOINT ROLLBACK.

Data conversion, data types, data definitions, and structures:

Use this information to learn about data conversions, elementary data types, IBM MQ data definitions,
and structures when using the Message Queue Interface.

Data conversion

The MQXCNVC (convert characters) call converts message character data from one character set
to another. Except on IBM MQ for z/OS, this call is used only from a data-conversion exit.

See MQXCNVC - Convert characters for the syntax used with the MQXCNVC call, and “Writing
data-conversion exits” on page 371 for guidance on writing and invoking data conversion exits.

Elementary data types

For the supported programming languages, the MQI provides elementary data types or
unstructured fields.

These data types are described fully in Elementary data types.

IBM MQ data definitions

z/OS IBM MQ for z/OS supplies data definitions in the form of COBOL copy files, assembly
language macros, a single PL/I include file, a single C language include file, and C++ language
include files.

IBM MQ for IBM i supplies data definitions in the form of COBOL copy files, RPG
copy files, C language include files, and C++ language include files.

The data definition files supplied with IBM MQ contain:
v Definitions of all the IBM MQ constants and return codes
v Definitions of the IBM MQ structures and data types
v Constant definitions for initializing the structures
v Function prototypes for each of the calls (for PL/I and the C language only)

For a full description of IBM MQ data definition files, see “IBM MQ data definition files” on page
72.

Structures

Structures, used with the MQI calls listed in “MQI calls” on page 78, are supplied in data

definition files for each of the supported programming languages. z/OS

IBM

MQ for z/OS and IBM MQ for IBM i supply files that contain constants for you to use when
completing some of the fields of these structures. For more information about these, see IBM MQ
data definitions.

See Structure data types summary for a summary of the structures.

80 IBM MQ: Programming

IBM MQ stub programs and library files:

The stub programs and library files provided are listed here, for each platform.

For more information about how to use stub programs and library files when you build an executable
application, see “Building a procedural application” on page 389. For information about linking to C++
library files, see Using C++ IBM MQ Using C++.

IBM MQ for z/OS:

Before you can run a program written with IBM MQ for z/OS, you must link-edit it to the stub program
supplied with IBM MQ for z/OS for the environment in which you are running the application.

The stub program provides the first stage of the processing of your calls into requests that IBM MQ for
z/OS can process.

IBM MQ for z/OS supplies the following stub programs:

CSQBSTUB
Stub program for z/OS batch programs

CSQBRRSI
Stub program for z/OS batch programs using RRS by way of the MQI

CSQBRSTB
Stub program for z/OS batch programs using RRS directly

CSQCSTUB
Stub program for CICS programs

CSQQSTUB
Stub program for IMS programs

CSQXSTUB
Stub program for distributed queuing non-CICS exits

CSQASTUB
Stub program for data-conversion exits

Attention: If you use a stub program other than one listed for a specific environment, it might have
unpredictable results.

Note: If you use the CSQBRSTB stub program, link-edit with ATRSCSS from SYS1.CSSLIB. (SYS1.CSSLIB
is also known as the Callable Services Library). For more information about RRS see “Transaction
management and recoverable resource manager services” on page 228.

Alternatively, you can dynamically call the stub from within your program. This technique is described in
“Dynamically calling the IBM MQ stub” on page 433.

In IMS, you might also need to use a special language interface module that is supplied by IBM MQ.

Do not run applications that are link-edited with CSQBSTUB and CSQQSTUB in the same IMS MPP
region. This can cause problems such as DFS3607I or CSQQ005E messages. The first MQCONN call in an
address space determines which interface is used, therefore CSQQSTUB and CSQBSTUB transactions
must run in different IMS message regions.

Developing applications 81

IBM MQ for IBM i:

In IBM MQ for IBM i, link your program to the MQI library files supplied for the environment in which
you are running your application, in addition to those provided by the operating system.

For non-threaded applications:

Table 5. Library files for non-threaded IBM i applications

Library file Environment

AMQZSTUB Server service program provided for compatibility with
releases before V5R1M0

AMQVSTUB Data conversion service program provided for
compatibility with releases before V5R1M0

LIBMQM Server and Client service program

LIBMQIC Client service program

IMQB23I4 C++ base service program

IMQS23I4 C++ server service program

LIBMQMZF Installable exits for C

In a threaded application:

Table 6. Library files for threaded IBM i applications

Library file Environment

LIBMQM_R Server & client service program

IMQB23I4_R C++ base service program

IMQS23I4_R C++ server service program

LIBMQMZF_R Installable exits for C

LIBMQIC_R Client service program

On IBM MQ for IBM i, you can write your applications in C++. To see how to link your C++
applications, and for full details of all aspects of using C++, see Using C++.

IBM MQ for Windows:

On IBM MQ for Windows, you must link your program to the MQI library files supplied for the
environment in which you are running your application, in addition to those provided by the operating
system:

Table 7. Library files for Windows applications

Library File Environment

MQ_INSTALLATION_PATH\Tools\Lib\mqm.lib Server for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqic.lib Client for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqmxa.lib Server XA interface for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqcxa.lib Client XA interface for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqicxa.lib Client MTS for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqmcics4.lib32 Server TXSeries CICS support for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqccics4.lib32 Client TXSeries CICS support for C (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqmzf.lib Installable services exits for C (32-bit)

82 IBM MQ: Programming

Table 7. Library files for Windows applications (continued)

Library File Environment

MQ_INSTALLATION_PATH\Tools\Lib\mqmcbb.lib Server for IBM COBOL (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqmcb.lib Server for Micro Focus COBOL (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqiccbb.lib Client for IBM COBOL (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\mqiccb.lib Client for Micro Focus COBOL (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\imqs23vn.lib Server for C++ (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\imqc23vn.lib Client for C++ (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\imqb23vn.lib Base for C++ (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib\imqx23vn.lib Client MTS for C++ (32-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqm.lib Server for C (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqic.lib Client for C (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqmxa.lib Server XA interface for C (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqcxa.lib Client XA interface for C (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqicxa.lib Client MTS for C (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqmcbb.lib Server for IBM COBOL (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqmcb.lib Server for Micro Focus COBOL (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqiccbb.lib Client for IBM COBOL (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\mqiccb.lib Client for Micro Focus COBOL (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\imqs23vn.lib Server for C++ (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\imqc23vn.lib Client for C++ (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\imqb23vn.lib Base for C++ (64-bit)

MQ_INSTALLATION_PATH\Tools\Lib64\imqx23vn.lib Client MTS for C++ (64-bit)

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Use amqmdnet.dll for compiling .NET programs. See “Compiling IBM MQ .NET programs” on page 687
within the section “Using .NET” on page 640 for more information.

These files are shipped for compatibility with previous releases:
mqic32.lib
mqic32xa.lib

Developing applications 83

IBM MQ for AIX:

On IBM MQ for AIX, you must link your program to the MQI library files supplied for the environment
in which you are running your application, in addition to those provided by the operating system.

In a non-threaded application, link to one of the following libraries:

Table 8. Library files for non-threaded AIX applications

Library file Environment

libmqm.a Server for C

libmqic.a & libmqm.a Client for C

libmqmzf.a Installable service exits for C

libmqmxa.a Server XA interface

libmqmxa64.a Server alternative XA interface

libmqcxa.a Client XA interface

libmqcxa64.a Client alternative XA interface

libmqmcbrt.o IBM MQ runtime library for Micro Focus COBOL
support

libmqmcb.a Server for COBOL

libmqicb.a Client for COBOL

libimqc23ia.a Client for C++

libimqs23ia.a Server for C++

In a threaded application, link to one of the following libraries:

Table 9. Library files for threaded AIX applications

Library file Environment

libmqm_r.a Server for C

libmqic_r.a & libmqm_r.a Client for C

libmqmzf_r.a Installable service exits for C

libmqmxa_r.a Server XA interface

libmqmxa64_r.a Server alternative XA interface

libmqcxa_r.a Client XA interface

libmqcxa64_r.a Client alternative XA interface

libimqc23ia_r.a Client for C++

libimqs23ia_r.a Server for C++

Note: You cannot link to more than one library. That is, you cannot link to both a threaded and a
non-threaded library at the same time.

84 IBM MQ: Programming

IBM MQ for HP-UX:

On IBM MQ for HP-UX, you must link your program to the MQI library files supplied for the
environment in which you are running your application, in addition to those provided by the operating
system.

IA64 (IPF) platform

In a non-threaded application, link to one of the following libraries:

Table 10. Library files for non-threaded HP-UX applications

Library file Environment

libmqm.so Server for C

libmqic.so & libmqm.so Client for C

libmqmzf.so Installable service exits for C

libmqmxa.so Server XA interface

libmqmxa64.so Server alternative XA interface

libmqcxa.so Client XA interface

libmqcxa64.so Client alternative XA interface

libimqi23ah.so C++

libmqmcbrt.o IBM MQ runtime library for Micro Focus COBOL
support

libmqmcb.so Server for COBOL

libmqicb.so Client for COBOL

In a threaded application, link to one of the following libraries:

Table 11. Library files for threaded HP-UX applications

Library file Environment

libmqm_r.so Server for C

libmqmzf_r.so & libmqm_r.so Installable service exits for C

libmqmxa_r.so Server XA interface

libmqmxa64_r.so Server alternative XA interface

libmqcxa_r.so Client XA interface

libmqcxa64_r.so Client alternative XA interface

libimqi23ah_r.so C++

Note: You cannot link to more than one library. That is, you cannot link to both a threaded and a
non-threaded library at the same time.

Developing applications 85

IBM MQ for Linux:

On IBM MQ for Linux, you must link your program to the MQI library files supplied for the
environment in which you are running your application, in addition to those provided by the operating
system.

In a non-threaded application, link to one of the following libraries:

Table 12. Library files for non-threaded Linux applications

Library file Environment

libmqm.so Server for C

libmqic.so & libmqm.so Client for C

libmqmzf.so Installable service exits for C

libmqmxa.so Server XA interface

libmqmxa64.so Server alternative XA interface

libmqcxa.so Client XA interface

libmqcxa64.so Client alternative XA interface

libimqc23gl.so Client for C++

libimqs23gl.so Server for C++

In a threaded application, link to one of the following libraries:

Table 13. Library files for threaded Linux applications

Library file Environment

libmqm_r.so Server for C

libmqic_r.so & libmqm_r.so Client for C

libmqmzf_r.so Installable service exits for C

libmqmxa_r.so Server XA interface

libmqmxa64_r.so Server alternative XA interface

libmqcxa_r.so Client XA interface

libmqcxa64_r.so Client alternative XA interface

libimqc23gl_r.so Client for C++

libimqs23gl_r.so Server for C++

Note: You cannot link to more than one library. That is, you cannot link to both a threaded and a
non-threaded library at the same time.

86 IBM MQ: Programming

IBM MQ for Solaris:

On IBM MQ for Solaris, you must link your program to the MQI library files supplied for the
environment in which you are running your application in addition to those provided by the operating
system.

Table 14. Library files for Solaris applications

Library File Environment

libmqm.so Server and client for C

libmqmzse.so For C

libmqic.so Client for C

libmqmcs.so Common services for C

libmqmzf.so Installable service exits for C

libmqmxa.so Server XA interface

libmqmxa64.so Server alternative XA interface

libmqcxa.so Client XA interface

libmqcxa64.so Client alternative XA interface

libimqc23as.a Client for C++

libimqs23as.a Server for C++

Parameters common to all the calls:

There are two types of parameter common to all the calls: handles and return codes.

Using handles

All MQI calls use one or more handles. These identify the queue manager, queue or other object, message,
or subscription, as appropriate to the call.

For a program to communicate with a queue manager, the program must have a unique identifier by
which it knows that queue manager. This identifier is called a connection handle, sometimes referred to as
a Hconn. For CICS programs, the connection handle is always zero. For all other platforms or styles of
programs, the connection handle is returned by the MQCONN or MQCONNX call when the program
connects to the queue manager. Programs pass the connection handle as an input parameter when they
use the other calls.

For a program to work with an IBM MQ object, the program must have a unique identifier by which it
knows that object. This identifier is called an object handle, sometimes referred to as an Hobj. The handle is
returned by the MQOPEN call when the program opens the object to work with it. Programs pass the
object handle as an input parameter when they use subsequent MQPUT, MQGET, MQINQ, MQSET, or
MQCLOSE calls.

Similarly, the MQSUB call returns a subscription handle or Hsub, which is used to identify the subscription
in subsequent MQGET, MQCB or MQSUBRQ calls, and certain calls processing message properties use a
message handle or Hmsg.

Developing applications 87

Understanding return codes

A completion code and a reason code are returned as output parameters by each call. These are known
collectively as return codes.

To show whether a call is successful, each call returns a completion code when the call is complete. The
completion code is typically either MQCC_OK indicating success, or MQCC_FAILED indicating failure.
Some calls can return an intermediate state, MQCC_WARNING, indicating partial success.

Each call also returns a reason code that shows the reason for the failure, or partial success, of the call.
There are many reason codes, covering such circumstances as a queue being full, get operations not being
allowed for a queue, and a particular queue not being defined for the queue manager. Programs can use
the reason code to decide how to proceed. For example, they can prompt users to change their input
data, then make the call again, or they can return an error message to the user.

When the completion code is MQCC_OK, the reason code is always MQRC_NONE.

The completion and reason codes for each call are listed with the description of that call. See Call
descriptions and select the appropriate call from the list.

For more detailed information, including ideas for corrective action, see:
v z/OS IBM MQ for z/OS messages, completion, and reason codes for IBM MQ for z/OS
v Reason codes for all other IBM MQ platforms

Specifying buffers:

The queue manager refers to buffers only if they are required. If you do not require a buffer on a call or
the buffer is zero in length, you can use a null pointer to a buffer.

Always use datalength when specifying the size of the buffer that you require.

When you use a buffer to hold the output from a call (for example, to hold the message data for an
MQGET call, or the values of attributes queried by the MQINQ call), the queue manager attempts to
return a reason code if the buffer you specify is not valid or is in read-only storage. However, it might
not always be able to return a reason code.

z/OS batch considerations:

z/OS batch programs that call the MQI can be in either supervisor or problem state.

However, they must meet the following conditions:
v They must be in task mode, not service request block (SRB) mode.
v They must be in Primary address space control (ASC) mode (not Access Register ASC mode).
v They must not be in cross-memory mode. The primary address space number (ASN) must be equal to

the secondary ASN and the home ASN.
v They must not be used as MPF exit programs.
v No z/OS locks can be held.
v There can be no function recovery routines (FRRs) on the FRR stack.
v Any program status word (PSW) key can be in force for the MQCONN or MQCONNX call (provided

the key is compatible with using storage that is in the TCB key), but subsequent calls that use the
connection handle returned by MQCONN or MQCONNX:
– Must have the same PSW key that was used on the MQCONN or MQCONNX call
– Must have parameters accessible (for write, where appropriate) under the same PSW key

88 IBM MQ: Programming

– Must be issued under the same task (TCB), but not in any subtask of the task
v They can be in either 24-bit or 31-bit addressing mode. However, if 24-bit addressing mode is in force,

parameter addresses must be interpreted as valid 31-bit addresses.

If any of these conditions is not met, a program check might occur. In some cases the call will fail and a
reason code will be returned.

UNIX and Linux considerations:

Considerations that you need to be aware of.

Take note of the following points when developing UNIX and Linux applications.

The fork system call in UNIX and Linux systems:

Note these considerations when using a fork system call in IBM MQ applications.

If your application wants to use fork, the parent process of that application should call fork before
making any IBM MQ calls, for example, MQCONN, or creating an IBM MQ object using
ImqQueueManager.

If your application wants to create a child process after making any IBM MQ calls, the application code
must use a fork() with exec() to ensure that the child is a new instance, and not an exact copy of the
parent.

If your application does not use exec(), the IBM MQ API call made within the child process returns
MQRC_ENVIRONMENT_ERROR.

UNIX and Linux signal handling:

This does not apply to IBM MQ for z/OS or IBM MQ for Windows.

In general, UNIX, Linux and IBM i systems have moved from a nonthreaded (process) environment to a
multithreaded environment. In the nonthreaded environment, some functions could be implemented only
by using signals, though most applications did not need to be aware of signals and signal handling. In
the multithreaded environment, thread-based primitives support some of the functions that used to be
implemented in the nonthreaded environments using signals.

In many instances, signals and signal handling, although supported, do not fit well into the
multithreaded environment and various restrictions exist. This can be problematic when you are
integrating application code with different middleware libraries (running as part of the application) in a
multithreaded environment where each is trying to handle signals. The traditional approach of saving
and restoring signal handlers (defined per process), which worked when there was only one thread of
execution within a process, does not work in a multithreaded environment. This is because many threads
of execution could be trying to save and restore a process-wide resource, with unpredictable results.

Developing applications 89

Unthreaded applications:

Not applicable on Solaris as all applications are considered threaded even if they use only a single thread.

Each MQI function sets up its own signal handler for the signals:
SIGALRM
SIGBUS
SIGFPE
SIGSEGV
SIGILL

Users' handlers for these are replaced for the duration of the MQI function call. Other signals can be
caught in the normal way by user-written handlers. If you do not install a handler, the default actions
(for example, ignore, core dump, or exit) are left in place.

After IBM MQ handles a synchronous signal (SIGSEGV, SIGBUS, SIGFPE, SIGILL), it attempts to pass the
signal to any registered signal handler before making the MQI function call.

Threaded applications:

A thread is considered to be connected to IBM MQ from MQCONN (or MQCONNX) until MQDISC.

Synchronous signals

Synchronous signals arise in a specific thread.

UNIX and Linux systems safely allow the setting up of a signal handler for such signals for the whole
process. However, IBM MQ sets up its own handler for the following signals, in the application process,
while any thread is connected to IBM MQ:

SIGBUS
SIGFPE
SIGSEGV
SIGILL

If you are writing multithreaded applications, there is only one process-wide signal handler for each
signal. When IBM MQ sets up its own synchronous signal handlers it saves any previously registered
handlers for each signal. After IBM MQ handles one of the signals listed, IBM MQ attempts to call the
signal handler that was in effect at the time of the first IBM MQ connection within the process. The
previously registered handlers are restored when all application threads have disconnected from IBM
MQ.

Because signal handlers are saved and restored by IBM MQ, application threads must not establish signal
handlers for these signals while there is any possibility that another thread of the same process is also
connected to IBM MQ.

Note: When an application, or a middleware library (running as part of an application), establishes a
signal handler while a thread is connected to IBM MQ, the application's signal handler must call the
corresponding IBM MQ handler during the processing of that signal.

When establishing and restoring signal handlers, the general principle is that the last signal handler to be
saved must be the first to be restored:
v When an application establishes a signal handler after connecting to IBM MQ, the previous signal

handler must be restored before the application disconnects from IBM MQ.
v When an application establishes a signal handler before connecting to IBM MQ, the application must

disconnect from IBM MQ before restoring its signal handler.

90 IBM MQ: Programming

Note: Failure to observe the general principle that the last signal handler to be saved must be the first to
be restored can result in unexpected signal handling in the application and, potentially, the loss of signals
by the application.

Asynchronous signals

IBM MQ does not use any asynchronous signals in threaded applications unless they are client
applications.

Additional considerations for threaded client applications

IBM MQ handles the following signals during I/O to a server. These signals are defined by the
communications stack. The application must not establish a signal handler for these signals while a
thread is connected to a queue manager:

SIGPIPE (for TCP/IP)

Additional considerations:

Note these considerations when using UNIX signal handling.

Fastpath (trusted) applications

Fastpath applications run in the same process as IBM MQ and so are running in the multithreaded
environment.

In this environment IBM MQ handles the synchronous signals SIGSEGV, SIGBUS, SIGFPE, and SIGILL.
All other signals must not be delivered to the Fastpath application while it is connected to IBM MQ.
Instead they must be blocked or handled by the application. If a Fastpath application intercepts such an
event, the queue manager must be stopped and restarted, or it may be left in an undefined state. For a
full list of the restrictions for Fastpath applications under MQCONNX, see “Connecting to a queue
manager using the MQCONNX call” on page 95.

MQI function calls within signal handlers

While you are in a signal handler, do not call an MQI function.

If you try to call an MQI function from a signal handler while another MQI function is active,
MQRC_CALL_IN_PROGRESS is returned. If you try to call an MQI function from a signal handler while
no other MQI function is active, it is likely to fail sometime during the operation because of the operating
system restrictions where only selective calls can be issued from, or within, a handler.

For C++ destructor methods, which might be called automatically during program exit, you might not be
able to stop the MQI functions from being called. Ignore any errors about MQRC_CALL_IN_PROGRESS.
If a signal handler calls exit(), IBM MQ backs out uncommitted messages in sync point as usual and
closes any open queues.

Signals during MQI calls

MQI functions do not return the code EINTR or any equivalent to application programs.

If a signal occurs during an MQI call, and the handler calls return, the call continues to run as if the
signal had not happened. In particular, MQGET cannot be interrupted by a signal to return control
immediately to the application. If you want to break out of an MQGET, set the queue to GET_DISABLED;
alternatively, use a loop around a call to MQGET with a finite time expiry (MQGMO_WAIT with
gmo.WaitInterval set), and use your signal handler (in a nonthreaded environment) or equivalent function
in a threaded environment to set a flag which breaks the loop.

Developing applications 91

In the AIX environment, IBM MQ requires that system calls interrupted by signals are restarted. When
establishing your own signal handler with sigaction(2), set the SA_RESTART flag in the sa_flags field of
the new action structure otherwise IBM MQ might be unable to complete any call interrupted by a signal.

User exits and installable services

User exits and installable services that run as part of an IBM MQ process in a multithreaded environment
have the same restrictions as for fastpath applications. Consider these to be permanently connected to
IBM MQ and so not using signals or non-threadsafe operating system calls.

VMS exit handlers

Users can install exit handlers for an IBM MQ application using the SYS$DCLEXH system service.

The exit handler receives control when an image exits. An image exit normally occurs when you call the
Exit ($EXIT) or Force Exit ($FORCEX) service. The $FORCEX interrupts the target process in user mode.
Then all user-mode exit handlers (established by $DCLEXH) begin to execute in reverse order of
establishment. For more details on exit handlers and $FORCEX, see the VMS Programming Concepts
Manual and the VMS System Services Manual.

If you call an MQI function from within an exit handler, the behavior of the function depends on the way
the image was terminated. If the image was terminated while another MQI function is active, an
MQRC_CALL_IN_PROGRESS is returned.

It is possible to call an MQI function from within an exit handler if no other MQI function is active and
upcalls are disabled for the IBM MQ application. If upcalls are enabled for the IBM MQ application, it
fails with the reason code MQRC_HCONN_ERROR.

The scope of an MQCONN or MQCONNX call is typically the thread that issued it. If upcalls are
enabled, the exit handler runs as a separate thread and the connection handles cannot be shared.

Exit handlers are started within the interrupted context of the target process. It is up to the application to
ensure that actions taken by a handler are safe and reliable, for the asynchronously interrupted context
they are called from.

Connecting to and disconnecting from a queue manager
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.

The way that this connection is made depends on the platform and the environment in which the
program is operating:

z/OS z/OS batch, IBM MQ for IBM i, IBM MQ on UNIX systems, IBM MQ on Linux systems, and
IBM MQ for Windows

Programs that run in these environments can use the MQCONN MQI call to connect to, and the
MQDISC call to disconnect from, a queue manager. Alternatively, programs can use the
MQCONNX call.

z/OS

z/OS batch programs can connect, consecutively or concurrently, to multiple queue

managers on the same TCB.

z/OS IMS
The IMS control region is connected to one or more queue managers when it starts. This
connection is controlled by IMS commands. For information about how to control the IMS
adapter of IBM MQ for z/OS, see Administering IBM MQ for z/OS. However, writers of message
queuing IMS programs must use the MQCONN MQI call to specify the queue manager to which
they want to connect. They can use the MQDISC call to disconnect from that queue manager.

92 IBM MQ: Programming

Following an IMS call that establishes a syncpoint, and before processing a message for another
user, the IMS adapter ensures that the application closes handles and disconnects from the queue
manager. See “Syncpoints in IMS applications” on page 227.

IMS programs can connect, consecutively or concurrently, to multiple queue managers on the
same TCB.

z/OS CICS Transaction Server for z/OS and CICS for MVS™/ESA
CICS programs do not need to do any work to connect to a queue manager because the CICS
system itself is connected. This connection is typically made automatically at initialization, but
you can also use the CKQC transaction, which is supplied with IBM MQ for z/OS. For more
information about CKQC see the Administering IBM MQ for z/OS IBM MQ for z/OS System
Administration Guide.

CICS tasks can connect only to the queue manager to which the CICS region, itself, is connected.

Note: CICS programs can also use the MQI connect and disconnect calls (MQCONN and
MQDISC). You might want to do this so that you can port these applications to non-CICS
environments with a minimum of recoding. However, these calls always complete successfully in
a CICS environment. This means that the return code might not reflect the true state of the
connection to the queue manager.

TXSeries for Windows and Open Systems
These programs do not need to do any work to connect to a queue manager because the CICS
system itself is connected. Therefore, only one connection at a time is supported. CICS
applications must issue an MQCONN call to obtain a connection handle, and an MQDISC call
before they exit.

Use the following links to find out more about connecting and disconnecting from a queue manager:
v “Connecting to a queue manager using the MQCONN call” on page 94
v “Connecting to a queue manager using the MQCONNX call” on page 95
v “Disconnecting programs from a queue manager using MQDISC” on page 100
Related concepts:
“The Message Queue Interface overview” on page 76
Learn about the Message Queue Interface (MQI) components.
“Opening and closing objects” on page 101
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 113
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 130
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 220
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 224
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 237
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 257
There are special options on calls and return codes that relate to clustering.

z/OS “Using and writing applications on IBM MQ for z/OS” on page 263
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

Developing applications 93

z/OS “IMS and IMS bridge applications on IBM MQ for z/OS” on page 37
This information helps you to write IMS applications using IBM MQ.

Connecting to a queue manager using the MQCONN call:

Use this information to learn how to connect to a queue manager using the MQCONN call.

In general, you can connect either to a specific queue manager, or to the default queue manager:
v For IBM MQ for z/OS, in the batch environment, the default queue manager is specified in the

CSQBDEFV module.
v For IBM MQ for Windows, IBM i, UNIX, and Linux systems, the default queue manager is specified in

the mqs.ini file.

Alternatively, in the z/OS MVS batch, TSO, and RRS environments you can connect to any one queue
manager within a queue-sharing group. The MQCONN or MQCONNX request selects any one of the
active members of the group.

When you connect to a queue manager it must be local to the task. It must belong to the same system as
the IBM MQ application.

In the IMS environment, the queue manager must be connected to the IMS control region and to the
dependent region that the program uses. The default queue manager is specified in the CSQQDEFV
module when IBM MQ for z/OS is installed.

With the TXSeries CICS environment, and TXSeries for Windows and AIX, the queue manager must be
defined as an XA resource to CICS.

To connect to the default queue manager, call MQCONN, specifying a name consisting entirely of blanks
or starting with a null (X'00') character.

An application must be authorized for it to successfully connect to a queue manager. For more
information, see Security.

The output from MQCONN is:
v A connection handle (Hconn)
v A completion code
v A reason code

Use the connection handle on subsequent MQI calls.

If the reason code indicates that the application is already connected to that queue manager, the
connection handle that is returned is the same as the one that was returned when the application first
connected. The application must not issue the MQDISC call in this situation because the calling
application expects to remain connected.

The scope of the connection handle is the same as the scope of the object handle (see “Opening objects
using the MQOPEN call” on page 102).

Descriptions of the parameters are given in the description of the MQCONN call in MQCONN.

The MQCONN call fails if the queue manager is in a quiescing state when you issue the call, or if the
queue manager is shutting down.

94 IBM MQ: Programming

Scope of MQCONN or MQCONNX

The scope of an MQCONN or MQCONNX call is typically the thread that issued it. That is, the
connection handle returned from the call is valid only within the thread that issued the call. Only one call
can be made at any one time using the handle. If it is used from a different thread, it is rejected as
invalid. If you have multiple threads in your application and each wants to use IBM MQ calls, each one
must issue MQCONN or MQCONNX.

It is not necessary for each call to be made to the same queue manager when a process makes multiple
MQCONN calls. However, only one IBM MQ connection can be made from a thread at a time.
Alternatively, consider “Shared (thread independent) connections with MQCONNX” on page 99 to allow
multiple IBM MQ connections from a single thread and an IBM MQ connection to be used from any
thread.1

If your application is running as a client, it can connect to more than one queue manager within a thread.

Connecting to a queue manager using the MQCONNX call:

The MQCONNX call is similar to the MQCONN call, but includes options to control the way that the call
works.

As input to MQCONNX, you can supply a queue manager name z/OS , or a queue-sharing group
name on z/OS shared queue systems.

The output from MQCONNX is:
v A connection handle (Hconn)
v A completion code
v A reason code

You use the connection handle on subsequent MQI calls.

A description of all the parameters of MQCONNX is given in MQCONNX. The Options field allows you
to set STANDARD_BINDING, FASTPATH_BINDING, SHARED_BINDING, or ISOLATED_BINDING for
any version of MQCNO. You can also make shared (thread independent) connections using a
MQCONNX call. See “Shared (thread independent) connections with MQCONNX” on page 99 for more
information about these.

MQCNO_STANDARD_BINDING

By default, MQCONNX (like MQCONN) implies two logical threads where the IBM MQ
application and the local queue manager agent run in separate processes. The IBM MQ
application requests the IBM MQ operation and the local queue manager agent services the
request. This is defined by the MQCNO_STANDARD_BINDING option on the MQCONNX call.

If you specify MQCNO_STANDARD_BINDING, the MQCONNX call uses either
MQCNO_SHARED_BINDING or MQCNO_ISOLATED_BINDING, depending on the value of the
DefaultBindType attribute of the queue manager, which is defined in qm.ini.

This is the default value.

If you are linking to the mqm library, then a standard server connection using the default bind
type is attempted first. If the underlying server library failed to load, a client connection is
attempted instead.

1. When using multithreaded applications with IBM MQ on UNIX and Linux systems you need to ensure that the applications have
a sufficient stack size for the threads. Consider using a stack size of 256 KB, or larger, when multithreaded applications are
making MQI calls, either by themselves or, with other signal handlers (for example, CICS).

Developing applications 95

v If the MQ_CONNECT_TYPE environment variable is specified, one of the following options
can be supplied to change the behavior of MQCONN or MQCONNX if
MQCNO_STANDARD_BINDING is specified. (The exception to this is if
MQCNO_FASTPATH_BINDING is specified with MQ_CONNECT_TYPE set to LOCAL or
STANDARD to allow fastpath connections to be downgraded by the administrator without a
related change to the application:

Value Meaning

CLIENT A client connection only is attempted.

FASTPATH This value was supported in previous releases, but is
now ignored if specified.

LOCAL A server connection only is attempted. Fastpath
connections are downgraded to a standard server
connection.

STANDARD Supported for compatibility with previous releases. This
value is now treated as LOCAL.

v If the MQ_CONNECT_TYPE environment variable is not set when MQCONN is called, a
standard server connection using the default bind type is attempted. If the server library fails
to load, a client connection is attempted.

MQCNO_FASTPATH_BINDING

Trusted applications imply that the IBM MQ application and the local queue manager agent
become the same process. Because the agent process no longer needs to use an interface to access
the queue manager, these applications become an extension of the queue manager. This is defined
by the MQCNO_FASTPATH_BINDING option on the MQCONNX call.

You need to link trusted applications to the threaded IBM MQ libraries. For instructions on how
to set up an IBM MQ application to run as trusted, see MQCNO Options.

This option gives the highest performance.

Note: This option compromises the integrity of the queue manager: there is no protection
from overwriting its storage. This also applies if the application contains errors that can be
exposed to messages and other data in the queue manager too. Consider these issues before
using this option.

MQCNO_SHARED_BINDING

Specify this option to make the application and the local queue manager agent run in separate
processes. This maintains the integrity of the queue manager, that is, it protects the queue
manager from errant programs. However, the application and the local-queue-manager agent
share some resources.

This option is intermediate between MQCNO_FASTPATH_BINDING and
MQCNO_ISOLATED_BINDING, both in terms of protecting the integrity of the queue manager,
and in terms of the performance of MQI calls.

MQCNO_SHARED_BINDING is ignored if the queue manager does not support this type of
binding. Processing continues as though the option had not been specified.

If an application has connected to the local queue manager using MQCNO_SHARED_BINDING,
the queue manager can be stopped while the application is running. If you restart the queue
manager while the application is still running, the attempt to start the queue manager fails with
error AMQ7018 as the application is still holding on to resources needed by the queue manager.

In order to start the queue manager, you must stop the application.

MQCNO_ISOLATED_BINDING

96 IBM MQ: Programming

Specify this option to make the application and the local queue manager agent run in separate
processes, as for MQCNO_SHARED_BINDING. In this case, however, the application process and
the local-queue-manager agent are isolated from each other in that they do not share resources.

This is the safest option for protecting the integrity of the queue manager, but it gives the slowest
performance of MQI calls.

MQCNO_ISOLATED_BINDING is ignored if the queue manager does not support this type of
binding. Processing continues as though the option had not been specified.

MQCNO_CLIENT_BINDING

Specify this option to make the application attempt a client connection only. This option has the
following limitations:

v z/OS MQCNO_CLIENT_BINDING is ignored on z/OS.
v MQCNO_CLIENT_BINDING is rejected with MQRC_OPTIONS_ERROR if it is specified with

any MQCNO binding option other than MQCNO_STANDARD_BINDING.

v Before Version 8.0.0, Fix Pack 6, MQCNO_CLIENT_BINDING is not available for
.NET as it has its own mechanisms for choosing the bind type. From Version 8.0.0, Fix Pack 6,
the restriction on using .NET for MQCNO_CLIENT_BINDING is removed.

v MQCNO_CLIENT_BINDING is not available for Java as it has its own mechanisms for
choosing the bind type.

v If the MQ_CONNECT_TYPE environment variable is not set when MQCONN is called, a
standard server connection using the default bind type is attempted. If the server library fails
to load, a client connection is attempted.

MQCNO_LOCAL_BINDING

Specify this option to make the application attempt a server connection. If either
MQCNO_FASTPATH_BINDING, MQCNO_ISOLATED_BINDING, or
MQCNO_SHARED_BINDING is also specified, then the connection is of that type instead, and is
documented in this section. Otherwise a standard server connection is attempted using the
default bind type. MQCNO_LOCAL_BINDING has the following limitations:

v z/OS MQCNO_LOCAL_BINDING is ignored on z/OS.
v MQCNO_LOCAL_BINDING is rejected with MQRC_OPTIONS_ERROR if it is specified with

any MQCNO reconnect option other than MQCNO_RECONNECT_AS_DEF.

v Before Version 8.0.0, Fix Pack 6, MQCNO_LOCAL_BINDING is not available for
.NET as it has its own mechanisms for choosing the bind type. From Version 8.0.0, Fix Pack 6,
the restriction on using .NET for MQCNO_CLIENT_BINDING is removed.

v MQCNO_LOCAL_BINDING is not available for Java as it has its own mechanisms for
choosing the bind type.

v If the MQ_CONNECT_TYPE environment variable is not set when MQCONN is called, a
standard server connection using the default bind type is attempted. If the server library fails
to load, a client connection is attempted.

z/OS

On z/OS these options are tolerated, but only a standard bound connection is performed.

z/OS

MQCNO Version 3, for z/OS, allows four different options:

MQCNO_SERIALIZE_CONN_TAG_QSG

This allows an application to request that only one instance of an application runs at any one
time in a queue-sharing group. This is achieved by registering the use of a connection tag with a
value that is specified or derived by the application. The tag is a 128 byte character string
specified in the Version 3 MQCNO.

Developing applications 97

MQCNO_RESTRICT_CONN_TAG_QSG

This is used where an application consists of more than one process (or a TCB), each of which
can connect to a queue manager. Connection is permitted only if there is no current use of the
tag, or the requesting application is within the same processing scope. This is MVS address space
within the same queue-sharing group as the tag owner.

MQCNO_SERIALIZE_CONN_TAG_Q_MGR

This is similar to MQCNO_SERIALIZE_CONN_TAG_QSG, but only the local queue manager is
interrogated to see if the requested tag is already in use.

MQCNO_RESTRICT_CONN_TAG_Q_MGR

This is similar to MQCNO_RESTRICT_CONN_TAG_QSG, but only the local queue manager is
interrogated to see if the requested tag is already in use.

Restrictions for trusted applications:

The following restrictions apply to trusted applications:
v You must explicitly disconnect trusted applications from the queue manager.
v You must stop trusted applications before ending the queue manager with the endmqm command.
v You must not use asynchronous signals and timer interrupts (such as sigkill) with

MQCNO_FASTPATH_BINDING.
v On all platforms, a thread within a trusted application cannot connect to a queue manager while

another thread in the same process is connected to a different queue manager.
v On IBM MQ on UNIX and Linux systems you must use mqm as the effective userID and groupID for

all MQI calls. You can change these IDs before making a non-MQI call requiring authentication (for
example, opening a file), but you must change it back to mqm before making the next MQI call.

v On IBM MQ for IBM i:
1. Trusted applications must run under the QMQM user profile. It is not sufficient that the user profile

be a member of the QMQM group or that the program adopt QMQM authority. It might not be
possible for the QMQM user profile to be used to sign on to interactive jobs, or to be specified in
the job description for jobs running trusted applications. In this case one approach is to use the IBM
i profile swapping API functions, QSYGETPH, QWTSETP, and QSYRLSPH to temporarily change
the current user of the job to QMQM while the MQ programs run. Details of these functions,
together with an example of their use, is provided in the Security APIs section of the IBM i System
API Reference.

2. Do not cancel trusted applications using System-Request Option 2, or by ending the jobs in which
they are running using ENDJOB.

v On IBM MQ for HP-UX, multithreaded fast-path applications are likely to need to set a larger stack
size than the default. Use a size of 256 KB.

v On IBM MQ for Windows trusted 64-bit applications are not supported. If you try to run a trusted
64-bit application, it will be downgraded to a standard bound connection.

v On IBM MQ on UNIX and Linux systems trusted 32-bit applications are not supported. If you try to
run a trusted 32-bit application, it will be downgraded to a standard bound connection.

98 IBM MQ: Programming

Shared (thread independent) connections with MQCONNX:

Use this information to learn about Shared connections with MQCONNX, and some usage notes to
consider.

Note: Not supported on IBM MQ for z/OS.

On IBM MQ platforms other than IBM MQ for z/OS, a connection made with MQCONN is available
only to the thread that made the connection. Options on the MQCONNX call allow you to create a
connection that can be shared by all the threads in a process. If your application is running in a
transactional environment that requires MQI calls to be issued on the same thread, you must use the
following default option:

MQCNO_HANDLE_SHARE_NONE
Creates a non-shared connection.

In most other environments, you can use one of the following thread independent, shared connection
options:

MQCNO_HANDLE_SHARE_BLOCK
Creates a shared connection. On a MQCNO_HANDLE_SHARE_BLOCK connection, if the connection is
currently in use by an MQI call on another thread, the MQI call waits until the current MQI call
has completed.

MQCNO_HANDLE_SHARE_NO_BLOCK
Creates a shared connection. On a MQCNO_HANDLE_SHARE_NO_BLOCK connection, if the connection is
currently in use by an MQI call on another thread, the MQI call fails immediately with a reason
of MQRC_CALL_IN_PROGRESS.

Except for the MTS (Microsoft Transaction Server) environment, the default value is
MQCNO_HANDLE_SHARE_NONE. In the MTS environment, the default value is MQCNO_HANDLE_SHARE_BLOCK.

A connection handle is returned from the MQCONNX call. The handle can be used by subsequent MQI
calls from any thread in the process, associating those calls with the handle returned from the
MQCONNX. MQI calls using a single shared handle are serialized across threads.

For example, the following sequence of activity is possible with a shared handle:
1. Thread 1 issues MQCONNX and gets a shared handle h1

2. Thread 1 opens a queue and issues a get request using h1

3. Thread 2 issues a put request using h1

4. Thread 3 issues a put request using h1

5. Thread 2 issues MQDISC using h1

While the handle is in use by any thread, access to the connection is unavailable to other threads. In
circumstances where it is acceptable that a thread waits for any previous call from another thread to
complete, use MQCONNX with the option MQCNO_HANDLE_SHARE_BLOCK.

However blocking can cause difficulties. Suppose that in step 2, thread 1 issues a get request that waits
for messages that might not have yet arrived (a get with wait). In this case, threads 2 and 3 are also left
waiting (blocked) for as long as the get request on thread 1 takes. If you prefer that an MQI call returns
with an error if another MQI call is already running on the handle, use MQCONNX with the option
MQCNO_HANDLE_SHARE_NO_BLOCK.

Developing applications 99

Shared connection usage notes

1. Any object handles (Hobj) created by opening an object are associated with an Hconn; so for a shared
Hconn, the Hobjs are also shared and usable by any thread using the Hconn. Similarly, any unit of
work started under an Hconn is associated with that Hconn; so this too is shared across threads with
the shared Hconn.

2. Any thread can call MQDISC to disconnect a shared Hconn, not just the thread that called the
corresponding MQCONNX. The MQDISC terminates the Hconn making it unavailable to all threads.

3. A single thread can use multiple shared Hconns serially, for example use MQPUT to put one message
under one shared Hconn then put another message using another shared Hconn, with each operation
being under a different local unit of work.

4. Shared Hconns cannot be used within a global unit of work.

MQCONNX environment variable:

Use this information to understand the different MQCONNX call options and how they are used with
MQ_CONNECT_TYPE. Note that MQ_CONNECT_TYPE only has any effect for STANDARD bindings.
For other bindings, MQ_CONNECT_TYPE is ignored.

On IBM MQ for IBM i, IBM MQ for Windows, and IBM MQ on UNIX and Linux systems, you can use
the environment variable, MQ_CONNECT_TYPE in combination with the type of binding specified in the
Options field of the MQCNO structure used on an MQCONNX call.

Table 15. The MQ_CONNECT_TYPE environment variable

MQCONNX call option MQ_CONNECT_TYPE environment
variable

Result

STANDARD UNDEFINED STANDARD

STANDARD STANDARD STANDARD

STANDARD FASTPATH STANDARD

STANDARD CLIENT CLIENT

STANDARD LOCAL STANDARD

If MQCNO_STANDARD_BINDING is not specified, you can use MQCNO_NONE, which defaults to
MQCNO_STANDARD_BINDING.

Disconnecting programs from a queue manager using MQDISC:

Use this information to learn about disconnecting programs from a queue manager using MQDISC.

When a program that has connected to a queue manager using the MQCONN or MQCONNX call has
finished all interaction with the queue manager, it breaks the connection using the MQDISC call, except:
v On CICS Transaction Server for z/OS applications, where the call is optional unless MQCONNX was

used and you want to drop the connection tag before the application ends.
v On IBM MQ for IBM i where, when you sign off from the operating system, an implicit MQDISC call

is made.

As input to the MQDISC call, you must supply the connection handle (Hconn) that was returned by
MQCONN or MQCONNX when you connected to the queue manager.

Except on CICS on z/OS, after MQDISC is called the connection handle (Hconn) is no longer valid, and
you cannot issue any further MQI calls until you call MQCONN or MQCONNX again. MQDISC does an
implicit MQCLOSE for any objects that are still open using this handle.

100 IBM MQ: Programming

z/OS

For a client connected to z/OS, when an MQDISC call is issued an implicit commit takes place,

but any queue handles that are still open are not closed until the channel actually ends.

If you use MQCONNX to connect on IBM MQ for z/OS, MQDISC also ends the scope of the connection
tag established by the MQCONNX. However, in a CICS, IMS, or RRS application, if there is an active unit
of recovery associated with a connection tag, the MQDISC is rejected with a reason code of
MQRC_CONN_TAG_NOT_RELEASED.

Descriptions of the parameters are given in the description of the MQDISC call in MQDISC.

When no MQDISC is issued

A standard, non-shared connection (Hconn) is cleaned up when the creating thread terminates. A shared
connection is only implicitly backed out and disconnected when the whole process terminates. If the
thread that created the shared Hconn terminates while the Hconn still exists the Hconn is still usable.

Authority checking

The MQCLOSE and MQDISC calls usually perform no authority checking.

In the normal course of events a job that has the authority to open or connect to an IBM MQ object closes
or disconnect from that object. Even if the authority of a job that has connected to or opened an IBM MQ
object is revoked, the MQCLOSE and MQDISC calls are accepted.

Opening and closing objects
This information provides an insight into opening and closing IBM MQ objects.

To perform any of the following operations, you must first open the relevant IBM MQ object:
v Put messages on a queue
v Get (browse or retrieve) messages from a queue
v Set the attributes of an object
v Inquire about the attributes of any object

Use the MQOPEN call to open the object, using the options of the call to specify what you want to do
with the object. The only exception is if you want to put a single message on a queue, then close the
queue immediately. In this case, you can bypass the opening stage by using the MQPUT1 call (see
“Putting one message on a queue using the MQPUT1 call” on page 123).

Before you open an object using the MQOPEN call, you must connect your program to a queue manager.
This is explained in detail, for all environments, in “Connecting to and disconnecting from a queue
manager” on page 92.

There are four types of IBM MQ object that you can open:
v Queue
v Namelist
v Process definition
v Queue manager

You open all these objects in a similar way using the MQOPEN call. For more information about IBM
MQ objects, see Object types.

You can open the same object more than once, and each time you get a new object handle. You might
want to browse messages on a queue using one handle, and remove messages from the same queue

Developing applications 101

using another handle. This saves using up resources to close and reopen the same object. You can also
open a queue for browsing and removing messages at the same time.

Moreover, you can open multiple objects with a single MQOPEN and close them using MQCLOSE. See
“Distribution lists” on page 124 for information about how to do this.

When you attempt to open an object, the queue manager checks that you are authorized to open that
object for the options that you specify in the MQOPEN call.

Objects are closed automatically when a program disconnects from the queue manager. In the IMS
environment, disconnection is forced when a program starts processing for a new user following a GU
(get unique) IMS call. On the IBM i platform, objects are closed automatically when a job ends.

It is good programming practice to close objects you have opened. Use the MQCLOSE call to do this.

Use the following links to find out more about opening and closing objects:
v “Opening objects using the MQOPEN call”
v “Creating dynamic queues” on page 111
v “Opening remote queues” on page 112
v “Closing objects using the MQCLOSE call” on page 112
Related concepts:
“The Message Queue Interface overview” on page 76
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 92
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Putting messages on a queue” on page 113
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 130
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 220
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 224
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 237
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 257
There are special options on calls and return codes that relate to clustering.

z/OS “Using and writing applications on IBM MQ for z/OS” on page 263
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

z/OS “IMS and IMS bridge applications on IBM MQ for z/OS” on page 37
This information helps you to write IMS applications using IBM MQ.

Opening objects using the MQOPEN call:

Use this information to learn about opening objects using the MQOPEN call.

As input to the MQOPEN call, you must supply:

102 IBM MQ: Programming

v A connection handle. For CICS applications on z/OS, you can specify the constant
MQHC_DEF_HCONN (which has the value zero), or use the connection handle returned by the
MQCONN or MQCONNX call. For other programs, always use the connection handle returned by the
MQCONN or MQCONNX call.

v A description of the object that you want to open, using the object descriptor structure (MQOD).
v One or more options that control the action of the call.

The output from MQOPEN is:
v An object handle that represents your access to the object. Use this on input to any subsequent MQI

calls.
v A modified object-descriptor structure, if you are creating a dynamic queue (and it is supported on

your platform).
v A completion code.
v A reason code.

Scope of an object handle

The scope of an object handle (Hobj) is the same as the scope of a connection handle (Hconn).

This is covered in “Scope of MQCONN or MQCONNX” on page 95 and “Shared (thread independent)
connections with MQCONNX” on page 99. However, there are additional considerations in some
environments:

CICS In a CICS program, you can use the handle only within the same CICS task from which you
made the MQOPEN call.

IMS and z/OS batch
In the IMS and batch environments, you can use the handle within the same task, but not within
any subtasks.

Descriptions of the parameters of the MQOPEN call are given in MQOPEN.

The following sections describe the information that you must supply as input to MQOPEN.

Identifying objects (the MQOD structure)

Use the MQOD structure to identify the object that you want to open. This structure is an input
parameter for the MQOPEN call. (The structure is modified by the queue manager when you use the
MQOPEN call to create a dynamic queue.)

For full details of the MQOD structure, see MQOD.

For information about using the MQOD structure for distribution lists, see “Using the MQOD structure”
on page 125 under “Distribution lists” on page 124.

Developing applications 103

Name resolution:

How the MQOPEN call resolves queue and queue manager names.

Note: A Queue manager alias is a remote queue definition without an RNAME field.

When you open an IBM MQ queue, the MQOPEN call performs a name resolution function on the queue
name that you specify. This determines on which queue the queue manager performs subsequent
operations. This means that when you specify the name of an alias queue or a remote queue in your
object descriptor (MQOD), the call resolves the name either to a local queue or to a transmission queue. If
a queue is opened for any type of input, browse, or set, it resolves to a local queue if there is one, and
fails if there is not one. It resolves to a nonlocal queue only if it is opened for output only, inquire only,
or output and inquire only. See Table 16 for an overview of the name resolution process. The name that
you supply in ObjectQMgrName is resolved before that in ObjectName.

Table 16 also shows how you can use a local definition of a remote queue to define an alias for the name
of a queue manager. This allows you to select which transmission queue is used when you put messages
on a remote queue, so you could, for example, use a single transmission queue for messages destined for
many remote queue managers.

To use the following table, first read down the two left-hand columns, under the heading Input to
MQOD, and select the appropriate case. Then read across the corresponding row, following any
instructions. Following the instructions in the Resolved names columns, you can either return to the
Input to MQOD columns and insert values as directed, or you can exit the table with the results
supplied. For example, you might be required to input ObjectName.

Table 16. Resolving queue names when using MQOPEN

Input to MQOD Input to MQOD Resolved names Resolved names Resolved names

ObjectQMgrName ObjectName ObjectQMgrName ObjectName Transmission queue

Blank or local queue
manager

Local queue
with no
CLUSTER
attribute

Local queue manager Input
ObjectName

Not applicable (local
queue used)

Blank queue manager Local queue
with CLUSTER
attribute

Workload management
selected cluster queue
manager or specific
cluster queue manager
selected on PUT

Input
ObjectName

SYSTEM.CLUSTER.
TRANSMIT.QUEUE and
local queue used

SYSTEM.QSG.
TRANSMIT.QUEUE (see
note)

Local queue manager Local queue
with CLUSTER
attribute

Local queue manager Input
ObjectName

Not applicable (local
queue used)

Blank or local queue
manager

Model queue Local queue manager Generated name Not applicable (local
queue used)

104 IBM MQ: Programming

Table 16. Resolving queue names when using MQOPEN (continued)

Input to MQOD Input to MQOD Resolved names Resolved names Resolved names

Blank or local queue
manager

Alias queue with
or without
CLUSTER
attribute

Perform name resolution
again with
ObjectQMgrName
unchanged, and input
ObjectName set to the
BaseQName in the alias
queue definition object.

Must not resolve to an
alias locally defined
where the
ObjectQMgrName is
specified, but can resolve
to a clustered alias
(hosted on other queue
managers) where the
ObjectQMgrName is
blank.

Local queue manager Alias queue with
CLUSTER
attribute

The alias must not
resolve to a cluster queue
that is not locally
defined, or a cluster
queue that has the same
ObjectName as the alias.

Blank queue manager Alias queue with
CLUSTER
attribute

The alias can resolve to a
cluster queue with same
ObjectName as the alias.

Blank or local queue
manager

Local definition
of a remote
queue

Perform name resolution
again with
ObjectQMgrName set to
RemoteQMgrName, and
ObjectName set to
RemoteQName. Must not
resolve remote queues

Name of XmitQName
attribute, if non-blank;
otherwise
RemoteQMgrName in the
remote queue definition
object.

SYSTEM.QSG.
TRANSMIT.QUEUE (see
note)

Blank queue manager No matching
local object;
cluster queue
found

Workload management
selected cluster queue
manager or specific
cluster queue manager
selected on PUT

Input
ObjectName

SYSTEM.CLUSTER.
TRANSMIT.QUEUE

SYSTEM.QSG.
TRANSMIT.QUEUE (see
note)

Blank or local queue
manager

No matching
local object;
cluster queue
not found

Error, queue not
found

Not applicable

Name of queue manager
in same queue sharing
group as local queue
manager

Local shared
queue

Local queue manager Input
ObjectName

Not applicable

Developing applications 105

Table 16. Resolving queue names when using MQOPEN (continued)

Input to MQOD Input to MQOD Resolved names Resolved names Resolved names

Name of a local
transmission queue

(Not resolved) Input ObjectQMgrName Input
ObjectName

Input ObjectQMgrName

SYSTEM.QSG.
TRANSMIT.QUEUE (see
note)

Queue manager alias
definition
(RemoteQMgrName may
be the local queue
manager)

(Not resolved,
remote queue)

Perform name resolution
again with
ObjectQMgrName set to
RemoteQMgrName. Must
not resolve to remote
queues

Input
ObjectName

Name of XmitQName
attribute, if non-blank;
otherwise
RemoteQMgrName in the
remote queue definition
object.

SYSTEM.QSG.
TRANSMIT.QUEUE (see
note)

Queue manager is not
the name of any local
object; cluster queue
managers or queue
manager alias found

(Not resolved) ObjectQMgrName or
specific cluster queue
manager selected on PUT

Input
ObjectName

SYSTEM.CLUSTER.
TRANSMIT.QUEUE

SYSTEM.QSG.
TRANSMIT.QUEUE (see
note)

Queue manager is not
the name of any local
object; no cluster objects
found

(Not resolved) Input ObjectQMgrName Input
ObjectName

DefXmitQName attribute
of the queue manager
where DefXmitQName is
supported.

SYSTEM.QSG.
TRANSMIT.QUEUE (see
note)

Notes:

1. BaseQName is the name of the base queue from the definition of the alias queue.
2. RemoteQName is the name of the remote queue from the local definition of the remote queue.
3. RemoteQMgrName is the name of the remote queue manager from the local definition of the remote

queue.
4. XmitQName is the name of the transmission queue from the local definition of the remote queue.
5. When using IBM MQ for z/OS queue managers that are part of a queue-sharing group (QSG), the

name of the QSG can be used instead of the local queue manager name in Table 16 on page 104.
If the local queue manager cannot open the target queue, or put a message to the queue, the message
is transferred to the specified ObjectQMgrName through, either intra-group queuing, or an IBM MQ
channel.

6. In the ObjectName column of the table, CLUSTER refers to both the CLUSTER and CLUSNL attributes
of the queue.

7. The SYSTEM.QSG.TRANSMIT.QUEUE is used if local and remote queue managers are in the same
queue-sharing group; intra-group queuing is enabled.

8. If you have assigned a different cluster transmission queue to each cluster-sender channel,
SYSTEM.CLUSTER.TRANSMIT.QUEUE might not be the name of the cluster transmission queue. For
more information about multiple cluster transmission queues, see Clustering: Planning how to
configure cluster transmission queues.

9. In the situation where the queue manager is not the name of any local object; cluster queue managers,
or queue manager alias found.

106 IBM MQ: Programming

When you have supplied a queue manager name using ObjectQMgrName, and there are multiple cluster
channels with different cluster names known by the local queue manager that would reach that
destination, then any of these channels might be used to move the message, regardless of the cluster
name of the destination queue.
This might be unexpected, if you were anticipating messages for that queue only to be sent through a
channel that has the same cluster name as the queue.
However, the ObjectQMgrName takes precedence in this case, and cluster workload balancing takes into
consideration all channels that might reach that queue manager, regardless of the cluster name they
are in.

Opening an alias queue also opens the base queue to which the alias resolves, and opening a remote
queue also opens the transmission queue. Therefore you cannot delete either the queue that you specify
or the queue to which it resolves while the other one is open.

While an alias queue is unable to resolve to another locally defined alias queue (shared in a cluster or
not), resolving to a remotely defined cluster alias queue is permitted and can therefore be specified as the
base queue.

The resolved queue name and the resolved queue manager name are stored in the ResolvedQName and
ResolvedQMgrName fields in the MQOD.

For more information about name resolution in a distributed queuing environment see What is queue
name resolution?.

Using the options of the MQOPEN call:

In the Options parameter of the MQOPEN call, you must choose one or more options to control the
access that you are given to the object that you are opening. With these options you can:
v Open a queue and specify that all messages put to that queue must be directed to the same instance of

it
v Open a queue to allow you to put messages on it
v Open a queue to allow you to browse messages on it
v Open a queue to allow you to remove messages from it
v Open an object to allow you to inquire about and set its attributes (but you can set the attributes of

queues only)
v Open a topic or topic string to publish messages to it
v Associate context information with a message
v Nominate an alternative user identifier to be used for security checks
v Control the call if the queue manager is in a quiescing state

Developing applications 107

MQOPEN option for cluster queue:

The binding used for the queue handle is taken from the DefBind queue attribute, which can take the
value MQBND_BIND_ON_OPEN, MQBND_BIND_NOT_FIXED, or MQBND_BIND_ON_GROUP.

To route all messages put to a queue using MQPUT to the same queue manager by the same route, use
the MQOO_BIND_ON_OPEN option on the MQOPEN call.

To specify that a destination is to be selected at MQPUT time, that is, on a message-by-message basis, use
the MQOO_BIND_NOT_FIXED option on the MQOPEN call.

To specify that all messages in a message groups put to a queue using MQPUT are allocated to the same
destination instance, use the MQOO_BIND_ON_GROUP option on the MQOPEN call.

Either MQOO_BIND_ON_OPEN or MQOO_BIND_ON_GROUP must be specified when using message groups with
clusters to ensure that all messages in the group are processed at the same destination.

If you do not specify any of these options the default, MQOO_BIND_AS_Q_DEF, is used.

If you specify the name of a queue manager in the MQOD, the queue at that queue manager is selected. If
the queue manager name is blank, any instance can be selected. See “MQOPEN and clusters” on page
257 for more information.

If you open a cluster queue using a QALIAS definition, some queue attributes are defined by the alias
queue, and not the base queue. Cluster attributes are among the attributes of the base queue definition
that are overridden by the alias queue. For example, in the following snippet, the cluster queue is opened
with MQOO_BIND_NOT FIXED and not MQOO_BIND_ON_OPEN. The cluster queue definition is advertised
throughout the cluster, the alias queue definition is local to the queue manager.
DEFINE QLOCAL(CLQ1) CLUSTER(MYCLUSTER) DEFBIND(OPEN) REPLACE
DEFINE QALIAS(ACLQ1) TARGQ(CLQ1) DEFBIND(NOTFIXED) REPLACE

MQOPEN option for putting messages:

To open a queue or topic to put messages on it, use the MQOO_OUTPUT option.

MQOPEN option for browsing messages:

To open a queue so that you can browse the messages on it, use the MQOPEN call with the
MQOO_BROWSE option.

This creates a browse cursor that the queue manager uses to identify the next message on the queue. For
more information, see “Browsing messages on a queue” on page 167.

Note:

1. You cannot browse messages on a remote queue; do not open a remote queue using the
MQOO_BROWSE option.

2. You cannot specify this option when opening a distribution list. For further information about
distribution lists, see “Distribution lists” on page 124.

3. Use the MQOO_CO_OP in conjunction with MQOO_BROWSE if you are using cooperative browsing;
see Options

108 IBM MQ: Programming

MQOPEN options for removing messages:

Three options control the opening of a queue to remove messages from it.

You can use only one of them in any MQOPEN call. These options define whether your program has
exclusive or shared access to the queue. Exclusive access means that, until you close the queue, only you
can remove messages from it. If another program attempts to open the queue to remove messages, its
MQOPEN call fails. Shared access means that more than one program can remove messages from the
queue.

The most advisable approach is to accept the type of access that was intended for the queue when the
queue was defined. The queue definition involved the setting of the Shareability and the
DefInputOpenOption attributes. To accept this access, use the MQOO_INPUT_AS_Q_DEF option. Refer to
Table 17 to see how the setting of these attributes affects the type of access that you will be given when
you use this option.

Table 17. How queue attributes and options of the MQOPEN call affect access to queues

Queue attributes Type of access with MQOPEN options

Shareability DefInputOpenOption AS_Q_DEF SHARED EXCLUSIVE

SHAREABLE SHARED shared shared exclusive

SHAREABLE EXCLUSIVE exclusive shared exclusive

NOT_SHAREABLE* SHARED* exclusive exclusive exclusive

NOT_SHAREABLE EXCLUSIVE exclusive exclusive exclusive

Note: * Although you can define a queue to have this combination of attributes, the default input open
option is overridden by the shareability attribute.

Alternatively:
v If you know that your application can work successfully even if other programs can remove messages

from the queue at the same time, use the MQOO_INPUT_SHARED option. Table 17 shows how, in
some cases you will be given exclusive access to the queue, even with this option.

v If you know that your application can work successfully only if other programs are prevented from
removing messages from the queue at the same time, use the MQOO_INPUT_EXCLUSIVE option.

Note:

1. You cannot remove messages from a remote queue. Therefore you cannot open a remote queue using
any of the MQOO_INPUT_* options.

2. You cannot specify this option when opening a distribution list. For further information, see
“Distribution lists” on page 124.

Developing applications 109

MQOPEN options for setting and inquiring about attributes:

To open a queue so that you can set its attributes, use the MQOO_SET option.

You cannot set the attributes of any other type of object (see “Inquiring about and setting object
attributes” on page 220).

To open an object so that you can inquire about its attributes, use the MQOO_INQUIRE option.

Note: You cannot specify this option when opening a distribution list.

MQOPEN options relating to message context:

If you want to be able to associate context information with a message when you put it on a queue, you
must use one of the message context options when you open the queue.

The options allow you to differentiate between context information that relates to the user who originated
the message, and that which relates to the application that originated the message. Also, you can opt to set
the context information when you put the message on the queue, or you can opt to have the context
taken automatically from another queue handle.
Related concepts:
“Message context” on page 34
Message context information allows the application that retrieves the message to find out about the
originator of the message.
“Controlling message context information” on page 120
When you use the MQPUT or MQPUT1 call to put a message on a queue, you can specify that the queue
manager is to add some default context information to the message descriptor. Applications that have the
appropriate level of authority can add extra context information. You can use the options field in the
MQPMO structure to control context information.

MQOPEN option for alternative user authority:

When you attempt to open an object using the MQOPEN call, the queue manager checks that you have
the authority to open that object. If you are not authorized, the call fails.

However, server programs might want the queue manager to check the authorization of the user they are
working for, rather than the server's own authorization. To do this, they must use the
MQOO_ALTERNATE_USER_AUTHORITY option of the MQOPEN call, and specify the alternative user
ID in the AlternateUserId field of the MQOD structure. Typically, the server would get the user ID from
the context information in the message it is processing.

110 IBM MQ: Programming

MQOPEN option for queue manager quiescing: z/OS

If you use the MQOPEN call when the queue manager is in a quiescing state, the call might fail,
depending on which environment you are using.

In the CICS environment on z/OS, if you use the MQOPEN call when the queue manager is in a
quiescing state, the call always fails.

In other z/OS environments, IBM i, Windows systems and in UNIX and Linux systems environments, the
call fails when the queue manager is quiescing only if you use the MQOO_FAIL_IF_QUIESCING option
of the MQOPEN call.

MQOPEN option for resolving local queue names:

When you open a local, alias or model queue, the local queue is returned.

However, when you open a remote queue or cluster queue, the ResolvedQName and ResolvedQMgrName
fields of the MQOD structure are filled with the names of the remote queue and remote queue manager
found in the remote queue definition, or with the chosen remote cluster queue.

Use the MQOO_RESOLVE_LOCAL_Q option of the MQOPEN call to fill the ResolvedQName in the
MQOD structure with the name of the local queue that was opened. The ResolvedQMgrName is similarly
filled with the name of the local queue manager hosting the local queue. This field is available only with
Version 3 of the MQOD structure; if the structure is less than Version 3, MQOO_RESOLVE_LOCAL_Q is
ignored without an error being returned.

If you specify MQOO_RESOLVE_LOCAL_Q when opening, for example, a remote queue, ResolvedQName
is the name of the transmission queue to which messages will be put. ResolvedQMgrName is the name of
the local queue manager hosting the transmission queue.

Creating dynamic queues:

Use a dynamic queue when you do not need the queue after your application ends.

For example, you could use a dynamic queue for your reply-to queue. You specify the name of the
reply-to queue in the ReplyToQ field of the MQMD structure when you put a message on a queue (see
“Defining messages using the MQMD structure” on page 115).

To create a dynamic queue, you use a template known as a model queue, together with the MQOPEN
call. You create a model queue using the IBM MQ commands or the operations and control panels. The
dynamic queue that you create takes the attributes of the model queue.

When you call MQOPEN, specify the name of the model queue in the ObjectName field of the MQOD
structure. When the call completes, the ObjectName field is set to the name of the dynamic queue that is
created. Also, the ObjectQMgrName field is set to the name of the local queue manager.

You can specify the name of the dynamic queue that you create in three ways:
v Give the full name that you want in the DynamicQName field of the MQOD structure.
v Specify a prefix (fewer than 33 characters) for the name, and allow the queue manager to generate the

rest of the name. This means that the queue manager generates a unique name, but you still have some
control (for example, you might want each user to use a certain prefix, or you might want to give a
special security classification to queues with a certain prefix in their name). To use this method, specify
an asterisk (*) for the last non-blank character of the DynamicQName field. Do not specify a single asterisk
(*) for the dynamic queue name.

Developing applications 111

v Allow the queue manager to generate the full name. To use this method, specify an asterisk (*) in the
first character position of the DynamicQName field.

For more information about these methods, see the description of the DynamicQName field.

There is more information on dynamic queues in Dynamic and Model queues.

Opening remote queues:

A remote queue is a queue that is owned by a queue manager other than the one to which the
application is connected.

To open a remote queue, use the MQOPEN call as for a local queue. You can specify the name of the
queue as follows:
1. In the ObjectName field of the MQOD structure, specify the name of the remote queue as known to the

local queue manager.

Note: Leave the ObjectQMgrName field blank in this case.
2. In the ObjectName field of the MQOD structure, specify the name of the remote queue, as known to

the remote queue manager. In the ObjectQMgrName field, specify either:
v The name of the transmission queue that has the same name as the remote queue manager. The

name and case (uppercase, lowercase or a mixture) must match exactly.
v The name of a queue manager alias object that resolves to the destination queue manager or the

transmission queue.

This tells the queue manager the destination of the message as well as the transmission queue that it
needs to be put on to get there.

3. If DefXmitQname is supported, in the ObjectName field of the MQOD structure, specify the name of the
remote queue as known by the remote queue manager.

Note: Set the ObjectQMgrName field to the name of the remote queue manager (it cannot be left blank
in this case).

Only local names are validated when you call MQOPEN; the last check is for the existence of the
transmission queue to be used.

These methods are summarized inTable 16 on page 104.

Closing objects using the MQCLOSE call:

To close an object, use the MQCLOSE call.

If the object is a queue, note the following:
v You do not need to empty a temporary dynamic queue before you close it.

When you close a temporary dynamic queue, the queue is deleted, along with any messages that might
still be on it. This is true even if there are uncommitted MQGET, MQPUT, or MQPUT1 calls
outstanding against the queue.

v On IBM MQ for z/OS, if you have any MQGET requests with an MQGMO_SET_SIGNAL option
outstanding for that queue, they are canceled.

v If you opened the queue using the MQOO_BROWSE option, your browse cursor is destroyed.

Closure is unrelated to sync point, so you can close queues before or after sync point.

As input to the MQCLOSE call, you must supply:

112 IBM MQ: Programming

v A connection handle. Use the same connection handle used to open it, or alternatively, for CICS
applications on z/OS, you can specify the constant MQHC_DEF_HCONN (which has the value zero).

v The handle of the object that you want to close. Get this from the output of the MQOPEN call.
v MQCO_NONE in the Options field (unless you are closing a permanent dynamic queue).
v The control option to determine whether the queue manager should delete the queue even if there are

still messages on it (when closing a permanent dynamic queue).

The output from MQCLOSE is:
v A completion code
v A reason code
v The object handle, reset to the value MQHO_UNUSABLE_HOBJ

Descriptions of the parameters of the MQCLOSE call are given in MQCLOSE.

Putting messages on a queue
Use this information to learn how to put messages on a queue.

Use the MQPUT call to put messages on the queue. You can use MQPUT repeatedly to put many
messages on the same queue, following the initial MQOPEN call. Call MQCLOSE when you have
finished putting all your messages on the queue.

If you want to put a single message on a queue and close the queue immediately afterward, you can use
the MQPUT1 call. MQPUT1 performs the same functions as the following sequence of calls:
v MQOPEN
v MQPUT
v MQCLOSE

Generally however, if you have more than one message to put on the queue, it is more efficient to use the
MQPUT call. This depends on the size of the message and the platform that you are working on.

Use the following links to find out more about putting messages on a queue:
v “Putting messages on a local queue using the MQPUT call” on page 114
v “Putting messages on a remote queue” on page 120
v “Setting properties of a message” on page 120
v “Controlling message context information” on page 120
v “Putting one message on a queue using the MQPUT1 call” on page 123
v “Distribution lists” on page 124
v “Some cases where the put calls fail” on page 129

Developing applications 113

Related concepts:
“The Message Queue Interface overview” on page 76
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 92
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 101
This information provides an insight into opening and closing IBM MQ objects.
“Getting messages from a queue” on page 130
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 220
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 224
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 237
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 257
There are special options on calls and return codes that relate to clustering.

z/OS “Using and writing applications on IBM MQ for z/OS” on page 263
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

z/OS “IMS and IMS bridge applications on IBM MQ for z/OS” on page 37
This information helps you to write IMS applications using IBM MQ.

Putting messages on a local queue using the MQPUT call:

Use this information to learn about putting messages on a local queue using the MQPUT call.

As input to the MQPUT call, you must supply:
v A connection handle (Hconn).
v A queue handle (Hobj).
v A description of the message that you want to put on the queue. This is in the form of a message

descriptor structure (MQMD).
v Control information, in the form of a put-message options structure (MQPMO).
v The length of the data contained within the message (MQLONG).
v The message data itself.

The output from the MQPUT call is as follows:
v A reason code (MQLONG)
v A completion code (MQLONG)

If the call completes successfully, it also returns your options structure and your message descriptor
structure. The call modifies your options structure to show the name of the queue and the queue
manager to which the message was sent. If you request that the queue manager generates a unique value
for the identifier of the message you are putting (by specifying binary zero in the MsgId field of the
MQMD structure), the call inserts the value in the MsgId field before returning this structure to you. Reset
this value before you issue another MQPUT.

There is a description of the MQPUT call in MQPUT.

114 IBM MQ: Programming

For more description on the information needed as input to the MQPUT call, see the following links:
v “Specifying handles”
v “Defining messages using the MQMD structure”
v “Specifying options using the MQPMO structure”
v “The data in your message” on page 118
v “Putting messages: Using message handles” on page 119

Specifying handles

For the connection handle (Hconn) in CICS on z/OS applications, you can specify the constant
MQHC_DEF_HCONN (which has the value zero), or you can use the connection handle returned by the
MQCONN or MQCONNX call. For other applications, always use the connection handle returned by the
MQCONN or MQCONNX call.

Whatever environment you are working in, use the same queue handle (Hobj) that is returned by the
MQOPEN call.

Defining messages using the MQMD structure

The message descriptor structure (MQMD) is an input/output parameter for the MQPUT and MQPUT1
calls. Use it to define the message you are putting on a queue.

If MQPRI_PRIORITY_AS_Q_DEF or MQPER_PERSISTENCE_AS_Q_DEF is specified for the message and
the queue is a cluster queue, the values used are those of the queue to which the MQPUT resolves. If that
queue is disabled for MQPUT, the call will fail. See Configuring a queue manager cluster for more
information.

Note: Use MQPMO_NEW_MSG_ID and MQPMO_NEW_CORREL_ID before putting a new message to
ensure that the MsgId and CorrelId are unique. The values in these fields are returned on a successful
MQPUT.

There is an introduction to the message properties that MQMD describes in “IBM MQ messages” on page
4, and there is a description of the structure itself in MQMD.

Specifying options using the MQPMO structure

Use the MQPMO (Put Message Option) structure to pass options to the MQPUT and MQPUT1 calls.

The following sections give you help on filling in the fields of this structure. There is a description of the
structure in MQPMO.

The structure includes the following fields:
v StrucId

v Version

v Options

v Context

v ResolvedQName

v ResolvedQMgrName

v RecsPresent

v PutMsgRecsFields

v ResponseRecOffset and ResponseRecPtr

v OriginalMsgHandle

Developing applications 115

v NewMsgHandle

v Action

v PubLevel

The contents of these fields is as follows:

StrucId
This identifies the structure as a put-message options structure. This is a 4-character field. Always
specify MQPMO_STRUC_ID.

Version
This describes the version number of the structure. The default is MQPMO_VERSION_1. If you
enter MQPMO_VERSION_2, you can use distribution lists (see “Distribution lists” on page 124).
If you enter MQPMO_VERSION_3, you can use message handles and message properties. If you
enter MQPMO_CURRENT_VERSION, your application is set always to use the most recent level.

Options
This controls the following:
v Whether the put operation is included in a unit of work
v How much context information is associated with a message
v Where the context information is taken from
v Whether the call fails if the queue manager is in a quiescing state
v Whether grouping or segmentation is allowed
v Generation of a new message identifier and correlation identifier
v The order in which messages and segments are put on a queue
v Whether to resolve local queue names

If you leave the Options field set to the default value (MQPMO_NONE), the message you put has
default context information associated with it.

Also, the way that the call operates with sync points is determined by the platform. The sync
point control default is yes in z/OS ; for other platforms, it is no.

Context
This states the name of the queue handle that you want context information to be copied from (if
requested in the Options field).

For an introduction to message context, see “Message context” on page 34. For information about
using the MQPMO structure to control the context information in a message, see “Controlling
message context information” on page 120.

ResolvedQName
This contains the name (after resolution of any alias name) of the queue that was opened to
receive the message. This is an output field.

ResolvedQMgrName
This contains the name (after resolution of any alias name) of the queue manager that owns the
queue in ResolvedQName. This is an output field.

The MQPMO can also accommodate fields required for distribution lists (see “Distribution lists” on page
124). If you want to use this facility, Version 2 of the MQPMO structure is used. This includes the
following fields:

RecsPresent
This field contains the number of queues in the distribution list; that is, the number of Put
Message Records (MQPMR) and corresponding Response Records (MQRR) present.

The value that you enter can be the same as the number of Object Records provided at
MQOPEN. However, if the value is less than the number of Object Records provided on the

116 IBM MQ: Programming

MQOPEN call, or if you provide no Put Message Records, the values of the queues that are not
defined are taken from the default values provided by the message descriptor. Also, if the value
is greater than the number of Object Records provided, the excess Put Message Records are
ignored.

You are recommended to do one of the following:
v If you want to receive a report or reply from each destination, enter the same value as appears

in the MQOR structure and use MQPMRs containing MsgId fields. Either initialize these MsgId
fields to zeros or specify MQPMO_NEW_MSG_ID.
When you have put the message to the queue, MsgId values that the queue manager has
created become available in the MQPMRs; you can use these to identify which destination is
associated with each report or reply.

v If you do not want to receive reports or replies, choose one of the following:
1. If you want to identify destinations that fail immediately, you might still want to enter the

same value in the RecsPresent field as appears in the MQOR structure and provide MQRRs
to identify these destinations. Do not specify any MQPMRs.

2. If you do not want to identify failed destinations, enter zero in the RecsPresent field and
do not provide MQPMRs nor MQRRs.

Note: If you are using MQPUT1, the number of Response Record Pointers and Response Record
Offsets must be zero.

For a full description of Put Message Records (MQPMR) and Response Records (MQRR), see
MQPMR and MQRR.

PutMsgRecFields
This indicates which fields are present in each Put Message Record (MQPMR). For a list of these
fields, see “Using the MQPMR structure” on page 128.

PutMsgRecOffset and PutMsgRecPtr
Pointers (typically in C) and offsets (typically in COBOL) are used to address the Put Message
Records (see “Using the MQPMR structure” on page 128 for an overview of the MQPMR
structure).

Use the PutMsgRecPtr field to specify a pointer to the first Put Message Record, or the
PutMsgRecOffset field to specify the offset of the first Put Message Record. This is the offset from
the start of the MQPMO. Depending on the PutMsgRecFields field, enter a nonnull value for
either PutMsgRecOffset or PutMsgRecPtr.

ResponseRecOffset and ResponseRecPtr
You also use pointers and offsets to address the Response Records (see “Using the MQRR
structure” on page 127 for further information about Response Records).

Use the ResponseRecPtr field to specify a pointer to the first Response Record, or the
ResponseRecOffset field to specify the offset of the first Response Record. This is the offset from
the start of the MQPMO structure. Enter a nonnull value for either ResponseRecOffset or
ResponseRecPtr.

Note: If you are using MQPUT1 to put messages to a distribution list, ResponseRecPtr must be
null or zero and ResponseRecOffset must be zero.

Version 3 of the MQPMO structure additionally includes the following fields:

OriginalMsgHandle
The use you can make of this field depends on the value of the Action field. If you are putting a
new message with associated message properties, set this field to the message handle you
previously created and set properties on. If you are forwarding, replying to, or generating a
report in response to a previously retrieved message, this field contains the message handle of
that message.

Developing applications 117

NewMsgHandle
If you specify a NewMsgHandle, any properties associated with the handle override properties
associated with the OriginalMsgHandle. For more information, see Action (MQLONG).

Action
Use this field to specify the type of put being performed. Possible values and their meanings are
as follows:

MQACTP_NEW
This is a new message unrelated to any other.

MQACTP_FORWARD
This message was retrieved previously and is now being forwarded.

MQACTP_REPLY
This message is a reply to a previously retrieved message.

MQACTP_REPORT
This message is a report generated as a result of a previously retrieved message.

For more information, see Action (MQLONG).

PubLevel
If this message is a publication, you can set this field to determine which subscriptions receive it.
Only subscriptions with a SubLevel less than or equal to this value will receive this publication.
The default value is 9 which is the highest level and means that subscriptions with any SubLevel
can receive this publication.

The data in your message

Give the address of the buffer that contains your data in the Buffer parameter of the MQPUT call. You
can include anything in the data in your messages. The amount of data in the messages, however, affects
the performance of the application that is processing them.

The maximum size of the data is determined by:
v The MaxMsgLength attribute of the queue manager
v The MaxMsgLength attribute of the queue on which you are putting the message
v The size of any message header added by IBM MQ (including the dead-letter header, MQDLH and the

distribution list header, MQDH)

The MaxMsgLength attribute of the queue manager holds the size of message that the queue manager can
process. This has a default of 100 MB for all IBM MQ products at V6 or higher.

To determine the value of this attribute, use the MQINQ call on the queue manager object. For large
messages, you can change this value.

The MaxMsgLength attribute of a queue determines the maximum size of message that you can put on the
queue. If you attempt to put a message with a size larger than the value of this attribute, your MQPUT
call fails. If you are putting a message on a remote queue, the maximum size of message that you can
successfully put is determined by the MaxMsgLength attribute of the remote queue, of any intermediate
transmission queues that the message is put on along the route to its destination, and of the channels
used.

For an MQPUT operation, the size of the message must be smaller than or equal to the MaxMsgLength
attribute of both the queue and the queue manager. The values of these attributes are independent, but
you are recommended to set the MaxMsgLength of the queue to a value less than or equal to that of the
queue manager.

118 IBM MQ: Programming

IBM MQ adds header information to messages in the following circumstances:
v When you put a message on a remote queue, IBM MQ adds a transmission header structure

(MQXQH) to the message. This structure includes the name of the destination queue and its owning
queue manager.

v If IBM MQ cannot deliver a message to a remote queue, it attempts to put the message on the
dead-letter (undelivered-message) queue. It adds an MQDLH structure to the message. This structure
includes the name of the destination queue and the reason that the message was put on the dead-letter
queue.

v If you want to send a message to multiple destination queues, IBM MQ adds an MQDH header to the
message. This describes the data that is present in a message, belonging to a distribution list, on a
transmission queue. Consider this when choosing an optimum value for the maximum message length.

v If the message is a segment or a message in a group, IBM MQ might add an MQMDE.

These structures are described in MQDH and MQMDE.

If your messages are of the maximum size allowed for these queues, the addition of these headers means
that the put operations fail because the messages are now too big. To reduce the possibility of the put
operations failing:
v Make the size of your messages smaller than the MaxMsgLength attribute of the transmission and

dead-letter queues. Allow at least the value of the MQ_MSG_HEADER_LENGTH constant (more for
large distribution lists).

v Make sure that the MaxMsgLength attribute of the dead-letter queue is set to the same as the
MaxMsgLength of the queue manager that owns the dead-letter queue.

The attributes for the queue manager and the message queuing constants are described in Attributes for
the queue manager.

z/OS

For information on how undelivered messages are handled in a distributed queuing

environment, see Undelivered/unprocessed messages.

Putting messages: Using message handles

Two message handles are available in the MQPMO structure, OriginalMsgHandle and NewMsgHandle. The
relationship between these message handles is defined by the value of the MQPMO Action field.

For full details see Action (MQLONG). A message handle is not necessarily required in order to put a
message. Its purpose is to associate properties with a message, so it is required only if you are using
message properties.

Developing applications 119

Putting messages on a remote queue:

When you want to put a message on a remote queue (that is, a queue owned by a queue manager other
than the one to which your application is connected) rather than a local queue, the only extra
consideration is how you specify the name of the queue when you open it.

This is described in “Opening remote queues” on page 112. There is no change to how you use the
MQPUT or MQPUT1 call for a local queue.

For more information on using remote and transmission queues, see IBM MQ distributed queuing
techniques.

Setting properties of a message:

Call MQSETMP for each property you want to set. When you put the message set the message handle
and action fields of the MQPMO structure.

To associate properties with a message, the message must have a message handle. Create a message
handle using the MQCRTMH function call. Call MQSETMP specifying this message handle for each
property you want to set. A sample program, amqsstma.c, is provided to illustrate the use of MQSETMP.

If this is a new message, when you put it to a queue, using MQPUT or MQPUT1, set the
OriginalMsgHandle field in the MQPMO to the value of this message handle, and set the MQPMO
Action field to MQACTP_NEW (this is the default value).

If this is a message you have previously retrieved, and you are now forwarding or replying to it or
sending a report in response to it, put the original message handle in the OriginalMsgHandle field of the
MQPMO and the new message handle in the NewMsgHandle field. Set the Action field to
MQACTP_FORWARD, MQACTP_REPLY, or MQACTP_REPORT, as appropriate.

If you have properties in an MQRFH2 header from a message you have previously retrieved, you can
convert them to message handle properties using the MQBUFMH call.

If you are putting your message to a queue on a queue manager at a level earlier than IBM WebSphere
MQ Version 7.0, which cannot process message properties, you can set the PropertyControl parameter in
the channel definition to specify how the properties are to be treated.

Controlling message context information:

When you use the MQPUT or MQPUT1 call to put a message on a queue, you can specify that the queue
manager is to add some default context information to the message descriptor. Applications that have the
appropriate level of authority can add extra context information. You can use the options field in the
MQPMO structure to control context information.

Message context information allows the application that retrieves the message to find out about the
originator of the message. All context information is stored in the context fields of the message descriptor.
The type of information falls into identity, origin, and user context information.

To control context information, use the Options field in the MQPMO structure.

If you do not specify any options for context information, the queue manager overwrites context
information that might already be in the message descriptor with the identity and context information
that it has generated for your message. This is the same as specifying the MQPMO_DEFAULT_CONTEXT
option. You might want this default context information when you create a new message (for example,
when processing user input from an inquiry screen).

120 IBM MQ: Programming

If you want no context information associated with your message, use the MQPMO_NO_CONTEXT
option. When putting a message with no context, any authority checks made by IBM MQ are made using
a blank user ID. A blank user ID cannot be assigned explicit authority to IBM MQ resources but is treated
as a member of the special group 'nobody'. For more details on the special group nobody, see Installable
services interface reference information.

You can do context setting using MQOPEN followed by MQPUT using the MQOO_ option and
MQPMO_ option indicated in the following sections. You can also do context setting using just an
MQPUT1, in which case you just need to select the MQPMO_ option indicated in the sections below.

The following sections of this topic explain the use of identity context, user context, and all context.
v “Passing identity context”
v “Passing user context”
v “Passing all context” on page 122
v “Setting identity context” on page 122
v “Setting user context” on page 122
v “Setting all context” on page 122

Passing identity context

In general, programs should pass identity context information from message to message around an
application until the data reaches its final destination.

Programs should change the origin context information each time that they change the data. However,
applications that want to change or set any context information must have the appropriate level of
authority. The queue manager checks this authority when the applications open the queues; they must
have authority to use the appropriate context options for the MQOPEN call.

If your application gets a message, processes the data from the message, then puts the changed data into
another message (possibly for processing by another application), the application must pass the identity
context information from the original message to the new message. You can allow the queue manager to
create the origin context information.

To save the context information from the original message, use the MQOO_SAVE_ALL_CONTEXT option
when you open the queue for getting the message. This is in addition to any other options you use with
the MQOPEN call. Note, however, that you cannot save context information if you only browse the
message.

When you create the second message:
v Open the queue using the MQOO_PASS_IDENTITY_CONTEXT option (in addition to the

MQOO_OUTPUT option).
v In the Context field of the put-message options structure, give the handle of the queue from which you

saved the context information.
v In the Options field of the put-message options structure, specify the

MQPMO_PASS_IDENTITY_CONTEXT option.

Passing user context

You cannot choose to pass only user context. To pass user context when putting a message, specify
MQPMO_PASS_ALL_CONTEXT. Any properties in the user context are passed in the same way as the
origin context.

When an MQPUT or MQPUT1 takes place and the context is being passed, all properties in the user
context are passed from the retrieved message to the put message. Any user context properties that the

Developing applications 121

putting application has altered are put with their original values. Any user context properties that the
putting application has deleted are restored in the put message. Any user context properties that the
putting application has added to the message are retained.

Passing all context

If your application gets a message, and puts the message data (unchanged) into another message, the
application must pass all (identity, origin, and user) context information from the original message to the
new message. An example of an application that might do this is a message mover, which moves
messages from one queue to another.

Follow the same procedure as for passing identity context, except that you use the MQOPEN option
MQOO_PASS_ALL_CONTEXT and the put-message option MQPMO_PASS_ALL_CONTEXT.

Setting identity context

If you want to set the identity context information for a message:
v Open the queue using the MQOO_SET_IDENTITY_CONTEXT option.
v Put the message on the queue, specifying the MQPMO_SET_IDENTITY_CONTEXT option. In the

message descriptor, specify whatever identity context information you require.

Note: When you set some (but not all) of the identity context fields using the
MQOO_SET_IDENTITY_CONTEXT and MQPMO_SET_IDENTITY_CONTEXT options, it is important to
realize that the queue manager does not set any of the other fields.

In order to modify any of the message context options, you must have the appropriate authorizations to
issue the call. For example, in order to use MQOO_SET_IDENTITY_CONTEXT or
MQPMO_SET_IDENTITY_CONTEXT, you must have +setid permission.

Setting user context

To set a property in the user context, set the Context field of the message property descriptor (MQPD) to
MQPD_USER_CONTEXT when you make the MQSETMP call.

You do not need any special authority to set a property in the user context. User context has no
MQOO_SET_* or MQPMO_SET_* context options.

Setting all context

If you want to set both the identity and the origin context information for a message:
1. Open the queue using the MQOO_SET_ALL_CONTEXT option.
2. Put the message on the queue, specifying the MQPMO_SET_ALL_CONTEXT option. In the message

descriptor, specify whatever identity and origin context information you require.

Appropriate authority is needed for each type of context setting.

122 IBM MQ: Programming

Related concepts:
“Message context” on page 34
Message context information allows the application that retrieves the message to find out about the
originator of the message.
Related reference:
“MQOPEN options relating to message context” on page 110
If you want to be able to associate context information with a message when you put it on a queue, you
must use one of the message context options when you open the queue.

Putting one message on a queue using the MQPUT1 call:

Use the MQPUT1 call when you want to close the queue immediately after you have put a single
message on it. For example, a server application is likely to use the MQPUT1 call when it is sending a
reply to each of the different queues.

MQPUT1 is functionally equivalent to calling MQOPEN followed by MQPUT, followed by MQCLOSE.
The only difference in the syntax for the MQPUT and MQPUT1 calls is that for MQPUT you specify an
object handle, whereas for MQPUT1 you specify an object descriptor structure (MQOD) as defined in
MQOPEN (see “Identifying objects (the MQOD structure)” on page 103). This is because you need to
give information to the MQPUT1 call about the queue that it has to open, whereas when you call
MQPUT, the queue must already be open.

As input to the MQPUT1 call, you must supply:
v A connection handle.
v A description of the object that you want to open. This is in the form of an object descriptor structure

(MQOD).
v A description of the message that you want to put on the queue. This is in the form of a message

descriptor structure (MQMD).
v Control information in the form of a put-message options structure (MQPMO).
v The length of the data contained within the message (MQLONG).
v The address of the message data.

The output from MQPUT1 is:
v A completion code
v A reason code

If the call completes successfully, it also returns your options structure and your message descriptor
structure. The call modifies your options structure to show the name of the queue and the queue
manager to which the message was sent. If you request that the queue manager generate a unique value
for the identifier of the message that you are putting (by specifying binary zero in the MsgId field of the
MQMD structure), the call inserts the value in the MsgId field before returning this structure to you.

Note: You cannot use MQPUT1 with a model queue name; however, once a model queue has been
opened, you can issue an MQPUT1 to the dynamic queue.

The six input parameters for MQPUT1 are:

Hconn This is a connection handle. For CICS applications, you can specify the constant
MQHC_DEF_HCONN (which has the value zero), or use the connection handle returned by the
MQCONN or MQCONNX call. For other programs, always use the connection handle returned
by the MQCONN or MQCONNX call.

ObjDesc
This is an object descriptor structure (MQOD).

Developing applications 123

In the ObjectName and ObjectQMgrName fields, give the name of the queue on which you want to
put a message, and the name of the queue manager that owns this queue.

The DynamicQName field is ignored for the MQPUT1 call because it cannot use model queues.

Use the AlternateUserId field if you want to nominate an alternate user identifier that is to be
used to test authority to open the queue.

MsgDesc
This is a message descriptor structure (MQMD). As with the MQPUT call, use this structure to
define the message that you are putting on the queue.

PutMsgOpts
This is a put-message options structure (MQPMO). Use it as you would for the MQPUT call (see
“Specifying options using the MQPMO structure” on page 115).

When the Options field is set to zero, the queue manager uses your own user ID when it
performs tests for authority to access the queue. Also, the queue manager ignores any alternate
user identifier given in the AlternateUserId field of the MQOD structure.

BufferLength
This is the length of your message.

Buffer This is the buffer area that contains the text of your message.

When you use clusters, MQPUT1 operates as though MQOO_BIND_NOT_FIXED is in effect. Applications
must use the resolved fields in the MQPMO structure rather than the MQOD structure to determine
where the message was sent. See Configuring a queue manager cluster for more information.

There is a description of the MQPUT1 call in MQPUT1.

Distribution lists:

Not supported on IBM MQ for z/OS. Distribution lists allow you to put a message to multiple
destinations in a single MQPUT or MQPUT1 call.

A single MQOPEN call can open multiple queues and a single MQPUT call can then put a message to
each of those queues. Some generic information from the MQI structures used for this process can be
superseded by specific information relating to the individual destinations included in the distribution list.

Attention: Distribution lists do not support the use of alias queues that point to topic objects. From
Version 8.0.0, Fix Pack 6, if an alias queue points to a topic object in a distribution list, IBM MQ returns
MQRC_ALIAS_BASE_Q_TYPE_ERROR.

When an MQOPEN call is issued, generic information is taken from the Object Descriptor (MQOD). If
you specify MQOD_VERSION_2 in the Version field and a value greater than zero in the RecsPresent
field, the Hobj can be defined as a handle of a list (of one or more queues) rather than of a queue. In this
case, specific information is given through the object records (MQORs), which give details of destination
(that is, ObjectName and ObjectQMgrName).

The object handle (Hobj) is passed to the MQPUT call, allowing you to put to a list rather than to a single
queue.

When a message is put on the queues (MQPUT), generic information is taken from the Put Message
Option structure (MQPMO) and the Message Descriptor (MQMD). Specific information is given in the
form of Put Message Records (MQPMRs).

124 IBM MQ: Programming

Response Records (MQRR) can receive a completion code and reason code specific to each destination
queue.

Figure 9 shows how distribution lists work.

Opening distribution lists:

Use the MQOPEN call to open a distribution list, and use the options of the call to specify what you
want to do with the list.

As input to MQOPEN, you must supply:
v A connection handle (see “Putting messages on a queue” on page 113 for a description)
v Generic information in the Object Descriptor structure (MQOD)
v The name of each queue that you want to open, using the Object Record structure (MQOR)

The output from MQOPEN is:
v An object handle that represents your access to the distribution list
v A generic completion code
v A generic reason code
v Response Records (optional), containing a completion code and reason for each destination

Using the MQOD structure

Use the MQOD structure to identify the queues that you want to open.

To define a distribution list, you must specify MQOD_VERSION_2 in the Version field, a value greater
than zero in the RecsPresent field, and MQOT_Q in the ObjectType field. See MQOD for a description of
all the fields of the MQOD structure.

QMgr2

Remote1
queue

Remote2
queue

Empty queue

Remote

S
e
tu

p

QMgr1

Local2
queue

Local1
queue

Xmit2

Local

1 message transmitted
through channel

Queue containing one message

Remote1 Remote2

MQDH

XmitQ

Local1

Local2

MQOpen

MQORs

QName QMgrName

local1

local2

remote1

remote2

QMgr2

QMgr2

P
u

t
to

 d
is

tr
ib

u
ti

o
n

 l
is

t

Key:

Figure 9. How distribution lists work. This diagram shows that one message is transmitted through the channel and
can be put on more than one remote queue.

Developing applications 125

Using the MQOR structure

Provide an MQOR structure for each destination.

The structure contains the destination queue and queue manager names. The ObjectName and
ObjectQMgrName fields in the MQOD are not used for distribution lists. There must be one or more object
records. If the ObjectQMgrName is left blank, the local queue manager is used. See ObjectName and
ObjectQMgrName for further information about these fields.

You can specify the destination queues in two ways:
v By using the offset field ObjectRecOffset.

In this case, the application must declare its own structure containing an MQOD structure, followed by
the array of MQOR records (with as many array elements as are needed), and set ObjectRecOffset to
the offset of the first element in the array from the start of the MQOD. Ensure that this offset is correct.
Use of built-in facilities provided by the programming language is recommended, if these are available
in all the environments in which the application runs. The following code illustrates this technique for
the COBOL programming language: programming language:
01 MY-OPEN-DATA.

02 MY-MQOD.
COPY CMQODV.

02 MY-MQOR-TABLE OCCURS 100 TIMES.
COPY CMQORV.

MOVE LENGTH OF MY-MQOD TO MQOD-OBJECTRECOFFSET.

Alternatively, use the constant MQOD_CURRENT_LENGTH if the programming language does not
support the necessary built-in facilities in all the environments concerned. The following code
illustrates this technique:
01 MY-MQ-CONSTANTS.

COPY CMQV.
01 MY-OPEN-DATA.

02 MY-MQOD.
COPY CMQODV.

02 MY-MQOR-TABLE OCCURS 100 TIMES.
COPY CMQORV.

MOVE MQOD-CURRENT-LENGTH TO MQOD-OBJECTRECOFFSET.

However, this works correctly only if the MQOD structure and the array of MQOR records are
contiguous; if the compiler inserts skip bytes between the MQOD and the MQOR array, these must be
added to the value stored in ObjectRecOffset.
Using ObjectRecOffset is recommended for programming languages that do not support the pointer
data type, or that implement the pointer data type in a way that is not portable to different
environments (for example, the COBOL programming language).

v By using the pointer field ObjectRecPtr.
In this case, the application can declare the array of MQOR structures separately from the MQOD
structure, and set ObjectRecPtr to the address of the array. The following code illustrates this technique
for the C programming language:
MQOD MyMqod;
MQOR MyMqor[100];
MyMqod.ObjectRecPtr = MyMqor;

Using ObjectRecPtr is recommended for programming languages that support the pointer data type in
a way that is portable to different environments (for example, the C programming language).

Whichever technique you choose, you must use one of ObjectRecOffset and ObjectRecPtr ; the call fails
with reason code MQRC_OBJECT_RECORDS_ERROR if both are zero, or both are nonzero.

126 IBM MQ: Programming

Using the MQRR structure

These structures are destination-specific; each Response Record contains a CompCode and Reason field for
each queue of a distribution list. You must use this structure to enable you to distinguish where any
problems lie.

For example, if you receive a reason code of MQRC_MULTIPLE_REASONS and your distribution list
contains five destination queues, you will not know which queues the problems apply to if you do not
use this structure. However, if you have a completion code and reason code for each destination, you can
locate the errors more easily.

See MQRR for further information about the MQRR structure.

Figure 10 shows how you can open a distribution list in C.

Figure 11 shows how you can open a distribution list in COBOL.

Using the MQOPEN options

You can specify the following options when opening a distribution list:
v MQOO_OUTPUT
v MQOO_FAIL_IF_QUIESCING (optional)
v MQOO_ALTERNATE_USER_AUTHORITY (optional)
v MQOO_*_CONTEXT (optional)

See “Opening and closing objects” on page 101 for a description of these options.

MQRR

CompCode

CompCode

CompCode

Reason

Reason

Reason

0

n-1

MQOR

0

n-1

Q

Q

Q

QMgr

QMgr

QMgr

MQOD n ptr ptr2

Figure 10. Opening a distribution list in C. The MQOD uses pointers to the MQOR and MQRR structures.

2 Comp
CodeMQOD n offset offset Q QMgr Q QMgr Comp

Code Reason R

x y

0 x 0 n-1 y

Figure 11. Opening a distribution list in COBOL. The MQOD uses offsets in COBOL.

Developing applications 127

Putting messages to a distribution list:

To put messages to a distribution list, you can use MQPUT or MQPUT1.

As input, you must supply:
v A connection handle (see “Putting messages on a queue” on page 113 for a description).
v An object handle. If a distribution list is opened using MQOPEN, the Hobj allows you only to put to

the list.
v A message descriptor structure (MQMD). See MQMD for a description of this structure.
v Control information in the form of a put-message option structure (MQPMO). See “Specifying options

using the MQPMO structure” on page 115 for information about completing the fields of the MQPMO
structure.

v Control information in the form of Put Message Records (MQPMR).
v The length of the data contained within the message (MQLONG).
v The message data itself.

The output is:
v A completion code
v A reason code
v Response Records (optional)

Using the MQPMR structure

This structure is optional and gives destination-specific information for some fields that you might want
to identify differently from those already identified in the MQMD.

For a description of these fields, see MQPMR.

The content of each record depends on the information given in the PutMsgRecFields field of the
MQPMO. For example, in the sample program AMQSPTL0.C (see “The Distribution List sample
program” on page 504 for a description) showing the use of distribution lists, the sample chooses to
provide values for MsgId and CorrelId in the MQPMR. This section of the sample program looks like
this:

typedef struct
{
MQBYTE24 MsgId;
MQBYTE24 CorrelId;
} PutMsgRec;
...
/**********************
MQLONG PutMsgRecFields=MQPMRF_MSG_ID | MQPMRF_CORREL_ID;

This implies that MsgId and CorrelId are provided for each destination of a distribution list. The Put
Message Records are provided as an array.

Figure 12 on page 129 shows how you can put a message to a distribution list in C.

128 IBM MQ: Programming

Figure 13 shows how you can put a message to a distribution list in COBOL.

Using MQPUT1

If you are using MQPUT1, consider the following points:
1. The values of the ResponseRecOffset and ResponseRecPtr fields must be null or zero.
2. The Response Records, if required, must be addressed from the MQOD.

Some cases where the put calls fail:

If certain attributes of a queue are changed using the FORCE option on a command during the interval
between you issuing an MQOPEN and an MQPUT call, the MQPUT call fails and returns the
MQRC_OBJECT_CHANGED reason code.

The queue manager marks the object handle as being no longer valid. This also happens if the changes
are made while an MQPUT1 call is being processed, or if the changes apply to any queue to which the
queue name resolves. The attributes that affect the handle in this way are listed in the description of the
MQOPEN call in MQOPEN. If your call returns the MQRC_OBJECT_CHANGED reason code, close the
queue, reopen it, then try to put a message again.

If put operations are inhibited for a queue on which you are attempting to put messages (or any queue to
which the queue name resolves), the MQPUT or MQPUT1 call fails and returns the
MQRC_PUT_INHIBITED reason code. You might be able to put a message successfully if you attempt the
call at a later time, if the design of the application is such that other programs change the attributes of
queues regularly.

Furthemore, if the queue that you are trying to put your message on is full, the MQPUT or MQPUT1 call
fails and returns MQRC_Q_FULL.

If a dynamic queue (either temporary or permanent) has been deleted, MQPUT calls using a
previously-acquired object handle fail and return the MQRC_Q_DELETED reason code. In this situation,
it is good practice to close the object handle as it is no longer of any use to you.

In the case of distribution lists, multiple completion codes and reason codes can occur in a single request.
These cannot be handled using only the CompCode and Reason output fields on MQOPEN and MQPUT.

MQRR

CompCode

CompCode

CompCode

Reason

Reason

Reason

MQPMR

e.g. ,MsgId CorrelId

MQPMO ptr ptr2 f n

(depending
on f)

Figure 12. Putting a message to a distribution list in C. The MQPMO uses pointers to the MQPMR and MQRR
structures.

MQPMO 2 f n offset1 offset2 MQPMR MQRR

x y

x y

Figure 13. Putting a message to a distribution list in COBOL. The MQPMO uses offsets in COBOL.

Developing applications 129

When you use distribution lists to put messages to multiple destinations, the Response Records contain
the specific CompCode and Reason for each destination. If you receive a completion code of
MQCC_FAILED, no message is put on any destination queue successfully. If the completion code is
MQCC_WARNING, the message is successfully put on one or more of the destination queues. If you
receive a return code of MQRC_MULTIPLE_REASONS, the reason codes are not all the same for every
destination. Therefore, it is recommended to use the MQRR structure so that you can determine which
queue or queues caused an error and the reasons for each.

Getting messages from a queue
Use this information to learn about getting messages from a queue.

You can get messages from a queue in two ways:
1. You can remove a message from the queue so that other programs can no longer see it.
2. You can copy a message, leaving the original message on the queue. This is known as browsing. You

can remove the message once you have browsed it.

In both cases, you use the MQGET call, but first your application must be connected to the queue
manager, and you must use the MQOPEN call to open the queue (for input, browse, or both). These
operations are described in “Connecting to and disconnecting from a queue manager” on page 92 and
“Opening and closing objects” on page 101.

When you have opened the queue, you can use the MQGET call repeatedly to browse or remove
messages on the same queue. Call MQCLOSE when you have finished getting all the messages that you
want from the queue.

Use the following links to find out more about getting messages from a queue:
v “Getting messages from a queue using the MQGET call” on page 131
v “The order in which messages are retrieved from a queue” on page 135
v “Getting a particular message” on page 148
v “Improving performance of non-persistent messages” on page 149

v z/OS “Type of index” on page 154
v “Handling messages greater than 4 MB long” on page 154
v “Waiting for messages” on page 161

v z/OS “Signaling” on page 162
v “Skipping backout” on page 163
v “Application data conversion” on page 166
v “Browsing messages on a queue” on page 167
v “Some cases where the MQGET call fails” on page 174

130 IBM MQ: Programming

Related concepts:
“The Message Queue Interface overview” on page 76
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 92
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 101
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 113
Use this information to learn how to put messages on a queue.
“Inquiring about and setting object attributes” on page 220
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 224
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 237
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 257
There are special options on calls and return codes that relate to clustering.

z/OS “Using and writing applications on IBM MQ for z/OS” on page 263
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

z/OS “IMS and IMS bridge applications on IBM MQ for z/OS” on page 37
This information helps you to write IMS applications using IBM MQ.

Getting messages from a queue using the MQGET call:

The MQGET call gets a message from an open local queue. It cannot get a message from a queue on
another system.

As input to the MQGET call, you must supply:
v A connection handle.
v A queue handle.
v A description of the message that you want to get from the queue. This is in the form of a message

descriptor (MQMD) structure.
v Control information in the form of a Get Message Options (MQGMO) structure.
v The size of the buffer that you have assigned to hold the message (MQLONG).
v The address of the storage in which to put the message.

The output from MQGET is:
v A reason code
v A completion code
v The message in the buffer area that you specified, if the call completes successfully
v Your options structure, modified to show the name of the queue from which the message was retrieved
v Your message descriptor structure, with the contents of the fields modified to describe the message that

was retrieved
v The length of the message (MQLONG)

There is a description of the MQGET call in MQGET.

Developing applications 131

The following sections describe the information you must supply as input to the MQGET call.
v “Specifying connection handles”
v “Describing messages using the MQMD structure and the MQGET call”
v “Specifying MQGET options using the MQGMO structure”
v “Specifying the size of the buffer area” on page 134

Specifying connection handles

z/OS For CICS on z/OS applications, you can specify the constant MQHC_DEF_HCONN (which has
the value zero), or use the connection handle returned by the MQCONN or MQCONNX call. For other
applications, always use the connection handle returned by the MQCONN or MQCONNX call.

Use the queue handle (Hobj) that is returned when you call MQOPEN.

Describing messages using the MQMD structure and the MQGET call

To identify the message that you want to get from a queue, use the message descriptor structure
(MQMD).

This is an input/output parameter for the MQGET call. There is an introduction to the message
properties that MQMD describes in “IBM MQ messages” on page 4, and there is a description of the
structure itself in MQMD.

If you know which message you want to get from the queue, see “Getting a particular message” on page
148.

If you do not specify a particular message, MQGET retrieves the first message in the queue. “The order in
which messages are retrieved from a queue” on page 135 describes how the priority of a message, the
MsgDeliverySequence attribute of the queue, and the MQGMO_LOGICAL_ORDER option determine the
order of the messages in the queue.

Note: If you want to use MQGET more than once (for example, to step through the messages in the
queue), you must set the MsgId and CorrelId fields of this structure to null after each call. This clears
these fields of the identifiers of the message that was retrieved.

However, if you want to group your messages, the GroupId must be the same for messages in the same
group, so that the call looks for a message having the same identifiers as the previous message in order
to make up the whole group.

Specifying MQGET options using the MQGMO structure

The MQGMO structure is an input/output variable for passing options to the MQGET call. The following
sections help you to complete some of the fields of this structure.

There is a description of the MQGMO structure in MQGMO.

StrucId
StrucId is a 4-character field used to identify the structure as a get-message options structure.
Always specify MQGMO_STRUC_ID.

Version
Version describes the version number of the structure. MQGMO_VERSION_1 is the default. If
you want to use the Version 2 fields or retrieve messages in logical order, specify
MQGMO_VERSION_2. If you want to use the Version 3 fields or retrieve messages in logical
order, specify MQGMO_VERSION_3. MQGMO_CURRENT_VERSION sets your application to
use the most recent level.

132 IBM MQ: Programming

Options
Within your code, you can select the options in any order; each option is represented by a bit in
the Options field.

The Options field controls:
v Whether the MQGET call waits for a message to arrive on the queue before it completes (see

“Waiting for messages” on page 161)
v Whether the get operation is included in a unit of work.
v Whether a nonpersistent message is retrieved outside sync point, allowing fast messaging

v z/OS On IBM MQ for z/OS, whether the message retrieved is marked as skipping backout
(see “Skipping backout” on page 163)

v Whether the message is removed from the queue, or merely browsed
v Whether to select a message by using a browse cursor or by other selection criteria
v Whether the call succeeds even if the message is longer than your buffer

v z/OS On IBM MQ for z/OS, whether to allow the call to complete. This option also sets a
signal to indicate that you want to be notified when a message arrives

v Whether the call fails if the queue manager is in a quiescing state

v z/OS On IBM MQ for z/OS, whether the call fails if the connection is in a quiescing state
v Whether application message data conversion is required (see “Application data conversion”

on page 166)

v The order in which messages and segments are retrieved from a queue z/OS (except for
IBM MQ for z/OS)

v Whether complete, logical messages only are retrievable z/OS (except for IBM MQ for
z/OS)

v Whether messages in a group can be retrieved only when all messages in the group are
available

v Whether segments in a logical message can be retrieved only when all segments in the logical
message are available z/OS (except for IBM MQ for z/OS)

If you leave the Options field set to the default value (MQGMO_NO_WAIT), the MQGET call
operates this way:
v If there is no message matching your selection criteria on the queue, the call does not wait for

a message to arrive, but completes immediately. z/OS Also, in IBM MQ for z/OS, the call
does not set a signal requesting notification when such a message arrives.

v The way that the call operates with sync points is determined by the platform:

Platform Under sync point control

IBM i No

UNIX and Linux systems No

z/OS z/OS Yes

Windows systems No

v z/OS On IBM MQ for z/OS, the message retrieved is not marked as skipping backout.
v The selected message is removed from the queue (not browsed).
v No application message data conversion is required.
v The call fails if the message is longer than your buffer.

WaitInterval
The WaitInterval field specifies the maximum time (in milliseconds) that the MQGET call waits

Developing applications 133

for a message to arrive on the queue when you use the MQGMO_WAIT option. If no message
arrives within the time specified in WaitInterval, the call completes and returns a reason code
showing that there was no message that matched your selection criteria on the queue.

z/OS

On IBM MQ for z/OS, if you use the MQGMO_SET_SIGNAL option, the WaitInterval

field specifies the time for which the signal is set.

For more information about these options, see “Waiting for messages” on page 161 z/OS and
“Signaling” on page 162.

Signal1

Signal1 is supported only on z/OS IBM MQ for z/OS and MQSeries® for HP Integrity
NonStop Server.

If you use the MQGMO_SET_SIGNAL option to request that your application is notified when a
suitable message arrives, you specify the type of signal in the Signal1 field. In IBM MQ on all
other platforms, the Signal1 field is reserved and its value is not significant.

z/OS

For more information, see “Signaling” on page 162.

Signal2
The Signal2 field is reserved on all platforms and its value is not significant.

z/OS

For more information, see “Signaling” on page 162.

ResolvedQName
ResolvedQName is an output field in which the queue manager returns the name of the queue
(after resolution of any alias) from which the message was retrieved.

MatchOptions
MatchOptions controls the selection criteria for MQGET.

GroupStatus
GroupStatus indicates whether the message that you have retrieved is in a group.

SegmentStatus
SegmentStatus indicates whether the item that you have retrieved is a segment of a logical
message.

Segmentation
Segmentation indicates whether segmentation is allowed for the message retrieved.

MsgToken

MsgToken uniquely identifies a message.

z/OS

For more information, see “IBM MQ Workflow” on page 271.

ReturnedLength
ReturnedLength is an output field in which the queue manager returns the length of message data
returned (in bytes).

MsgHandle
The handle to a message that is to be populated with the properties of the message being
retrieved from the queue. The handle has previously been created by an MQCRTMH call. Any
properties already associated with the handle are cleared before retrieving a message.

Specifying the size of the buffer area

In the BufferLength parameter of the MQGET call, specify the size of the buffer area to hold the message
data that you retrieve. You decide how large this should be in three ways:
1. You might already know what length of messages to expect from this program. If so, specify a buffer

of this size.

134 IBM MQ: Programming

However, you can use the MQGMO_ACCEPT_TRUNCATED_MSG option in the MQGMO structure if
you want the MQGET call to complete even if the message is too large for the buffer. In this case:
v The buffer is filled with as much of the message as it can hold
v The call returns a warning completion code
v The message is removed from the queue (discarding the remainder of the message), or the browse

cursor is advanced (if you are browsing the queue)
v The real length of the message is returned in DataLength

Without this option, the call still completes with a warning, but it does not remove the message from
the queue (or advance the browse cursor).

2. Estimate a size for the buffer (or even specify a size of zero bytes) and do not use the
MQGMO_ACCEPT_TRUNCATED_MSG option. If the MQGET call fails (for example, because the
buffer is too small), the length of the message is returned in the DataLength parameter of the call. (The
buffer is still filled with as much of the message as it can hold, but the processing of the call is not
completed.) Store the MsgId of this message, then repeat the MQGET call, specifying a buffer area of
the correct size, and the MsgId that you noted from the first call.
If your program is serving a queue that is also being served by other programs, one of those other
programs might remove the message that you want before your program can issue another MQGET
call. Your program could waste time searching for a message that no longer exists. To avoid this, first
browse the queue until you find the message that you want, specifying a BufferLength of zero and
using the MQGMO_ACCEPT_TRUNCATED_MSG option. This positions the browse cursor under the
message that you want. You can then retrieve the message by calling MQGET again, specifying the
MQGMO_MSG_UNDER_CURSOR option. If another program removes the message between your
browse and removal calls, your second MQGET fails immediately (without searching the whole
queue), because there is no message under your browse cursor.

3. The MaxMsgLength queue attribute determines the maximum length of messages accepted for that
queue; the MaxMsgLength queue manager attribute determines the maximum length of messages
accepted for that queue manager. If you do not know what length of message to expect, you can
inquire about the MaxMsgLength attribute (using the MQINQ call), then specify a buffer of this size.
Try to make the buffer size as close as possible to the actual message size to avoid reduced
performance.
For further information about the MaxMsgLength attribute, see “Increasing the maximum message
length” on page 155.

The order in which messages are retrieved from a queue:

You can control the order in which you retrieve messages from a queue. This section looks at the options.

Developing applications 135

Priority:

A program can assign a priority to a message when it puts the message on a queue (see “Message
priorities” on page 12). Messages of equal priority are stored in a queue in order of arrival, not the order
in which they are committed.

The queue manager maintains queues either in strict FIFO (first in, first out) sequence, or in FIFO within
priority sequence. This depends on the setting of the MsgDeliverySequence attribute of the queue. When a
message arrives on a queue, it is inserted immediately following the last message that has the same
priority.

Programs can either get the first message from a queue, or they can get a particular message from a
queue, ignoring the priority of those messages. For example, a program might want to process the reply
to a particular message that it sent earlier. For more information, see “Getting a particular message” on
page 148.

If an application puts a sequence of messages on a queue, another application can retrieve those
messages in the same order that they were put, provided:
v The messages all have the same priority
v The messages were all put within the same unit of work, or all put outside a unit of work
v The queue is local to the putting application

If these conditions are not met, and the applications depend on the messages being retrieved in a certain
order, the applications must either include sequencing information in the message data, or establish a
means of acknowledging receipt of a message before the next one is sent.

z/OS

On IBM MQ for z/OS, you can use the queue attribute, IndexType, to increase the speed of

MQGET operations on the queue. For more information, see “Type of index” on page 154.

Logical and physical ordering:

Messages on queues can occur (within each priority level) in physical or logical order.

Physical order is the order in which messages arrive on a queue. Logical order is when all of the
messages and segments within a group are in their logical sequence, next to each other, in the position
determined by the physical position of the first item belonging to the group.

For a description of groups, messages, and segments, see “Message groups” on page 30. These physical
and logical orders can differ because:
v Groups can arrive at a destination at similar times from different applications, therefore losing any

distinct physical order.
v Even within a single group, messages can get out of order because of rerouting or delay of some of the

messages in the group.

For example, the logical order might look like Figure Figure 14 on page 137:

136 IBM MQ: Programming

These messages would occur in the following logical order on a queue:
1. Message A (not in a group)
2. Logical message 1 of group Y
3. Logical message 2 of group Y
4. Segment 1 of (last) logical message 3 of group Y
5. (Last) segment 2 of (last) logical message 3 of group Y
6. Logical message 1 of group Z
7. (Last) logical message 2 of group Z
8. Message B (not in a group)

The physical order, however, might be entirely different. The physical position of the first item within
each group determines the logical position of the whole group. For example, if groups Y and Z arrived at
similar times, and message 2 of group Z overtook message 1 of the same group, the physical order would
look like Figure Figure 15 on page 138:

A

Y

Z

B

Y1

Y2

Y3 (last)

Z1

Z2 (last)

Group Message Segment

Y3.1

Y3.2

Figure 14. Logical order on a queue

Developing applications 137

These messages occur in the following physical order on the queue:
1. Message A (not in a group)
2. Logical message 1 of group Y
3. Logical message 2 of group Z
4. Logical message 2 of group Y
5. Segment 1 of (last) logical message 3 of group Y
6. (Last) segment 2 of (last) logical message 3 of group Y
7. Logical message 1 of group Z
8. Message B (not in a group)

Note: On IBM MQ for z/OS, the physical order of messages on the queue is not guaranteed if the queue
is indexed by GROUPID.

When getting messages, you can specify MQGMO_LOGICAL_ORDER to retrieve messages in logical
order rather than physical order.

If you issue an MQGET call with MQGMO_BROWSE_FIRST and MQGMO_LOGICAL_ORDER,
subsequent MQGET calls with MQGMO_BROWSE_NEXT must also specify
MQGMO_LOGICAL_ORDER. Conversely, if the MQGET with MQGMO_BROWSE_FIRST does not
specify MQGMO_LOGICAL_ORDER, neither must the following MQGETs with
MQGMO_BROWSE_NEXT.

A

Y

Z

Y

Z

B

Y1

Z2 (last)

Y2

Y3 (last)

Z1

Group Message Segment

Y3.1

Y3.2

Figure 15. Physical order on a queue

138 IBM MQ: Programming

The group and segment information that the queue manager retains for MQGET calls that browse
messages on the queue is separate from the group and segment information that the queue manager
retains for MQGET calls that remove messages from the queue. When you specify
MQGMO_BROWSE_FIRST, the queue manager ignores the group and segment information for browsing,
and scans the queue as though there were no current group and no current logical message.

Note: Do not use an MQGET call to browse beyond the end of a message group (or logical message not in
a group) without specifying MQGMO_LOGICAL_ORDER. For example, if the last message in the group
precedes the first message in the group on the queue, using MQGMO_BROWSE_NEXT to browse beyond
the end of the group, specifying MQMO_MATCH_MSG_SEQ_NUMBER with MsgSeqNumber set to 1 (to
find the first message of the next group) returns again the first message in the group already browsed.
This could happen immediately, or a number of MQGET calls later (if there are intervening groups).

Avoid the possibility of an infinite loop by opening the queue twice for browse:
v Use the first handle to browse only the first message in each group.
v Use the second handle to browse only the messages within a specific group.
v Use the MQMO_* options to move the second browse cursor to the position of the first browse cursor,

before browsing the messages in the group.
v Do not use the MQGMO_BROWSE_NEXT browse beyond the end of a group.

For further information about this, see MQGET, MQMD, and Rules for validating MQI options.

For most applications you will probably choose either logical or physical ordering when browsing.
However, if you want to switch between these modes, remember that when you first issue a browse with
MQGMO_LOGICAL_ORDER, your position within the logical sequence is established.

If the first item within the group is not present at this time, the group that you are in is not considered to
be part of the logical sequence.

Once the browse cursor is within a group, it can continue within the same group, even if the first
message is removed. Initially though, you can never move into a group using
MQGMO_LOGICAL_ORDER where the first item is not present.

MQPMO_LOGICAL_ORDER
The MQPMO option tells the queue manager how the application puts messages in groups and
segments of logical messages. It can be specified only on the MQPUT call; it is not valid on the
MQPUT1 call.

If MQPMO_LOGICAL_ORDER is specified, it indicates that the application uses successive
MQPUT calls to:
1. Put the segments in each logical message in the order of increasing segment offset, starting

from 0, with no gaps.
2. Put all the segments in one logical message before putting the segments in the next logical

message.
3. Put the logical messages in each message group in the order of increasing message sequence

number, starting from 1, with no gaps. IBM MQ increments the message sequence number
automatically.

4. Put all the logical messages in one message group before putting logical messages in the next
message group.

Because the application has told the queue manager how it puts messages in groups and
segments of logical messages, the application does not have to maintain and update the group
and segment information about each MQPUT call, because the queue manager maintains and
updates this information. Specifically, it means that the application does not need to set the
GroupId, MsgSeqNumber, and Offset fields in MQMD, because the queue manager sets these fields
to the appropriate values. The application must only set the MsgFlags field in MQMD, to indicate

Developing applications 139

when messages belong to groups or are segments of logical messages, and to indicate the last
message in a group or last segment of a logical message.

After a message group or logical message has been started, subsequent MQPUT calls must
specify the appropriate MQMF_* flags in MsgFlags in MQMD. If the application tries to put a
message that is not in a group when there is an unterminated message group, or put a message
that is not a segment when there is an unterminated logical message, the call fails with reason
code MQRC_INCOMPLETE_GROUP or MQRC_INCOMPLETE_MSG, as appropriate. However,
the queue manager retains the information about the current message group or current logical
message, and the application can terminate them by sending a message (possibly with no
application message data) specifying MQMF_LAST_MSG_IN_GROUP or
MQMF_LAST_SEGMENT as appropriate, before reissuing the MQPUT call to put the message
that is not in the group or not a segment.

Figure 15 on page 138shows the combinations of options and flags that are valid, and the values
of the GroupId, MsgSeqNumber, and Offset fields that the queue manager uses in each case.
Combinations of options and flags that are not shown in the table are not valid. The columns in
the table have the following meanings; Either means Yes or No:

LOG ORD
Whether the MQPMO_LOGICAL_ORDER option is specified on the call.

MIG Whether the MQMF_MSG_IN_GROUP or MQMF_LAST_MSG_IN_GROUP option is
specified on the call.

SEG Whether the MQMF_SEGMENT or MQMF_LAST_SEGMENT option is specified on the
call.

SEG OK
Whether the MQMF_SEGMENTATION_ALLOWED option is specified on the call.

Cur grp
Whether a current message group exists before the call.

Cur log msg
Whether a current logical message exists before the call.

Other columns
Show the values that the queue manager uses. Previous denotes the value used for the
field in the previous message for the queue handle.

Table 18. MQPUT options relating to messages in groups and segments of logical messages

Options
you

specify

Options
you

specify

Options
you

specify

Options
you

specify

Group
and
log-
msg

status
before

call

Group
and
log-
msg

status
before

call

Values the queue
manager uses

Values the queue
manager uses

Values the queue
manager uses

LOG
ORD

MIG SEG SEG
OK

Cur
grp

Cur log
msg

GroupId MsgSeqNumber Offset

Yes No No No No No MQGI_NONE 1 0

Yes No No Yes No No New group id 1 0

Yes No Yes Either No No New group id 1 0

Yes No Yes Either No Yes Previous group id 1 Previous offset +
previous segment

length

Yes Yes Either Either No No New group id 1 0

140 IBM MQ: Programming

Table 18. MQPUT options relating to messages in groups and segments of logical messages (continued)

Options
you

specify

Options
you

specify

Options
you

specify

Options
you

specify

Group
and
log-
msg

status
before

call

Group
and
log-
msg

status
before

call

Values the queue
manager uses

Values the queue
manager uses

Values the queue
manager uses

Yes Yes Either Either Yes No Previous group id Previous sequence
number + 1

0

Yes Yes Yes Either Yes Yes Previous group id Previous sequence
number

Previous offset +
previous segment

length

No No No No Either Either MQGI_NONE 1 0

No No No Yes Either Either New group id if
MQGI_NONE, else

value in field

1 0

No No Yes Either Either Either New group id if
MQGI_NONE, else

value in field

1 Value in field

No Yes No Either Either Either New group id if
MQGI_NONE, else

value in field

Value in field 0

No Yes Yes Either Either Either New group id if
MQGI_NONE, else

value in field

Value in field Value in field

Note:

v MQPMO_LOGICAL_ORDER is not valid on the MQPUT1 call.
v For the MsgId field, the queue manager generates a new message identifier if

MQPMO_NEW_MSG_ID or MQMI_NONE is specified, and uses the value in the field
otherwise.

v For the CorrelId field, the queue manager generates a new correlation identifier if
MQPMO_NEW_CORREL_ID is specified, and uses the value in the field otherwise.

When you specify MQPMO_LOGICAL_ORDER, the queue manager requires that all messages in
a group and segments in a logical message are put with the same value in the Persistence field
in MQMD, that is, all must be persistent, or all must be nonpersistent. If this condition is not
satisfied, the MQPUT call fails with reason code MQRC_INCONSISTENT_PERSISTENCE.

The MQPMO_LOGICAL_ORDER option affects units of work as follows:
v If the first physical message in a group or logical message is put within a unit of work, all the

other physical messages in the group or logical message must be put within a unit of work, if
the same queue handle is used. However, they do not need to be put within the same unit of
work, allowing a message group or logical message that consists of many physical messages to
be split across two or more consecutive units of work for the queue handle.

v If the first physical message in a group or logical message is not put within a unit of work,
none of the other physical messages in the group or logical message can be put within a unit
of work, if the same queue handle is used.

If these conditions are not satisfied, the MQPUT call fails with reason code
MQRC_INCONSISTENT_UOW.

Developing applications 141

When MQPMO_LOGICAL_ORDER is specified, the MQMD supplied on the MQPUT call must
not be less than MQMD_VERSION_2. If this condition is not satisfied, the call fails with reason
code MQRC_WRONG_MD_VERSION.

If MQPMO_LOGICAL_ORDER is not specified, messages in groups and segments of logical
messages can be put in any order, and it is not necessary to put complete message groups or
complete logical messages. It is the responsibility of the application to ensure that the GroupId,
MsgSeqNumber, Offset, and MsgFlags fields have appropriate values.

Use this technique to restart a message group or logical message in the middle, after a system
failure has occurred. When the system restarts, the application can set the GroupId, MsgSeqNumber,
Offset, MsgFlags, and Persistence fields to the appropriate values, and then issue the MQPUT
call with MQPMO_SYNCPOINT or MQPMO_NO_SYNCPOINT set as required, but without
specifying MQPMO_LOGICAL_ORDER. If this call is successful, the queue manager retains the
group and segment information, and subsequent MQPUT calls using that queue handle can
specify MQPMO_LOGICAL_ORDER as normal.

The group and segment information that the queue manager retains for the MQPUT call is
separate from the group and segment information that it retains for the MQGET call.

For any given queue handle, the application can mix MQPUT calls which specify
MQPMO_LOGICAL_ORDER with MQPUT calls that do not, but note the following points:
v If MQPMO_LOGICAL_ORDER is not specified, each successful MQPUT call causes the queue

manager to set the group and segment information for the queue handle to the values specified
by the application, replacing the existing group and segment information retained by the queue
manager for the queue handle.

v If MQPMO_LOGICAL_ORDER is not specified, the call does not fail if there is a current
message group or logical message; the call might succeed with an MQCC_WARNING
completion code. Table 19 shows the various cases that can arise. In these cases, if the
completion code is not MQCC_OK, the reason code is one of the following (as appropriate):
– MQRC_INCOMPLETE_GROUP
– MQRC_INCOMPLETE_MSG
– MQRC_INCONSISTENT_PERSISTENCE
– MQRC_INCONSISTENT_UOW

Note: The queue manager does not check the group and segment information for the MQPUT1
call.

Table 19. Outcome when MQPUT or MQCLOSE call is not consistent with group and segment information

Current call is Previous call was MQPUT with
MQPMO_LOGICAL_ORDER

Previous call was MQPUT without
MQPMO_LOGICAL_ORDER

MQPUT with
MQPMO_LOGICAL_ORDER

MQCC_FAILED MQCC_FAILED

MQPUT without
MQPMO_LOGICAL_ORDER

MQCC_WARNING MQCC_OK

MQCLOSE with an unterminated
group or logical message

MQCC_WARNING MQCC_OK

For applications that put messages and segments in logical order, specify
MQPMO_LOGICAL_ORDER, as it is the simplest option to use. This option relieves the
application of the need to manage the group and segment information, because the queue
manager manages that information. However, specialized applications might need more control
than that provided by the MQPMO_LOGICAL_ORDER option, which can be achieved by not
specifying that option; if you do so, you must ensure that the GroupId, MsgSeqNumber, Offset, and
MsgFlags fields in MQMD are set correctly, before each MQPUT or MQPUT1 call.

142 IBM MQ: Programming

For example, an application that wants to forward physical messages that it receives, without
regard for whether those messages are in groups or segments of logical messages, must not
specify MQPMO_LOGICAL_ORDER, for two reasons:
v If the messages are retrieved and put in order, specifying MQPMO_LOGICAL_ORDER assigns

a new group identifier to the messages, which might make it difficult or impossible for the
originator of the messages to correlate any reply or report messages that result from the
message group.

v In a complex network with multiple paths between sending and receiving queue managers, the
physical messages might arrive out of order. By not specifying MQPMO_LOGICAL_ORDER
and MQGMO_LOGICAL_ORDER on the MQGET call, the forwarding application can retrieve
and forward each physical message as soon as it arrives, without waiting for the next one in
logical order to arrive.

Applications that generate report messages for messages in groups or segments of logical
messages must also not specify MQPMO_LOGICAL_ORDER when putting the report message.

MQPMO_LOGICAL_ORDER can be specified with any of the other MQPMO_* options.

Putting Logically Ordered Groups to a Clustered Queue (MQOO_BIND_ON_GROUP)

The MQOO_BIND_ON_OPEN option ensures that all messages from this application, and therefore all
groups, are routed to a single instance. This has the drawback that the application traffic is not load
balanced across multiple instances of a cluster queue. In order to enable workload balancing while
keeping groups of messages intact, you must set the following options:
v The MQPUT call must specify MQPMO_LOGICAL_ORDER
v The MQOPEN call must specify one of the following two options:

– MQOO_BIND_ON_GROUP
– MQOO_BIND_AS_Q_DEF, and the queue definition must specify DEFBIND(GROUP)

Workload balancing is then driven between groups of messages without requiring an MQCLOSE and
MQOPEN of the queue. Between groups means that MQMF_MSG_IN_GROUP is set in the MQMD(v2) or
MQMDE, and there is no partially complete group in progress. When a group is in progress, the resolved
queue manager and queue name in the object handle are reused.

If the previous message was MQPMO_LOGICAL_ORDER and/or MQMF_MSG_IN_GROUP was set but
the current message is not part of the group, then the PUT call fails with MQRC_INCOMPLETE_GROUP.

If an individual MQPUT does not specify MQPMO_LOGICAL_ORDER, and no current group is active,
then workload balancing is driven for that message (as if the MQOPEN call has specified
MQOO_BIND_NOT_FIXED).

No reallocation takes place for messages bound to a destination using MQOO_BIND_ON_GROUP. For
more information on reallocation, see “Message groups” on page 30.

Developing applications 143

Grouping logical messages:

There are two main reasons for using logical messages in a group:
v You might need to process the messages in a particular order.
v You might need to process each message in a group in a related way.

In either case, retrieve the entire group with the same getting application instance.

For example, assume that the group consists of four logical messages. The putting application looks like
this:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP

MQCMIT

The getting application specifies the MQGMO_ALL_MSGS_AVAILABLE option for the first message in
the group. This ensures that processing does not start until all the messages within the group have
arrived. The MQGMO_ALL_MSGS_AVAILABLE option is ignored for subsequent messages within the
group.

When the first logical message of the group is retrieved, you can use MQGMO_LOGICAL_ORDER to
ensure that the remaining logical messages of the group are retrieved in order.

So, the getting application looks like this:
/* Wait for the first message in a group, or a message not in a group */
GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT

| MQGMO_ALL_MSGS_AVAILABLE | MQGMO_LOGICAL_ORDER
do while (GroupStatus == MQGS_MSG_IN_GROUP)

MQGET
/* Process each remaining message in the group */
...

MQCMIT

For further examples of grouping messages, see “Application segmentation of logical messages” on page
158 and “Putting and getting a group that spans units of work” on page 145.

For information on allowing an application to request that a group of messages are all allocated to the
same destination instance for cluster queues, see DefBind.

144 IBM MQ: Programming

Putting and getting a group that spans units of work:

In the previous case, messages or segments cannot start to leave the node (if its destination is remote) or
start to be retrieved until the whole group has been put and the unit of work is committed. This might
not be what you want if it takes a long time to put the whole group, or if queue space is limited on the
node. To overcome this, put the group in several units of work.

If the group is put within multiple units of work, it is possible for some of the group to commit even
when the putting application fails. The application must therefore save status information, committed
with each unit of work, which it can use after a restart to resume an incomplete group. The simplest
place to record this information is in a STATUS queue. If a complete group has been successfully put, the
STATUS queue is empty.

If segmentation is involved, the logic is similar. In this case, the StatusInfo must include the Offset.

Here is an example of putting the group in several units of work:
PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

/* First UOW */

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

/* Next and subsequent UOWs */
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

/* Last UOW */
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
MQCMIT

If all the units of work have been committed, the entire group has been put successfully, and the STATUS
queue is empty. If not, the group must be resumed at the point indicated by the status information.
MQPMO_LOGICAL_ORDER cannot be used for the first put, but can thereafter.

Restart processing looks like this:
MQGET (StatusInfo from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (Reason == MQRC_NO_MSG_AVAILABLE)

/* Proceed to normal processing */
...

else
/* Group was terminated prematurely */
Set GroupId, MsgSeqNumber in MQMD to values from Status message
PMO.Options = MQPMO_SYNCPOINT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

/* Now normal processing is resumed.
Assume this is not the last message */

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

Developing applications 145

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP
StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT
MQCMIT

From the getting application, you might want to start processing the messages in a group before the
whole group has arrived. This improves response times on the messages within the group, and also
means that storage is not required for the entire group. In order to realize the benefits, use several units
of work for each group of messages. For recovery reasons, you must retrieve each message within a unit
of work.

As with the corresponding putting application, this requires status information to be recorded somewhere
automatically as each unit of work is committed. Again, the simplest place to record this information is
on a STATUS queue. If a complete group has been successfully processed, the STATUS queue is empty.

Note: For intermediate units of work, you can avoid the MQGET calls from the STATUS queue by
specifying that each MQPUT to the status queue is a segment of a message (that is, by setting the
MQMF_SEGMENT flag), instead of putting a complete new message for each unit of work. In the last
unit of work, a final segment is put to the status queue specifying MQMF_LAST_SEGMENT, and then
the status information is cleared with an MQGET specifying MQGMO_COMPLETE_MSG.

During restart processing, instead of using a single MQGET to get a possible status message, browse the
status queue with MQGMO_LOGICAL_ORDER until you reach the last segment (that is, until no further
segments are returned). In the first unit of work after restart, also specify the offset explicitly when
putting the status segment.

In the following example, we consider only messages within a group, assuming that the application's
buffer is always large enough to hold the entire message, whether or not the message has been
segmented. MQGMO_COMPLETE_MSG is therefore specified on each MQGET. The same principles
apply if segmentation is involved (in this case, the StatusInfo must include the Offset).

For simplicity, we assume that a maximum of 4 messages are retrieved within a single UOW:
msgs = 0 /* Counts messages retrieved within UOW */
/* Should be no status message at this point */

/* Retrieve remaining messages in the group */
do while (GroupStatus == MQGS_MSG_IN_GROUP)

/* Process up to 4 messages in the group */
GMO.Options = MQGMO_SYNCPOINT | MQGMO_WAIT

| MQGMO_LOGICAL_ORDER
do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))

MQGET
msgs = msgs + 1
/* Process this message */
...

/* end while

/* Have retrieved last message or 4 messages */
/* Update status message if not last in group */
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (GroupStatus == MQGS_MSG_IN_GROUP)

StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

MQCMIT
msgs = 0

/* end while

146 IBM MQ: Programming

if (msgs > 0)
/* Come here if there was only 1 message in the group */
MQCMIT

If all the units of work have been committed, the entire group has been retrieved successfully, and the
STATUS queue is empty. If not, the group must be resumed at the point indicated by the status
information. MQGMO_LOGICAL_ORDER cannot be used for the first retrieve, but can thereafter.

Restart processing looks like this:
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (Reason == MQRC_NO_MSG_AVAILABLE)

/* Proceed to normal processing */
...

else
/* Group was terminated prematurely */
/* The next message on the group must be retrieved by matching

the sequence number and group id with those retrieved from the
status information. */

GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT
MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID | MQMO_MATCH_MSG_SEQ_NUMBER,

MQMD.GroupId = value from Status message,
MQMD.MsgSeqNumber = value from Status message plus 1

msgs = 1
/* Process this message */
...

/* Now normal processing is resumed */
/* Retrieve remaining messages in the group */
do while (GroupStatus == MQGS_MSG_IN_GROUP)

/* Process up to 4 messages in the group */
GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT | MQGMO_WAIT

| MQGMO_LOGICAL_ORDER
do while ((GroupStatus == MQGS_MSG_IN_GROUP) && (msgs < 4))

MQGET
msgs = msgs + 1
/* Process this message */
...

/* Have retrieved last message or 4 messages */
/* Update status message if not last in group */
MQGET (from STATUS queue) GMO.Options = MQGMO_SYNCPOINT
if (GroupStatus == MQGS_MSG_IN_GROUP)

StatusInfo = GroupId,MsgSeqNumber from MQMD
MQPUT (StatusInfo to STATUS queue) PMO.Options = MQPMO_SYNCPOINT

MQCMIT
msgs = 0

Developing applications 147

Getting a particular message:

There are a number of ways of getting a particular message from a queue. These are: selecting on the
MsgId and CorrelId, selecting on the GroupId, MsgSeqNumber and Offset, and selecting on the
MsgToken. You can also use a selection string when you open the queue.

To get a particular message from a queue, use the MsgId and CorrelId fields of the MQMD structure.
However, applications can explicitly set these fields, so the values that you specify might not identify a
unique message. Table 20 shows which message is retrieved for the possible settings of these fields. These
fields are ignored on input if you specify MQGMO_MSG_UNDER_CURSOR in the GetMsgOpts parameter
of the MQGET call.

Table 20. Using message and correlation identifiers

To retrieve ... MsgId CorrelId

First message in the queue MQMI_NONE MQCI_NONE

First message that matches MsgId Nonzero MQCI_NONE

First message that matches CorrelId MQMI_NONE Nonzero

First message that matches both MsgId and CorrelId Nonzero Nonzero

In each case, first means the first message that satisfies the selection criteria (unless
MQGMO_BROWSE_NEXT is specified, when it means the next message in the sequence satisfying the
selection criteria).

On return, the MQGET call sets the MsgId and CorrelId fields to the message and correlation identifiers
of the message returned, if any.

If you set the Version field of the MQMD structure to 2, you can use the GroupId, MsgSeqNumber, and
Offset fields. Table 21 shows which message is retrieved for the possible settings of these fields.

Table 21. Using the group identifier

To retrieve ... Match options

First message in the queue MQMO_NONE

First message that matches MsgId MQMO_MATCH_MSG_ID

First message that matches CorrelId MQMO_MATCH_CORREL_ID

First message that matches GroupId MQMO_MATCH_GROUP_ID

First message that matches MsgSeqNumber MQMO_MATCH_MSG_SEQ_NUMBER

First message that matches MsgToken MQMO_MATCH_MSG_TOKEN

First message that matches Offset MQMO_MATCH_OFFSET

Notes:

1. MQMO_MATCH_XXX implies that the XXX field in the MQMD structure is set to the value to be
matched.

2. The MQMO flags can be used in combination. For example, MQMO_MATCH_GROUP_ID,
MQMO_MATCH_MSG_SEQ_NUMBER, and MQMO_MATCH_OFFSET can be used together to give
the segment identified by the GroupId, MsgSeqNumber, and Offset fields.

3. If you specify MQGMO_LOGICAL_ORDER, the message that you are trying to retrieve is affected
because the option depends on state information controlled for the queue handle. For information
about this, see “Logical and physical ordering” on page 136 and Options.

148 IBM MQ: Programming

The MQGET call usually retrieves the first message from a queue. If you specify a particular message
when you use the MQGET call, the queue manager must search the queue until it finds that message.
This can affect the performance of your application.

If you are using Version 2 or later of the MQGMO structure and do not specify the
MQMO_MATCH_MSG_ID or MQMO_MATCH_CORREL_ID flags, you do not need to reset the MsgId or
CorrelId fields between MQGETs.

z/OS

On IBM MQ for z/OS, the queue attribute IndexType can be used to increase the speed of

MQGET operations on the queue. For more information, see “Type of index” on page 154.

You can get a specific message from a queue by specifying its MsgToken and the MatchOption
MQMO_MATCH_MSG_TOKEN in the MQGMO structure. The MsgToken is returned by the MQPUT call
that originally put that message on the queue, or by previous MQGET operations and remains constant
unless the queue manager is restarted.

If you are interested in only a subset of messages on the queue, you can specify which messages you
want to process by using a selection string with the MQOPEN or MQSUB call. MQGET then retrieves the
next message that satisfies that selection string. For more information about selection strings, see
“Selectors” on page 17.

Improving performance of non-persistent messages:

When a client requires a message from a server, it sends a request to the server. It sends a separate
request for each of the messages it consumes. To improve the performance of a client consuming non
persistent messages by avoiding having to send these request messages, a client can be configured to use
read ahead. Read ahead allows messages to be sent to a client without an application having to request
them.

When read ahead is enabled, messages are sent to a memory buffer on the client called the read ahead
buffer. The client will have a read ahead buffer for each queue it has open with read ahead enabled. The
messages in the read ahead buffer are not persisted. The client periodically updates the server with
information about the amount of data it has consumed.

When you call MQOPEN with MQOO_READ_AHEAD, the IBM MQ client only enables read-ahead if
certain conditions are met. These conditions include:
v Both the client and remote queue manager must be at WebSphere MQ Version 7 or later.
v The client application must be compiled and linked against the threaded IBM MQ MQI client libraries.
v The client channel must be using TCP/IP protocol
v The channel must have a non-zero SharingConversations (SHARECNV) setting in both the client and

server channel definitions.

Using read ahead can improve performance when consuming non persistent messages from a client
application. This performance improvement is available to both MQI and JMS applications. Client
applications using MQGET or asynchronous consumption will benefit from the performance
improvements when consuming non-persistent messages.

Not all client application designs are suited to using read ahead as not all options are supported for use
with read ahead and some options are required to be consistent between MQGET calls when read ahead
is enabled. If a client alters its selection criteria between MQGET calls, messages being stored in the read
ahead buffer will remain stranded in the client read ahead buffer.

Developing applications 149

If a backlog of stranded messages with the previous selection criteria are no longer required, a
configurable purge interval can be set on the client to automatically purge these messages from the client.
The purge interval is one of a group of read ahead tuning options determined by the client. It is possible
to tune these options to meet your requirements.

If a client application is restarted, messages in the read ahead buffer can be lost. Conversely, a message
that has been moved to a read ahead buffer could then be deleted from the underlying queue; this does
not result in it being removed from the buffer, so an MQGET call using read ahead can return a message
that no longer exists.

Read ahead is only performed for client bindings. The attribute is ignored for all other bindings.

Read ahead has no effect on triggering. No trigger message is generated when a message is read ahead
by the client. Read ahead does not generate accounting and statistics information when it is enabled.

Using read ahead with publish subscribe messaging

When a subscribing application specifies a destination queue to which publications are sent, the
DEFREADA value of the specified queue is used as the default read ahead value.

When a subscribing application requests that IBM MQ manages the destination to which publications are
sent, a managed queue is created as a dynamic queue based upon a predefined model queue. It is the
DEFREADA value of the model queue that is used as the default read ahead value. The default model
queues SYSTEM.DURABLE.PUBLICATIONS.MODEL or
SYSTEM.NONDURABLE.PUBLICATIONS.MODEL are used unless a model queue is defined for this or a
parent topic.
Related concepts:
“Tuning performance for nonpersistent messages on AIX” on page 153
If you are using AIX V5.3 or later, consider setting your tuning parameter to use full performance for
nonpersistent messages.
Related tasks:
“Enabling and disabling read ahead” on page 152
By default read ahead is disabled. You can enable read ahead at queue or application level.
Related reference:
“MQGET options and read ahead”
Not all MQGET options are supported when read ahead is enabled; some options are required to be
consistent between MQGET calls.

MQGET options and read ahead:

Not all MQGET options are supported when read ahead is enabled; some options are required to be
consistent between MQGET calls.

When you call MQOPEN with MQOO_READ_AHEAD, the IBM MQ client only enables read-ahead if
certain conditions are met. These conditions include:
v Both the client and remote queue manager must be at WebSphere MQ Version 7 or later.
v The client application must be compiled and linked against the threaded IBM MQ MQI client libraries.
v The client channel must be using TCP/IP protocol
v The channel must have a non-zero SharingConversations (SHARECNV) setting in both the client and

server channel definitions.

The following table indicates which options are supported for use with read ahead and whether they can
be altered between MQGET calls.

150 IBM MQ: Programming

Table 22. MQGET options and read ahead
Permitted when read ahead is enabled and can
be altered between MQGET calls 5

Permitted when read ahead is enabled but
cannot be altered between MQGET calls 1

MQGET Options that are not permitted
when read ahead is enabled 2

MQGET MQMD values MsgId 3

CorrelId 3
Encoding
CodedCharSetId

MQGET MQGMO
Options

v MQGMO_NO_WAIT

v MQGMO_BROWSE_MESSAGE
_UNDER_CURSOR

v MQGMO_BROWSE_FIRST

v MQGMO_BROWSE_NEXT

v MQGMO_FAIL_IF_QUIESCING

v MQGMO_SYNCPOINT_IF _PERSISTENT

v MQGMO_NO_SYNCPOINT

v MQGMO_ACCEPT_TRUNCATED _MSG

v MQGMO_CONVERT

v MQGMO_SET_SIGNAL

v MQGMO_SYNCPOINT

v MQGMO_MARK_SKIP _BACKOUT

v MQGMO_MSG_UNDER _CURSOR 4

v MQGMO_LOCK

v MQGMO_UNLOCK

v MQGMO_LOGICAL_ORDER

v MQGMO_COMPLETE_MSG

v MQGMO_ALL_MSGS_AVAILABLE

v MQGMO_ALL_SEGMENTS_ AVAILABLE

Notes:

1. If these options are altered between MQGET calls, an MQRC_OPTIONS_CHANGED reason code is
returned.

2. If these options are specified on the first MQGET call then read ahead is disabled. If these options are
specified on a subsequent MQGET call a reason code MQRC_OPTIONS_ERROR is returned.

3. If a client application alters MsgId and CorrelId values between MQGET calls, messages with the
previous values might already have been sent to the client and will remain in the client read ahead
buffer until consumed (or automatically purged).

4. MQGMO_MSG_UNDER_CURSOR is not possible with read ahead. Read ahead is disabled when both
MQOO_BROWSE and one of the MQOO_INPUT_SHARED or MQOO_INPUT_EXCLUSIVE options
are specified when opening the queue.

5. When read ahead is enabled, the first MQGET determines whether messages are to be browsed or got
from a queue. If the client application then uses MQGET with changed options, such as attempting to
browse following an initial get, or attempting to get following an initial browse, an
MQRC_OPTIONS_CHANGED reason code is returned.

If a client alters its selection criteria between MQGET calls, messages being stored in the read ahead
buffer that match the initial selection criteria are not consumed by the client application, and remain
stranded in the client read ahead buffer. In situations where the client read ahead buffer contains many
stranded messages, the benefits associated with read ahead are lost and a separate request to the server is
required for each message consumed. To determine whether read ahead is being used efficiently you can
use the connection status parameter, READA.

Read ahead can be inhibited when requested by an application due to incompatible options specified on
the first MQGET call. In this situation the connection status shows read ahead as being inhibited.

If, because of these restrictions on MQGET, you decide that a client application design is not suited to
read ahead, specify the MQOPEN option MQOO_READ_AHEAD_NO. Alternatively set the default read
ahead value of the queue being opened altered to either NO or DISABLED.

Developing applications 151

Enabling and disabling read ahead:

By default read ahead is disabled. You can enable read ahead at queue or application level.

About this task

When you call MQOPEN with MQOO_READ_AHEAD, the IBM MQ client only enables read-ahead if
certain conditions are met. These conditions include:
v Both the client and remote queue manager must be at WebSphere MQ Version 7 or later.
v The client application must be compiled and linked against the threaded IBM MQ MQI client libraries.
v The client channel must be using TCP/IP protocol
v The channel must have a non-zero SharingConversations (SHARECNV) setting in both the client and

server channel definitions.

To enable read ahead:
v To configure read ahead at the queue level set the queue attribute, DEFREADA to YES.
v To configure read ahead at the application level:

– to use read ahead wherever possible use the MQOO_READ_AHEAD option on the MQOPEN
function call. It is not possible for the client application to use read ahead if the DEFREADA queue
attribute has been set to DISABLED.

– to use read ahead only when read ahead is enabled on a queue, use the
MQOO_READ_AHEAD_AS_Q_DEF option on the MQOPEN function call.

If a client application design is not suited to read ahead you can disable it:
v at the queue level by setting the queue attribute, DEFREADA to NO if you do not want read ahead to

be used unless it is requested by a client application, or DISABLED if you do not want read ahead to
be used regardless of whether read ahead is required by a client application.

v at the application level by using the MQOO_NO_READ_AHEAD option on the MQOPEN function
call.

Two MQCLOSE options allow you to configure what happens to any messages that are being stored in
the read ahead buffer if the queue is closed.
v Use MQCO_IMMEDIATE to discard messages in the read ahead buffer.
v Use MQCO_QUIESCE to ensure that messages in the read ahead buffer are consumed by the

application before the queue is closed. When MQCLOSE with the MQCO_QUIESCE is issued and there
are messages remaining on the read ahead buffer, MQRC_READ_AHEAD_MSGS returns with
MQCC_WARNING.

152 IBM MQ: Programming

Tuning performance for nonpersistent messages on AIX:

If you are using AIX V5.3 or later, consider setting your tuning parameter to use full performance for
nonpersistent messages.

To set the tuning parameter so that it takes effect immediately, issue the following command as a root
user:
/usr/sbin/ioo -o j2_nPagesPerWriteBehindCluster=0

To set the tuning parameter so that it takes effect immediately and persists over reboots, issue the
following command as a root user:
/usr/sbin/ioo -p -o j2_nPagesPerWriteBehindCluster=0

Normally, nonpersistent messages are kept only in memory, but there are circumstances where AIX can
schedule nonpersistent messages to be written to disk. Messages scheduled to be written to disk are
unavailable for MQGET until the disk write completes. The suggested tuning command varies this
threshold; instead of scheduling messages to be written to disk when 16 kilobytes of data are queued, the
write-to-disk occurs only when real storage on the machine becomes close to full. This is a global
alteration and might affect other software components.

On AIX, when using multithreaded applications and especially when running on machines with multiple
processors, we strongly recommend setting AIXTHREAD_SCOPE=S in the mqm id .profile or setting
AIXTHREAD_SCOPE=S in the environment before starting the application, for better performance and
more solid scheduling. For example:
export AIXTHREAD_SCOPE=S

Setting AIXTHREAD_SCOPE=S means that user threads created with default attributes are placed into
system-wide contention scope. If a user thread is created with system-wide contention scope, it is bound
to a kernel thread and it is scheduled by the kernel. The underlying kernel thread is not shared with any
other user thread.

File descriptors

When running a multi-threaded process such as the agent process, you might reach the soft limit for file
descriptors. This limit gives you the IBM MQ reason code MQRC_UNEXPECTED_ERROR (2195) and, if there
are enough file descriptors, an IBM MQ FFST™™ file.

To avoid this problem, you can increase the process limit for the number of file descriptors. To do so,
alter the nofiles attribute in /etc/security/limits to 10,000 for the mqm user ID or in the default
stanza.

System Resource Limits

Set the system resource limit for data segment and stack segment to unlimited using the following
commands in a command prompt:
ulimit -d unlimited
ulimit -s unlimited

Developing applications 153

Type of index:

The queue attribute, IndexType, specifies the type of index that the queue manager maintains to increase
the speed of MQGET operations on the queue.

Note: Supported only on IBM MQ for z/OS.

You have five options:

Value Description

NONE No index is maintained. Use this when retrieving messages sequentially (see “Priority” on
page 136).

GROUPID An index of group identifiers is maintained. You must use this index type if you want logical
ordering of message groups (see “Logical and physical ordering” on page 136).

MSGID An index of message identifiers is maintained. Use this when retrieving messages using the
MsgId field as a selection criterion on the MQGET call (see “Getting a particular message” on
page 148).

MSGTOKEN An index of message tokens is maintained.
CORRELID An index of correlation identifiers is maintained. Use this when retrieving messages using

the CorrelId field as a selection criterion on the MQGET call (see “Getting a particular
message” on page 148).

Note:

1. If you are indexing using the MSGID option or CORRELID option, set the relative MsgId or CorrelId
parameters in the MQMD. It is not beneficial to set both.

2. Browse uses the index mechanism to find a message if a queue matches all the following conditions:
v It has index type MSGID, CORRELID, or GROUPID
v It is browsed with the same type of id
v It has messages of only one priority

3. Avoid queues (indexed by MsgId or CorrelId) containing thousands of messages because this affects
restart time. (This does not apply to nonpersistent messages as they are deleted at restart.)

4. MSGTOKEN is used to define queues managed by the z/OS workload manager.

For a full description of the IndexType attribute, see IndexType. For further information on the IndexType
attribute, see “Design considerations for IBM MQ for z/OS applications” on page 66.

Handling messages greater than 4 MB long:

Messages can be too large for the application, queue, or queue manager. Depending on the environment,
IBM MQ provides a number of ways of dealing with messages that are longer than 4 MB.

You can increase the MaxMsgLength attribute up to 100 MB on all IBM MQ systems at V6 or later. Set this
value to reflect the size of the messages using the queue. On IBM MQ systems other than IBM MQ for
z/OS, you can also:
1. Use segmented messages. (Messages can be segmented by either the application or the queue

manager.)
2. Use reference messages.

Each of these approaches is described in the remainder of this section.

154 IBM MQ: Programming

Increasing the maximum message length

The MaxMsgLength queue manager attribute defines the maximum length of a message that can be
handled by a queue manager. Similarly, the MaxMsgLength queue attribute is the maximum length of a
message that can be handled by a queue. The default maximum message length supported depends on
the environment in which you are working.

If you are handling large messages, you can alter these attributes independently. You can set the queue
manager attribute value in the range 32768 bytes through 100 MB; you can set the queue attribute value
in the range 0 through 100 MB.

After changing one or both of the MaxMsgLength attributes, restart your applications and channels to
ensure that the changes take effect.

When these changes are made, the message length must be less than or equal to both the queue and the
queue manager MaxMsgLength attributes. However, existing messages might be longer than either
attribute.

If the message is too big for the queue, MQRC_MSG_TOO_BIG_FOR_Q is returned. Similarly, if the
message is too big for the queue manager, MQRC_MSG_TOO_BIG_FOR_Q_MGR is returned.

This method of handling large messages is easy and convenient. However, consider the following factors
before using it:
v Uniformity among queue managers is reduced. The maximum size of message data is determined by

the MaxMsgLength for each queue (including transmission queues) on which the message will be put.
This value is often defaulted to the queue manager's MaxMsgLength, especially for transmission queues.
This makes it difficult to predict whether a message is too large when it is to travel to a remote queue
manager.

v Usage of system resources is increased. For example, applications need larger buffers, and on some
platforms, there might be increased usage of shared storage. Queue storage should be affected only if
actually required for larger messages.

v Channel batching is affected. A large message still counts as just one message towards the batch count
but needs longer to transmit, thereby increasing response times for other messages.

Message segmentation:

Use this information to learn about segmenting messages.

Note: Not supported in IBM MQ for z/OS or by applications using IBM MQ classes for JMS.

Increasing the maximum message length as explained in topic “Increasing the maximum message length”
has some negative implications. Also, it can still result in the message being too large for the queue or
queue manager. In these cases, you can segment a message. For information about segments, see
“Message groups” on page 30.

The next sections look at common uses for segmenting messages. For putting and destructively getting, it
is assumed that the MQPUT or MQGET calls always operate within a unit of work. Always consider
using this technique to reduce the possibility of incomplete groups being present in the network.
Single-phase commit by the queue manager is assumed, but other coordination techniques are equally
valid.

Also, in the getting applications, it is assumed that if multiple servers are processing the same queue,
each server executes similar code, so that one server never fails to find a message or segment that it
expects to be there (because it had specified MQGMO_ALL_MSGS_AVAILABLE or
MQGMO_ALL_SEGMENTS_AVAILABLE earlier).

Developing applications 155

Putting and getting a segmented message that spans units of work

You can put and get a segmented message that spans a unit of work in a similar way to “Putting and
getting a group that spans units of work” on page 145.

You cannot, however, put or get segmented messages in a global unit of work.

Segmentation and reassembly by queue manager:

This is the simplest scenario, in which one application puts a message to be retrieved by another. The
message might be large: not too large for either the putting or the getting application to handle in a
single buffer, but too large for the queue manager or a queue on which the message is to be put.

The only changes necessary for these applications are for the putting application to authorize the queue
manager to perform segmentation if necessary:

PMO.Options = (existing options)
MD.MsgFlags = MQMF_SEGMENTATION_ALLOWED
memcpy(MD.GroupId, MQGI_NONE, MQ_GROUP_ID_LENGTH)

MQPUT

and for the getting application to ask the queue manager to reassemble the message if it has been
segmented:

GMO.Options = MQGMO_COMPLETE_MSG | (existing options)
MQGET

In this simplest scenario, the application must reset the GroupId field to MQGI_NONE before the
MQPUT call, so that the queue manager can generate a unique group identifier for each message. If this
is not done, unrelated messages can have the same group identifier, which might subsequently lead to
incorrect processing.

The application buffer must be large enough to contain the reassembled message (unless you include the
MQGMO_ACCEPT_TRUNCATED_MSG option).

If the MAXMSGLEN attribute of a queue is to be modified to accommodate message segmentation, then
consider:
v The minimum message segment supported on a local queue is 16 bytes.
v For a transmission queue, MAXMSGLEN must also include the space required for headers. Consider

using a value at least 4000 bytes larger than the maximum expected length of user data in any message
segment that could be put on a transmission queue.

If data conversion is necessary, the getting application might have to do it by specifying
MQGMO_CONVERT. This should be straightforward because the data conversion exit is presented with
the complete message. Do not attempt to convert data in a sender channel if the message is segmented,
and the format of the data is such that the data-conversion exit cannot carry out the conversion on
incomplete data.

156 IBM MQ: Programming

Application segmentation:

Application segmentation is used when queue-manager segmentation is not adequate, or when
applications require data conversion with specific segment boundaries.

Application segmentation is used for two main reasons:
1. Queue-manager segmentation alone is not adequate because the message is too large to be handled in

a single buffer by the applications.
2. Data conversion must be performed by sender channels, and the format is such that the putting

application must stipulate where the segment boundaries are to be in order for conversion of an
individual segment to be possible.

However, if data conversion is not an issue, or if the getting application always uses
MQGMO_COMPLETE_MSG, queue-manager segmentation can also be allowed by specifying
MQMF_SEGMENTATION_ALLOWED. In our example, the application segments the message into four
segments:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_SEGMENT

MQCMIT

If you do not use MQPMO_LOGICAL_ORDER, the application must set the Offset and the length of
each segment. In this case, logical state is not maintained automatically.

The getting application cannot guarantee to have a buffer large enough to hold any reassembled message.
It must therefore be prepared to process segments individually.

For messages that are segmented, this application does not want to start processing one segment until all
the segments that constitute the logical message are present. MQGMO_ALL_SEGMENTS_AVAILABLE is
therefore specified for the first segment. If you specify MQGMO_LOGICAL_ORDER and there is a
current logical message, MQGMO_ALL_SEGMENTS_AVAILABLE is ignored.

After the first segment of a logical message has been retrieved, use MQGMO_LOGICAL_ORDER to
ensure that the remaining segments of the logical message are retrieved in order.

No consideration is given to messages within different groups. If such messages occur, they are processed
in the order in which the first segment of each message occurs on the queue.

GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER
| MQGMO_ALL_SEGMENTS_AVAILABLE | MQGMO_WAIT

do while (SegmentStatus == MQSS_SEGMENT)
MQGET
/* Process each remaining segment of the logical message */
...

MQCMIT

Developing applications 157

Application segmentation of logical messages:

The messages must be maintained in logical order in a group, and some or all of them might be so large
that they require application segmentation.

In our example, a group of four logical messages is to be put. All but the third message are large, and
require segmentation, which is performed by the putting application:

PMO.Options = MQPMO_LOGICAL_ORDER | MQPMO_SYNCPOINT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP | MQMF_LAST_SEGMENT

MQPUT MD.MsgFlags = MQMF_MSG_IN_GROUP

MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_SEGMENT
MQPUT MD.MsgFlags = MQMF_LAST_MSG_IN_GROUP | MQMF_LAST_SEGMENT

MQCMIT

In the getting application, MQGMO_ALL_MSGS_AVAILABLE is specified on the first MQGET. This
means that no messages or segments of a group are retrieved until the entire group is available. When
the first physical message of a group has been retrieved, MQGMO_LOGICAL_ORDER is used to ensure
that the segments and messages of the group are retrieved in order:

GMO.Options = MQGMO_SYNCPOINT | MQGMO_LOGICAL_ORDER
| MQGMO_ALL_MSGS_AVAILABLE | MQGMO_WAIT

do while ((GroupStatus != MQGS_LAST_MSG_IN_GROUP) ||
(SegmentStatus != MQGS_LAST_SEGMENT))

MQGET
/* Process a segment or complete logical message. Use the GroupStatus

and SegmentStatus information to see what has been returned */
...

MQCMIT

Note: If you specify MQGMO_LOGICAL_ORDER and there is a current group,
MQGMO_ALL_MSGS_AVAILABLE is ignored.

158 IBM MQ: Programming

Reference messages:

Use this information to learn more about reference messages.

Note: Not supported in IBM MQ for z/OS.

This method allows a large object to be transferred from one node to another without storing the object
on IBM MQ queues at either the source or the destination nodes. This is of particular benefit when the
data exists in another form, for example, for mail applications.

To do this, you specify a message exit at both ends of a channel. For information about how to do this,
see “Channel message exit programs” on page 367.

IBM MQ defines the format of a reference message header (MQRMH). See MQRMH for a description of
this. This is recognized with a defined format name and might be followed by actual data.

To initiate transfer of a large object, an application can put a message consisting of a reference message
header with no data following it. As this message leaves the node, the message exit retrieves the object in
an appropriate way and appends it to the reference message. It then returns the message (now larger
than before) to the sending Message Channel Agent for transmission to the receiving MCA.

Another message exit is configured at the receiving MCA. When this message exit receives one of these
messages, it creates the object using the object data that was appended and passes on the reference
message without it. The reference message can now be received by an application and this application
knows that the object (or at least the portion of it represented by this reference message) has been created
at this node.

The maximum amount of object data that a sending message exit can append to the reference message is
limited by the negotiated maximum message length for the channel. The exit can return only a single
message to the MCA for each message that it is passed, so the putting application can put several
messages to cause one object to be transferred. Each message must identify the logical length and offset of
the object that is to be appended to it. However, in cases where it is not possible to know the total size of
the object or the maximum size allowed by the channel, design the sending message exit so that the
putting application just puts a single message, and the exit itself puts the next message on the
transmission queue when it has appended as much data as it can to the message it has been passed.

Before using this method of dealing with large messages, consider the following points:
v The MCA and the message exit run under an IBM MQ user ID. The message exit (and therefore, the

user ID) needs to access the object to either retrieve it at the sending end or create it at the receiving
end; this might only be feasible in cases where the object is universally accessible. This raises a security
issue.

v If the reference message with bulk data appended to it must travel through several queue managers
before reaching its destination, the bulk data is present on IBM MQ queues at the intervening nodes.
However, no special support or exits need to be provided in these cases.

v Designing your message exit is made difficult if rerouting or dead-letter queuing is allowed. In these
cases, the portions of the object might arrive out of order.

v When a reference message arrives at its destination, the receiving message exit creates the object.
However, this is not synchronized with the MCA's unit of work, so if the batch is backed out, another
reference message containing this same portion of the object will arrive in a later batch, and the
message exit might attempt to re-create the same portion of the object. If the object is, for example, a
series of database updates, this might be unacceptable. If so, the message exit must keep a log of which
updates have been applied; this might require the use of an IBM MQ queue.

Developing applications 159

v Depending on the characteristics of the object type, the message exits and applications might need to
cooperate in maintaining use counts, so that the object can be deleted when it is no longer needed. An
instance identifier might also be required; a field is provided for this in the reference message header
(see MQRMH).

v If a reference message is put as a distribution list, the object must be retrievable for each resulting
distribution list or individual destination at that node. You might need to maintain use counts. Also
consider the possibility that a node might be the final node for some of the destinations in the list, but
an intermediate node for others.

v Bulk data is not typically converted. This is because conversion takes place before the message exit is
invoked. For this reason, conversion must not be requested on the originating sender channel. If the
reference message passes through an intermediate node, the bulk data is converted when sent from the
intermediate node, if requested.

v Reference messages cannot be segmented.

Using the MQRMH and MQMD structures

See MQRMH and MQMD for a description of the fields in the reference message header and the message
descriptor.

In the MQMD structure, set the Format field to MQFMT_REF_MSG_HEADER. The MQHREF format,
when requested on MQGET, is converted automatically by IBM MQ along with any bulk data that
follows.

Here is an example of the use of the DataLogicalOffset and DataLogicalLength fields of the MQRMH:

A putting application might put a reference message with:
v No physical data
v DataLogicalLength = 0 (this message represents the entire object)
v DataLogicalOffset = 0.

Assuming that the object is 70 000 bytes long, the sending message exit sends the first 40 000 bytes along
the channel in a reference message containing:
v 40 000 bytes of physical data following the MQRMH
v DataLogicalLength = 40000
v DataLogicalOffset = 0 (from the start of the object).

It then places another message on the transmission queue containing:
v No physical data
v DataLogicalLength = 0 (to the end of the object). You could specify a value of 30 000 here.
v DataLogicalOffset = 40000 (starting from this point).

When this message exit is seen by the sending message exit, the remaining 30,000 bytes of data are
appended, and the fields are set to:
v 30,000 bytes of physical data following the MQRMH
v DataLogicalLength = 30000
v DataLogicalOffset = 40000 (starting from this point).

The MQRMHF_LAST flag is also set.

For a description of the sample programs provided for the use of reference messages, see “Sample
procedural programs (platforms except z/OS)” on page 473.

160 IBM MQ: Programming

Waiting for messages:

If you want a program to wait until a message arrives on a queue, specify the MQGMO_WAIT option in
the Options field of the MQGMO structure.

Use the WaitInterval field of the MQGMO structure to specify the maximum time (in milliseconds) that
you want an MQGET call to wait for a message to arrive on a queue.

If the message does not arrive within this time, the MQGET call completes with the
MQRC_NO_MSG_AVAILABLE reason code.

You can specify an unlimited wait interval using the constant MQWI_UNLIMITED in the WaitInterval
field. However, events outside your control could cause your program to wait for a long time, so use this
constant with caution. IMS applications must not specify an unlimited wait interval because this would
prevent the IMS system terminating. (When IMS terminates, it requires all dependent regions to end.)
Instead, IMS applications can specify a finite wait interval; then, if the call completes without retrieving a
message after that interval, issue another MQGET call with the wait option.

Note: If more than one program is waiting on the same shared queue to remove a message, only one
program is activated by a message arriving. However, if more than one program is waiting to browse a
message, all the programs can be activated. For more information, see the description of the Options field
of the MQGMO structure in MQGMO.

If the state of the queue or the queue manager changes before the wait interval expires, the following
actions occur:
v If the queue manager enters the quiescing state, and you used the MQGMO_FAIL_IF_QUIESCING

option, the wait is canceled and the MQGET call completes with the MQRC_Q_MGR_QUIESCING
reason code. Without this option, the call remains waiting.

v z/OS On z/OS, if the connection (for a CICS or IMS application) enters the quiescing state, and
you used the MQGMO_FAIL_IF_QUIESCING option, the wait is canceled and the MQGET call
completes with the MQRC_CONN_QUIESCING reason code. Without this option, the call remains
waiting.

v If the queue manager is forced to stop, or is canceled, the MQGET call completes with either the
MQRC_Q_MGR_STOPPING or the MQRC_CONNECTION_BROKEN reason code.

v If the attributes of the queue (or a queue to which the queue name resolves) are changed so that get
requests are now inhibited, the wait is canceled and the MQGET call completes with the
MQRC_GET_INHIBITED reason code.

v If the attributes of the queue (or a queue to which the queue name resolves) are changed in such a
way that the FORCE option is required, the wait is canceled and the MQGET call completes with the
MQRC_OBJECT_CHANGED reason code.

z/OS If you want your application to wait on more than one queue, use the signal facility of IBM MQ
for z/OS (see “Signaling” on page 162). For more information about the circumstances in which these
actions occur, see MQGMO.

Developing applications 161

Signaling:

Signaling is supported only on IBM MQ for z/OS.

Signaling is an option on the MQGET call to allow the operating system to notify (or signal) a program
when an expected message arrives on a queue. This is like the get with wait function described in topic
“Waiting for messages” on page 161 because it allows your program to continue with other work while
waiting for the signal. However, if you use signaling, you can free the application thread and rely on the
operating system to notify the program when a message arrives.

To set a signal

To set a signal, do the following in the MQGMO structure that you use on your MQGET call:
1. Set the MQGMO_SET_SIGNAL option in the Options field.
2. Set the maximum life of the signal in the WaitInterval field. This sets the length of time (in

milliseconds) for which you want IBM MQ to monitor the queue. Use the MQWI_UNLIMITED value
to specify an unlimited life.

Note: IMS applications must not specify an unlimited wait interval because this would prevent the
IMS system from terminating. (When IMS terminates, it requires all dependent regions to end.)
Instead, IMS applications can examine the state of the ECB at regular intervals (see step 3). A program
can have signals set on several queue handles at the same time:

3. Specify the address of the Event Control Block (ECB) in the Signal1 field. This notifies you of the
result of your signal. The ECB storage must remain available until the queue is closed.

Note: You cannot use the MQGMO_SET_SIGNAL option with the MQGMO_WAIT option.

When the message arrives

When a suitable message arrives, a completion code is returned to the ECB.

The completion code describes one of the following:
v The message that you set the signal for has arrived on the queue. The message is not reserved for the

program that requested a signal, so the program must issue an MQGET call again to get the message.

Note: Another application could get the message in the time between your receiving the signal and
issuing another MQGET call.

v The wait interval you set has expired and the message you set the signal for did not arrive on the
queue. IBM MQ has canceled the signal.

v The signal has been canceled. This happens, for example, if the queue manager stops, or the attribute
of the queue is changed, so that MQGET calls are no longer allowed.

When a suitable message is already on the queue, the MQGET call completes in the same way as an
MQGET call without signaling. Also, if an error is detected immediately, the call completes and the return
codes are set.

When the call is accepted and no message is immediately available, control is returned to the program so
that it can continue with other work. None of the output fields in the message descriptor are set, but the
CompCode parameter is set to MQCC_WARNING and the Reason parameter is set to
MQRC_SIGNAL_REQUEST_ACCEPTED.

For information about what IBM MQ can return to your application when it makes an MQGET call using
signaling, see MQGET.

162 IBM MQ: Programming

If the program has no other work to do while it is waiting for the ECB to be posted, it can wait for the
ECB using:
v For a CICS Transaction Server for z/OS program, the EXEC CICS WAIT EXTERNAL command
v For batch and IMS programs, the z/OS WAIT macro

If the state of the queue or the queue manager changes while the signal is set (that is, the ECB has not
yet been posted), the following actions occur:
v If the queue manager enters the quiescing state, and you used the MQGMO_FAIL_IF_QUIESCING

option, the signal is canceled. The ECB is posted with the MQEC_Q_MGR_QUIESCING completion
code. Without this option, the signal remains set.

v If the queue manager is forced to stop, or is canceled, the signal is canceled. The signal is delivered
with the MQEC_WAIT_CANCELED completion code.

v If the attributes of the queue (or a queue to which the queue name resolves) are changed so that get
requests are now inhibited, the signal is canceled. The signal is delivered with the
MQEC_WAIT_CANCELED completion code.

Note:

1. If more than one program has set a signal on the same shared queue to remove a message, only one
program is activated by a message arriving. However, if more than one program is waiting to browse
a message, all the programs can be activated. The rules that the queue manager follows when
deciding which applications to activate are the same as those for waiting applications: for more
information, see the description of the Options field of the MQGMO structure in MQGMO -
Get-message options.

2. If there is more than one MQGET call waiting for the same message, with a mixture of wait and
signal options, each waiting call is considered equally. For more information, see the description of the
Options field of the MQGMO structure in MQGMO - Get-message options.

3. Under some conditions, it is possible both for an MQGET call to retrieve a message and for a signal
(resulting from the arrival of the same message) to be delivered. This means that when your program
issues another MQGET call (because the signal was delivered), there could be no message available.
Design your program to test for this situation.

For information about how to set a signal, see the description of the MQGMO_SET_SIGNAL option and
the Signal1 field in Signal1.

Skipping backout:

You can prevent an application program from entering an MQGET-error-backout loop by specifying the
MQGMO_MARK_SKIP_BACKOUT option on the MQGET call.

Note: Supported only on IBM MQ for z/OS.

As part of a unit of work, an application program can issue one or more MQGET calls to get messages
from a queue. If the application program detects an error, it can back out the unit of work. This restores
all the resources updated during that unit of work to the state that they were in before the unit of work
started, and reinstates the messages retrieved by the MQGET calls.

Once reinstated, these messages are available to subsequent MQGET calls issued by the application
program. In many cases, this does not cause a problem for the application program. However, in cases
where the error leading to the backout cannot be circumvented, having the message reinstated on the
queue can cause the application program to enter an MQGET-error-backout loop.

To avoid this problem, specify the MQGMO_MARK_SKIP_BACKOUT option on the MQGET call. This
marks the MQGET request as not being involved in application-initiated backout; that is, it must not be

Developing applications 163

backed out. Use of this option means that when a backout occurs, updates to other resources are backed
out as required, but the marked message is treated as if it had been retrieved under a new unit of work.

The application program must issue an IBM MQ call either to commit the new unit of work, or to back
out the new unit of work. For example, the program can perform exception handling, such as informing
the originator that the message has been discarded, and commit the unit of work so removing the
message from the queue, If the new unit of work is backed out (for any reason) the message is reinstated
on the queue.

Within a unit of work, there can be only one MQGET request marked as skipping backout; however,
there can be several other messages that are not marked as skipping backout. Once a message has been
marked as skipping backout, any further MQGET calls within the unit of work that specify
MQGMO_MARK_SKIP_BACKOUT fail with reason code MQRC_SECOND_MARK_NOT_ALLOWED.

Note:

1. The marked message skips backout only if the unit of work containing it is terminated by an
application request to back it out. If the unit of work is backed out for any other reason, the message
is backed out onto the queue in the same way that it would be if it was not marked to skip backout.

2. Skip backout is not supported within Db2 stored procedures participating in units of work controlled
by RRS. For example, an MQGET call with the MQGMO_MARK_SKIP_BACKOUT option will fail
with the reason code MQRC_OPTION_ENVIRONMENT_ERROR.

Figure 16 on page 165 illustrates a typical sequence of steps that an application program might contain
when an MQGET request is required to skip backout.

164 IBM MQ: Programming

The steps in Figure 16 are:

Step 1 Initial processing occurs within the transaction, including an MQOPEN call to open the queue
(specifying one of the MQOO_INPUT_* options in order to get messages from the queue in Step
2).

Step 2 MQGET is called, with MQGMO_SYNCPOINT and MQGMO_MARK_SKIP_BACKOUT.
MQGMO_SYNCPOINT is required because MQGET must be within a unit of work for
MQGMO_MARK_SKIP_BACKOUT to be effective. In Figure 16 this unit of work is referred to as
UOW1.

Step 1.
Initial processing, including
MQOPEN of queue specifying
one MQOO INPUT * option

Step 2.
MQGET message, specifying
MQGMO MARK SKIP BACKOUT
and MQGMO SYNCPOINT

Step 9.
Commit (message
removed from queue)

Step 10.
Application requests
backout (message
reinstated on queue)

Step 4.
Commit (message
removed from queue)

Step 5.
Application requests
backout

Step 6.
Updates from Step 3
backed out

Step 7.
Message retrieved at
Step 2 skips backout
and enters new unit
of work

Step 8.
Exception handling.
This must include a
WebSphere MQ operation

OK?

OK?

Yes No

NoYes

Step 3.
Other resource updates made
for UOW1

START-OF-UOW2

END-OF-UOW2

START-OF-UOW1

END-OF-UOW1

Figure 16. Skipping backout using MQGMO_MARK_SKIP_BACKOUT

Developing applications 165

Step 3 Other resource updates are made as part of UOW1. These can include further MQGET calls
(issued without MQGMO_MARK_SKIP_BACKOUT).

Step 4 All updates from Steps 2 and 3 complete as required. The application program commits the
updates and UOW1 ends. The message retrieved in Step 2 is removed from the queue.

Step 5 Some of the updates from Steps 2 and 3 do not complete as required. The application program
requests that the updates made during these steps are backed out.

Step 6 The updates made in Step 3 are backed out.

Step 7 The MQGET request made in Step 2 skips backout and becomes part of a new unit of work,
UOW2.

Step 8 UOW2 performs exception handling in response to UOW1 being backed out. (For example, an
MQPUT call to another queue, indicating that a problem occurred that caused UOW1 to be
backed out.)

Step 9 Step 8 completes as required, the application program commits the activity, and UOW2 ends. As
the MQGET request is part of UOW2 (see Step 7), this commit causes the message to be removed
from the queue.

Step 10
Step 8 does not complete as required and the application program backs out UOW2. Because the
get message request is part of UOW2 (see Step 7), it too is backed out and reinstated on the
queue. It is now available to further MQGET calls issued by this or another application program
(in the same way as any other message on the queue).

Application data conversion:

When necessary, MCAs convert the message descriptor and header data into the required character set
and encoding. Either end of the link (that is, the local MCA or the remote MCA) can do the conversion.

When an application puts messages on a queue, the local queue manager adds control information to the
message descriptors to facilitate the control of the messages when they are processed by queue managers
and MCAs. Depending on the environment, the message header data fields are created in the character
set and encoding of the local system.

When you move messages between systems, you sometimes need to convert the application data into the
character set and encoding required by the receiving system. This can be done either from within
application programs on the receiving system or by the MCAs on the sending system. If data conversion
is supported on the receiving system, use application programs to convert the application data, rather
than depending on the conversion having already occurred at the sending system.

Application data is converted within an application program when you specify the MQGMO_CONVERT
option in the Options field of the MQGMO structure passed to an MQGET call, and all the following are
true:
v The CodedCharSetId or Encoding fields set in the MQMD structure associated with the message on the

queue differ from the CodedCharSetId or Encoding fields set in the MQMD structure specified on the
MQGET call.

v The Format field in the MQMD structure associated with the message is not MQFMT_NONE.
v The BufferLength specified on the MQGET call is not zero.
v The message data length is not zero.
v The queue manager supports conversion between the CodedCharSetId and Encoding fields specified in

the MQMD structures associated with the message and the MQGET call. See CodedCharSetId and
Encoding for details of the coded character set identifiers and machine encodings supported.

166 IBM MQ: Programming

v The queue manager supports conversion of the message format. If the Format field of the MQMD
structure associated with the message is one of the built-in formats, the queue manager can convert the
message. If the Format is not one of the built-in formats, you need to write a data-conversion exit to
convert the message.

If the sending MCA is to convert the data, specify the CONVERT(YES) keyword on the definition of each
sender or server channel for which conversion is required. If the data conversion fails, the message is sent
to the DLQ at the sending queue manager and the Feedback field of the MQDLH structure indicates the
reason. If the message cannot be put on the DLQ, the channel closes and the unconverted message
remains on the transmission queue. Data conversion within applications rather than at sending MCAs
avoids this situation.

As a rule, data in the message that is described as character data by the built-in format or data-conversion
exit is converted from the coded character set used by the message to that requested, and numeric fields
are converted to the encoding requested.

For further details of the conversion processing conventions used when converting the built-in formats,
and for information about writing your own data-conversion exits, see “Writing data-conversion exits” on
page 371. See also National languages and Machine encodings for information about the language
support tables and about the supported machine encodings.

Conversion of EBCDIC newline characters

If you need to ensure that the data that you send from an EBCDIC platform to an ASCII one is identical
to the data that you receive back again, you must control the conversion of EBCDIC newline characters.

You can do this using a platform-dependent switch that forces IBM MQ to use the unmodified conversion
tables, but you must be aware of the inconsistent behavior that might result.

The problem arises because the EBCDIC newline character is not converted consistently across platforms
or conversion tables. As a result, if the data is displayed on an ASCII platform, the formatting might be
incorrect. This would make it difficult, for example, to administer an IBM i system remotely from an
ASCII platform using RUNMQSC.

See Data conversion for further information about converting EBCDIC-format data to ASCII format.

Browsing messages on a queue:

Use this information to find out about browsing messages on a queue using the MQGET call.

To use the MQGET call to browse the messages on a queue:
1. Call MQOPEN to open the queue for browsing, specifying the MQOO_BROWSE option.
2. To browse the first message on the queue, call MQGET with the MQGMO_BROWSE_FIRST option. To

find the message that you want, call MQGET repeatedly with the MQGMO_BROWSE_NEXT option
to step through many messages.
You must set the MsgId and CorrelId fields of the MQMD structure to null after each MQGET call in
order to see all messages.

3. Call MQCLOSE to close the queue.

Developing applications 167

The browse cursor:

When you open (MQOPEN) a queue for browsing, the call establishes a browse cursor for use with
MQGET calls that use one of the browse options. You can think of the browse cursor as a logical pointer
that is positioned before the first message on the queue.

You can have more than one browse cursor active (from a single program) by issuing several MQOPEN
requests for the same queue.

When you call MQGET for browsing, use one of the following options in your MQGMO structure:

MQGMO_BROWSE_FIRST
Gets a copy of the first message that satisfies the conditions specified in your MQMD structure.

MQGMO_BROWSE_NEXT
Gets a copy of the next message that satisfies the conditions specified in your MQMD structure.

MQGMO_BROWSE_MSG_UNDER_CURSOR
Gets a copy of the message currently pointed to by the cursor, that is, the one that was last
retrieved using either the MQGMO_BROWSE_FIRST or the MQGMO_BROWSE_NEXT option.

In all cases, the message remains on the queue.

When you open a queue, the browse cursor is positioned logically just before the first message on the
queue. This means that if you make your MQGET call immediately after your MQOPEN call, you can
use the MQGMO_BROWSE_NEXT option to browse the first message; you do not have to use the
MQGMO_BROWSE_FIRST option.

The order in which messages are copied from the queue is determined by the MsgDeliverySequence
attribute of the queue. (For more information, see “The order in which messages are retrieved from a
queue” on page 135.)
v “Queues in FIFO (first in, first out) sequence”
v “Queues in priority sequence”
v “Uncommitted messages” on page 169
v “Change to queue sequence” on page 169
v “Using the queue's index” on page 169

Queues in FIFO (first in, first out) sequence

The first message in a queue in this sequence is the message that has been on the queue the longest.

Use MQGMO_BROWSE_NEXT to read the messages sequentially in the queue. You will see any
messages put to the queue while you are browsing, as a queue in this sequence has messages placed at
the end. When the cursor recognizes that it has reached the end of the queue, the browse cursor stays
where it is and returns with MQRC_NO_MSG_AVAILABLE. You can then either leave it there waiting for
further messages or reset it to the beginning of the queue with a MQGMO_BROWSE_FIRST call.

Queues in priority sequence

The first message in a queue in this sequence is the message that has been on the queue the longest and
that has the highest priority at the time that the MQOPEN call is issued.

Use MQGMO_BROWSE_NEXT to read the messages in the queue.

168 IBM MQ: Programming

The browse cursor points to the next message, working from the priority of the first message to finish
with the message at the lowest priority. It browses any messages put to the queue during this time as
long as they are of priority equal to, or lower than, the message identified by the current browse cursor.

Any messages put to the queue of higher priority can be browsed only by:
v Opening the queue for browse again, at which point a new browse cursor is established
v Using the MQGMO_BROWSE_FIRST option

Uncommitted messages

An uncommitted message is never visible to a browse; the browse cursor skips past it.

Messages within a unit-of-work cannot be browsed until the unit-of-work is committed. Messages do not
change their position on the queue when committed, so skipped, uncommitted messages will not be seen,
even when they are committed, unless you use the MQGMO_BROWSE_FIRST option and work though
the queue again.

Change to queue sequence

If the message delivery sequence is changed from priority to FIFO while there are messages on the
queue, the order of the messages that are already queued is not changed. Messages added to the queue
later, take the default priority of the queue.

Using the queue's index

When you browse an indexed queue that contains only messages of a single priority (either persistent or
nonpersistent or both), the queue manager uses the index to browse when certain forms of browse are
used.

Note: Supported only on IBM MQ for z/OS.

Any of the following forms of browse are used when an indexed queue contains only messages of single
priority:
1. If the queue is indexed by MSGID, browse requests that pass a MSGID in the MQMD structure are

processed using the index to find the target message.
2. If the queue is indexed by CORRELID, browse requests that pass a CORRELID in the MQMD

structure are processed using the index to find the target message.
3. If the queue is indexed by GROUPID, browse requests that pass a GROUPID in the MQMD structure

are processed using the index to find the target message.

If the browse request does not pass a MSGID, CORRELID, or GROUPID in the MQMD structure, the
queue is indexed, and a message is returned, the index entry for the message must be found, and
information within it used to update the browse cursor. If you use a wide selection of index values, this
does not add significant extra processing to the browse request.

Developing applications 169

Browsing messages when the message length is unknown:

To browse a message when you do not know the size of the message, and you do not want to use the
MsgId, CorrelId, or GroupId fields to locate the message, you can use the
MQGMO_BROWSE_MSG_UNDER_CURSOR option:
1. Issue an MQGET with:
v Either the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option
v The MQGMO_ACCEPT_TRUNCATED_MSG option
v Buffer length zero

Note: If another program is likely to get the same message, consider using the MQGMO_LOCK
option as well. MQRC_TRUNCATED_MSG_ACCEPTED should be returned.

2. Use the returned DataLength to allocate the storage needed.
3. Issue an MQGET with the MQGMO_BROWSE_MSG_UNDER_CURSOR.

The message pointed to is the last one that was retrieved; the browse cursor will not have moved. You
can choose either to lock the message using the MQGMO_LOCK option, or to unlock a locked message
using MQGMO_UNLOCK option.

The call fails if no MQGET with either the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT
options has been issued successfully since the queue was opened.

Removing a message that you have browsed:

You can remove from the queue a message that you have already browsed provided that you have
opened the queue for removing messages as well as for browsing. (You must specify one of the
MQOO_INPUT_* options, as well as the MQOO_BROWSE option, on your MQOPEN call.)

To remove the message, call MQGET again, but in the Options field of the MQGMO structure, specify
MQGMO_MSG_UNDER_CURSOR. In this case, the MQGET call ignores the MsgId, CorrelId, and
GroupId fields of the MQMD structure.

In the time between your browsing and removal steps, another program might have removed messages
from the queue, including the message under your browse cursor. In this case, your MQGET call returns
a reason code to say that the message is not available.

Browsing messages in logical order:

“Logical and physical ordering” on page 136 explains the difference between the logical and physical
order of messages on a queue. This distinction is particularly important when browsing a queue, because,
in general, messages are not being deleted and browse operations do not necessarily start at the
beginning of the queue.

If an application browses through the various messages of one group (using logical order), it is important
that logical order should be followed to reach the start of the next group, because the last message of one
group might occur physically after the first message of the next group. The MQGMO_LOGICAL_ORDER
option ensures that logical order is followed when scanning a queue.

Use MQGMO_ALL_MSGS_AVAILABLE (or MQGMO_ALL_SEGMENTS_AVAILABLE) with care for
browse operations. Consider the case of logical messages with MQGMO_ALL_MSGS_AVAILABLE. The
effect of this is that a logical message is available only if all the remaining messages in the group are also
present. If they are not, the message is passed over. This can mean that when the missing messages arrive
subsequently, they are not noticed by a browse-next operation.

For example, if the following logical messages are present,

170 IBM MQ: Programming

Logical message 1 (not last) of group 123
Logical message 1 (not last) of group 456
Logical message 2 (last) of group 456

and a browse function is issued with MQGMO_ALL_MSGS_AVAILABLE, the first logical message of
group 456 is returned, leaving the browse cursor on this logical message. If the second (last) message of
group 123 now arrives:

Logical message 1 (not last) of group 123
Logical message 2 (last) of group 123
Logical message 1 (not last) of group 456 <=== browse cursor
Logical message 2 (last) of group 456

and the same browse-next function is issued, it is not noticed that group 123 is now complete, because
the first message of this group is before the browse cursor.

In some cases (for example, if messages are retrieved destructively when the group is present in its
entirety), you can use MQGMO_ALL_MSGS_AVAILABLE together with MQGMO_BROWSE_FIRST.
Otherwise, you must repeat the browse scan to take note of newly-arrived messages that have been
missed; just issuing MQGMO_WAIT together with MQGMO_BROWSE_NEXT and
MQGMO_ALL_MSGS_AVAILABLE does not take account of them. (This also happens to higher-priority
messages that might arrive after scanning the messages is complete.)

The next sections look at browsing examples that deal with unsegmented messages; segmented messages
follow similar principles.

Browsing messages in groups:

In this example, the application browses through each message on the queue, in logical order.

Messages on the queue might be grouped. For grouped messages, the application does not want to start
processing any group until all the messages within it have arrived. MQGMO_ALL_MSGS_AVAILABLE is
therefore specified for the first message in the group; for subsequent messages in the group, this option is
unnecessary.

MQGMO_WAIT is used in this example. However, although the wait can be satisfied if a new group
arrives, for the reasons in “Browsing messages in logical order” on page 170, it is not satisfied if the
browse cursor has already passed the first logical message in a group, and the remaining messages now
arrive. Nevertheless, waiting for a suitable interval ensures that the application does not constantly loop
while waiting for new messages or segments.

MQGMO_LOGICAL_ORDER is used throughout, to ensure that the scan is in logical order. This contrasts
with the destructive MQGET example, where because each group is being removed,
MQGMO_LOGICAL_ORDER is not used when looking for the first (or only) message in a group.

It is assumed that the application's buffer is always large enough to hold the entire message, whether or
not the message has been segmented. MQGMO_COMPLETE_MSG is therefore specified on each MQGET.

The following gives an example of browsing logical messages in a group:
/* Browse the first message in a group, or a message not in a group */
GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER
| MQGMO_ALL_MSGS_AVAILABLE | MQGMO_WAIT
MQGET GMO.MatchOptions = MQMO_MATCH_MSG_SEQ_NUMBER, MD.MsgSeqNumber = 1
/* Examine first or only message */
...

GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER

Developing applications 171

do while (GroupStatus == MQGS_MSG_IN_GROUP)
MQGET
/* Examine each remaining message in the group */
...

The group is repeated until MQRC_NO_MSG_AVAILABLE is returned.

Browsing and retrieving destructively:

In this example, the application browses each of the logical messages within a group, before deciding
whether to retrieve that group destructively.

The first part of this example is similar to the previous one. However, in this case, having browsed an
entire group, we decide to go back and retrieve it destructively.

As each group is removed in this example, MQGMO_LOGICAL_ORDER is not used when looking for
the first or only message in a group.

The following gives an example of browsing and then retrieving destructively:
GMO.Options = MQGMO_BROWSE_NEXT | MQGMO_COMPLETE_MSG | MQGMO_LOGICAL_ORDER

| MQGMO_ALL_MESSAGES_AVAILABE | MQGMO_WAIT
do while (GroupStatus == MQGS_MSG_IN_GROUP)

MQGET
/* Examine each remaining message in the group (or as many as

necessary to decide whether to get it destructively) */
...

if (we want to retrieve the group destructively)

if (GroupStatus == ’ ’)
/* We retrieved an ungrouped message */
GMO.Options = MQGMO_MSG_UNDER_CURSOR | MQGMO_SYNCPOINT
MQGET GMO.MatchOptions = 0
/* Process the message */
...

else
/* We retrieved one or more messages in a group. The browse cursor */
/* will not normally be still on the first in the group, so we have */
/* to match on the GroupId and MsgSeqNumber = 1. */
/* Another way, which works for both grouped and ungrouped messages,*/
/* would be to remember the MsgId of the first message when it was */
/* browsed, and match on that. */
GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT
MQGET GMO.MatchOptions = MQMO_MATCH_GROUP_ID

| MQMO_MATCH_MSG_SEQ_NUMBER,
(MQMD.GroupId = value already in the MD)
MQMD.MsgSeqNumber = 1

/* Process first or only message */
...

GMO.Options = MQGMO_COMPLETE_MSG | MQGMO_SYNCPOINT
| MQGMO_LOGICAL_ORDER

do while (GroupStatus == MQGS_MSG_IN_GROUP)
MQGET
/* Process each remaining message in the group */

...

172 IBM MQ: Programming

Avoiding repeated delivery of browsed messages:

By using certain open options and get-message options, you can mark messages as having been browsed
so that they are not retrieved again by the current or other cooperating applications. Messages can be
unmarked explicitly or automatically to make them available again for browsing.

If you browse messages on a queue, you might retrieve them in a different order to the order in which
you would retrieve them if you got them destructively. In particular, you can browse the same message
multiple times, which is not possible if it is removed from the queue. To avoid this you can mark
messages as they are browsed, and avoid retrieving marked messages. This is sometimes referred to as
browse with mark. To mark browsed messages, use the get message option
MQGMO_MARK_BROWSE_HANDLE, and to retrieve only messages that are not marked, use
MQGMO_UNMARKED_BROWSE_MSG. If you use the combination of options
MQGMO_BROWSE_FIRST, MQGMO_UNMARKED_BROWSE_MSG, and
MQGMO_MARK_BROWSE_HANDLE, and issue repeated MQGETs, you will retrieve each message on
the queue in turn. This prevents repeated delivery of messages even though MQGMO_BROWSE_FIRST is
used to ensure that messages are not skipped. This combination of options can be represented by the
single constant MQGMO_BROWSE_HANDLE. When there are no messages on the queue that have not
been browsed, MQRC_NO_MSG_AVAILABLE is returned.

If multiple applications are browsing the same queue, they can open the queue with the options
MQOO_CO_OP and MQOO_BROWSE. The object handle returned by each MQOPEN is considered to be
part of a cooperating group. Any message returned by an MQGET call specifying the option
MQGMO_MARK_BROWSE_CO_OP is considered to be marked for this cooperating set of handles.

If a message has been marked for some time, it can be automatically unmarked by the queue manager
and made available for browsing again. The queue manager attribute MsgMarkBrowseInterval gives the
time in milliseconds for which a message is to remain marked for the cooperating set of handles. A
MsgMarkBrowseInterval of -1 means that messages are never automatically unmarked.

When the single process or set of cooperative processes marking messages stop, any marked messages
become unmarked.

Examples of cooperative browsing

You might run multiple copies of a dispatcher application to browse messages on a queue and initiate a
consumer based on the content of each message. In each dispatcher, open the queue with
MQOO_CO_OP. This indicates that the dispatchers are cooperating and will be aware of each other's
marked messages. Each dispatcher then makes repeated MQGET calls, specifying the options
MQGMO_BROWSE_FIRST, MQGMO_UNMARKED_BROWSE_MSG , and
MQGMO_MARK_BROWSE_CO_OP (you can use the single constant MQGMO_BROWSE_CO_OP to
represent this combination of options). Each dispatcher application then retrieves only those messages
that have not already been marked by other cooperating dispatchers. The dispatcher initializes a
consumer and passes the MsgToken returned by the MQGET to the consumer, which destructively gets
the message from the queue. If the consumer backs out the MQGET of the message, then the message is
available for one of the browsers to re-dispatch, because it is no longer marked. If the consumer does not
do an MQGET on the message, then after the MsgMarkBrowseInterval has passed, the queue manager
unmarks the message for the cooperating set of handles, and it can be re-dispatched.

Rather than multiple copies of the same dispatcher application, you might have a number of different
dispatcher applications browsing the queue, each suitable for processing a subset of the messages on the
queue. In each dispatcher, open the queue with MQOO_CO_OP. This indicates that the dispatchers are
cooperating and will be aware of each other's marked messages.
v If the order of message processing for a single dispatcher is important, each dispatcher makes repeated

MQGET calls, specifying the options MQGMO_BROWSE_FIRST,
MQGMO_UNMARKED_BROWSE_MSG , and MQGMO_MARK_BROWSE_HANDLE (or

Developing applications 173

MQGMO_BROWSE_HANDLE). If the browsed message is suitable for this dispatcher to process, it
then makes an MQGET call specifying MQMO_MATCH_MSG_TOKEN,
MQGMO_MARK_BROWSE_CO_OP, and the MsgToken returned by the previous MQGET call. If the
call succeeds, the dispatcher initializes the consumer, passing the MsgToken to it.

v If the order of message processing is not important and the dispatcher is expected to process most of
the messages it encounters, use the options MQGMO_BROWSE_FIRST,
MQGMO_UNMARKED_BROWSE_MSG , and MQGMO_MARK_BROWSE_CO_OP (or
MQGMO_BROWSE_CO_OP). If the dispatcher browses a message it cannot process, it unmarks the
message by calling MQGET with the option MQMO_MATCH_MSG_TOKEN,
MQGMO_UNMARK_BROWSE_CO_OP, and the MsgToken returned previously.

Some cases where the MQGET call fails:

If certain attributes of a queue are changed using the FORCE option on a command between issuing an
MQOPEN and an MQGET call, the MQGET call fails and returns the MQRC_OBJECT_CHANGED reason
code.

The queue manager marks the object handle as being no longer valid. This also happens if the changes
apply to any queue to which the queue name resolves. The attributes that affect the handle in this way
are listed in the description of the MQOPEN call in MQOPEN. If your call returns the
MQRC_OBJECT_CHANGED reason code, close the queue, reopen it, then try to get a message again.

If get operations are inhibited for a queue from which you are attempting to get messages (or any queue
to which the queue name resolves), the MQGET call fails and returns the MQRC_GET_INHIBITED
reason code. This happens even if you are using the MQGET call for browsing. You might be able to get
a message successfully if you attempt the MQGET call at a later time, if the design of the application is
such that other programs change the attributes of queues regularly.

If a dynamic queue (either temporary or permanent) has been deleted, MQGET calls using a
previously-acquired object handle fail and return the MQRC_Q_DELETED reason code.

Writing publish/subscribe applications
Start writing publish/subscribe IBM MQ applications.

For an overview of publish/subscribe concepts, see Publish/subscribe messaging.

See the following topics for information on writing different types of publish/subscribe applications:
v “Writing publisher applications” on page 175
v “Writing subscriber applications” on page 183
v “Publish/subscribe lifecycles” on page 203
v “Publish/subscribe message properties” on page 208
v “Message ordering” on page 210
v “Intercepting publications” on page 210
v “Publishing options” on page 218
v “Subscription options” on page 219

174 IBM MQ: Programming

Related concepts:
“Application development concepts” on page 1
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.
“Developing applications” on page 1
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ support applications written in procedural languages, and object oriented
languages and frameworks.
“Designing IBM MQ applications” on page 51
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Sample IBM MQ procedural programs” on page 473
This set of sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.
“Writing a procedural application for queuing” on page 76
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Writing client procedural applications” on page 293
What you need to know to write client applications on IBM MQ using a procedural language.
“Developing web services with IBM MQ” on page 1271
You can develop IBM MQ applications for Web services using the IBM MQ transport for SOAP or the
IBM MQ bridge for HTTP.
“Building a procedural application” on page 389
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
“Handling procedural program errors” on page 443
This information explains errors associated with your applications MQI calls either when it makes a call,
or when its message is delivered to its final destination.

Writing publisher applications:

Get started with writing publisher applications by studying two examples. The first is modeled as closely
as possible on a point to point application putting messages on a queue, and the second demonstrates
creating topics dynamically - a more common pattern for publisher applications.

Writing a simple IBM MQ publisher application is just like writing an IBM MQ point to point application
that puts messages to a queue (Table 23). The difference is you MQPUT messages to a topic, not to a
queue.

Table 23. Point to point versus publish/subscribe IBM MQ program pattern.

Step Point to point MQ Call Publish MQ Call

Connect to a queue manager MQCONN MQCONN

Open queue MQOPEN

Open topic MQOPEN

Put message(s) MQPUT MQPUT

Close topic MQCLOSE

Close queue MQCLOSE

Disconnect from queue manager MQDISC MQDISC

To make that concrete, there are two examples of applications to publish stock prices. In the first example
(“Example 1: Publisher to a fixed topic” on page 176), that is modeled closely on putting messages to a
queue, the administrator creates a topic definition in a similar way to creating a queue. The programmer

Developing applications 175

codes MQPUT to write messages to the topic instead of writing them to a queue. In the second example (
“Example 2: Publisher to a variable topic” on page 180), the pattern of interaction of the program with
IBM MQ is similar. The difference is the programmer provides the topic to which the message is written,
rather than the administrator. In practice this typically means that the topic string is content defined, or
provided by another source, such as human input through a browser.
Related concepts:
“Writing subscriber applications” on page 183
Get started with writing subscriber applications by studying three examples: an IBM MQ application
consuming messages from a queue, an application that creates a subscription and requires no knowledge
of queuing, and finally an example that uses both queuing and subscriptions.
Related information:
DEFINE TOPIC
DISPLAY TOPIC
DISPLAY TPSTATUS

Example 1: Publisher to a fixed topic:

An IBM MQ program to illustrate publishing to an administratively defined topic.

Note: The compact coding style is intended for readability not production use.

176 IBM MQ: Programming

See the output in Figure 18 on page 178

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
int main(int argc, char **argv)
{

char topicNameDefault[] = "IBMSTOCKPRICE";
char publicationDefault[] = "129";
MQCHAR48 qmName = "";

MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */
MQLONG CompCode = MQCC_OK; /* completion code */
MQLONG Reason = MQRC_NONE; /* reason code */
MQOD td = {MQOD_DEFAULT}; /* Object descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQCHAR resTopicStr[151]; /* Returned vale of topic string */
char * topicName = topicNameDefault;
char * publication = publicationDefault;
memset (resTopicStr, 0 , sizeof(resTopicStr));

switch(argc){ /* replace defaults with args if provided */
default:

publication = argv[2];
case(2):

topicName = argv[1];
case(1):

printf("Optional parameters: TopicObject Publication\n");
}
do {

MQCONN(qmName, &Hconn, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
td.ObjectType = MQOT_TOPIC; /* Object is a topic */
td.Version = MQOD_VERSION_4; /* Descriptor needs to be V4 */
strncpy(td.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
td.ResObjectString.VSPtr = resTopicStr;
td.ResObjectString.VSBufSize = sizeof(resTopicStr)-1;
MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;
MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQDISC(&Hconn, &CompCode, &Reason);

} while (0);
if (CompCode == MQCC_OK)

printf("Published \"%s\" using topic \"%s\" to topic string \"%s\"\n",
publication, td.ObjectName, resTopicStr);

printf("Completion code %d and Return code %d\n", CompCode, Reason);
}

Figure 17. Simple IBM MQ publisher to a fixed topic.

Developing applications 177

The following selected lines of code illustrate aspects of writing a publisher application for IBM MQ.

char topicNameDefault[] = "IBMSTOCKPRICE";
A default topic name is defined in the program. You can override it by providing the name of a
different topic object as the first argument to the program.

MQCHAR resTopicStr[151];
resTopicStr is pointed at by td.ResObjectString.VSPtr and is used by MQOPEN to return the
resolved topic string. Make the length of resTopicStr one larger than the length passed in
td.ResObjectString.VSBufSize to give space for null termination.

memset (resTopicStr, 0, sizeof(resTopicStr));
Initialize resTopicStr to nulls to ensure the resolved topic string returned in an MQCHARV is null
terminated.

td.ObjectType = MQOT_TOPIC
There is a new type of object for publish/subscribe: the topic object.

td.Version = MQOD_VERSION_4;
To use the new type of object, you must use at least version 4 of the object descriptor.

strncpy(td.ObjectName, topicName, MQ_OBJECT_NAME_LENGTH);
The topicName is the name of a topic object, sometimes called an administrative topic object. In
the example the topic object needs to be created beforehand, using IBM MQ Explorer or this
MQSC command,
DEFINE TOPIC(IBMSTOCKPRICE) TOPICSTR(NYSE/IBM/PRICE) REPLACE;

td.ResObjectString.VSPtr = resTopicStr;
The resolved topic string is echoed in the final printf in the program. Set up the MQCHARV
ResObjectString structure for IBM MQ to return the resolved string back to the program.

MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);
Open the topic for output; just like opening a queue for output.

pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;
You want new subscribers to be able receive the publication, and by specifying MQPMO_RETAIN in
the publisher, when you start a subscriber it receives the latest publication, published before the
subscriber started, as its first matching publication. The alternative is to provide subscribers with
publications published only after the subscriber started. Additionally a subscriber has the option
to decline to receive a retained publication by specifying MQSO_NEW_PUBLICATIONS_ONLY in its
subscription.

MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication, &CompCode, &Reason);
Add 1 to the length of the string passed to MQPUT to pass the null termination character to IBM
MQ as part of the message buffer.

What does the first example demonstrate? The example imitates as closely as possible the tried and tested
traditional pattern for writing point to point IBM MQ programs. An important feature of the IBM MQ
programming pattern is that the programmer is not concerned where messages are sent. The task of the
programmer is to connect to a queue manager, and pass it the messages that are to be distributed to
recipients. In the point-to-point paradigm, the programmer opens a queue (probably an alias queue) that

X:\Publish1\Debug>PublishStock
Optional parameters: TopicObject Publication
Published "129" using topic "IBMSTOCKPRICE" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

X:\Publish1\Debug>PublishStock IBMSTOCKPRICE 155
Optional parameters: TopicObject Publication
Published "155" using topic "IBMSTOCKPRICE" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

Figure 18. Sample output from first publisher example

178 IBM MQ: Programming

the administrator has configured. The alias queue routes messages to a target queue, either on the local
queue manager, or to a remote queue manager. While the messages are waiting to be delivered, they are
stored on queues somewhere between the source and the destination.

In the publish/subscribe pattern, instead of opening a queue, the programmer opens a topic. In our
example, the topic is associated with a topic string by an administrator. The queue manager forwards the
publication, using queues, to local or remote subscribers that have subscriptions that match the topic
string of the publication. If publications are retained the queue manager keeps the latest copy of the
publication, even if it has no subscribers now. The retained publication is available to forward to future
subscribers. The publisher application plays no part in selecting or routing the publication to a
destination; its task is to create and put publications to the topics defined by the administrator.

This fixed topic example is atypical of many publish/subscribe applications: it is static. It requires an
administrator to define the topic strings and change the topics that are published on. Commonly
publish/subscribe applications need to know some or all the topic tree. Perhaps topics change frequently,
or perhaps although the topics do not change much, the number of topic combinations is large and it is
too onerous for an administrator to define a topic node for every topic string that might need to be
published on. Perhaps topic strings are not known in advance of publication; a publisher application
might use information from the publication content to specify a topic string, or it might have information
about topic strings to publish on from another source, such as human input from a browser. To cater for
more dynamic styles of publishing, the next example shows how to create topics dynamically, as part of
the publisher application.

Topics couple publishers and subscribers together. Designing the rules, or architecture, for naming topics,
and organizing them in topic trees is an important step in developing a publish/subscribe solution. Look
carefully at the extent to which organization of the topic tree binds of publisher and subscriber programs
together, and binds them to the content of the topic tree. Ask yourself the question whether changes in
the topic tree affect publisher and subscriber applications, and how you can minimize the effect. Built
into the architecture of the IBM MQ publish/subscribe model is the notion of an administrative topic
object that provides the root part, or root subtree, of a topic. The topic object gives you the option of
defining the root part of the topic tree administratively that simplifies application programming and
operations, and consequently improves maintainability. For example, if you are deploying multiple
publish/subscribe applications that have isolated topic trees, then by administratively defining the root
part of the topic tree, you can guarantee the isolation of topic trees, even if there is no consistency in the
topic naming conventions adopted by the different applications.

In practice, publisher applications cover a spectrum from solely using fixed topics, as in this example,
and variable topics, as in the next. “Example 2: Publisher to a variable topic” on page 180 also
demonstrates combining the use of topics and topic strings.

Developing applications 179

Related concepts:
“Example 2: Publisher to a variable topic”
A Websphere MQ program to illustrate publishing to a programmatically defined topic.
“Writing subscriber applications” on page 183
Get started with writing subscriber applications by studying three examples: an IBM MQ application
consuming messages from a queue, an application that creates a subscription and requires no knowledge
of queuing, and finally an example that uses both queuing and subscriptions.

Example 2: Publisher to a variable topic:

A Websphere MQ program to illustrate publishing to a programmatically defined topic.

Note: The compact coding style is intended for readability not production use.

180 IBM MQ: Programming

See the output in Figure 20 on page 182.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
int main(int argc, char **argv)
{

char topicNameDefault[] = "STOCKS";
char topicStringDefault[] = "IBM/PRICE";
char publicationDefault[] = "130";
MQCHAR48 qmName = "";

MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */
MQLONG CompCode = MQCC_OK; /* completion code */
MQLONG Reason = MQRC_NONE; /* reason code */
MQOD td = {MQOD_DEFAULT}; /* Object descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQCHAR resTopicStr[151]; /* Returned value of topic string */
char * topicName = topicNameDefault;
char * topicString = topicStringDefault;
char * publication = publicationDefault;
memset (resTopicStr, 0 , sizeof(resTopicStr));

switch(argc){ /* Replace defaults with args if provided */
default:

publication = argv[3];
case(3):

topicString = argv[2];
case(2):

if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */
topicName = argv[1];

else
*topicName = ’\0’;

case(1):
printf("Provide parameters: TopicObject TopicString Publication\n");

}

printf("Publish \"%s\" to topic \"%-.48s\" and topic string \"%s\"\n", publication, topicName, topicString);
do {

MQCONN(qmName, &Hconn, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
td.ObjectType = MQOT_TOPIC; /* Object is a topic */
td.Version = MQOD_VERSION_4; /* Descriptor needs to be V4 */
strncpy(td.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
td.ObjectString.VSPtr = topicString;
td.ObjectString.VSLength = (MQLONG)strlen(topicString);
td.ResObjectString.VSPtr = resTopicStr;
td.ResObjectString.VSBufSize = sizeof(resTopicStr)-1;
MQOPEN(Hconn, &td, MQOO_OUTPUT | MQOO_FAIL_IF_QUIESCING, &Hobj, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
pmo.Options = MQPMO_FAIL_IF_QUIESCING | MQPMO_RETAIN;
MQPUT(Hconn, Hobj, &md, &pmo, (MQLONG)strlen(publication)+1, publication, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQDISC(&Hconn, &CompCode, &Reason);

} while (0);
if (CompCode == MQCC_OK)

printf("Published \"%s\" to topic string \"%s\"\n", publication, resTopicStr);
printf("Completion code %d and Return code %d\n", CompCode, Reason);

}

Figure 19. Simple IBM MQ publisher to a variable topic.

Developing applications 181

There are a few points to note about this example.

char topicNameDefault[] = "STOCKS";
The default topic name STOCKS defines part of the topic string. You can override this topic name
by providing it as the first argument to the program, or eliminate the use of the topic name by
supplying / as the first parameter.

char topicString[101] = "IBM/PRICE";
IBM/PRICE is the default topic string. You can override this topic string by providing it as the
second argument to the program.

The queue manager combines the topic string provided by the STOCKS topic object, “NYSE”, with
the topic string provided by the program “IBM/PRICE” and inserts a “/” between the two topic
strings. The result is the resolved topic string “NYSE/IBM/PRICE”. The resulting topic string is the
same as the one defined in the IBMSTOCKPRICE topic object, and has precisely the same effect.

The administrative topic object associated with the resolved topic string is not necessarily the
same topic object as passed to MQOPEN by the publisher. IBM MQ uses the tree implicit in the
resolved topic string to work out which administrative topic object defines the attributes
associated with the publication.

Suppose there are two topic objects A and B, and A defines topic “a”, and B defines topic “a/b” (
Figure 21 on page 183). If the publisher program refers to topic object A and provides topic string
“b”, resolving the topic to the topic string “a/b”, then the publication inherits its properties from
topic object B because the topic matches the topic string “a/b” defined for B.

if (strcmp(argv[1],"/"))
argv[1] is the optionally provided topicName. “/” is invalid as a topic name; here it signifies that
there is no topic name, and the topic string is provided entirely by the program. The output in
Figure 20 shows the whole topic string being supplied dynamically by the program.

strncpy(td.ObjectName, topicName, MQ_OBJECT_NAME_LENGTH);
For the default case, the optional topicName needs to be created beforehand, using IBM MQ
Explorer or this MQSC command:
DEFINE TOPIC(STOCKS) TOPICSTR(NYSE) REPLACE;

td.ObjectString.VSPtr = topicString;
The topic string is a MQCHARV field in the topic descriptor

X:\Publish2\Debug>PublishStock
Provide parameters: TopicObject TopicString Publication
Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"
Published "130" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

X:\Publish2\Debug>PublishStock / NYSE/IBM/PRICE 131
Provide parameters: TopicObject TopicString Publication
Publish "131" to topic "" and topic string "NYSE/IBM/PRICE"
Published "131" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

Figure 20. Sample output from second publisher example

182 IBM MQ: Programming

What does the second example demonstrate? Although the code is very similar to the first example -
effectively there are only two lines difference - the result is a significantly different program to the first.
The programmer controls the destinations to which publications are sent. In conjunction with minimal
administrator input used to design subscriber applications, no topics or queues need to be predefined to
route publications from publishers to subscribers.

In the point-to-point messaging paradigm, queues have to be defined before messages are able to flow.
For publish/subscribe, they do not, although IBM MQ implements publish/subscribe using its
underlying queuing system; the benefits of guaranteed delivery, transactionality and loose coupling
associated with messaging and queuing are inherited by publish/subscribe applications.

A designer has to decide whether publisher, and subscriber, programs are to be aware of the underlying
topic tree or not, and also whether subscriber programs are aware of queuing or not. Study the subscriber
example applications next. They are designed to be used with the publisher examples, typically
publishing and subscribing to NYSE/IBM/PRICE.
Related concepts:
“Example 1: Publisher to a fixed topic” on page 176
An IBM MQ program to illustrate publishing to an administratively defined topic.
“Writing subscriber applications”
Get started with writing subscriber applications by studying three examples: an IBM MQ application
consuming messages from a queue, an application that creates a subscription and requires no knowledge
of queuing, and finally an example that uses both queuing and subscriptions.

Writing subscriber applications:

Get started with writing subscriber applications by studying three examples: an IBM MQ application
consuming messages from a queue, an application that creates a subscription and requires no knowledge
of queuing, and finally an example that uses both queuing and subscriptions.

In Table 24 on page 184 the three styles of consumer or subscriber are listed, together with the sequences
of IBM MQ function calls that characterize them.
1. The first style, MQ Publication Consumer, is identical to a point to point MQ program that only does

MQGET. The application has no knowledge that it is consuming publications - it is simply reading
messages from a queue. The subscription that causes publications to get routed to the queue is created
administratively using IBM MQ Explorer or a command.

2. The second style is the preferred pattern for most subscriber applications. The subscriber application
creates the subscription, and then gets publications. The queue management is all performed by the
queue manager.

Subscribe

(As Parent)

Subscribe

(Inhibited)

TOPIC A

TOPIC B

a

a/b

Figure 21. Topic object associations

Developing applications 183

3. In the third style, the subscriber application elects to open and close the underlying queue that is used
for publications as well as issue subscriptions to fill the queue with publications.

One way to understand these styles is to study the example C programs listed in Table 24 for each of the
styles. The examples are designed to be run in conjunction with the publisher example found in “Writing
publisher applications” on page 175.

Table 24. Point to point vs. subscribe IBM MQ program patterns.

Step
MQ message
consumer

“Example 1: MQ
Publication
consumer”

“Example 2: Managed
MQ subscriber” on
page 187

“Example 3:
Unmanaged MQ
subscriber” on page
193

Connect to a queue
manager

MQCONN MQCONN MQCONN MQCONN

Open queue MQOPEN MQOPEN MQOPEN

Subscribe MQSUB MQSUB

Get message(s) MQGET MQGET MQGET MQGET

Close queue MQCLOSE MQCLOSE (MQCLOSE) MQCLOSE

Close subscription MQCLOSE MQCLOSE

Disconnect from queue
manager

MQDISC MQDISC MQDISC MQDISC

Using MQCLOSE is always optional, either to release resources, pass MQCLOSE options, or just for
symmetry with MQOPEN. Since you are unlikely to need to specify the MQCLOSE options when the
subscription queue is closed in the Managed MQ subscriber case, and the symmetry argument is not
relevant, the subscription queue is not explicitly closed in Example 2: Managed MQ subscriber.

Another way to understand publish/subscribe application patterns is too look at the interactions between
the different entities involved. Lifeline, or UML sequence diagrams are a good way to study interactions.
Three lifeline examples are described in “Publish/subscribe lifecycles” on page 203.

Example 1: MQ Publication consumer:

The MQ Publication consumer is an IBM MQ message consumer that does not subscribe to topics itself.

To create the subscription and publication queue for this example run the following commands, or define
the objects using IBM MQ Explorer.
DEFINE QLOCAL(STOCKTICKER) REPLACE;
DEFINE SUB(IBMSTOCKPRICESUB) DEST(STOCKTICKER) TOPICOBJ(IBMSTOCKPRICE) REPLACE;

The IBMSTOCKPRICESUB subscription references the IBMSTOCK topic object created for the publisher example
and the local queue STOCKTICKER. The topic object IBMSTOCK defines the topic string that is used in the
subscription, NYSE/IBM/PRICE. Note that the topic object and the queue used to receive publications need
to be defined before the subscription is created.

There are a number of valuable facets to the MQ publication consumer pattern:
1. Multiprocessing: sharing out of the work of reading publications. The publications all go onto the

single queue associated with the subscription topic. Multiple consumers can open the queue using
MQOO_INPUT_SHARED.

2. Centrally managed subscriptions. Applications do not construct their own subscription topics or
subscriptions; the administrator is responsible for where publications are sent.

3. Subscription concentration: multiple different subscriptions can be sent to a single queue.
4. Subscription durability: the queue receives all publications whether or not consumers are active.

184 IBM MQ: Programming

5. Migration and coexistence: the consumer code works equally well for a point-to-point and a
publish/subscribe scenario.

The subscription creates a relationship between the topic string NYSE/IBM/PRICE and the queue
STOCKTICKER. Publications, including any currently retained publication, are forwarded to STOCKTICKER
from the moment the subscription is created.

An administratively created subscription can be managed or unmanaged. A managed subscription takes
effect as soon as it has been created, just like an unmanaged subscription. Not all the pattern facets are
available to a managed subscription. See “Example 3: Unmanaged MQ subscriber” on page 193

Note: The compact coding style is intended for readability not production use.

Developing applications 185

The results are shown in Figure 23 on page 187.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
int main(int argc, char **argv)
{
MQCHAR publicationBuffer[101];
MQCHAR48 subscriptionQueueDefault = "STOCKTICKER";
MQCHAR48 qmName = ""; /* Use default queue manager */

MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
MQHOBJ Hobj = MQHO_NONE; /* object handle sub queue */
MQLONG CompCode = MQCC_OK; /* completion code */
MQLONG Reason = MQRC_NONE; /* reason code */
MQLONG messlen = 0;
MQOD od = {MQOD_DEFAULT}; /* Unmanaged subscription queue */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* Get message options */
char * publication=publicationBuffer;
char * subscriptionQueue = subscriptionQueueDefault;

switch(argc){ /* Replace defaults with args if provided */
default:
subscriptionQueue = argv[1]
case(1):
printf("Optional parameter: subscriptionQueue\n");
}

do {
MQCONN(qmName, &Hconn, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
strncpy(od.ObjectName, subscriptionQueue, MQ_Q_NAME_LENGTH);
MQOPEN(Hconn, &od, MQOO_INPUT_AS_Q_DEF | MQOO_FAIL_IF_QUIESCING , &Hobj, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;
gmo.WaitInterval = 10000;
printf("Waiting %d seconds for publications from %s\n", gmo.WaitInterval/1000, subscriptionQueue);
do {
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;
memset(publication, 0, sizeof(publicationBuffer));
MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer)-1, publication, &messlen,
&CompCode, &Reason);
if (Reason == MQRC_NONE)
printf("Received publication \"%s\"\n", publication);
}
while (CompCode == MQCC_OK);
if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;
MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQDISC(&Hconn, &CompCode, &Reason);
} while (0);
printf("Completion code %d and Return code %d\n", CompCode, Reason);
}

Figure 22. MQ publication consumer.

186 IBM MQ: Programming

There are a couple of standard IBM MQ C language programming tips to be aware of:

memset(publication, 0, sizeof(publicationBuffer));
Ensure the message has a trailing null for easy formatting using printf. The publisher example
includes the trailing null in the message buffer passed to MQPUT by adding 1 to
strlen(publication). Setting MQCHAR buffers to null is good programming style for IBM MQ C
programs that use the buffers to store strings, ensuring a null follows an array of characters that
does not completely fill the buffer.

MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer)-1, publication, &messlen, &CompCode,
&Reason);

Reserve one null at the end of the message buffer to ensure the returned message has trailing null
in case if (messlen == strlen(publication)); is true. This tip complements the preceding one,
and ensures that there is at least one null in publicationBuffer that is not overwritten by the
contents of publication.

Related concepts:
“Example 2: Managed MQ subscriber”
The managed MQ subscriber is the preferred pattern for most subscriber applications. The example
requires no administrative definition of queues, topics or subscriptions.
“Example 3: Unmanaged MQ subscriber” on page 193
The unmanaged subscriber is an important class of subscriber application. With it, you combine the
benefits of publish/subscribe with control of queuing and consumption of publications. The example
demonstrates different ways of combining subscriptions and queues.
“Writing publisher applications” on page 175
Get started with writing publisher applications by studying two examples. The first is modeled as closely
as possible on a point to point application putting messages on a queue, and the second demonstrates
creating topics dynamically - a more common pattern for publisher applications.

Example 2: Managed MQ subscriber:

The managed MQ subscriber is the preferred pattern for most subscriber applications. The example
requires no administrative definition of queues, topics or subscriptions.

This simplest kind of managed subscriber typically uses a non-durable subscription. The example focuses
on a non-durable subscription. The subscription lasts only as long as the lifetime of the subscription
handle from MQSUB. Any publications that match the topic string during the lifetime of the subscription
are sent to the subscription queue (and possibly a retained publication if the flag
MQSO_NEW_PUBLICATIONS_ONLY is not set or defaulted, an earlier publication matching the topic string was
retained, and the publication was persistent or the queue manager has not terminated, since the
publication was created).

You can also use a durable subscription with this pattern. Typically if a managed durable subscription is
used it is done for reliability reasons, rather than to establish a subscription that, without any errors
occurring, would outlive the subscriber . For more information about different lifecycles associated with
managed, unmanaged, durable and non-durable subscriptions see the related topics section.

Durable subscriptions are often associated with persistent publications, and non-durable subscriptions
with non-persistent publications, but there is no necessary relationship between subscription durability
and publication persistence. All four combinations of persistence and durability are possible.

X:\Subscribe1\Debug>Subscribe1
Optional parameter: subscriptionQueue
Waiting 10 seconds for publications from STOCKTICKER
Received publication "129"
Completion code 0 and Return code 0

Figure 23. Output from MQ publication consumer

Developing applications 187

For the managed non-durable case considered, the queue manager creates a subscription queue that is
purged and deleted when the queue is closed. The publications are removed from the queue when the
non-durable subscription is closed.

The valuable facets of the managed non-durable pattern exemplified by this code are as follows:
1. On demand subscription: the subscription topic string is dynamic. It is provided by the application

when it runs.
2. Self managing queue: the subscription queue is self defining and managing.
3. Self managing subscription lifecycle: non-durable subscriptions only exist for the duration of the

subscriber application.
v If you define a durable managed subscription, then it results in a permanent subscription queue and

publications continue to be stored on it with no subscriber programs being active. The queue
manager deletes the queue (and clears any unretrieved publications from it) only after the
application or administrator has chosen to delete the subscription. The subscription can be deleted
using an administrative command, or by closing the subscription with the MQCO_REMOVE_SUB option.

v Consider setting SubExpiry for durable subscriptions so that publications cease to be sent to the
queue and the subscriber can consume any remaining publications before removing the
subscription and causing the queue manager to delete the queue and any remaining publications on
it.

4. Flexible topic string deployment: Subscription topic management is simplified by defining the root
part of the subscription using an administratively defined topic. The root part of the topic tree is then
hidden from the application. By hiding the root part an application can be deployed without the
application inadvertently creating a topic tree that overlaps with another topic tree created by another
instance, or another application.

5. Administered topics: by using a topic string in which the first part matches an administratively
defined topic object, publications are managed according to the attributes of the topic object.
v For example, if the first part of the topic string matches the topic string associated with a clustered

topic object, then the subscription can receive publications from other members of the cluster.
v The selective matching of administratively defined topic objects and programmatically defined

subscriptions enables you to combine the benefits of both. The administrator provides attributes for
topics, and the programmer dynamically defines sub-topics without being concerned about the
management of topics.

v It is the resultant topic string which is used to match the topic object that provides the attributes
associated with the topic, and not necessarily the topic object named in sd.Objectname, although
they typically turn out to be one and the same. See “Example 2: Publisher to a variable topic” on
page 180.

By making the subscription durable in the example, publications continue to be sent to the subscription
queue after the subscriber has closed the subscription with the MQCO_KEEP_SUB option. The queue
continues to receive publications when the subscriber is not active. You can override this behavior by
creating the subscription with the MQSO_PUBLICATIONS_ON_REQUEST option and using MQSUBRQ to request the
retained publication.

The subscription can be resumed later by opening the subscription with the MQCO_RESUME option.

You can use the queue handle, Hobj, returned by MQSUB in a number of ways. The queue handle is used in
the example to inquire on the name of the subscription queue. Managed queues are opened using the
default model queues SYSTEM.NDURABLE.MODEL.QUEUE or SYSTEM.DURABLE.MODEL.QUEUE. You can override
the defaults by providing your own durable and non-durable model queues on a topic by topic basis as
properties of the topic object associated with the subscription.

188 IBM MQ: Programming

Regardless of the attributes inherited from the model queues, you cannot reuse a managed queue handle
to create an additional subscription. Nor can you obtain another handle for the managed queue by
opening the managed queue a second time using the returned queue name. The queue behaves as if it
has been opened for exclusive input.

Unmanaged queues are more flexible than managed queues. You can, for example share unmanaged
queues, or define multiple subscriptions on the one queue. The next example, “Example 3: Unmanaged
MQ subscriber” on page 193, demonstrates how to combine subscriptions with an unmanaged
subscription queue.

Note: The compact coding style is intended for readability not production use.

There are some additional comments to make about the declarations in this example.

The results are shown in Figure 26 on page 192.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>

void inquireQname(MQHCONN HConn, MQHOBJ Hobj, MQCHAR48 qName);

int main(int argc, char **argv)
{

MQCHAR48 topicNameDefault = "STOCKS";
char topicStringDefault[] = "IBM/PRICE";
MQCHAR48 qmName = ""; /* Use default queue manager */
MQCHAR48 qName = ""; /* Allocate to query queue name */
char publicationBuffer[101]; /* Allocate to receive messages */
char resTopicStrBuffer[151]; /* Allocate to resolve topic string */

MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
MQHOBJ Hobj = MQHO_NONE; /* publication queue handle */
MQHOBJ Hsub = MQSO_NONE; /* subscription handle */
MQLONG CompCode = MQCC_OK; /* completion code */
MQLONG Reason = MQRC_NONE; /* reason code */
MQLONG messlen = 0;
MQSD sd = {MQSD_DEFAULT}; /* Subscription Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

char * topicName = topicNameDefault;
char * topicString = topicStringDefault;
char * publication = publicationBuffer;
char * resTopicStr = resTopicStrBuffer;
memset(resTopicStr, 0, sizeof(resTopicStrBuffer));

switch(argc){ /* Replace defaults with args if provided */
default:

topicString = argv[2];
case(2):

if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */
topicName = argv[1];

else
*topicName = ’\0’;

case(1):
printf("Optional parameters: topicName, topicString\nValues \"%s\" \"%s\"\n",

topicName, topicString);
}

Figure 24. Managed MQ subscriber - part 1: declarations and parameter handling.

Developing applications 189

MQHOBJ Hobj = MQHO_NONE;
You cannot explicitly open a non-durable managed subscription queue to receive publications,
but you do need to allocate storage for the object handle the queue manager returns when it
opens the queue for you. It is important to initialize the handle to MQHO_OBJECT. This indicates to
the queue manager that it needs to return a queue handle to the subscription queue.

MQSD sd = {MQSD_DEFAULT};
The new subscription descriptor, used in MQSUB.

MQCHAR48 qName;
Although the example doesn't require knowledge of the subscription queue, the example does
inquire the name of the subscription queue - the MQINQ binding is a little awkward in the C
language, so you might find this part of the example useful to study.

190 IBM MQ: Programming

do {
MQCONN(qmName, &Hconn, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
strncpy(sd.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
sd.ObjectString.VSPtr = topicString;
sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
sd.Options = MQSO_CREATE | MQSO_MANAGED | MQSO_NON_DURABLE | MQSO_FAIL_IF_QUIESCING ;
sd.ResObjectString.VSPtr = resTopicStr;
sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;
MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;
gmo.WaitInterval = 10000;
inquireQname(Hconn, Hobj, qName);
printf("Waiting %d seconds for publications matching \"%s\" from \"%-0.48s\"\n",

gmo.WaitInterval/1000, resTopicStr, qName);
do {

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;
memset(publicationBuffer, 0, sizeof(publicationBuffer));
MQGET(Hconn, Hobj, &md, &gmo, sizeof(publicationBuffer-1),

publication, &messlen, &CompCode, &Reason);
if (Reason == MQRC_NONE)

printf("Received publication \"%s\"\n", publication);
}
while (CompCode == MQCC_OK);
if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;
MQCLOSE(Hconn, &Hsub, MQCO_REMOVE_SUB, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQDISC(&Hconn, &CompCode, &Reason);

} while (0);
printf("Completion code %d and Return code %d\n", CompCode, Reason);

return;
}
void inquireQname(MQHCONN Hconn, MQHOBJ Hobj, MQCHAR48 qName) {
#define _selectors 1
#define _intAttrs 1

MQLONG select[_selectors] = {MQCA_Q_NAME}; /* Array of attribute selectors */
MQLONG intAttrs[_intAttrs]; /* Array of integer attributes */
MQLONG CompCode, Reason;
MQINQ(Hconn, Hobj, _selectors, select, _intAttrs, intAttrs, MQ_Q_NAME_LENGTH, qName,

&CompCode, &Reason);
if (CompCode != MQCC_OK) {

printf("MQINQ failed with Condition code %d and Reason %d\n", CompCode, Reason);
strcpy(qName, "unknown queue");

}
return;

}

Figure 25. Managed MQ subscriber - part 2: code body.

Developing applications 191

There are some additional comments to make about the code in this example.

strncpy(sd.ObjectName, topicName, MQ_Q_NAME_LENGTH);
If topicName is null or blank (default value), the topic name is not used to compute the resolved
topic string.

sd.ObjectString.VSPtr = topicString;
Rather than solely use a predefined topic object, in this example the programmer provides a topic
object and a topic string, that are combined by MQSUB. Notice the topic string is a MQCHARV
structure.

sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
An alternative to setting the length of a MQCHARV field.

sd.Options = MQSO_CREATE | MQSO_MANAGED | MQSO_NON_DURABLE | MQSO_FAIL_IF_QUIESCING;
After defining the topic string, the sd.Options flags need the most careful attention. There are
many options, the example specifies only the most commonly used ones. The other options use
the default values.
1. As the subscription is non-durable, that is, it has a lifetime of the open subscription in the

application, set the MQSO_CREATE flag. You can also set the (default) MQSO_NON_DURABLE flag for
readability.

2. Complementing MQSO_CREATE is MQSO_RESUME. Both flags can be set together; the queue
manager either creates a new subscription or resumes an existing subscription, whichever is
appropriate. However, if you do specify MQSO_RESUME you must also initialize the MQCHARV
structure for sd.SubName, even if there is no subscription to resume. Failure to initialize
SubName results in a return code of 2440: MQRC_SUB_NAME_ERROR from MQSUB.

Note: MQSO_RESUME is always ignored for a non-durable managed subscription: but specifying
it without initializing the MQCHARV structure for sd.SubName does cause the error.

3. In addition there is a third flag affecting how the subscription is opened, MQSO_ALTER. Given
the correct permissions, the properties of a resumed subscription are changed to match other
attributes specified in MQSUB.

Note: At least one of the MQSO_CREATE, MQSO_RESUME and MQSO_ALTER flags must be specified.
See Options (MQLONG). There are examples of using all three flags in “Example 3:
Unmanaged MQ subscriber” on page 193.

4. Set MQSO_MANAGED for the queue manager to manage the subscription for you automatically.

sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
Optionally, omit setting the length of MQCHARV for null terminated strings and use the null
terminator flag instead.

sd.ResObjectString.VSPtr = resTopicStr;
The resulting topic string is echoed in first printf in the program. Set up MQCHARV
ResObjectString for IBM MQ to return the resolved string back to the program.

W:\Subscribe2\Debug>solution2
Optional parameters: topicName, topicString
Values "STOCKS" "IBM/PRICE"
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from "SYSTEM.MANAGED.NDURABLE.48A0AC7403300020 "
Received publication "150"
Completion code 0 and Return code 0

W:\Subscribe2\Debug>solution2 / NYSE/IBM/PRICE
Optional parameters: topicName, topicString
Values "" "NYSE/IBM/PRICE"
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from "SYSTEM.MANAGED.NDURABLE.48A0AC7403310020 "
Received publication "150"
Completion code 0 and Return code 0

Figure 26. Output from managed MQ subscriber

192 IBM MQ: Programming

Note: resTopicStringBuffer is initialized to nulls in memset(resTopicStr, 0,
sizeof(resTopicStrBuffer)). Returned topic strings do not end with a trailing null.

sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;
Set the buffer size of the sd.ResObjectString to one less than its actual size. This prevents
overwriting the null terminator that is provided, in case the resolved topic string fills the entire
buffer.

Note: No error is returned if the topic string is longer than sizeof(resTopicStrBuffer)-1. Even if
VSLength > VSBufSiz the length returned in sd.ResObjectString.VSLength is the length of the
complete string and not necessarily the length of the returned string. Test
sd.ResObjectString.VSLength < sd.ResObjectString.VSBufSiz to confirm the topic string is
complete.

MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
The MQSUB function creates a subscription. If it is non-durable you are probably not interested in
its name, though you can inspect its status in IBM MQ Explorer. You can provide the sd.SubName
parameter as input, so you know what name to look for; you obviously have to avoid name
clashes with other subscriptions.

MQCLOSE(Hconn, &Hsub, MQCO_REMOVE_SUB, &CompCode, &Reason);
Closing both the subscription and the subscription queue is optional. In the example the
subscription is closed, but not the queue. The MQCLOSE MQCO_REMOVE_SUB option is the default in
this case anyway as the subscription is non-durable. Using MQCO_KEEP_SUB is an error.

Note: the subscription queue is not closed by MQSUB, and its handle, Hobj, remains valid until the
queue is closed by MQCLOSE or MQDISC. If the application terminates prematurely, the queue and
subscription are cleaned up by the queue manager sometime after application termination.

Related concepts:
“Example 1: MQ Publication consumer” on page 184
The MQ Publication consumer is an IBM MQ message consumer that does not subscribe to topics itself.
“Example 3: Unmanaged MQ subscriber”
The unmanaged subscriber is an important class of subscriber application. With it, you combine the
benefits of publish/subscribe with control of queuing and consumption of publications. The example
demonstrates different ways of combining subscriptions and queues.
“Writing publisher applications” on page 175
Get started with writing publisher applications by studying two examples. The first is modeled as closely
as possible on a point to point application putting messages on a queue, and the second demonstrates
creating topics dynamically - a more common pattern for publisher applications.

Example 3: Unmanaged MQ subscriber:

The unmanaged subscriber is an important class of subscriber application. With it, you combine the
benefits of publish/subscribe with control of queuing and consumption of publications. The example
demonstrates different ways of combining subscriptions and queues.

The unmanaged pattern is more commonly associated with durable subscriptions than non-durable.
Typically the lifecycle of a subscription created by an unmanaged subscriber is independent of the
lifecycle of the subscribing application itself. By making the subscription durable the subscription receives
publications even when no subscribing application is active.

You can create durable managed subscriptions to achieve the same result, but some applications require
more flexibility and control over queues and messages than is possible with a managed subscription. For
a durable managed subscription, the queue manager creates a permanent queue for the publications that
match the subscription topic. It deletes the queue and associated publications when the subscription is
deleted.

Developing applications 193

Typically durable managed subscriptions are used if the lifecycle of the application and the subscription is
essentially the same, but hard to guarantee. By making the subscription durable, and having the
publisher create persistent publications, there are no lost messages should the queue manager or
subscriber terminate prematurely and need to be recovered.

The queue manager implicitly opens the durable managed subscription queue for a subscriber in such a
way that shared processing of the queue is not possible. In addition, you cannot create more than one
subscription for each managed queue and you may find the queues harder to manage because you have
less control over the names of the queues. For these reasons, consider whether the unmanaged MQ
subscriber is a better fit for applications requiring durable subscriptions than the managed MQ subscriber.

The code in Figure 29 on page 200 demonstrates an unmanaged durable subscription pattern. For
illustration the code also creates unmanaged, non-durable subscriptions. This example illustrates the
following pattern facets:
v On demand subscriptions: the subscription topic strings are dynamic. They are provided by the

application when it runs.
v Simplified subscription topic management: subscription topic management is simplified by defining the

root part of the subscription topic string using an administratively defined topic. This hides the root
part of the topic tree from the application. By hiding the root part a subscriber can be deployed to
different topic trees.

v Flexible subscription management: you can define a subscription either administratively, or create it
on-demand in a subscriber program. There is no difference between administratively and
programmatically created subscriptions, except an attribute that shows how the subscription was
created. There is a third type of subscription that is created automatically by the queue manager for
distribution of subscriptions. All subscriptions are displayed in the IBM MQ Explorer.

v Flexible association of subscriptions with queues: a predefined local queue is associated with a
subscription by the MQSUB function. There are different ways to use MQSUB to associate subscriptions
with queues:
– Associate a subscription with a queue having no existing subscriptions, MQSO_CREATE + (Hobj from

MQOPEN).
– Associate a new subscription with a queue having existing subscriptions, MQSO_CREATE + (Hobj from

MQOPEN).
– Move a existing subscription to a different queue, MQSO_ALTER + (Hobj from MQOPEN).
– Resume an existing subscription associated with an existing queue, MQSO_RESUME + (Hobj =

MQHO_NONE), or MQSO_RESUME + (Hobj = from MQOPEN of queue with existing subscription).
– By combining MQSO_CREATE | MQSO_RESUME | MQSO_ALTER in different combinations, you can cater for

different input states of the subscription and the queue without having to code multiple versions of
MQSUB with different sd.Options values.

– Alternatively, by coding a specific choice of MQSO_CREATE | MQSO_RESUME | MQSO_ALTER the queue
manager returns an error (Table 25 on page 196) if the states of the subscription and queue
provided as input to MQSUB are inconsistent with the value of sd.Options. Figure 35 on page 203
shows the results of issuing MQSUB for Subscription X with different individual settings of the
sd.Options flag, and passing it three different object handles.

Explore different inputs to the example program in Figure 28 on page 198 to become familiar with
these different kinds of errors. One common error, RC = 2440, that is not included in the cases listed in
the table, is a subscription name error. it is commonly caused by passing a null or invalid subscription
name with MQSO_RESUME or MQSO_ALTER.

v Multiprocessing: You can share among many consumers the work of reading publications. The
publications all go onto the single queue associated with the subscription topic. Consumers have a
choice of opening the queue directly using MQOPEN or resuming the subscription using MQSUB.

194 IBM MQ: Programming

v Subscription concentration: multiple subscriptions can be created on the same queue. Be cautious with
this capability as it can lead to overlapping subscriptions, and receiving the same publication multiple
times. The MQSO_GROUP_SUB option eliminates duplicate publications caused by overlapping
subscriptions.

v Subscriber and consumer separation: As well as the three consumer models illustrated in the examples,
another model is to separate the consumer from the subscriber. It is a variation of the unmanaged MQ
Subscriber, but rather than issue the MQOPEN and MQSUB in the same program, one program subscribes to
publications, and another program consumes them. For example, the subscriber might be part of a
publish/subscribe cluster and the consumer attached to a queue manager outside the queue manager
cluster. The consumer receives publications through standard distributed queuing by defining the
subscription queue as a remote queue definition.

Understanding the behavior of MQSO_CREATE | MQSO_RESUME | MQSO_ALTER is important, especially if you
plan to simplify your code by using combinations of these options. Study the table Table 25 on page 196
that shows the results of passing different queue handles to MQSUB, and the results of running the
example program shown in Figure 30 on page 201 to Figure 35 on page 203.

The scenario used to construct the table has one subscription X and two queues, A and B. The subscription
name parameter sd.SubName is set to X, the name of a subscription attached to queue A. Queue B has no
subscription attached to it.

In Table 25 on page 196, MQSUB is passed subscription X and the queue handle to queue A. The results
from subscription options are as follows:
v MQSO_CREATE fails because the queue handle corresponds to the queue A which already has a

subscription to X. Contrast this behavior to the successful call. That call succeeds because queue B does
not have a subscription to X attached to it.

v MQSO_RESUME succeeds because the queue handle corresponds to the queue A which already has a
subscription to X. In contrast, the call fails where the subscription X does not exist on queue A.

v MQSO_ALTER behaves in a similar way to MQSO_RESUME with respect to opening the subscription and
queue. However if the attributes contained within the subscription descriptor passed to MQSUB differ
from the attributes of the subscription, MQSO_RESUME fails, whereas MQSO_ALTER succeeds as long as the
program instance has permission to alter the attributes. Note that you can never change the topic string
in a subscription; but rather than return an error, MQSUB ignores the topic name and topic string values
in the subscription descriptor and uses the values in the existing subscription.

Next, look at Table 25 on page 196 where MQSUB is passed subscription X and the queue handle to
queue B. The results from subscription options are as follows:
v MQSO_CREATE succeeds and creates subscription X on queue B because this is a new subscription on

queue B.
v MQSO_RESUME fails. MQSUB looks for subscription X on queue B and does not find it, but rather than

returning RC = 2428 - subscription X does not exist, it returns RC = 2019 - Subscription queue does not
match queue object handle. The behavior of the third option MQSO_ALTER suggests the reason for this
unexpected error. MQSUB expects the queue handle to point to a queue with a subscription. It checks this
first before checking whether the subscription named in sd.SubName exists.

v MQSO_ALTER succeeds, and moves the subscription from queue A to queue B.

A case that is not shown in the table is if the subscription name of the subscription on queue A does not
match the subscription name in sd.SubName. That call fails with a RC = 2428 - subscription X does not exist
on Queue A.

Developing applications 195

Table 25. Errors from MQSUB with different queue handles and subscription combinations

Queue A
Subscription X

Queue B
No subscription

Queue A
No subscription

Queue B
No subscription

Hobj for Queue A
passed to MQSUB

MQSO_CREATE
RC = 2432 - Subscription X already
exists on Queue A

MQSO_RESUME
Resumes subscription X on Queue A

MQSO_ALTER
Resumes subscription X on Queue A
and makes permitted alterations

MQSO_CREATE
Creates subscription X on Queue A

MQSO_RESUME
RC = 2428 - Subscription X does not
exist on Queue A

MQSO_ALTER
RC = 2428 - Subscription X does not
exist on Queue A

Hobj for Queue B
passed to MQSUB

MQSO_CREATE
Creates new subscription X on
Queue B

MQSO_RESUME
RC = 2019 - Subscription queue does
not match queue object handle

MQSO_ALTER
Move subscription X from Queue A
to Queue B

MQSO_CREATE
Creates new subscription X on Queue
B

MQSO_RESUME
RC = 2428 - subscription X does not
exist on Queue B

MQSO_ALTER
RC = 2428 - subscription X does not
exist on Queue B

MQHO_NONE
passed to MQSUB

MQSO_CREATE
RC = 2019 - Bad object handle: set
MQSO_MANAGED flag to create a
managed subscription and create a
managed queue

MQSO_RESUME
Resumes subscription X on Queue A
and returns Hobj to Queue A

MQSO_ALTER
Resumes subscription X on Queue A,
returns Hobj to Queue A and makes
permitted alterations

MQSO_CREATE
RC = 2019 - Bad object handle: set
MQSO_MANAGED flag to create a
managed subscription and create a
managed queue

MQSO_RESUME
RC = 2428 - No subscription X

MQSO_ALTER
RC = 2019 - Bad object handle: No
queue A or B

Note: The compact coding style is intended for readability not production use.

196 IBM MQ: Programming

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>

void inquireQname(MQHCONN HConn, MQHOBJ Hobj, MQCHAR48 qName);

int main(int argc, char **argv)
{

MQCHAR48 topicNameDefault = "STOCKS";
char topicStringDefault[] = "IBM/PRICE";
char subscriptionNameDefault[] = "IBMSTOCKPRICESUB";
char subscriptionQueueDefault[] = "STOCKTICKER";
char publicationBuffer[101]; /* Allocate to receive messages */
char resTopicStrBuffer[151]; /* Allocate to resolve topic string */
MQCHAR48 qmName = ""; /* Default queue manager */
MQCHAR48 qName = ""; /* Allocate storage for MQINQ */

MQHCONN Hconn = MQHC_UNUSABLE_HCONN; /* connection handle */
MQHOBJ Hobj = MQHO_NONE; /* subscription queue handle */
MQHOBJ Hsub = MQSO_NONE; /* subscription handle */
MQLONG CompCode = MQCC_OK; /* completion code */
MQLONG Reason = MQRC_NONE; /* reason code */
MQLONG messlen = 0;
MQOD od = {MQOD_DEFAULT}; /* Unmanaged subscription queue */
MQSD sd = {MQSD_DEFAULT}; /* Subscription Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
MQLONG sdOptions = MQSO_CREATE | MQSO_RESUME | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

char * topicName = topicNameDefault;
char * topicString = topicStringDefault;
char * subscriptionName = subscriptionNameDefault;
char * subscriptionQueue = subscriptionQueueDefault;
char * publication = publicationBuffer;
char * resTopicStr = resTopicStrBuffer;
memset(resTopicStrBuffer, 0, sizeof(resTopicStrBuffer));

Figure 27. Unmanaged MQ subscriber - part 1: declarations.

Developing applications 197

Additional comments about the parameter handling in this example are as follows:

switch((argv[5][0]))
You have the choice of entering A lter | C reate | R esume in parameter 5, to test the effect of
overriding part of the MQSUB option setting used by default in the example. The default setting
used by the example is MQSO_CREATE | MQSO_RESUME | MQSO_DURABLE.

Note: Setting MQSO_ALTER or MQSO_RESUME without setting MQSO_DURABLE is an error, and
sd.SubName must be set and refer to a subscription that can be resumed or altered.

switch(argc){ /* Replace defaults with args if provided */
default:

switch((argv[5][0])) {
case(’A’): sdOptions = MQSO_ALTER | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

break;
case(’C’): sdOptions = MQSO_CREATE | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

break;
case(’R’): sdOptions = MQSO_RESUME | MQSO_DURABLE | MQSO_FAIL_IF_QUIESCING;

break;
default: ;

}
case(5):

if (strcmp(argv[4],"/")) /* "/" invalid = No subscription */
subscriptionQueue = argv[4];

else {
*subscriptionQueue = ’\0’;
if (argc > 5) {

if (argv[5][0] == ’C’) {
sdOptions = sdOptions + MQSO_MANAGED;

}
}
else

sdOptions = sdOptions + MQSO_MANAGED;
}

case(4):
if (strcmp(argv[3],"/")) /* "/" invalid = No subscription */

subscriptionName = argv[3];
else {

*subscriptionName = ’\0’;
sdOptions = sdOptions - MQSO_DURABLE;

}
case(3):

if (strcmp(argv[2],"/")) /* "/" invalid = No topic string */
topicString = argv[2];

else
*topicString = ’\0’;

case(2):
if (strcmp(argv[1],"/")) /* "/" invalid = No topic object */

topicName = argv[1];
else

*topicName = ’\0’;
case(1):

sd.Options = sdOptions;
printf("Optional parameters: "
printf("topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)\n");
printf("Values \"%-.48s\" \"%s\" \"%s\" \"%-.48s\" sd.Options=%d\n",

topicName, topicString, subscriptionName, subscriptionQueue, sd.Options);
}

Figure 28. Unmanaged MQ subscriber - part 2: parameter handling.

198 IBM MQ: Programming

*subscriptionQueue = ’\0’;
sdOptions = sdOptions + MQSO_MANAGED;

If the default subscription queue, STOCKTICKER is replaced by a null string then as long as
MQSO_CREATE is set, the example sets the MQSO_MANAGED flag and creates a dynamic subscription
queue. If Alter or Resume are set in the fifth parameter the behavior of the example will depend
on the value of subscriptionName.

*subscriptionName = ’\0’;
sdOptions = sdOptions - MQSO_DURABLE;

If the default subscription, IBMSTOCKPRICESUB, is replaced by a null string then the example
removes the MQSO_DURABLE flag. If you run the example providing the default values for the other
parameters an additional temporary subscription destined to STOCKTICKER is created and receives
duplicate publications. Next time you run the example, without any parameters, you receive just
one publication again.

Developing applications 199

Additional comments on the code in this example are as follows:

if (strlen(subscriptionQueue))
If there is no subscription queue name then the example uses MQHO_NONE as the value of Hobj.

do {
MQCONN(qmName, &Hconn, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
if (strlen(subscriptionQueue)) {

strncpy(od.ObjectName, subscriptionQueue, MQ_Q_NAME_LENGTH);
MQOPEN(Hconn, &od, MQOO_INPUT_AS_Q_DEF | MQOO_FAIL_IF_QUIESCING | MQOO_INQUIRE,

&Hobj, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;

}
strncpy(sd.ObjectName, topicName, MQ_TOPIC_NAME_LENGTH);
sd.ObjectString.VSPtr = topicString;
sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
sd.SubName.VSPtr = subscriptionName;
sd.SubName.VSLength = MQVS_NULL_TERMINATED;
sd.ResObjectString.VSPtr = resTopicStr;
sd.ResObjectString.VSBufSize = sizeof(resTopicStrBuffer)-1;
MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
gmo.Options = MQGMO_WAIT | MQGMO_NO_SYNCPOINT | MQGMO_CONVERT;
gmo.WaitInterval = 10000;
inquireQname(Hconn, Hobj, qName);
printf("Waiting %d seconds for publications matching \"%s\" from %-0.48s\n",

gmo.WaitInterval/1000, resTopicStr, qName);
do {

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;
MQGET(Hconn, Hobj, &md, &gmo, sizeof(publication), publication, &messlen, &CompCode, &Reason);
if (Reason == MQRC_NONE)

printf("Received publication \"%s\"\n", publication);
}
while (CompCode == MQCC_OK);
if (CompCode != MQCC_OK && Reason != MQRC_NO_MSG_AVAILABLE) break;
MQCLOSE(Hconn, &Hsub, MQCO_NONE, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
if (CompCode != MQCC_OK) break;
MQDISC(&Hconn, &CompCode, &Reason);

} while (0);
printf("Completion code %d and Return code %d\n", CompCode, Reason);

}
void inquireQname(MQHCONN Hconn, MQHOBJ Hobj, MQCHAR48 qName) {
#define _selectors 1
#define _intAttrs 1

MQLONG select[_selectors] = {MQCA_Q_NAME}; /* Array of attribute selectors */
MQLONG intAttrs[_intAttrs]; /* Array of integer attributes */
MQLONG CompCode, Reason;
MQINQ(Hconn, Hobj, _selectors, select, _intAttrs, intAttrs, MQ_Q_NAME_LENGTH, qName, &CompCode, &Reason);
if (CompCode != MQCC_OK) {

printf("MQINQ failed with Condition code %d and Reason %d\n", CompCode, Reason);
strncpy(qName, "unknown queue", MQ_Q_NAME_LENGTH);

}
return;

}

Figure 29. Unmanaged MQ subscriber - part 3: code body.

200 IBM MQ: Programming

MQOPEN(...);
The subscription queue is opened and the queue handle saved in Hobj.

MQSUB(Hconn, &sd, &Hobj, &Hsub, &CompCode, &Reason);
The subscription is opened using the Hobj passed from MQOPEN (or MQHO_NONE if there is no
subscription queue name). An unmanaged queue can be resumed without explicitly opening it
with an MQOPEN.

MQCLOSE(Hconn, &Hsub, MQCO_NONE, &CompCode, &Reason);
The subscription is closed using the subscription handle. Depending on whether the subscription
is durable or not, the subscription is closed with an implicit MQCO_KEEP_SUB or MQCO_REMOVE_SUB.
You can close a durable subscription with MQCO_REMOVE_SUB, but you cannot close a non-durable
subscription with MQCO_KEEP_SUB. The action of MQCO_REMOVE_SUB is to remove the subscription
which stops any further publications being sent to the subscription queue.

MQCLOSE(Hconn, &Hobj, MQCO_NONE, &CompCode, &Reason);
No special action is taken if the subscription is unmanaged. If the queue is managed and the
subscription closed with either an explicit or implicit MQCO_REMOVE_SUB, then all publications are
purged from the queue and queue deleted at this point.

Results from the example illustrate aspects of publish/subscribe:

In Figure 30 the example starts by publishing 130 on the NYSE/IBM/PRICE topic.

In Figure 31 execution of the example using default parameters receives the retained publication 130. The
provided topic object and topic string are ignored, as shown in Figure 35 on page 203. The topic object
and topic string are always taken from the subscription object, when one is provided, and the topic string
is immutable. The actual behavior of the example depends on the choice or combination of MQSO_CREATE,
MQSO_RESUME, and MQSO_ALTER. In this example MQSO_RESUME is the option selected.

In (Figure 32 on page 202) no publications are received, because the durable subscription has already
received the retained publication. In this example, the subscription is resumed by providing only the
subscription name without the queue name. If the queue name was provided, the queue would be
opened first and the handle passed to MQSUB.

Note: The 2038 error from MQINQ is due to the implicit MQOPEN of STOCKTICKER by MQSUB not including
the MQOO_INQUIRE option. Avoid the 2038 return code from MQINQ by opening the queue explicitly.

W:\Subscribe3\Debug>..\..\Publish2\Debug\publishstock
Provide parameters: TopicObject TopicString Publication
Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"
Published "130" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

Figure 30. Publish 130 to NYSE/IBM/PRICE

W:\Subscribe3\Debug>solution3
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8206
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Completion code 0 and Return code 0

Figure 31. Receive the retained publication

Developing applications 201

In Figure 33, the example creates a non-durable unmanaged subscription using STOCKTICKER as the
destination. Because this is a new subscription, it receives the retained publication.

In Figure 34, to demonstrate overlapping subscriptions, another publication is sent, changing the retained
publication. Next, a new non-durable, unmanaged subscription is created by not providing a subscription
name. The retained publication is received twice, once for the new subscription, and once for the durable
IBMSTOCKPRICESUB subscription that is still active on the STOCKTICKER queue. The example is an illustration
that it is the queue that has subscriptions, and not the application. Despite not referring to the
IBMSTOCKPRICESUB subscription in this invocation of the application, the application receives the
publication twice: once from the durable subscription that was created administratively, and once from
the non-durable subscription created by the application itself.

In Figure 35 on page 203 the example demonstrates that providing a new topic string and an existing
subscription does not result in a changed subscription.
1. In the first case, Resume resumes the existing subscription, as you might expect, and ignores the

changed topic string.
2. In the second case, Alter causes an error, RC = 2510, Topic not alterable.
3. In the third example, Create causes an error RC = 2432, Sub already exists.

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE IBMSTOCKPRICESUB / Resume
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "IBMSTOCKPRICESUB" "" sd.Options=8204
MQINQ failed with Condition code 2 and Reason 2038
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from unknown queue
Completion code 0 and Return code 0

Figure 32. Resume subscription

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE / STOCKTICKER Create
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "" "STOCKTICKER" sd.Options=8194
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Completion code 0 and Return code 0

Figure 33. Receive retained publication with new unmanaged non durable subscription

W:\Subscribe3\Debug>..\..\Publish2\Debug\publishstock
Provide parameters: TopicObject TopicString Publication
Publish "130" to topic "STOCKS" and topic string "IBM/PRICE"
Published "130" to topic string "NYSE/IBM/PRICE"
Completion code 0 and Return code 0

W:\Subscribe3\Debug>solution3 STOCKS IBM/PRICE / STOCKTICKER Create
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "STOCKS" "IBM/PRICE" "" "STOCKTICKER" sd.Options=8194
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Received publication "130"
Completion code 0 and Return code 0

Figure 34. Overlapping subscriptions

202 IBM MQ: Programming

Related concepts:
“Example 1: MQ Publication consumer” on page 184
The MQ Publication consumer is an IBM MQ message consumer that does not subscribe to topics itself.
“Example 2: Managed MQ subscriber” on page 187
The managed MQ subscriber is the preferred pattern for most subscriber applications. The example
requires no administrative definition of queues, topics or subscriptions.
“Writing publisher applications” on page 175
Get started with writing publisher applications by studying two examples. The first is modeled as closely
as possible on a point to point application putting messages on a queue, and the second demonstrates
creating topics dynamically - a more common pattern for publisher applications.

Publish/subscribe lifecycles:

Consider the lifecycles of topics, subscriptions, subscribers, publications, publishers and queues in
designing publish/subscribe applications.

The lifecycle of an object, such as a subscription, starts with its creation and ends with its deletion. It may
also include other states and changes that it goes through, such as temporary suspension, having parent
and children topics, expiration and deletion.

Traditionally IBM MQ objects such as queues are created administratively, or by administrative programs
using Programmable Command Format (PCF). Publish/subscribe is different in providing the MQSUB and
MQCLOSE API verbs to create and delete subscriptions, having the concept of managed subscriptions that
not only create and delete queues, but also clean up unconsumed messages, and having associations
between administratively created topic objects and programmatically or administratively created topic
strings.

This functional richness caters for a wide range of publish/subscribe requirements, and also simplifies
designing some common patterns of publish/subscribe application. Managed subscriptions, for example,
simplify both the programming and administration of a subscription that is intended to last only as long
as the program that created it. Unmanaged subscriptions simplify programming where there is a looser
connection between subscribing and consuming publications. Centrally created subscriptions are useful
where the pattern is one of routing publication traffic to consumers based on a centralized model of
control, for example sending flight information to automated gates, whereas programmatically created
subscriptions might be used if gate staff are responsible for subscribing to the passengers records for that
flight, by entering a flight number at a gate.

In this last example a managed durable subscription might be appropriate: managed, because the
subscriptions are being created very often, and have a clear endpoint when the gate closes and the
subscription can be programmatically removed; durable, to avoid losing a passenger record due to the

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Resume
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8204
Waiting 10 seconds for publications matching "NYSE/IBM/PRICE" from STOCKTICKER
Received publication "130"
Completion code 0 and Return code 0

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Alter
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8201
Completion code 2 and Return code 2510

W:\Subscribe3\Debug>solution3 "" NASDAC/IBM/PRICE IBMSTOCKPRICESUB STOCKTICKER Create
Optional parameters: topicName, topicString, subscriptionName, subscriptionQueue, A(lter)|C(reate)|R(esume)
Values "" "NASDAC/IBM/PRICE" "IBMSTOCKPRICESUB" "STOCKTICKER" sd.Options=8202
Completion code 2 and Return code 2432

Figure 35. Subscription topics cannot be changed

Developing applications 203

gate subscriber program going down for one reason or another2 . To initiate the publication of passenger
records to the gate, a possible design would be for the gate application to both subscribe to the passenger
records using the gate number, and publish the gate opening event using the gate number. The publisher
responds to the gate opening event by publishing the passenger records - which might then also go to
other interested parties, such as billing, to record the flight is taking place, and to customer services, to
text notifications to passengers' mobile phones of the gate number.

The centrally managed subscription might use a durable unmanaged model, routing passenger lists to the
gate using a predefined queue for each gate.

The following three examples of publish/subscribe lifecycles illustrate how managed non-durable,
managed durable, and unmanaged durable subscribers interact with subscriptions, topics, queues,
publishers and the queue manager, and how the responsibilities might be divided between administration
and the subscriber programs.

Managed non-durable subscriber

Figure 36 on page 205 shows an application creating a managed non-durable subscription, getting two
messages that are published to the topic identified in the subscription, and terminating. The interactions
labeled in an italic gray font with dotted arrows are implicit.

There are some points to note.
1. The application creates a subscription on a topic that has already been published to twice. When the

subscriber receives its first publication, it receives the second publication which is the currently
retained publication.

2. The queue manager creates a temporary subscription queue as well as creating a subscription for the
topic.

3. The subscription has an expiry. When the subscription expires no more publications on the topic are
sent to this subscription, but the subscriber continues to get messages published before the
subscription expired. Publication expiry is not affected by subscription expiry.

4. The fourth publication is not placed on the subscription queue and consequently the last MQGET does
not return a publication.

5. Although the subscriber closes its subscription, it does not close its connection to the queue or the
queue manager.

6. The queue manager cleans up shortly after the application terminates. Because the subscription is
managed and non-durable, the subscription queue is deleted.

2. The publisher must send the passenger records as persistent messages to avoid other possible failures, of course.

204 IBM MQ: Programming

Managed durable subscriber

The managed durable subscriber takes the previous example a step further, and shows a managed
subscription surviving the termination and restart of the subscribing application.

There are some new points to note.
1. In this example, unlike the last, the publication topic did not exist before it was defined in the

subscription.
2. The first time the subscriber terminates, it closes the subscription with the option MQCO_KEEP_SUB. That

is the default behavior for implicitly closing a managed durable subscription.
3. When the subscriber resumes the subscription, the subscription queue is reopened.
4. The new publication 2, placed on the queue before it is reopened, is available to MQGET, even after the

subscription has been removed.
Even though the subscription is durable, the subscriber reliably receives all messages sent by the
publisher only if both the subscription is durable and the messages persistent. Message persistence
depends on the setting of the Persistent field in the MQMD of the message sent by the publisher. A
subscriber has no control over this.

5. Closing the subscription with the flag MQCO_REMOVE_SUB removes the subscription, stopping any further
publications being placed on the subscription queue. When the subscription queue is closed, then the
queue manager removes the unread publication 3, and then deletes the queue. The action is
equivalent to administratively deleting the subscription.

Note: Do not delete the queue manually, or issue MQCLOSE with the option MQCO_DELETE, or
MQCO_PURGE_DELETE. The visible implementation details of a managed subscription is not part of the
supported IBM MQ interface. The queue manager manage cannot manage a subscription reliably
unless it has complete control.

Application

Queue
manager Subscription PublisherQueue Topic

MQCONN

MQSUB

MQCLOSE

MQGET

MQGET

MQGET

Subscribe

MQOPEN

Closes open handles, deletes queue

Expiry

MQPUT

MQPUT

1

2

2

2

3

2

3

4

Figure 36. Managed non-durable subscriber lifelines

Developing applications 205

Unmanaged durable subscriber

An administrator is added in the third example: the unmanaged durable subscriber. It is a good example
to show how the administrator might interact with a publish/subscribe application.

The points to note are listed.
1. The publisher puts a message, 1, to a topic that later becomes associated with the topic object that is

used for subscription. The topic object defines a topic string that matches the topic that was published
to by using wildcards.

2. The topic has a retained publication.
3. The administrator creates a topic object, a queue and a subscription. The topic object and queue need

to be defined before the subscription.
4. The application opens the queue associated with the subscription and passes MQSUB the handle of the

queue. It could, alternatively, simply open the subscription, passing it the queue handle MQHO_NONE.
The converse is not true, it cannot resume a subscription by passing it only queue handle without a
subscription name - a queue might have multiple subscriptions.

5. The application opens the subscription using the option MQSO_RESUME even though it is the first time it
has opened the subscription. It is resuming an administratively created subscription.

Application

Queue
manager Subscription PublisherQueue Topic

MQCONN

MQCONN

MQDISC

MQDISC

MQOPEN

MQSUB(resume)

MQSUB(create)

MQGET

MQGET

MQCLOSE(keep_sub)

MQCLOSE

MQCLOSE(remove_sub)

MQCLOSE/MQDISC)

Subscribe

MQOPEN

Unsubscribe

MQPUT
MQPUT 1

1

1

2

2

3

3

2

3

4

Figure 37. Managed durable subscriber lifelines

206 IBM MQ: Programming

6. The subscriber receives the retained publication, 1. Publication 2, although published before any
publications were received by the subscriber, was published after the subscription started, and is the
second publication on the subscription queue.

Note: If the retained publication is not published as a persistent message, then it is lost after queue
manager restart.

7. In this example the subscription is durable. It is possible for a program to create an unmanaged
non-durable subscription; it should be obvious this is not something an administrator can do.

8. The effect of the option MQCO_REMOVE_SUB on closing the subscription is to remove the subscription just
as if the administrator had deleted it. This stops any further publications being sent to the queue, but
does not affect publications that are already on the queue, even when the queue is closed, unlike a
managed durable subscription.

9. The administrator later deletes the remaining message, 3, and deletes the queue.

Application

Queue
manager Subscription PublisherAdmin Queue Topic

MQCONN

MQCONN

MQDISC

MQDISC

MQOPEN

MQOPEN

MQSUB(resume)

MQSUB(resume)

MQGET

MQGET

MQCLOSE(keep_sub)

MQCLOSE

MQCLOSE(remove_sub)

MQCLOSE)

Create topic

Create queue

Clear messages

Delete queue

Create subscription
Subscribe

Unsubscribe

MQPUT

MQPUT

1

1

1

2

2

3

3

2

3

4

Figure 38. Unmanaged durable subscriber lifelines

Developing applications 207

A normal pattern for an unmanaged subscription is for queue and subscription housekeeping to be
performed by the administrator. Typically one would not attempt to emulate the behavior of a managed
subscriber and tidy up queues and subscriptions programmatically in application code. If you find
yourself needing to write management logic, question whether you can achieve the same results using a
managed pattern. It is not easy to write tightly synchronized, completely reliable management code. It is
easier to tidy up later, either manually, or using a automated management program, when you can be
sure that messages, subscriptions, and queues can be simply deleted, regardless of their state.

Publish/subscribe message properties:

Several message properties relate to IBM MQ publish/subscribe messaging.

PubAccountingToken

This is the value that will be in the AccountingToken field of the Message Descriptor (MQMD) of all
publication messages matching this subscription. AccountingToken is part of the identity context of the
message. For more information about message context, see “Message context” on page 34. For more
information about the AccountingToken field in the MQMD, see AccountingToken.

PubApplIdentityData

This is the value that will be in the ApplIdentityData field of the Message Descriptor (MQMD) of all
publication messages matching this subscription. ApplIdentityData is part of the identity context of the
message. For more information about message context, see “Message context” on page 34. For more
information about the ApplIdentityData field in the MQMD, see ApplIdentityData.

If the option MQSO_SET_IDENTITY_CONTEXT is not specified, the ApplIdentityData which will be set
in each message published for this subscription is blanks, as default context information.

If the option MQSO_SET_IDENTITY_CONTEXT is specified, the PubApplIdentityData is being generated
by the user and this field is an input field which contains the ApplIdentityData to be set in each
publication for this subscription.

PubPriority

This is the value that will be in the Priority field of the Message Descriptor (MQMD) of all publication
messages matching this subscription. For more information about the Priority field in the MQMD, see
Priority.

The value must be greater than or equal to zero; zero is the lowest priority. The following special values
can also be used:
v MQPRI_PRIORITY_AS_Q_DEF - When a subscription queue is provided in the Hobj field in the

MQSUB call, and is not a managed handle, then the priority for the message is taken from the
DefProirity attribute of this queue. If the queue so identified is a cluster queue, or there is more than
one definition in the queue-name resolution path, the priority is determined when the publication
message is put to the queue as described for Priority in the MQMD. If the MQSUB call uses a managed
handle, the priority for the message is taken from the DefPriority attribute of the model queue
associated with the topic subscribed to.

v MQPRI_PRIORITY_AS_PUBLISHED - The priority for the message is the priority of the original
publication. This is the initial value of this field.

SubCorrelId

Attention: a correlation identifier can only be passed between queue managers in a publish/subscribe
cluster, not a hierarchy.

208 IBM MQ: Programming

All publications sent to match this subscription will contain this correlation identifier in the message
descriptor. If multiple subscriptions use the same queue to get their publications from, using MQGET by
correlation id allows only publications for a specific subscription to be obtained. This correlation
identifier can either be generated by the queue manager or by the user.

If the option MQSO_SET_CORREL_ID is not specified, the correlation identifier is generated by the
queue manager and this field is an output field which contains the correlation identifier which will be set
in each message published for this subscription.

If the option MQSO_SET_CORREL_ID is specified, the correlation identifier is being generated by the
user and this field is an input field which contains the correlation identifier to be set in each publication
for this subscription. In this case, if the field contains MQCI_NONE, the correlation identifier which will
be set in each message published for this subscription will be the correlation identifier created by the
original put of the message.

If the option MQSO_GROUP_SUB is specified and the correlation identifier specified is the same as an
existing grouped subscription using the same queue and an overlapping topic string, only the most
significant subscription in the group is provided with a copy of the publication.

SubUserData

This is the subscription user data. The data provided on the subscription in this field will be included as
the MQSubUserData message property of every publication sent to this subscription.

Publication properties

Table 26 lists the publication properties that are provided with a publication message.

You can access these properties directly from the MQRFH2 folder, or retrieve them using MQINQMP.
MQINQMP accepts either the property name or MQRFH2 name as the name of the property to inquire on.

Table 26. Publication properties

Property name MQRFH2 name Type Description

MQTopicString mqps.Top MQTYPE_STRING Topic string

MQSubUserData mqps.Sud MQTYPE_STRING Subscriber user data

MQIsRetained mqps.Ret MQTYPE_BOOLEAN Retained publication

MQPubOptions mqps.Pub MQTYPE_INT32 Publication options

MQPubLevel mqps.Pbl MQTYPE_INT32 Publication level

MQPubTime mqpse.Pts MQTYPE_STRING Publication time

MQPubSeqNum mqpse.Seq MQTYPE_INT32 Publication sequence
number

MQPubStrIntData mqpse.Sid MQTYPE_STRING String/Integer data added
by the publisher

MQPubFormat mqpse.Pfmt MQTYPE_INT32 Message format:

MQRFH1

MQRFH2

PCF

Developing applications 209

Message ordering:

For a particular topic, messages are published by the queue manager in the same order as they are
received from publishing applications (subject to reordering based on message priority).

Message ordering normally means that each subscriber receives messages from a particular queue
manager, on a particular topic, from a particular publisher in the order that they are published by that
publisher.

However, as with all IBM MQ messages, it is possible for messages, occasionally, to be delivered out of
order. This can happen in the following situations:
v If a link in the network goes down and subsequent messages are rerouted along another link
v If a queue becomes temporarily full, or put-inhibited, so that a message is put to a dead-letter queue

and therefore delayed, while subsequent messages pass straight through.
v If the administrator deletes a queue manager when publishers and subscribers are still operating,

causing queued messages to be put to the dead-letter queue and subscriptions to be interrupted.

If these circumstances cannot occur, publications are always delivered in order.

Note: It is not possible to use grouped or segmented messages with Publish/Subscribe.

Intercepting publications:

You can intercept a publication, modify it, and then republish it before it reaches any other subscriber.

You might want to intercept a publication before it reaches a subscriber in order to do one of the
following actions:
v Attach additional information to the message
v Block the message
v Transform the message

You can perform the same operation on each message or vary the operation depending on the
subscription, the message, or the message header.
Related information:
MQ_PUBLISH_EXIT - Publish exit

Subscription levels:

Set the subscription level of a subscription to intercept a publication before it reaches its final subscribers.
An intercepting subscriber subscribes at a higher subscription level, and republishes at a lower
publication level. Build a chain of intercepting subscribers to perform message processing on a
publication before it is delivered to final subscribers.

Publisher
MQPUT using
PubLevel=9

First Interceptor
MQSUB using
SubLevel=9
MQPUT using
PubLevel=8

Second Interceptor
MQSUB using
SubLevel=8
MQPUT using
PubLevel=7

Final Subscriber
MQSUB using
SubLevel=1

Figure 39. Sequence of intercepting subscribers

210 IBM MQ: Programming

To intercept a publication, use the MQSD SubLevel attribute. After a message has been intercepted, it can be
transformed and then republished at a lower publication level by changing the MQPMO PubLevel attribute.
The message then goes to the final subscribers, or it is intercepted again by an intermediate subscriber at
a lower subscription level.

The intercepting subscriber typically transforms a message before republishing it. A sequence of
intercepting subscribers forms a message flow. Alternatively, you might not republish the intercepted
publication: Subscribers at lower subscription levels would not receive the message.

Ensure that the interceptor receives publications before any other subscribers. Set the subscription level of
the interceptor higher than other subscribers. By default, subscribers have a SubLevel of 1. The highest
value is 9. A publication must start with a PubLevel at least as high as the highest SubLevel. Publish
initially with the default PubLevel of 9.
v If you have one intercepting subscriber on a topic, set the SubLevel to 9.
v For multiple intercepting applications on a topic, set a lower SubLevel for each successive intercepting

subscriber.
v You can implement a maximum of 8 intercepting applications, with subscription levels from 9 down to

2 inclusive. The final recipient of the message has a SubLevel of 1.

The interceptor with the highest subscription level that is equal to, or lower than, the PubLevel of the
publication receives the publication first. Configure only one intercepting subscriber for a topic at a
particular subscription level. Having multiple subscribers at a particular subscription level results in
multiple copies of the publication being sent to the final set of subscribing applications.

A subscriber with a SubLevel of 0 is used as a catchall. It receives the publication if no final subscriber
gets the message. A subscriber with SubLevel of 0 might be used to monitor the publications that no
other subscribers received.

Programming an intercepting subscriber

Use the subscription options described in Table 27.

Table 27. Subscription options for intercepting subscribers

Subscription option Notes

MQSO_SET_CORREL_ID and SubCorrelId set to MQCI_NONE Keep the CorrelId of the intercepted publication the
same as the original publication.
Note: You cannot pass the correlation identifier of a
publication in a hierarchy. The field is used by the queue
manager.

PubPriority set to MQPRI_PRIORITY_AS_PUBLISHED Keep the priority of the intercepted publication the same
as the original publication.

The options in Table 27 must be used by all the intercepting subscribers. The result is that the correlation
identifier and message priority are not modified from the setting of the original publisher.

When the intercepting subscriber has processed the publication, it republishes the message to the same
topic at a PubLevel one lower than the SubLevel of its own subscription. If the intercepting subscriber set
a SubLevel of 9, it republishes the message with a PubLevel of 8.

To republish the message correctly, several pieces of information from the original publication are
required. Reuse the same MQMD as in the original message and set MQPMO_PASS_ALL_CONTEXT to ensure all
information in the MQMD is passed on to the next subscriber. Copy the values from the message properties

Developing applications 211

shown in Table 28 into the corresponding fields of the republished message. The intercepting subscriber
can change these values. Use the OR operator to add additional values to the MQPMO. Options field, to
combine the put message options.

You must open the publication queue explicitly rather than use a managed publication queue. You cannot
set MQSO_SET_CORREL_ID for a managed queue. You also cannot set MQOO_SAVE_ALL_CONTEXT on a managed
queue. See the code fragments listed in “Examples.”

Table 28. MQPUT values for republished messages

Republish message using MQPUT Information in publication message

MQOD. ObjectString Message property MQTopicString

MQPMO. Options Message property MQPubOptions

The final subscriber has the choice of setting its subscription options differently. For example, it might set
the publication priority explicitly rather than to MQPRI_PRIORITY_AS_PUBLISHED. The settings of a final
subscriber only affect publication from the final intercepting subscriber in the chain.

Retained publications

A retained publication must be preserved after it has been intercepted, by copying the original
put-message options into the republished message.

The MQPMO_RETAIN option is set by the publisher. Each intercepting subscriber must transfer the
MQPubOptions to the put-message options of the republished message as shown in Table 28. Copying the

put-message options preserves the options set by the original publisher, including whether to retain the
publication.

When a publication finishes its passage down the chain of intercepting subscribers, and is delivered to
final subscribers, it is finally retained. New subscribers, at SubLevel 1, requesting the retained publication,
receive it without any further interception. Subscribers at a SubLevel greater than 1 are not sent the
retained publication. As a result, the retained publication is not modified by the chain of intercepting
subscribers a second time round.

Examples

The examples are code fragments that can be combined to build an intercepting subscriber. The code is
written to be brief, rather than of production quality.

The preprocessor directives in Figure 40 on page 213 define the two properties to be extracted from the
publication messages that are required by the MQINQMP MQI call.

212 IBM MQ: Programming

Figure 41 lists the declarations used in the code fragments. Except for the highlighted terms, the
declarations are standard for an IBM MQ application.

The highlighted Put and Get options are initialized to pass all context. The highlighted MQTOPICSTRING
and MQPUBOPTIONS are MQCHARV initializers for property names that are defined in the preprocessor
directives. The names are passed to MQINQMP.

Initializations that are not easily performed in declarations are shown in Figure 42 on page 214. The
highlighted values require explanation.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmqc.h>
#define MQPUBOPTIONS (MQPTR)(char*) "MQPubOptions",\

0,\
12,\
MQVS_NULL_TERMINATED,\
MQCCSI_APPL

#define MQTOPICSTRING (MQPTR)(char*) "MQTopicString",\
0,\
13,\
MQVS_NULL_TERMINATED,\
MQCCSI_APPL

Figure 40. Preprocessor directives

int main(int argc, char **argv) {
MQLONG Reason = MQRC_NONE;
MQLONG CompCode = MQCC_OK;
MQHCONN Hcon = MQHC_UNUSABLE_HCONN;
MQCHAR QMName[49] = " ";
MQCMHO CrtMsgHOpts = {MQCMHO_DEFAULT};
MQHMSG Hmsg = MQHM_NONE;
MQMD md = {MQMD_DEFAULT};
MQHOBJ gHobj = MQHO_NONE;
MQOD getOD = {MQOD_DEFAULT};
MQGMO gmo = {MQGMO_DEFAULT};
MQLONG GO_Options = MQOO_INPUT_AS_Q_DEF

| MQOO_FAIL_IF_QUIESCING
| MQOO_SAVE_ALL_CONTEXT;

MQLONG GC_Options = MQCO_DELETE_PURGE;
MQHOBJ Hsub = MQHO_NONE;
MQSD sd = {MQSD_DEFAULT};
MQLONG SC_Options = MQCO_NONE;
MQHOBJ pHobj = MQHO_NONE;
MQOD putOD = {MQOD_DEFAULT};
MQLONG PO_Options = MQOO_OUTPUT

| MQOO_FAIL_IF_QUIESCING
| MQOO_PASS_ALL_CONTEXT;

MQLONG PC_Options = MQCO_NONE;
MQPMO pmo = {MQPMO_DEFAULT};
MQIMPO InqPropOpts = {MQIMPO_DEFAULT};
MQPD PropDesc = {MQPD_DEFAULT};
MQLONG Type = MQTYPE_AS_SET;
MQCHARV TopStrProp = {MQTOPICSTRING};
MQCHARV PubOptProp = {MQPUBOPTIONS};
MQLONG DataLength = 0;
MQBYTE buffer[256] = "";
MQLONG buflen = sizeof(buffer) - 1;
MQLONG messlen = 0;
char TopStrBuf[256] = "Initial value";
int i = 0;

Figure 41. Declarations

Developing applications 213

SYSTEM.NDURABLE.MODEL.QUEUE
In this example, instead of using MQSUB to open a managed non-durable subscription, the
model queue, SYSTEM.NDURABLE.MODEL.QUEUE, is used to create a temporary dynamic queue. Its
handle is passed to MQSUB. By opening the queue directly you are able to save all message
context and set the subscription option, MQSO_SET_CORREL_ID.

MQGMO_CURRENT_VERSION
It is important to use the current version of most of the IBM MQ structures. Fields such as
gmo.MsgHandle are only available in the latest version of the control structures.

MQGMO_PROPERTIES_IN_HANDLE
The topic string and put message options set in the original publication are to be retrieved by the
intercepting subscriber using message properties. An alternative would be to read the MQRFH2
structure in the message directly.

MQSO_SET_CORREL_ID
Use MQSO_SET_CORREL_ID in combination with,
memcpy(sd.SubCorrelId, MQCI_NONE, sizeof(sd.SubCorrelId));

The effect of these options is to pass on the correlation identifier. The correlation identifier set by
the original publisher is placed in the correlation identifier field of the publication that is received
by the intercepting subscriber. Each intercepting subscriber passes on the same correlation
identifier. The final subscriber then has the option of receiving the same correlation identifier.

Note: If the publication is passed through a publish/subscribe hierarchy, the correlation identifier
is never retained.

MQPRI_PRIORITY_AS_PUBLISHED
The publication is placed on the publication queue with the same message priority as it was
published with.

Figure 43 on page 215 shows the code fragment to read command-line parameters, complete the
initialization, and create the intercepting subscription.

Run the program with the command,

strncpy(getOD.ObjectName, "SYSTEM.NDURABLE.MODEL.QUEUE",
sizeof(getOD.ObjectName));

gmo.Version = MQGMO_VERSION_4;
gmo.Options = MQGMO_WAIT

| MQGMO_PROPERTIES_IN_HANDLE
| MQGMO_CONVERT;

gmo.WaitInterval = 30000;
sd.Options = MQSO_CREATE

| MQSO_FAIL_IF_QUIESCING
| MQSO_SET_CORREL_ID;

sd.PubPriority = MQPRI_PRIORITY_AS_PUBLISHED;
sd.Version = MQSD_VERSION_1;
memcpy(sd.SubCorrelId, MQCI_NONE, sizeof(sd.SubCorrelId));
putOD.ObjectType = MQOT_TOPIC;
putOD.ObjectString.VSPtr = &TopStrBuf;
putOD.ObjectString.VSBufSize = sizeof(TopStrBuf);
putOD.ObjectString.VSLength = MQVS_NULL_TERMINATED;
putOD.ObjectString.VSCCSID = MQCCSI_APPL;
putOD.Version = MQOD_VERSION_4;
pmo.Version = MQPMO_VERSION_3;

Figure 42. Initializations

214 IBM MQ: Programming

►►
1 " "

InterSub TopicString
SubLevel QmgrName

►◄

To make error handling as unobtrusive as possible, the reason code from each MQI call is stored in a
different array element. After each call the completion code is tested, and if the value is MQCC_FAIL,
control exits the do { } while(0) code block.

The two noteworthy lines of code are,

pmo.PubLevel = sd.SubLevel - 1;
Sets the publication level for the republished message to one less than the subscription level of
the intercepting subscriber.

gmo.MsgHandle = Hmsg;
Provides a message handle for MQGET to return the message properties.

The main code fragment, Figure 44 on page 216, gets messages from the publication queue. It queries the
message properties and republishes the messages using the topic string, and the original MQPMO. option
properties of the publication.

In this example, no transformation is performed on the publication. The topic string of the republished
publication always matches the topic string the intercepting subscriber subscribed on. If the intercepting
subscriber is responsible for intercepting multiple subscriptions sent to the same publication queue, it
might be necessary to query the topic string to distinguish publications that match different subscriptions.

The calls to MQINQMP are highlighted. The topic string and publication put message options properties
are written directly into the output control structures. The only reason for altering the MQCHARV length

do {
printf("Intercepting subscriber start\n");
if (argc < 2) {

printf("Required parameter missing - topic string\n");
exit(99);

} else {
sd.ObjectString.VSPtr = argv[1];
sd.ObjectString.VSLength = MQVS_NULL_TERMINATED;
printf("TopicString = %s\n", sd.ObjectString.VSPtr);

}
if (argc > 2) {

sd.SubLevel = atoi(argv[2]);
pmo.PubLevel = sd.SubLevel - 1;
printf("SubLevel is %d, PubLevel is %d\n", sd.SubLevel, pmo.PubLevel);

}
if (argc > 3)

strncpy(QMName, argv[3], sizeof(QMName));
MQCONN(QMName, &Hcon, &CompCode, &Reason);
if (CompCode == MQCC_FAILED)

break;
MQOPEN(Hcon, &getOD, GO_Options, &gHobj, &CompCode, &Reason);
if (CompCode == MQCC_FAILED)

break;
MQSUB(Hcon, &sd, &gHobj, &Hsub, &CompCode, &Reason);
if (CompCode == MQCC_FAILED)

break;
MQCRTMH(Hcon, &CrtMsgHOpts, &Hmsg, &CompCode, &Reason);
if (CompCode == MQCC_FAILED)

break;
gmo.MsgHandle = Hmsg;

Figure 43. Preparing to intercept publications

Developing applications 215

field of putOD.ObjectString from an explicit length to a null terminated string is to use printf to output
the string.

The final code fragment is shown in Figure 45.

while (CompCode != MQCC_FAILED) {
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;
printf("MQGET : %d seconds wait time\n", gmo.WaitInterval/1000);
MQGET(Hcon, gHobj, &md, &gmo, buflen, buffer, &messlen,

&CompCode, &Reason);
if (CompCode == MQCC_FAILED)

break;
buffer[messlen] = ’\0’;
MQINQMP(Hcon, Hmsg, &InqPropOpts, &TopStrProp, &PropDesc, &Type,

putOD.ObjectString.VSBufSize, putOD.ObjectString.VSPtr,
&(putOD.ObjectString.VSLength), &CompCode, &Reason);

if (CompCode == MQCC_FAILED)
break;

memset((void *)((MQLONG)(putOD.ObjectString.VSPtr)
+ putOD.ObjectString.VSLength),’\0’,1);

putOD.ObjectString.VSLength = MQVS_NULL_TERMINATED;
MQINQMP(Hcon, Hmsg, &InqPropOpts, &PubOptProp, &PropDesc, &Type,

sizeof(pmo.Options), &(pmo.Options), &DataLength,
&CompCode, &Reason);

if (CompCode == MQCC_FAILED)
break;

MQOPEN(Hcon, &putOD, PO_Options, &pHobj, &CompCode, &Reason);
if (CompCode == MQCC_FAILED)

break;
printf("Republish message <%s> on topic <%s> with options %d\n",

buffer, putOD.ObjectString.VSPtr, pmo.Options);
MQPUT(Hcon, pHobj, &md, &pmo, messlen, buffer, &CompCode, &Reason);
if (CompCode == MQCC_FAILED)

break;
MQCLOSE(Hcon, &pHobj, PC_Options, &CompCode, &Reason);
if (CompCode == MQCC_FAILED)
break;

}

Figure 44. Intercept publication and republish

} while (0);
if (CompCode == MQCC_FAILED && Reason != MQRC_NO_MSG_AVAILABLE)

printf("MQI Call failed with reason code %d\n", Reason);
if (Hsub!= MQHO_NONE)

MQCLOSE(Hcon, &Hsub, SC_Options, &CompCode, &Reason);
if (Hcon!= MQHC_UNUSABLE_HCONN)

MQDISC(&Hcon, &CompCode, &Reason);
}

Figure 45. Completion

216 IBM MQ: Programming

Intercepting publications and distributed publish/subscribe:

Follow a simple pattern when you deploy intercepting subscribers or Publish exits to a distributed
publish/subscribe topology. Deploy intercepting subscribers on the same queue managers as publishers,
and Publish exits on the same queue managers as final subscribers.

Figure 46 shows two queue managers connected in a publish subscribe cluster. A publisher creates a
publication to a cluster topic at publication level 9. The numbered arrows show the sequence of steps
taken by the publication as it flows to subscribers to the cluster topic. The publication is intercepted by
the subscriber with Sublevel 9 and republished with Publevel 8. It is intercepted again by a subscriber at
Sublevel 8. The subscriber republishes at Publevel 7. The proxy subscriber provided by the queue
manager forwards the publication to queue manager B, where a Publish exit has been deployed in
addition to a final subscriber. The publication is processed by the Publish exit before it is finally received
by the final subscriber at Sublevel 1. The intercepting subscribers and the publish exit are shown with
broken outlines.

The objective of the simple pattern is for every subscriber receiving a publication to receive the identical
publication. The publication goes through the same sequence of transformations regardless of where the
subscriber is connected. You probably want to avoid having the sequence of transformations varying,
depending on where the publishers or final subscribers are connected. An reasonable exception would be
to tailor the publication finally delivered to each individual subscriber. Use the Publish exit to do
customize the publication based on the queue to which the publication is finally delivered.

You must consider carefully where to deploy intercepting subscribers and Publish exits in a distributed
publish/subscribe topology. The straightforward pattern deploys intercepting subscribers to the same
queue manager as the publishers, and Publish exits to the same queue managers as the final subscribers.

Anti-pattern

Figure 47 on page 218 shows how matters can go awry, if you do not follow a simple pattern. To
complicate the deployment, a final subscriber is added to queue manager A and two additional
intercepting subscribers are added to queue manager B.

The publication is forwarded to queue manager B at PubLevel 7, where it is intercepted by a subscriber at
SubLevel 5 before being consumed by the final subscriber at SubLevel 1. The Publish exit intercepts the

Queue
Manager A

Subscriber
SubLevel=9

PubLevel=8

Subscriber
SubLevel=8

PubLevel=7

1

2 3 4 5

7

8

6

Subscriber
SubLevel=1

Publisher
PubLevel=9

Publish

Exit

Queue
Manager B

Figure 46. Interception and Publish exit in a cluster

Developing applications 217

publication before it is passed to both the intercepting consumer and the final consumer at queue
manager B. The publication reaches the final subscriber on queue manager A without being processed by
the Publish exit.

In a publish/subscribe topology, proxy subscribers subscribe at SubLevel 1, and pass on the PubLevel set
by the last intercepting subscriber. In Figure 47, the result is that the publication is not intercepted by the
subscriber using SubLevel 9 at queue manager B.

Publishing options:

Several options are available that control the way messages are published.

Withholding reply-to information from subscribers

If you do not want subscribers to be able to reply to publications they receive, it is possible to withhold
information in the ReplyToQ and ReplyToQmgr fields of the MQMD by using the
MQPMO_SUPPRESS_REPLYTO put-message option. If this option is used, the queue manager removes
that information from the MQMD when it receives the publication before forwarding it to any
subscribers.

This option cannot be used in combination with a report option that needs a ReplyToQ, if this is
attempted the call with fail with MQRC_MISSING_REPLY_TO_Q.

Publication level

Using publication levels is a way of controlling which subscribers receive the publication. The publication
level denotes the level of subscription targeted by the publication. Only subscriptions with the highest
subscription level less than or equal to the publication's publication level, will receive the publication.
This value must be in the range zero to nine; zero is the lowest publication level. The initial value of this
field is 9. One of the uses of publication and subscription levels is to intercept publications.

Checking if a publication is not delivered to any subscribers

To check if a publication has not been delivered to any subscribers, use the
MQPMO_WARN_IF_NO_SUBS_MATCHED put-message option with the MQPUT call. If a completion
code of MQCC_WARNING and a reason code MQRC_NO_SUBS_MATCHED are returned by the put
operation, the publication was not delivered to any subscriptions. If the MQPMO_RETAIN option is

Queue
Manager A

Subscriber
SubLevel=9

PubLevel=8

Subscriber
SubLevel=9

PubLevel=8

Subscriber
SubLevel=8

PubLevel=7

1

2 3

4 5

6

8 11

12109

7

Subscriber
SubLevel=5

PubLevel=4

Subscriber
SubLevel=1

Subscriber
SubLevel=1

Publisher
PubLevel=9

Publish

Exit

Publish

Exit

Publish

Exit

Sublevel=1

Publevel=7

Queue
Manager B

Figure 47. Complex deployment of intercepting subscribers

218 IBM MQ: Programming

specified on the put operation, the message is retained and delivered to any subsequently defined
matching subscription. In a distributed publish/subscribe system, the MQRC_NO_SUBS_MATCHED
reason code is returned only if there are no proxy subscriptions registered for the topic on the queue
manager.

Subscription options:

Several options are available that control the way message subscriptions are handled.

Message persistence

Queue managers maintain the persistence of the publications they forward to subscribers as set by the
publisher. The publisher sets the persistence to be one of the following options:

0 Nonpersistent

1 Persistent

2 Persistence as queue/topic definition

For publish/subscribe, the publisher resolves the topic object and topicString to a resolved topic object.
If the publisher specifies Persistence as queue/topic definition, then the default persistence from the
resolved topic object is set for the publication.

Retained publications

To control when retained publications are received, subscribers can use two subscription options:

Publish on request only, MQSO_PUBLICATIONS_ON_REQUEST

If you want a subscriber to have control of when it receives publications you can use the
MQSO_PUBLICATIONS_ON_REQUEST subscription option. A subscriber can then control when
it receives publications by using the MQSUBRQ call (specifying the Hsub handle that was
returned from the original MQSUB call) to request that it is sent a topic's retained publication.
Subscribers using the MQSO_PUBLICATIONS_ON_REQUEST subscription option, do not receive
any non-retained publications.

If you specify MQSO_PUBLICATIONS_ON_REQUEST you must use MQSUBRQ to retrieve any
publication. If you do not use MQSO_PUBLICATIONS_ON_REQUEST you get messages as they
are published.

If a subscriber uses the MQSUBRQ call and uses wildcards in the subscription's topic, the
subscription might match multiple topics or nodes on a topic tree, all of which with retained
messages (if any exist) will be sent to the subscriber.

This option can be particularly helpful when used with durable subscriptions because a queue
manager will continue to send publications to a subscriber if it subscribed durably even if that
subscriber application is not running. This could lead to a buildup of messages on the subscriber
queue. This build up can be avoided if the subscriber registers using the
MQSO_PUBLICATIONS_ON_REQUEST option. Alternatively, you can use non-durable
subscriptions if appropriate to your application to avoid a build up of unwanted messages.

If a subscription is durable and a publisher uses retained publications the subscriber application
can use the MQSUBRQ call to refresh its state information after a restart. The subscriber must
then refresh its state periodically using the MQSUBRQ call.

No publications will be sent as a result of the MQSUB call using this option. A durable
subscription that has been resumed following disconnection will use the
MQSO_PUBLICATIONS_ON_REQUEST option if the original subscription was configured to use
this option.

New publications only, MQSO_NEW_PUBLICATIONS_ONLY

Developing applications 219

If a retained publication exists on a topic, any subscribers that make a subscription after the
publication was made will receive a copy of that publication. If a subscriber does not want to
receive any publications that were made earlier than the subscription being made, the subscriber
can use the MQSO_NEW_PUBLICATIONS_ONLY subscription option.

Grouping subscriptions

Consider grouping subscriptions if you have set up a queue to receive publications and have a number of
overlapping subscriptions feeding publications to the same queue. This situation is similar to the example
in Overlapping subscriptions.

You can avoid receiving duplicate publications by setting the option MQSO_GROUP_SUB when you subscribe
to a topic. The result is that when more than one subscription in the group matches the topic of a
publication, only one subscription is responsible for placing the publication on the queue. The other
subscriptions that matched the publication topic are ignored.

The subscription responsible for placing the publication on the queue is chosen on the basis that it has
the longest matching topic string, before encountering any wildcards. It can be thought of as the closest
matching subscription. Its properties are propagated to the publication, including whether it has the
MQSO_NOT_OWN_PUBS property. If it does, no publication is delivered to the queue, even though other
matching subscriptions might not have the MQSO_NOT_OWN_PUBS property.

You cannot place all your subscriptions in a single group to eliminate duplicate publications. Grouped
subscriptions must fulfill these conditions:
1. None of the subscriptions are managed.
2. A group of subscriptions deliver publications to the same queue.
3. Each subscription must be at the same subscription level.
4. The publication message for each subscription in the group has the same correlation identifier.

To ensure each subscription results in a publication message with the same correlation identifier, set
MQSO_SET_CORREL_ID to create your own correlation identifier in the publication, and set the same
value in the SubCorrelId field in each subscription. Do not set SubCorrelId to the value MQCI_NONE.

Inquiring about and setting object attributes
Attributes are the properties that define the characteristics of an IBM MQ object.

They affect the way that a queue manager processes an object. The attributes of each type of IBM MQ
object are described in detail in Attributes of objects.

Some attributes are set when the object is defined, and can be changed only by using the IBM MQ
commands; an example of such an attribute is the default priority for messages put on a queue. Other
attributes are affected by the operation of the queue manager and can change over time; an example is
the current depth of a queue.

You can inquire about the current values of most attributes using the MQINQ call. The MQI also
provides an MQSET call with which you can change some queue attributes. You cannot use the MQI calls
to change the attributes of any other type of object; instead you must use:

z/OS For IBM MQ for z/OS
The ALTER operator commands (or the DEFINE commands with the REPLACE option), which
are described in The MQSC commands.

For IBM MQ for IBM i
The CHGMQMx CL commands, which are described in IBM MQ for IBM i CL commands, or you
can use the MQSC facility.

220 IBM MQ: Programming

Windows UNIX Linux For IBM MQ for Windows, UNIX and Linux platforms
The MQSC facility, described in MQSC reference.

Note: The names of the attributes of objects are shown in this documentation in the form that you use
them with the MQINQ and MQSET calls. When you use IBM MQ commands to define, alter, or display
the attributes, you must identify the attributes using the keywords shown in the descriptions of the
commands in the topic links.

Both the MQINQ and the MQSET calls use arrays of selectors to identify those attributes that you want
to inquire about or set. There is a selector for each attribute that you can work with. The selector name
has a prefix, determined by the nature of the attribute:

MQCA_ These selectors refer to attributes that contain character data (for example, the name of a queue).

MQIA_ These selectors refer to attributes that contain either numeric values (such as CurrentQueueDepth,
the number of messages on a queue) or a constant value (such as SyncPoint, whether the queue
manager supports syncpoints).

Before you use the MQINQ or MQSET calls your application must be connected to the queue manager,
and you must use the MQOPEN call to open the object for setting or inquiring about attributes. These
operations are described in “Connecting to and disconnecting from a queue manager” on page 92 and
“Opening and closing objects” on page 101.

Use the following links to find out more about getting inquiring about and setting object attributes:
v “Inquiring about the attributes of an object” on page 222
v “Some cases where the MQINQ call fails” on page 223
v “Setting queue attributes” on page 223
Related concepts:
“The Message Queue Interface overview” on page 76
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 92
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 101
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 113
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 130
Use this information to learn about getting messages from a queue.
“Committing and backing out units of work” on page 224
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 237
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 257
There are special options on calls and return codes that relate to clustering.

z/OS “Using and writing applications on IBM MQ for z/OS” on page 263
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

z/OS “IMS and IMS bridge applications on IBM MQ for z/OS” on page 37
This information helps you to write IMS applications using IBM MQ.

Developing applications 221

Inquiring about the attributes of an object:

Use the MQINQ call to inquire about the attributes of any type of IBM MQ.

As input to this call, you must supply:
v A connection handle.
v An object handle.
v The number of selectors.
v An array of attribute selectors, each selector having the form MQCA_* or MQIA_*. Each selector

represents an attribute with a value that you want to inquire about, and each selector must be valid for
the type of object that the object handle represents. You can specify selectors in any order.

v The number of integer attributes that you are inquiring about. Specify zero if you are not inquiring
about integer attributes.

v The length of the character attributes buffer in CharAttrLength. This must be at least the sum of the
lengths required to hold each character attribute string. Specify zero if you are not inquiring about
character attributes.

The output from MQINQ is:
v A set of integer attribute values copied into the array. The number of values is determined by

IntAttrCount. If either IntAttrCount or SelectorCount is zero, this parameter is not used.
v The buffer in which character attributes are returned. The length of the buffer is given by the

CharAttrLength parameter. If either CharAttrLength or SelectorCount is zero, this parameter is not
used.

v A completion code. If the completion code gives a warning, this means that the call completed only
partially. In this case, examine the reason code.

v A reason code. There are three partial-completion situations:
– The selector does not apply to the queue type
– There is not enough space allowed for integer attributes
– There is not enough space allowed for character attributes
If more than one of these situations arise, the first one that applies is returned.

If you open a queue for output or inquire and it resolves to a non-local cluster queue you can only
inquire the queue name, queue type, and common attributes. The values of the common attributes are
those of the chosen queue if MQOO_BIND_ON_OPEN was used. The values are those of an arbitrary
one of the possible cluster queues if either MQOO_BIND_NOT_FIXED or MQOO_BIND_ON_GROUP
was used or MQOO_BIND_AS_Q_DEF was used and the DefBind queue attribute was
MQBND_BIND_NOT_FIXED. See “MQOPEN and clusters” on page 257 and MQOPEN for more
information.

Note: The values returned by the call are a snapshot of the selected attributes. The attributes can change
before your program acts on the returned values.

There is a description of the MQINQ call in MQINQ.

222 IBM MQ: Programming

Some cases where the MQINQ call fails:

If you open an alias to inquire about its attributes, you are returned the attributes of the alias queue (the
IBM MQ object used to access another queue), not those of the base queue.

However, the definition of the base queue to which the alias resolves is also opened by the queue
manager, and if another program changes the usage of the base queue in the interval between your
MQOPEN and MQINQ calls, your MQINQ call fails and returns the MQRC_OBJECT_CHANGED reason
code. The call also fails if the attributes of the alias queue object are changed.

Similarly, when you open a remote queue to inquire about its attributes, you are returned the attributes
of the local definition of the remote queue only.

If you specify one or more selectors that are not valid for the type of queue attributes upon which you
are inquiring, the MQINQ call completes with a warning and sets the output as follows:
v For integer attributes, the corresponding elements of IntAttrs are set to MQIAV_NOT_APPLICABLE.
v For character attributes, the corresponding portions of the CharAttrs string are set to asterisks.

If you specify one or more selectors that are not valid for the type of object attributes upon which you
are inquiring, the MQINQ call fails and returns the MQRC_SELECTOR_ERROR reason code.

You cannot call MQINQ to look at a model queue; use either the MQSC facility or the commands
available on your platform.

Setting queue attributes:

Use this information to learn how to set queue attributes using the MQSET call.

You can set only the following queue attributes using the MQSET call:
v InhibitGet (but not for remote queues)
v DistList (not on z/OS)
v InhibitPut
v TriggerControl
v TriggerType
v TriggerDepth
v TriggerMsgPriority
v TriggerData

The MQSET call has the same parameters as the MQINQ call. However, for MQSET, all parameters
except the completion code and reason code are input parameters. There are no partial-completion
situations.

Note: You cannot use the MQI to set the attributes of IBM MQ objects other than locally defined queues.

For more details about the MQSET call, see MQSET.

Developing applications 223

Committing and backing out units of work
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.

The following terms are used in this topic:
v Commit
v Back out
v Syncpoint coordination
v Syncpoint
v Unit of work
v Single-phase commit
v Two-phase commit

If you are familiar with these transaction processing terms, you can skip to “Syncpoint considerations in
IBM MQ applications” on page 225.

Commit and back out
When a program puts a message on a queue within a unit of work, that message is made visible
to other programs only when the program commits the unit of work. To commit a unit of work,
all updates must be successful to preserve data integrity. If the program detects an error and
decides that the put operation is not permanent, it can back out the unit of work. When a
program performs a backout, IBM MQ restores the queue by removing the messages that were
put on the queue by that unit of work. The way in which the program performs the commit and
back out operations depends on the environment in which the program is running.

Similarly, when a program gets a message from a queue within a unit of work, that message
remains on the queue until the program commits the unit of work, but the message is not
available to be retrieved by other programs. The message is permanently deleted from the queue
when the program commits the unit of work. If the program backs out the unit of work, IBM MQ
restores the queue by making the messages available to be retrieved by other programs.

Syncpoint coordination, syncpoint, unit of work
Syncpoint coordination is the process by which units of work are either committed or backed out
with data integrity.

The decision to commit or back out the changes is taken, in the simplest case, at the end of a
transaction. However, it can be more useful for an application to synchronize data changes at
other logical points within a transaction. These logical points are called syncpoints (or
synchronization points) and the period of processing a set of updates between two syncpoints is
called a unit of work. Several MQGET calls and MQPUT calls can be part of a single unit of work.

z/OS

The maximum number of messages within a unit of work can be controlled by the

DEFINE MAXSMGS command on z/OS.

The maximum number of messages within a unit of work can be
controlled by the MAXUMSGS attribute of the ALTER QMGR command on distributed platforms
and IBM i

Single-phase commit
A single-phase commit process is one in which a program can commit updates to a queue without
coordinating its changes with other resource managers.

Two-phase commit
A two-phase commit process is one in which updates that a program has made to IBM MQ queues
can be coordinated with updates to other resources (for example, databases under the control of
Db2). Under such a process, updates to all resources are committed or backed out together.

224 IBM MQ: Programming

To help handle units of work, IBM MQ provides the BackoutCount attribute. This is incremented
each time that a message within a unit of work is backed out. If the message repeatedly causes
the unit of work to abnormally end, the value of the BackoutCount finally exceeds that of the
BackoutThreshold. This value is set when the queue is defined. In this situation, the application
can remove the message from the unit of work and put it onto another queue, as defined in
BackoutRequeueQName. When the message is moved, the unit of work can commit.

Use the following links to find out more about committing and backing out units of work:
v “Syncpoint considerations in IBM MQ applications”

v z/OS “Syncpoints in IBM MQ for z/OS applications” on page 227

v “Syncpoints in CICS for IBM i applications” on page 229
v “Syncpoints in IBM MQ for Windows ” on page 230

v “Interfaces to the IBM i external syncpoint manager” on page 235
Related concepts:
“The Message Queue Interface overview” on page 76
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 92
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 101
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 113
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 130
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 220
Attributes are the properties that define the characteristics of an IBM MQ object.
“Starting IBM MQ applications using triggers” on page 237
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 257
There are special options on calls and return codes that relate to clustering.

z/OS “Using and writing applications on IBM MQ for z/OS” on page 263
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

z/OS “IMS and IMS bridge applications on IBM MQ for z/OS” on page 37
This information helps you to write IMS applications using IBM MQ.

Syncpoint considerations in IBM MQ applications:

Use this information to learn about using syncpoints in IBM MQ applications.

Two-phase commit is supported under:
v IBM MQ for AIX

v IBM MQ for IBM i
v IBM MQ for HP-UX
v IBM MQ for Linux
v IBM MQ for Solaris
v IBM MQ for Windows

Developing applications 225

v CICS for MVS/ESA 4.1
v CICS Transaction Server for z/OS
v TXSeries
v IMS/ESA®

v z/OS z/OS batch with RRS
v Other external coordinators using the X/Open XA interface

Single-phase commit is supported under:

v IBM MQ for IBM i
v IBM MQ on UNIX systems
v IBM MQ for Windows

v z/OS z/OS batch

Note: For further details on external interfaces see “Interfaces to external syncpoint managers” on page
232, and the XA documentation CAE Specification Distributed Transaction Processing: The XA Specification,
published by The Open Group. Transaction managers (such as CICS, IMS, Encina, and Tuxedo) can
participate in two-phase commit, coordinated with other recoverable resources. This means that the
queuing functions provided by IBM MQ can be brought within the scope of a unit of work, managed by
the transaction manager.

Samples shipped with IBM MQ show IBM MQ coordinating XA-compliant databases. For further
information about these samples, see “Sample procedural programs (platforms except z/OS)” on page
473.

In your IBM MQ application, you can specify on every put and get call whether you want the call to be
under syncpoint control. To make a put operation operate under syncpoint control, use the
MQPMO_SYNCPOINT value in the Options field of the MQPMO structure when you call MQPUT. For a
get operation, use the MQGMO_SYNCPOINT value in the Options field of the MQGMO structure. If you
do not explicitly choose an option, the default action depends on the platform. The syncpoint control
default on z/OS is yes; for all other platforms, it is no.

When an MQPUT1 call is issued with MQPMO_SYNCPOINT, the default behavior changes, so that the
put operation is completed asynchronously. This might cause a change in the behavior of some
applications that rely on certain fields in the MQOD and MQMD structures being returned, but which
now contain undefined values. An application can specify MQPMO_SYNC_RESPONSE to ensure that the
put operation is performed synchronously and that all of the appropriate field values are completed.

When your application receives an MQRC_BACKED_OUT reason code in response to an MQPUT or
MQGET under syncpoint, the application should normally back out the current transaction using
MQBACK and then, if appropriate, try the entire transaction again. If the application receives
MQRC_BACKED_OUT in response to an MQCMIT or MQDISC call, it does not need to call MQBACK.

Every time an MQGET call is backed out, the BackoutCount field of the MQMD structure of the affected
message is incremented. A high BackoutCount indicates a message that has been repeatedly backed out.
This might indicate a problem with this message, which you should investigate. See BackoutCount for
details of BackoutCount.

Except on z/OS batch with RRS, if a program issues the MQDISC call while there are uncommitted
requests, an implicit syncpoint occurs. If the program ends abnormally, an implicit backout occurs. On
z/OS, an implicit syncpoint occurs if the program ends normally without first calling MQDISC. The
program is deemed to have ended normally if the TCB connected to MQ ends normally. When running
under z/OS UNIX System Services and Language Environment (LE), default condition handling is
invoked for abends or signals. The LE condition handlers process the error condition and the TCB ends

226 IBM MQ: Programming

normally. Under these conditions MQ commits the unit of work. For more information about LE
condition handling, see Introduction to Language Environment Condition Handling and Customizing
Language Environment run-time options.

For IBM MQ for z/OS programs, you can use the MQGMO_MARK_SKIP_BACKOUT option to specify
that a message must not be backed out if backout occurs (in order to avoid an MQGET-error-backout loop).
For information about using this option, see “Skipping backout” on page 163.

Changes to queue attributes (either by the MQSET call or by commands) are not affected by the
committing or backing out of units of work.

Syncpoints in IBM MQ for z/OS applications:

This topic explains how to use syncpoints in transaction manager (CICS and IMS) and batch
applications.

Syncpoints in CICS Transaction Server for z/OS applications:

In a CICS application you establish a syncpoint by using the EXEC CICS SYNCPOINT command.

To back out all changes to the previous syncpoint, you can use the EXEC CICS SYNCPOINT ROLLBACK
command. For more information, see the CICS Application Programming Reference.

If other recoverable resources are involved in the unit of work, the queue manager (in conjunction with
the CICS syncpoint manager) participates in a two-phase commit protocol; otherwise, the queue manager
performs a single-phase commit process.

If a CICS application issues the MQDISC call, no implicit syncpoint is taken. If the application closes
down normally, any open queues are closed and an implicit commit occurs. If the application closes
down abnormally, any open queues are closed and an implicit backout occurs.

Syncpoints in IMS applications: z/OS

In an IMS application, establish a syncpoint by using IMS calls such as GU (get unique) to the IOPCB
and CHKP (checkpoint).

To back out all changes since the previous checkpoint, you can use the IMS ROLB (rollback) call. For
more information, see the IMS documentation.

The queue manager (in conjunction with the IMS syncpoint manager) participates in a two-phase commit
protocol if other recoverable resources are also involved in the unit of work.

All open handles are closed by the IMS adapter at a syncpoint (except in a batch or non-message driven
BMP environment). This is because a different user could initiate the next unit of work and IBM MQ
security checking is performed when the MQCONN, MQCONNX, and MQOPEN calls are made, not
when the MQPUT or MQGET calls are made.

However, in a Wait-for-Input (WFI) or pseudo Wait-for-Input (PWFI) environment IMS does not notify
IBM MQ to close the handles until either the next message arrives or a QC status code is returned to the
application. If the application is waiting in the IMS region and any of these handles belong to triggered
queues, triggering will not occur because the queues are open. For this reason applications running in a
WFI or PWFI environment should explicitly MQCLOSE the queue handles before doing the GU to the
IOPCB for the next message.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open queues are closed but no
implicit syncpoint is taken. If the application closes down normally, any open queues are closed and an

Developing applications 227

implicit commit occurs. If the application closes down abnormally, any open queues are closed and an
implicit backout occurs.

Syncpoints in z/OS batch applications:

For batch applications, you can use the IBM MQ syncpoint management calls: MQCMIT and MQBACK.
For compatibility with earlier versions, CSQBCMT and CSQBBAK are available as synonyms.

Note: If you need to commit or back out updates to resources managed by different resource managers,
such as IBM MQ and Db2, within a single unit of work you can use RRS. For further information see
“Transaction management and recoverable resource manager services.”

Committing changes using the MQCMIT call

As input, you must supply the connection handle (Hconn) that is returned by the MQCONN or
MQCONNX call.

The output from MQCMIT is a completion code and a reason code. The call completes with a warning if
the syncpoint was completed but the queue manager backed out the put and get operations since the
previous syncpoint.

Successful completion of the MQCMIT call indicates to the queue manager that the application has
reached a syncpoint and that all put and get operations made since the previous syncpoint have been
made permanent.

Not all failure responses mean that the MQCMIT did not complete. For example, the application can
receive MQRC_CONNECTION_BROKEN.

There is a description of the MQCMIT call in MQCMIT.

Backing out changes using the MQBACK call

As input, you must supply a connection handle (Hconn). Use the handle that is returned by the
MQCONN or MQCONNX call.

The output from MQBACK is a completion code and a reason code.

The output indicates to the queue manager that the application has reached a syncpoint and that all gets
and puts that have been made since the last syncpoint have been backed out.

There is a description of the MQBACK call in MQBACK.

Transaction management and recoverable resource manager services

Transaction management and recoverable resource manager services (RRS) is a z/OS facility to provide
two-phase syncpoint support across participating resource managers.

An application can update recoverable resources managed by various z/OS resource managers such as
IBM MQ and Db2, and then commit or back out these updates as a single unit of work. RRS provides the
necessary unit-of-work status logging during normal execution, coordinates the syncpoint processing, and
provides appropriate unit-of-work status information during subsystem restart.

IBM MQ for z/OS RRS participant support enables IBM MQ applications in the batch, TSO, and Db2
stored procedure environments to update both IBM MQ and non-IBM MQ resources (for example, Db2)
within a single logical unit of work. For information about RRS participant support, see MVS
Programming: Resource Recovery.

228 IBM MQ: Programming

Your IBM MQ application can use either MQCMIT and MQBACK or the equivalent RRS calls, SRRCMIT
and SRRBACK. See “The RRS batch adapter” on page 266 for more information.

RRS availability

If RRS is not active on your z/OS system, any IBM MQ call issued from a program linked with
either RRS stub (CSQBRSTB or CSQBRRSI) returns MQRC_ENVIRONMENT_ERROR.

Db2 stored procedures

If you use Db2 stored procedures with RRS, be aware of the following:
v Db2 stored procedures that use RRS must be managed by workload manager (WLM-managed).
v If a Db2-managed stored procedure contains IBM MQ calls, and it is linked with either RRS

stub (CSQBRSTB or CSQBRRSI), the MQCONN or MQCONNX call returns
MQRC_ENVIRONMENT_ERROR.

v If a WLM-managed stored procedure contains IBM MQ calls, and is linked with a non-RRS
stub, the MQCONN or MQCONNX call returns MQRC_ENVIRONMENT_ERROR, unless it is
the first IBM MQ call executed since the stored procedure address space started.

v If your Db2 stored procedure contains IBM MQ calls and is linked with a non-RRS stub, IBM
MQ resources updated in that stored procedure are not committed until the stored procedure
address space ends, or until a subsequent stored procedure does an MQCMIT (using an IBM
MQ Batch/TSO stub).

v Multiple copies of the same stored procedure can execute concurrently in the same address
space. Ensure that your program is coded in a reentrant manner if you want Db2 to use a
single copy of your stored procedure. Otherwise you might receive MQRC_HCONN_ERROR
on any IBM MQ call in your program.

v Do not code MQCMIT or MQBACK in a WLM-managed Db2 stored procedure.
v Design all programs to run in Language Environment (LE).

Syncpoints in CICS for IBM i applications:

IBM MQ for IBM i participates in CICS for IBM i units of work. You can use the MQI within a CICS for
IBM i application to put and get messages inside the current unit of work.

You can use the EXEC CICS SYNCPOINT command to establish a syncpoint that includes the IBM MQ
for IBM i operations. To back out all changes up to the previous syncpoint, you can use the EXEC CICS
SYNCPOINT ROLLBACK command.

If you use MQPUT, MQPUT1, or MQGET with the MQPMO_SYNCPOINT, or MQGMO_SYNCPOINT,
option set in a CICS for IBM i application, you cannot log off CICS for IBM i until IBM MQ for IBM i has
removed its registration as an API commitment resource. Commit or back out any pending put or get
operations before you disconnect from the queue manager. This allows you to log off CICS for IBM i.

Developing applications 229

Syncpoints in IBM MQ for Windows : , IBM MQ for IBM i,IBM MQUNIX and Linux

Syncpoint support operates on two types of units of work: local and global.

A local unit of work is one in which the only resources updated are those of the IBM MQ queue manager.
Here syncpoint coordination is provided by the queue manager itself using a single-phase commit
procedure.

A global unit of work is one in which resources belonging to other resource managers, such as databases,
are also updated. IBM MQ can coordinate such units of work itself. They can also be coordinated by an
external commitment controller such as another transaction manager or the IBM i commitment controller.

For full integrity, use a two-phase commit procedure. Two-phase commit can be provided by

XA-compliant transaction managers and databases such as TXSeries and UDB and also by
the IBM i commitment controller. IBM MQ products (except IBM MQ for IBM i and IBM MQ for z/OS)

can coordinate global units of work using a two-phase commit process.

IBM MQ for IBM i
can act as a resource manager for global units of work within a WebSphere Application Server
environment, but cannot act as a transaction manager.

Local units of work
Units of work that involve only the queue manager are called local units of work. Syncpoint coordination
is provided by the queue manager itself (internal coordination) using a single-phase commit process.

To start a local unit of work, the application issues MQGET, MQPUT, or MQPUT1 requests specifying the
appropriate syncpoint option. The unit of work is committed using MQCMIT or rolled back using
MQBACK. However, the unit of work also ends when the connection between the application and the
queue manager is broken, intentionally or unintentionally.

If an application disconnects (MQDISC) from a queue manager while a global unit of work coordinated
by IBM MQ is still active, an attempt is made to commit the unit of work. If, however, the application
terminates without disconnecting, the unit of work is rolled back as the application is deemed to have
terminated abnormally.

Global units of work
Use global units of work when you also need to include updates to resources belonging to other resource
managers.

Here the coordination can be internal or external to the queue manager:

Internal syncpoint coordination

Queue manager coordination of global units of work is not supported by IBM MQ for IBM i or IBM
MQ for z/OS. It is not supported in an IBM MQ MQI client environment.

Here, IBM MQ does the coordination. To start a global unit of work, the application issues the MQBEGIN
call.

As input to the MQBEGIN call, you must supply the connection handle (Hconn) that is returned by the
MQCONN or MQCONNX call. This handle represents the connection to the IBM MQ queue manager.

The application issues MQGET, MQPUT, or MQPUT1 requests specifying the appropriate syncpoint
option. This means that you can use MQBEGIN to initiate a global unit of work that updates local
resources, resources belonging to other resource managers, or both. Updates made to resources belonging

230 IBM MQ: Programming

to other resource managers are made using the API of that resource manager. However, you cannot use
the MQI to update queues that belong to other queue managers. Issue MQCMIT or MQBACK before
starting further units of work (local or global).

The global unit of work is committed using MQCMIT; this initiates a two-phase commit of all the
resource managers involved in the unit of work. A two-phase commit process is used whereby resource
managers (for example, XA-compliant database managers such as Db2, Oracle, and Sybase) are first all
asked to prepare to commit. Only if all are prepared are they asked to commit. If any resource manager
signals that it cannot commit, each is asked to back out instead. Alternatively, you can use MQBACK to
roll back the updates of all the resource managers.

If an application disconnects (MQDISC) while a global unit of work is still active, the unit of work is
committed. If, however, the application terminates without disconnecting, the unit of work is rolled back
as the application is deemed to have terminated abnormally.

The output from MQBEGIN is a completion code and a reason code.

When you use MQBEGIN to start a global unit of work, all the external resource managers that have
been configured with the queue manager are included. However, the call starts a unit of work but
completes with a warning if:
v There are no participating resource managers (that is, no resource managers have been configured with

the queue manager)

or
v One or more resource managers are not available.

In these cases, the unit of work must include updates to only those resource managers that were available
when the unit of work was started.

If one of the resource managers cannot commit its updates, all the resource managers are instructed to
roll back their updates, and MQCMIT completes with a warning. In unusual circumstances (typically,
operator intervention), an MQCMIT call might fail if some resource managers commit their updates but
others roll them back; the work is deemed to have completed with a mixed outcome. Such occurrences are
diagnosed in the error log of the queue manager so that remedial action may be taken.

An MQCMIT of a global unit of work succeeds if all the resource managers involved commit their
updates.

For a description of the MQBEGIN call, see MQBEGIN.

External syncpoint coordination

This occurs when a syncpoint coordinator other than IBM MQ has been selected; for example, CICS,
Encina, or Tuxedo.

In this situation, IBM MQ on UNIX and Linux systems and IBM MQ for Windows register their interest
in the outcome of the unit of work with the syncpoint coordinator so that they can commit or roll back
any uncommitted get or put operations as required. The external syncpoint coordinator determines
whether one- or two-phase commitment protocols are provided.

When you use an external coordinator, MQCMIT, MQBACK, and MQBEGIN cannot be issued. Calls to
these functions fail with the reason code MQRC_ENVIRONMENT_ERROR.

The way in which an externally coordinated unit of work is started depends on the programming
interface provided by the syncpoint coordinator. An explicit call might be required. If an explicit call is

Developing applications 231

required, and you issue an MQPUT call specifying the MQPMO_SYNCPOINT option when a unit of
work is not started, the completion code MQRC_SYNCPOINT_NOT_AVAILABLE is returned.

The scope of the unit of work is determined by the syncpoint coordinator. The state of the connection
between the application and the queue manager affects the success or failure of MQI calls that an
application issues, not the state of the unit of work. An application can, for example, disconnect and
reconnect to a queue manager during an active unit of work and perform further MQGET and MQPUT
operations inside the same unit of work. This is known as a pending disconnect.

You can use IBM MQ API calls in CICS programs, whether you choose to use the XA abilities of CICS. If
you do not use XA, then the puts and gets of messages to and from queues will not be managed within
CICS atomic units of work. One reason for choosing this method is that the overall consistency of the
unit of work is not important to you.

If the integrity of your units of work is important to you, then you must use XA. When you use XA,
CICS uses a two-phase commit protocol to ensure all resources within the unit of work are updated
together.

For more information about setting up transactional support, see Transactional support scenarios, and
also TXSeries CICS documentation, for example, TXSeries for Multiplatforms CICS Administration Guide for
Open Systems.

Interfaces to external syncpoint managers
IBM MQ on UNIX and Linux systems, IBM MQ for IBM i, and IBM MQ for Windows support
coordination of transactions by external syncpoint managers that use the X/Open XA interface.

Some XA transaction managers (TXSeries) require that each XA resource manager supplies its name.
This is the string called name in the XA switch structure. The resource manager for IBM MQ on UNIX,

Linux and Windows systems is named MQSeries_XA_RMI. The name on IBM i is MQSeries
XA RMI. For further details on XA interfaces refer to the XA documentation CAE Specification Distributed
Transaction Processing: The XA Specification, published by The Open Group.

In an XA configuration, IBM MQ on UNIX, Linux, and Windows systems fulfill the role of an XA
Resource Manager. An XA syncpoint coordinator can manage a set of XA Resource Managers, and
synchronize the commit or backout of transactions in both Resource Managers. This is how it works for a
statically-registered resource manager:
1. An application notifies the syncpoint coordinator that it wants to start a transaction.
2. The syncpoint coordinator issues a call to any resource managers that it knows of, to notify them of

the current transaction.
3. The application issues calls to update the resources managed by the resource managers associated

with the current transaction.
4. The application requests that the syncpoint coordinator either commit or roll back the transaction.
5. The syncpoint coordinator issues calls to each resource manager using two-phase commit protocols to

complete the transaction as requested.

The XA specification requires each Resource Manager to provide a structure called an XA Switch. This
structure declares the capabilities of the Resource Manager, and the functions that are to be called by the
syncpoint coordinator.

There are two versions of this structure:

232 IBM MQ: Programming

MQRMIXASwitch Static XA resource management

MQRMIXASwitchDynamic Dynamic XA resource management

For a list of the libraries containing this structure see The IBM MQ XA switch structure.

The method that must be used to link them to an XA syncpoint coordinator is defined by the coordinator;
consult the documentation provided by that coordinator to determine how to enable IBM MQ to
cooperate with your XA syncpoint coordinator.

The xa_info structure that is passed on any xa_open call by the syncpoint coordinator can be the name of
the queue manager that is to be administered. This takes the same form as the queue manager name
passed to MQCONN or MQCONNX, and can be blank if the default queue manager is to be used.
However, you can use the two extra parameters TPM and AXLIB

TPM allows you to specify to IBM MQ the transaction manager name, for example, CICS. AXLIB allows
you to specify the actual library name in the transaction manager where the XA AX entry points are
located.

If you use either of these parameters or a non default queue manager you must specify the queue
manager name using the QMNAME parameter. For further information see The CHANNEL, TRPTYPE,
CONNAME, and QMNAME parameters of the xa_open string.

Restrictions
1. Global units of work are not allowed with a shared Hconn (as described in “Shared (thread

independent) connections with MQCONNX” on page 99.

2. IBM MQ for IBM i does not support dynamic registration of XA resource managers.
The only transaction manager supported is WebSphere Application Server.

3. On Windows systems, all functions declared in the XA switch are declared as _cdecl functions.
4. An external syncpoint coordinator can administer only one queue manager at a time. This is because

the coordinator has an effective connection to each queue manager, and is therefore subject to the rule
that only one connection is allowed at a time.

Note: Note: A JMS client application (CLIENT JEE application) running in a JEE server does not have
this restriction, so a single JEE server-managed transaction can coordinate multiple queue managers in
the same transaction. However, a JMS server application, running in bindings mode, is still subject to
the rule that only one connection is allowed at a time.

5. All applications that are run using the syncpoint coordinator can connect only to the queue manager
that is administered by the coordinator because they are already effectively connected to that queue
manager. They must issue MQCONN or MQCONNX to obtain a connection handle and must issue
MQDISC before they exit. Alternatively, they can use the exit UE014015 for TXSeries CICS.

Developing applications 233

234 IBM MQ: Programming

Interfaces to the IBM i external syncpoint manager

IBM MQ for IBM i can use native IBM i commitment control as an external syncpoint coordinator.

Thread-independent (shared) connections are not allowed with commitment control. See the IBM i
Programming: Backup and Recovery Guide, SC21-8079 for more information about the commitment control
capabilities of IBM i.

To start the IBM i commitment control facilities, use the STRCMTCTL system command. To end
commitment control, use the ENDCMTCTL system command.

Note: The default value of Commitment definition scope is *ACTGRP. This must be defined as *JOB for IBM
MQ for IBM i. For example:
STRCMTCTL LCKLVL(*ALL) CMTSCOPE(*JOB)

IBM MQ for IBM i can also perform local units of work containing only updates to IBM MQ resources.
The choice between local units of work and participation in global units of work coordinated by IBM i is
made in each application when the application calls MQPUT, MQPUT1, or MQGET, specifying
MQPMO_SYNCPOINT or MQGMO_SYNCPOINT, or MQBEGIN. If commitment control is not active
when the first such call is issued, IBM MQ starts a local unit of work and all further units of work for
this connection to IBM MQ also use local units of work, regardless of whether commitment control is
then started. To commit a local unit of work, use MQCMIT. To back out a local unit of work, use
MQBACK. The IBM i commit and rollback calls such as the CL command COMMIT have no effect on
IBM MQ local units of work.

If you want to use IBM MQ for IBM i with native IBM i commitment control as an external syncpoint
coordinator, ensure that any job with commitment control is active and that you are using IBM MQ in a
single-threaded job. If you call MQPUT, MQPUT1, or MQGET, specifying MQPMO_SYNCPOINT or
MQGMO_SYNCPOINT, in a multithreaded job in which commitment control has been started, the call
fails with a reason code of MQRC_SYNCPOINT_NOT_AVAILABLE.

It is possible to use local units of work and the MQCMIT and MQBACK calls in a multithreaded job.

If you call MQPUT, MQPUT1, or MQGET, specifying MQPMO_SYNCPOINT or MQGMO_SYNCPOINT,
after starting commitment control, IBM MQ for IBM i adds itself as an API commitment resource to the
commitment definition. This is typically the first such call in a job. While there are any API commitment
resources registered under a particular commitment definition, you cannot end commitment control for
that definition.

IBM MQ for IBM i removes its registration as an API commitment resource when you disconnect from
the queue manager, if there are no pending MQI operations in the current unit of work.

If you disconnect from the queue manager while there are pending MQPUT, MQPUT1, or MQGET
operations in the current unit of work, IBM MQ for IBM i remains registered as an API commitment
resource so that it is notified of the next commit or rollback. When the next syncpoint is reached, IBM
MQ for IBM i commits or rolls back the changes as required. An application can disconnect and reconnect
to a queue manager during an active unit of work and perform further MQGET and MQPUT operations
inside the same unit of work (this is a pending disconnect).

If you attempt to issue an ENDCMTCTL system command for that commitment definition, message
CPF8355 is issued, indicating that pending changes were active. This message also appears in the job log
when the job ends. To avoid this, commit or roll back all pending IBM MQ for IBM i operations, and

© Copyright IBM Corp. 2007, 2018 235

disconnect from the queue manager. Thus, using COMMIT or ROLLBACK commands before
ENDCMTCTL enables end-commitment control to complete successfully.

When you use IBM i commitment control as an external syncpoint coordinator, you cannot issue
MQCMIT, MQBACK, and MQBEGIN calls. Calls to these functions fail with the reason code
MQRC_ENVIRONMENT_ERROR.

To commit or roll back (that is, to back out) your unit of work, use one of the programming languages
that supports the commitment control. For example:
v CL commands: COMMIT and ROLLBACK
v ILE C Programming Functions: _Rcommit and _Rrollback
v ILE RPG: COMMIT and ROLBK
v COBOL/400®: COMMIT and ROLLBACK

When you use IBM i commitment control as an external syncpoint coordinator with IBM MQ for IBM i,
IBM i performs a two-phase commit protocol in which IBM MQ participates. Because each unit of work is
committed in two phases, the queue manager might become unavailable for the second phase after
having voted to commit in the first phase. This can happen, for example, if the queue manager's internal
jobs are ended. In this situation, the job log performing the commit contains message CPF835F indicating
that a commit or rollback operation failed. The messages preceding this indicate the cause of the problem,
whether it occurred during a commit or rollback operation, and also the logical unit of work ID (LUWID)
for the failed unit of work.

If the problem was caused by the failure of the IBM MQ API commitment resource during the commit or
rollback of a prepared unit of work, you can use the WRKMQMTRN command to complete the operation
and restore the integrity of the transaction. The command requires that you know the LUWID of the unit
of work to commit and back out.

236 IBM MQ: Programming

Starting IBM MQ applications using triggers

Learn about triggers and how to start IBM MQ applications using triggers.

Some IBM MQ applications that serve queues run continuously, so they are always available to retrieve
messages that arrive on the queues. However, you might not want this when the number of messages
arriving on the queues is unpredictable. In this case, applications could be consuming system resources
even when there are no messages to retrieve.

IBM MQ provides a facility that enables an application to be started automatically when there are
messages available to retrieve. This facility is known as triggering.

For information about triggering channels see Triggering channels.

What is triggering?

The queue manager defines certain conditions as constituting trigger events.

If triggering is enabled for a queue and a trigger event occurs, the queue manager sends a trigger message
to a queue called an initiation queue. The presence of the trigger message on the initiation queue indicates
that a trigger event has occurred.

Trigger messages generated by the queue manager are not persistent. This reduces logging (resulting in
improving performance), and minimizing duplicates during restart, so improving restart time.

The program that processes the initiation queue is called a trigger-monitor application, and its function is to
read the trigger message and take appropriate action, based on the information contained in the trigger
message. Typically this action is to start some other application to process the queue that generated the
trigger message. From the point of view of the queue manager, there is nothing special about the
trigger-monitor application; it is simply another application that reads messages from a queue (the
initiation queue).

If triggering is enabled for a queue, you can create a process-definition object associated with it. This object
contains information about the application that processes the message that caused the trigger event. If the
process definition object is created, the queue manager extracts this information and places it in the
trigger message, for use by the trigger-monitor application. The name of the process definition associated
with a queue is given by the ProcessName local-queue attribute. Each queue can specify a different
process definition, or several queues can share the same process definition.

If you want to trigger the start of a channel, you do not need to define a process definition object. The
transmission queue definition is used instead.

Triggering is supported by IBM MQ clients running in the following environments:
v UNIX and Linux systems
v Windows systems

An application running in a client environment is the same as one running in a full IBM MQ
environment, except that you link it with the client libraries. However the trigger monitor and the
application to be started must both be in the same environment.

Triggering involves:

© Copyright IBM Corp. 2007, 2018 237

Application queue
An application queue is a local queue that, when it has triggering set on and when the conditions
are met, requires that trigger messages are written.

Process definition
An application queue can have a process definition object associated with it that holds details of the
application that will get messages from the application queue. (See Attributes for process
definitions for a list of attributes.)

Remember that if you want a trigger to start a channel, you do not need to define a process
definition object.

Transmission queue
You need a transmission queue if you want a trigger to start a channel.

For a transmission queue on any of the following systems, the TriggerData attribute of the
transmission queue can specify the name of the channel to be started. This can replace the
process definition for triggering channels, but is used only when a process definition is not
created.
v AIX
v HP-UX

v IBM i
v Solaris

v z/OS z/OS
v Windows

Trigger event
A trigger event is an event that causes a trigger message to be generated by the queue manager.
This is typically a message arriving on an application queue, but it can also occur at other times.
For example, see “Conditions for a trigger event” on page 243. IBM MQ has a range of options to
allow you to control the conditions that cause a trigger event (see “Controlling trigger events” on
page 247).

Trigger message
The queue manager creates a trigger message when it recognizes a trigger event. It copies into the
trigger message information about the application to be started. This information comes from the
application queue and the process definition object associated with the application queue. Trigger
messages have a fixed format (see “Format of trigger messages” on page 254).

Initiation queue
An initiation queue is a local queue on which the queue manager puts trigger messages. Note, that
an initiation queue cannot be an alias queue or a model queue. A queue manager can own more
than one initiation queue, and each one is associated with one or more application queues.

z/OS A shared queue, a local queue accessible by queue managers in a queue-sharing group,
can be an initiation queue on IBM MQ for z/OS.

Trigger monitor
A trigger monitor is a continuously running program that serves one or more initiation queues.
When a trigger message arrives on an initiation queue, the trigger monitor retrieves the message.
The trigger monitor uses the information in the trigger message. It issues a command to start the
application that is to retrieve the messages arriving on the application queue, passing it
information contained in the trigger message header, which includes the name of the application
queue.

On all platforms, a special trigger monitor known as the channel initiator is responsible for
starting channels. z/OS

On z/OS, the channel initiator is typically started manually, or it can

be done automatically when a queue manager starts by changing CSQINP2 in the queue manager

238 IBM MQ: Programming

startup JCL. On distributed platforms, it is automatically started when the queue manager starts
or it can be started manually with the runmqchi command.

For more information, see “Trigger monitors” on page 251.

To understand how triggering works, consider Figure 48, which is an example of trigger type FIRST
(MQTT_FIRST).
In Figure 48, the sequence of events is:

1. Application A, which can be either local or remote to the queue manager, puts a message on the
application queue. No application has this queue open for input. However, this fact is relevant only to
trigger type FIRST and DEPTH.

2. The queue manager checks to see if the conditions are met under which it has to generate a trigger
event. They are, and a trigger event is generated. Information held within the associated process
definition object is used when creating the trigger message.

3. The queue manager creates a trigger message and puts it on the initiation queue associated with this
application queue, but only if an application (trigger monitor) has the initiation queue open for input.

4. The trigger monitor retrieves the trigger message from the initiation queue.
5. The trigger monitor issues a command to start application B (the server application).
6. Application B opens the application queue and retrieves the message.

Note:

1. If the application queue is open for input, by any program, and has triggering set for FIRST or
DEPTH, no trigger event occurs because the queue is already being served.

Process

Application

Queue

application

message

tr igger

message

Initiation

Queue
APPLICATION

APPLICATION APPLICATION

TRIGGER

MONITOR
B

A

QUEUE MANAGER

t r igger

event

tr igger

message

star t

command

Local System

Local or Remote
System

application

message

Figure 48. Flow of application and trigger messages

Starting IBM MQ applications using triggers 239

2. If the initiation queue is not open for input, the queue manager does not generate any trigger
messages; it waits until an application opens the initiation queue for input.

3. When using triggering for channels, use trigger type FIRST or DEPTH.
4. Triggered applications run under the user ID and group of the user who started the trigger monitor,

the CICS user, or the user who started the queue manager.

So far, the relationship between the queues within triggering has been only on a one to one basis.
Consider Figure 49.

An application queue has a process definition object associated with it that holds details of the
application that will process the message. The queue manager places the information in the trigger
message, so only one initiation queue is necessary. The trigger monitor extracts this information from the
trigger message and starts the relevant application to deal with the message on each application queue.

Local or Remote
System

Local System

Process

Initiation

Queue

APPLICATION

TRIGGER

MONITOR

QUEUE MANAGER

Process

APPLICATION

APPLICATION

APPLICATION

APPLICATION

APPLICATION

A

B

C

X

Y

1

2

Application

Queue 1

Application

Queue 2

t r igger

message

tr igger

message

application

message

application

message

APPLICATION

APPLICATION

K

L

application

messages

star t

command

star t

command

tr igger

event

tr igger

event

Figure 49. Relationship of queues within triggering

240 IBM MQ: Programming

Remember that, if you want to trigger the start of a channel, you do not need to define a process
definition object. The transmission queue definition can determine the channel to be triggered.

Use the following links to find out more about starting IBM MQ applications using triggers:
v “Prerequisites for triggering”
v “Conditions for a trigger event” on page 243
v “Controlling trigger events” on page 247
v “Designing an application that uses triggered queues” on page 249
v “Trigger monitors” on page 251
v “Properties of trigger messages” on page 254
v “When triggering does not work” on page 256
Related concepts:
“The Message Queue Interface overview” on page 76
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 92
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 101
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 113
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 130
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 220
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 224
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Working with the MQI and clusters” on page 257
There are special options on calls and return codes that relate to clustering.

z/OS “Using and writing applications on IBM MQ for z/OS” on page 263
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

z/OS “IMS and IMS bridge applications on IBM MQ for z/OS” on page 37
This information helps you to write IMS applications using IBM MQ.

Prerequisites for triggering
Use this information to learn about the steps to take before using triggering.

Before your application can take advantage of triggering, complete the following steps:
1. Either:

a. Create an initiation queue for your application queue. For example:
DEFINE QLOCAL (initiation.queue) REPLACE +

LIKE (SYSTEM.DEFAULT.INITIATION.QUEUE) +
DESCR (’initiation queue description’)

or

Starting IBM MQ applications using triggers 241

b. Determine the name of a local queue that exists and can be used by your application (typically,
this name is SYSTEM.DEFAULT.INITIATION.QUEUE or, if you are starting channels with triggers,
SYSTEM.CHANNEL.INITQ), and specify its name in the InitiationQName field of the application
queue.

2. Associate the initiation queue with the application queue. A queue manager can own more than one
initiation queue. You might want some of your application queues to be served by different programs,
in which case, you can use one initiation queue for each serving program, although you do not have
to. Here is an example of how to create an application queue:

DEFINE QLOCAL (application.queue) REPLACE +
LIKE (SYSTEM.DEFAULT.LOCAL.QUEUE) +
DESCR (’appl queue description’) +
INITQ (’initiation.queue’) +
PROCESS (’process.name’) +
TRIGGER +
TRIGTYPE (FIRST)

Here is an extract from a CL program for IBM MQ for IBM i that creates an initiation
queue:
/* Queue used by AMQSINQA */

CRTMQMQ QNAME(’SYSTEM.SAMPLE.INQ’) +
QTYPE(*LCL) REPLACE(*YES) +
MQMNAME +
TEXT(’queue for AMQSINQA’) +
SHARE(*YES) /* Shareable */+
DFTMSGPST(*YES)/* Persistent messages OK */+

+
TRGENBL(*YES) /* Trigger control on */+
TRGTYPE(*FIRST)/* Trigger on first message*/+
PRCNAME(’SYSTEM.SAMPLE.INQPROCESS’) +
INITQNAME(’SYSTEM.SAMPLE.TRIGGER’)

3. If you are triggering an application, create a process definition object to contain information relating
to the application that is to serve your application queue. For example, to trigger-start a CICS payroll
transaction called PAYR:

DEFINE PROCESS (process.name) +
REPLACE +
DESCR (’process description’) +
APPLICID (’PAYR’) +
APPLTYPE (CICS) +
USERDATA (’Payroll data’)

Here is an extract from a CL program for IBM MQ for IBM i that creates a process
definition object:
/* Process definition */

CRTMQMPRC PRCNAME(’SYSTEM.SAMPLE.INQPROCESS’) +
REPLACE(*YES) +
MQMNAME +
TEXT(’trigger process for AMQSINQA’) +
ENVDATA(’JOBPTY(3)’) /* Submit parameter */+
APPID(’AMQSINQA’) /* Program name */

When the queue manager creates a trigger message, it copies information from the attributes of the
process definition object into the trigger message.

242 IBM MQ: Programming

Platform To create a process definition object

UNIX, Linux, and Windows
systems

Use DEFINE PROCESS or use SYSTEM.DEFAULT.PROCESS and modify using
ALTER PROCESS

z/OS z/OS Use DEFINE PROCESS (see sample code in step 3 on page 242), or use the
operations and control panels.

IBM i
Use a CL program containing code as in step 3 on page 242.

4. Optional: Create a transmission queue definition and use blanks for the ProcessName attribute.
The TrigData attribute can contain the name of the channel to be triggered or it can be left blank.
Except on IBM MQ for z/OS, if it is left blank, the channel initiator searches the channel definition
files until it finds a channel that is associated with the named transmission queue. When the queue
manager creates a trigger message, it copies information from the TrigData attribute of the
transmission queue definition into the trigger message.

5. If you have created a process definition object to specify properties of the application that is to serve
your application queue, associate the process object with your application queue by naming it in the
ProcessName attribute of the queue.

Platform Use commands

UNIX, Linux, and Windows
systems

ALTER QLOCAL

z/OS

z/OS ALTER QLOCAL

IBM i

CHGMQMQ

6. Start instances of the trigger monitors (or trigger servers in IBM MQ for IBM i) that are
to serve the initiation queues you have defined. See “Trigger monitors” on page 251 for more
information.

If you want to be aware of any undelivered trigger messages, make sure that your queue manager has a
dead-letter (undelivered-message) queue defined. Specify the name of the queue in the DeadLetterQName
queue manager field.

You can then set the trigger conditions that you require, using the attributes of the queue object that
defines your application queue. For more information, see “Controlling trigger events” on page 247.

Conditions for a trigger event
The queue manager creates a trigger message when the conditions detailed in this topic are satisfied.

References to shared queues in this topic mean shared queues in a queue-sharing group, only available
on IBM MQ for z/OS.

The following conditions cause the queue manager to create a trigger message:
1. A message is put on a queue.
2. The message has a priority greater than or equal to the threshold trigger priority of the queue. This

priority is set in the TriggerMsgPriority local queue attribute; if it is set to zero, any message
qualifies.

3. The number of messages on the queue with priority greater than or equal to TriggerMsgPriority
was previously, depending on TriggerType:
v Zero (for trigger type MQTT_FIRST)
v Any number (for trigger type MQTT_EVERY)

Starting IBM MQ applications using triggers 243

v TriggerDepth minus 1 (for trigger type MQTT_DEPTH)

Note:

a. For non-shared local queues, the queue manager counts both committed and uncommitted
messages when it assesses whether the conditions for a trigger event exist. Consequently an
application might be started when there are no messages for it to retrieve because the messages
on the queue have not been committed. In this situation, consider using the wait option with a
suitable WaitInterval, so that the application waits for its messages to arrive.

b. For local shared queues, the queue manager counts committed messages only.
4. For triggering of type FIRST or DEPTH, no program has the application queue open for removing

messages (that is, the OpenInputCount local queue attribute is zero).

Note:

a. For shared queues, special conditions apply when multiple queue managers have trigger
monitors running against a queue. In this situation, if one or more queue managers have the
queue open for input shared, the trigger criteria on the other queue managers are treated as
TriggerType MQTT_FIRST and TriggerMsgPriority zero. When all the queue managers close the
queue for input, the trigger conditions revert to those conditions specified in the queue
definition.
An example scenario affected by this condition is multiple queue managers QM1, QM2, and QM3
with a trigger monitor running for an application queue A. A message arrives on A satisfying the
conditions for triggering, and a trigger message is generated on the initiation queue. The trigger
monitor on QM1 gets the trigger message and triggers an application. The triggered application
opens the application queue for shared input. From this point on the trigger conditions for
application queue A are evaluated as TriggerType MQTT_FIRST, and TriggerMsgPriority zero on
queue managers QM2 and QM3, until QM1 closes the application queue.

b. For shared queues, this condition is applied for each queue manager. That is, a queue manager's
OpenInputCount for a queue must be zero for a trigger message to be generated for the queue by
that queue manager. However, if any queue manager in the queue-sharing group has the queue
open using the MQOO_INPUT_EXCLUSIVE option, no trigger message is generated for that
queue by any of the queue managers in the queue-sharing group.
The change in how the trigger conditions are evaluated occurs when the triggered application
opens the queue for input. In scenarios where there is only one trigger monitor running, other
applications can have the same effect because they similarly open the application queue for
input. It does not matter whether the application queue was opened by an application that is
started by a trigger monitor, or by some other application; it is the fact that the queue is open for
input on another queue manager that causes the change in trigger criteria.

5. On IBM MQ for z/OS, if the application queue is one with a Usage attribute of MQUS_NORMAL,
get requests for it are not inhibited (that is, the InhibitGet queue attribute is
MQQA_GET_ALLOWED). Also, if the triggered application queue is one with a Usage attribute of
MQUS_XMITQ, get requests for it are not inhibited.

6. Either:
v The ProcessName local queue attribute for the queue is not blank, and the process definition object

identified by that attribute has been created, or
v The ProcessName local queue attribute for the queue is all blank, but the queue is a transmission

queue. As the process definition is optional, the TriggerData attribute might also contain the name
of the channel to be started. In this case, the trigger message contains attributes with the following
values:
– QName: queue name
– ProcessName: blanks
– TriggerData: trigger data
– ApplType: MQAT_UNKNOWN

244 IBM MQ: Programming

– ApplId: blanks
– EnvData: blanks
– UserData: blanks

7. An initiation queue has been created, and has been specified in the InitiationQName local queue
attribute. Also:
v Get requests are not inhibited for the initiation queue (that is, the InhibitGet queue attribute is

MQQA_GET_ALLOWED).
v Put requests must not be inhibited for the initiation queue (that is, the InhibitPut queue attribute

must be MQQA_PUT_ALLOWED).
v The Usage attribute of the initiation queue must be MQUS_NORMAL.
v In environments where dynamic queues are supported, the initiation queue must not be a

dynamic queue that has been marked as logically deleted.
8. A trigger monitor currently has the initiation queue open for removing messages (that is, the

OpenInputCount local queue attribute is greater than zero).
9. The trigger control (TriggerControl local queue attribute) for the application queue is set to

MQTC_ON. To do this, set the trigger attribute when you define your queue, or use the ALTER
QLOCAL command.

10. The trigger type (TriggerType local queue attribute) is not MQTT_NONE.
If all the required conditions are met, and the message that caused the trigger condition is put as
part of a unit of work, the trigger message does not become available for retrieval by the trigger
monitor application until the unit of work completes, whether the unit of work is committed or, for
trigger type MQTT_FIRST or MQTT_DEPTH, backed out.

11. A suitable message is placed on the queue, for a TriggerType of MQTT_FIRST or MQTT_DEPTH,
and the queue:
v Was not previously empty (MQTT_FIRST), or
v Had TriggerDepth or more messages (MQTT_DEPTH)

and conditions 2 on page 243 through 10 (excluding 3 on page 243) are satisfied, if in the case of
MQTT_FIRST a sufficient interval (TriggerInterval queue-manager attribute) has elapsed since the
last trigger message was written for this queue.
This is to allow for a queue server that ends before processing all the messages on the queue. The
purpose of the trigger interval is to reduce the number of duplicate trigger messages that are
generated.

Note: If you stop and restart the queue manager, the TriggerInterval timer is reset. There is a small
window during which it is possible to produce two trigger messages. The window exists when the
trigger attribute of the queue is set to enabled at the same time as a message arrives and the queue
was not previously empty (MQTT_FIRST) or had TriggerDepth or more messages (MQTT_DEPTH).

12. The only application serving a queue issues an MQCLOSE call, for a TriggerType of MQTT_FIRST or
MQTT_DEPTH, and there is at least:
v One (MQTT_FIRST), or
v TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition 2 on page 243), and conditions 6 on page 244
through 10 are also satisfied.
This is to allow for a queue server that issues an MQGET call, finds the queue empty, and so ends;
however, in the interval between the MQGET and the MQCLOSE calls, one or more messages arrive.

Note:

a. If the program serving the application queue does not retrieve all the messages, this can cause a
closed loop. Each time that the program closes the queue, the queue manager creates another
trigger message that causes the trigger monitor to start the server program again.

Starting IBM MQ applications using triggers 245

b. If the program serving the application queue backs out its get request (or if the program abends)
before it closes the queue, the same happens. However, if the program closes the queue before
backing out the get request, and the queue is otherwise empty, no trigger message is created.

c. To prevent such a loop occurring, use the BackoutCount field of MQMD to detect messages that
are repeatedly backed out. For more information, see “Messages that are backed out” on page 33.

13. The following conditions are satisfied using MQSET or a command:
a.

v TriggerControl is changed to MQTC_ON, or
v TriggerControl is already MQTC_ON and the value of either TriggerType,

TriggerMsgPriority, or TriggerDepth (if relevant) is changed,

and there is at least:
v One (MQTT_FIRST or MQTT_EVERY), or
v TriggerDepth (MQTT_DEPTH)

messages on the queue of sufficient priority (condition 2 on page 243), and conditions 4 on page
244 through 10 on page 245 (excluding 8 on page 245) are also satisfied.
This is to allow for an application or operator changing the triggering criteria, when the
conditions for a trigger to occur are already satisfied.

b. The InhibitPut queue attribute of an initiation queue changes from MQQA_PUT_INHIBITED to
MQQA_PUT_ALLOWED, and there is at least:
v One (MQTT_FIRST or MQTT_EVERY), or
v TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition 2 on page 243) on any of the queues for which this is
the initiation queue, and conditions 4 on page 244 through 10 on page 245 are also satisfied. (One
trigger message is generated for each such queue satisfying the conditions.)
This is to allow for trigger messages not being generated because of the
MQQA_PUT_INHIBITED condition on the initiation queue, but this condition now having been
changed.

c. The InhibitGet queue attribute of an application queue changes from MQQA_GET_INHIBITED
to MQQA_GET_ALLOWED, and there is at least:
v One (MQTT_FIRST or MQTT_EVERY), or
v TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition 2 on page 243) on the queue, and conditions 4 on page
244 through 10 on page 245, excluding 5 on page 244, are also satisfied.
This allows applications to be triggered only when they can retrieve messages from the
application queue.

d. A trigger-monitor application issues an MQOPEN call for input from an initiation queue, and
there is at least:
v One (MQTT_FIRST or MQTT_EVERY), or
v TriggerDepth (MQTT_DEPTH)

messages of sufficient priority (condition 2 on page 243) on any of the application queues for
which this is the initiation queue, and conditions 4 on page 244 through 10 on page 245
(excluding 8 on page 245) are also satisfied, and no other application has the initiation queue
open for input (one trigger message is generated for each such queue satisfying the conditions).
This is to allow for messages arriving on queues while the trigger monitor is not running, and
for the queue manager restarting and trigger messages (which are nonpersistent) being lost.

14. MSGDLVSQ is set correctly. If you set MSGDLVSQ=FIFO, messages are delivered to the queue in a
First In First Out basis. The priority of the message is ignored and the default priority of the queue
is assigned to the message. If TriggerMsgPriority is set to a higher value than the default priority of

246 IBM MQ: Programming

the queue, no messages are triggered. If TriggerMsgPriority is set equal to or lower than the default
priority of the queue, triggering occurs for type FIRST, EVERY, and DEPTH. For information about
these types, see the description of the TriggerType field under “Controlling trigger events.”
If you set MSGDLVSQ=PRIORITY and the message priority is equal to or greater than the
TriggerMsgPriority field, messages only count towards a trigger event. In this case, triggering occurs
for type FIRST, EVERY, and DEPTH. As an example, if you put 100 messages of lower priority than
the TriggerMsgPriority, the effective queue depth for triggering purposes is still zero. If you then
put another message on the queue, but this time the priority is greater than or equal to the
TriggerMsgPriority, the effective queue depth increases from zero to one and the condition for
TriggerType FIRST is satisfied.

Note:

1. From step 12 on page 245 (where trigger messages are generated as a result of some event other than
a message arriving on the application queue), the trigger message is not put as part of a unit of work.
Also, if the TriggerType is MQTT_EVERY, and if there are one or more messages on the application
queue, only one trigger message is generated.

2. If IBM MQ segments a message during MQPUT, a trigger event will not be processed until all the
segments have been successfully placed on the queue. However, once message segments are on the
queue, IBM MQ treats them as individual messages for triggering purposes. For example, a single
logical message split into three pieces causes only one trigger event to be processed when it is first
MQPUT and segmented. However, each of the three segments causes their own trigger events to be
processed as they are moved through the IBM MQ network.

Controlling trigger events
You control trigger events using some of the attributes that define your application queue. This
information also gives examples of using the trigger types: EVERY, FIRST, and DEPTH.

You can enable and disable triggering, and you can select the number or priority of the messages that
count toward a trigger event. There is a full description of these attributes in Attributes of objects.

The relevant attributes are:

TriggerControl
Use this attribute to enable and disable triggering for an application queue.

TriggerMsgPriority
The minimum priority that a message must have for it to count toward a trigger event. If a
message of priority less than TriggerMsgPriority arrives on the application queue, the queue
manager ignores the message when it determines whether to create a trigger message. If
TriggerMsgPriority is set to zero, all messages count toward a trigger event.

TriggerType
In addition to the trigger type NONE (which disables triggering just like setting the
TriggerControl to OFF), you can use the following trigger types to set the sensitivity of a queue
to trigger events:

Starting IBM MQ applications using triggers 247

EVERY A trigger event occurs every time that a message arrives on the application queue. Use
this type of trigger if you want multiple instances of an application started.

FIRST A trigger event occurs only when the number of messages on the application queue
changes from zero to one. Use this type of trigger if you want a serving program to
start when the first message arrives on a queue, continue until there are no more
messages to process, then end. You must always process the queue until it is empty.
Also see “Special case of trigger type FIRST.”

DEPTH A trigger event occurs only when the number of messages on the application queue
reaches the value of the TriggerDepth attribute. A typical use of this type of triggering
is to start a program when all the replies to a set of requests are received.
Triggering by depth: With triggering by depth, the queue manager disables triggering
(using the TriggerControl attribute) after it creates a trigger message. Your application
must re-enable triggering itself (by using the MQSET call) after this has happened.

The action of disabling triggering is not under syncpoint control, so triggering cannot
be re-enabled by backing out a unit of work. If a program backs out a put request that
caused a trigger event, or if the program abends, you must re-enable triggering by
using the MQSET call or the ALTER QLOCAL command.

TriggerDepth
The number of messages on a queue that causes a trigger event when using triggering by depth.

The conditions that must be satisfied for a queue manager to create a trigger message are described in
“Conditions for a trigger event” on page 243.

Example of the use of trigger type EVERY

Consider an application that generates requests for motor insurance. The application might send request
messages to a number of insurance companies, specifying the same reply-to queue each time. It might set
a trigger of type EVERY on this reply-to queue so that each time a reply arrives, the reply might trigger
an instance of the server to process the reply.

Example of the use of trigger type FIRST

Consider an organization with a number of branch offices that each transmit details of the days business
to the head office. They all do this at the same time, at the end of the working day, and at the head office
there is an application that processes the details from all the branch offices. The first message to arrive at
the head office could cause a trigger event that starts this application. This application would continue
processing until there are no more messages on its queue.

Example of the use of trigger type DEPTH

Consider a travel agency application that creates a single request to confirm a flight reservation, to
confirm a reservation for a hotel room, to rent a car, and to order some travelers checks. The application
might separate these items into four request messages, sending each to a separate destination. It might set
a trigger of type DEPTH on its reply-to queue (with the depth set to the value 4), so that it is restarted
only when all four replies have arrived.

If another message (possibly from a different request) arrives on the reply-to queue before the last of the
four replies, the requesting application is triggered early. To avoid this, when using DEPTH triggering to
collect multiple replies to a request, always use a new reply-to queue for each request.

Special case of trigger type FIRST

With trigger type FIRST, if there is already a message on the application queue when another message
arrives, the queue manager does not typically create another trigger message.

248 IBM MQ: Programming

However, the application serving the queue might not actually open the queue (for example, the
application might end, possibly because of a system problem). If an incorrect application name has been
put into the process definition object, the application serving the queue will not pick up any of the
messages. In these situations, if another message arrives on the application queue, there is no server
running to process this message (and any other messages on the queue).

To deal with this, the queue manager creates further trigger messages under the following circumstances:
v If another message arrives on the application queue, but only if a predefined time interval has elapsed

since the queue manager created the last trigger message for that queue. This time interval is defined
in the queue manager attribute TriggerInterval. Its default value is 999 999 999 milliseconds.

v On IBM MQ for z/OS, application queues that name an open initiation queue are scanned periodically.
If TRIGINT milliseconds have passed since the last trigger message was sent and the queue satisfies the
conditions for a trigger event and CURDEPTH is greater than zero, a trigger message is generated.
This process is called backstop triggering.

Consider the following points when deciding on a value for the trigger interval to use in your
application:
v If you set TriggerInterval to a low value, and there is no application serving the application queue,

trigger type FIRST might behave like trigger type EVERY. This depends on the rate that messages are
being put onto the application queue, which in turn might depend on other system activity. This is
because, if the trigger interval is very small, another trigger message is generated each time that a
message is put onto the application queue, even though the trigger type is FIRST, not EVERY. (Trigger
type FIRST with a trigger interval of zero is equivalent to trigger type EVERY.)

v On IBM MQ for z/OS if you set TRIGINT to a low value, and there is no application serving the trigger
type FIRST application queue, backstop triggering will generate a trigger message each time the
periodic scan of application queues that name open initiation queues takes place.

v If a unit of work is backed out (see Trigger messages and units of work) and the trigger interval has
been set to a high value (or the default value), one trigger message is generated when the unit of work
is backed out. However, if you have set the trigger interval to a low value or to zero (causing trigger
type FIRST to behave like trigger type EVERY) many trigger messages can be generated. If the unit of
work is backed out, all the trigger messages are still made available. The number of trigger messages
that are generated depends on the trigger interval. If the trigger interval is set to zero, the maximum
number of messages are generated.

Designing an application that uses triggered queues
You have seen how to set up, and control, triggering for your applications. Here are some tips to consider
when you design your application.

Trigger messages and units of work

Trigger messages created because of trigger events that are not part of a unit of work are put on the
initiation queue, outside any unit of work, with no dependence on any other messages, and are available
for retrieval by the trigger monitor immediately.

Trigger messages created because of trigger events that are part of a unit of work are made available on
the initiation queue when the UOW is resolved, whether the unit of work is committed or backed out

If the queue manager fails to put a trigger message on an initiation queue, it will be put on the
dead-letter (undelivered-message) queue.

Note:

1. The queue manager counts both committed and uncommitted messages when it assesses whether the
conditions for a trigger event exist.

Starting IBM MQ applications using triggers 249

With triggering of type FIRST or DEPTH, trigger messages are made available even if the unit of
work is backed out so that a trigger message is always available when the required conditions are
met. For example, consider a put request within a unit of work for a queue that is triggered with
trigger type FIRST. This causes the queue manager to create a trigger message. If another put request
occurs, from another unit of work, this does not cause another trigger event because the number of
messages on the application queue has now changed from one to two, which does not satisfy the
conditions for a trigger event. Now if the first unit of work is backed out, but the second is
committed, a trigger message is still created.
However, this means that trigger messages are sometimes created when the conditions for a trigger
event are not satisfied. Applications that use triggering must always be prepared to handle this
situation. It is recommended that you use the wait option with the MQGET call, setting the
WaitInterval to a suitable value.
Created trigger messages are always made available, whether the unit of work is backed out or
committed.

2. For local shared queues (that is, shared queues in a queue-sharing group) the queue manager counts
committed messages only.

Getting messages from a triggered queue

When you design applications that use triggering, be aware that there might be a delay between a trigger
monitor starting a program and other messages becoming available on the application queue. This can
happen when the message that causes the trigger event is committed before the others.

To allow time for messages to arrive, always use the wait option when you use the MQGET call to
remove messages from a queue for which trigger conditions are set. The WaitInterval must be sufficient
to allow for the longest reasonable time between a message being put and that put call being committed.
If the message is arriving from a remote queue manager, this time is affected by:
v The number of messages that are put before being committed
v The speed and availability of the communication link
v The sizes of the messages

For an example of a situation where you should use the MQGET call with the wait option, consider the
same example that we used when describing units of work. This was a put request within a unit of work
for a queue that is triggered with trigger type FIRST. This event causes the queue manager to create a
trigger message. If another put request occurs, from another unit of work, this does not cause another
trigger event because the number of messages on the application queue has not changed from zero to
one. Now if the first unit of work is backed out, but the second is committed, a trigger message is still
created. So the trigger message is created at the time that the first unit of work is backed out. If there is a
significant delay before the second message is committed, the triggered application might need to wait
for it.

With triggering of type DEPTH, a delay can occur even if all relevant messages are eventually committed.
Suppose that the TriggerDepth queue attribute has the value 2. When two messages arrive on the queue,
the second causes a trigger message to be created. However, if the second message is the first to be
committed, it is at that time that the trigger message becomes available. The trigger monitor starts the
server program, but the program can retrieve only the second message until the first one is committed.
So the program might need to wait for the first message to be made available.

Design your application so that it terminates if no messages are available for retrieval when your wait
interval expires. If one or more messages arrive later, rely on your application being retriggered to
process them. This method prevents applications being idle, and unnecessarily using resources.

250 IBM MQ: Programming

Trigger monitors
To a queue manager, a trigger monitor is like any other application that serves a queue. However, a
trigger monitor serves initiation queues.

A trigger monitor is usually a continuously-running program. When a trigger message arrives on an
initiation queue, the trigger monitor retrieves that message. It uses information in the message to issue a
command to start the application that is to process the messages on the application queue.

The trigger monitor must pass sufficient information to the program that it is starting so that the program
can perform the correct actions on the correct application queue.

A channel initiator is an example of a special type of trigger monitor for message channel agents. In this
situation however, you must use either trigger type FIRST or DEPTH.

Trigger monitors on UNIX and Windows systems
This topic contains information about trigger monitors provided on UNIX and Windows systems.

The following trigger monitors are provided for the server environment:

amqstrg0
This is a sample trigger monitor that provides a subset of the function provided by runmqtrm.
See “Sample procedural programs (platforms except z/OS)” on page 473 for more information
about amqstrg0.

runmqtrm
The syntax of this command is runmqtrm [-m QMgrName] [-q InitQ], where QMgrName is the
queue manager and InitQ is the initiation queue. The default queue is
SYSTEM.DEFAULT.INITIATION.QUEUE on the default queue manager. It calls programs for the
appropriate trigger messages. This trigger monitor supports the default application type.

The command string passed by the trigger monitor to the operating system is built as follows:
1. The ApplId from the relevant PROCESS definition (if created)
2. The MQTMC2 structure, enclosed in double quotation marks
3. The EnvData from the relevant PROCESS definition (if created)

where ApplId is the name of the program to run as it would be entered on the command line.

The parameter passed is the MQTMC2 character structure. A command string is invoked that has
this string, exactly as provided, in double quotation marks, in order that the system command
will accept it as one parameter.

The trigger monitor does not look to see if there is another message on the initiation queue until
the completion of the application that it has just started. If the application has much processing to
do, the trigger monitor might not be able to keep up with the number of trigger messages
arriving. You have two options:
v Have more trigger monitors running
v Run the started applications in the background

If you have more trigger monitors running, you can control the maximum number of applications
that can run at any one time. If you run applications in the background, there is no restriction
imposed by IBM MQ on the number of applications that can run.

To run the started application in the background on Windows systems, within the ApplId field,
prefix the name of your application with a START command. For example:
START ?B AMQSECHA

Starting IBM MQ applications using triggers 251

To run the started application in the background on UNIX systems, put an & at the end of the
EnvData of the PROCESS definition.

Note: Where a Windows path has spaces as a part of the path name, these should be enclosed in
quotation marks (") to ensure that it is handled as a single argument. For example, “ C:\Program
Files\Application Directory\Application.exe ”.

The following is an example of an APPLICID string where the file name includes spaces as a part
of the path:
START "" /B "C:\Program Files\Application Directory\Application.exe"

The syntax of the Windows START command in the example includes an empty string enclosed
in double quotation marks. START specifies that the first argument in quotation marks will be
treated as the title of the new command. To ensure that Windows does not mistake the
application path for a 'title' argument, add a title string enclosed in double quotation marks to the
command before the application name.

The following trigger monitors are provided for the IBM MQ client:

runmqtmc
This is the same as runmqtrm except that it links with the IBM MQ MQI client libraries.

For CICS
The amqltmc0 trigger monitor is provided for CICS. It works in the same way as the standard trigger
monitor, runmqtrm, but you run it in a different way and it triggers CICS transactions.

This topic applies only to Windows, UNIX, and Linux systems.

It is supplied as a CICS program; define it with a 4-character transaction name. Enter the 4-character
name to start the trigger monitor. It uses the default queue manager (as named in the qm.ini file or, on
IBM MQ for Windows, the registry), and the SYSTEM.CICS.INITIATION.QUEUE.

If you want to use a different queue manager or queue, build the trigger monitor MQTMC2 structure:
this requires you to write a program using the EXEC CICS START call, because the structure is too long
to add as a parameter. Then, pass the MQTMC2 structure as data to the START request for the trigger
monitor.

When you use the MQTMC2 structure, you need to supply only the StrucId, Version, QName, and
QMgrName parameters to the trigger monitor as it does not reference any other fields.

Messages are read from the initiation queue and used to start CICS transactions, using EXEC CICS
START, assuming the APPL_TYPE in the trigger message is MQAT_CICS. The reading of messages from
the initiation queue is performed under CICS syncpoint control.

Messages are generated when the monitor starts and stops, and when an error occurs. These messages
are sent to the CSMT transient data queue.

Here are the available versions of the trigger monitor:

252 IBM MQ: Programming

Version Use

amqltmc0 TXSeries for AIX, HP-UX, and Oracle Solaris Version 5.1

amqltmc4 TXSeries for Windows, Version 5.1

amqltmcc Client bound version of the CICS trigger monitor

If you need a trigger monitor for other environments, write a program that can process the trigger
messages that the queue manager puts on the initiation queues. Such a program should perform the
following actions:
1. Use the MQGET call to wait for a message to arrive on the initiation queue.
2. Examine the fields of the MQTM structure of the trigger message to find the name of the application

to start, and the environment in which it runs.

3. Issue an environment-specific start command. z/OS For example, in z/OS batch, submit a job to
the internal reader.

4. Convert the MQTM structure to the MQTMC2 structure if required.
5. Pass either the MQTMC2 or MQTM structure to the started application. This can contain user data.
6. Associate with your application queue the application that is to serve that queue. You do this by

naming the process definition object (if created) in the ProcessName attribute of the queue.

Use DEFINE QLOCAL or ALTER QLOCAL. On IBM i, you can also use CRTMQMQ or
CHGMQMQ.

For more information about the trigger monitor interface, see MQTMC2.

IBM MQ for IBM i trigger monitors
In IBM MQ for IBM i, instead of the runmqtrm control command, use the IBM MQ for IBM i CL
command STRMQMTRM .

Use the STRMQMTRM command as follows:
STRMQMTRM INITQNAME(InitQ) MQMNAME(QMgrName)

Details are as for runmqtrm.

The following sample programs are also provided, which you can use as models to write your own
trigger monitors:

AMQSTRG4
This is a trigger monitor that submits an IBM i job for the process that is to be started, but this
means that there is additional processing associated with each trigger message.

AMQSERV4
This is a trigger server. For each trigger message, this server runs the command for the process in
its own job, and can call CICS transactions.

Both the trigger monitor and the trigger server pass an MQTMC2 structure to the programs that they
start. For a description of this structure, see MQTMC2. Both of these samples are delivered in both source
and executable forms.

Because these trigger monitors can invoke only native IBM i programs, they cannot trigger Java programs
directly, because Java classes are located in the IFS. However, Java programs can be triggered indirectly
by triggering a CL program that then invokes the Java program and passes across the TMC2 structure.
The minimum size of the TMC2 structure is 732 bytes.

Here is the source of a sample CLP:

Starting IBM MQ applications using triggers 253

PGM PARM(&TMC2)
DCL &TMC2 *CHAR LEN(800)

ADDENVVAR ENVVAR(TM) VALUE(&TMC2)
QSH CMD(’java_pgmname $TM’)
RMVENVVAR ENVVAR(TM)

ENDPGM

The following trigger monitor program is provided for the IBM MQ MQI client: RUNMQTMC

Call the RUNMQTMC as follows:
CALL PGM(QMQM/RUNMQTMC) PARM(’-m’ QMgrName ’-q’ InitQ)

Properties of trigger messages
The following topics describe some other properties of trigger messages.
v “Persistence and priority of trigger messages”
v “Queue manager restart and trigger messages”
v “Trigger messages and changes to object attributes”
v “Format of trigger messages”

Persistence and priority of trigger messages

Trigger messages are not persistent because there is no requirement for them to be so.

However, the conditions for generating triggering events do persist, so trigger messages are generated
whenever these conditions are met. If a trigger message is lost, the continued existence of the application
message on the application queue guarantees that the queue manager generates a trigger message as
soon as all the conditions are met.

If a unit of work is rolled back, any trigger messages it generated are always delivered.

Trigger messages take the default priority of the initiation queue.

Queue manager restart and trigger messages

Following the restart of a queue manager, when an initiation queue is next opened for input, a trigger
message can be put to this initiation queue if an application queue associated with it has messages on it,
and is defined for triggering.

Trigger messages and changes to object attributes

Trigger messages are created according to the values of the trigger attributes in force at the time of the
trigger event.

If the trigger message is not made available to a trigger monitor until later (because the message that
caused it to be generated was put within a unit of work), any changes to the trigger attributes in the
meantime have no effect on the trigger message. In particular, disabling triggering does not prevent a
trigger message being made available once it has been created. Also, the application queue might no
longer exist at the time that the trigger message is made available.

Format of trigger messages

The format of a trigger message is defined by the MQTM structure.

254 IBM MQ: Programming

This has the following fields, which the queue manager fills when it creates the trigger message, using
information in the object definitions of the application queue and of the process associated with that
queue:

StrucId
The structure identifier.

Version
The version of the structure.

QName The name of the application queue on which the trigger event occurred. When the queue
manager creates a trigger message, it fills this field using the QName attribute of the application
queue.

ProcessName
The name of the process definition object that is associated with the application queue. When the
queue manager creates a trigger message, it fills this field using the ProcessName attribute of the
application queue.

TriggerData
A free-format field for use by the trigger monitor. When the queue manager creates a trigger
message, it fills this field using the TriggerData attribute of the application queue. On any IBM
MQ product except IBM MQ for z/OS, this field can be used to specify the name of the channel
to be triggered.

ApplType
The type of the application that the trigger monitor is to start. When the queue manager creates a
trigger message, it fills this field using the ApplType attribute of the process definition object
identified in ProcessName.

ApplId A character string that identifies the application that the trigger monitor is to start. When the
queue manager creates a trigger message, it fills this field using the ApplId attribute of the
process definition object identified in ProcessName. When you use trigger monitor CKTI or
CSQQTRMN supplied by IBM MQ for z/OS, the ApplId attribute of the process definition object
is a CICS or IMS transaction identifier.

EnvData
A character field containing environment-related data for use by the trigger monitor. When the
queue manager creates a trigger message, it fills this field using the EnvData attribute of the
process definition object identified in ProcessName. The IBM MQ for z/OS-supplied trigger
monitors (CKTI or CSQQTRMN) do not use this field, but other trigger monitors might choose to
use it.

UserData
A character field containing user data for use by the trigger monitor. When the queue manager
creates a trigger message, it fills this field using the UserData attribute of the process definition
object identified in ProcessName. This field can be used to specify the name of the channel to be
triggered.

There is a full description of the trigger message structure in MQTM.

Starting IBM MQ applications using triggers 255

When triggering does not work
A program is not triggered if the trigger monitor cannot start the program or the queue manager cannot
deliver the trigger message. For example, the applid in the process object must specify that the program
is to be started in the background; otherwise, the trigger monitor cannot start the program.

If a trigger message is created but cannot be put on the initiation queue (for example, because the queue
is full or the length of the trigger message is greater than the maximum message length specified for the
initiation queue), the trigger message is put instead on the dead-letter (undelivered message) queue.

If the put operation to the dead-letter queue cannot complete successfully, the trigger message is
discarded and a warning message is sent z/OS

to the z/OS console or to the system operator or is

put on the error log.

Putting the trigger message on the dead-letter queue might generate a trigger message for that queue.
This second trigger message is discarded if it adds a message to the dead-letter queue.

If the program is triggered successfully but abends before it receives the message from the queue, use a
trace utility (for example, CICS AUXTRACE if the program is running under CICS) to find the cause of
the failure.

256 IBM MQ: Programming

Working with the MQI and clusters

There are special options on calls and return codes that relate to clustering.

Use the following links to find out more about the options available on the calls and return codes for use
with clusters:
v “MQOPEN and clusters”
v “MQPUT, MQPUT1 and clusters” on page 259
v “MQINQ and clusters” on page 259
v “MQSET and clusters” on page 260
v “Return codes” on page 260
Related concepts:
“The Message Queue Interface overview” on page 76
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 92
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 101
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 113
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 130
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 220
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 224
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 237
Learn about triggers and how to start IBM MQ applications using triggers.

z/OS “Using and writing applications on IBM MQ for z/OS” on page 263
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

z/OS “IMS and IMS bridge applications on IBM MQ for z/OS” on page 37
This information helps you to write IMS applications using IBM MQ.

MQOPEN and clusters
The queue to which a message is put to, or read from, when a cluster queue is opened, depends on the
MQOPEN call.

Selecting the target queue

If you do not provide a queue manager name in the object descriptor, MQOD, the queue manager selects
the queue manager to send the message to. If you do provide a queue manager name in the object
descriptor, then messages are always sent to the queue manager you have selected.

© Copyright IBM Corp. 2007, 2018 257

If the queue manager is selecting the target queue manager, the selection depends on the binding options,
MQOO_BIND_* and if a local queue exists. If there is a local instance of the queue, it is always opened in
preference to a remote instance, unless the CLWLUSEQ attribute is set to ANY. Otherwise, the selection
depends on the binding options. Either MQOO_BIND_ON_OPEN or MQOO_BIND_ON_GROUP must be specified
when using message groups with clusters to ensure that all messages in the group are processed at the
same destination.

If the queue manager is selecting the target queue manager, it does so in a round-robin fashion, using the
workload management algorithm; see Workload balancing in clusters.

When the workload balancing algorithm is used depends on the way the cluster queue is opened:
v MQOO_BIND_ON_OPEN - the algorithm is used once at the time the queue is opened by the application.
v MQOO_BIND_NOT_FIXED - the algorithm is used for every message put to the queue.
v MQOO_BIND_ON_GROUP - the algorithm is used once at the start of each message group.

MQOO_BIND_ON_OPEN
The MQOO_BIND_ON_OPEN option on the MQOPEN call specifies that the target queue manager is to
be fixed. Use the MQOO_BIND_ON_OPEN option if there are multiple instances of the same queue
within a cluster. All messages put to the queue specifying the object handle returned from the
MQOPEN call are directed to the same queue manager.
v Use the MQOO_BIND_ON_OPEN option if messages have affinities. For example, if a batch of

messages is all to be processed by the same queue manager, specify MQOO_BIND_ON_OPEN when
you open the queue. IBM MQ fixes the queue manager and the route to be taken by all
messages put to that queue.

v If MQOO_BIND_ON_OPEN option is specified, the queue must be reopened for a new instance of the
queue to be selected.

MQOO_BIND_NOT_FIXED
The MQOO_BIND_NOT_FIXED option on the MQOPEN call specifies that the target queue manager is
not fixed. Messages written to the queue specifying the object handle returned from the
MQOPEN call are routed to a queue manager at MQPUT time on a message-by-message basis.
Use the MQOO_BIND_NOT_FIXED option if you do not want to force all your messages to be written
to the same destination.
v Do not specify MQOO_BIND_NOT_FIXED and MQMF_SEGMENTATION_ALLOWED at the same time. If you

do, the segments of your message might be delivered to different queue managers, scattered
throughout the cluster.

MQOO_BIND_ON_GROUP
Allows an application to request that a group of messages is allocated to the same destination
instance. This option is valid only for queues, and affects only cluster queues. If specified for a
queue that is not a cluster queue, the option is ignored.
v Groups are only routed to a single destination when MQPMO_LOGICAL_ORDER is specified

on the MQPUT. When MQOO_BIND_ON_GROUP is specified, but a message is not part of a
logical group, BIND_NOT_FIXED behavior is used instead.

MQOO_BIND_AS_Q_DEF
If you do not specify either MQOO_BIND_ON_OPEN, MQOO_BIND_NOT_FIXED or MQOO_BIND_ON_GROUP, the
default option is MQOO_BIND_AS_Q_DEF. Using MQOO_BIND_AS_Q_DEF causes the binding that is used
for the queue handle to be taken from the DefBind queue attribute.

Relevance of MQOPEN options

The MQOPEN options MQOO_BROWSE, MQOO_INPUT_*, or MQOO_SET require a local instance of the cluster
queue for MQOPEN to succeed.

258 IBM MQ: Programming

The MQOPEN options MQOO_OUTPUT, MQOO_BIND_*, or MQOO_INQUIRE do not require a local instance of the
cluster queue to succeed.

Resolved queue manager name

When a queue manager name is resolved at MQOPEN time, the resolved name is returned to the
application. If the application tries to use this name on a subsequent MQOPEN call, it might find that it
is not authorized to access the name.

MQPUT, MQPUT1 and clusters
If MQOO_BIND_NOT_FIXED is specified on an MQOPEN the workload management routines chooses which
destination MQPUT or MQPUT1 select.

If MQOO_BIND_NOT_FIXED is specified on an MQOPEN call, each subsequent MQPUT call invokes the
workload management routine to determine which queue manager to send the message to. The
destination and route to be taken are selected on a message-by-message basis. The destination and route
might change after the message has been put if conditions in the network change. The MQPUT1 call
always operates as though MQOO_BIND_NOT_FIXED were in effect, that is, it always invokes the workload
management routine.

When the workload management routine has selected a queue manager, the local queue manager
completes the put operation. The message can be placed on different queues:
1. If the destination is the local instance of the queue, the message is placed on the local queue.
2. If the destination is a queue manager in a cluster, the message is placed on a cluster transmission

queue.
3. If the destination is a queue manager outside a cluster, the message is placed on a transmission queue

with the same name as the target queue manager.

If MQOO_BIND_ON_OPEN is specified on the MQOPEN call, MQPUT calls do not invoke the workload
management routine because the destination and route have already been selected.

MQINQ and clusters
Which cluster queue is inquired upon depends upon the options you combine with MQOO_INQUIRE.

Before you can inquire on a queue, open it using the MQOPEN call and specify MQOO_INQUIRE.

To inquire on a cluster queue, use the MQOPEN call and combine other options with MQOO_INQUIRE. The
attributes that can be inquired depend on whether there is a local instance of the cluster queue, and on
how the queue is opened:
v Combining MQOO_BROWSE, MQOO_INPUT_*, or MQOO_SET with MQOO_INQUIRE requires a local instance of the

cluster queue for the open to succeed. In this case you can inquire on all the attributes that are valid
for local queues.

v Combining MQOO_OUTPUT with MQOO_INQUIRE, and specifying none of the preceding options, the instance
opened is either:
– The instance on the local queue manager, if there is one. In this case you can inquire on all the

attributes that are valid for local queues.
– An instance elsewhere in the cluster, if there is no local queue-manager instance. In this case only

the following attributes can be inquired on. The QType attribute has the value MQQT_CLUSTER in this
case.
- DefBind

- DefPersistence

Working with the MQI and clusters 259

- DefPriority

- InhibitPut

- QDesc

- QName

- QType

To inquire on the DefBind attribute of a cluster queue, use the MQINQ call with the selector
MQIA_DEF_BIND. The value returned is either MQBND_BIND_ON_OPEN or MQBND_BIND_NOT_FIXED, or
MQBND_BIND_ON_GROUP. Either MQBND_BIND_ON_OPEN or MQBND_BIND_ON_GROUP must be specified when using
groups with clusters.

To inquire on the CLUSTER and CLUSNL attributes of the local instance of a queue, use the MQINQ call with
the selector MQCA_CLUSTER_NAME or the selector MQCA_CLUSTER_NAMELIST.

Note: If you open a cluster queue without fixing the queue that MQOPEN has bound to, successive MQINQ
calls might inquire on different instances of the cluster queue.
Related concepts:
“MQOPEN option for cluster queue” on page 108
The binding used for the queue handle is taken from the DefBind queue attribute, which can take the
value MQBND_BIND_ON_OPEN, MQBND_BIND_NOT_FIXED, or MQBND_BIND_ON_GROUP.

MQSET and clusters
The MQOPEN option MQOO_SET option requires there to be a local instance of a cluster queue for MQSET
to succeed.

You cannot use the MQSET call to set the attributes of a queue elsewhere in the cluster.

You can open a local alias or remote queue defined with the cluster attribute and use the MQSET call.
You can set the attributes of the local alias or remote queue. It does not matter if the target queue is a
cluster queue defined on a different queue manager.

Return codes
Return codes specific to clusters

MQRC_CLUSTER_EXIT_ERROR (2266 X’8DA’)

An MQOPEN, MQPUT, or MQPUT1 call is issued to open a cluster queue or put a message on it.
The cluster workload exit, defined by the ClusterWorkloadExit attribute of a queue-manager, fails
unexpectedly or does not respond in time.

A message is written to the system log on IBM MQ for z/OS giving more information about this
error.

Subsequent MQOPEN, MQPUT, and MQPUT1 calls for this queue handle are processed as
though the ClusterWorkloadExit attribute were blank.

MQRC_CLUSTER_EXIT_LOAD_ERROR (2267 X’8DB’)

On z/OS, the cluster workload exit cannot be loaded.

A message is written to the system log and processing continues as though the
ClusterWorkloadExit attribute is blank.

On platforms other than z/OS, an MQCONN or MQCONNX call is issued to connect to a queue
manager. The call fails because the cluster workload exit, defined by the queue-manager
ClusterWorkloadExit attribute of the queue manager, cannot be loaded.

260 IBM MQ: Programming

MQRC_CLUSTER_PUT_INHIBITED (2268 X’8DC’)

An MQOPEN call with the MQOO_OUTPUT and MQOO_BIND_ON_OPEN options in effect is issued for a
cluster queue. All the instances of the queue in the cluster are currently put-inhibited by having
the InhibitPut attribute set to MQQA_PUT_INHIBITED. Because there are no queue instances
available to receive messages, the MQOPEN call fails.

This reason code occurs only when both of the following are true:
v There is no local instance of the queue. If there is a local instance, the MQOPEN call succeeds,

even if the local instance is put-inhibited.
v There is no cluster workload exit for the queue, or there is a cluster workload exit but it does

not choose a queue instance. (If the cluster workload exit chooses a queue instance, the
MQOPEN call succeeds, even if that instance is put-inhibited.)

If the MQOO_BIND_NOT_FIXED option is specified on the MQOPEN call, the call can succeed even if
all the queues in the cluster are put-inhibited. However, a subsequent MQPUT call might fail if
all the queues are still put-inhibited at the time of that call.

MQRC_CLUSTER_RESOLUTION_ERROR (2189 X’88D’)

1. An MQOPEN, MQPUT, or MQPUT1 call is issued to open a cluster queue or put a message
on it. The queue definition cannot be resolved correctly because a response is required from
the full repository queue manager but none is available.

2. An MQOPEN, MQPUT, MQPUT1 or MQSUB call is issued for a topic object specifying
PUBSCOPE (ALL) or SUBSCOPE (ALL). The cluster topic definition cannot be resolved correctly
because a response is required from the full repository queue manager but none is available.

MQRC_CLUSTER_RESOURCE_ERROR (2269 X’8DD’)

An MQOPEN, MQPUT, or MQPUT1 call is issued for a cluster queue. An error occurs while
trying to use a resource required for clustering.

MQRC_NO_DESTINATIONS_AVAILABLE (2270 X’8DE’)

An MQPUT or MQPUT1 call is issued to put a message on a cluster queue. At the time of the
call, there are no longer any instances of the queue in the cluster. The MQPUT fails and the
message is not sent.

The error can occur if MQOO_BIND_NOT_FIXED is specified on the MQOPEN call that opens the
queue, or MQPUT1 is used to put the message.

MQRC_STOPPED_BY_CLUSTER_EXIT (2188 X’88C’)

An MQOPEN, MQPUT, or MQPUT1 call is issued to open or put a message on a cluster queue.
The cluster workload exit rejects the call.

Working with the MQI and clusters 261

262 IBM MQ: Programming

Using and writing applications on IBM MQ for z/OS

IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

This information explains the IBM MQ facilities available to programs running in each of the supported
environments. In addition,
v For information about using the IBM MQ-CICS bridge, see Using IBM MQ with CICS .
v For information about using IMS and the IMS bridge, see “IMS and IMS bridge applications on IBM

MQ for z/OS” on page 37.

Use the following links to find out more about using and writing applications on IBM MQ for z/OS:
v “Environment-dependent IBM MQ for z/OS functions”
v “Debugging facilities, syncpoint support, and recovery support” on page 264
v “The IBM MQ for z/OS interface with the application environment” on page 265
v “Writing z/OS UNIX System Services applications” on page 267
v “IBM MQ Workflow” on page 271
v “Application programming with shared queues” on page 272
Related concepts:
“The Message Queue Interface overview” on page 76
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 92
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 101
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 113
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 130
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 220
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 224
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 237
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 257
There are special options on calls and return codes that relate to clustering.
“IMS and IMS bridge applications on IBM MQ for z/OS” on page 37
This information helps you to write IMS applications using IBM MQ.

Environment-dependent IBM MQ for z/OS functions
Use this information when considering IBM MQ for z/OS functions.

© Copyright IBM Corp. 2007, 2018 263

The main differences to be considered between IBM MQ functions in the environments in which IBM MQ
for z/OS runs are:
v IBM MQ for z/OS supplies the following trigger monitors:

– CKTI for use in the CICS environment
– CSQQTRMN for use in the IMS environment
You must write your own module to start applications in other environments.

v Syncpointing using two-phase commit is supported in the CICS and IMS environments. It is also
supported in the z/OS batch environment using transaction management and recoverable resource
manager services (RRS). Single-phase commit is supported in the z/OS environment by IBM MQ itself.

v For the batch and IMS environments, the MQI provides calls to connect programs to, and to disconnect
them from, a queue manager. Programs can connect to more than one queue manager.

v A CICS system can connect to only one queue manager. This can be made to happen when CICS is
initiated if the subsystem name is defined in the CICS system startup job. The MQI connect and
disconnect calls are tolerated, but have no effect, in the CICS environment.

v The API-crossing exit allows a program to intervene in the processing of all MQI calls. This exit is
available in the CICS environment only.

v In CICS on multiprocessor systems, some performance advantage is gained because MQI calls can be
executed under multiple z/OS TCBs. For more information, see the Planning on z/OS IBM MQ for
z/OS Concepts and Planning Guide.

These features are summarized in Table 29.

Table 29. z/OS environmental features

CICS IMS Batch/TSO

Trigger monitor supplied Yes Yes No

Two-phase commit Yes Yes Yes

Single-phase commit Yes No Yes

Connect/disconnect MQI calls Tolerated Yes Yes

API-crossing exit Yes No No

Note: Two-phase commit is supported in the Batch/TSO environment using RRS.

Debugging facilities, syncpoint support, and recovery support
Use this information to learn about program debugging facilities, syncpoint support, and recovery
support.

Program debugging facilities

IBM MQ for z/OS provides a trace facility that you can use to debug your programs in all environments.

Additionally, in the CICS environment you can use:
v The CICS Execution Diagnostic Facility (CEDF)
v The CICS Trace Control Transaction (CETR)
v The IBM MQ for z/OS API-crossing exit

On the z/OS platform, you can use any available interactive debugging tool that is supported by the
programming language that you are using.

264 IBM MQ: Programming

Syncpoint support

Synchronizing the start and end of units of work is necessary in a transaction processing environment so
that transaction processing can be used safely.

This is fully supported by IBM MQ for z/OS in the CICS and IMS environments. Full support means
cooperation between resource managers so that units of work can be committed or backed out in unison,
under control of CICS or IMS. Examples of resource managers are Db2, CICS File Control, IMS, and IBM
MQ for z/OS.

z/OS batch applications can use IBM MQ for z/OS calls to give a single-phase commit facility. This
means that an application-defined set of queue operations can be committed, or backed out, without
reference to other resource managers.

Two-phase commit is also supported in the z/OS batch environment using transaction management and
recoverable resource manager services (RRS). For further information see Syncpoints in z/OS batch
applications.

Recovery support

If the connection between a queue manager and a CICS or IMS system is broken during a transaction,
some units of work might not be backed out successfully.

However, these units of work are resolved by the queue manager (under the control of the syncpoint
manager) when its connection with the CICS or IMS system is reestablished.

The IBM MQ for z/OS interface with the application environment
To allow applications running in different environments to send and receive messages through a message
queuing network, IBM MQ for z/OS provides an adapter for each of the environments it supports.

These adapters are the interface between application programs and IBM MQ for z/OS subsystems. They
allow the programs to use the MQI.

The batch adapter
Use this information to learn about the batch adapter and the commit protocol it supports.

The batch adapter provides access to IBM MQ for z/OS resources for programs running in:
v Task (TCB) mode
v Problem or supervisor state
v Primary address space control mode

The programs must not be in cross-memory mode.

Connections between application programs and IBM MQ for z/OS are at the task level. The adapter
provides a single connection thread from an application task control block (TCB) to IBM MQ for z/OS.

The adapter supports a single-phase commit protocol for changes made to resources owned by IBM MQ
for z/OS ; it does not support multiphase-commit protocols.

Using and writing applications on IBM MQ for z/OS 265

The RRS batch adapter
Use this information to learn about the RRS batch adapter and the two RRS batch adapters provided by
IBM MQ.

The transaction management and recoverable resource manager services (RRS) adapter:
v Uses z/OS RRS for commit control.
v Supports simultaneous connections to multiple IBM MQ subsystems running on a single z/OS instance

from a single task.
v Provides z/OS-wide coordinated commitment control (using z/OS RRS) for recoverable resources

accessed through z/OS RRS-compliant recoverable managers for:
– Applications that connect to IBM MQ using the RRS batch adapter.
– Db2-stored procedures executing in a Db2-stored procedures address space that is managed by a

workload manager (WLM) on z/OS.
v Supports the ability to switch an IBM MQ batch thread between TCBs.

IBM MQ for z/OS provides two RRS batch adapters:

CSQBRSTB
This adapter requires you to change any MQCMIT statement to SRRCMIT and any MQBACK
statement to SRRBACK in your IBM MQ application. (If you code MQCMIT or MQBACK in an
application linked with CSQBRSTB, you receive MQRC_ENVIRONMENT_ERROR.)

CSQBRRSI
This adapter allows your IBM MQ application to use either MQCMIT and MQBACK or
SRRCMIT and SRRBACK.

Note: CSQBRSTB and CSQBRRSI are shipped with linkage attributes AMODE(31) RMODE(ANY). If your
application loads either stub below the 16 MB line, first relink the stub with RMODE(24).

Migration

You can migrate existing Batch/TSO IBM MQ applications to use RRS coordination with few or no
changes.

If you link-edit your IBM MQ application with the CSQBRRSI adapter, MQCMIT and MQBACK
syncpoint your unit of work across IBM MQ and all other RRS-enabled resource managers. If you
link-edit your IBM MQ application with the CSQBRSTB adapter, change MQCMIT to SRRCMIT and
MQBACK to SRRBACK. The latter approach is preferable; it clearly indicates that the syncpoint is not
restricted to IBM MQ resources only.

266 IBM MQ: Programming

The IMS adapter
If you are using the IMS adapter from an IBM MQ for z/OS system, ensure that IMS can obtain sufficient
storage to accommodate messages up to 100 MB long.

Note to users

The IMS adapter provides access to IBM MQ for z/OS resources for:
v Online message processing programs (MPPs)
v Interactive fast path programs (IFPs)
v Batch message processing programs (BMPs)

To use these resources, the programs must be running in task (TCB) mode and problem state; they must
not be in cross-memory mode or access-register mode.

The adapter provides a connection thread from an application task control block (TCB) to IBM MQ. The
adapter supports a two-phase commit protocol for changes made to resources owned by IBM MQ for
z/OS, with IMS acting as the syncpoint coordinator.

The adapter also provides a trigger monitor program that can start programs automatically when certain
trigger conditions on a queue are met. For more information, see “Starting IBM MQ applications using
triggers” on page 237.

If you are writing batch DL/I programs, follow the guidance given in this topic for z/OS batch
programs.

Writing z/OS UNIX System Services applications

The batch adapter supports queue manager connections from batch and TSO address spaces:

If we consider a Batch address space, the adapter supports connections from multiple TCBs within that
address space as follows:
v Each TCB can connect to multiple queue managers using the MQCONN or MQCONNX call (but a

TCB can only have one instance of a connection to a particular queue manager at any one time).
v Multiple TCBs can connect to the same queue manager (but the queue manager handle returned on

any MQCONN or MQCONNX call is bound to the issuing TCB and cannot be used by any other
TCB).

z/OS UNIX System Services supports two types of pthread_create call:
1. Heavyweight threads, run one for each TCB, that are ATTACHed and DETACHed at thread start and

end by z/OS.
2. Medium-weight threads, run one for each TCB, but the TCB can be one of a pool of long-running

TCBs. The application must perform all necessary application cleanup, because, if it is connected to a
server, the default thread termination that might be provided by the server at task (TCB) termination,
is not always driven.

Lightweight threads are not supported. (If an application creates permanent threads that dispatch their
own work requests, the application is responsible for cleaning up any resources before starting the next
work request.)

IBM MQ for z/OS supports z/OS UNIX System Services threads using the Batch Adapter as follows:
1. Heavyweight threads are fully supported as batch connections. Each thread runs in its own TCB,

which is attached and detached at thread start and end. Should the thread end before issuing an

Using and writing applications on IBM MQ for z/OS 267

MQDISC call, IBM MQ for z/OS performs its standard task cleanup, which includes committing any
outstanding unit of work if the thread terminated normally, or backing it out if the thread terminated
abnormally.

2. Medium-weight threads are fully supported, but if the TCB is going to be reused by another thread,
the application must ensure that an MQDISC call, preceded by either MQCMIT or MQBACK, is
issued before the next thread start. This implies that if the application has established a Program
Interrupt Handler, and the application then abends, the Interrupt Handler must issue MQCMIT and
MQDISC calls before reusing the TCB for another thread.

Note: Threading models do not support access to common IBM MQ resources from multiple threads.

The API-crossing exit for z/OS
This topic contains product-sensitive programming interface information.

An exit is a point in IBM-supplied code where you can run your own code. IBM MQ for z/OS provides
an API-crossing exit that you can use to intercept calls to the MQI, and to monitor or modify the function
of the MQI calls. This section describes how to use the API-crossing exit, and describes the sample exit
program that is supplied with IBM MQ for z/OS.

This section is applicable only for users of CICS TS V3.1 and earlier. Users of CICS TS V3.2 and later
should refer to the section CICS Integration with IBM MQ in the CICS product documentation.

Note

The API-crossing exit is invoked only by the CICS adapter of IBM MQ for z/OS. The exit program runs
in the CICS address space.

Writing your own exit program
You can use the sample API-crossing exit program (CSQCAPX) that is supplied with IBM MQ for z/OS
as a framework for your own program.

This is described in “The sample API-crossing exit program, CSQCAPX” on page 269.

When writing an exit program, to find the name of an MQI call issued by an application, examine the
ExitCommand field of the MQXP structure. To find the number of parameters on the call, examine the
ExitParmCount field. You can use the 16-byte ExitUserArea field to store the address of any dynamic
storage that the application obtains. This field is retained across invocations of the exit and has the same
lifetime as a CICS task.

If you are using CICS Transaction Server V3.2, you must write your exit program to be threadsafe and
declare your exit program as threadsafe. If you are using earlier CICS releases, you are also
recommended to write and declare your exit programs as threadsafe to be ready for migrating to CICS
Transaction Server V3.2.

Your exit program can suppress execution of an MQI call by returning MQXCC_SUPPRESS_FUNCTION
or MQXCC_SKIP_FUNCTION in the ExitResponse field. To allow the call to be executed (and the exit
program to be reinvoked after the call has completed), your exit program must return MQXCC_OK.

When invoked after an MQI call, an exit program can inspect and modify the completion and reason
codes set by the call.

Usage notes

Here are some general points to consider when writing your exit program:

268 IBM MQ: Programming

v For performance reasons, write your program in assembler-language. If you write it in any of the other
languages supported by IBM MQ for z/OS, you must provide your own data definition file.

v Link-edit your program as AMODE(31) and RMODE(ANY).
v To define the exit parameter block to your program, use the assembler-language macro, CMQXPA.
v Specify CONCURRENCY(THREADSAFE) when you define your exit program and any programs that

your exit program calls.
v If you are using the CICS Transaction Server for z/OS storage protection feature, your program must

run in CICS execution key. That is, you must specify EXECKEY(CICS) when defining both your exit
program and any programs to which it passes control. For information about CICS exit programs and
the CICS storage protection facility, see the CICS Customization Guide.

v Your program can use all the APIs (for example, IMS, Db2, and CICS) that a CICS task-related user
exit program can use. It can also use any of the MQI calls except MQCONN, MQCONNX, and
MQDISC. However, any MQI calls within the exit program do not invoke the exit program a second
time.

v Your program can issue EXEC CICS SYNCPOINT or EXEC CICS SYNCPOINT ROLLBACK commands.
However, these commands commit or roll back all the updates done by the task up to the point that
the exit was used, and so their use is not recommended.

v Your program must end by issuing an EXEC CICS RETURN command. It must not transfer control
with an XCTL command.

v Exits are written as extensions to the IBM MQ for z/OS code. Ensure that your exit does not disrupt
any IBM MQ for z/OS programs or transactions that use the MQI. These are typically indicated with a
prefix of CSQ or CK.

v If CSQCAPX is defined to CICS, the CICS system attempts to load the exit program when CICS
connects to IBM MQ for z/OS. If this attempt is successful, message CSQC301I is sent to the CKQC
panel or to the system console. If the load is unsuccessful (for example, if the load module does not
exist in any of the libraries in the DFHRPL concatenation), message CSQC315 is sent to the CKQC
panel or to the system console.

v Because the parameters in the communication area are addresses, the exit program must be defined as
local to the CICS system (that is, not as a remote program).

The sample API-crossing exit program, CSQCAPX
The sample exit program is supplied as an assembler-language program. The source file (CSQCAPX) is
supplied in the library thlqual.SCSQASMS (where thlqual is the high-level qualifier used by your
installation). This source file includes pseudocode that describes the program logic.

The sample program contains initialization code and a layout that you can use when writing your own
exit programs.

The sample shows how to:
v Set up the exit parameter block
v Address the call and exit parameter blocks
v Determine for which MQI call the exit is being invoked
v Determine whether the exit is being invoked before or after processing of the MQI call
v Put a message on a CICS temporary storage queue
v Use the macro DFHEIENT for dynamic storage acquisition to maintain reentrancy
v Use DFHEIBLK for the CICS exec interface control block
v Trap error conditions
v Return control to the caller

Using and writing applications on IBM MQ for z/OS 269

Design of the sample exit program

The sample exit program writes messages to a CICS temporary storage queue (CSQ1EXIT) to show the
operation of the exit.

The messages show whether the exit is being invoked before or after the MQI call. If the exit is invoked
after the call, the message contains the completion code and reason code returned by the call. The sample
uses named constants from the CMQXPA macro to check on the type of entry (that is, before or after the
call).

The sample does not perform any monitoring function, but simply places time-stamped messages into a
CICS queue indicating the type of call it is processing. This provides an indication of the performance of
the MQI, as well as the correct functioning of the exit program.

Note: The sample exit program issues six EXEC CICS calls for each MQI call that is made while the
program is running. If you use this exit program, IBM MQ for z/OS performance is degraded.

Preparing and using the API-crossing exit
The sample exit is supplied in source form only.

To use the sample exit, or an exit program that you have written, create a load library, as you would for
any other CICS program, as described in “Building CICS applications in z/OS” on page 431.
v For CICS Transaction Server for z/OS and CICS for MVS/ESA, when you update the CICS system

definition (CSD) data set, the definitions you need are in the member thlqual.SCSQPROC(CSQ4B100).

Note: The definitions use a suffix of MQ. If this suffix is already used in your enterprise, this must be
changed before the assembly stage.

If you use the default CICS program definitions supplied, the exit program CSQCAPX is installed in a
disabled state. This is because using the exit program can produce a significant reduction in performance.

To activate the API-crossing exit temporarily:
1. Issue the command CEMT S PROGRAM(CSQCAPX) ENABLED from the CICS master terminal.
2. Run the CKQC transaction, and use option 3 in the Connection pull-down to alter the status of the

API-crossing exit to Enabled.

If you want to run IBM MQ for z/OS with the API-crossing exit permanently enabled, with CICS
Transaction Server for z/OS and CICS for MVS/ESA, do one of the following:
v Alter the CSQCAPX definition in member CSQ4B100, changing STATUS(DISABLED) to

STATUS(ENABLED). You can update the CICS CSD definition using the CICS-supplied batch program
DFHCSDUP.

v Alter the CSQCAPX definition in the CSQCAT1 group by changing the status from DISABLED to
ENABLED.

In both cases, you must reinstall the group. You can do this by cold-starting your CICS system or by
using the CICS CEDA transaction to reinstall the group while CICS is running.

Note: Using CEDA might cause an error if any of the entries in the group are currently in use.

End of product-sensitive programming interface information.

270 IBM MQ: Programming

IBM MQ Workflow
IBM MQ Workflow on z/OS is a tool that helps companies improve their business processes.

z/OS workload manager (WLM) addresses the need for:
v Managing workload distribution
v Load balancing
v Distribution of computing resources to competing workloads

IBM MQ support for z/OS workload manager uses a WLM-managed queue. It is recognized by a value
of the INDXTYPE attribute called MSGTOKEN. The initiation queue associated with a WLM-managed
queue must have TRIGTYPE defined as NONE, and no ordinary local queues must be associated with
this initiation queue.

If an IBM MQ Workflow server application has the initiation queue open for input, IBM MQ updates a
WLM worklist as part of commit processing of MQPUTs to the WLM-managed queue. The setting of
TRIGGER or NOTRIGGER on the WLM-managed queue has no effect on the updating of this WLM
worklist.

The PROCESS definition is used to provide the name of the application_environment associated with a
WLM-managed queue. This is passed in the APPLICID attribute. Ensure that a WLM-managed queue
uniquely references an associated process and that two processes do not specify the same APPLICID
value.

Messages are retrieved from a WLM-managed queue using a unique message_token, which must be
passed to MQGET. To do this, you use the message_token value (MQGMO_MSGTOKEN) and the get
message match option (MQMO_MATCH_MSG_TOKEN). Workflow does not usually issue MQGET calls
until the message is placed successfully on the queue. If the application needs to wait for the arrival of a
message, it must set the match option to MQMO_NONE.

There are MQRC values for MQGET (MQRC_MSG_TOKEN_ERROR) and MQPUT
(MQRC_MISSING_WIH and MQRC_WIH_ERROR). MQRC_MISSING_WIH is returned if a message,
MQPUT to a WLM-managed queue, does not include the work information header (MQWIH).
MQRC_WIH_ERROR is returned if the message data does not conform to an MQWIH. MQGET does not
remove this header from the message.

Note: You might experience excessive processor usage if your z/OS system is at Version 2.5 or earlier
and the number of messages on WLM-managed queues exceeds 500.

For further information see IBM MQ Workflow: Concepts and Architecture, GH12-6285 and IBM MQ
Workflow for z/OS: Customization and Administration, SC33-7030.

Using and writing applications on IBM MQ for z/OS 271

Application programming with shared queues
This topic provides information on some of the factors that you need to take into account when designing
new applications to use shared queues, and when migrating existing applications to the shared-queue
environment.

Serializing your applications
Certain types of applications might have to ensure that messages are retrieved from a queue in exactly
the same order as they arrived on the queue.

For example, if IBM MQ is being used to shadow database updates on to a remote system, a message
describing the update to a record must be processed after a message describing the insert of that record.
In a local queuing environment, this is often achieved by the application that is getting the messages
opening the queue with the MQOO_INPUT_EXCLUSIVE option, thus preventing any other getting
application from processing the queue at the same time.

IBM MQ allows applications to open shared queues exclusively in the same way. However, if the
application is working from a partition of a queue (for example, all database updates are on the same
queue, but those for table A have a correlation identifier of A, and those for table B a correlation
identifier of B), and applications want to get messages for table A updates and table B updates
concurrently, the simple mechanism of opening the queue exclusively is not possible.

If this type of application is to take advantage of the high availability of shared queues, you might decide
that another instance of the application that accesses the same shared queues, running on a secondary
queue manager, should take over if the primary getting application or queue manager fails.

If the primary queue manager fails, two things happen:
v Shared queue peer recovery ensures that any incomplete updates from the primary application are

completed or backed out.
v The secondary application takes over processing the queue.

The secondary application might start before all the incomplete units of work have been dealt with,
which could lead to the secondary application retrieving the messages out of sequence. To solve this type
of problem, the application can choose to be a serialized application.

A serialized application uses the MQCONNX call to connect to the queue manager, specifying a
connection tag when it connects that is unique to that application. Any units of work performed by the
application are marked with the connection tag. IBM MQ ensures that units of work within the
queue-sharing group with the same connection tag are serialized (according to the serialization options
on the MQCONNX call).

This means that, if the primary application uses the MQCONNX call with a connection tag of Database
shadow retriever, and the secondary takeover application attempts to use the MQCONNX call with an
identical connection tag, the secondary application cannot connect to the second IBM MQ until any
outstanding primary units of work have been completed, in this case by peer recovery.

Consider using the serialized application technique for applications that depend on the exact sequence of
messages on a queue. In particular:
v Applications that must not restart after an application or queue manager failure until all commit and

backout operations for the previous execution of the application are complete.
In this case, the serialized application technique is only applicable if the application works in
syncpoint.

v Applications that must not start while another instance of the same application is already running.

272 IBM MQ: Programming

In this case, the serialized application technique is only required if the application cannot open the
queue for exclusive input.

Note: IBM MQ only guarantees to preserve the sequence of messages when certain criteria are met.
These are described in the description of MQGET.

Applications that are not suitable for use with shared queues
Some features of IBM MQ are not supported when you are using shared queues, so applications that use
these features are not suitable for the shared queue environment.

Consider the following points when designing your shared-queue applications:
v Queue indexing is limited for shared queues. If you want to use the message identifier or correlation

identifier to select the message that you want to get from the queue, the queue should be indexed with
the correct value. If you are selecting messages by message identifier alone, the queue needs an index
type of MQIT_MSG_ID (although you can also use MQIT_NONE). If you are selecting messages by
correlation identifier alone, the queue must have an index type of MQIT_CORREL_ID.

v You cannot use temporary dynamic queues as shared queues. However, you can use permanent
dynamic queues. The models for shared dynamic queues have a DEFTYPE of SHAREDYN (shared
dynamic) although they are created and destroyed in the same way as PERMDYN (permanent
dynamic) queues.

Deciding whether to share non-application queues
Use this information when considering sharing non-application queues.

There are queues other than application queues that you might want to consider sharing:

Initiation queues

If you define a shared initiation queue, you do not need to have a trigger monitor running on
every queue manager in the queue-sharing group, as long as there is at least one trigger monitor
running. (You can also use a shared initiation queue even if there is a trigger monitor running on
each queue manager in the queue-sharing group.)

If you have a shared application queue and use the trigger type of EVERY (or a trigger type of
FIRST with a small trigger interval, which behaves like a trigger type of EVERY) your initiation
queue must always be a shared queue. For more information about when to use a shared
initiation queue, see Table 30 on page 274.

SYSTEM.* queues
You can define the SYSTEM.ADMIN.* queues used to hold event messages as shared queues.
This can be useful to check load balancing if an exception occurs. Each event message created by
IBM MQ contains a correlation identifier indicating which queue manager produced it.

You must define the SYSTEM.QSG.* queues used for shared channels and intra-group queuing as
shared queues.

You can also change the definitions of the SYSTEM.DEFAULT.LOCAL.QUEUE to be shared, or
define your own default shared queue definition. This is described in the section Defining
system objects in the Planning on z/OS IBM MQ for z/OS Concepts and Planning Guide.

You cannot define any other SYSTEM.* queues as shared queues.

Using and writing applications on IBM MQ for z/OS 273

Migrating your existing applications to use shared queues
Reason codes, triggering, and the MQINQ API call can work differently in a shared queue environment.

Migrating your existing queues to shared queues is described in the Administering IBM MQ for z/OS
IBM MQ for z/OS System Administration Guide.

When you migrate your existing applications, consider the following things, which might work in a
different way in the shared queue environment:

Reason Codes
When you migrate your existing applications to use shared queues, check for the new reason
codes that can be issued.

Triggering
If you are using a shared application queue, triggering works on committed messages only (on a
non-shared application queue, triggering works on all messages).

If you use triggering to start applications, you might want to use a shared initiation queue.
Table 30 describes what you need to consider when deciding which type of initiation queue to
use.

Table 30. When to use a shared-initiation queue

Non-shared application queue Shared application queue

Non-shared
initiation queue

As for previous releases. If you use a trigger type of FIRST or DEPTH, you can
use a non-shared initiation queue with a shared
application queue. Extra trigger messages might be
generated, but this setup is good for triggering
long-running applications (like the CICS bridge) and
provides high availability.

For trigger type FIRST or DEPTH, a trigger message
triggers an instance of the application on every queue
manager that is running a trigger monitor and that
does not already have the application queue open for
input. One trigger message is generated for every
queue manager; if there is more than one trigger
monitor running against the non-shared local initiation
queue, on a particular queue manager, they will
compete to process the message.

Shared initiation
queue

Do not use a shared initiation queue
with a non-shared application queue.

If you have a shared application queue that has a
trigger type of EVERY, use a shared initiation queue, or
you might lose trigger messages in certain
circumstances; for example, a queue manager failing.

For trigger type FIRST or DEPTH, one trigger message
is generated by each queue manager that has the
named initiation queue open for input.
Note: For trigger type FIRST or DEPTH, if one trigger
monitor instance is busy, this leaves the potential for
less busy trigger monitors to process more than one
trigger message from the shared initiation queue.
Hence, multiple instances of the server application may
be started against a given queue manager. Note that
these multiple instances are started as a result of
processing multiple trigger messages. Ordinarily, for
trigger type FIRST or DEPTH, if an application instance
is already serving an application queue, another trigger
message will not be generated by the queue manager
that the application is connected to.

274 IBM MQ: Programming

MQINQ
When you use the MQINQ call to display information about a shared queue, the values of the
number of MQOPEN calls that have the queue open for input and output relate only to the
queue manager that issued the call. No information is produced about other queue managers in
the queue-sharing group that have the queue open.

Using and writing applications on IBM MQ for z/OS 275

276 IBM MQ: Programming

IMS and IMS bridge applications on IBM MQ for z/OS

This information helps you to write IMS applications using IBM MQ.
v To use syncpoints and MQI calls in IMS applications, see “Writing IMS applications using IBM MQ” on

page 37.
v To write applications that use the IBM MQ - IMS bridge, see “Writing IMS bridge applications” on

page 42.

Use the following links to find out more about IMS and IMS bridge applications on IBM MQ for z/OS:
v “Writing IMS applications using IBM MQ” on page 37
v “Writing IMS bridge applications” on page 42
Related concepts:
“The Message Queue Interface overview” on page 76
Learn about the Message Queue Interface (MQI) components.
“Connecting to and disconnecting from a queue manager” on page 92
To use IBM MQ programming services, a program must have a connection to a queue manager. Use this
information to learn how to connect to and disconnect from a queue manager.
“Opening and closing objects” on page 101
This information provides an insight into opening and closing IBM MQ objects.
“Putting messages on a queue” on page 113
Use this information to learn how to put messages on a queue.
“Getting messages from a queue” on page 130
Use this information to learn about getting messages from a queue.
“Inquiring about and setting object attributes” on page 220
Attributes are the properties that define the characteristics of an IBM MQ object.
“Committing and backing out units of work” on page 224
This information describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work.
“Starting IBM MQ applications using triggers” on page 237
Learn about triggers and how to start IBM MQ applications using triggers.
“Working with the MQI and clusters” on page 257
There are special options on calls and return codes that relate to clustering.
“Using and writing applications on IBM MQ for z/OS” on page 263
IBM MQ for z/OS applications can be made up from programs that run in many different environments.
This means that they can take advantage of the facilities available in more than one environment.

Writing IMS applications using IBM MQ
There are further considerations when using IBM MQ in IMS applications These include which MQ API
calls can be used and the mechanism used for syncpoint.

Use the following links to find out more about writing IMS applications on IBM MQ for z/OS:
v “Syncpoints in IMS applications” on page 38
v “MQI calls in IMS applications” on page 38

© Copyright IBM Corp. 2007, 2018 277

Restrictions

There are restrictions on which IBM MQ API calls can used by an application using the IMS adapter.

The following IBM MQ API calls are not supported within an application using the IMS adapter:
v MQCB
v MQCB_FUNCTION
v MQCTL
Related concepts:
“Writing IMS bridge applications” on page 42
This topic contains information about writing applications to use the IBM MQ - IMS bridge.

Syncpoints in IMS applications
In an IMS application, you establish a syncpoint by using IMS calls such as GU (get unique) to the
IOPCB and CHKP (checkpoint).

To back out all changes since the previous checkpoint, you can use the IMS ROLB (rollback) call. For
more information, see the following:
v IMS/ESA Application Programming: Transaction Manager

v IMS/ESA Application Programming: Design Guide

The queue manager is a participant in a two-phase commit protocol; the IMS syncpoint manager is the
coordinator.

All open handles are closed by the IMS adapter at a syncpoint (except in a batch or non-message driven
BMP environment). This is because a different user could initiate the next unit of work and IBM MQ
security checking is performed when the MQCONN, MQCONNX, and MQOPEN calls are made, not
when the MQPUT or MQGET calls are made.

However, in a Wait-for-Input (WFI) or pseudo Wait-for-Input (PWFI) environment IMS does not notify
IBM MQ to close the handles until either the next message arrives or a QC status code is returned to the
application. If the application is waiting in the IMS region and any of these handles belong to triggered
queues, triggering will not occur because the queues are open. For this reason, applications running in a
WFI or PWFI environment should explicitly MQCLOSE the queue handles before doing the GU to the
IOPCB for the next message.

If an IMS application (either a BMP or an MPP) issues the MQDISC call, open queues are closed but no
implicit syncpoint is taken. If the application ends normally, any open queues are closed and an implicit
commit occurs. If the application ends abnormally, any open queues are closed and an implicit backout
occurs.

278 IBM MQ: Programming

MQI calls in IMS applications
Use this information to learn about the use of MQI calls on Server applications and Enquiry applications.

This section covers the use of MQI calls in the following types of IMS applications:
v “Server applications” on page 38
v “Inquiry applications” on page 41

Server applications

Here is an outline of the MQI server application model:
Initialize/Connect
.
Open queue for input shared
.
Get message from IBM MQ queue
.
Do while Get does not fail
.
If expected message received
Process the message
Else
Process unexpected message
End if
.
Commit
.
Get next message from IBM MQ queue
.
End do
.
Close queue/Disconnect
.
END

Sample program CSQ4ICB3 shows the implementation, in C/370, of a BMP using this model. The
program establishes communication with IMS first, and then with IBM MQ:
main()

Call InitIMS
If IMS initialization successful
Call InitMQM
If IBM MQ initialization successful
Call ProcessRequests
Call EndMQM
End-if
End-if

Return

The IMS initialization determines whether the program has been called as a message-driven or a
batch-oriented BMP and controls IBM MQ queue manager connection and queue handles accordingly:
InitIMS

Get the IO, Alternate and Database PCBs
Set MessageOriented to true

Call ctdli to handle status codes rather than abend
If call is successful (status code is zero)
While status code is zero
Call ctdli to get next message from IMS message queue
If message received
Do nothing

IMS and IMS bridge applications on IBM MQ for z/OS 279

Else if no IOPBC
Set MessageOriented to false
Initialize error message
Build ’Started as batch oriented BMP’ message
Call ReportCallError to output the message
End-if
Else if response is not ’no message available’
Initialize error message
Build ’GU failed’ message
Call ReportCallError to output the message
Set return code to error
End-if
End-if
End-while
Else
Initialize error message
Build ’INIT failed’ message
Call ReportCallError to output the message
Set return code to error
End-if

Return to calling function

The IBM MQ initialization connects to the queue manager and opens the queues. In a message-driven
BMP this is called after each IMS syncpoint is taken; in a batch-oriented BMP, this is called only during
program startup:
InitMQM

Connect to the queue manager
If connect is successful
Initialize variables for the open call
Open the request queue
If open is not successful
Initialize error message
Build ’open failed’ message
Call ReportCallError to output the message
Set return code to error
End-if
Else
Initialize error message
Build ’connect failed’ message
Call ReportCallError to output the message
Set return code to error
End-if

Return to calling function

The implementation of the server model in an MPP is influenced by the fact that the MPP processes a
single unit of work per invocation. This is because, when a syncpoint (GU) is taken, the connection and
queue handles are closed and the next IMS message is delivered. This limitation can be partially
overcome by one of the following:
v Processing many messages within a single unit-of-work

This involves:
– Reading a message
– Processing the required updates
– Putting the reply

in a loop until all messages have been processed or until a set maximum number of messages has been
processed, at which time a syncpoint is taken.

280 IBM MQ: Programming

Only certain types of application (for example, a simple database update or inquiry) can be approached
in this way. Although the MQI reply messages can be put with the authority of the originator of the
MQI message being handled, the security implications of any IMS resource updates need to be
addressed carefully.

v Processing one message per invocation of the MPP and ensuring multiple scheduling of the MPP to
process all available messages.

Use the IBM MQ IMS trigger monitor program (CSQQTRMN) to schedule the MPP transaction when
there are messages on the IBM MQ queue and no applications serving it.
If trigger monitor starts the MPP, the queue manager name and queue name are passed to the
program, as shown in the following COBOL code extract:
* Data definition extract
01 WS-INPUT-MSG.
05 IN-LL1 PIC S9(3) COMP.
05 IN-ZZ1 PIC S9(3) COMP.
05 WS-STRINGPARM PIC X(1000).
01 TRIGGER-MESSAGE.
COPY CMQTMC2L.
*
* Code extract
GU-IOPCB SECTION.
MOVE SPACES TO WS-STRINGPARM.
CALL ’CBLTDLI’ USING GU,
IOPCB,
WS-INPUT-MSG.
IF IOPCB-STATUS = SPACES
MOVE WS-STRINGPARM TO MQTMC.
* ELSE handle error
*
* Now use the queue manager and queue names passed
DISPLAY ’MQTMC-QMGRNAME =’
MQTMC-QMGRNAME OF MQTMC ’=’.
DISPLAY ’MQTMC-QNAME =’
MQTMC-QNAME OF MQTMC ’=’.

The server model, which is expected to be a long running task, is better supported in a batch processing
region, although the BMP cannot be triggered using CSQQTRMN.

Inquiry applications

A typical IBM MQ application initiating an inquiry or update works as follows:
v Gather data from the user
v Put one or more IBM MQ messages
v Get the reply messages (you might have to wait for them)
v Provide a response to the user

Because messages put on to IBM MQ queues do not become available to other IBM MQ applications until
they are committed, they must either be put out of syncpoint, or the IMS application must be split into
two transactions.

If the inquiry involves putting a single message, you can use the no syncpoint option; however, if the
inquiry is more complex, or resource updates are involved, you might get consistency problems if failure
occurs and you do not use syncpointing.

To overcome this, you can split IMS MPP transactions using MQI calls using a program-to-program
message switch; see IMS/ESA Application Programming: Data Communication for information about this.
This allows an inquiry program to be implemented in an MPP:
Initialize first program/Connect
.
Open queue for output

IMS and IMS bridge applications on IBM MQ for z/OS 281

.
Put inquiry to IBM MQ queue
.
Switch to second IBM MQ program, passing necessary data in save
pack area (this commits the put)
.
END
.
.
Initialize second program/Connect
.
Open queue for input shared
.
Get results of inquiry from IBM MQ queue
.
Return results to originator
.
END

Writing IMS bridge applications
This topic contains information about writing applications to use the IBM MQ - IMS bridge.

For information about the IBM MQ - IMS bridge, see The IMS bridge.

Use the following links to find out more about writing IMS bridge applications on IBM MQ for z/OS:
v “How the IMS bridge deals with messages” on page 42
v “Writing IMS transaction programs through IBM MQ” on page 289
Related concepts:
“Writing IMS applications using IBM MQ” on page 37
There are further considerations when using IBM MQ in IMS applications These include which MQ API
calls can be used and the mechanism used for syncpoint.

How the IMS bridge deals with messages
When you use the IBM MQ - IMS bridge to send messages to an IMS application, you need to construct
your messages in a special format.

You must also put your messages on IBM MQ queues that have been defined with a storage class that
specifies the XCF group and member name of the target IMS system. These are known as MQ-IMS bridge
queues, or simply bridge queues.

The IBM MQ-IMS bridge requires exclusive input access (MQOO_INPUT_EXCLUSIVE) to the bridge
queue if it is defined with QSGDISP(QMGR), or if it is defined with QSGDISP(SHARED) together with
the NOSHARE option.

A user does not need to sign on to IMS before sending messages to an IMS application. The user ID in
the UserIdentifier field of the MQMD structure is used for security checking. The level of checking is
determined when IBM MQ connects to IMS, and is described in Application access control for the IMS
bridge. This enables a pseudo signon to be implemented.

The IBM MQ - IMS bridge accepts the following types of message:
v Messages containing IMS transaction data and an MQIIH structure (described in MQIIH):

MQIIH LLZZ<trancode><data>[LLZZ<data>][LLZZ<data>]

Note:

1. The square brackets, [], represent optional multi-segments.

282 IBM MQ: Programming

2. Set the Format field of the MQMD structure to MQFMT_IMS to use the MQIIH structure.
v Messages containing IMS transaction data but no MQIIH structure:

LLZZ<trancode><data> \
[LLZZ<data>][LLZZ<data>]

IBM MQ validates the message data to ensure that the sum of the LL bytes plus the length of the MQIIH
(if it is present) is equal to the message length.

When the IBM MQ - IMS bridge gets messages from the bridge queues, it processes them as follows:
v If the message contains an MQIIH structure, the bridge verifies the MQIIH (see MQIIH), builds the

OTMA headers, and sends the message to IMS. The transaction code is specified in the input message.
If this is an LTERM, IMS replies with a DFS1288E message. If the transaction code represents a
command, IMS executes the command; otherwise the message is queued in IMS for the transaction.

v If the message contains IMS transaction data, but no MQIIH structure, the IMS bridge makes the
following assumptions:
– The transaction code is in bytes 5 through 12 of the user data
– The transaction is in nonconversational mode
– The transaction is in commit mode 0 (commit-then-send)
– The Format in the MQMD is used as the MFSMapName (on input)
– The security mode is MQISS_CHECK
The reply message is also built without an MQIIH structure, taking the Format for the MQMD from the
MFSMapName of the IMS output.

The IBM MQ - IMS bridge uses one or two Tpipes for each IBM MQ queue:
v A synchronized Tpipe is used for all messages using Commit mode 0 (COMMIT_THEN_SEND) (these

show with SYN in the status field of the IMS /DIS TMEMBER client TPIPE xxxx command)
v A non-synchronized Tpipe is used for all messages using Commit mode 1 (SEND_THEN_COMMIT)

The Tpipes are created by IBM MQ when they are first used. A non-synchronized Tpipe exists until IMS
is restarted. Synchronized Tpipes exist until IMS is cold started. You cannot delete these Tpipes yourself.

See the following topics for more information about how the IBM MQ - IMS bridge deals with messages:
v “Mapping IBM MQ messages to IMS transaction types” on page 43
v “If the message cannot be put to the IMS queue” on page 44
v “IMS bridge feedback codes” on page 44
v “The MQMD fields in messages from the IMS bridge” on page 45
v “The MQIIH fields in messages from the IMS bridge” on page 46
v “Reply messages from IMS” on page 47
v “Using alternate response PCBs in IMS transactions” on page 47
v “Sending unsolicited messages from IMS” on page 47
v “Message segmentation” on page 48
v “Data conversion” on page 48

IMS and IMS bridge applications on IBM MQ for z/OS 283

Related concepts:
“Writing IMS transaction programs through IBM MQ” on page 289
The coding required to handle IMS transactions through IBM MQ depends on the message format
required by the IMS transaction and the range of responses it can return. However, there are several
points to consider when your application handles IMS screen formatting information.

Mapping IBM MQ messages to IMS transaction types
A table describing the mapping of IBM MQ messages to IMS transaction types.

Table 31. Mapping IBM MQ messages to IMS transaction types

IBM MQ message type Commit-then-send (mode 0) - uses
synchronized IMS Tpipes

Send-then-commit (mode 1) - uses
non-synchronized IMS Tpipes

Persistent IBM MQ messages v Recoverable full function
transactions

v Unrecoverable transactions are
rejected by IMS

v Fastpath transactions

v Conversational transactions

v Full function transactions

Nonpersistent IBM MQ messages v Unrecoverable full function
transactions

v Recoverable transactions are
permitted with IMS V8 and APAR
PQ61404 and all later versions of
IMS

v Fastpath transactions

v Conversational transactions

v Full function transactions

Note: IMS commands cannot use persistent IBM MQ messages with commit mode 0. See the IMS/ESA
Open Transaction Manager Access User's Guide for more information.

If the message cannot be put to the IMS queue
Learn about actions to take if the message cannot be put to the IMS queue.

If the message cannot be put to the IMS queue, the following action is taken by IBM MQ:
v If a message cannot be put to IMS because the message is invalid, the message is put to the dead-letter

queue, and a message is sent to the system console.
v If the message is valid, but is rejected by IMS, IBM MQ sends an error message to the system console,

the message includes the IMS sense code, and the IBM MQ message is put to the dead-letter queue. If
the IMS sense code is 001A, IMS sends an IBM MQ message containing the reason for the failure to the
reply-to queue.

Note: In the circumstances listed previously, if IBM MQ cannot put the message to the dead-letter
queue for any reason, the message is returned to the originating IBM MQ queue. An error message is
sent to the system console, and no further messages are sent from that queue.

To resend the messages, do one of the following:
– Stop and restart the Tpipes in IMS corresponding to the queue
– Alter the queue to GET(DISABLED), and again to GET(ENABLED)
– Stop and restart IMS or the OTMA
– Stop and restart your IBM MQ subsystem

v If the message is rejected by IMS for anything other than a message error, the IBM MQ message is
returned to the originating queue, IBM MQ stops processing the queue, and an error message is sent to
the system console.
If an exception report message is required, the bridge puts it to the reply-to queue with the authority
of the originator. If the message cannot be put to the queue, the report message is put to the
dead-letter queue with the authority of the bridge. If it cannot be put to the DLQ, it is discarded.

284 IBM MQ: Programming

IMS bridge feedback codes
IMS sense codes are typically output in hexadecimal format in IBM MQ console messages such as
CSQ2001I (for example, sense code 0x001F). IBM MQ feedback codes as seen in the dead-letter header of
messages put to the dead-letter queue are decimal numbers.

The IMS bridge feedback codes are in the range 301 through 399, or 600 through 855 for NACK sense
code 0x001A. They are mapped from the IMS-OTMA sense codes as follows:
1. The IMS-OTMA sense code is converted from a hexadecimal number to a decimal number.
2. 300 is added to the number resulting from the calculation in 1, giving the IBM MQ Feedback code.
3. The IMS-OTMA sense code 0x001A, decimal 26 is a special case. A Feedback code in the range 600-855

is generated.
a. The IMS-OTMA reason code is converted from a hexadecimal number to a decimal number.
b. 600 is added to the number resulting from the calculation in a, giving the IBM MQ Feedback code.

For information about IMS-OTMA sense codes, see the IMS Messages and Codes.

The MQMD fields in messages from the IMS bridge
Learn about the MQMD fields in messages from the IMS bridge.

The MQMD of the originating message is carried by IMS in the User Data section of the OTMA headers.
If the message originates in IMS, this is built by the IMS Destination Resolution Exit. The MQMD of a
message received from IMS is built as follows:

StrucID
"MD "

Version
MQMD_VERSION_1

Report
MQRO_NONE

MsgType
MQMT_REPLY

Expiry If MQIIH_PASS_EXPIRATION is set in the Flags field of the MQIIH, this field contains the
remaining expiry time, else it is set to MQEI_UNLIMITED

Feedback
MQFB_NONE

Encoding
MQENC.Native (the encoding of the z/OS system)

CodedCharSetId
MQCCSI_Q_MGR (the CodedCharSetID of the z/OS system)

Format
MQFMT_IMS if the MQMD.Format of the input message is MQFMT_IMS, otherwise
IOPCB.MODNAME

Priority
MQMD.Priority of the input message

Persistence
Depends on commit mode: MQMD.Persistence of the input message if CM-1; persistence matches
recoverability of the IMS message if CM-0

MsgId MQMD.MsgId if MQRO_PASS_MSG_ID, otherwise New MsgId (the default)

IMS and IMS bridge applications on IBM MQ for z/OS 285

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/common/mc.htm

CorrelId
MQMD.CorrelId from the input message if MQRO_PASS_CORREL_ID, otherwise MQMD.MsgId
from the input message (the default)

BackoutCount
0

ReplyToQ
Blanks

ReplyToQMgr
Blanks (set to local qmgr name by the queue manager during the MQPUT)

UserIdentifier
MQMD.UserIdentifier of the input message

AccountingToken
MQMD.AccountingToken of the input message

ApplIdentityData
MQMD.ApplIdentityData of the input message

PutApplType
MQAT_XCF if no error, otherwise MQAT_BRIDGE

PutApplName
<XCFgroupName><XCFmemberName> if no error, otherwise QMGR name

PutDate
Date when message was put

PutTime
Time when message was put

ApplOriginData
Blanks

The MQIIH fields in messages from the IMS bridge
Learn about the MQIIH fields in messages from the IMS bridge.

The MQIIH of a message received from IMS is built as follows:

StrucId
"IIH "

Version
1

StrucLength
84

Encoding
MQENC_NATIVE

CodedCharSetId
MQCCSI_Q_MGR

Format
MQIIH.ReplyToFormat of the input message if MQIIH.ReplyToFormat is not blank, otherwise
IOPCB.MODNAME

Flags 0

LTermOverride
LTERM name (Tpipe) from OTMA header

286 IBM MQ: Programming

MFSMapName
Map name from OTMA header

ReplyToFormat
Blanks

Authenticator
MQIIH.Authenticator of the input message if the reply message is being put to an MQ-IMS
bridge queue, otherwise blanks.

TranInstanceId
Conversation ID / Server Token from OTMA header if in conversation, otherwise nulls

TranState
"C" if in conversation, otherwise blank

CommitMode
Commit mode from OTMA header ("0" or "1")

SecurityScope
Blank

Reserved
Blank

Reply messages from IMS
When an IMS transaction ISRTs to its IOPCB, the message is routed back to the originating LTERM or
TPIPE.

These are seen in IBM MQ as reply messages. Reply messages from IMS are put onto the reply-to queue
specified in the original message. If the message cannot be put onto the reply-to queue, it is put onto the
dead-letter queue using the authority of the bridge. If the message cannot be put onto the dead-letter
queue, a negative acknowledgment is sent to IMS to say that the message cannot be received.
Responsibility for the message is then returned to IMS. If you are using commit mode 0, messages from
that Tpipe are not sent to the bridge, and remain on the IMS queue; that is, no further messages are sent
until restart. If you are using commit mode 1, other work can continue.

If the reply has an MQIIH structure, its format type is MQFMT_IMS; if not, its format type is specified by
the IMS MOD name used when inserting the message.

Using alternate response PCBs in IMS transactions
When an IMS transaction uses alternate response PCBs (ISRTs to the ALTPCB, or issues a CHNG call to a
modifiable PCB), the pre-routing exit (DFSYPRX0) is invoked to determine if the message should be
rerouted.

If the message is to be rerouted, the destination resolution exit (DFSYDRU0) is invoked to confirm the
destination and prepare the header information See Using OTMA exits in IMS and The pre-routing exit
DFSYPRX0 for information about these exit programs.

Unless action is taken in the exits, all output from IMS transactions initiated from an IBM MQ queue
manager, whether to the IOPCB or to an ALTPCB, will be returned to the same queue manager.

IMS and IMS bridge applications on IBM MQ for z/OS 287

Sending unsolicited messages from IMS
To send messages from IMS to an IBM MQ queue, you need to invoke an IMS transaction that ISRTs to
an ALTPCB.

You need to write pre-routing and destination resolution exits to route unsolicited messages from IMS
and build the OTMA user data, so that the MQMD of the message can be built correctly. See The
pre-routing exit DFSYPRX0 and The destination resolution user exit for information about these exit
programs.

Note: The IBM MQ - IMS bridge does not know whether a message that it receives is a reply or an
unsolicited message. It handles the message the same way in each case, building the MQMD and MQIIH
of the reply based on the OTMA UserData that arrived with the message

Unsolicited messages can create new Tpipes. For example, if an existing IMS transaction switched to a
new LTERM (for example PRINT01), but the implementation requires that the output be delivered
through OTMA, a new Tpipe (called PRINT01 in this example) is created. By default, this is a
non-synchronized Tpipe. If the implementation requires the message to be recoverable, set the destination
resolution exit output flag. See the IMS Customization Guide for more information.

Message segmentation
You can define IMS transactions as expecting single- or multi-segment input.

The originating IBM MQ application must construct the user input following the MQIIH structure as one
or more LLZZ-data segments. All segments of an IMS message must be contained in a single IBM MQ
message sent with a single MQPUT.

The maximum length of an LLZZ-data segment is defined by IMS/OTMA (32767 bytes). The total IBM
MQ message length is the sum of the LL bytes, plus the length of the MQIIH structure.

All the segments of the reply are contained in a single IBM MQ message.

There is a further restriction on the 32 KB limitation on messages with format
MQFMT_IMS_VAR_STRING. When the data in an ASCII-mixed CCSID message is converted to an
EBCDIC-mixed CCSID message, a shift-in byte or a shift-out byte is added every time that there is a
transition between SBCS and DBCS characters. The 32 KB restriction applies to the maximum size of the
message. That is, because the LL field in the message cannot exceed 32 KB, the message must not exceed
32 KB including all shift-in and shift-out characters. The application building the message must allow for
this.

Data conversion
The data conversion is performed by either the distributed queuing facility (which may call any
necessary exits) or by the intra group queuing agent (which does not support the use of exits) when it
puts a message to a destination queue that has XCF information defined for its storage class.

Any exits needed must be available to the distributed queuing facility in the data set referenced by the
CSQXLIB DD statement. This means that you can send messages to an IMS application using the IBM
MQ - IMS bridge from any IBM MQ platform.

If there are conversion errors, the message is put to the queue unconverted; this results eventually in it
being treated as an error by the IBM MQ - IMS bridge, because the bridge cannot recognize the header
format. If a conversion error occurs, an error message is sent to the z/OS console.

See “Writing data-conversion exits” on page 371 for detailed information about data conversion in
general.

288 IBM MQ: Programming

Sending messages to the IBM MQ - IMS bridge

To ensure that conversion is performed correctly, you must tell the queue manager what the format of the
message is.

If the message has an MQIIH structure, the Format in the MQMD must be set to the built-in format
MQFMT_IMS, and the Format in the MQIIH must be set to the name of the format that describes your
message data. If there is no MQIIH, set the Format in the MQMD to your format name.

If your data (other than the LLZZs) is all character data (MQCHAR), use as your format name (in the
MQIIH or MQMD, as appropriate) the built-in format MQFMT_IMS_VAR_STRING. Otherwise, use your
own format name, in which case you must also provide a data-conversion exit for your format. The exit
must handle the conversion of the LLZZs in your message, in addition to the data itself (but it does not
have to handle any MQIIH at the start of the message).

If your application uses MFSMapName, you can use messages with the MQFMT_IMS instead, and define the
map name passed to the IMS transaction in the MFSMapName field of the MQIIH.

Receiving messages from the IBM MQ - IMS bridge

If an MQIIH structure is present on the original message that you are sending to IMS, one is also present
on the reply message.

To ensure that your reply is converted correctly:
v If you have an MQIIH structure on your original message, specify the format that you want for your

reply message in the MQIIH ReplytoFormat field of the original message. This value is placed in the
MQIIH Format field of the reply message. This is particularly useful if all your output data is of the
form LLZZ<character data>.

v If you do not have an MQIIH structure on your original message, specify the format that you want for
the reply message as the MFS MOD name in the IMS application's ISRT to the IOPCB.

Writing IMS transaction programs through IBM MQ
The coding required to handle IMS transactions through IBM MQ depends on the message format
required by the IMS transaction and the range of responses it can return. However, there are several
points to consider when your application handles IMS screen formatting information.

When an IMS transaction is started from a 3270 screen, the message passes through IMS Message Format
Services. This can remove all terminal dependency from the data stream seen by the transaction. When a
transaction is started through OTMA, MFS is not involved. If application logic is implemented in MFS,
this must be re-created in the new application.

In some IMS transactions, the end-user application can modify certain 3270 screen behavior, for example,
highlighting a field that has had invalid data entered. This type of information is communicated by
adding a two-byte attribute field to the IMS message for each screen field that needs to be modified by
the program.

Thus, if you are coding an application to mimic a 3270, you need to take account of these fields when
building or receiving messages.

You might need to code information in your program to process:
v Which key is pressed (for example, Enter and PF1)
v Where the cursor is when the message is passed to your application
v Whether the attribute fields have been set by the IMS application

– High, normal, or zero intensity

IMS and IMS bridge applications on IBM MQ for z/OS 289

– Color
– Whether IMS is expecting the field back the next time that Enter is pressed

v Whether the IMS application has used null characters (X'3F') in any fields.

If your IMS message contains only character data (apart from the LLZZ-data segment), and you are using
an MQIIH structure, set the MQMD format to MQFMT_IMS and the MQIIH format to
MQFMT_IMS_VAR_STRING.

If your IMS message contains only character data (apart from the LLZZ-data segment), and you are not
using an MQIIH structure, set the MQMD format to MQFMT_IMS_VAR_STRING and ensure that your
IMS application specifies MODname MQFMT_IMS_VAR_STRING when replying. If a problem occurs (for
example, user not authorized to use the transaction) and IMS sends an error message, this has an
MODname of the form DFSMOx, where x is a number in the range 1 through 5. This is put in the
MQMD.Format.

If your IMS message contains binary, packed, or floating point data (apart from the LLZZ-data segment),
code your own data-conversion routines. Refer to IMS/ESA Application Programming: Transaction Manager
for information about IMS screen formatting.

Consider the following topics when writing code to handle IMS transactions through IBM MQ.
v “Writing IBM MQ applications to invoke IMS conversational transactions”
v “Writing programs containing IMS commands”
v “Triggering” on page 291

Writing IBM MQ applications to invoke IMS conversational transactions

Use this information as a guide for considerations when writing IBM MQ application to invoke IMS
conversational transactions.

When you write an application that invokes an IMS conversation, consider the following:
v Include an MQIIH structure with your application message.
v Set the CommitMode in MQIIH to MQICM_SEND_THEN_COMMIT.
v To invoke a new conversation, set TranState in MQIIH to MQITS_NOT_IN_CONVERSATION.
v To invoke second and subsequent steps of a conversation, set TranState to

MQITS_IN_CONVERSATION, and set TranInstanceId to the value of that field returned in the
previous step of the conversation.

v There is no easy way in IMS to find the value of a TranInstanceId, should you lose the original
message sent from IMS.

v The application must check the TranState of messages from IMS to check whether the IMS transaction
has terminated the conversation.

v You can use /EXIT to end a conversation. You must also quote the TranInstanceId, set TranState to
MQITS_IN_CONVERSATION, and use the IBM MQ queue on which the conversation is being carried
out.

v You cannot use /HOLD or /REL to hold or release a conversation.
v Conversations invoked through the IBM MQ - IMS bridge are terminated if IMS is restarted.

Writing programs containing IMS commands

An application program can build an IBM MQ message of the form LLZZ<command>, instead of a
transaction, where <command> is of the form /DIS TRAN PART or /DIS POOL ALL.

290 IBM MQ: Programming

Most IMS commands can be issued in this way; see IMS V11 Communications and Connections for details.
The command output is received in the IBM MQ reply message in the text form as would be sent to a
3270 terminal for display.

OTMA has implemented a special form of the IMS display transaction command, which returns an
architected form of the output. The exact format is defined in IMS V11 Communications and Connections. To
invoke this form from an IBM MQ message, build the message data as before, for example /DIS TRAN
PART, and set the TranState field in the MQIIH to MQITS_ARCHITECTED. IMS processes the command,
and returns the reply in the architected form. An architected response contains all the information that
could be found in the text form of the output, and one additional piece of information: whether the
transaction is defined as recoverable or non-recoverable.

Triggering

The IBM MQ - IMS bridge does not support trigger messages.

If you define an initiation queue that uses a storage class with XCF parameters, messages put to that
queue are rejected when they get to the bridge.

IMS and IMS bridge applications on IBM MQ for z/OS 291

292 IBM MQ: Programming

Writing client procedural applications

What you need to know to write client applications on IBM MQ using a procedural language.

Applications can be built and run in the IBM MQ client environment. The application must be built and
linked to the IBM MQ MQI client used. The way in which applications are built and linked varies
according to the platform and programming language used. For information on how to build client
applications, see “Building applications for IBM MQ MQI clients” on page 299.

You can run an IBM MQ application both in a full IBM MQ environment and in an IBM MQ MQI client
environment without changing your code, provided that certain conditions are met. For more information
on running your applications in the IBM MQ client environment, see “Running applications in the IBM
MQ MQI client environment” on page 302.

If you use the message queue interface (MQI) to write applications to run in an IBM MQ MQI client
environment there are some additional controls to impose during an MQI call to ensure that the IBM MQ
application processing is not disrupted. For more information about these controls, see “Using the
message queue interface (MQI) in a client application” on page 294.

See the following topics for information preparing and running other application types as client
applications:
v “Preparing and running CICS and Tuxedo applications” on page 314
v “Preparing and running Microsoft Transaction Server applications” on page 36
v “Preparing and running IBM MQ JMS applications” on page 317
Related concepts:
“Application development concepts” on page 1
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.
“Developing applications” on page 1
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ support applications written in procedural languages, and object oriented
languages and frameworks.
“Designing IBM MQ applications” on page 51
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Sample IBM MQ procedural programs” on page 473
This set of sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.
“Writing a procedural application for queuing” on page 76
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Developing web services with IBM MQ” on page 1271
You can develop IBM MQ applications for Web services using the IBM MQ transport for SOAP or the
IBM MQ bridge for HTTP.
“Writing publish/subscribe applications” on page 174
Start writing publish/subscribe IBM MQ applications.
“Building a procedural application” on page 389
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.

© Copyright IBM Corp. 2007, 2018 293

“Handling procedural program errors” on page 443
This information explains errors associated with your applications MQI calls either when it makes a call,
or when its message is delivered to its final destination.

Using the message queue interface (MQI) in a client application
This collection of topics considers the differences between writing your IBM MQ application to run in an
IBM MQ MQI client environment and to run in the full IBM MQ queue manager environment.

When you design an application, consider what controls you need to impose during an MQI call to
ensure that the IBM MQ application processing is not disrupted.

Before you can run applications that use the MQI you must create certain IBM MQ objects. For more
information, see Application programs using the MQI.

Limiting the size of a message in a client application
A queue manager has a maximum message length, but the maximum size of message you can transmit
from a client application is limited by the channel definition.

The maximum message length (MaxMsgLength) attribute of a queue manager is the maximum length of
a message that can be handled by that queue manager.

On platforms other than z/OS, you can increase the maximum message length attribute of a queue
manager. Details are given in ALTER QMGR.

You can find out the value of MaxMsgLength for a queue manager by using the MQINQ call.

If the MaxMsgLength attribute is changed, no check is made that there are not already queues, and even
messages, with a length greater than the new value. After you change this attribute, restart applications
and channels in order to ensure that the change has taken effect. It is then not possible for any new
messages to be generated that exceed the MaxMsgLength of either the queue manager or the queue
(unless queue manager segmentation is allowed).

The maximum message length in a channel definition limits the size of a message that you can transmit
along a client connection. If an IBM MQ application tries to use the MQPUT call or the MQGET call with
a message larger than this, an error code is returned to the application. The maximum message size
parameter of the channel definition does not affect the maximum message size which can be consumed
using MQCB over a client connection.

Choosing client or server coded character set identifier (CCSID)
Use the local CCSID for the client. The queue manager performs necessary conversion. Use the
MQCCSID environment variable to override the CCSID. If your application performs multiple PUTs, the
CCSID and encoding fields of the MQMD can be overwritten after completion of the first PUT.

The data passed across the MQI from the application to the client stub must be in the local CCSID,
encoded for the IBM MQ MQI client. If the connected queue manager requires the data to be converted,
then conversion is done by the client support code on the queue manager.

The Java client in V7, however, can do the conversion if the queue manager is unable to do so. See “IBM
MQ classes for Java client connections” on page 853

The client code assumes that the character data crossing the MQI in the client is in the CCSID configured
for that workstation. If this CCSID is an unsupported CCSID or is not the required CCSID, it can be
overridden with the MQCCSID environment variable by using one of these commands:
v On Windows:

294 IBM MQ: Programming

SET MQCCSID=850

v On UNIXsystems:
export MQCCSID=850

v On IBM i:
ADDENVVAR ENVVAR(MQCCSID) VALUE(37)

If this parameter is set in the profile, all MQI data is assumed to be in code page 850.

Note: The assumption about code page 850 does not apply to application data in the message.

If your application is performing multiple PUTs that include IBM MQ headers after the message
descriptor (MQMD), be aware that the CCSID and encoding fields of the MQMD are overwritten after
completion of the first PUT.

After the first PUT, these fields contain the value used by the connected queue manager to convert the
IBM MQ headers. Ensure that your application resets the values to the values it requires.

Using MQINQ in a client aplication
Some values queried using MQINQ are modified by the client code.

CCSID
is set to the client CCSID, not that of the queue manager.

MaxMsgLength
is reduced if it is restricted by the channel definition. This will be the lower of:
v The value defined in the queue definition, or
v The value defined in the channel definition

For more information, see the MQINQ.

Using sync point coordination in a client application
An application running on the base client can issue MQCMIT and MQBACK, but the scope of the sync
point control is limited to the MQI resources. You can use an external transaction manager with an
extended transactional client.

Within IBM MQ, one of the roles of the queue manager is sync point control within an application. If an
application runs on an IBM MQ base client, it can issue MQCMIT and MQBACK, but the scope of the
sync point control is limited to the MQI resources. The IBM MQ verb MQBEGIN is not valid in a base
client environment.

Applications running in the full queue manager environment on the server can coordinate multiple
resources (for example databases) via a transaction monitor. On the server you can use the Transaction
Monitor supplied with IBM MQ products, or another transaction monitor such as CICS. You cannot use a
transaction monitor with a base client application.

You can use an external transaction manager with an IBM MQ extended transactional client. See What is
an extended transactional client? for details.

Writing client procedural applications 295

Using read ahead in a client application
You can use read ahead on a client to allow non persistent messages to be sent to a client without the
client application having to request the messages.

When a client requires a message from a server, it sends a request to the server. It sends a separate
request for each of the messages it consumes. To improve the performance of a client consuming non
persistent messages by avoiding having to send these request messages, a client can be configured to use
read ahead. Read ahead allows messages to be sent to a client without an application having to request
them.

Using read ahead can improve performance when consuming non persistent messages from a client
application. This performance improvement is available to both MQI and JMS applications. Client
applications using MQGET or asynchronous consumption benefit from the performance improvements
when consuming non persistent messages.

When you call MQOPEN with MQOO_READ_AHEAD, the IBM MQ client only enables read-ahead if
certain conditions are met. These conditions include:
v Both the client and remote queue manager must be at WebSphere MQ Version 7 or later.
v The client application must be compiled and linked against the threaded IBM MQ MQI client libraries.
v The client channel must be using TCP/IP protocol
v The channel must have a non-zero SharingConversations (SHARECNV) setting in both the client and

server channel definitions.

When read ahead is enabled, messages are sent to a memory buffer on the client called the read ahead
buffer. The client has a read ahead buffer for each queue it has open with read ahead enabled. The
messages in the read ahead buffer are not persisted. The client periodically updates the server with
information about the amount of data it has consumed.

Not all client application designs are suited to using read ahead because not all options are supported for
use. Some options are required to be consistent between MQGET calls when read ahead is enabled. If a
client alters its selection criteria between MQGET calls, messages being stored in the read ahead buffer
remain stranded in the client read ahead buffer. For more information, see “Improving performance of
non-persistent messages” on page 149

Read ahead configuration is controlled by three attributes, MaximumSize, PurgeTime, and
UpdatePercentage, which are specified in the MessageBuffer stanza of the IBM MQ client configuration
file.

Using asynchronous put in a client application
Using asynchronous put, an application can put a message to a queue without waiting for a response
from the queue manager. You can use this to improve messaging performance in some situations.

Normally, when an application puts a message or messages on a queue, using MQPUT or MQPUT1, the
application has to wait for the queue manager to confirm that it has processed the MQI request. You can
improve messaging performance, particularly for applications that use client bindings, and applications
that put large numbers of small messages to a queue, by choosing instead to put messages
asynchronously. When an application puts a message asynchronously, the queue manager does not return
the success or failure of each call, but you can instead check for errors periodically.

To put a message on a queue asynchronously, use the MQPMO_ASYNC_RESPONSE option in the
Options field of the MQPMO structure.

If a message is not eligible for asynchronous put, it is put to a queue synchronously.

296 IBM MQ: Programming

When requesting asynchronous put response for MQPUT or MQPUT1, a CompCode and Reason of
MQCC_OK and MQRC_NONE does not necessarily mean that the message was successfully put to a
queue. Although the success or failure of each individual MQPUT or MQPUT1 call might not be returned
immediately, the first error that occurred under an asynchronous call can be determined later through a
call to MQSTAT.

For more details on MQPMO_ASYNC_RESPONSE, see MQPMO options.

The Asynchronous Put sample program demonstrates some of the features available. For details of the
features and design of the program, and how to run it, see “The Asynchronous Put sample program” on
page 492.

Using sharing conversations in a client application
In an environment where sharing conversations is permitted, conversations can share an MQI channel
instance.

Sharing conversations is controlled by two fields, both called SharingConversations, one of which is part
of the channel definition (MQCD) structure and one of which is part of the channel exit parameter
(MQCXP) structure. The SharingConversations field in the MQCD is an integer value, determining the
maximum number of conversations that can share a channel instance associated with the channel. The
SharingConversations field in the MQCXP is a boolean value, indicating whether the channel instance is
currently shared.

In an environment where sharing conversations is not permitted, new client connections specifying
identical MQCDs will not share a channel instance.

A new client application connection will share the channel instance when the following conditions are
true:
v Both the client-connection and server-connection ends of the channel instance are configured for

sharing conversations, and these values are not overridden by channel exits.
v The client connection MQCD value (supplied on the client MQCONNX call or from the client channel

definition table (CCDT)) exactly matches the client connection MQCD value supplied on the client
MQCONNX call or from the CCDT when the existing channel instance was first established. Note that
the original MQCD might have been subsequently altered by exits or by channel negotiation, but that
the match is made against the value which was supplied to the client system before these changes were
made.

v The sharing conversations limit on the server side is not exceeded.

If a new client application connection matches the criteria to run sharing a channel instance with other
conversations, this decision is made before any exits are called on that conversation. Exits on such a
conversation cannot alter the fact that it is sharing the channel instance with other conversations. If there
are no existing channel instances matching the new channel definition, a new channel instance is
connected.

Channel negotiation only occurs for the first conversation on a channel instance; the negotiated values for
the channel instance are fixed at that stage and cannot be altered when subsequent conversations start.
TLS/SSL authentication also only occurs for the first conversation.

If the MQCD SharingConversations value is altered during the initialization of any security, send or
receive exits for the first conversation on the socket at either the client-connection or the
server-connection end of the channel instance, the new value it has after all these exits are initialized is
used to determine the sharing conversations value for the channel instance (the lowest value takes
precedence).

Writing client procedural applications 297

If the negotiated value for sharing conversations is zero, the channel instance is never shared. Further exit
programs that set this field to zero similarly run on their own channel instance.

If the negotiated value for sharing conversations is greater than zero then MQCXP SharingConversations
is set to TRUE for subsequent calls to exits, indicating that other exit programs on this channel instance
can be entered simultaneously with this one.

When you write a channel exit program, consider whether it will run on a channel instance that might
involve sharing conversations. If the channel instance might involve sharing conversations, consider the
effect on other instances of the channel exit of changing MQCD fields; all MQCD fields have common
values across all the sharing conversations. After the channel instance is established, if exit programs try
to alter MQCD fields they might encounter problems because other instances of exit programs running
on the channel instance could be attempting to alter the same fields at the same time. If this situation
could arise with your exit programs, you must serialize access to the MQCD in your exit code.

If you are working with a channel which is defined to share conversations, but you do not want sharing
to occur on a particular channel instance, set the MQCD value of SharingConversations to 1 or 0 when
you initialize a channel exit on the first conversation on the channel instance. See SharingConversations
for an explanation of the values of SharingConversations.

Example

Sharing conversations is enabled.

You are using a client-connection channel definition which specifies an exit program.

The first time that this channel starts, the exit program alters some of the MQCD parameters when it is
initialized. These are acted on by the channel, so the definition that the channel is running with is now
different from the one that was originally supplied. The MQCXP SharingConversations parameter is set
to TRUE.

The next time that the application connects using this channel, the conversation runs on the channel
instance which was started previously, because it has the same original channel definition. The channel
instance the application connects to the second time is the same instance as the first time it connected.
Consequently, it uses the definitions that have been altered by the exit program. When the exit program
is initialized for the second conversation, although it can alter MQCD fields, they are not acted on by the
channel. These same characteristics apply to any subsequent conversations which share the channel
instance.

Using MQCONNX
You can use the MQCONNX call to specify a channel definition (MQCD) structure in the MQCNO
structure.

This allows the calling client application to specify the definition of the client-connection channel at run
time. For more information, see Using the MQCNO structure on an MQCONNX call. When you use
MQCONNX, the call issued at the server depends on the server level and listener configuration.

When you use MQCONNX from a client, the following options are ignored:
v MQCNO_STANDARD_BINDING
v MQCNO_FASTPATH_BINDING

The MQCD structure you can use depends on the MQCD version number you are using. For information
on MQCD versions (MQCD_VERSION), see MQCD Version. You can use the MQCD structure, for
example, to pass channel-exit programs to the server. If you are using MQCD Version 3 or later, you can
use the structure to pass an array of exits to the server. You can use this function to perform more than

298 IBM MQ: Programming

one operation on the same message, such as encryption and compression, by adding an exit for each
operation, rather than modifying an existing exit. If you do not specify an array in the MQCD structure,
the single exit fields will be checked. For more information on channel-exit programs, see “Channel-exit
programs for messaging channels” on page 349.

Shared connection handles on MQCONNX
You can share handles between different threads within the same process, using shared connection
handles.

When you specify a shared connection handle, the connection handle returned from the MQCONNX call
can be passed in subsequent MQI calls on any thread in the process.

Note: You can use a shared connection handle on an IBM MQ MQI client to connect to a server queue
manager that does not support shared connection handles.

For more information, see “Using MQCONNX” on page 298.

Building applications for IBM MQ MQI clients
Applications can be built and run in IBM MQ MQI client environment. The application must be built and
linked to the IBM MQ MQI client used. The way in which applications are built and linked varies
according to the platform and programming language used.

If an application is to run in a client environment, you can write it in the languages shown in the
following table:

Table 32. Programming languages supported in client environments

Client platform C C++ COBOL pTAL RPG Visual Basic

AIX Yes Yes Yes

HP Integrity NonStop
Server

Yes Yes Yes

HP-UX Yes Yes Yes

IBM i
Yes Yes Yes

Linux Yes Yes Yes

Solaris Yes Yes Yes

Windows Yes Yes Yes Yes

Writing client procedural applications 299

Linking C applications with the IBM MQ MQI client code
Having written your IBM MQ application that you want to run on the IBM MQ MQI client, you must
link it to the IBM MQ MQI client code.

You can link your application to the IBM MQ MQI client code in two ways:
1. Directly, by connecting your application to a queue manager, in which case the queue manager must

be on the same machine as your application.
2. To a client library file, which gives you access to queue managers on the same or on a different

machine.

IBM MQ provides a client library file for each environment:

AIX libmqic.a library for non-threaded applications, or libmqic_r.a library for threaded applications.

HP-UX
libmqic.sl library for non-threaded applications, or libmqic_r.sl library for threaded applications.

Linux libmqic.so library for non-threaded applications, or libmqic_r.so library for threaded applications.

IBM i
Bind client application with LIBMQIC client service program for non-threaded applications, or
LIBMQIC_R service program for threaded applications.

Solaris
libmqic.so.

If you want to use the programs on a machine that has only the IBM MQ MQI client for Solaris
installed, you must recompile the programs to link them with the client library:
$ /opt/SUNWspro/bin/cc -o <prog> <prog> c -mt -lmqic \
-lsocket -lc -lnsl -ldl

The parameters must be entered in the correct order, as shown.

Windows
MQIC32.LIB.

Linking C++ applications with the IBM MQ MQI client code
You can write applications to run on the client in C++. Build methods vary according to the environment.

For information about how to link your C++ applications, see Building IBM MQ C++ programs.

For full details of all aspects of using C++, see Using C++

300 IBM MQ: Programming

Linking COBOL applications with the IBM MQ MQI client code
Having written a COBOL application that you want to run on the IBM MQ MQI client, you must link it
with an appropriate library.

IBM MQ provides a client library file for each environment:

AIX Link your non-threaded COBOL application with the library libmqicb.a or threaded COBOL
application with libmqicb_r.a.

HP-UX
Link your non-threaded COBOL application with the library libmqicb.sl or threaded COBOL
application with libmqicb_r.sl.

Linux Link your non-threaded COBOL application with the library libmqicb.so or threaded COBOL
application with libmqicb_r.so.

IBM i
Bind COBOL client application with AMQCSTUB service program for non-threaded applications,
or AMQCSTUB_R service program for threaded applications.

Solaris
Link your non-threaded COBOL application with the library libmqicb.so or threaded COBOL
application with libmqicb_r.so.

Windows
Link your application code with the MQICCBB library for 32-bit COBOL. The IBM MQ MQI
client for Windows does not support 16-bit COBOL.

Linking Visual Basic applications with the IBM MQ MQI client code
You can link Visual Basic applications with the IBM MQ MQI client code on Windows.

Note: Outside the .NET environment, support for Visual Basic (VB) in IBM MQ has been stabilized at the
V6.0 level. Most new function added to IBM WebSphere MQ Version 7.0 or later is not available to VB
applications. If you are programming in VB.NET, use the IBM MQ .NET classes. For more information,
see Using .NET.

Link your Visual Basic application with the following include files:

CMQB.bas
MQI

CMQBB.bas
MQAI

CMQCFB.bas
PCF commands

CMQXB.bas
Channels

Set mqtype=2 for the client in the Visual Basic compiler, to ensure the correct automatic selection of the
client dll:

MQIC32.dll
Windows 7, Windows 8, Windows 2008, and Windows 2012

Writing client procedural applications 301

Related concepts:
“Coding in Visual Basic” on page 459
Note the information in the following section when coding IBM MQ programs in Visual Basic.
“Preparing Visual Basic programs in Windows” on page 423
Use this information when considering using Visual Basic programs on Windows.

Running applications in the IBM MQ MQI client environment
You can run an IBM MQ application both in a full IBM MQ environment and in an IBM MQ MQI client
environment without changing your code, provided that certain conditions are met.

These conditions are that:
v The application does not need to connect to more than one queue manager concurrently.
v The queue manager name is not prefixed with an asterisk (*) on an MQCONN or MQCONNX call.
v The application does not need to use any of the exceptions listed in What applications run on an IBM

MQ MQI client?

Note: The libraries that you use at link-edit time determine the environment in which your application
must run.

When working in the IBM MQ MQI client environment, remember that:
v Each application running in the IBM MQ MQI client environment has its own connections to servers.

An application establishes one connection to a server each time it issues an MQCONN or MQCONNX
call.

v An application sends and gets messages synchronously. This implies a wait between the time the call is
issued at the client and the return of a completion code and reason code across the network.

v All data conversion is done by the server, but see also MQCCSID for information about overriding the
machine's configured CCSID.

Connecting IBM MQ MQI client applications to queue managers
An application running in an IBM MQ MQI client environment can connect to a queue manager in
various ways. You can use environmental variables, the MQCNO structure, or a client definition table.

When an application running in an IBM MQ client environment issues an MQCONN or MQCONNX call,
the client identifies how it is to make the connection. When an MQCONNX call is issued by an
application on an IBM MQ client, the MQI client library searches for the client channel information in the
following order:
1. Using the contents of the ClientConnOffset or ClientConnPtr fields of the MQCNO structure (if

supplied). These fields identify the channel definition structure (MQCD) to be used as the definition
of the client connection channel. Connection details can be overridden by using a pre-connect exit. For
more information, see “Referencing connection definitions using a pre-connect exit from a repository”
on page 381.

2. If the MQSERVER environment variable is set, the channel it defines is used.
3. If an mqclient.ini file is defined and contains a ServerConnectionParms, the channel that it defines is

used. For more information, see Configuring a client using a configuration file and CHANNELS
stanza of the client configuration file.

4. If the MQCHLLIB and MQCHLTAB environment variables are set, the client channel definition table
they point to is used.

5. If an mqclient.ini file is defined and contains ChannelDefinitionDirectory and ChannelDefinitionFile
attributes, these attributes are used to locate the client channel definition table. For more information,
see Configuring a client using a configuration file and CHANNELS stanza of the client configuration
file.

302 IBM MQ: Programming

6. Finally, if the environment variables are not set, the client searches for a client channel definition table
with a path and name that are established from the DefaultPrefix in the mqs.ini file. If the search for
a client definition table fails, the client uses the following paths:
v UNIX and Linux systems: /var/mqm/AMQCLCHL.TAB
v Windows: C:\Program Files\IBM\WebSphere MQ\amqclchl.tab

v IBM i: /QIBM/UserData/mqm/@ipcc
v IBM MQ Appliance: <QMname>_AMQCLCHL.TAB. They appear under the mqbackup:// URI.

The first of the options described in the previous list (using the ClientConnOffset or ClientConnPtr fields
of MQCNO) is supported only by the MQCONNX call. If the application is using MQCONN rather than
MQCONNX, the channel information is searched for in the remaining five ways in the order shown in
the list. If the client fails to find the channel information, the MQCONN or MQCONNX call fails.

The channel name (for the client connection) must match the server-connection channel name defined on
the server for the MQCONN or MQCONNX call to succeed.

If you receive an MQRC_Q_MGR_NOT_AVAILABLE return code from your application with an error
message in the error log file of AMQ9517 - File damaged, see Migration and client channel definition
tables (CCDT).
Related information:
Client channel definition table
MQSERVER
MQCHLLIB
MQCHLTAB
Configuring connections between the server and client

Connecting client applications to queue managers using environment variables
Client channel information can be supplied to an application running in a client environment by the
MQSERVER, MQCHLLIB, and MQCHLTAB environment variables.

See MQSERVER, MQCHLLIB and MQCHLTAB for details of these variables.

Connecting client applications to queue managers using the MQCNO structure
You can specify the definition of the channel in a channel definition structure (MQCD), which is supplied
using the MQCNO structure of the MQCONNX call.

For more information see Using the MQCNO structure on an MQCONNX call.

Connecting client applications to queue managers using a client channel definition
table
If you use the MQSC DEFINE CHANNEL command, the details you provide are placed in the client
channel definition table (ccdt). The contents of the QMgrName parameter of the MQCONN or MQCONNX
call determines which queue manager the client connects to.

This file is accessed by the client to determine the channel an application will use. Where there is more
than one suitable channel definition, the choice of channel is influenced by the client channel weight
(CLNTWGHT) and connection affinity (AFFINITY) channel attributes.

Writing client procedural applications 303

Using automatic client reconnection
You can make your client applications reconnect automatically, without writing any additional code, by
configuring a number of components.

Automatic client reconnection is inline. The connection is automatically restored at any point in the client
application program, and the handles to open objects are all restored.

In contrast, manual reconnection requires the client application to re-create a connection using MQCONN
or MQCONNX, and to reopen objects. Automatic client reconnection is suitable for many, but not all
client applications.

For more information, see Automatic client reconnection.

Role of the client channel definition table
The client channel definition table (CCDT) contains definitions of client connection channels. It is
particularly useful if your client applications might need to connect to a number of alternative queue
managers.

The client channel definition table is created when you define a queue manager.

Note: The same file can be used by more than one IBM MQ client. You access different versions of this
file using the MQCHLLIB and MQCHLTAB IBM MQ environment variables. See Using IBM MQ
environment variables for information about environment variables.

Queue manager groups in the CCDT:

You can define a set of connections in the client channel definition table (CCDT) as a queue manager group.
You can connect an application to a queue manager that is part of a queue manager group. This can be
done by prefixing the queue manager name on an MQCONN or MQCONNX call with an asterisk.

You might choose to define connections to more than one server machine because:
v You want to connect a client to any one of a set of queue managers that is running, to improve

availability.
v You want to reconnect a client to the same queue manager it connected to successfully last time, but

connect to a different queue manager if the connection fails.
v You want to be able to retry a client connection to a different queue manager if the connection fails, by

issuing the MQCONN in the client program again.
v You want to automatically reconnect a client connection to another queue manager if the connection

fails, without writing any client code.
v You want to automatically reconnect a client connection to a different instance of a multi-instance

queue manager if a standby instance takes over, without writing any client code.
v You want to balance your client connections across a number of queue managers, with more clients

connecting to some queue managers than others.
v You want to spread the reconnection of many client connections over multiple queue managers and

over time, in case the high volume of connections causes a failure.
v You want to be able to move your queue managers without changing any client application code.
v You want to write client application programs that do not need to know queue manager names.

It is not always appropriate to connect to different queue managers. An extended transactional client or a
Java client in WebSphere Application Server, for example, might need to connect to a predictable queue
manager instance. Automatic client reconnect is not supported by IBM MQ classes for Java.

A queue manager group is a set of connections defined in the client channel definition table (CCDT). The
set is defined by its members having the same value of the QMNAME attribute in their channel definitions.

304 IBM MQ: Programming

Figure 50 is a graphical representation of a client connection table, showing three queue manager groups,
two named queue manager groups written in the CCDT as QMNAME (QM1) and QMNAME (QMGrp1), and one
blank or default group written as QMNAME (' ').
1. Queue manager group QM1 has three client connection channels, connecting it to queue managers QM1

and QM2. QM1 might be a multi-instance queue manager located on two different servers.
2. The default queue manager group has six client connection channels connecting it to all the queue

managers.
3. QMGrp1 has client connection channels to two queue managers, QM4 and QM5.

Four examples of using this client connection table are described with the help of the numbered client
applications in Figure 50.
1. In the first example, the client application passes a queue manager name, QM1, as the QmgrName

parameter to its MQCONN or MQCONNX MQI call. The IBM MQ client code selects the matching
queue manager group, QM1. The group contains three connection channels, and the IBM MQ MQI
client tries to connect to QM1 using each of these channels in turn until it finds an IBM MQ listener for
the connection attached to a running queue manager called QM1.
The order of connection attempts depends on the value of the client connection AFFINITY attribute
and the client channel weightings. Within these constraints, the order of connection attempts is
randomized, both over the three possible connections, and over time, in order to spread out the load
of making connections.
The MQCONN or MQCONNX call issued by the client application succeeds when a connection is
established to a running instance of QM1.

Queue manager
group
'QM1'

Queue Manager
QM1

Queue Manager
QM1

Queue Manager
QM2

Queue Manager
QM3

Queue Manager
QM4

Queue Manager
QM5

Queue manager
group

' '

Queue manager
group

'QMGrp1'

Client
application

'QM1'

Client
application

' QM1'*

Client
application
' QMGrp1'*

Client
application

' '

Client
application

'*'

1

3

4

2

Figure 50. Queue manager groups

Writing client procedural applications 305

2. In the second example, the client application passes a queue manager name prefixed with an asterisk,
*QMGrp1 as the QmgrName parameter to its MQCONN or MQCONNX MQI call. The IBM MQ client
selects the matching queue manager group, QMGrp1. This group contains two client connection
channels, and the IBM MQ MQI client tries to connect to any queue manager using each channel in
turn. In this example, the IBM MQ MQI client needs to make a successful connection; the name of the
queue manager that it connects to does not matter.
The rule for the order of making connection attempts is the same as before. The only difference is that
by prefixing the queue manager name with an asterisk, the client indicates that the name of the queue
manager is not relevant.
The MQCONN or MQCONNX call issued by the client application succeeds when a connection is
established to a running instance of any queue manager connected to by the channels in the QMGrp1
queue manager group.

3. The third example is essentially the same as the second because the QmgrName parameter is prefixed by
an asterisk, *QM1. The example illustrates that you cannot determine which queue manager a client
channel connection is going to connect to by inspecting the QMNAME attribute in one channel definition
by itself. The fact that the QMNAME attribute of the channel definition is QM1, is not sufficient to require a
connection is made to a queue manager called QM1. If your client application prefixes its QmgrName
parameter with an asterisk then any queue manager is a possible connection target.
In this case the MQCONN or MQCONNX calls issued by the client application succeed when a
connection is established to a running instance of either QM1 or QM2.

4. The fourth example illustrates use of the default group. In this case the client application passes an
asterisk, '*', or blank ' ', as the QmgrName parameter to its MQCONN or MQCONNX MQI call. By
convention in the client channel definition, a blank QMNAME attribute signifies the default queue
manager group and either a blank or asterisk QmgrName parameter matches a blank QMNAME attribute.
In this example the default queue manager group has client channel connections to all the queue
managers. By selecting the default queue manager group the application might be connected to any
queue manager in the group.
The MQCONN or MQCONNX call issued by the client application succeeds when a connection is
established to a running instance of any queue manager.

Note: The default group is different from a default queue manager, although an application uses a
blank QmgrName parameter to connect to either the default queue manager group or to the default
queue manager. The concept of a default queue manager group is only relevant to a client application,
and a default queue manager to a server application.

Define your client connection channels on one queue manager only, including those channels that connect
to a second or third queue manager. Do not define them on two queue managers and then try to merge
the two client channel definition tables. Only one client channel definition table can be accessed by the
client.

Examples

Look again at the list of reasons for using queue manager groups at the beginning of the topic. How does
using a queue manager group provide those capabilities?

Connect to any one of a set of queue managers.
Define a queue manager group with connections to all the queue managers in the set, and
connect to the group using the QmgrName parameter prefixed by an asterisk.

Reconnect to the same queue manager, but connect to a different one, if the queue manager connected
to last time is unavailable.

Define a queue manager group as before but set the attribute, AFFINITY (PREFERRED) on each
client channel definition.

306 IBM MQ: Programming

Retry a connection to another queue manager if a connection fails.
Connect to a queue manager group, and reissue the MQCONN or MQCONNX MQI call if the
connection is broken or the queue manager fails.

Automatically reconnect to another queue manager if a connection fails.
Connect to a queue manager group using the MQCONNX MQCNO option MQCNO_RECONNECT.

Automatically reconnect to a different instance of a multi-instance queue manager.
Do the same as the preceding example. In this case, if you want to restrict the queue manager
group to connect to the instances of a particular multi-instance queue manager, define the group
with connections to only the multi-instance queue manager instances.

You can also ask the client application to issue its MQCONN or MQCONNX MQI call with no
asterisk prefixed to the QmgrName parameter. That way the client application can only connect to
the named queue manager. Finally, you can set the MQCNO option to MQCNO_RECONNECT_Q_MGR. This
option accepts reconnections to the same queue manager that was previously connected. You can
also use this value to restrict reconnections to the same instance of a normal queue manager.

Balance client connections across queue managers, with more clients connected to some queue
managers than others.

Define a queue manager group, and set the CLNTWGHT attribute on each client channel definition to
distribute the connections unevenly.

Spread the client reconnection load unevenly, and spread it over time, after a connection or queue
manager failure.

Do the same as the preceding example. The IBM MQ MQI client randomizes reconnections across
queue managers and spreads the reconnections over time.

Move your queue managers without changing any client code.
The CCDT isolates your client application from the location of the queue manager.

You have a choice of either distributing the client connection table to each client or placing the
CCDT on a shared file system for each client to refer to. Alternatively use the programmatic
version of the CCDT supported in the MQCONNX MQI call and call a service to pass the CCDT
to the client application.

Write a client application that does not know queue manager names.
Use queue manager group names and establish a naming convention for queue manager group
names that is relevant to your client applications in your organization, and reflects the
architecture of your solutions rather than the naming of queue managers.

Connecting to queue-sharing groups: z/OS

You can connect your application to a queue manager that is part of a queue-sharing group. This can be
done by using the queue-sharing group name instead of the queue manager name on the MQCONN or
MQCONNX call.

Queue-sharing groups have a name of up to four characters. The name must be unique in your network,
and must be different from any queue manager names.

The client channel definition should use the queue sharing group generic interface to connect to an
available queue manager in the group. For more information, see Connecting a client to a queue-sharing
group. A check is made to ensure that the queue manager the listener connects to is a member of the
queue sharing group.

For more information on shared queues, see Shared queues and queue-sharing groups.

Writing client procedural applications 307

Examples of channel weighting and affinity
These examples illustrate how client-connection channels are selected when non-zero
ClientChannelWeights are used.

The ClientChannelWeight and ConnectionAffinity channel attributes control how client-connection
channels are selected when more than one suitable channel is available for a connection. These channels
are configured to connect to different queue managers in order to provide higher availability, workload
balancing, or both. MQCONN calls that could result in a connection to one of several queue managers
must prefix the queue manager name with an asterisk as described in: Examples of MQCONN calls:
Example 1. Queue manager name includes an asterisk (*).

Applicable candidate channels for a connection are those where the QMNAME attribute matches the
queue manager name specified in the MQCONN call. If all applicable channels for a connection have a
ClientChannelWeight of zero (the default) then they are selected in alphabetical order as in the example:
Examples of MQCONN calls: Example 1. Queue manager name includes an asterisk (*).

The following examples illustrate what happens when non-zero ClientChannelWeights are used. Note
that, since this feature involves pseudo-random channel selection, the examples show a sequence of
actions that might happen rather than what definitely will.

Example 1. Selecting channels when ConnectionAffinity is set to PREFERRED:

This example illustrates how an IBM MQ MQI client selects a channel from a CCDT, where the
ConnectionAffinity is set to PREFERRED.

In this example, a number of client machines use a Client Channel Definition Table (CCDT) provided by
a queue manager. The CCDT includes client connection channels with the following attributes (shown
using the syntax of the DEFINE CHANNEL command):
CHANNEL(A) QMNAME(DEV) CONNAME(devqm.it.company.example)
CHANNEL(B) QMNAME(CORE) CONNAME(core1.ops.company.example) CLNTWGHT(5) +
AFFINITY(PREFERRED)
CHANNEL(C) QMNAME(CORE) CONNAME(core2.ops.company.example) CLNTWGHT(3) +
AFFINITY(PREFERRED)
CHANNEL(D) QMNAME(CORE) CONNAME(core3.ops.company.example) CLNTWGHT(2) +
AFFINITY(PREFERRED)

The application issues MQCONN(*CORE)

Channel A is not a candidate for this connection, because the QMNAME attribute does not match.
Channels B, C and D are identified as candidates, and are placed in an order of preference based on their
weighting. In this example the order might be B, C, D. The client attempts to connect to the queue
manager at core2.ops.company.example. The name of the queue manager at that address is not checked,
because the MQCONN call included an asterisk in the queue manager name.

It is important to note that, with AFFINITY(PREFERRED), each time this particular client machine connects it
will place the channels in the same initial order of preference. This applies even when the connections are
from different processes or at different times.

In this example, the queue manager at core.2.ops.company.example cannot be reached. The client
attempts to connect to core1.ops.company.example because channel B is next in the order of preference. In
addition, channel C is demoted to become the least preferred.

A second MQCONN(*CORE) call is issued by the same application. Channel C was demoted by the
previous connection, so the most preferred channel is now B. This connection is made to
core1.ops.company.example.

308 IBM MQ: Programming

A second machine sharing the same Client Channel Definition Table migh place the channels in a
different initial order of preference. For example, D, B, C. Under normal circumstances, with all channels
working, applications on this machine are connected to core3.ops.company.example while those on the
first machine are connected to core2.ops.company.example. This allows workload balancing of large
numbers of clients across multiple queue managers while allowing each individual client to connect to
the same queue manager if it is available.

Example 2. Selecting channels when ConnectionAffinity is set to NONE:

This example illustrates how an IBM MQ MQI client selects a channel from a CCDT, where the
ConnectionAffinity is set to NONE.

In this example, a number of clients use a Client Channel Definition Table (CCDT) provided by a queue
manager. The CCDT includes client connection channels with the following attributes (shown using the
syntax of the DEFINE CHANNEL command):
CHANNEL(A) QMNAME(DEV) CONNAME(devqm.it.company.example)
CHANNEL(B) QMNAME(CORE) CONNAME(core1.ops.company.example) CLNTWGHT(5) +
AFFINITY(NONE)
CHANNEL(C) QMNAME(CORE) CONNAME(core2.ops.company.example) CLNTWGHT(3) +
AFFINITY(NONE)
CHANNEL(D) QMNAME(CORE) CONNAME(core3.ops.company.example) CLNTWGHT(2) +
AFFINITY(NONE)

The application issues MQCONN(*CORE). As in the previous example, channel A is not considered
because the QMNAME does not match. Channel B, C, or D are selected based on their weighting, with
probabilities of 50%, 30%, or 20%. In this example, channel B might be selected. There is no persistent
order of preference created.

A second MQCONN(*CORE) call is made. Again, one of the three applicable channels is selected, with
the same probabilities. In this example, channel C is chosen. However, core2.ops.company.example does
not respond, so another choice is made between the remaining candidate channels. Channel B is selected
and the application is connected to core1.ops.company.example.

With AFFINITY(NONE), each MQCONN call is independent of any other. Therefore when this example
application makes a third MQCONN(*CORE), it might once more attempt to connect through the broken
channel C, before choosing one of B or D.

Examples of MQCONN calls
Examples of using MQCONN to connect to a specific queue manager, or to one of a group of queue
managers.

In each of the following examples, the network is the same; there is a connection defined to two servers
from the same IBM MQ MQI client. (In these examples, the MQCONNX call could be used instead of the
MQCONN call.)

There are two queue managers running on the server machines, one named SALE and the other named
SALE_BACKUP.

Writing client procedural applications 309

The definitions for the channels in these examples are:

SALE definitions:

SALE_BACKUP definition:

The client channel definitions can be summarized as follows:

(listening program)

(listening program)

(call from MQI client)

(call from MQI client)

Server 1
(9.20.4.26)

Server 2
(9.20.5.26)

Note:
May or may not be
the same machine
as Server 1

WebSphere MQ

MQI client

ALPHA

BETA

SALE

SALE_BACKUP

Match

No Match

(SALE)

(SALE)

MQCONN

MQCONN

......

......
MQCONN(SALE)
......

runmqlsr -t tcp -m

runmqlsr -t tcp -m

Figure 51. MQCONN example

DEFINE CHANNEL(ALPHA) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR(’Server connection to WebSphere MQ MQI client’)

DEFINE CHANNEL(ALPHA) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
CONNAME(9.20.4.26) DESCR(’WebSphere MQ MQI client connection to server 1’) +
QMNAME(SALE)

DEFINE CHANNEL(BETA) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
CONNAME(9.20.5.26) DESCR(’WebSphere MQ MQI client connection to server 2’) +
QMNAME(SALE)

DEFINE CHANNEL(BETA) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR(’Server connection to WebSphere MQ MQI client’)

310 IBM MQ: Programming

Name CHLTYPE TRPTYPE CONNAME QMNAME

ALPHA CLNTCONN TCP 9.20.4.26 SALE

BETA CLNTCONN TCP 9.20.5.26 SALE

What the MQCONN examples demonstrate:

The examples demonstrate the use of multiple queue managers as a backup system.

Suppose the communication link to Server 1 is temporarily broken. The use of multiple queue managers
as a backup system is demonstrated.

Each example covers a different MQCONN call and gives an explanation of what happens in the specific
example presented, by applying the following rules:
1. The client channel definition table (CCDT) is scanned in alphabetical channel name order for a queue

manager name (QMNAME field) corresponding to the one given in the MQCONN call.
2. If a match is found, the channel definition is used.
3. An attempt is made to start the channel to the machine identified by the connection name

(CONNAME). If this is successful, the application continues. It requires:
v A listener to be running on the server.
v The listener to be connected to the same queue manager as the one the client wants to connect to (if

specified).
4. If the attempt to start the channel fails and there is more than one entry in the client channel

definition table (in this example there are two entries), the file is searched for a further match. If a
match is found, processing continues at step 1.

5. If no match is found, or there are no more entries in the client channel definition table and the
channel has failed to start, the application is unable to connect. An appropriate reason code and
completion code are returned in the MQCONN call. The application can take action based on the
reason and completion codes returned.

Example 1. Queue manager name includes an asterisk (*):

In this example the application is not concerned about which queue manager it connects to. The
application issues an MQCONN call for a queue manager name including an asterisk. A suitable channel
is chosen.

The application issues:
MQCONN (*SALE)

Following the rules, this is what happens in this instance:
1. The client channel definition table (CCDT) is scanned for the queue manager name SALE, matching

with the application MQCONN call.
2. Channel definitions for ALPHA and BETA are found.
3. If one channel has a CLNTWGHT value of 0, this channel is selected. If both have a CLNTWGHT

value of 0, channel ALPHA is selected because it is first in alphabetical sequence. If both channels have
a non-zero CLNTWGHT value, one channel is randomly selected, based on its weighting.

4. An attempt to start the channel is made.
5. If channel BETA was selected, the attempt to start it is successful.
6. If channel ALPHA was selected, the attempt to start it is NOT successful because the communication

link is broken. The following steps then apply:
a. The only other channel for the queue manager name SALE is BETA.

Writing client procedural applications 311

b. An attempt to start this channel is made - this is successful.
7. A check to see that a listener is running shows that there is one running. It is not connected to the

SALE queue manager, but because the MQI call parameter has an asterisk (*) included in it, no check is
made. The application is connected to the SALE_BACKUP queue manager and continues processing.

Example 2. Queue manager name specified:

In this example the application must connect to a particular queue manager. The application issues an
MQCONN call for that queue manager name. A suitable channel is chosen.

The application requires a connection to a specific queue manager, named SALE, as seen in the MQI call:
MQCONN (SALE)

Following the rules, this is what happens in this instance:
1. The client channel definition table (CCDT) is scanned in alphabetical channel name sequence, for the

queue manager name SALE, matching with the application MQCONN call.
2. The first channel definition found to match is ALPHA.
3. An attempt to start the channel is made - this is not successful because the communication link is

broken.
4. The client channel definition table is again scanned for the queue manager name SALE and the channel

name BETA is found.
5. An attempt to start the channel is made - this is successful.
6. A check to see that a listener is running shows that there is one running, but it is not connected to the

SALE queue manager.
7. There are no further entries in the client channel definition table. The application cannot continue and

receives return code MQRC_Q_MGR_NOT_AVAILABLE.

Example 3. Queue manager name is blank or an asterisk (*):

In this example the application is not concerned about which queue manager it connects to. The
application issues an MQCONN specifying a blank queue manager name or an asterisk. A suitable
channel is chosen.

This is treated in the same way as “Example 1. Queue manager name includes an asterisk (*)” on page
311.

Note: If this application were running in an environment other than an IBM MQ MQI client, and the
name was blank, it would be attempting to connect to the default queue manager. This is not the case
when it is run from a client environment; the queue manager accessed is the one associated with the
listener to which the channel connects.

The application issues:
MQCONN ("")

or
MQCONN (*)

Following the rules, this is what happens in this instance:
1. The client channel definition table (CCDT) is scanned in alphabetical channel name sequence, for a

queue manager name that is blank, matching with the application MQCONN call.
2. The entry for the channel name ALPHA has a queue manager name in the definition of SALE. This does

not match the MQCONN call parameter, which requires the queue manager name to be blank.
3. The next entry is for the channel name BETA.

312 IBM MQ: Programming

4. The queue manager name in the definition is SALE. Once again, this does not match the MQCONN call
parameter, which requires the queue manager name to be blank.

5. There are no further entries in the client channel definition table. The application cannot continue and
receives return code MQRC_Q_MGR_NOT_AVAILABLE.

Triggering in the client environment
Messages sent by IBM MQ applications running on IBM MQ MQI clients contribute to triggering in
exactly the same way as any other messages, and they can be used to trigger programs on both the
server and the client.

Triggering is explained in detail in the Triggering channels.

The trigger monitor and the application to be started must be on the same system.

The default characteristics of the triggered queue are the same as those in the server environment. In
particular, if no MQPMO sync point control options are specified in a client application putting messages
to a triggered queue that is local to a z/OS queue manager, the messages are put within a unit of work.
If the triggering condition is then met, the trigger message is put on the initiation queue within the same
unit of work and cannot be retrieved by the trigger monitor until the unit of work ends. The process that
is to be triggered is not started until the unit of work ends.

Process definition
You must define the process definition on the server, because this is associated with the queue that has
triggering set on.

The process object defines what is to be triggered. If the client and server are not running on the same
platform, any processes started by the trigger monitor must define ApplType, otherwise the server takes
its default definitions (that is, the type of application that is normally associated with the server machine)
and causes a failure.

For example, if the trigger monitor is running on a Windows client and wants to send a request to a
server on another operating system, MQAT_WINDOWS_NT must be defined otherwise the other
operating system uses its default definitions and the process fails.

Trigger monitor
The trigger monitor provided by non-z/OS IBM MQ products runs in the client environments for

IBM i, UNIX, Linux and Windows systems.

To run the trigger monitor, issue one of these commands:

v On IBM i:
CALL PGM(QMQM/RUNMQTMC) PARM(’-m’ QmgrName ’-q’ InitQ)

v Windows UNIX Linux On Windows, UNIX and Linux platforms:
runmqtmc [-m QMgrName] [-q InitQ]

The default initiation queue is SYSTEM.DEFAULT.INITIATION.QUEUE on the default queue manager.
The initiation queue is where the trigger monitor looks for trigger messages. It then calls programs for
the appropriate trigger messages. This trigger monitor supports the default application type and is the
same as runmqtrm except that it links the client libraries.

The command string, built by the trigger monitor, is as follows:
1. The ApplicId from the relevant process definition. ApplicId is the name of the program to run, as it

would be entered on the command line.

Writing client procedural applications 313

2. The MQTMC2 structure, enclosed in quotation marks, obtained from the initiation queue. A command
string is started that has this string, exactly as provided, in quotation marks in order that the system
command accepts it as one parameter.

3. The EnvrData from the relevant process definition.

The trigger monitor does not look to see if there is another message on the initiation queue until the
completion of the application it has started. If the application has much processing to do, the trigger
monitor might not keep up with the number of trigger messages arriving. There are two ways to deal
with this situation:
1. Have more trigger monitors running

If you choose to have more trigger monitors running, you can control the maximum number of
applications that can run at any one time.

2. Run the started applications in the background
If you choose to run applications in the background, IBM MQ imposes no restriction on the number
of applications that can run.

To run the started application in the background on UNIX and Linux systems, you must put an &
(ampersand) at the end of the EnvrData of the process definition.

CICS applications (non-z/OS)
A non-z/OS CICS application program that issues an MQCONN or MQCONNX call must be defined to
CEDA as RESIDENT. If you relink a CICS server application as a client, you risk losing sync point
support.

A non-z/OS CICS application program that issues an MQCONN or MQCONNX call must be defined to
CEDA as RESIDENT. To make the resident code as small as possible, you can link to a separate program
to issue the MQCONN or MQCONNX call.

If the MQSERVER environment variable is used to define the client connection, it must be specified in the
CICSENV.CMD file.

IBM MQ applications can be run in an IBM MQ server environment or on an IBM MQ client without
changing code. However, in an IBM MQ server environment, CICS can act as sync point coordinator, and
you use EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK rather than MQCMIT and
MQBACK . If a CICS application is simply relinked as a client, sync point support is lost. MQCMIT and
MQBACK must be used for the application running on an IBM MQ MQI client.

Preparing and running CICS and Tuxedo applications
To run CICS and Tuxedo applications as client applications, you use different libraries from those you use
with server applications. The user ID under which the application runs is also different.

To prepare CICS and Tuxedo applications to run as IBM MQ MQI client applications, follow the
instructions in the Configuring an extended transactional client.

Note, however, that the information that deals specifically with preparing CICS and Tuxedo applications,
including the sample programs supplied with IBM MQ, assumes that you are preparing applications to
run on an IBM MQ server system. As a result, the information refers only to IBM MQ libraries that are
intended for use on a server system. When you are preparing your client applications, you must do the
following things:
v Use the appropriate client system library for the language bindings that your application uses. For

example, for applications written in C on AIX, HP-UX, or Solaris, use the library libmqic instead of
libmqm. On Windows systems, use the library mqic.lib instead of mqm.lib.

314 IBM MQ: Programming

v Instead of the server system libraries shown in Table 33, for AIX, HP-UX, and Solaris, and Table 34, for
Windows systems, use the equivalent client system libraries. If a server system library is not listed in
these tables, use the same library on a client system.

Table 33. Client system libraries on AIX, HP-UX, and Solaris

Library for an IBM MQ server system Equivalent library to use on an IBM MQ client system

libmqmxa libmqcxa

Table 34. Client system libraries on Windows systems

Library for an IBM MQ server system Equivalent library to use on an IBM MQ client system

mqmxa.lib mqcxa.lib

mqmtux.lib mqcxa.lib

mqmenc.lib mqcxa.lib

mqmcics4.lib mqccics4.lib

The user ID used by a client application

When you run an IBM MQ server application under CICS, it normally switches from the CICS user to the
user ID of the transaction. However, when you run an IBM MQ MQI client application under CICS, it
retains the CICS privileged authority.

CICS and Tuxedo sample programs
CICS and Tuxedo sample programs for use on AIX, HP-UX, Solaris, and Windows systems.

Table 35 lists the CICS and Tuxedo sample programs that are supplied for use on AIX, HP-UX, and
Solaris client systems. Table 36 on page 316 lists the equivalent information for Windows client systems.
The tables also list the files that are used for preparing and running the programs. For a description of
the sample programs, see “The CICS transaction sample” on page 495 and “TUXEDO samples” on page
537.

Table 35. Sample programs for AIX, HP-UX, and Solaris client systems

Description Source Executable module

CICS program amqscic0.ccs amqscicc

Header file for the CICS program amqscih0.h -

Tuxedo client program to put messages amqstxpx.c -

Tuxedo client program to get messages amqstxgx.c -

Tuxedo server program for the two client programs amqstxsx.c -

UBBCONFIG file for the Tuxedo programs ubbstxcx.cfg -

Field table file for the Tuxedo programs amqstxvx.flds -

View description file for the Tuxedo programs amqstxvx.v -

Writing client procedural applications 315

Table 36. Sample programs for Windows client systems

Description Source Executable module

CICS transaction amqscic0.ccs amqscicc

Header file for the CICS transaction amqscih0.h -

Tuxedo client program to put messages amqstxpx.c -

Tuxedo client program to get messages amqstxgx.c -

Tuxedo server program for the two client programs amqstxsx.c -

UBBCONFIG file for the Tuxedo programs ubbstxcx.cfg -

Field table file for the Tuxedo programs amqstxvx.fld -

View description file for the Tuxedo programs amqstxvx.v -

Makefile for the Tuxedo programs amqstxmc.mak -

ENVFILE file for the Tuxedo programs amqstxen.env -

Error message AMQ5203, as modified for CICS and Tuxedo
applications
When you run CICS or Tuxedo applications that use an extended transactional client, you might see
standard diagnostic messages. One of these has been modified for use with an extended transactional
client

The messages that you might see in the IBM MQ error log files are documented in IBM MQ AMQ
messages. Message AMQ5203 has been modified for use with an extended transactional client. Here is the
text of the modified message:

AMQ5203: An error occurred calling the XA interface.

Explanation
The error number is &2 where a value of 1 indicates the supplied flags value of &1 was invalid, 2
indicates that there was an attempt to use threaded and non-threaded libraries in the same
process, 3 indicates that there was an error with the supplied queue manager name '&3', 4
indicates that the resource manager id of &1 was invalid, 5 indicates that an attempt was made to
use a second queue manager called '&3' when another queue manager was already connected, 6
indicates that the Transaction Manager has been called when the application isn't connected to a
queue manager, 7 indicates that the XA call was made while another call was in progress, 8
indicates that the xa_info string '&4' in the xa_open call contained an invalid parameter value for
parameter name '&5', and 9 indicates that the xa_info string '&4' in the xa_open call is missing a
required parameter, parameter name '&5'.

User response
Correct the error and try the operation again.

316 IBM MQ: Programming

Preparing and running Microsoft Transaction Server applications
To prepare an MTS application to run as an IBM MQ MQI client application, follow these instructions as
appropriate for your environment.

For general information about how to develop Microsoft Transaction Server (MTS) applications that
access IBM MQ resources, see the section on MTS in the IBM MQ Help Center.

To prepare an MTS application to run as an IBM MQ MQI client application, do one of the following for
each component of the application:
v If the component uses the C language bindings for the MQI, follow the instructions in “Preparing C

programs in Windows” on page 420 but link the component with the library mqicxa.lib instead of
mqic.lib.

v If the component uses the IBM MQ C++ classes, follow the instructions in “Building C++ programs on
Windows” on page 829 but link the component with the library imqx23vn.lib instead of imqc23vn.lib.

v If the component uses the Visual Basic language bindings for the MQI, follow the instructions in the
“Preparing Visual Basic programs in Windows” on page 423 but when you define the Visual Basic
project, type MqType=3 in the Conditional Compilation Arguments field.

v If the component uses the IBM MQ Automation Classes for ActiveX (MQAX), define an environment
variable, GMQ_MQ_LIB, with the value mqic32xa.dll.
You can define the environment variable from within your application, or you can define it so that its
scope is system wide. However, defining it as system wide can cause any existing MQAX application,
that does not define the environment variable from within the application, to behave incorrectly.

Preparing and running IBM MQ JMS applications
You can run IBM MQ JMS applications in client mode, with WebSphere Application Server as your
transaction manager. You might see certain warning messages.

To prepare and run IBM MQ JMS applications in client mode, with WebSphere Application Server as
your transaction manager, follow the instructions in “Using IBM MQ classes for JMS” on page 903.

When you run an IBM MQ JMS client application, you might see the following warning messages:

MQJE080
Insufficient license units - run setmqcap

MQJE081
File containing the license unit information is in the wrong format - run setmqcap

MQJE082
File containing the license unit information could not be found - run setmqcap

Writing client procedural applications 317

318 IBM MQ: Programming

User exits, API exits, and IBM MQ installable services

This topic contains links to information about using and developing these programs.

For an introduction to how you can use user exits, API exits, and installable services to extend queue
manager facilities, see Extending queue manager facilities.

For information on writing and compiling exits and installable services, see the subtopics.
Related information:
Channel-exit programs for MQI channels
API exit reference
Installable services interface reference information

Installable services interface reference information on IBM i

Writing exits and installable services on UNIX, Linux and Windows
You can write and compile exits without linking to any IBM MQ libraries on UNIX, Linux and Windows.

About this task

Windows UNIX Linux This topic applies to Windows, UNIX and Linux systems only. For details
on writing exits and installable services for other platforms, see the relevant platform specific topics.

If IBM MQ is installed in a non-default location you must write and compile your exits without linking
to any IBM MQ libraries.

You can write and compile exits on Windows, UNIX and Linux systems without linking any of these IBM
MQ libraries:
v mqmzf
v mqm
v mqmvx
v mqmvxd
v mqic
v mqutl

Existing exits that are linked to these libraries continue to work, providing that on UNIX and Linux
systems IBM MQ is installed in the default location.

Procedure
1. Include the cmqec.h header file. Including this header file automatically includes the cmqc.h, cmqxc.h

and cmqzc.h header files.
2. Write the exit so that MQI and DCI calls are made through the MQIEP structure. For more

information about the MQIEP structure, see MQIEP structure.
v Installable services

– Use the Hconfig parameter to point to the MQZEP call.
– You must check that the first 4 bytes of Hconfig match the StrucId of the MQIEP structure

before using the Hconfig parameter.
– For more information about writing installable service components, see MQIEP.

© Copyright IBM Corp. 2007, 2018 319

v API exits
– Use the Hconfig parameter to point to the MQXEP call.
– You must check that the first 4 bytes of Hconfig match the StrucId of the MQIEP structure

before using the Hconfig parameter.
– For more information about writing API exits, see “Writing API exits” on page 341.

v Channel exits
– Use the pEntryPoints parameter of the MQCXP structure to point to MQI and DCI calls.
– You must check that the MQCXP version number is at version 8 or higher before using

pEntryPoints.
– For more information about writing channel exits, see “Writing channel-exit programs” on page

351.
v Data conversion exits

– Use the pEntryPoints parameter of the MQDXP structure to point to MQI and DCI calls.
– You must check that the MQDXP version number is at version 2 or higher before using

pEntryPoints.
– You can use the crtmqcvx command and the amqsvfc0.c source file to create data conversion

code that uses the pEntryPoints parameter. See “Writing a data-conversion exit for IBM MQ for
Windows” on page 379 and “Writing a data-conversion exit for IBM MQ on UNIX and Linux
systems” on page 376.

– If you have existing data conversion exits that were generated using the crtmqcvx command, you
must regenerate the exit using the updated command.

– For more information about writing data conversion exits, see “Writing data-conversion exits” on
page 371.

v Pre-connect exits
– Use the pEntryPoints parameter of the MQNXP structure to point to MQI and DCI calls.
– You must check that the MQNXP version number is at version 2 or higher before using

pEntryPoints.
– For more information about writing pre-connect exits, see “Referencing connection definitions

using a pre-connect exit from a repository” on page 381.
v Publish exits

– Use the pEntryPoints parameter of the MQPSXP structure to point to MQI and DCI calls.
– You must check that the MQPSXP version number is at version 2 or higher before using

pEntryPoints.
– For more information about writing publish exits, see “Writing and compiling publish exits” on

page 383.
v Cluster workload exits

– Use the pEntryPoints parameter of the MQWXP structure to point to MQXCLWLN calls.
– You must check that the MQWXP version number is at version 4 or higher before using

pEntryPoints.
– For more information about writing cluster workload exits, see “Writing and compiling cluster

workload exits” on page 385.

For example, in a channel exit calling MQPUT:
pChannelExitParms -> pEntryPoints -> MQPUT_Call(pChannelExitParms -> Hconn,

Hobj,
&md,
&pmo,
messlen,
buffer,
&CompCode,
&Reason);

320 IBM MQ: Programming

Further examples can be seen in the “Sample IBM MQ procedural programs” on page 473.
3. Compile the exit:
v Do not link to the IBM MQ libraries.
v Do not include an embedded RPath to any IBM MQ libraries in your exit.
v For more information about compiling your exit, see one of the following topics:

– API exits: “Compiling API exits” on page 342.
– Channel exits, publish exits, Cluster workload exits: “Compiling channel exit programs on

Windows, UNIX and Linux systems” on page 370.
– Data conversion exits: “Writing data-conversion exits” on page 371.

4. Put the exit in one of the following places:
v A path of your choosing that you fully qualify when configuring the exit
v The default exit path, in a specific installation directory. For example, MQ_DATA_PATH/exits/

installation2.
v The default exit path

The default exit path is MQ_DATA_PATH/exits for 32 bit exits, and MQ_DATA_PATH/exits64 for 64 bit
exits. You can change these paths in the qm.ini or mqclient.ini file. For more information, see Exit
path. On Windows and Linux, you can use the IBM MQ Explorer to change the path:
a. Right click the queue manager name
b. Click Properties...

c. Click Exits

d. In the exits default path field, specify the path name of the directory that holds the exit
program.

If an exit is placed in both a specific installation directory and in the default path directory, the
specific installation directory exit is used by the installation of IBM MQ named in the path. For
example, the exit is placed in /exits/installation2 and in /exits, but not in /exits/installation1.
The IBM MQ installation installation2 uses the exit from /exits/installation2. The IBM MQ
installation installation1 uses the exit from the /exits directory.

5. If necessary, configure the exit:
v Installable services: “Configuring services and components” on page 330.
v API exits: “Configuring API exits” on page 346.
v Channel exits: “Configuring channel exits” on page 371.
v Publish exits: “Configuring publish exits” on page 385.
v Pre-connect exits: “PreConnect stanza of the client configuration file” on page 383.

User exits, API exits, and IBM MQ installable services 321

API exits not linked with an MQI library
Windows UNIX Linux

Under certain circumstances, you should link your existing API exit, that cannot be re-coded to use the
MQIEP function pointers, with an IBM MQ API library.

This is necessary, so that your existing API exit can be successfully loaded, by the runtime linker of your
system, into programs that do not already have the function pointers loaded.

Note: This information is limited to those existing API exits that make MQI calls directly. That is, those
exits that do not use , MQIEP. Where possible, you should plan to re-code the exit to use the MQIEP
entry points instead.

From IBM MQ Version 8.0, runmqsc is an example of a program that does not link directly with an MQI
library.

Therefore, an API exit that has not been linked with its required IBM MQ API library, or re-coded to use
the MQIEP, fails to load into runmqsc.

You see errors in the queue manager error log, for example, AMQ6175: The system could not
dynamically load the shared library, together with qualifying text such as undefined symbol: MQCONN.

and AMQ7214: The module for API Exit 'myexitname' could not be loaded.
Related tasks:
“Writing exits and installable services on UNIX, Linux and Windows” on page 319
You can write and compile exits without linking to any IBM MQ libraries on UNIX, Linux and Windows.

Installable services and components for UNIX, Linux and Windows
This section introduces the installable services and the functions and components associated with them.
The interface to these functions is documented so that you, or software vendors, can supply components.

The main reasons for providing IBM MQ installable services are:
v To provide you with the flexibility of choosing whether to use components provided by IBM MQ

products, or replace or augment them with others.
v To allow vendors to participate, by providing components that might use new technologies, without

making internal changes to IBM MQ products.
v To allow IBM MQ to exploit new technologies faster and cheaper, and so provide products earlier and

at lower prices.

Installable services and service components are part of the IBM MQ product structure. At the center of this
structure is the part of the queue manager that implements the function and rules associated with the
Message Queue Interface (MQI). This central part requires a number of service functions, called installable
services, in order to perform its work. The installable services are:
v Authorization service
v Name service

Each installable service is a related set of functions implemented using one or more service components.
Each component is invoked using a properly-architected, publicly-available interface. This enables
independent software vendors and other third parties to provide installable components to augment or
replace those provided by the IBM MQ products. Table 37 on page 323 summarizes the services and
components that can be used.

322 IBM MQ: Programming

Table 37. Installable service components summary

Installable service Supplied component Function Requirements

Authorization service object authority
manager (OAM)

Provides authorization checking
on commands and MQI calls.
Users can write their own
component to augment or replace
the OAM.

For example, to check that a user
ID has authority to open a queue.

(Appropriate platform
authorization facilities are
assumed)

Name service None Provides support to the queue
manager for looking up the name
of the queue manager that owns
a specified queue.

v User defined

Note: Shared queues must have
their Scope attribute set to CELL.

v A third-party or
user-written name
manager

The installable services interface is described in Installable services interface reference information.

Writing a service component
This section describes the relationship between services, components, entry points, and return codes.

Functions and components

Each service consists of a set of related functions. For example, the name service contains function for:
v Looking up a queue name and returning the name of the queue manager where the queue is defined
v Inserting a queue name into the service's directory
v Deleting a queue name from the service's directory

It also contains initialization and termination functions.

An installable service is provided by one or more service components. Each component can perform
some or all of the functions that are defined for that service. For example, in IBM MQ for AIX, the
supplied authorization service component, the OAM, performs all the available functions. See
“Authorization service interface” on page 327 for more information. The component is also responsible
for managing any underlying resources or software (for example, an LDAP directory) that it needs to
implement the service. Configuration files provide a standard way of loading the component and
determining the addresses of the functional routines that it provides.

Figure 52 on page 324 shows how services and components are related:
v A service is defined to a queue manager by stanzas in a configuration file.
v Each service is supported by supplied code in the queue manager. Users cannot change this code and

therefore cannot create their own services.
v Each service is implemented by one or more components; these can be supplied with the product or

user-written. Multiple components for a service can be invoked, each supporting different facilities
within the service.

v Entry points connect the service components to the supporting code in the queue manager.

User exits, API exits, and IBM MQ installable services 323

Entry-points

Each service component is represented by a list of the entry-point addresses of the routines that support a
particular installable service. The installable service defines the function to be performed by each routine.

The ordering of the service components when they are configured defines the order in which entry-points
are called in an attempt to satisfy a request for the service.

In the supplied header file cmqzc.h, the supplied entry points to each service have an MQZID_ prefix.

If the services are present, the services are loaded in a predefined order. The following list shows the
services, and the order in which they are initialized.
1. NameService

2. AuthorizationService

3. UserIdentifierService

The AuthorizationService is the only service that is configured by default. Configure the NameService
and UserIdentifierService manually if you want to use them.

Services, and service components have a one-to-one or one-to-many mapping. Multiple service
components can be defined for each service. On UNIX and Linux systems, the ServiceComponent stanza's
Service value must match the Service stanza's Name value in the qm.ini file. On Windows, the
ServiceComponent 's Service registry key value must match the Name registry key value, and is defined
as: HKEY_LOCAL_MACHINE\SOFTWARE\IBM\WebSphere MQ\Installation\MQ_INSTALLATION_NAME\
Configuration\QueueManager\qmname\ where qmname is the name of the queue manager.

For UNIX and Linux systems, service components are started in the order they are defined in the qm.ini
file. On Windows, because the Windows registry is used, IBM MQ issues a RegEnumKey call which returns
the values in alphabetic order. Therefore, on Windows the services are called in alphabetic order, as they
are defined in the registry.

The ordering of the ServiceComponent definitions is significant. This ordering dictates the order in which
components are run for a given service. For example, the AuthorizationService on Windows is
configured with the default OAM component named MQSeries.WindowsNT.auth.service. Additional

Queue manager
Entry points

to the service

XYZ name service

ABC name service

Service
components

MQZ_INIT_NAME

MQZ_TERM_NAME

MQZ_INSERT_NAME

MQZ_DELETE_NAME

MQZ_LOOKUP_NAME

Service stanza
defines the service

to the queue manager

Supplied or
user-written

code

Figure 52. Understanding services, components, and entry points

324 IBM MQ: Programming

components can be defined for this service in order to override the default OAM. Unless
MQCACF_SERVICE_COMPONENT is specified, the first component encountered in alphabetic order is used to
process the request, and the name for that component is used.

Return codes

Service components provide return codes to the queue manager to report on various conditions. They
report the success or failure of the operation, and indicate whether the queue manager is to proceed to
the next service component. A separate Continuation parameter carries this indication.

Component data

A single service component might require data to be shared between its various functions. Installable
services provide an optional data area to be passed on each invocation of a service component. This data
area is for the exclusive use of the service component. It is shared by all the invocations of a particular
function, even if they are made from different address spaces or processes. It is guaranteed to be
addressable from the service component whenever it is called. You must declare the size of this area in
the ServiceComponent stanza.

Initialization and termination of components
The use of component initialization and termination options.

When the component initialization routine is invoked, it must call the queue manager MQZEP function
for each entry-point supported by the component. MQZEP defines an entry-point to the service. All the
undefined exit points are assumed to be NULL.

A component is always invoked once with the primary initialization option, before it is invoked in any
other way.

A component can be invoked with the secondary initialization option on certain platforms. For example,
it can be invoked once for each operating system process, thread, or task by which the service is accessed.

If secondary initialization is used:
v The component can be invoked more than once for secondary initialization. For each such call, a

matching call for secondary termination is issued when the service is no longer needed.
For naming services this is the MQZ_TERM_NAME call.
For authorization services this is the MQZ_TERM_AUTHORITY call.

v The entry points must be re-specified (by calling MQZEP) each time the component is called for
primary and secondary initialization.

v Only one copy of component data is used for the component; there is not a different copy for each
secondary initialization.

v The component is not invoked for any other calls to the service (from the operating system process,
thread, or task, as appropriate) before secondary initialization has been carried out.

v The component must set the Version parameter to the same value for primary and secondary
initialization.

The component is always invoked with the primary termination option once, when it is no longer
required. No further calls are made to this component.

The component is invoked with the secondary termination option, if it has been invoked for secondary
initialization.

User exits, API exits, and IBM MQ installable services 325

Object authority manager (OAM)
The authorization service component supplied with the IBM MQ products is called the Object Authority
Manager (OAM).

By default, the OAM is active and works with the control commands dspmqaut (display authority),
dmpmqaut (dump authority), and setmqaut (set or reset authority).

The syntax of these commands and how to use them are described in The control commands.

The OAM works with the entity of a principal or group:

v UNIX Linux On UNIX and Linux systems, a principal is a user ID, or an ID associated with an
application program running on behalf of a user; a group is a system-defined collection of principals.

v Windows On Windows systems, a principal is a Windows user ID, or an ID associated with an
application program running on behalf of a user; a group is a Windows group.

Authorizations can be granted or revoked at the principal or group level.

When an MQI request is made or a command is issued, the OAM checks whether the entity associated
with the operation has authorization to perform the requested operation and to access the specified
queue manager resources.

The authorization service enables you to augment or replace the authority checking provided for queue
managers by writing your own authorization service component.

Name service
The name service is an installable service that provides support to the queue manager for looking up the
name of the queue manager that owns a specified queue. No other queue attributes can be retrieved from
a name service.

The name service enables an application to open remote queues for output as if they were local queues.
A name service is not invoked for objects other than queues.

Note: The remote queues must have their Scope attribute set to CELL.

When an application opens a queue, it looks for the name of the queue first in the queue manager's
directory. If it does not find it there, it looks in as many name services as have been configured, until it
finds one that recognizes the queue name. If none recognizes the name, the open fails.

The name service returns the owning queue manager for that queue. The queue manager then continues
with the MQOPEN request as if the command had specified the queue and queue manager name in the
original request.

The name service interface (NSI) is part of the IBM MQ framework.

How the name service works

If a queue definition specifies the Scope attribute as queue manager, that is, SCOPE(QMGR) in MQSC, the
queue definition (along with all the queue attributes) is stored in the queue manager's directory only.
This cannot be replaced by an installable service.

If a queue definition specifies the Scope attribute as cell, that is, SCOPE(CELL) in MQSC, the queue
definition is again stored in the queue manager's directory, along with all the queue attributes. However,
the queue and queue-manager name are also stored in a name service. If no service is available that can
store this information, a queue with the Scope cell cannot be defined.

326 IBM MQ: Programming

The directory in which the information is stored can be managed by the service, or the service can use an
underlying service, for example, an LDAP directory, for this purpose. In either case, definitions stored in
the directory must persist, even after the component and queue manager have terminated, until they are
explicitly deleted.

Note:

1. To send a message to a remote host's local queue definition (with a scope of CELL) on a different
queue manager within a naming directory cell, you need to define a channel.

2. You cannot get messages directly from the remote queue, even when it has a scope of CELL.
3. No remote queue definition is required when sending to a queue with a scope of CELL.
4. The naming service centrally defines the destination queue, although you still need a transmission

queue to the destination queue manager and a pair of channel definitions. In addition, the
transmission queue on the local system must have the same name as the queue manager owning the
target queue, with the scope of cell, on the remote system.
For example, if the remote queue manager has the name QM01, the transmission queue on the local
system must also have the name QM01.

Authorization service interface
The authorization service provides entry points for use by the queue manager.

The entry points are as follows:

MQZ_AUTHENTICATE_USER
Authenticates a user ID and password, and can set identity context fields.

MQZ_CHECK_AUTHORITY
Checks whether an entity has authority to perform one or more operations on a specified object.

MQZ_CHECK_PRIVILEGED
Checks whether a specified user is a privileged user.

MQZ_COPY_ALL_AUTHORITY
Copies all the current authorizations that exist for a referenced object to another object.

MQZ_DELETE_AUTHORITY
Deletes all authorizations associated with a specified object.

MQZ_ENUMERATE_AUTHORITY_DATA
Retrieves all the authority data that matches the selection criteria specified.

MQZ_FREE_USER
Frees associated allocated resources.

MQZ_GET_AUTHORITY
Gets the authority that an entity has to access a specified object.

MQZ_GET_EXPLICIT_AUTHORITY
Gets either the authority that a named group has to access a specified object (but without the
additional authority of the nobody group) or the authority that the primary group of the named
principal has to access a specified object.

MQZ_INIT_AUTHORITY
Initializes authorization service component.

MQZ_INQUIRE
Queries the supported functionality of the authorization service.

MQZ_REFRESH_CACHE
Refresh all authorizations.

User exits, API exits, and IBM MQ installable services 327

MQZ_SET_AUTHORITY
Sets the authority that an entity has to a specified object.

MQZ_TERM_AUTHORITY
Terminates authorization service component.

In addition, on IBM MQ for Windows, the authorization service provides the following entry points for
use by the queue manager:
v MQZ_CHECK_AUTHORITY_2

v MQZ_GET_AUTHORITY_2

v MQZ_GET_EXPLICIT_AUTHORITY_2

v MQZ_SET_AUTHORITY_2

These entry points support the use of the Windows Security Identifier (NT SID).

These names are defined as typedef s, in the header file cmqzc.h, which can be used to prototype the
component functions.

The initialization function (MQZ_INIT_AUTHORITY) must be the main entry point for the component.
The other functions are invoked through the entry point address that the initialization function has added
into the component entry point vector.

Name service interface
A name service provides entry points for use by the queue manager.

The following entry points are provided:

MQZ_INIT_NAME
Initialize the name service component.

MQZ_TERM_NAME
Terminate the name service component.

MQZ_LOOKUP_NAME
Look up the queue-manager name for the specified queue.

MQZ_INSERT_NAME
Insert an entry containing the owning queue-manager name for the specified queue into the
directory used by the service.

MQZ_DELETE_NAME
Delete the entry for the specified queue from the directory used by the service.

If there is more than one name service configured:
v For lookup, the MQZ_LOOKUP_NAME function is invoked for each service in the list until the queue

name is resolved (unless any component indicates that the search should stop).
v For insert, the MQZ_INSERT_NAME function is invoked for the first service in the list that supports

this function.
v For delete, the MQZ_DELETE_NAME function is invoked for the first service in the list that supports

this function.

Do not have more than one component that supports the insert and delete functions. However, a
component that only supports lookup is feasible, and could be used, for example, as the last component
in the list to resolve any name that is not known by any other name service component to a queue
manager at which the name can be defined.

328 IBM MQ: Programming

In the C programming language the names are defined as function data types using the typedef
statement. These can be used to prototype the service functions, to ensure that the parameters are correct.

The header file that contains all the material specific to installable services is cmqzc.h for the C language.

Apart from the initialization function (MQZ_INIT_NAME), which must be the component's main entry
point, functions are invoked by the entry point address that the initialization function has added, using
the MQZEP call.

Using multiple service components
You can install more than one component for a service. This allows components to provide only partial
implementations of the service, and to rely on other components to provide the remaining functions.

Example of using multiple components

Suppose you create two a name services components called ABC_name_serv and XYZ_name_serv.

ABC_name_serv
This component supports inserting a name in, or deleting a name from, the service directory, but
does not support looking up a queue name.

XYZ_name_serv
This component supports looking up a queue name, but does not support inserting a name in, or
deleting a name from, the service directory.

Component ABC_name_serv holds a database of queue names, and uses two simple algorithms to either
insert, or delete, a name from the service directory.

Component XYZ_name_serv uses a simple algorithm that returns a fixed queue-manager name for any
queue name with which it is invoked. It does not hold a database of queue names, and therefore does not
support the insert and delete functions.

The components are installed on the same queue manager. The ServiceComponent stanzas are ordered so
that component ABC_name_serv is invoked first. Any calls to insert or delete a queue in a component
directory are handled by component ABC_name_serv ; it is the only one that implements these functions.
However, a lookup call that component ABC_name_serv cannot resolve is passed on to the lookup-only
component, XYZ_name_serv. This component supplies a queue-manager name from its simple algorithm.

Omitting entry points when using multiple components

If you decide to use multiple components to provide a service, you can design a service component that
does not implement certain functions. The installable services framework places no restrictions on which
you can omit. However, for specific installable services, omission of one or more functions might be
logically inconsistent with the purpose of the service.

Example of entry points used with multiple components

Table 38 on page 330 shows an example of the installable name service for which the two components
have been installed. Each supports a different set of functions associated with this particular installable
service. For insert function, the ABC component entry-point is invoked first. Entry points that have not
been defined to the service (using MQZEP) are assumed to be NULL. An entry-point for initialization is
provided in the table, but this is not required because initialization is carried out by the main entry-point
of the component.

When the queue manager has to use an installable service, it uses the entry-points defined for that service
(the columns in Table 38 on page 330). Taking each component in turn, the queue manager determines
the address of the routine that implements the required function. It then calls the routine, if it exists. If

User exits, API exits, and IBM MQ installable services 329

the operation is successful, any results and status information are used by the queue manager.

Table 38. Example of entry-points for an installable service

Function number ABC name service component XYZ name service component

MQZID_INIT_NAME (Initialize) ABC_initialize() XYZ_initialize()

MQZID_TERM_NAME (Terminate) ABC_terminate() XYZ_terminate()

MQZID_INSERT_NAME (Insert) ABC_Insert() NULL

MQZID_DELETE_NAME (Delete) ABC_Delete() NULL

MQZID_LOOKUP_NAME (Lookup) NULL XYZ_Lookup()

If the routine does not exist, the queue manager repeats this process for the next component in the list. In
addition, if the routine does exist but returns a code indicating that it could not perform the operation,
the attempt continues with the next available component. Routines in service components might return a
code that indicates that no further attempts to perform the operation should be made.

Configuring services and components
Configure service components using the queue manager configuration files, except on Windows systems,
where each queue manager has its own stanza in the Registry.
1. Add stanzas to the queue manager configuration file to define the service to the queue manager and

specify the location of the module.
Each service used must have a Service stanza, which defines the service to the queue manager.
For each component within a service, there must be a ServiceComponent stanza. This identifies the
name and path of the module containing the code for that component.
For more information, see “Service stanza format” and “Service component stanza format” on page
331
The authorization service component, known as the Object Authority Manager (OAM), is supplied
with the product. When you create a queue manager, the queue manager configuration file (or the
Registry on Windows systems) is automatically updated to include the appropriate stanzas for the
authorization service and for the default component (the OAM). For the other components, you must
configure the queue manager configuration file manually.
The code for each service component is loaded into the queue manager when the queue manager is
started, using dynamic binding, where this is supported on the platform.

2. Stop and restart the queue manager to activate the component.

Service stanza format
The Service stanza contains the name of the service and the number of entry-points defined for the
service.

The format of the stanza is as follows:
Service:

Name=<service_name>
EntryPoints=<entries>
SecurityPolicy=<policy>

where:

<service_name>
The name of the service. This is defined by the service.

<entries>
The number of entry-points defined for the service. This includes the initialization and
termination entry points.

330 IBM MQ: Programming

<policy>

Linux UNIX On UNIX and Linux systems: user, group, or default. The value specifies
whether the queue manager uses user-based or group-based authorization. Values are not case
sensitive. If you do not include this attribute, default is used, which uses group-based
authorization. Restart the queue manager for changes to become effective. See also “Configuring
authorization service stanzas: UNIX and Linux systems” on page 332.

Windows

On Windows systems: NTSIDsRequired (the Windows Security Identifier), or Default. If

you do not specify NTSIDsRequired, the Default value is used. This attribute is valid only if Name
has a value of AuthorizationService. See also “Configuring authorization service stanzas:
Windows systems” on page 332.

Service component stanza format
The Service and ServiceComponent stanzas can occur in any order.

The format of the service component stanza is:
ServiceComponent:

Service=<service_name>
Name=<component_name>
Module=<module_name>
ComponentDataSize=<size>

where:

<service_name>
The name of the service. This must match the Name specified in a service stanza.

<component_name>
A descriptive name of the service component. This must be unique, and contain only the
characters that are valid for the names of IBM MQ objects (for example, queue names). This name
occurs in operator messages generated by the service. We recommend that you use a name
starting with a company trademark or similar distinguishing string.

<module_name>
The name of the module to contain the code for this component.

<size> The size in bytes of the component data area passed to the component on each call. Specify zero
if no component data is required.

The Service and ServiceComponent stanzas can occur in any order and the stanza keys under them can also
occur in any order. For either of these stanzas, all the stanza keys must be present. If a stanza key is
duplicated, the last one is used.

At startup time, the queue manager processes each service component entry in the configuration file in
turn. It then loads the specified component module, invoking the entry-point of the component (which
must be the entry-point for initialization of the component), passing it a configuration handle.

User exits, API exits, and IBM MQ installable services 331

Configuring authorization service stanzas: UNIX and Linux systems
On UNIX and Linux systems, each queue manager has its own queue manager configuration file.

For example, the default path and file name of the queue manager configuration file for queue manager
QMNAME is /var/mqm/qmgrs/QMNAME/qm.ini.

The Service stanza and the ServiceComponent stanza for the default authorization component are added
to qm.ini automatically, but can be overridden by mqsnoaut. Any other ServiceComponent stanzas must be
added manually.

For example, the following stanzas in the queue manager configuration file define two authorization
service components on IBM MQ for AIX. MQ_INSTALLATION_PATH represents the high-level directory in
which IBM MQ is installed.

The service component stanza (MQSeries.UNIX.auth.service) defines the default authorization service
component, the OAM. If you remove this stanza and restart the queue manager, the OAM is disabled and
no authorization checks are made.

Configuring authorization service stanzas: Windows systems
On IBM MQ for Windows each queue manager has its own stanza in the registry.

The Service stanza and the ServiceComponent stanza for the default authorization component are added
to the Registry automatically, but can be overridden using mqsnoaut. Any other ServiceComponent stanzas
must be added manually.

You can also add the SecurityPolicy attribute using the IBM MQ services. The SecurityPolicy attribute
applies only if the service specified on the Service stanza is the authorization service, that is, the default
OAM. The SecurityPolicy attribute allows you to specify the security policy for each queue manager.
The possible values are:

Default
Specify Default if you want the default security policy to take effect. If a Windows security
identifier (NT SID) is not passed to the OAM for a particular user ID, an attempt is made to
obtain the appropriate SID by searching the relevant security databases.

NTSIDsRequired
Requires that an NT SID is passed to the OAM when performing security checks.

For information about the Service stanza format, see “Service stanza format” on page 330. For more
general information about security, see Setting up security on Windows, UNIX and Linux systems.

Service:
Name=AuthorizationService
EntryPoints=13

ServiceComponent:
Service=AuthorizationService
Name=MQSeries.UNIX.auth.service

Module= MQ_INSTALLATION_PATH/lib/amqzfu
ComponentDataSize=0

ServiceComponent:
Service=AuthorizationService
Name=user.defined.authorization.service
Module=/usr/bin/udas01
ComponentDataSize=96

Figure 53. UNIX and Linux authorization service stanzas in qm.ini

332 IBM MQ: Programming

The service component stanza, MQSeries.WindowsNT.auth.service defines the default authorization
service component, the OAM. If you remove this stanza and restart the queue manager, the OAM is
disabled and no authorization checks are made.

Configuring name service stanzas: Unix and Linux systems
On UNIX and Linux systems, each queue manager has its own queue manager configuration file.

The following examples of UNIX and Linux configuration file stanzas for the name service specify a
name service component provided by the (fictitious) ABC company.

Note: On Windows systems, name service stanza information is stored in the Registry.

Refreshing the OAM after changing a user's authorization
In IBM MQ, you can refresh the OAM's authorization group information immediately after changing a
user's authorization group membership, reflecting changes made at the operating system level, without
needing to stop and restart the queue manager. In order to do this, issue the REFRESH SECURITY command.

Note: When you change authorizations with the setmqaut command, the OAM implements such changes
immediately.
Queue managers store authorization data on a local queue called SYSTEM.AUTH.DATA.QUEUE. This
data is managed by amqzfuma.exe .
Related information:
REFRESH SECURITY

Installable services and components for IBM i
Use this information to learn about the installable services and the functions and components associated
with them. The interface to these functions is documented so that you, or software vendors, can supply
components.

The main reasons for providing IBM MQ installable services are:
v To provide you with the flexibility of choosing whether to use components provided by IBM MQ for

IBM i, or replace or augment them with others.
v To allow vendors to participate, by providing components that might use new technologies, without

making internal changes to IBM MQ for IBM i.
v To allow IBM MQ to exploit new technologies faster and cheaper, and so provide products earlier and

at lower prices.

Installable services and service components are part of the IBM MQ product structure. At the center of this
structure is the part of the queue manager that implements the function and rules associated with the
Message Queue Interface (MQI). This central part requires a number of service functions, called installable
services, in order to perform its work. The installable service available in IBM MQ for IBM i is the
authorization service.

Stanza for name service
Service:

Name=NameService
EntryPoints=5

Stanza for name service component, provided by ABC
ServiceComponent:

Service=NameService
Name=ABC.Name.Service
Module=/usr/lib/abcname
ComponentDataSize=1024

Figure 54. Name service stanzas in qm.ini (for UNIX and Linux systems)

User exits, API exits, and IBM MQ installable services 333

Each installable service is a related set of functions implemented using one or more service components.
Each component is invoked using a properly-architected, publicly-available interface. This enables
independent software vendors and other third parties to provide installable components to augment or
replace those provided by IBM MQ for IBM i. Table 39 summarizes support for the authorization service.

Table 39. Authorization service components summary

Supplied component Function Requirements

Object authority manager
(OAM)

Provides authorization checking on
commands and MQI calls. Users can write
their own component to augment or replace
the OAM.

(Appropriate platform authorization
facilities are assumed)

DCE name service component
Note: DCE is only supported
on versions of IBM MQ earlier
than V6.0.

v Allows queue managers to share queues,
or

v User defined

Note: Shared queues must have their Scope
attribute set to CELL.

v DCE is required for the supplied
component, or

v A third-party or user-written name
manager

Functions and components
Use this information to understand the functions and components, entry-points, return codes, and
component data.

Each service consists of a set of related functions. For example, the name service contains function for:
v Looking up a queue name and returning the name of the queue manager where the queue is defined
v Inserting a queue name into the service's directory
v Deleting a queue name from the service's directory

It also contains initialization and termination functions.

An installable service is provided by one or more service components. Each component can perform
some or all of the functions that are defined for that service. The component is also responsible for
managing any underlying resources or software that it needs to implement the service. Configuration
files provide a standard way of loading the component and determining the addresses of the functional
routines that it provides.

Services and components are related as follows:
v A service is defined to a queue manager by stanzas in a configuration file.
v Each service is supported by supplied code in the queue manager. Users cannot change this code and

therefore cannot create their own services.
v Each service is implemented by one or more components; these can be supplied with the product or

user-written. Multiple components for a service can be invoked, each supporting different facilities
within the service.

v Entry points connect the service components to the supporting code in the queue manager.

Entry-points

Each service component is represented by a list of the entry-point addresses of the routines that support a
particular installable service. The installable service defines the function to be performed by each routine.
The ordering of the service components when they are configured defines the order in which entry-points
are called in an attempt to satisfy a request for the service. In the supplied header file cmqzc.h, the
supplied entry points to each service have an MQZID_ prefix.

334 IBM MQ: Programming

Return codes

Service components provide return codes to the queue manager to report on a variety of conditions. They
report the success or failure of the operation, and indicate whether the queue manager is to proceed to
the next service component. A separate Continuation parameter carries this indication.

Component data

A single service component might require data to be shared between its various functions. Installable
services provide an optional data area to be passed on each invocation of a particular service component.
This data area is for the exclusive use of the service component. It is shared by all the invocations of a
given function, even if they are made from different address spaces or processes. It is guaranteed to be
addressable from the service component whenever it is called. You must declare the size of this area in
the ServiceComponent stanza.

Initialization
When the component initialization routine is invoked, it must call the queue manager MQZEP function
for each entry-point supported by the component. MQZEP defines an entry-point to the service. All the
undefined exit points are assumed to be NULL.

Primary initialization
A component is always invoked with this option once, before it is invoked in any other way.

Secondary initialization
A component can be invoked with this option on certain platforms. For example, it can be
invoked once for each operating system process, thread, or task by which the service is accessed.

If secondary initialization is used:
v The component can be invoked more than once for secondary initialization. For each such call,

a matching call for secondary termination is issued when the service is no longer needed.
For authorization services this is the MQZ_TERM_AUTHORITY call.

v The entry points must be re-specified (by calling MQZEP) each time the component is called
for primary and secondary initialization.

v Only one copy of component data is used for the component; there is not a different copy for
each secondary initialization.

v The component is not invoked for any other calls to the service (from the operating system
process, thread, or task, as appropriate) before secondary initialization has been carried out.

v The component must set the Version parameter to the same value for primary and secondary
initialization.

Primary termination
The component is always started with this option once, when it is no longer required. No further
calls are made to this component.

Secondary termination
The component is started with this option, if it has been started for secondary initialization.

User exits, API exits, and IBM MQ installable services 335

Configuring services and components
Configure service components using the queue manager configuration files. Each service used must have
a Service stanza, which defines the service to the queue manager.

For each component within a service, there must be a ServiceComponent stanza. This identifies the name
and path of the module containing the code for that component.

The authorization service component, known as the object authority manager (OAM), is supplied with
the product. When you create a queue manager, the queue manager configuration file is automatically
updated to include the appropriate stanzas for the authorization service and for the default component
(the OAM).

The code for each service component is loaded into the queue manager when the queue manager is
started, using dynamic binding, where this is supported on the platform.

Service stanza format

The format of the Service stanza is:
Service:

Name=<service_name>
EntryPoints=<entries>

where:

<service_name>
The name of the service. This is defined by the service.

<entries>
The number of entry-points defined for the service. This includes the initialization and
termination entry points.

Service component stanza format

The format of the Service component stanza is:
ServiceComponent:

Service=<service_name>
Name=<component_name>
Module=<module_name>
ComponentDataSize=<size>

where:

<service_name>
The name of the service. This must match the Name specified in a service stanza.

<component_name>
A descriptive name of the service component. This must be unique, and contain only the
characters that are valid for the names of IBM MQ objects (for example, queue names). This name
occurs in operator messages generated by the service. We recommend that you use a name
starting with a company trademark or similar distinguishing string.

<module_name>
The name of the module to contain the code for this component. Specify a full path name.

<size> The size in bytes of the component data area passed to the component on each call. Specify zero
if no component data is required.

336 IBM MQ: Programming

These two stanzas can occur in any order and the stanza keys under them can also occur in any order.
For either of these stanzas, all the stanza keys must be present. If a stanza key is duplicated, the last one
is used.

At startup time, the queue manager processes each service component entry in the configuration file in
turn. It then loads the specified component module, invoking the entry-point of the component (which
must be the entry-point for initialization of the component), passing it a configuration handle.

Creating your own service component
Use this information to learn how to create a service component for IBM MQ for IBM i.

To create your own service component:
v Ensure that the header file cmqzc.h is included in your program.
v Create the shared library by compiling the program and linking it with the shared libraries libmqm*

and libmqmzf*.

Note: Because the agent can run in a threaded environment, you must build the OAM to run in a
threaded environment. This includes using the threaded versions of libmqm and libmqmzf.

v Add stanzas to the queue manager configuration file to define the service to the queue manager and to
specify the location of the module.

v Stop and restart the queue manager to activate the component.

Authorization service
The authorization service is an installable service that enables queue managers to invoke authorization
facilities, for example, checking that a user ID has authority to open a queue.

This service is a component of the IBM MQ security enabling interface (SEI), which is part of the IBM
MQ framework. The following subjects are discussed:
v “Object authority manager (OAM)”
v “Defining the service to the operating system” on page 338
v “Configuring authorization service stanzas” on page 338
v “Authorization service interface” on page 339

Object authority manager (OAM)

The authorization service component supplied with the IBM MQ products is called the object authority
manager (OAM). By default, the OAM is active and works with the following control commands:
v WRKMQMAUT work with authority
v WRKMQMAUTD work with authority data
v DSPMQMAUT display object authority
v GRTMQMAUT grant object authority
v RVKMQMAUT revoke object authority
v RFRMQMAUT refresh security

The syntax of these commands and how to use them are described in the CL command help. The OAM
works with the entity of a principal or group.

When an MQI request is made or a command is issued, the OAM checks the authorization of the entity
associated with the operation to see whether it can do the following actions:
v Perform the requested operation.
v Access the specified queue manager resources.

User exits, API exits, and IBM MQ installable services 337

The authorization service enables you to augment or replace the authority checking provided for queue
managers by writing your own authorization service component.

Defining the service to the operating system

The authorization service stanzas in the queue manager configuration file qm.ini define the authorization
service to the queue manager. See “Configuring services and components” on page 336 for information
about the types of stanza.

Configuring authorization service stanzas

On IBM MQ for IBM i:

Principal
Is an IBM i system user profile.

Group Is an IBM i system group profile.

Authorizations can be granted or revoked at the group level only. A request to grant or revoke a user's
authority updates the primary group for that user.

Each queue manager has its own queue manager configuration file. For example, the default path and file
name of the queue manager configuration file for queue manager QMNAME is /QIBM/UserData/mqm/
qmgrs/QMNAME/qm.ini.

The Service stanza and the ServiceComponent stanza for the default authorization component are added
to qm.ini automatically, but can be overridden by WRKENVVAR. Any other ServiceComponent stanzas must
be added manually.

For example, the following stanzas in the queue manager configuration file define two authorization
service components:

The first service component stanza MQ.UNIX.authorization.service defines the default authorization
service component, the OAM. If you remove this stanza and restart the queue manager, the OAM is
disabled and no authorization checks are made.

Service:
Name=AuthorizationService
EntryPoints=7

ServiceComponent:
Service=AuthorizationService
Name=MQ.UNIX.authorization.service
Module=QMQM/AMQZFU
ComponentDataSize=0

ServiceComponent:
Service=AuthorizationService
Name=user.defined.authorization.service
Module=LIBRARY/SERVICE PROGRAM NAME
ComponentDataSize=96

Figure 55. IBM MQ for IBM i authorization service stanzas in qm.ini

338 IBM MQ: Programming

Authorization service interface
The authorization service interface provides several entry points for use by the queue manager.

MQZ_AUTHENTICATE_USER
Authenticates a user ID and password, and can set identity context fields.

MQZ_CHECK_AUTHORITY
Checks whether an entity has authority to perform one or more operations on a specified object.

MQZ_COPY_ALL_AUTHORITY
Copies all the current authorizations that exist for a referenced object to another object.

MQZ_DELETE_AUTHORITY
Deletes all authorizations associated with a specified object.

MQZ_ENUMERATE_AUTHORITY_DATA
Retrieves all the authority data that matches the selection criteria specified.

MQZ_FREE_USER
Frees associated allocated resources.

MQZ_GET_AUTHORITY
Gets the authority that an entity has to access a specified object.

MQZ_GET_EXPLICIT_AUTHORITY
Gets either the authority that a named group has to access a specified object (but without the
additional authority of the nobody group) or the authority that the primary group of the named
principal has to access a specified object.

MQZ_INIT_AUTHORITY
Initializes authorization service component.

MQZ_INQUIRE
Queries the supported functionality of the authorization service.

MQZ_REFRESH_CACHE
Refresh all authorizations.

MQZ_SET_AUTHORITY
Sets the authority that an entity has to a specified object.

MQZ_TERM_AUTHORITY
Terminates authorization service component.

These entry points support the use of the Windows Security Identifier (NT SID).

These names are defined as typedef s, in the header file cmqzc.h, which can be used to prototype the
component functions.

The initialization function (MQZ_INIT_AUTHORITY) must be the main entry point for the component.
The other functions are invoked through the entry point address that the initialization function has added
into the component entry point vector.

See “Creating your own service component” on page 337 for more information.

User exits, API exits, and IBM MQ installable services 339

Writing and compiling API exits
API exits let you write code that changes the behavior of IBM MQ API calls, such as MQPUT and
MQGET, and then insert that code immediately before or immediately after those calls.

Note: Not supported on IBM MQ for z/OS.

Why use API exits?

Each of your applications has a specific job to do, and its code should do that task as efficiently as
possible. At a higher level, you might want to apply standards or business processes to a particular
queue manager for all the applications that use that queue manager. It is more efficient to do this above
the level of individual applications, and thus without having to change the code of each application
affected.

Here are a few suggestions of areas in which API exits might be useful:
v For security, you can provide authentication, checking that applications are authorized to access a

queue or queue manager. You can also police applications' use of the API, authenticating the individual
API calls, or even the parameters they use.

v For flexibility, you can respond to rapid changes in your business environment without changing the
applications that rely on the data in that environment. You could, for example, have API exits that
respond to changes in interest rates, currency exchange rates, or the price of components in a
manufacturing environment.

v For monitoring use of a queue or queue manager, you can trace the flow of applications and messages,
log errors in the API calls, set up audit trails for accounting purposes, or collect usage statistics for
planning purposes.

What happens when an API exit runs?

Once you have written an exit program and identified it to IBM MQ, the queue manager automatically
invokes your exit code at the registered points.

The API exit routines to run are identified in stanzas on IBM i , Windows, UNIX and Linux systems. This
topic covers the stanzas in the configuration files mqs.ini and qm.ini.

The definition of the routines can occur in three places:
1. ApiExitCommon, in the mqs.ini file, identifies routines, for the whole of IBM MQ, applied when

queue managers start. These can be overridden by routines defined for individual queue managers
(see item3in this list).

2. ApiExitTemplate, in the mqs.ini file, identifies routines, for the whole of IBM MQ, copied to the
ApiExitLocal set (see item3in this list) when a new queue manager is created.

3. ApiExitLocal, in the qm.ini file, identifies routines that apply to a particular queue manager.

When a new queue manager is created, the ApiExitTemplate definitions in mqs.ini are copied to the
ApiExitLocal definitions in qm.ini for the new queue manager. When a queue manager is started, both
the ApiExitCommon and ApiExitLocal definitions are used. The ApiExitLocal definitions replace the
ApiExitCommon definitions if both identify a routine of the same name. The Sequence attribute,
described in“Configuring API exits” on page 346determines the order in which the routines defined in
the stanzas run.

340 IBM MQ: Programming

Using API exits across multiple installations of IBM MQ

Ensure that the API exits written for the earlier version of IBM MQ are used to work with all versions
because the changes made to exits in Version 7.1 might not work with an earlier version. For more
information about the changes made to exits, see“Writing exits and installable services on UNIX, Linux
and Windows” on page 319.

The samples provided for API exits amqsaem and amqs axe reflect the changes required while writing
exits. The client application must ensure that the correct IBM MQ libraries that correspond to the
installation of the queue manager with which the application is associated are linked to it prior to the
launch of the application.

Writing API exits
You can write exits for every API call using the C programming language.

Exits are available for every API call, as follows:
v MQCB, to reregister a callback for the specified object handle and control activation and changes to the

callback
v MQCTL, to perform controlling actions on the object handles opened for a connection
v MQCONN/MQCONNX, to provide a queue manager connection handle for use on subsequent API

calls
v MQDISC, to disconnect from a queue manager
v MQBEGIN, to begin a global unit of work (UOW)
v MQBACK, to back out a UOW
v MQCMIT, to commit a UOW
v MQOPEN, to open an IBM MQ resource for subsequent access
v MQCLOSE, to close an IBM MQ resource that had previously been opened for access
v MQGET, to retrieve a message from a queue that has previously been opened for access
v MQPUT1, to place a message on to a queue
v MQPUT, to place a message on to a queue that has previously been opened for access
v MQINQ, to inquire on the attributes of an IBM MQ resource that has previously been opened for

access
v MQSET, to set the attributes of a queue that has previously been opened for access
v MQSTAT, to retrieve status information
v MQSUB, to register the applications subscription to a particular topic
v MQSUBRQ, to make a request for a subscription

Within API exits, the calls take the general form:
MQ_ call _EXIT (parameters, context, ApiCallParameters)

where call is the MQI call name without the MQ prefix; for example, PUT, GET. The parameters control
the function of the exit, primarily providing communication between the exit and the external control
blocks MQAXP (the API exit parameter structure) and MQAXC (the API exit context structure). context
describes the context in which the API exit was called, and ApiCallParameters represent the parameters
to the MQI call.

To help you write your API exit, a sample exit, amqsaxe0.c, is provided; this exit generates trace entries
to a file that you specify. You can use this sample as your starting point when writing exits.

User exits, API exits, and IBM MQ installable services 341

For more information about using the sample exit, see “The API exit sample program” on page 490. For
more information about the API exit calls, external control blocks, and associated topics, see API exit
reference.

For general information on how to write, compile and configure an exit, see “Writing exits and installable
services on UNIX, Linux and Windows” on page 319.

Using message handles in API exits

You can control which message properties an API exit has access to. Properties are associated with an
ExitMsgHandle. Properties set in a put exit are set on the message being put, but properties retrieved in a
get exit are not returned to the application.

When you register an MQ_INIT_EXIT exit function using the MQXEP MQI call with Function set to
MQXF_INIT and ExitReason set to MQXR_CONNECTION, you pass in an MQXEPO structure as the
ExitOpts parameter. The MQXEPO structure contains the ExitProperties field, which specifies the set of
properties to be made available to the exit. It is specified as a character string representing the prefix of
the properties, which corresponds to an MQRFH2 folder name.

Each API exit receives an MQAXP structure, containing an ExitMsgHandle field. This field is set to a
value generated by IBM MQ and is specific to a connection. The handle is therefore unchanged between
API exits of the same or different types on the same connection.

In an MQ_PUT_EXIT or MQ_PUT1_EXIT with an ExitReason of MQXR_BEFORE, that is, an API exit
performed before putting a message, any properties (other than message descriptor properties) associated
with the ExitMsgHandle when the exit completes are set on the message being put. To prevent this
happening, set ExitMsgHandle to MQHM_NONE. You can also supply a different message handle.

In an MQ_GET_EXIT, the ExitMsgHandle is cleared of properties and populated with the properties
specified in the ExitProperties field when the MQ_INIT_EXIT was registered, other than message
descriptor properties. These properties are not made available to the getting application. If the getting
application specified a message handle in the MQGMO (Get message options) field, then any properties
associated with that handle, including message descriptor properties, are available to the API exit. To
prevent the ExitMsgHandle being populated with properties, set it to MQHM_NONE.

A sample program, amqsaem0.c, is provided to illustrate the use of message handles in API exits.

Compiling API exits
After you have written an exit, you compile and link it as follows.

The following examples show the commands used for the sample program described in “The API exit
sample program” on page 490. For platforms other than Windows systems, you can find the sample API
exit code in MQ_INSTALLATION_PATH/samp and the compiled and linked shared library in
MQ_INSTALLATION_PATH/samp/bin. For Windows systems, you can find the sample API exit code in
MQ_INSTALLATION_PATH \Tools\c\Samples. MQ_INSTALLATION_PATH represents the directory in which IBM
MQ was installed.

Note to users:

1. Guidance on programming 64 bit applications is listed in Coding standards on 64-bit platforms

With the introduction of Multicast clients, API exits and data-conversion exits need to be able to run on
the client-side because some messages might not go through the queue manager. The following libraries
are now part of the client packages as well as the server packages:

342 IBM MQ: Programming

Table 40. Libraries that are now in the client and server packages

Operating system Libraries

Windows 32 bit & 64 bit: mqm.dll & mqm.pdb

Linux & HP-UX 32 bit & 64 bit: libmqm.so & libmqm_r.so

AIX 32 bit & 64 bit: libmqm.a & libmqm_r.a

Solaris 32 bit & 64 bit: libmqm.so

IBM i
LIBMQM & LIBMQM_R

Compiling API exits on Unix and Linux systems
Examples of how to Compile API exits on UNIX and Linux systems.

On all platforms, the entry point to the module is MQStart.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

On AIX

Compile the API exit source code by issuing one of the following commands:

32 bit applications
Non-threaded
cc -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits/amqsaxe \
amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

Threaded
xlc_r -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits/amqsaxe_r \
amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

64 bit applications
Non-threaded
cc -q64 -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits64/amqsaxe \
amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

Threaded
xlc_r -q64 -e MQStart -bE:amqsaxe.exp -bM:SRE -o /var/mqm/exits64/amqsaxe_r \
amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

On HP-UX Itanium platform

32 bit applications
Non-threaded

Compile the API Exit source code:
c89 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

Link the API Exit source code
ld +b: -b amqsaxe.o +ee MQStart -o /var/mqm/exits/amqsaxe
rm amqsaxe.o

Threaded
Compile the API Exit source code:
c89 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

Link the API Exit source code

User exits, API exits, and IBM MQ installable services 343

ld +b: -b amqsaxe.o +ee MQStart -o /var/mqm/exits/amqsaxe_r
rm amqsaxe.o

64 bit applications
Non-threaded

Compile the API Exit source code:
c89 +DD64 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

Link the API Exit source code
ld -b amqsaxe.o +ee MQStart -o /var/mqm/exits64/amqsaxe
rm amqsaxe.o

Threaded
Compile the API Exit source code:
c89 +DD64 +e +z -c -D_HPUX_SOURCE -o amqsaxe.o amqsaxe0.c -I MQ_INSTALLATION_PATH/inc

Link the API Exit source code
ld -b amqsaxe.o +ee MQStart -o /var/mqm/exits64/amqsaxe_r
rm amqsaxe.o

On Linux

Compile the API exit source code by issuing one of the following commands:

31 bit applications
Non-threaded
gcc -m31 -shared -fPIC -o /var/mqm/exits/amqsaxe amqsaxe0.c \

-I MQ_INSTALLATION_PATH/inc

Threaded
gcc -m31 -shared -fPIC -o /var/mqm/exits/amqsaxe_r amqsaxe0.c \

-I MQ_INSTALLATION_PATH/inc

32 bit applications
Non-threaded
gcc -m32 -shared -fPIC -o /var/mqm/exits/amqsaxe amqsaxe0.c \

-I MQ_INSTALLATION_PATH/inc

Threaded
gcc -m32 -shared -fPIC -o /var/mqm/exits/amqsaxe_r amqsaxe0.c \

-I MQ_INSTALLATION_PATH/inc

64 bit applications
Non-threaded
gcc -m64 -shared -fPIC -o /var/mqm/exits64/amqsaxe amqsaxe0.c \

-I MQ_INSTALLATION_PATH/inc

Threaded
gcc -m64 -shared -fPIC -o /var/mqm/exits64/amqsaxe_r amqsaxe0.c \

-I MQ_INSTALLATION_PATH/inc

On Solaris

Compile the API exit source code by issuing one of the following commands:

32 bit applications
SPARC platform

344 IBM MQ: Programming

cc -xarch=v8plus -KPIC -mt -G -o /var/mqm/exits/amqsaxe \
amqsaxe0.c -I MQ_INSTALLATION_PATH/inc \
-R/usr/lib/32 -lsocket -lnsl -ldl

x86-64 platform
cc -xarch=386 -KPIC -mt -G -o /var/mqm/exits/amqsaxe \

amqsaxe0.c -I MQ_INSTALLATION_PATH/inc \
-R/usr/lib/32 -lsocket -lnsl -ldl

64 bit applications
SPARC platform
cc -xarch=v9 -KPIC -mt -G -o /var/mqm/exits64/amqsaxe \

amqsaxe0.c -I MQ_INSTALLATION_PATH/inc \
-R/usr/lib/64 -lsocket -lnsl -ldl

x86-64 platform
cc -xarch=amd64 -KPIC -mt -G -o /var/mqm/exits64/amqsaxe \

amqsaxe0.c -I MQ_INSTALLATION_PATH/inc \
-R/usr/lib/64 -lsocket -lnsl -ldl

On Windows systems
Compile and link the sample API exit program, amqsaxe0.c, on Windows

A manifest file is an optional XML document containing the version, or any other, information that can be
embedded in a compiled application or DLL.

If you have no such document, omit the -manifest manifest.file parameter in the mt command.

Adapt the commands in the examples in Figure 56 or Figure 57 on page 346 to compile and link
amqsaxe0.c on Windows. The commands work with Microsoft Visual Studio 2005, 2008, or 2010. The
examples assume that the C:\Program Files\IBM\WebSphere MQ\tools\c\samples directory is the current
directory.

32 bit

64 bit

cl /c /nologo /MD /Foamqsaxe0.obj amqsaxe0.c

link /nologo /dll /def:amqsaxe.def

amqsaxe0.obj \
/manifest /out:amqsaxe.dll

mt -nologo -manifest amqsaxe.dll.manifest \
-outputresource:amqsaxe.dll;2

Figure 56. Compile and link amqsaxe0.c on 32 bit Windows

User exits, API exits, and IBM MQ installable services 345

Related concepts:
“The API exit sample program” on page 490
The sample API exit generates an MQI trace to a user-specified file with a prefix defined in the
MQAPI_TRACE_LOGFILE environment variable.

On IBM i
Compiling API exits on IBM i.

An exit is created as follows (for a C language example):
1. Create a module using CRTCMOD. Compile it to use teraspace by including the parameter

TERASPACE(*YES *TSIFC).
2. Create a service program from the module using CRTSRVPGM. You must bind it to the service

program QMQM/LIBMQMZF_R for multithreaded API exits.

Configuring API exits
You configure IBM MQ to enable API exits by changing the configuration information.

To change the configuration information, you must change the stanzas that define the exit routines and
the sequence in which they run. This information can be changed in the following ways:
v Using the MQ Explorer (On Windows and Linux (x86 and x86-64 platforms))
v Using the amqmdain command (On Windows)

v Using the mqs.ini and qm.ini files directly (On Windows,

IBM i, UNIX and Linux
systems).
The mqs.ini file contains information relevant to all the queue managers on a particular node. You can

find it in the /var/mqm directory on UNIX and Linux , in the /QIBM/UserData/mqm
directory on IBM i and in the WorkPath specified in the HKLM\SOFTWARE\IBM\WebSphere MQ key on
Windows systems.
The qm.ini file contains information relevant to a specific queue manager. There is one queue manager
configuration file for each queue manager, held in the root of the directory tree occupied by the queue
manager. For example, the path and the name for a configuration file for a queue manager called
QMNAME is:
On UNIX and Linux systems:
/var/mqm/qmgrs/QMNAME/qm.ini

On IBM i systems:
/QIBM/UserData/mqm/qmgrs/QMNAME/qm.ini

On Windows systems:

cl /c /nologo /MD /Foamqsaxe0.obj amqsaxe0.c

link /nologo /dll /def:amqsaxe.def \
/libpath:..\..\lib64 \

amqsaxe0.obj /manifest /out:amqsaxe.dll

mt -nologo -manifest amqsaxe.dll.manifest \
-outputresource:amqsaxe.dll;2

Figure 57. Compile and link amqsaxe0.c on 64 bit Windows

346 IBM MQ: Programming

C:\ProgramData\IBM\MQ\qmgrs\QMNAME\qm.ini

Before editing a configuration file, back it up so that you have a copy you can revert to if the need
arises.
You can edit configuration files either:
– Automatically, using commands that change the configuration of queue managers on the node
– Manually, using a standard text editor
If you set an incorrect value on a configuration file attribute, the value is ignored and an operator
message is issued to indicate the problem. (The effect is the same as missing out the attribute entirely.)

Stanzas to configure

The stanzas that must be changed are the following:

ApiExitCommon

Defined in mqs.ini and in the MQ Explorer on the IBM MQ properties page, under Exits. When
any queue manager starts, the attributes in this stanza are read, and then overridden by the API
exits defined in qm.ini.

ApiExitTemplate

Defined in mqs.ini and in the MQ Explorer on the IBM MQ properties page, under Exits. When
any queue manager is created, the attributes in this stanza are copied into the newly created
qm.ini file under the ApiExitLocal stanza.

ApiExitLocal

Defined in qm.ini and in the MQ Explorer on the queue manager properties page, under Exits.
When the queue manager starts, API exits defined here override the defaults defined in mqs.ini.

Attributes for the stanzas
v Name the API exit using the following attribute:

Name=ApiExit_name
The descriptive name of the API exit passed to it in the ExitInfoName field of the MQAXP
structure.

This name must be unique, no longer than 48 characters, and contain only valid characters for
the names of IBM MQ objects (for example, queue names).

v Identify the module and entry point of the API exit code to run using the following attributes:

Function=function_name
The name of the function entry point into the module containing the API exit code. This entry
point is the MQ_INIT_EXIT function.

The length of this field is limited to MQ_EXIT_NAME_LENGTH.

Module=module_name
The module containing the API exit code.

If this field contains the full path name of the module it is used as is.

If this field contains just the module name, the module is located using the ExitsDefaultPath
attribute in the ExitPath in qm.ini.

On platforms that support separate threaded libraries, you must provide both a non-threaded
and a threaded version of the API exit module. The threaded version must have an _r suffix.
The threaded version of the IBM MQ application stub implicitly appends _r to the given
module name before it is loaded.

The length of this field is limited to the maximum path length the platform supports.
v Optionally pass data with the exit using the following attribute:

User exits, API exits, and IBM MQ installable services 347

Data=data_name
Data to be passed to the API exit in the ExitData field of the MQAXP structure.

If you include this attribute, leading and trailing blanks are removed, the remaining string is
truncated to 32 characters, and the result is passed to the exit. If you omit this attribute, the
default value of 32 blanks is passed to the exit.

The maximum length of this field is 32 characters.
v Identify the sequence of this exit in relation to other exits using the following attribute:

Sequence=sequence_number
The sequence in which this API exit is called relative to other API exits. An exit with a low
sequence number is called before an exit with a higher sequence number. There is no need for
the sequence numbering of exits to be contiguous. A sequence of 1, 2, 3 has the same result as
a sequence of 7, 42, 1096. If two exits have the same sequence number, the queue manager
decides which one to call first. You can tell which was called after the event by putting the
time or a marker in ExitChainArea indicated by the ExitChainAreaPtr in MQAXP or by writing
your own log file.

This attribute is an unsigned numeric value.

Sample stanzas

The sample mqs.ini file contains the following stanzas:

ApiExitTemplate
This stanza defines an exit with the descriptive name OurPayrollQueueAuditor, module name
auditor, and sequence number 2. A data value of 123 is passed to the exit.

ApiExitCommon
This stanza defines an exit with the descriptive name MQPoliceman, module name tmqp, and
sequence number 1. The data passed is an instruction (CheckEverything).

mqs.ini

ApiExitTemplate:
Name=OurPayrollQueueAuditor
Sequence=2
Function=EntryPoint
Module=/usr/ABC/auditor
Data=123

ApiExitCommon:
Name=MQPoliceman
Sequence=1
Function=EntryPoint
Module=/usr/MQPolice/tmqp
Data=CheckEverything

The following sample qm.ini file contains an ApiExitLocal definition of an exit with the descriptive name
ClientApplicationAPIchecker, module name ClientAppChecker, and sequence number 3.
qm.ini

ApiExitLocal:
Name=ClientApplicationAPIchecker
Sequence=3
Function=EntryPoint
Module=/usr/Dev/ClientAppChecker
Data=9.20.176.20

348 IBM MQ: Programming

Channel-exit programs for messaging channels
This collection of topics contains information about IBM MQ channel-exit programs for messaging
channels.

Message channel agents (MCAs) can also call data-conversion exits. For more information about writing
data-conversion exits, see “Writing data-conversion exits” on page 371.

Some of this information also applies to exits on MQI channels, which connect IBM MQ MQI clients to
queue managers. For more information, see Channel-exit programs for MQI channels.

Channel-exit programs are called at defined places in the processing carried out by MCA programs.

Some of these user-exit programs work in complementary pairs. For example, if a user-exit program is
called by the sending MCA to encrypt the messages for transmission, the complementary process must be
functioning at the receiving end to reverse the process.

Table 41 shows the types of channel exit that are available for each channel type.

Table 41. Channel exits available for each channel type

Channel Type Message exit Message- retry
exit

Receive exit Security exit Send exit Auto-
definition exit

Sender channel Yes Yes Yes Yes

Server channel Yes Yes Yes Yes

Cluster- sender
channel

Yes Yes Yes Yes Yes

Receiver
channel

Yes Yes Yes Yes Yes Yes

Requester
channel

Yes Yes Yes Yes Yes

Cluster-
receiver
channel

Yes Yes Yes Yes Yes Yes

Client-
connection
channel

Yes Yes Yes

Server-
connection
channel

Yes Yes Yes Yes

Notes: z/OS

1. On z/OS, the auto-definition exit applies to cluster-sender and cluster-receiver channels only.

If you are going to run channel exits on a client, you cannot use the MQSERVER environment variable.
Instead, create and reference a client channel definition table (CCDT) as described in Client channel
definition table.

User exits, API exits, and IBM MQ installable services 349

Processing overview
An overview of how MCAs use channel-exit programs.

On startup, the MCAs exchange a startup dialog to synchronize processing. Then they switch to a data
exchange that includes the security exits. These exits must end successfully for the startup phase to
complete and to allow messages to be transferred.

The security check phase is a loop, as shown in Figure 58.

During the message transfer phase, the sending MCA gets messages from a transmission queue, calls the
message exit, calls the send exit, and then sends the message to the receiving MCA, as shown in
Figure 59.

Sender-

Server

Comms

link

Receiver-

Requester

Exit ExitMCA MCA

Local system Adjacent system

SecuritySecurity

Figure 58. Security exit loop

MCA

Comms
link

Queue Transmission

Exit

Message
(get)

Exit

Application

Send

Figure 59. Example of a send exit at the sender end of message channel

350 IBM MQ: Programming

The receiving MCA receives a message from the communications link, calls the receive exit, calls the
message exit, and then puts the message on the local queue, as shown in Figure 60. (The receive exit can
be called more than once before the message exit is called.)

Writing channel-exit programs
You can use the following information to help you write channel-exit programs.

User exits and channel-exit programs can use all MQI calls, except as noted in the sections that follow.
For MQ V7 and later, the MQCXP structure version 7 and higher contains the connection handle hConn,
which can be used instead of issuing MQCONN. For earlier versions, to obtain the connection handle, an
MQCONN must be issued, even though an MQRC_ALREADY_CONNECTED warning is returned
because the channel itself is connected to the queue manager.

Note that the channel exit must be threadsafe.

For exits on client-connection channels, the queue manager to which the exit tries to connect depends on

how the exit was linked. If the exit was linked with MQM.LIB (or QMQM/LIBMQM on
IBM i) and you do not specify a queue manager name on the MQCONN call, the exit tries to connect to

the default queue manager on your system. If the exit was linked with MQM.LIB (or
QMQM/LIBMQM on IBM i) and you specify the name of the queue manager that was passed to the exit
through the QMgrName field of MQCD, the exit tries to connect to that queue manager. If the exit was
linked with MQIC.LIB or any other library, the MQCONN call fails whether you specify a queue
manager name or not.

You should avoid altering the state of the transaction associated with the passed hConn in a channel exit;
you must not use the MQCMIT, MQBACK or MQDISC verbs with the channel hConn, and you cannot
use the MQBEGIN verb specifying the channel hConn.

MCA

Comms
link

Queue Local

Exit

Receive

ExitApplication

Message
(put)

Figure 60. Example of a receive exit at the receiver end of message channel

User exits, API exits, and IBM MQ installable services 351

If MQCONNX is used specifying MQCNO_HANDLE_SHARE_BLOCK or
MQCNO_HANDLE_SHARE_NO_BLOCK to create a new IBM MQ connection, then it is your
responsibility to ensure that the connection is correctly managed and disconnects from the queue
manager correctly. For example, a channel exit that creates a new connection to the queue manager on
every invocation without disconnecting, results in connection handles building up and an increase in the
number of agent threads.

An exit runs in the same thread as the MCA itself and uses the same connection handle. So, it runs inside
the same UOW as the MCA and any calls made under sync point are committed or backed out by the
channel at the end of the batch.

Therefore, a channel message exit could send notification messages that are only committed to that queue
when the batch containing the original message is committed. So, it is possible to issue sync point MQI
calls from a channel message exit.

A channel exit can change fields in the MQCD. However, these changes are not acted on, except in the
circumstances listed. If a channel exit program changes a field in the MQCD data structure, the new
value is ignored by the IBM MQ channel process. However, the new value remains in the MQCD and is
passed to any remaining exits in an exit chain and to any conversation sharing the channel instance. For
more information, see Changing MQCD fields in a channel exit

Also, for programs written in C, non-reentrant C library function must not be used in a channel-exit
program.

If you use multiple channel exit libraries simultaneously, problems can arise on some UNIX and Linux
platforms if the code for two different exits contains identically named functions. When a channel exit is
loaded, the dynamic loader resolves function names in the exit library to the addresses where the library
is loaded. If two exit libraries define separate functions which happen to have identical names, this
resolution process might incorrectly resolve the function names of one library to use the functions of
another. If this problem occurs, specify to the linker that it must only export the required exit and
MQStart functions, as these functions are unaffected. Other functions must be given local visibility so that
they are not used by functions outside their own exit library. Consult the documentation for the linker for
more information.

All exits are called with a channel exit parameter structure (MQCXP), a channel definition structure
(MQCD), a prepared data buffer, data length parameter, and buffer length parameter. The buffer length
must not be exceeded:
v For message exits, you must allow for the largest message required to be sent across the channel, plus

the length of the MQXQH structure.
v For send and receive exits, the largest buffer you must allow for is as follows:

LU 6.2 32 KB

TCP: IBM i 16 KB

Others 32 KB

Note: The maximum usable length might be 2 bytes less than this length. Check the value returned in
MaxSegmentLength for details. For more information about MaxSegmentLength, see
MaxSegmentLength.

NetBIOS:
64 KB

SPX: 64 KB

Note: Receive exits on sender channels and sender exits on receiver channels use 2 KB buffers for TCP.

352 IBM MQ: Programming

v For security exits, the distributed queuing facility allocates a buffer of 4000 bytes.

It is permissible for the exit to return an alternative buffer, together with the relevant parameters. See
“Channel-exit programs for messaging channels” on page 349 for call details.

Writing channel exit programs on z/OS
You can use the following information to help you write and compile channel-exit programs for z/OS.

The exits are started as if by a z/OS LINK, in:
v Non-authorized problem program state
v Primary address space control mode
v Non-cross-memory mode
v Non-access register mode
v 31 bit addressing mode

The link-edited modules must be placed in the data set specified by the CSQXLIB DD statement of the
channel initiator address space procedure; the names of the load modules are specified as the exit names
in the channel definition.

When writing channel exits for z/OS, the following rules apply:
v Exits must be written in assembler or C; if C is used, it must conform to the C systems programming

environment for system exits, described in the z/OS C/C++ Programming Guide.
v Exits are loaded from the non-authorized libraries defined by a CSQXLIB DD statement. Providing

CSQXLIB has DISP=SHR, exits can be updated while the channel initiator is running. The new version
is used when the channel is restarted.

v Exits must be reentrant, and capable of running anywhere in virtual storage.
v Exits must reset the environment, on return, to that at entry.
v Exits must free any storage obtained, or ensure that it is freed by a subsequent exit invocation.

For storage that is to persist between invocations, use the z/OS STORAGE service, or the 4kmalc
library function for System Programming C.
For more information about this function, see 4kmalc() -- Allocate Page-Aligned Storage.

v All IBM MQ MQI calls except MQCMIT or CSQBCMT and MQBACK or CSQBBAK can be used. They
must be contained after MQCONN (with a blank queue manager name). If these calls are used, the exit
must be link-edited with the stub CSQXSTUB.
The exception to this rule is that security channel exits can issue commit and backout MQI calls. To
issue such calls, code the verbs CSQXCMT and CSQXBAK in place of MQCMIT or CSQBCMT and
MQBACK or CSQBBAK.

v All exits that use stub CSQXSTUB from IBM WebSphere MQ Version 7.0 or later must be link-edited in
a CSQXLIB load library with format PDS-E.

v Exits must not use any system services that cause a wait, because using system services would severely
affect the handling of some or all the other channels. Many channels are run under a single TCB
typically. If you do something in an exit that causes a wait and you do not use MQXWAIT, it causes all
these channels to wait. Causing channels to wait does not give any functional problems, but might
have an adverse effect on performance. Most SVCs involve waits, so you must avoid them, except for
the following SVCs:
– GETMAIN/FREEMAIN/STORAGE
– LOAD/DELETE

In general, therefore, avoid SVCs, PCs, and I/O. Instead, use the MQXWAIT call.

User exits, API exits, and IBM MQ installable services 353

http://pic.dhe.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.cbc/cbc.htm
http://pic.dhe.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.cbcpx01/x4kmalc.htm

v Exits do not issue ESTAEs or SPIEs, apart from in any subtasks they attach, because their error
handling might interfere with the error handling performed by IBM MQ. This means that IBM MQ
might not be able to recover from an error, or that your exit program might not receive all the error
information.

v The MQXWAIT call (see MQXWAIT) provides a wait service that waits for I/O and other events; if
this service is used, exits must not use the linkage stack.
For I/O and other facilities that do not provide non-blocking facilities or an ECB to wait on, a separate
subtask must be ATTACHed, and its completion waited for by MQXWAIT; because of the processing
that this technique incurs, this facility must be used only by the security exit.

v The MQDISC MQI call does not cause an implicit commit to occur within the exit program. A commit
of the channel process is performed only when the channel protocol dictates.

The following exit samples are provided with IBM MQ for z/OS:

CSQ4BAX0
This sample is written in assembler, and illustrates the use of MQXWAIT.

CSQ4BCX1 and CSQ4BCX2
These samples are written in C and illustrate how to access the parameters.

CSQ4BCX3 and CSQ4BAX3
These samples are written in C and assembler respectively.

The CSQ4BCX3 sample (which is pre-compiled into the SCSQAUTH LOADLIB, should function
with no changes necessary on the exit itself. You can create a LOADLIB (for example, called
MY.TEST.LOADLIB) and copy the SCSQAUTH(CSQ4BCX3) member to it.

To set up a security exit on a client connection, carry out the following procedure:
1. Establish a valid OMVS segment for the user ID that the channel initiator uses.

This allows the IBM MQ for z/OS channel initiator to use TCP/IP with the UNIX System
Services (USS) socket interface, in order to facilitate exit processing. Note that it is
unnecessary to define an OMVS segment for the user ID of any connecting client.

2. Ensure that the exit code itself runs only in a program controlled environment.
This means everything loaded into the CHINIT address space must be loaded from a program
controlled library (meaning all libraries in the STEPLIB), and any libraries named on
CSQXLIB and
++hlq++.SCSQANLx
++hlq++.SCSQMVR1
++hlq++.SCSQAUTH

To set a load library as program controlled, use a command similar to this example:
RALTER PROGRAM * ADDMEM(’MY.TEST.LOADLIB’//NOPADCHK)

Then you can activate or refresh the program controlled environment by issuing the
command:
SETROPTS WHEN(PROGRAM) REFRESH

3. Add the exit LOADLIB to the CSQXLIB DD (in the CHINIT started procedure), by issuing the
following command:
ALTER CHANNEL(xxxx) CHLTYPE(SVRCONN)SCYEXIT(CSQ4BCX3)

This activates the exit for the named channel.
4. Your external security manager (ESM) lists any other libraries to be program controlled, but

note that none of the ESM or C libraries needs to be under program control.

See IBM MQ for z/OS server connection channel for further information on setting up a security
exit using the sample CSQ4BCX3.

354 IBM MQ: Programming

Related information:
IBM MQ for z/OS server connection channel

Writing channel exit programs on IBM i
You can use the following information to help you write and compile channel-exit programs for IBM i.

The exit is a program object written in the ILE C, ILE RPG, or ILE COBOL language. The exit program
names and their libraries are named in the channel definition.

Observe the following conditions when creating and compiling an exit program:
v The program must be made thread safe and created with the ILE C, ILE RPG, or ILE COBOL compiler.

For ILE RPG you must specify the THREAD(*SERIALIZE) control specification, and for ILE COBOL
you must specify SERIALIZE for the THREAD option of the PROCESS statement. The programs must
also be bound to the threaded IBM MQ libraries: QMQM/LIBMQM_R in the case of ILE C and ILE
RPG, and AMQ0STUB_R in the case of ILE COBOL. For additional information about making RPG or
COBOL applications thread safe, refer to the appropriate Programmer's Guide for the language.

v IBM MQ for IBM i requires that the exit programs are enabled for teraspace support. (Teraspace is a
form of shared memory introduced in OS/400 V4R4.) For the ILE RPG and COBOL compilers, any
programs compiled on OS/400 V4R4 or later are so enabled. For C, the programs must be compiled
with the TERASPACE(*YES *TSIFC) options specified on CRTCMOD or CRTBNDC commands.

v An exit returning a pointer to its own buffer space must ensure that the object pointed to exists beyond
the time span of the channel-exit program. The pointer cannot be the address of a variable on the
program stack, nor of a variable in the program heap. Instead, the pointer must be obtained from the
system. An example is a user space created in the user exit. To ensure that any data area allocated by
the channel-exit program is still available for the MCA when the program ends, the channel exit must
run in the activation group of the caller or a named activation group. Do this by setting the ACTGRP
parameter on CRTPGM to a user-defined value or *CALLER. If the program is created in this way, the
channel-exit program can allocate dynamic memory and pass a pointer to this memory back to the
MCA.

Writing channel-exit programs on Windows, UNIX and Linux systems
You can use the following information to help you write channel-exit programs for Windows, UNIX and
Linux systems.

Follow the instructions outlined in “Writing exits and installable services on UNIX, Linux and Windows”
on page 319. Use the following channel exit specific information, where appropriate:

The exit must be written in C, and is a DLL on Windows.

Define a dummy MQStart() routine in the exit and specify MQStart as the entry point in the library.
Figure 61 shows how to set up an entry to your program:

#include <cmqec.h>

void MQStart() {;} /* dummy entry point - for consistency only */
void MQENTRY ChannelExit (PMQCXP pChannelExitParms,

PMQCD pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
... Insert code here
}

Figure 61. Sample source code for a channel exit

User exits, API exits, and IBM MQ installable services 355

When writing channel exits for Windows using Visual C++, you must write your own DEF file. An
example of how is shown in Figure 62. For further information on writing channel exit programs, see
“Writing channel-exit programs” on page 351.

Channel security exit programs
You can use security exit programs to verify that the partner at the other end of a channel is genuine.
This is known as authentication. To specify that a channel must use a security exit, specify the exit name
in the SCYEXIT field of the channel definition.

Note: Authentication can also be achieved with channel authentication records. Channel authentication
records provide great flexibility in preventing access to queue managers from certain users and channels,
and in mapping remote users to IBM MQ user identifiers. SSL and TLS support is also provided by IBM
MQ to authenticate your users and to provide encryption and data integrity checks for your data. For
more information about SSL and TLS, see SSL and TLS security protocols in IBM MQ. However, if you
still require more sophisticated (or different) forms of security processing, and other types of checks and
security context establishment, consider writing security exits.
For security exits written prior to IBM WebSphere MQ Version 7.1 it is worth noting that earlier versions
of IBM MQ queried the underlying secure sockets provider (e.g. GSKit) to determine the remote partner's
certificate Subject Distinguished Name (SSLPEER) and Issuer Distinguished Name (SSLCERTI). In IBM
WebSphere MQ Version 7.1 support was added for a range of new security attributes. In order to access
these attributes IBM WebSphere MQ Version 7.1 obtains the DER encoding of the certificate and uses it to
determine the Subject and Issuer DN. The Subject and Issuer DN attributes appear in the following
channel status attributes:
v SSLPEER (PCF selector MQCACH_SSL_SHORT_PEER_NAME)
v SSLCERTI (PCF selector MQCACH_SSL_CERT_ISSUER_NAME)

These values are returned by channel status commands as well as the data passed to channel security
exits listed, as shown:
v MQCD SSLPeerNamePtr
v MQCXP SSLRemCertIssNamePtr

In IBM MQ 7.1 a SERIALNUMBER attribute is also included in the Subject DN and contains the serial
number for the remote partner's certificate. Also some DN attributes are returned in a different sequence
from previous releases. Consequently the composition of the SSLPEER and SSLCERTI fields are altered in
IBM MQ v7.1 from previous releases and it is therefore recommended that any security exits or
applications dependant on these fields be examined and updated.

Existing IBM MQ peer name filters specified via the SSLPEER field of a channel definition are not
affected and will continue to operate in the same manner as in earlier releases. This is because the IBM
MQ peer name matching algorithm has been updated to process existing SSLPEER filters without any
need to alter the channel definitions. This change is most likely to affect security exits and applications
which depend upon the Subject DN and Issuer DN values returned by the PCF programming interface.

A security exit can be written in C or Java.

Channel security exit programs are called at the following places in the processing cycle of an MCA:
v At MCA initiation and termination.
v Immediately after the initial data negotiation is finished on channel startup. The receiver or server end

of the channel can initiate a security message exchange with the remote end by providing a message to

EXPORTS
ChannelExit

Figure 62. Sample DEF file for Windows

356 IBM MQ: Programming

be delivered to the security exit at the remote end. It might also decline to do so. The exit program is
started again to process any security message received from the remote end.

v Immediately after the initial data negotiation is finished on channel startup. The sender or requester
end of the channel processes a security message received from the remote end, or initiates a security
exchange when the remote end cannot. The exit program is started again to process all subsequent
security messages that might be received.

A requester channel never gets called with MQXR_INIT_SEC. The channel notifies the server that it has a
security exit program, and the server then has the opportunity to initiate a security exit. If it does not
have one, it sends a null security flow to allow the requester to call its exit program.

Note: Avoid sending zero-length security messages.

Examples of the data exchanged by security-exit programs are illustrated in figuresFigure 63 on page
358through Figure 66 on page 361. These examples show the sequence of events that occur involving the
security exit of the receiver, and the security exit of the sender. Successive rows in the figures represent
the passage of time. In some cases, the events at the receiver and sender are not correlated, and therefore
can occur at the same time or at different times. In other cases, an event at one exit program results in a
complementary event occurring later at the other exit program. For example, inFigure 63 on page 358:
1. The receiver and sender are each invoked with MQXR_INIT, but these invocations are not correlated

and can therefore occur at the same time or at different times.
2. The receiver is next invoked with MQXR_INIT_SEC, but returns MQXCC_OK which requires no

complementary event at the sender exit.
3. The sender is next invoked with MQXR_INIT_SEC. This is not correlated with the invocation of the

receiver with MQXR_INIT_SEC. The sender returns MQXCC_SEND_SEC_MSG, which causes a
complementary event at the receiver exit.

4. The receiver is then invoked with MQXR_SEC_MSG, and returns MQXCC_SEND_SEC_MSG, which
causes a complementary event at the sender exit.

5. The sender is then invoked with MQXR_SEC_MSG, and returns MQXCC_OK which requires no
complementary event at the receiver exit.

User exits, API exits, and IBM MQ installable services 357

Sender exitReceiver exit

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_OK

Invoked with MQXR_SEC_MSG

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_SEC_MSG

Responds with MQXCC_OK

Message transfer begins

Figure 63. Sender-initiated exchange with agreement

358 IBM MQ: Programming

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_OK

Invoked with MQXR_SEC_MSG

Responds with MQXCC_OK

Invoked with MQXR_TERM

Responds with MQXCC_OK

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_SEC_MSG

Responds with MQXCC_SUPPRESS_FUNCTION

Invoked with MQXR_TERM

Responds with MQXCC_OK

Sender exitReceiver exit

Channel closes

Figure 64. Sender-initiated exchange with no agreement

User exits, API exits, and IBM MQ installable services 359

Sender exitReceiver exit

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_SEC_MSG

Responds with MQXCC_OK

Invoked with MQXR_TERM
Responds with MQXCC_OK

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_SEC_MSG

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_TERM

Responds with MQXCC_OK

Message transfer begins

Figure 65. Receiver-initiated exchange with agreement

360 IBM MQ: Programming

The channel security exit program is passed an agent buffer containing the security data, excluding any
transmission headers, generated by the security exit. This data can be any suitable data so that either end
of the channel is able to perform security validation.

The security exit program at both the sending and receiving end of the message channel can return either
of two response codes to any call:
v Security exchange ended with no errors
v Suppress the channel and close down

Note:

1. The channel security exits typically work in pairs. When you define the appropriate channels, make
sure that compatible exit programs are named for both ends of the channel.

2. In IBM i , security exit programs that have been compiled with Use adopted authority
(USEADPAUT=*YES) can adopt QMQM or QMQMADM authority. Take care that the exit does not
use this feature to pose a security risk to your system.

3. On an SSL channel on which the other end of the channel provides a certificate, the security exit
receives the Distinguished Name of the subject of this certificate in the MQCD field accessed by
SSLPeerNamePtr and the Distinguished Name of the issuer in the MQCXP field accessed by
SSLRemCertIssNamePtr. Uses to which this name can be put are:
v To restrict access over the SSL channel.
v To change MQCD.MCAUserIdentifier based on the name.

Receiver exit

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_INIT_SEC

Responds with MQXCC_SEND_SEC_MSG

Invoked with MQXR_SEC_MSG

Responds with MQXCC_SUPPRESS_FUNCTION

Sender exit

Invoked with MQXR_INIT

Responds with MQXCC_OK

Invoked with MQXR_SEC_MSG

Responds with MQXCC_OK

Channel closes

Figure 66. Receiver-initiated exchange with no agreement

User exits, API exits, and IBM MQ installable services 361

Related information:
Channel authentication records
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) concepts

Writing a security exit:

You can write a security exit by using the security exit skeleton code.

Figure 67 illustrates how to write a security exit.

The standard IBM MQ Entry Point MQStart must exist, but is not required to perform any function. The
name of the function (EntryPoint in this example) can be changed, but the function must be exported
when the library is compiled and linked. As in the previous example, the pointers pChannelExitParms
must be cast to PMQCXP and pChannelDefinition must be cast to PMQCD. For general information
about calling channel exits and the use of parameters, see MQ_CHANNEL_EXIT. These parameters are
used in a security exit as follows:

PMQVOID pChannelExitParms
input/output

Pointer to MQCXP structure - cast to PMQCXP to access fields. This structure is used to communicate
between the Exit and MCA. The following fields in the MQCXP are of particular interest for Security
Exits:

ExitReason
Tells the Security Exit the current state in the security exchange and is used when deciding
what action to take.

ExitResponse
The response to the MCA which dictates the next stage in the security exchange.

ExitResponse2
Extra control flags to govern how the MCA interprets the response of the Security Exit.

ExitUserArea
16 bytes (maximum) of storage which can be used by the Security Exit to maintain state
between calls.

ExitData
Contains the data specified in the SCYDATA field of the channel definition (32 bytes padded
to the right with blanks).

PMQVOID pChannelDefinition
input/output

void MQENTRY MQStart() {;}
void MQENTRY EntryPoint (PMQVOID pChannelExitParms,

PMQVOID pChannelDefinition,
PMQLONG pDataLength,
PMQLONG pAgentBufferLength,
PMQVOID pAgentBuffer,
PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

{
PMQCXP pParms = (PMQCXP)pChannelExitParms;
PMQCD pChDef = (PMQCD)pChannelDefinition;
/* TODO: Add Security Exit Code Here */

}

Figure 67. Security exit skeleton code

362 IBM MQ: Programming

Pointer to MQCD structure - cast to PMQCD to access fields. This parameter contains the definition
of the channel. The following fields in the MQCD are of particular interest for Security Exits:

ChannelName
The channel name (20 bytes padded to the right with blanks).

ChannelType
A code defining the channel type.

MCA User Identifier
This group of three fields is initialized to the value of the MCAUSER field specified in the
channel definition. Any user identifier specified by the Security Exit in these fields is used for
access control (not applicable to SDR, SVR, CLNTCONN, or CLUSSDR channels).

MCAUserIdentifier
First 12 bytes of identifier padded to the right with blanks.

LongMCAUserIdPtr
Pointer to a buffer containing the full length identifier (not guaranteed null
terminated) takes priority over MCAUserIdentifier.

LongMCAUserIdLength
Length of string pointed to by LongMCAUserIdPtr - must be set if
LongMCAUserIdPtr is set.

Remote User Identifier
Only applies to CLNTCONN/SVRCONN channel pairs. If no CLNTCONN Security Exit is
defined then these three fields are initialized by the client MCA, so they might contain a user
identifier from the environment of the client which can be used by a SVRCONN Security Exit
for authentication and when specifying the MCA User Identifier. If a CLNTCONN Security
Exit is defined then these fields are not initialized and can be set by the CLNTCONN
Security Exit, or security messages can be used to pass a user identifier from Client to Server.

RemoteUserIdentifier
First 12 Bytes of identifier padded to the right with blanks.

LongRemoteUserIdPtr
Pointer to a buffer containing the full length identifier (not guaranteed null
terminated) takes priority over RemoteUserIdentifier.

LongRemoteUserIdLength
Length of string pointed to by LongRemoteUserIdPtr - must be set if
LongRemoteUserIdPtr is set.

PMQLONG pDataLength
input/output

Pointer to MQLONG. Contains the length of any Security Exit contained in the AgentBuffer upon
invocation of the Security Exit. Must be set by a Security Exit to the length of any message being sent
in the AgentBuffer or ExitBuffer.

PMQLONG pAgentBufferLength
input

Pointer to MQLONG. The length of the data contained in the AgentBuffer on invocation of the
Security Exit.

PMQVOID pAgentBuffer
input/output

On invocation of the Security Exit, this points to any message sent from the partner exit. If
ExitResponse2 in the MQCXP structure has the MQXR2_USE_AGENT_BUFFER flag set (default) then
a Security Exit needs to set this parameter to point to any message data being sent.

User exits, API exits, and IBM MQ installable services 363

PMQLONG pExitBufferLength
input/output

Pointer to MQLONG. This parameter is initialized to 0 on the first invocation of a Security Exit and
the value returned is maintained between calls to the Security Exit during a security exchange.

PMQPTR pExitBufferAddr
input/output

This parameter is initialized to a null pointer on the first invocation of a Security Exit and the value
returned is maintained between calls to the Security Exit during a security exchange. If the
MQXR2_USE_EXIT_BUFFER flag is set in the ExitResponse2 in the MQCXP structure then a Security
Exit needs to set this parameter to point to any message data being sent.

Differences in behavior between security exits defined on CLNTCONN/SVRCONN channel pairs and
other channel pairs:

Security exits can be defined on all types of channel. However, the behavior of security exits defined on
CLNTCONN/SVRCONN channel pairs is slightly different from security exits defined on other channel
pairs.

A Security Exit on a CLNTCONN channel can set the Remote User Identifier in the channel definition for
processing by a partner SVRCONN exit, or for OAM authorization if no SVRCONN Security Exit is
defined and the MCAUSER field of the SVRCONN is not set.

If no CLNTCONN Security Exit is defined then the Remote User Identifier in the channel definition is set
to a user identifier from the client environment (which can be blank) by the client MCA.

A security exchange between Security Exits defined on a CLNTCONN and SVRCONN channel pair
completes successfully when the SVRCONN Security Exit returns an ExitResponse of MQXCC_OK. A
security exchange between other channel pairs completes successfully when the Security Exit which
initiated the exchange returns an ExitResponse of MQXCC_OK.

However, the MQXCC_SEND_AND_REQUEST_SEC_MSG ExitResponse code can be used to force
continuation of the security exchange: If an ExitResponse of MQXCC_SEND_AND_REQUEST_SEC_MSG
is returned by a CLNTCONN or SVRCONN Security Exit then the partner exit must respond by sending
a security message (not MQXCC_OK or a null response) or the channel terminates. For Security Exits
defined on other types of channel, an ExitResponse of MQXCC_OK returned in response to a
MQXCC_SEND_AND_REQUEST_SEC_MSG from the partner Security Exit results in continuation of the
security exchange as if a null response was returned and not in termination of the channel.

SSPI security exit
IBM MQ for Windows supplies a security exit that provides authentication for IBM MQ channels by
using the Security Services Programming Interface (SSPI). The SSPI provides the integrated security
facilities of Windows.

This security exit is for both the IBM MQ client and the IBM MQ server.

The security packages are loaded from either security.dll or secur32.dll. These DLLs are supplied with
your operating system.

One-way authentication is provided on Windows, using NTLM authentication services. Two-way
authentication is provided on Windows 2000, using Kerberos authentication services.

The security exit program is supplied in source and object format. You can use the object code as it is, or
you can use the source code as a starting point to create your own user-exit programs. For more
information about using the object or source code of the SSPI security exit, see “Using the SSPI security
exit on Windows systems” on page 549

364 IBM MQ: Programming

Channel send and receive exit programs
You can use the send and receive exits to perform tasks such as data compression and decompression.
You can specify a list of send and receive exit programs to be run in succession.

Channel send and receive exit programs are called at the following places in the processing cycle of an
MCA:
v The send and receive exit programs are called for initialization at MCA initiation and for termination at

MCA termination.
v The send exit program is invoked at one or other end of the channel, depending on the end at which a

transmission for one message transfer is sent, immediately before a transmission is sent over the link.
Note 4 explains why exits are available in both directions even though message channels send
messages in one direction only.

v The receive exit program is invoked at one or other end of the channel, depending on the end at which
a transmission for one message transfer is received, immediately after a transmission has been taken
from the link. Note 4 explains why exits are available in both directions even though message channels
send messages in one direction only.

There might be many transmissions for one message transfer, and there could be many iterations of the
send and receive exit programs before a message reaches the message exit at the receiving end.

The channel send and receive exit programs are passed an agent buffer containing the transmission data
as sent or received from the communications link. For send exit programs, the first 8 bytes of the buffer
are reserved for use by the MCA, and must not be changed. If the program returns a different buffer,
then these first 8 bytes must exist in the new buffer. The format of data presented to the exit programs is
not defined.

A good response code must be returned by send and receive exit programs. Any other response causes an
MCA abnormal end (abend).

Note: Do not issue an MQGET, MQPUT, or MQPUT1 call within sync point from a send or receive exit.

Note:

1. Send and receive exits typically work in pairs. For example a send exit might compress the data and a
receive exit decompress it, or a send exit might encrypt the data and a receive exit decrypt it. When
you define the appropriate channels, make sure that compatible exit programs are named for both
ends of the channel.

2. If compression is turned on for the channel, the exits are passed compressed data.
3. Channel send and receive exits might be called for message segments other than for application data,

for example, status messages. They are not called during the startup dialog, nor the security check
phase.

4. Although message channels send messages in one direction only, channel-control data, such as heart
beats and end of batch processing, flows in both directions, and these exits are available in both
directions, also. However, some of the initial channel startup data flows are exempt from processing
by any of the exits.

5. There are circumstances in which send and receive exits could be invoked out of sequence; for
example, if you are running a series of exit programs or if you are also running security exits. Then,
when the receive exit is first called upon to process data, it might receive data that has not passed
through the corresponding send exit. If the receive exit just performed the operation, for example
decompression, without first checking that it was required, the results would be unexpected.
You need to code your send and receive exits in such a way that the receive exit can check that the
data it is receiving has been processed by the corresponding send exit. The recommended way to do
so is to code your exit programs so that:

User exits, API exits, and IBM MQ installable services 365

v The send exit sets the value of the ninth byte of data to 0 and shifts all the data along 1 byte, before
performing the operation. (The first 8 bytes are reserved for use by the MCA.)

v If the receive exit receives data that has a 0 in byte 9, it knows that the data has come from the
send exit. It removes the 0, performs the complementary operation, and shifts the resulting data
back by 1 byte.

v If the receive exit receives data that has something other than 0 in byte 9, it assumes that the send
exit has not run, and sends the data back to the caller unchanged.

When using security exits, if the channel is ended by the security exit it is possible that a send exit
might be called without the corresponding receive exit. One way to prevent this problem is to code
the security exit to set a flag, in MQCD.SecurityUserData or MQCD.SendUserData, for example, when
the exit decides to end the channel. Then the send exit needs to check this field, and process the data
only if the flag is not set. This check prevents the send exit from unnecessarily altering the data, and
thus prevents any conversion errors that could occur if the security exit received altered data.

Channel send exit programs - reserving space:

You can use send and receive exits to transform the data before transmission. Channel send exit programs
can add their own data about the transformation by reserving space in the transmission buffer.

This data is processed by the receive exit program and then removed from the buffer. For example, you
might want to encrypt the data and add a security key for decryption.

How you reserve space and use it

When the send exit program is called for initialization, set the ExitSpace field of MQXCP to the number
of bytes to be reserved. See MQCXP for details. ExitSpace can be set only during initialization, that is
when ExitReason has the value MQXR_INIT. When the send exit is invoked immediately before
transmission, with ExitReason set to MQXR_XMIT, ExitSpace bytes are reserved in the transmission
buffer. ExitSpace is not supported on z/OS.

The send exit need not use all the reserved space. It can use less than ExitSpace bytes or, if the
transmission buffer is not full, the exit can use more than the amount reserved. When setting the value of
ExitSpace, you must leave at least 1 KB for message data in the transmission buffer. Channel
performance can be affected if reserved space is used for large amounts of data.

The transmission buffer is normally 32Kb bytes long. However, if the channel uses SSL or TLS then the
transmission buffer size is reduced to 15,352 bytes in order fit within the maximum record length defined
by RFC 6101 and the related family of TLS standards. A further 1024 bytes are reserved for use by IBM
MQ, so the maximum transmission buffer space usable by send exits is 14,328 bytes.

What happens at the receiving end of the channel

Channel receive exit programs must be set up to be compatible with the corresponding send exits.
Receive exits must know the number of bytes in the reserved space and must remove the data in that
space.

Multiple send exits

You can specify a list of send and receive exit programs to be run in succession. IBM MQ maintains a
total for the space reserved by all the send exits. This total space must leave at least 1 KB for message
data in the transmission buffer.

The following example shows how space is allocated for three send exits, called in succession:
1. When called for initialization:
v Send exit A reserves 1 KB.

366 IBM MQ: Programming

v Send exit B reserves 2 KB.
v Send exit C reserves 3 KB.

2. The maximum transmission size is 32 KB and the user data is 5 KB long.
3. Exit A is called with 5 KB of data; up to 27 KB are available, because 5 KB is reserved for exits B and

C. Exit A adds 1 KB, the amount it reserved.
4. Exit B is called with 6 KB of data; up to 29 KB are available, because 3 KB is reserved for exit C. Exit

B adds 1 KB, less than the 2 KB it reserved.
5. Exit C is called with 7 KB of data; up to 32 KB are available. Exit C adds 10K, more than the 3 KB it

reserved. This amount is valid, because the total amount of data, 17 KB, is less than the 32 KB
maximum.

The maximum transmission buffer size for a channel using SSL or TLS is 15,352 bytes, not 32Kb. This is
because the underlying secure socket transmission segments are limited to 16Kb and some of the space is
required for SSL and TLS record overheads. A further 1024 bytes are reserved for use by IBM MQ, so the
maximum transmission buffer space usable by send exits is 14,328 bytes.

Channel message exit programs
You can use the channel message exit to perform tasks such as encryption on the link, validation or
substitution of incoming user IDs, message data conversion, journaling, and reference message handling.
You can specify a list of message exit programs to be run in succession.

Channel message exit programs are called at the following places in the processing cycle of the MCA:
v At MCA initiation and termination
v Immediately after a sending MCA has issued an MQGET call
v Before the receiving MCA issues an MQPUT call

The message exit is passed an agent buffer containing the transmission queue header, MQXQH, and the
application message text as retrieved from the queue. (The format of MQXQH is given in MQXQH.) If
you use reference messages; that is, messages that contain only a header which points to some other
object that is to be sent, the message exit recognizes the header, MQRMH. It identifies the object, retrieves
it in whatever way is appropriate appends it to the header, and passes it to the MCA for transmission to
the receiving MCA. At the receiving MCA, another message exit recognizes that this message is a
reference message, extracts the object, and passes the header on to the destination queue. See “Reference
messages” on page 159 and “Running the Reference Message samples” on page 520 for more information
about reference messages and some sample message exits that handle them.

Message exits can return the following responses:
v Send the message (GET exit). The message might have been changed by the exit. (This returns

MQXCC_OK.)
v Put the message on the queue (PUT exit). The message might have been changed by the exit. (This

returns MQXCC_OK.)
v Do not process the message. The message is placed on the dead-letter queue (undelivered message

queue) by the MCA.
v Close the channel.
v Bad return code, which causes the MCA to abnormally end.

Note:

1. Message exits are called once for every complete message transferred, even when the message is split
into parts.

2. On UNIX systems, if you provide a message exit for any reason the automatic conversion of user IDs
to lowercase characters does not operate. See Security of objects on UNIX and Linux systems.

User exits, API exits, and IBM MQ installable services 367

3. An exit runs in the same thread as the MCA itself. It also runs inside the same unit of work (UOW) as
the MCA because it uses the same connection handle. Therefore, any calls made under sync point are
committed or backed out by the channel at the end of the batch. For example, one channel message
exit program can send notification messages to another and these messages are only committed to the
queue when the batch containing the original message is committed.
Therefore, it is possible to issue sync point MQI calls from a channel message exit program.

Message conversion outside the message exit:

Before calling the message exit, the receiving MCA performs some conversions on the message. This topic
describes the algorithms used to perform the conversions.

Which headers are processed

A conversion routine runs in the MCA of the receiver before the message exit is called. The conversion
routine begins with the MQXQH header at the beginning of the message. The conversion routine then
processes through the chained headers that follow the MQXQH, performing conversion where necessary.
The chained headers can extend beyond the offset contained in the HeaderLength parameter of the
MQCXP data that is passed to the message exit of the receiver. The following headers are converted
in-place:
v MQXQH (format name " MQXMIT ")
v MQMD (this header is part of the MQXQH and has no format name)
v MQMDE (format name " MQHMDE ")
v MQDH (format name " MQHDIST ")
v MQWIH (format name " MQHWIH ")

The following headers are not converted, but are stepped over as the MCA continues to process the
chained headers:
v MQDLH (format name " MQDEAD ")
v any headers with format names beginning with the three characters 'MQH' (for example " MQHRF ") that

are not otherwise mentioned

How the headers are processed

The Format parameter of each IBM MQ header is read by the MCA. The Format parameter is 8 bytes
within the header, which are 8 single-byte characters containing a name.

The MCA then interprets the data following each header as being of the named type. If the Format is the
name of a header type eligible for IBM MQ data conversion, it is converted. If it is another name
indicating non-MQ data (for example MQFMT_NONE or MQFMT_STRING) then the MCA stops
processing the headers.

What is the MQCXP HeaderLength?

The HeaderLength parameter in the MQCXP data supplied to a message exit is the total length of the
MQXQH (which includes the MQMD), MQMDE and MQDH headers at the start of the message. These
headers are chained using the 'Format' names and lengths.

MQWIH

Chained headers can extend beyond the HeaderLength into the user data area. The MQWIH header, if it
is present, is one of those headers that appear beyond the HeaderLength.

368 IBM MQ: Programming

If there is an MQWIH header in the chained headers, it is converted in-place before the message exit of
the receiver is called.

Channel message retry exit program
The channel message-retry exit is called when an attempt to open the target queue is unsuccessful. You
can use the exit to determine under which circumstances to retry, how many times to retry, and how
frequently.

This exit is also called at the receiving end of the channel at MCA initiation and termination.

The channel message-retry exit is passed an agent buffer containing the transmission queue header,
MQXQH, and the application message text as retrieved from the queue. The format of MQXQH is given
in Overview for MQXQH.

The exit is invoked for all reason codes; the exit determines for which reason codes it wants the MCA to
retry, for how many times, and at what intervals. (The value of the message-retry count set when the
channel was defined is passed to the exit in the MQCD, but the exit can ignore this value.)

The MsgRetryCount field in MQCXP is incremented by the MCA each time the exit is invoked, and the
exit returns either MQXCC_OK with the wait time contained in the MsgRetryInterval field of MQCXP, or
MQXCC_SUPPRESS_FUNCTION. Retries continue indefinitely until the exit returns
MQXCC_SUPPRESS_FUNCTION in the ExitResponse field of MQCXP. See MQCXP for information about
the action taken by the MCA for these completion codes.

If all the retries are unsuccessful, the message is written to the dead-letter queue. If there is no dead-letter
queue available, the channel stops.

If you do not define a message-retry exit for a channel and a failure occurs that is likely to be temporary,
for example MQRC_Q_FULL, the MCA uses the message-retry count and message-retry intervals set
when the channel was defined. If the failure is of a more permanent nature and you have not defined an
exit program to handle it, the message is written to the dead-letter queue.

Channel auto-definition exit program
The channel auto-definition exit can be used when a request is received to start a receiver or
server-connection channel but no definition for that channel exists (not for IBM MQ for z/OS). It can
also be called on all platforms for cluster-sender and cluster-receiver channels to allow definition
modification for an instance of the channel.

The channel auto-definition exit can be called on all platforms except z/OS when a request is received to
start a receiver or server-connection channel but no channel definition exists. You can use it to modify the
supplied default definition for an automatically defined receiver or server-connection channel,
SYSTEM.AUTO.RECEIVER, or SYSTEM.AUTO.SVRCON. See Preparing channels for a description of how
channel definitions can be created automatically.

The channel auto-definition exit can also be called when a request is received to start a cluster-sender
channel. It can be called for cluster-sender and cluster-receiver channels to allow definition modification
for this instance of the channel. In this case, the exit also applies to IBM MQ for z/OS. A common use of
the channel auto-definition exit is to change the names of message exits (MSGEXIT, RCVEXIT, SCYEXIT,
and SENDEXIT) because exit names have different formats on different platforms. If no channel
auto-definition exit is specified, the default behavior on z/OS is to examine a distributed exit name of the
form [path]/libraryname(function) and take up to eight chars of function, if present, or libraryname. On
z/OS, a channel auto-definition exit program must alter the fields addressed by MsgExitPtr,
MsgUserDataPtr, SendExitPtr, SendUserDataPtr, ReceiveExitPtr, and ReceiveUserDataPtr, rather than the
MsgExit, MsgUserData, SendExit, SendUserData, ReceiveExit and ReceiveUserData fields themselves.

For more information, see Working with auto-defined channels.

User exits, API exits, and IBM MQ installable services 369

As with other channel exits, the parameter list is:
MQ_CHANNEL_AUTO_DEF_EXIT (ChannelExitParms, ChannelDefinition)

ChannelExitParms are described in MQCXP. ChannelDefinition is described in MQCD.

MQCD contains the values that are used in the default channel definition if they are not altered by the
exit. The exit can modify only a subset of the fields; see MQ_CHANNEL_AUTO_DEF_EXIT. However,
attempting to change other fields does not cause an error.

The channel auto-definition exit returns a response of either MQXCC_OK or
MQXCC_SUPPRESS_FUNCTION. If neither of these responses is returned, the MCA continues processing
as though MQXCC_SUPPRESS_FUNCTION were returned. That is, the auto-definition is abandoned, no
new channel definition is created, and the channel cannot start.

Compiling channel exit programs on Windows, UNIX and Linux
systems
Use the following examples to help you compile channel-exit programs for Windows, UNIX and Linux
systems.

Windows

Windows

The compiler and linker command for channel-exit programs on Windows:
cl.exe /Ic:\mqm\tools\c\include /nologo /c myexit.c
link.exe /nologo /dll myexit.obj /def:myexit.def /out:myexit.dll

UNIX Linux

UNIX and Linux systems

In these examples exit is the library name and ChannelExit is the function name. On AIX the export file
is called exit.exp . These names are used by the channel definition to reference the exit program using the
format described in MQCD- channel definition. See also the MSGEXIT parameter of the DEFINE
CHANNEL command.

Sample compiler and linker commands for channel exits on AIX:
$ xlc_r -q64 -e MQStart -bE:exit.exp -bM:SRE -o /var/mqm/exits64/exit
exit.c -I/usr/mqm/inc

Sample compiler and linker commands for channel exits on HP-UX
$ c89 +DD64 +z -c -D_HPUX_SOURCE -o exit.o exit.c -I/opt/mqm/inc
$ ld -b exit.o +ee MQStart +ee ChannelExit -o
/var/mqm/exits64/exit -L/usr/lib/pa20_64 -lpthread
$ rm exit.o

Sample compiler and linker commands for channel-exits on Linux platforms where the queue manager is
32 bit:
$ gcc -shared -fPIC -o /var/mqm/exits/exit exit.c -I/opt/mqm/inc

Sample compiler and linker commands for channel-exits on Linux platforms where the queue manager is
64-bit:
$ gcc -m64 -shared -fPIC -o /var/mqm/exits64/exit exit.c -I/opt/mqm/inc

Sample compiler and linker commands for channel exits on Solaris:

370 IBM MQ: Programming

$ cc -xarch=v9 -mt -G -o /var/mqm/exits64/exit exit.c -I/opt/mqm/inc
-R/usr/lib/64 -lsocket -lnsl -ldl

On the client, a 32 bit or 64 bit exit can be used. This exit must be linked to mqic_r.

On AIX, all functions that are called by IBM MQ must be exported. A sample export file for this make
file:
#
!channelExit
MQStart

Configuring channel exits
To call the channel exit, you must name it in the channel definition.

Channel exits must be named in the channel definition. You can do this naming when you first define the
channels, or you can add the information later using, for example, the MQSC command ALTER
CHANNEL. You can also give the channel exit names in the MQCD channel data structure. The format of
the exit name depends on your IBM MQ platform; see MQCD or Script (MQSC) Commands for
information.

If the channel definition does not contain a user-exit program name, the user exit is not called.

The channel auto-definition exit is the property of the queue manager, not the individual channel. In
order for this exit to be called, it must be named in the queue manager definition. To alter a queue
manager definition, use the MQSC command ALTER QMGR.

Writing data-conversion exits
This collection of topics contains information about how to write data-conversion exits.

Note: Not supported in MQSeries for VSE/ESA.

When you do an MQPUT, your application creates the message descriptor (MQMD) of the message.
Because IBM MQ needs to be able to understand the contents of the MQMD regardless of the platform it
is created on, it is converted automatically by the system.

Application data, however, is not converted automatically. If character data is being exchanged between
platforms where the CodedCharSetId and Encoding fields differ, for example, between ASCII and EBCDIC,
the application must arrange for conversion of the message. Application data conversion can be
performed by the queue manager itself or by a user exit program, referred to as a data-conversion exit. The
queue manager can perform data conversion itself, using one of its built-in conversion routines, if the
application data is in one of the built-in formats (such as MQFMT_STRING). This topic contains
information about the data-conversion exit facility that IBM MQ provides for when the application data is
not in a built-in format.

Control can be passed to the data-conversion exit during an MQGET call. This avoids converting across
different platforms before reaching the final destination. However, if the final destination is a platform
that does not support data conversion on the MQGET, you must specify CONVERT(YES) on the sender
channel that sends the data to its final destination. This ensures that IBM MQ converts the data during
transmission. In this case, your data-conversion exit must reside on the system where the sender channel
is defined.

The MQGET call is issued directly by the application. Set the CodedCharSetId and Encoding fields in the
MQMD to the character set and encoding required. If your application uses the same character set and
encoding as the queue manager, set CodedCharSetId to MQCCSI_Q_MGR, and Encoding to
MQENC_NATIVE. After the MQGET call completes, these fields have the values appropriate to the

User exits, API exits, and IBM MQ installable services 371

message data returned. These might differ from the values required if the conversion was not successful.
Your application should reset these fields to the values required before each MQGET call.

The conditions required for the data-conversion exit to be called are defined for the MQGET call in
MQGET.

For a description of the parameters that are passed to the data-conversion exit, and detailed usage notes,
see Data conversion for the MQ_DATA_CONV_EXIT call and the MQDXP structure.

Programs that convert application data between different machine encodings and CCSIDs must conform
to the IBM MQ data conversion interface (DCI).

With the introduction of Multicast clients, API exits and data-conversion exits need to be able to run on
the client-side because some messages might not go through the queue manager. The following libraries
are now part of the client packages as well as the server packages:

Table 42. Libraries that are now in the client and server packages

Operating system Libraries

Windows 32 bit & 64 bit: mqm.dll & mqm.pdb

Linux & HP-UX 32 bit & 64 bit: libmqm.so & libmqm_r.so

AIX 32 bit & 64 bit: libmqm.a & libmqm_r.a

Solaris 32 bit & 64 bit: libmqm.so

IBM i
LIBMQM & LIBMQM_R

Invoking the data-conversion exit
A data-conversion exit is a user-written exit that receives control during the processing of an MQGET
call.

The exit is invoked if the following are true:
v The MQGMO_CONVERT option is specified on the MQGET call.
v Some or all of the message data is not in the requested character set or encoding.
v The Format field in the MQMD structure associated with the message is not MQFMT_NONE.
v The BufferLength specified on the MQGET call is not zero.
v The message data length is not zero.
v The message contains data that has a user-defined format. The user-defined format can occupy the

entire message, or be preceded by one or more built-in formats. For example, the user-defined format
might be preceded by an MQFMT_DEAD_LETTER_HEADER format. The exit is invoked to convert
only the user-defined format; the queue manager converts any built-in formats that precede the
user-defined format.
A user-written exit can also be invoked to convert a built-in format, but this happens only if the
built-in conversion routines cannot convert the built-in format successfully.

There are some other conditions, described fully in the usage notes of the MQ_DATA_CONV_EXIT call in
MQ_DATA_CONV_EXIT.

See MQGET for details of the MQGET call. Data-conversion exits cannot use MQI calls, other than
MQXCNVC.

A new copy of the exit is loaded when an application attempts to retrieve the first message that uses that
Format since the application connected to the queue manager. A new copy might also be loaded at other
times if the queue manager has discarded a previously loaded copy.

372 IBM MQ: Programming

The data-conversion exit runs in an environment like that of the program that issued the MQGET call. As
well as user applications, the program can be an MCA (message channel agent) sending messages to a
destination queue manager that does not support message conversion. The environment includes address
space and user profile, where applicable. The exit cannot compromise the integrity of the queue manager,
because it does not run in the queue manager's environment.

z/OS

Data conversion on z/OS

On z/OS, be aware of the following:
v Exit programs can be written in assembly language only.
v Exit programs must be reentrant, and capable of running anywhere in storage.
v Exit programs must restore the environment on exit to that at entry, and must free any storage

obtained.
v Exit programs must not WAIT, or issue ESTAEs or SPIEs.
v Exit programs are typically invoked as if by z/OS LINK in:

– Non-authorized problem program state
– Primary address space control mode
– Non cross-memory mode
– Non access-register mode
– 31 bit addressing mode
– TCB-PRB mode

v When used by a CICS application, the exit is invoked by EXEC CICS LINK, and must conform to the
CICS programming conventions. The parameters are passed by pointers (addresses) in the CICS
communication area (COMMAREA).
Although not recommended, user exit programs can also use CICS API calls, with the following
caution:
– Do not issue sync points, as the results could influence units of work declared by the MCA.
– Do not update any resources controlled by a resource manager other than IBM MQ for z/OS,

including those controlled by CICS Transaction Server.
For channels with CONVERT=YES, the exit is loaded from the data set referenced by the CSQXLIB DD
statement. MQ-supplied exits CSQCBDCI and CSQCBDCO for the IBM MQ CICS Bridge are in
SCSQAUTH.

Writing a data-conversion exit program for IBM MQ for IBM i
Information about steps to consider when writing data-conversion exit programs for IBM MQ for IBM i.

Follow these steps:
1. Name your message format. The name must fit in the Format field of the MQMD. The Format name

must not have leading embedded blanks, and trailing blanks are ignored. The object's name must
have no more than eight non-blank characters, because the Format is only eight characters long.
Remember to use this name each time that you send a message (our example uses the name Format).

2. Create a structure to represent your message. See Valid syntax for an example.
3. Run this structure through the CVTMQMDTA command to create a code fragment for your

data-conversion exit.
The functions generated by the CVTMQMDTA command use macros that are shipped in the file
QMQM/H(AMQSVMHA). These macros are written assuming that all structures are packed;
amended them if this is not the case.

4. Take a copy of the supplied skeleton source file, QMQMSAMP/QCSRC(AMQSVFC4) and rename it.
(Our example uses the name EXIT_MOD.)

User exits, API exits, and IBM MQ installable services 373

5. Find the following comment boxes in the source file and insert code as described:
a. Toward the end of the source file, a comment box starts with:

/* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step 3 on page 373.
b. Near the middle of the source file, a comment box starts with:

/* Insert calls to the code fragments to convert the format’s */

This is followed by a commented-out call to the function ConverttagSTRUCT.
Change the name of the function to the name of the function that you added in step 5a. Remove
the comment characters to activate the function. If there are several functions, create calls for each
of them.

c. Near the beginning of the source file, a comment box starts with:
/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in step 5a.
If the message contains character data, the generated code calls MQXCNVC; this can be resolved by
binding the service program QMQM/LIBMQM.

6. Compile the source module, EXIT_MOD, as follows:
CRTCMOD MODULE(library/EXIT_MOD) +
SRCFILE(QCSRC) +
TERASPACE(*YES *TSIFC)

7. Create/link the program.
For nonthreaded applications, use the following:

CRTPGM PGM(library/Format) +
MODULE(library/EXIT_MOD) +
BNDSRVPGM(QMQM/LIBMQM) +
ACTGRP(QMQM) +
USRPRF(*USER)

In addition to creating the data-conversion exit for the basic environment, another is required in the
threaded environment. This loadable object must be followed by _R. Use the LIBMQM_R library to
resolve calls to the MQXCNVC. Both loadable objects are required for a threaded environment.

CRTPGM PGM(library/Format_R) +
MODULE(library/EXIT_MOD) +
BNDSRVPGM(QMQM/LIBMQM_R) +
ACTGRP(QMQM) +
USRPRF(*USER)

8. Place the output in the library list for the IBM MQ job. It is recommended that, for production,
data-conversion exit programs be stored in QSYS.

Note:

1. If CVTMQMDTA uses packed structures, all IBM MQ applications must use the _Packed qualifier.
2. Data-conversion exit programs must be reentrant.
3. MQXCNVC is the only MQI call that can be issued from a data-conversion exit.
4. Compile the exit program with the user profile compiler option set to *USER, so that the exit runs

with the authority of the user.
5. Teraspace memory enablement is required for all user exits with IBM MQ for IBM i ; specify

TERASPACE(*YES *TSIFC) in the CRTCMOD and CRTBNDC commands.

374 IBM MQ: Programming

Writing a data-conversion exit program for IBM MQ for z/OS
Information about steps to consider when writing data-conversion exit programs for IBM MQ for z/OS.

Follow these steps:
1. Take the supplied source skeleton CSQ4BAX9 (for non-CICS environments) or CSQ4CAX9 (for CICS)

as your starting point.
2. Run the CSQUCVX utility.
3. Follow the instructions in the prolog of CSQ4BAX9 or CSQ4CAX9 to incorporate the routines

generated by the CSQUCVX utility, in the order that the structures occur in the message that you
want to convert.

4. The utility assumes that the data structures are not packed, that the implied alignment of the data is
honored, and that the structures start on a fullword boundary, with bytes being skipped as required
(as between ID and VERSION in the example in Valid syntax). If the structures are packed, omit the
CMQXCALA macros that are generated. Therefore, consider declaring your structures in such a way
that all fields are named and no bytes are skipped; in the example in Valid syntax, add a field
“MQBYTE DUMMY;” between ID and VERSION.

5. The supplied exit returns an error if the input buffer is shorter than the message format to be
converted. Although the exit converts as many complete fields as possible, the error causes an
unconverted message to be returned to the application. If you want to allow short input buffers to be
converted as far as possible, including partial fields, change the TRUNC= value on the CSQXCDFA
macro to YES: no error is returned, so the application receives a converted message. The application
must handle the truncation.

6. Add any other special processing code that you need.
7. Rename the program to your data format name.
8. Compile and link-edit your program like a batch application program (unless it is for use with CICS

applications). The macros in the code generated by the utility are in the library, thlqual.SCSQMACS.
If the message contains character data, the generated code calls MQXCNVC. If your exit uses this call,
link-edit it with the exit stub program CSQASTUB. The stub is language-independent and
environment-independent. Alternatively, you can load the stub dynamically using the dynamic call
name CSQXCNVC. See “Dynamically calling the IBM MQ stub” on page 433 for more information.
Place the link-edited module in your application load library, and in a data set that is referenced by
the CSQXLIB DD statement of your task procedure started by your channel initiator.

9. If the exit is for use by CICS applications, compile and link-edit it like a CICS application program,
including CSQASTUB if required. Place it in your CICS application program library. Define the
program to CICS in the typical way, specifying EXECKEY(CICS) in the definition.

Note: Although the LE/370 runtime libraries are needed for running the CSQUCVX utility (see step 2),
they are not needed for link-editing or running the data-conversion exit itself (see steps 8 and 9).

See “Writing IMS bridge applications” on page 42 for information about data conversion within the IBM
MQ - IMS bridge.

User exits, API exits, and IBM MQ installable services 375

Writing a data-conversion exit for IBM MQ on UNIX and Linux systems
Information about steps to consider when writing data-conversion exit programs for IBM MQ on UNIX
and Linux systems.

Follow these steps:
1. Name your message format. The name must fit in the Format field of the MQMD, and be in

uppercase, for example, MYFORMAT. The Format name must not have leading blanks. Trailing blanks
are ignored. The object's name must have no more than eight non-blank characters, because the
Format is only eight characters long. Remember to use this name each time that you send a message.
If the data conversion exit is used in a threaded environment, the loadable object must be followed by
_r to indicate that it is a threaded version.

2. Create a structure to represent your message. See Valid syntax for an example.
3. Run this structure through the crtmqcvx command to create a code fragment for your data-conversion

exit.
The functions generated by the crtmqcvx command use macros that assume that all structures are
packed; amend them if this is not the case.

4. Copy the supplied skeleton source file, renaming it to the name of your message format that you set
in step 1. The skeleton source file, and the copy, are read-only.
The skeleton source file is called amqsvfc0.c.

5. On IBM MQ for AIX, a skeleton export file called amqsvfc.exp is also supplied. Copy this file,
renaming it to MYFORMAT.EXP.

6. The skeleton includes a sample header file, amqsvmha.h, in the directory MQ_INSTALLATION_PATH/inc,
where MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.. Make
sure that your include path points to this directory to pick up this file.
The amqsvmha.h file contains macros that are used by the code generated by the crtmqcvx command.
If the structure to be converted contains character data, these macros call MQXCNVC.

7. Find the following comment boxes in the source file and insert code as described:
a. Toward the end of the source file, a comment box starts with:

/* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step 3.
b. Near the middle of the source file, a comment box starts with:

/* Insert calls to the code fragments to convert the format’s */

This is followed by a commented-out call to the function ConverttagSTRUCT.
Change the name of the function to the name of the function that you added in step 7a. Remove
the comment characters to activate the function. If there are several functions, create calls for each
of them.

c. Near the beginning of the source file, a comment box starts with:
/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in step 3.
8. Compile your exit as a shared library, using MQStart as the entry point. To do this, see “Compiling

data-conversion exits on UNIX and Linux systems” on page 377.
9. Place the output in the exit directory. The default exit directory is /var/mqm/exits for 32 bit systems

and /var/mqm/exits64, for 64 bit systems. You can change these directories in the qm.ini or
mqclient.ini file. This path can be set for each queue manager and the exit is only looked for in that
path or paths.

Note:

376 IBM MQ: Programming

1. If crtmqcvx uses packed structures, all IBM MQ applications must be compiled in this way.
2. Data-conversion exit programs must be reentrant.
3. MQXCNVC is the only MQI call that can be issued from a data-conversion exit.

Compiling data-conversion exits on UNIX and Linux systems
Examples of how to compile a data conversion exit on UNIX and Linux systems.

On all platforms, the entry point to the module is MQStart.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

AIX

Compile the exit source code by issuing one of the following commands:

32 bit applications
Non-threaded
cc -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits/MYFORMAT \

MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

Threaded
xlc_r -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits/MYFORMAT_r \

MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

64 bit applications
Non-threaded
cc -q64 -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits64/MYFORMAT \

MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

Threaded
xlc_r -q64 -e MQStart -bE:MYFORMAT.exp -bM:SRE -o /var/mqm/exits64/MYFORMAT_r \

MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

HP-UX Itanium platform

Compile and link the exit source code by issuing one of the following sets of commands:

32-bit applications
Non-threaded

Compile the exit source code:
c89 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

Link the exit object:
ld +b: -b MYFORMAT.o +ee MQStart -o \

/var/mqm/exits/MYFORMAT -L/usr/lib/hpux32
rm MYFORMAT.o

Threaded
Compile the exit source code:
c89 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

Link the exit object:
ld +b: -b MYFORMAT.o +ee MQStart -o \

/var/mqm/exits/MYFORMAT_r -L/usr/lib/hpux32 \
-lpthread

rm MYFORMAT.o

User exits, API exits, and IBM MQ installable services 377

64-bit applications
Non-threaded

Compile the exit source code:
c89 +DD64 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

Link the exit object:
ld -b MYFORMAT.o +ee MQStart \

-o /var/mqm/exits64/MYFORMAT \
-L/usr/lib/hpux64

rm MYFORMAT.o

Threaded
Compile the exit source code:
c89 +DD64 +e +z -c -D_HPUX_SOURCE -o MYFORMAT.o MYFORMAT.c -I MQ_INSTALLATION_PATH/inc

Link the exit object:
ld -b MYFORMAT.o +ee MQStart \

-o /var/mqm/exits64/MYFORMAT_r \
-L/usr/lib/hpux64 -lpthread

rm MYFORMAT.o

Linux

Compile the exit source code by issuing one of the following commands:

31 bit applications
Non-threaded
gcc -m31 -shared -fPIC -o /var/mqm/exits/MYFORMAT MYFORMAT.c \

-I MQ_INSTALLATION_PATH/inc

Threaded
gcc -m31 -shared -fPIC -o /var/mqm/exits/MYFORMAT_r MYFORMAT.c

-I MQ_INSTALLATION_PATH/inc

32 bit applications
Non-threaded
gcc -m32 -shared -fPIC -o /var/mqm/exits/MYFORMAT MYFORMAT.c

-I MQ_INSTALLATION_PATH/inc

Threaded
gcc -m32 -shared -fPIC -o /var/mqm/exits/MYFORMAT_r MYFORMAT.c

-I MQ_INSTALLATION_PATH/inc

64 bit applications
Non-threaded
gcc -m64 -shared -fPIC -o /var/mqm/exits64/MYFORMAT MYFORMAT.c

-I MQ_INSTALLATION_PATH/inc

Threaded
gcc -m64 -shared -fPIC -o /var/mqm/exits64/MYFORMAT_r MYFORMAT.c

-I MQ_INSTALLATION_PATH/inc

Solaris

Compile the exit source code by issuing one of the following commands:

32-bit applications
SPARC platform

378 IBM MQ: Programming

cc -xarch=v8plus -KPIC -mt -G -o /var/mqm/exits/MYFORMAT \
MYFORMAT.c -I MQ_INSTALLATION_PATH/inc -R/usr/lib/32 -lsocket -lnsl -ldl

x86-64 platform
cc -xarch=386 -KPIC -mt -G -o /var/mqm/exits/MYFORMAT \

MYFORMAT.c -I MQ_INSTALLATION_PATH/inc -R/usr/lib/32 -lsocket -lnsl -ldl

64-bit applications
SPARC platform
cc -xarch=v9 -KPIC -mt -G -o /var/mqm/exits64/MYFORMAT \

MYFORMAT.c -I MQ_INSTALLATION_PATH/inc -R/usr/lib/64 -lsocket -lnsl -ldl

x86-64 platform
cc -xarch=amd64 -KPIC -mt -G -o /var/mqm/exits64/MYFORMAT \

MYFORMAT.c -I MQ_INSTALLATION_PATH/inc -R/usr/lib/64 -lsocket -lnsl -ldl

Writing a data-conversion exit for IBM MQ for Windows
Information about steps to consider when writing data-conversion exit programs for IBM MQ for
Windows.

Follow these steps:
1. Name your message format. The name must fit in the Format field of the MQMD. The Format name

must not have leading blanks. Trailing blanks are ignored. The object's name must have no more than
eight non-blank characters, because the Format is only eight characters long.
A .DEF file called amqsvfcn.def is also supplied in the samples directory, MQ_INSTALLATION_PATH\
Tools\C\Samples. MQ_INSTALLATION_PATH is the directory where IBM MQ is installed. Take a copy of
this file and rename it, for example, to MYFORMAT.DEF. Make sure that the name of the DLL being
created and the name specified in MYFORMAT.DEF are the same. Overwrite the name FORMAT1 in
MYFORMAT.DEF with the new format name.
Remember to use this name each time that you send a message.

2. Create a structure to represent your message. See Valid syntax for an example.
3. Run this structure through the crtmqcvx command to create a code fragment for your data-conversion

exit.
The functions generated by the CRTMQCVX command use macros that are written assuming that all
structures are packed; amend them if this is not the case.

4. Copy the supplied skeleton source file, amqsvfc0.c, renaming it to the name of your message format
that you set in step 1.
amqsvfc0.c is in MQ_INSTALLATION_PATH\Tools\C\Samples where MQ_INSTALLATION_PATH is the
directory where IBM MQ is installed. (The default installation directory is C:\Program
Files\IBM\WebSphere MQ.)
The skeleton includes a sample header file amqsvmha.h in the MQ_INSTALLATION_PATH\Tools\C\
include directory. Make sure that your include path points to this directory to pick up this file.
The amqsvmha.h file contains macros that are used by the code generated by the CRTMQCVX
command. If the structure to be converted contains character data, these macros call MQXCNVC.

5. Find the following comment boxes in the source file and insert code as described:
a. Toward the end of the source file, a comment box starts with:

/* Insert the functions produced by the data-conversion exit */

Here, insert the code fragment generated in step 3.
b. Near the middle of the source file, a comment box starts with:

/* Insert calls to the code fragments to convert the format’s */

This is followed by a commented-out call to the function ConverttagSTRUCT.

User exits, API exits, and IBM MQ installable services 379

Change the name of the function to the name of the function that you added in step 5a on page
379. Remove the comment characters to activate the function. If there are several functions, create
calls for each of them.

c. Near the beginning of the source file, a comment box starts with:
/* Insert the function prototypes for the functions produced by */

Here, insert the function prototype statements for the functions added in step 3 on page 379.
6. Create the following command file:

cl -I MQ_INSTALLATION_PATH\Tools\C\Include -Tp \
MYFORMAT.C

MYFORMAT.DEF

where MQ_INSTALLATION_PATH is the directory where IBM MQ is installed.
7. Issue the command file to compile your exit as a DLL file.
8. Place the output in the exit subdirectory below the IBM MQ data directory. The default directory for

installing your exits on 32 bit systems is MQ_DATA_PATH\Exits and for 64 bit systems is
MQ_DATA_PATH\Exits64

The path used to look for the data-conversion exits is given in the registry. The registry folder is:
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\WebSphere MQ\Installation\MQ_INSTALLATION_NAME\Configuration\ClientExitPath\

and the registry key is: ExitsDefaultPath. This path can be set for each queue manager and the exit is
only looked for in that path or paths.

Note:

1. If CRTMQCVX uses packed structures, all IBM MQ applications must be compiled in this way.
2. Data-conversion exit programs must be reentrant.
3. MQXCNVC is the only MQI call that can be issued from a data-conversion exit.

Exit and switch load files on Windows operating systems
The IBM WebSphere MQ for Windows Version 7.5 queue manager processes are 32-bit. As a result, when
using 64-bit applications, some types of exit and XA switch load files also need to have a 32-bit version
available for use by the queue manager. If the 32-bit version of the exit or XA switch load file is required
and is not available, then the relevant API call or command fails.

Two attributes are supported in the qm.ini file for ExitPath. These are ExitsDefaultPath=
MQ_INSTALLATION_PATH\exits and ExitsDefaultPath64= MQ_INSTALLATION_PATH\exits64.
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed. Using these
ensures that the appropriate library can be found. If an exit is used in an IBM MQ cluster, this also
ensures that the appropriate library on a remote system can be found.

The following table lists the different types of Exit and Switch load files and notes whether 32-bit or
64-bit versions, or both, are required, according to whether 32-bit or 64-bit applications are being used:

380 IBM MQ: Programming

File types 32-bit applications 64-bit applications

API-crossing exit 32-bit 32-bit and 64-bit

Data conversion exit 32-bit 64-bit

Server Channel exits (all types) 32-bit 32-bit

Client Channel exits (all types) 32-bit 64-bit

Installable service exit 32-bit 32-bit

Service trace module 32-bit 32-bit and 64-bit

Cluster WLM exit 32-bit 32-bit

Pub/Sub routing exit 32-bit 32-bit

Database switch load files 32-bit 32-bit and 64-bit

External Transaction Manager AX
libraries

32-bit 64-bit

Referencing connection definitions using a pre-connect exit from a
repository
IBM MQ MQI clients can be configured to look up a repository to obtain connection definitions using a
pre-connect exit library.

Introduction

A client application can connect to a queue manager using client channel definition tables (CCDT).
Generally, the CCDT file is located on a central network file server, and have clients referencing it. Since
it is difficult to manage and administer various client applications referencing the CCDT file, a flexible
approach is to store the client definitions in a global repository like an LDAP directory, a WebSphere
Registry and Repository or any other repository. Storing the client connection definitions in a repository
makes managing client connection definitions easier, and applications can access the correct and most
current client connection definitions.

During the MQCONN/X call execution, the IBM MQ MQI client loads an application specified
pre-connect exit library, and invokes an exit function to retrieve connection definitions. The retrieved
connection definitions are then used to establish connection to a queue manager. The details of exit
library and function to invoke are specified in the mqclient.ini configuration file.

Syntax

void MQ_PRECONNECT_EXIT (pExitParms, pQMgrName, ppConnectOpts, pCompCode, pReason);

Parameters

pExitParms
Type: PMQNXP input /output

The PreConnection exit parameter structure.

The structure is allocated and maintained by the caller of the exit.

pQMgrName
Type: PMQCHAR input/output

Name of the queue manager.

User exits, API exits, and IBM MQ installable services 381

On input, this parameter is the filter string supplied to the MQCONN API call through the QMgrName
parameter. This field might be blank, explicit, or contain certain wildcard characters. The field is
changed by the exit. The parameter is NULL when the exit is called with MQXR_TERM.

ppConnectOpts
Type: ppConnectOpts input/output

Options that control the action of MQCONNX.

This is a pointer to an MQCNO connection options structure that controls the action of the
MQCONN API call. The parameter is NULL when the exit is called with MQXR_TERM. The MQI
client always provides an MQCNO structure to the exit, even if it was not originally provided by the
application. If an application provides an MQCNO structure, the client makes a duplicate to pass it to
the exit where it is modified. The client retains the ownership of the MQCNO.

An MQCD referenced through the MQCNO takes precedence over any connection definition
provided through the array. The client uses the MQCNO structure to connect to the queue manager
and the others are ignored.

pCompCode
Type: PMQLONG input/output

Completion code.

Pointer to an MQLONG that receives the exits completion code. It must be one of the following
values:
v MQCC_OK - Successful completion
v MQCC_WARNING - Warning (partial completion)
v MQCC_FAILED - Call failed

pReason
Type: PMQLONG input/output

Reason qualifying pCompCode.

Pointer to an MQLONG that receives the exit reason code. If the completion code is MQCC_OK, the
only valid value is:
v MQRC_NONE - (0, x'000') No reason to report.

If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the reason
code field to any valid MQRC_* value.

C Invocation
void MQ_PRECONNECT_EXIT (&ExitParms, &QMgrName, &pConnectOpts, &CompCode, &Reason);

Parameter

PMQNXP pExitParms /*PreConnect exit parameter structure*/
PMQCHAR pQMgrName /*Name of the queue manager*/
PPMQCNO ppConnectOpts/*Options controlling the action of MQCONNX*/
PMQLONG pCompCode /*Completion code*/
PMQLONG pReason /*Reason qualifying pCompCode*/

382 IBM MQ: Programming

PreConnect stanza of the client configuration file
Use the PreConnect stanza to configure the PreConnect exit in the mqclient.ini file.

Note: The description of each attribute of this stanza indicates which IBM MQ clients can read that
attribute. For a summary table for all IBM MQ MQI client configuration file stanzas, see Which IBM MQ
attributes can be read by each client.

The following attributes can be included in the PreConnect stanza:

Data = <URL>
URL of the repository where connection definitions are stored.

This attribute can be read by C and unmanaged .NET clients.

For example, when using an LDAP server:
Data = ldap://myLDAPServer.com:389/cn=wmq,ou=ibm,ou=com

Function = <myFunc>
Name of the functional entry point into the library that contains the PreConnect exit code.

This attribute can be read by C and unmanaged .NET clients.

The function definition adheres to the PreConnect exit prototype MQ_PRECONNECT_EXIT.

The maximum length of this field is MQ_EXIT_NAME_LENGTH.

Module = <amqldapi>
The name of the module containing the API exit code.

This attribute can be read by C and unmanaged .NET clients.

If this field contains the full path name of the module, it is used as is.

Sequence = <sequence_number>
The sequence in which this exit is called relative to other exits. An exit with a low sequence number
is called before an exit with a higher sequence number. There is no need for the sequence numbering
of exits to be continuous; a sequence of 1, 2, 3 has the same result as a sequence of 7, 42, 1096. This
attribute is an unsigned numeric value.

This attribute can be read by C and unmanaged .NET clients.

Multiple PreConnect stanzas can be defined within the mqclient.ini file. The processing order of
each exit is determined by the Sequence attribute of the stanza.

Related information:
Referencing connection definitions using a pre-connect exit from a repository

Writing and compiling publish exits
You can configure a publish exit at the queue manager to change the contents of a published message
before it is received by subscribers. You can also change the message header, or not deliver the message
to a subscription.

Note: Publish exits are not supported on z/OS.

You can use the publish exit to inspect and alter messages delivered to subscribers:
v Examine the contents of a message published to each subscriber
v Modify the contents of a message published to each subscriber
v Alter the queue to which a message is put
v Stop the delivery of a message to a subscriber

User exits, API exits, and IBM MQ installable services 383

Writing a publish exit

Use the steps in “Writing exits and installable services on UNIX, Linux and Windows” on page 319, to
help you write and compile your exit.

The provider of the publish exit defines what the exit does. The exit, however, must conform to the rules
defined in MQPSXP.

IBM MQ does not provide an implementation of the MQ_PUBLISH_EXIT entry point. It does provide a C
language typedef declaration. Use the typedef to declare the parameters to a user-written exit correctly.
The following example illustrates how to use the typedef declaration:
#include "cmqec.h"

MQ_PUBLISH_EXIT MyPublishExit;

void MQENTRY MyPublishExit(PMQPSXP pExitParms,
PMQPBC pPubContext,
PMQSBC pSubContext)

{
/* C language statements to perform the function of the exit */
}

The publish exit runs within the queue manager process, as a result of the following operations:
v A Publish operation where a message is delivered to one or more subscribers
v A Subscribe operation where one or more retained messages are delivered
v A Subscription Request operation where one or more retained messages are delivered

If the publish exit is called for a connection, the first time that it is called an ExitReason code of
MQXR_INIT is set. Before the connection disconnects after using a publish exit, the exit is called with an
ExitReason code of MQXR_TERM.

If the publish exit is configured, but cannot be loaded when the queue manager is started,
publish/subscribe message operations are inhibited for the queue manager. You must fix the problem or
restart the queue manager before publish/subscribe messaging is re-enabled.

Each IBM MQ connection that requires the publish exit might fail to load or initialize the exit. If the exit
fails to load or initialize, publish/subscribe operations that require the publish exit are disabled for that
connection. The operations fail with the IBM MQ reason code MQRC_PUBLISH_EXIT_ERROR.

The context in which the publish exit is called is the connection by an application to the queue manager.
A user data area is maintained by queue manager for each connection that is performing publish
operations. The exit can retain information in the user data area for each connection.

A publish exit can use some MQI calls. It can only use those MQI calls that manipulate message
properties. The calls are:
v MQBUFMH
v MQCRTMH
v MQDLTMH
v MQDLTMP
v MQMHBUF
v MQINQMP
v MQSETMP

If the publish exit changes the destination queue manager or queue name, no new authority check is
carried out.

384 IBM MQ: Programming

Compiling a publish exit

The publish exit is a dynamically loaded library; it can be thought of as a channel-exit. For information
about compiling exits, see “Writing exits and installable services on UNIX, Linux and Windows” on page
319.

Sample publish exit

The sample exit program is called amqspse0.c. It writes a different message to a log file depending on
whether the exit was called for initialize, publish, or terminate operations. It also demonstrates the use of
the exit user area field to allocate and free storage appropriately.

Configuring publish exits
You must define certain attributes to configure a publish exit.

On Windows and Linux you can use the IBM MQ explorer to define the attributes. The attributes are
defined on the queue manager properties page, under Publish/Subscribe.

To configure the publish exit in the qm.ini file on UNIX and Linux systems, create a stanza called
PublishSubscribe. The PublishSubscribe stanza has the following attributes:

PublishExitPath= [path]|module_name
Module name and path containing the publish exit code. The maximum length of this field is
MQ_EXIT_NAME_LENGTH. The default is no publish exit.

PublishExitFunction= function_name
Name of the function entry point into the module that contains the publish exit code. The maximum
length of this field is MQ_EXIT_NAME_LENGTH.

On IBM i, if a program is used, omit PublishExitFunction.

PublishExitData= string
If the queue manager is calling a publish exit, it passes an MQPSXP structure as input. The data
specified using the PublishExitData attribute is provided in the ExitData field of the structure. The
string can be up to MQ_EXIT_DATA_LENGTH characters in length. The default is 32 blank characters.

Writing and compiling cluster workload exits
Write a cluster workload exit program to customize the workload management of clusters. You might
take the cost of using a channel at different times of day, or message content, into account when routing
messages. These are factors that are not considered by the standard workload management algorithm.

In most cases the workload management algorithm is sufficient for your needs. However, so that you can
provide your own user-exit program to tailor workload management, IBM MQ includes a user exit, the
cluster workload exit.

You might have some particular information about your network or messages that you could use to
influence workload balancing. You might know which are the high-capacity channels or the cheap
network routes, or you might want to route messages depending upon their content. You could decide to
write a cluster workload exit program, or use one supplied by a third party.

The cluster workload exit is called when accessing a cluster queue. It is called by MQOPEN, MQPUT1
and MQPUT.

The target queue manager selected at MQOPEN time is fixed if MQOO_BIND_ON_OPEN is specified. In this
case the exit is run only once.

User exits, API exits, and IBM MQ installable services 385

If the target queue manager is not fixed at MQOPEN time, the target queue manager is chosen at the
time of the MQPUT call. If the target queue manager is not available, or fails while the message is still on
the transmission queue, the exit is called again. A new target queue manager is selected. If the message
channel fails while the message is being transferred, and the message is backed out, a new target queue
manager is selected.

On platforms other than z/OS, the queue manager will load the new cluster workload exit the next time
the queue manager is started.

If the queue manager definition does not contain a cluster workload exit program name, the cluster
workload exit is not called.

Various data are passed to a cluster workload exit in the exit parameter structure, MQWXP:
v The message definition structure, MQMD.
v The message length parameter.
v A copy of the message, or part of the message.

On non-z/OS platforms, if you use CLWLMode=FAST, each operating system process loads its own copy of
the exit. Different connections to the queue manager can cause different copies of the exit to be invoked.
If the exit is run in the default safe mode, CLWLMode=SAFE, a single copy of the exit runs in its own
separate process.

Writing cluster workload exits

z/OS For information about writing cluster workload exits for z/OS, see “Cluster workload exit
programming for IBM MQ for z/OS” on page 388.

For platforms other than z/OS, cluster workload exits must not use MQI calls. In other respects, the rules
for writing and compiling cluster workload exit programs are like the rules that apply to channel exit
programs. Follow the steps in “Writing exits and installable services on UNIX, Linux and Windows” on
page 319, and use the sample program, “Sample cluster workload exit” on page 387 to help write and
compile your exit.

For more information about channel exits, see “Writing channel-exit programs” on page 351.

Configuring cluster workload exits

You name cluster workload exits in the queue manager definition by specifying the cluster workload exit
attribute on the ALTER QMGR command. For example:
ALTER QMGR CLWLEXIT(myexit)

386 IBM MQ: Programming

Related information:
Cluster workload exit call and data structures

Sample cluster workload exit
IBM MQ includes a sample cluster workload exit program. You can copy the sample and use it as a basis
for your own programs.

z/OS IBM MQ for z/OS
The sample cluster workload exit program is supplied in Assembler and in C. The Assembler
version is called CSQ4BAF1 and can be found in the library thlqual.SCSQASMS. The C version is
called CSQ4BCF1 and can be found in the library thlqual.SCSQC37S. thlqual is the target library
high-level qualifier for IBM MQ data sets in your installation.

On platforms other than z/OS
The sample cluster workload exit program is supplied in C and is called amqswlm0.c. It can be
found in:

Table 43. Sample cluster workload exit program location (not z/OS)

Platform Filepath

AIX, HP-UX, Sun Solaris MQ_INSTALLATION_PATH/samp

Windows MQ_INSTALLATION_PATH \Tools\c\Samples

IBM i
The qmqm library

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

This sample exit routes all messages to a particular queue manager, unless that queue manager becomes
unavailable. It reacts to the failure of the queue manager by routing messages to another queue manager.

Indicate which queue manager you want messages to be sent to. Supply the name of the cluster-receiver
channel in the CLWLDATA attribute on the queue-manager definition. For example:
ALTER QMGR CLWLDATA(’ my-cluster-name. my-queue-manager ’)

To enable the exit, supply its full path and name in the CLWLEXIT attribute:

On UNIX and Linux systems:
ALTER QMGR CLWLEXIT(’ path /amqswlm(clwlFunction)’)

On Windows:
ALTER QMGR CLWLEXIT(’ path \amqswlm(clwlFunction)’)

z/OS On z/OS:
ALTER QMGR CLWLEXIT(CSQ4BxF1)

where x is either ’A’ or ’C’, depending on the programming language of the version you are using.

On IBM i:

Enter the MQSC command:

ALTER QMGR CLWLEXIT(’AMQSWLM library ’)

Both the program name and the library name occupy 10 characters and are blank-padded to the right if
necessary. Alternatively, use the CL command:

User exits, API exits, and IBM MQ installable services 387

CHGMQM MQMNAME(qmgrname) CLWLEXIT(’ library /AMQSWLM’)

Now, instead of using the supplied workload management algorithm, IBM MQ calls this exit to route all
messages to your chosen queue manager.

Cluster workload exit programming for IBM MQ for z/OS
Cluster workload exits are invoked as if by a z/OS LINK command. Exits are subject to a number of
stringent programming rules. Avoid using most SVC commands that involve waits, or using a STAE or
ESTAE in a workload exit.

Cluster workload exits are invoked as if by a z/OS LINK in:
v Non-authorized problem program state
v Primary address space control mode
v Non-cross-memory mode
v Non-access register mode
v 31 bit addressing mode
v Storage key 8
v Program Key Mask 8
v TCB key 8

Put the link-edited modules in the data set specified by the CSQXLIB DD statement of the queue manager
address space procedure. The names of the load modules are specified as the workload exit names in the
queue-manager definition.

When writing workload exits for IBM MQ for z/OS, the following rules apply:
v You must write exits in assembler or C. If you use C, it must conform to the C systems programming

environment for system exits, described in the z/OS C/C++ Programming Guide, SC09-4765.
v If using the MQXCLWLN call, link edit with CSQMFCLW, supplied in thlqual.SCSQLOAD.
v Exits are loaded from the non-authorized libraries defined by a CSQXLIB DD statement. Providing

CSQXLIB has DISP=SHR, exits can be updated while the queue manager is running, with the new version
used in the next MQCONN thread the queue manager starts.

v Exits must be reentrant, and capable of running anywhere in virtual storage.
v Exits must reset the environment on return to that at entry.
v Exits must free any storage obtained, or ensure that storage is freed by a subsequent exit invocation.
v No MQI calls are allowed.
v Exits must not use any system services that could cause a wait, because a wait severely degrades the

performance of the queue manager. In general, therefore, avoid an SVC, PC, or I/O.
v Exits must not issue an ESTAE or SPIE, apart from within any subtasks they attach.

Note: There are no absolute restrictions on what you can do in an exit. However, most SVCs involve
waits, so avoid them, except for the following commands:
v GETMAIN / FREEMAIN
v LOAD / DELETE

Do not use ESTAEs and ESPIEs because their error handling might interfere with the error handling
performed by IBM MQ. IBM MQ might not be able to recover from an error, or your exit program might
not receive all the error information.

The system parameter EXITLIM limits the amount of time an exit might run for. The default value for
EXITLIM is 30 seconds. If you see the return code MQRC_CLUSTER_EXIT_ERROR, 2266 X’8DA’ your exit might
be looping. If you think the exit needs more than 30 seconds to complete, increase the value of EXITLIM.

388 IBM MQ: Programming

Building a procedural application

You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.

Building your procedural application on AIX
The AIX publications describe how to build executable applications from the programs that you write.

This topic describes the additional tasks, and the changes to the standard tasks, that you must perform
when building IBM MQ for AIX applications to run under AIX. C, C++, and COBOL are supported. For
information about preparing your C++ programs, see Using C++.

The tasks that you must perform to create an executable application using IBM MQ for AIX vary with the
programming language that your source code is written in. In addition to coding the MQI calls in your
source code, you must add the appropriate language statements to include the IBM MQ for AIX include
files for the language that you are using. Make yourself familiar with the contents of these files. See “IBM
MQ data definition files” on page 72 for a full description.

When you run threaded server or threaded client applications, set the environment variable
AIXTHREAD_SCOPE=S.

Preparing C programs in AIX
This topic contains information about linking libraries necessary to prepare C programs on AIX.

Precompiled C programs are supplied in the MQ_INSTALLATION_PATH/samp/bin directory. Use the ANSI
compiler and run the following commands. For further information about programming 64 bit
applications, see Coding standards on 64-bit platforms.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

For 32-bit applications:
$ xlc_r -o amqsput_32 amqsput0.c -I MQ_INSTALLATION_PATH/inc -LMQ_INSTALLATION_PATH/lib -lmqm

where amqsput0 is a sample program.

For 64-bit applications:
$ xlc_r -q64 -o amqsput_64 amqsput0.c -I MQ_INSTALLATION_PATH/inc -LMQ_INSTALLATION_PATH/lib64 -lmqm

where amqsput0 is a sample program.

If you are using the VisualAge C/C++ compiler for C++ programs you must include the option -q
namemangling=v5 to get all the IBM MQ symbols resolved when linking the libraries.

If you want to use the programs on a machine that has only the IBM MQ MQI client for AIX installed,
recompile the programs to link them with the client library (-lmqic) instead.

Linking libraries

You need the following libraries:
v Link your programs with the appropriate library provided by IBM MQ.

© Copyright IBM Corp. 2007, 2018 389

In a non-threaded environment, link to one of the following libraries:

Library file Program/exit type

libmqm.a Server for C

libmqic.a & libmqm.a Client for C

In a threaded environment, link to one of the following libraries:

Library file Program/exit type

libmqm_r.a Server for C

libmqic_r.a & libmqm_r.a Client for C

For example, to build a simple threaded IBM MQ application from a single compilation unit run the
following commands.
For 32-bit applications:

$ xlc_r -o amqsputc_32_r amqsput0.c -I MQ_INSTALLATION_PATH/inc -LMQ_INSTALLATION_PATH/lib -lmqm_r

where amqsput0 is a sample program.
For 64-bit applications:

$ xlc_r -q64 -o amqsputc_64_r amqsput0.c -I MQ_INSTALLATION_PATH/inc -LMQ_INSTALLATION_PATH/lib64 -lmqm_r

where amqsput0 is a sample program.
If you want to use the programs on a machine that has only the IBM MQ MQI client for AIX installed,
recompile the programs to link them with the client library (-lmqic) instead.

Note:

1. You cannot link to more than one library. That is, you cannot link to both a threaded and a
non-threaded library at the same time.

2. If you are writing an installable service (see the Administering for further information), you need to
link to the libmqmzf.a library in a non-threaded application and to the libmqmzf_r.a library in a
threaded application.

3. If you are producing an application for external coordination by an XA-compliant transaction
manager such as IBM TXSeries, Encina, or BEA Tuxedo, you need to link to the libmqmxa.a (or
libmqmxa64.a if your transaction manager treats the 'long' type as 64 bit) and libmqz.a libraries in a
non-threaded application and to the libmqmxa_r.a (or libmqmxa64_r.a) and libmqz_r.a libraries in
a threaded application.

4. You need to link trusted applications to the threaded IBM MQ libraries. However, only one thread
in a trusted application on IBM MQ on UNIX and Linux systems can be connected at a time.

5. You must link IBM MQ libraries before any other product libraries.

390 IBM MQ: Programming

Preparing COBOL programs in AIX
Use this information when preparing COBOL programs in AIX using IBM COBOL Set and Micro Focus
COBOL.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
v 32 bit COBOL copy books are installed in the following directory:

MQ_INSTALLATION_PATH/inc/cobcpy32

and symbolic links are created in:
MQ_INSTALLATION_PATH/inc

v 64 bit COBOL copy books are installed in the following directory:
MQ_INSTALLATION_PATH/inc/cobcpy64

In the following examples set the COBCPY environment variable to:
MQ_INSTALLATION_PATH/inc/cobcpy32

for 32 bit applications, and:
MQ_INSTALLATION_PATH/inc/cobcpy64

for 64 bit applications.

You need to link your program with one of the following library files:

Library file Program/exit type

libmqmcb.a Server for COBOL (unthreaded application)

libmqmcb_r.a Server for COBOL (threaded application)

libmqicb.a Client for COBOL (unthreaded application

libmqicb_r.a Client for COBOL (threaded application)

You can use the IBM COBOL Set compiler or Micro Focus COBOL compiler depending on the program:
v Programs beginning amqm are suitable for the Micro Focus COBOL compiler, and
v Programs beginning amq0 are suitable for either compiler.

Preparing COBOL programs using IBM COBOL Set for AIX

Sample COBOL programs are supplied with IBM MQ. To compile such a program, enter the appropriate
command from the following list:

32 bit non-threaded server application
$ cob2 -o amq0put0 amq0put0.cbl -L MQ_INSTALLATION_PATH/lib -lmqmcb -qLIB \
-I<COBCPY>

32 bit non-threaded client application
$ cob2 -o amq0put0 amq0put0.cbl -L MQ_INSTALLATION_PATH/lib -lmqicb -qLIB \
-I<COBCPY>

32 bit threaded server application
$ cob2_r -o amq0put0 amq0put0.cbl -qTHREAD -L MQ_INSTALLATION_PATH/lib \
-lmqmcb_r -qLIB -I<COBCPY>

32 bit threaded client application
$ cob2_r -o amq0put0 amq0put0.cbl -qTHREAD -L MQ_INSTALLATION_PATH/lib \
-lmqicb_r -qLIB -I<COBCPY>

Building a procedural application 391

64 bit non-threaded server application
$ cob2 -o amq0put0 amq0put0.cbl -q64 -L MQ_INSTALLATION_PATH/lib - lmqmcb \
-qLIB -I<COBCPY>

64 bit non-threaded client application
$ cob2 -o amq0put0 amq0put0.cbl -q64 -L MQ_INSTALLATION_PATH/lib - lmqicb \
-qLIB -I<COBCPY>

64 bit threaded server application
$ cob2_r -o amq0put0 amq0put0.cbl -q64 -qTHREAD -L MQ_INSTALLATION_PATH/lib \
-lmqmcb_r -qLIB -I<COBCPY>

64 bit threaded client application
$ cob2_r -o amq0put0 amq0put0.cbl -q64 -qTHREAD -L MQ_INSTALLATION_PATH/lib \
-lmqicb_r -qLIB -I<COBCPY>

Preparing COBOL programs using Micro Focus COBOL

Set environment variables before compiling your program as follows:
export COBCPY=<COBCPY>
export LIBPATH=MQ_INSTALLATION_PATH/lib:$LIBPATH

To compile a 32 bit COBOL program using Micro Focus COBOL, enter:
v Server for COBOL
$ cob32 -xvP amqminqx.cbl -L MQ_INSTALLATION_PATH/lib -lmqmcb

v Client for COBOL
$ cob32 -xvP amqminqx.cbl -L MQ_INSTALLATION_PATH/lib -lmqicb

v Threaded Server for COBOL
$ cob32 -xtvP amqminqx.cbl -L MQ_INSTALLATION_PATH/lib -lmqmcb_r

v Threaded Client for COBOL
$ cob32 -xtvP amqminqx.cbl -L MQ_INSTALLATION_PATH/lib -lmqicb_r

To compile a 64 bit COBOL program using Micro Focus COBOL, enter:
v Server for COBOL
$ cob64 -xvP amqminqx.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqmcb

v Client for COBOL
$ cob64 -xvP amqminqx.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqicb

v Threaded Server for COBOL
$ cob64 -xtvP amqminqx.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqmcb_r

v Threaded Client for COBOL
$ cob64 -xtvP amqminqx.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqicb_r

where amqminqx is a sample program

See the Micro Focus COBOL documentation for a description of the environment variables that you need
to set up.

392 IBM MQ: Programming

Preparing CICS application programs in AIX
Use this information when preparing CICS programs in AIX.

Use XA switch modules to link CICS with IBM MQ. For more information on the XA switch structure, see
The XA switch structures.

The sample source code file is provided to enable you to develop the XA switches for other transaction
messages. The name of the switch load module provided is listed inTable 44.

Table 44. Essential code for CICS application programs on AIX: XA initialization routine

Description C (source) C (exec) - add to your
XAD.Stanza

XA initialization routine amqzscix.c amqzsc - CICS for AIX

Use the prebuilt version of the IBM MQ switch load file amqzsc, which is provided with the product.

Always link your C transactions with the threadsafe IBM MQ library libmqm_r.a., and your COBOL
transactions with the COBOL library libmqmcb_r.a..

You can find more information about supporting CICS transactions in the Administering IBM MQ System
Administration Guide.

TXSeries CICS support
IBM MQ on AIX supports TXSeries CICS using the XA interface. Ensure that CICS applications are linked
to the threaded version of the IBM MQ libraries.

You can run CICS programs using IBM COBOL Set for AIX or Micro Focus COBOL. The following
sections describe the difference between running CICS programs on IBM COBOL Set for AIX and Micro
Focus COBOL.

Write IBM MQ programs that are loaded into the same CICS region in either C or COBOL. You cannot
make a combination of C and COBOL MQI calls into the same CICS region. Most MQI calls in the second
language used fail with a reason code of MQRC_HOBJ_ERROR.

Preparing CICS COBOL programs using IBM COBOL Set for AIX

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To use IBM COBOL, follow these steps:
1. Export the following environment variable:

export LDFLAGS="-qLIB -bI:/usr/lpp/cics/lib/cicsprIBMCOB.exp \
-I MQ_INSTALLATION_PATH/inc -I/usr/lpp/cics/include \
-e _iwz_cobol_main \

where LIB is a compiler directive.
2. Translate, compile, and link the program by typing:

cicstcl -l IBMCOB <yourprog>.ccp

Preparing CICS COBOL programs using Micro Focus COBOL

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To use Micro Focus COBOL, follow these steps:

Building a procedural application 393

1. Add the IBM MQ COBOL runtime library module to the runtime library using the following
command:

cicsmkcobol -L/usr/lib/dce -L MQ_INSTALLATION_PATH/lib \
MQ_INSTALLATION_PATH/lib/libmqmcbrt.o -lmqe_r

Note: With cicsmkcobol, IBM MQ does not allow you to make MQI calls in the C programming
language from your COBOL application.

If your existing applications have any such calls, you are recommended to move these functions from
the COBOL applications to your own library, for example, myMQ.so. After moving the functions, do not
include the IBM MQ library libmqmcbrt.o when building the COBOL application for CICS.

Additionally, if your COBOL application does not make any COBOL MQI call, do not link libmqmz_r
with cicsmkcobol.
This creates the Micro Focus COBOL language method file and enables the CICS runtime COBOL
library to call IBM MQ on UNIX and Linux systems.

Note: Run cicsmkcobol only when you install one of the following products:
v New version or release of Micro Focus COBOL
v New version or release of CICS for AIX
v New version or release of any supported database product (for COBOL transactions only)
v New version or release of IBM MQ

2. Export the following environment variable:
COBCPY= MQ_INSTALLATION_PATH/inc export COBCPY

3. Translate, compile, and link the program by typing:
cicstcl -l COBOL -e <yourprog>.ccp

Preparing CICS C programs

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Build CICS C programs using the standard CICS facilities:
1. Export one of the following environment variables:
v LDFLAGS = "-L/ MQ_INSTALLATION_PATH lib -lmqm_r" export LDFLAGS
v USERLIB = "-L MQ_INSTALLATION_PATH lib -lmqm_r" export USERLIB

2. Translate, compile, and link the program by typing:
cicstcl -l C amqscic0.ccs

CICS C sample transaction

Sample C source for a AIX IBM MQ transaction is provided by AMQSCIC0.CCS. The transaction
reads messages from the transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on the
default queue manager and places them onto the local queue with a queue name that is
contained in the transmission header of the message. Any failures are sent to the queue
SYSTEM.SAMPLE.CICS.DLQ. Use the sample MQSC script AMQSCIC0.TST to create these
queues and sample input queues.

394 IBM MQ: Programming

Building your procedural application on HP Integrity NonStop Server
This information describes the additional tasks, and the changes to the standard tasks, that you must
perform when you build IBM MQ client for HP Integrity NonStop Server applications to run under HP
Integrity NonStop Server.

C, COBOL, and pTAL are supported.

OSS and Guardian headers and public libraries
Provides lists of OSS and Guardian headers and public libraries. Listed are OSS headers, OSS public
executable and public import libraries, Guardian headers, and Guardian public executable and public
import libraries.

“OSS headers”

“OSS public executable and public import libraries”

“Guardian headers” on page 396

“Guardian public executable and public import libraries” on page 396

OSS headers

Table 45. OSS headers

Object Location Description

cmqbc.h <mqinstall>/inc IBM MQ C-language header (OSS)

cmqc.h <mqinstall>/inc IBM MQ C-language header (OSS)

cmqfc.h <mqinstall>/inc IBM MQ C-language header (OSS)

cmqec.h <mqinstall>/inc IBM MQ C-language header (OSS)

cmqpsc.h <mqinstall>/inc IBM MQ C-language header (OSS)

cmqxc.h <mqinstall>/inc IBM MQ C-language header (OSS)

cmqzc.h <mqinstall>/inc IBM MQ C-language header (OSS)

cmqcobol.cpy <mqinstall>/inc IBM MQ COBOL copybook (OSS)

cmqbt.tal <mqinstall>/inc IBM MQ pTAL header (OSS)

cmqcft.tal <mqinstall>/inc IBM MQ pTAL header (OSS)

cmqpst.tal <mqinstall>/inc IBM MQ pTAL header (OSS)

cmqt.tal <mqinstall>/inc IBM MQ pTAL header (OSS)

cmqxt.tal <mqinstall>/inc IBM MQ pTAL header (OSS)

OSS public executable and public import libraries

Building a procedural application 395

Table 46. OSS public executable and public import libraries

Object Location Description

libmqic.so <mqinstall>/bin IBM MQ public executable library
(OSS unthreaded)

libmqic_r.so <mqinstall>/bin IBM MQ public executable library
(OSS multi-threaded)

libmqic.so <mqinstall>/lib IBM MQ public import library (OSS
unthreaded)

libmqic_r.so <mqinstall>/lib IBM MQ public import library (OSS
multi-threaded)

mqicb <mqinstall>/lib IBM MQ public import library for
COBOL (OSS)

Guardian headers

Table 47. Guardian headers

Object Location Description

cmqbch <mqinstall>/inc/G IBM MQ C-language header
(Guardian)

cmqch <mqinstall>/inc/G IBM MQ C-language header
(Guardian)

cmqfch <mqinstall>/inc/G IBM MQ C-language header
(Guardian)

cmqech <mqinstall>/inc/G IBM MQ C-language header
(Guardian)

cmqpsch <mqinstall>/inc/G IBM MQ C-language header
(Guardian)

cmqxch <mqinstall>/inc/G IBM MQ C-language header
(Guardian)

cmqzch <mqinstall>/inc/G IBM MQ C-language header
(Guardian)

cmqcobol <mqinstall>/inc/G IBM MQ COBOL copybook
(Guardian)

cmqbt <mqinstall>/inc/G IBM MQ pTAL header (Guardian)

cmqcft <mqinstall>/inc/G IBM MQ pTAL header (Guardian)

cmqpst <mqinstall>/inc/G IBM MQ pTAL header (Guardian)

cmqt <mqinstall>/inc/G IBM MQ pTAL header (Guardian)

cmqxt <mqinstall>/inc/G IBM MQ pTAL header (Guardian)

Guardian public executable and public import libraries

396 IBM MQ: Programming

Table 48. Guardian public executable and public import libraries

Object Location Description

mqic <mqinstall>/bin/G IBM MQ public executable library
(Guardian)

mqicb <mqinstall>/lib/G IBM MQ public import library for
COBOL (Guardian)

Preparing C programs in HP Integrity NonStop Server
This topic contains information to consider when you are preparing C programs in HP Integrity NonStop
Server together with examples of the commands you use when you are building applications when you
are using the OSS C compiler and when you are using the Guardian C compiler.

Precompiled C programs are supplied in the MQ_INSTALLATION_PATH/opt/mqm/samp/bin directory. To build
a sample from source code, use the c89 compiler.

You must link your programs with the appropriate library provided by IBM MQ. The following table lists
the libraries that you must link to when you are preparing C programs on HP Integrity NonStop Server.

Table 49. . HP Integrity NonStop Server link libraries

Library Description

libmqic.so OSS unthreaded

libmqic_r.so OSS multi-threaded

mqic Guardian

Multi-threaded native IBM MQ applications must use the Posix User Threads (PUT) feature. There is no
support for Standard Posix Threads (SPT) in this product.

Building applications using the OSS C compiler

This section contains examples of the commands that are used to build programs that are targeted for
either OSS or Guardian when you are using the OSS compiler.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

The following example builds an unthreaded C client OSS application:
c89 -Wsystype=oss -o amqsputc amqsput0.c -IMQ_INSTALLATION_PATH/opt/mqm/inc
-LMQ_INSTALLATION_PATH/opt/mqm/lib -lmqic

The following example builds a multi-threaded C client OSS application:
c89 -Wsystype=oss -D_PUT_MODEL_ -o amqsputc amqsput0.c -IMQ_INSTALLATION_PATH/opt/mqm/inc
-LMQ_INSTALLATION_PATH/opt/mqm/lib -lmqic_r -lput

The following example builds a Guardian C client application:
c89 -Wsystype=guardian -o /G/vol/subvol/amqsputc amqsput0.c -IMQ_INSTALLATION_PATH/opt/mqm/inc
-LMQ_INSTALLATION_PATH/opt/mqm/lib/G -lmqic

Building applications using the Guardian C compiler

This section contains examples of the commands that are used to build programs that are targeted for
Guardian when you are using the Guardian compiler.

MQ_INSTALLATION_PATH represents the Guardian volume and subvolume in which IBM MQ is installed.

Building a procedural application 397

The following example builds a Guardian C client application:
CCOMP /in AMQSPUT0/ AMQSPUTC;&

runnable,systype guardian,nolist,&
ssv0 "$system.system",&
ssv1 "MQINSTALLATION_SUBVOL",&
ld(-LMQINSTALLATION_SUBVOL -lmqic)

Preparing COBOL programs
This topic contains information to consider when you are preparing C programs for the IBM MQ client
for HP Integrity NonStop Server . It contains examples of the commands you use when you are building
applications when you are using the OSS ECOBOL compiler and when you are using the Guardian
ECOBOL compiler.

To build a COBOL sample from source code, use the ECOBOL compiler.

The following table lists the libraries that are needed when you are preparing COBOL programs on HP
Integrity NonStop Server . You must link your programs with the appropriate library provided by IBM
MQ .

Table 50. . HP Integrity NonStop Server link libraries

Library Description

libmqic.so OSS unthreaded

mqic Guardian

When you run a COBOL application that connects to a queue manager, you must first set the
SAVE-ENVIRONMENT variable to ON. To set the SAVE-ENVIRONMENT variable to ON:
v For OSS, enter the following command:

export SAVE-ENVIRONMENT=ON

v For Guardian, enter the following command:
param SAVE-ENVIRONMENT ON

If you do not set the SAVE-ENVIRONMENT variable to ON, when the application attempts to connect to a
queue manager, it fails with reason code 2058 (080A) (RC2058): MQRC_Q_MGR_NAME_ERROR.

Building applications using the OSS ECOBOL compiler

This section contains examples of the commands that are used to build programs that are targeted for
either OSS or Guardian when you are using the OSS ECOBOL compiler.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

The following example builds a COBOL client OSS application:
ecobol -Wsystype=oss

-Wcobol="ansi;port"
-Wcobol="consult MQ_INSTALLATION_PATH/opt/mqm/lib/mqicb"
-Wcopylib=MQ_INSTALLATION_PATH/opt/mqm/inc/cmqcobol.cpy
-LMQ_INSTALLATION_PATH/opt/mqm/lib -lmqic
-o amq0put0
MQ_INSTALLATION_PATH/opt/mqm/samp/amq0put0.cbl

The following example builds a COBOL client Guardian application:
ecobol -Wsystype=guardian

-Wcobol="ansi;port;save all"
-Wcobol="consult MQ_INSTALLATION_PATH/opt/mqm/lib/mqicb"
-Wcopylib=MQ_INSTALLATION_PATH/opt/mqm/inc/cmqcobol.cpy

398 IBM MQ: Programming

-LMQ_INSTALLATION_PATH/opt/mqm/lib/G -lmqic
-o amq0put0
MQ_INSTALLATION_PATH/opt/mqm/samp/amq0put0.cbl

Building applications using the Guardian ECOBOL compiler

This section contains examples of the commands that are used to build programs that are targeted for
Guardian when you are using the Guardian ECOBOL compiler.

MQ_INSTALLATION_SUBVOL represents the Guardian volume and subvolume in which IBM MQ is installed.

The following example builds a COBOL client Guardian application:
ECOBOL /in MQSPUTL/ MQSPUT,MQINSTALLATION_SUBVOL.cmqcobol;

call-shared;ansi;port;save all;nolist;runnable;
consult MQINSTALLATION_SUBVOL.mqicb;
eld(-LMQINSTALLATION_SUBVOL -lmqic)

Preparing pTAL programs
Learn to build pTAL programs for the IBM MQ client on the HP Integrity NonStop Server platform.

To build a pTAL sample from source code, use the EPTAL compiler.

Note:

v pTAL IBM MQ applications must use a main routine that is written in either the C or COBOL
languages.

v pTAL applications can be built only in Guardian.

The following table lists the library that is needed when you are preparing pTAL programs on HP
Integrity NonStop Server. You must link your programs with the appropriate library provided by IBM
MQ.

Table 51. . HP Integrity NonStop Server link library

Library Description

mqic Guardian

Building applications using the Guardian EPTAL compiler

This section contains examples of the commands that are used to build programs that are targeted for
Guardian when you are using the Guardian EPTAL compiler.

MQINSTALLATION_SUBVOL represents the Guardian volume and subvolume in which IBM MQ is installed.

pTAL IBM MQ applications must use a main routine that is written in either the C or COBOL languages.

The following example builds a pTAL client Guardian application:
ASSIGN SSV0, $SYSTEM.SYSTEM
ASSIGN SSV1, MQINSTALLATION_SUBVOL

EPTAL /in MQINSTALLATION_SUBVOL.MQSPUTT/ MQSPUTO;nolist

CCOMP /in MQINSTALLATION_SUBVOL.MQSPTMC/ MQSPUT;
runnable,systype guardian,extensions,nolist,
ssv0 "$system.system",
ssv1 "MQINSTALLATION_SUBVOL",
eld(MQSPUTO -LMQINSTALLATION_SUBVOL -lmqic)

Building a procedural application 399

Building your procedural application on HP-UX
This information describes the additional tasks, and the changes to the standard tasks, that you must
perform when building IBM MQ for HP-UX applications to run under HP-UX.

C, C++, and COBOL are supported. For information about preparing your C++ programs, see Using C++.

The tasks that you must perform to create an executable application using IBM MQ for HP-UX vary with
the programming language that your source code is written in. In addition to coding the MQI calls in
your source code, you must add the appropriate language statements to include the IBM MQ for HP-UX
include files for the language that you are using. Make yourself familiar with the contents of these files.
See “IBM MQ data definition files” on page 72 for a full description.

Throughout this topic, we use the backslash (\) character to split long commands over more than one
line. Do not enter this character; enter each command as a single line.

Preparing C programs in HP-UX
This topic contains information to consider when preparing C programs in HP-UX; with examples for the
IA64 (IPF) platform.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Work in your normal environment. Precompiled C programs are supplied in the MQ_INSTALLATION_PATH/
samp/bin directory.

For further information about programming 64 bit applications see Coding standards on 64-bit platforms.

To use SSL, IBM MQ MQI clients on HP-UX must be built using POSIX threads.

Some examples to consider are:
v “IA64 (IPF) platform”
v “Linking libraries” on page 402

IA64 (IPF) platform

Build examples of amqsput0, cliexit, and srvexit on IA64(IPF) platform.

The following example builds the sample program amqsput0 as a client application in a non-threaded 32
bit environment:
c89 -Wl,+b,: +e -D_HPUX_SOURCE -o amqsputc_32 amqsput0.c -I MQ_INSTALLATION_PATH/inc

-L MQ_INSTALLATION_PATH/lib -L/usr/lib/hpux32 -lmqic

The following example builds the sample program amqsput0 as a client application in a threaded 32 bit
environment:
c89 -mt -Wl,+b,: +e -D_HPUX_SOURCE -o amqsputc_32_r amqsput0.c -I MQ_INSTALLATION_PATH/inc

-L MQ_INSTALLATION_PATH/lib -L/usr/lib/hpux32 -lmqic_r -lpthread

The following example builds the sample program amqsput0 as a client application in a non-threaded 64
bit environment:
c89 +DD64 +e -D_HPUX_SOURCE -o amqsputc_64 amqsput0.c -I MQ_INSTALLATION_PATH/inc

-L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -lmqic

The following example builds the sample program amqsput0 as a client application in a threaded 64 bit
environment:

400 IBM MQ: Programming

c89 -mt +DD64 +e -D_HPUX_SOURCE -o amqsputc_64_r amqsput0.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -lmqic_r -lpthread

The following example builds the sample program amqsput0 as a server application in a non-threaded 32
bit environment:
c89 -Wl,+b,: +e -D_HPUX_SOURCE -o amqsput_32 amqsput0.c -I MQ_INSTALLATION_PATH/inc

-L MQ_INSTALLATION_PATH/lib -L/usr/lib/hpux32 -lmqm

The following example builds the sample program amqsput0 as a server application in a threaded 32 bit
environment:
c89 -mt -Wl,+b,: +e -D_HPUX_SOURCE -o amqsput_32_r amqsput0.c -I MQ_INSTALLATION_PATH/inc

-L MQ_INSTALLATION_PATH/lib -L/usr/lib/hpux32 -lmqm_r -lpthread

The following example builds the sample program amqsput0 as a server application in a non-threaded 64
bit environment:
c89 +DD64 +e -D_HPUX_SOURCE -o amqsput_64 amqsput0.c -I MQ_INSTALLATION_PATH/inc

-L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -lmqm

The following example builds the sample program amqsput0 as a server application in a threaded 64 bit
environment:
c89 -mt +DD64 +e -D_HPUX_SOURCE -o amqsput_64_r amqsput0.c -I MQ_INSTALLATION_PATH/inc

-L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -lmqm_r -lpthread

The following example builds a client exit cliexit in a non-threaded 32 bit environment:
c89 +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I MQ_INSTALLATION_PATH/inc
ld +b: -b cliexit.o +ee MQStart -o /var/mqm/exits/cliexit_32 -L MQ_INSTALLATION_PATH/lib \
-L/usr/lib/hpux32 -lmqic

The following example builds a client exit cliexit in a threaded 32 bit environment:
c89 -mt +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I MQ_INSTALLATION_PATH/inc
ld +b: -b cliexit.o +ee MQStart -o /var/mqm/exits/cliexit_32_r -L MQ_INSTALLATION_PATH/lib \
-L/usr/lib/hpux32 -lmqic_r -lpthread

The following example builds a client exit cliexit in a non-threaded 64 bit environment:
c89 +DD64 +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I MQ_INSTALLATION_PATH/inc
ld -b cliexit.o +ee MQStart -o /var/mqm/exits64/cliexit_64 \
-L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -lmqic

The following example builds a client exit cliexit in a threaded 64 bit environment:
c89 -mt +DD64 +e +z -c -D_HPUX_SOURCE -o cliexit.o cliexit.c -I MQ_INSTALLATION_PATH/inc
ld -b cliexit.o +ee MQStart -o /var/mqm/exits/cliexit_64_r \
-L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -lmqic_r -lpthread

The following example builds a server exit srvexit in a non-threaded 32 bit environment:
c89 +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I MQ_INSTALLATION_PATH/inc
ld +b: -b srvexit.o +ee MQStart -o /var/mqm/exits/srvexit_32 -L MQ_INSTALLATION_PATH/lib \
-L/usr/lib/hpux32 -lmqm

The following example builds a server exit srvexit in a threaded 32 bit environment:
c89 -mt +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I MQ_INSTALLATION_PATH/inc
ld +b: -b srvexit.o +ee MQStart -o /var/mqm/exits/srvexit_32_r -L MQ_INSTALLATION_PATH/lib \
-L/usr/lib/hpux32 -lmqm_r -lpthread

The following example builds a server exit srvexit in a non-threaded 64 bit environment:
c89 +DD64 +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I MQ_INSTALLATION_PATH MQ_INSTALLATION_PATH/inc
ld -b srvexit.o +ee MQStart -o /var/mqm/exits64/srvexit_64 \
-L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -lmqm

Building a procedural application 401

The following example builds a server exit srvexit in a threaded 64 bit environment:
c89 -mt +DD64 +e +z -c -D_HPUX_SOURCE -o srvexit.o srvexit.c -I MQ_INSTALLATION_PATH/inc
ld -b srvexit.o +ee MQStart -o /var/mqm/exits/srvexit_64_r \
-L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -lmqm_r -lpthread

Linking libraries

You need to link your programs with one of the libraries provided by IBM MQ.

The following table shows which library to use in different environments

Hardware platform Threaded or non-threaded
environment

Program/exit type Library file

IA64 (IPF) Threaded Server & Client for C libmqm_r.so

IA64 (IPF) Threaded Client for C libmqic_r.so

IA64 (IPF) Non-threaded Server & Client for C libmqm.so

IA64 (IPF) Non-threaded Client for C libmqic.so

Note:

1. You cannot link to more than one library. That is, you cannot link to both a threaded and a
non-threaded library at the same time.

2. If you are writing an installable service (see the Administering for further information), you need to
link to the libmqmzf.sl library.

3. If you are producing an application for external coordination by an XA-compliant transaction
manager such as IBM TXSeries Encina, or BEA Tuxedo, you need to link to the libmqmxa.sl (or
libmqmxa64.sl if your transaction manager treats the 'long' type as 64 bit) and libmqz.sl libraries in a
non-threaded application and to the libmqmxa_r.sl (or libmqmxa64_r.sl) and libmqz_r.sl libraries in
a threaded application.

4. You must link IBM MQ libraries before any other product libraries.

Preparing COBOL programs in HP-UX
Learn about preparing COBOL programs in HP-UX, using Micro Focus Server Express with IBM MQ on
the IA64 (IPF) platform, and running programs in the IBM MQ MQI client environment.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Usage notes:

1. 32 bit COBOL copy books are installed in the following directory:
MQ_INSTALLATION_PATH/inc/cobcpy32

and symbolic links are created in:
MQ_INSTALLATION_PATH/inc

2. 64 bit COBOL copy books are installed in the following directory:
MQ_INSTALLATION_PATH/inc/cobcpy64

3. In the following examples set COBCPY to:
MQ_INSTALLATION_PATH/inc/cobcpy32

for 32 bit applications, and:
MQ_INSTALLATION_PATH/inc/cobcpy64

for 64 bit applications.

402 IBM MQ: Programming

Compile the programs using the Micro Focus compiler. The copy files that declare the structures are in
MQ_INSTALLATION_PATH/inc:

$ export LIB= MQ_INSTALLATION_PATH/lib:$LIB
$ export COBCPY="<COBCPY>"

Compiling 32 bit programs:
$ cob32 -xv amqsput.cbl -L MQ_INSTALLATION_PATH/lib -lmqmcb Server for COBOL
$ cob32 -xv amqsput.cbl -L MQ_INSTALLATION_PATH/lib -lmqicb Client for COBOL
$ cob32 -xtv amqsput.cbl -L MQ_INSTALLATION_PATH/lib -lmqmcb_r Threaded Server for COBOL
$ cob32 -xtv amqsput.cbl -L MQ_INSTALLATION_PATH/lib -lmqicb_r Threaded Client for COBOL

Compiling 64 bit programs:
$ cob64 -xv amqsput.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqmcb Server for COBOL
$ cob64 -xv amqsput.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqicb Client for COBOL
$ cob64 -xtv amqsput.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqmcb_r Threaded Server for COBOL
$ cob64 -xtv amqsput.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqicb_r Threaded Client for COBOL

where amqsput is a sample program

Ensure that you have specified adequate runtime stack sizes; 16 KB is the recommended minimum.

You need to link your programs with the appropriate library provided by IBM MQ. The following table
shows which library to use in different environments

Hardware platform Program/exit type Library file

IA64 (IPF) Server for COBOL libmqmcb.so

IA64 (IPF) Client for COBOL libmqicb.so

IA64 (IPF) Threaded applications libmqmcb_r.so

Using Micro Focus Server Express with IBM MQ on the IA64 (IPF) platform

See “Address Space models supported by IBM MQ for HP-UX on IA64 (IPF)” on page 405 for details on
using Micro Focus Server Express in conjunction with IBM MQ on the HP/IPF platform.

Programs to run in the IBM MQ MQI client environment

If you are using LU 6.2 to connect your MQI client to a server, link your application to libsna.a, part of
the SNAplusAPI product. Use the -lV3 and -lstr options on your compile and link command.
v The -lV3 option gives your program access to the AT&T signaling library (the SNAplusAPI uses AT&T

signals)
v The -lstr option links your program to the streams component

Building a procedural application 403

Preparing CICS programs in HP-UX
Learn to build CICS transaction programs in HP-UX.

To build the sample CICS transaction, amqscic0.ccs, run the following command:
$ export USERLIB="-lmqm_r"
$ cicstcl -l C amqscic0.ccs

An XA switch module is provided to enable you to link CICS with IBM MQ:

Table 52. Essential code for CICS applications (HP-UX)

Description C (source) C (exec)

XA initialization routine amqzscix.c amqzsc

You can find more information about supporting CICS transactions in the Administering.

TXSeries CICS support
IBM MQ on HP-UX supports TXSeries CICS using the XA interface. Ensure that CICS applications are
linked to the threaded version of the MQ libraries.

Write IBM MQ programs that are loaded into the same CICS region in either C or COBOL. You cannot
make a combination of C and COBOL MQI calls into the same CICS region. Most MQI calls in the second
language used fail with a reason code of MQRC_HOBJ_ERROR.

CICS C sample transaction

Sample C source for a CICS IBM MQ transaction is provided by AMQSCIC0.CCS. The transaction reads
messages from the transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on the default queue
manager and places them onto the local queue with the queue name that is contained in the transmission
header of the message. Any failures are sent to the queue SYSTEM.SAMPLE.CICS.DLQ. Use the sample
MQSC script AMQSCIC0.TST to create these queues and sample input queues.

Preparing CICS COBOL programs using Micro Focus COBOL

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To use Micro Focus COBOL, follow these steps:
1. Add the IBM MQ COBOL runtime library module to the runtime library using the following

command:
cicsmkcobol -L/usr/lib/dce -L MQ_INSTALLATION_PATH/lib \

MQ_INSTALLATION_PATH/lib/libmqmcbrt.o -lmqe_r

Note: With cicsmkcobol, IBM MQ does not allow you to make MQI calls in the C programming
language from your COBOL application.

If your existing applications have any such calls, you are recommended to move these functions from
the COBOL applications to your own library, for example, myMQ.so. After moving these functions do
not include the IBM MQ library libmqmcbrt.o when building the COBOL application for CICS.

Additionally, if your COBOL application does not make any COBOL MQI call, do not link libmqmz_r
with cicsmkcobol.
This creates the Micro Focus COBOL language method file and enables the CICS runtime COBOL
library to call IBM MQ on UNIX and Linux systems.

Note: Run cicsmkcobol only when you install one of the following products:

404 IBM MQ: Programming

v New version or release of Micro Focus COBOL
v New version or release of CICS for HP-UX
v New version or release of any supported database product (for COBOL transactions only)
v New version or release of IBM MQ

2. Export the following environment variable:
COBCPY= MQ_INSTALLATION_PATH/inc export COBCPY

3. Translate, compile, and link the program by typing:
cicstcl -l COBOL -e <yourprog>.ccp

Address Space models supported by IBM MQ for HP-UX on IA64 (IPF)
The HP-UX provides several address space models that can be exploited by IBM MQ applications.

HP-UX supports two Address Space models:
v MGAS - Mostly Global Address space (this is the default and is used by IBM MQ)
v MPAS - Mostly Private Address space

Applications which connect to IBM MQ can use either the MGAS or MPAS address space models.
Applications built using the MPAS model that connect to IBM MQ using shared memory might incur a
minor performance cost due to the inefficiency in mapping the shared memory pages used by IBM MQ
into the virtual address space of the MPAS program.

COBOL applications built using Micro Focus Server Express use the MPAS model by default.

You can use the chatr program to check and change the addressing model used by a program.

If you encounter problems connecting to IBM MQ from 32-bit MPAS programs, consider using the MGAS
addressing model, or building your application as a 64-bit MPAS application rather than a 32-bit MPAS
application.

More details on the MGAS and MPAS address space models can be found in the HP-UX documentation.

Building your procedural application on Linux
This information describes the additional tasks, and the changes to the standard tasks, that you must
perform when building IBM MQ for Linux applications to run.

C and C++ are supported. For information about preparing your C++ programs, see Using C++.

Preparing C programs in Linux
Precompiled C programs are supplied in the MQ_INSTALLATION_PATH/samp/bin directory. To build a
sample from source code, use the gcc compiler.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Work in your normal environment. For further information about programming 64 bit applications, see
Coding standards on 64-bit platforms.

Linking libraries

The following tables lists the libraries that are needed when preparing C programs on Linux.
v You need to link your programs with the appropriate library provided by IBM MQ.

In a non-threaded environment, link to one of the following libraries:

Building a procedural application 405

Library file Program/exit type

libmqm.so Server for C

libmqic.so & libmqm.so Client for C

In a threaded environment, link to one of the following libraries:

Library file Program/exit type

libmqm_r.so Server for C

libmqic_r.so & libmqm_r.so Client for C

Note:

1. You cannot link to more than one library. That is, you cannot link to both a threaded and a
non-threaded library at the same time.

2. If you are writing an installable service (see the Administering for further information), you need to
link to the libmqmzf.so library.

3. If you are producing an application for external coordination by an XA-compliant transaction
manager such as IBM TXSeries Encina, or BEA Tuxedo, you need to link to the libmqmxa.so (or
libmqmxa64.so if your transaction manager treats the 'long' type as 64 bit) and libmqz.so libraries in
a non-threaded application and to the libmqmxa_r.so (or libmqmxa64_r.so) and libmqz_r.so
libraries in a threaded application.

4. You must link IBM MQ libraries before any other product libraries.

Building 31-bit applications
This topic contains examples of the commands used to build 31-bit programs in various environments.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

C client application, 31-bit, non-threaded
gcc -m31 -o famqsputc_32 amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath=MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -lmqic

C client application, 31-bit, threaded
gcc -m31 -o amqsputc_32_r amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath=MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -lmqic_r -lpthread

C server application, 31-bit, non-threaded
gcc -m31 -o amqsput_32 amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath=MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -lmqm

C server application, 31-bit, threaded
gcc -m31 -o amqsput_32_r amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath=MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -lmqm_r -lpthread

C++ client application, 31-bit, non-threaded
g++ -m31 -fsigned-char -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqc23gl
-limqb23gl -lmqic

C++ client application, 31-bit, threaded
g++ -m31 -fsigned-char -o imqsputc_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqc23gl_r
-limqb23gl_r -lmqic_r -lpthread

C++ server application, 31-bit, non-threaded
g++ -m31 -fsigned-char -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqs23gl
-limqb23gl -lmqm

406 IBM MQ: Programming

C++ server application, 31-bit, threaded
g++ -m31 -fsigned-char -o imqsput_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqs23gl_r
-limqb23gl_r -lmqm_r -lpthread

C client exit, 31-bit, non-threaded
gcc -m31 -shared -fPIC -o /var/mqm/exits/cliexit_32 cliexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib
-Wl,-rpath=/usr/lib -lmqic

C client exit, 31-bit, threaded
gcc -m31 -shared -fPIC -o /var/mqm/exits/cliexit_32_r cliexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib
-Wl,-rpath=/usr/lib -lmqic_r -lpthread

C server exit, 31-bit, non-threaded
gcc -m31 -shared -fPIC -o /var/mqm/exits/srvexit_32 srvexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib
-Wl,-rpath=/usr/lib -lmqm

C server exit, 31-bit, threaded
gcc -m31 -shared -fPIC -o /var/mqm/exits/srvexit_32_r srvexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib
-Wl,-rpath=/usr/lib -lmqm_r -lpthread

Building 32-bit applications
This topic contains examples of the commands used to build 32-bit programs in various environments.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

C client application, 32-bit, non-threaded
gcc -m32 -o amqsputc_32 amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath=MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -lmqic

C client application, 32-bit, threaded
gcc -m32 -o amqsputc_32_r amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath=MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -lmqic_r -lpthread

C server application, 32-bit, non-threaded
gcc -m32 -o amqsput_32 amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath=MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -lmqm

C server application, 32-bit, threaded
gcc -m32 -o amqsput_32_r amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath=MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -lmqm_r -lpthread

C++ client application, 32-bit, non-threaded
g++ -m32 -fsigned-char -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqc23gl -limqb23gl -lmqic

C++ client application, 32-bit, threaded
g++ -m32 -fsigned-char -o imqsputc_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqc23gl_r -limqb23gl_r -lmqic_r -lpthread

C++ server application, 32-bit, non-threaded
g++ -m32 -fsigned-char -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqs23gl -limqb23gl -lmqm

C++ server application, 32-bit, threaded
g++ -m32 -fsigned-char -o imqsput_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

Building a procedural application 407

C client exit, 32-bit, non-threaded
gcc -m32 -shared -fPIC -o /var/mqm/exits/cliexit_32 cliexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib
-Wl,-rpath=/usr/lib -lmqic

C client exit, 32-bit, threaded
gcc -m32 -shared -fPIC -o /var/mqm/exits/cliexit_32_r cliexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib
-Wl,-rpath=/usr/lib -lmqic_r -lpthread

C server exit, 32-bit, non-threaded
gcc -m32 -shared -fPIC -o /var/mqm/exits/srvexit_32 srvexit.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib
-Wl,-rpath=/usr/lib -lmqm

C server exit, 32-bit, threaded
gcc -m32 -shared -fPIC -o /var/mqm/exits/srvexit_32_r srvexit.c
I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib
-Wl,-rpath=/usr/lib -lmqm_r -lpthread

Building 64-bit applications
This topic contains examples of the commands used to build 64-bit programs in various environments.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

C client application, 64-bit, non-threaded
gcc -m64 -o amqsputc_64 amqsput0.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -lmqic

C client application, 64-bit, threaded
gcc -m64 -o amqsputc_64_r amqsput0.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -lmqic_r
-lpthread

C server application, 64-bit, non-threaded
gcc -m64 -o amqsput_64 amqsput0.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -lmqm

C server application, 64-bit, threaded
gcc -m64 -o amqsput_64_r amqsput0.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -lmqm_r
-lpthread

C++ client application, 64-bit, non-threaded
g++ -m64 -fsigned-char -o imqsputc_64 imqsput.cpp
-I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqc23gl -limqb23gl -lmqic

C++ client application, 64-bit, threaded
g++ -m64 -fsigned-char -o imqsputc_64_r imqsput.cpp
-I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqc23gl_r -limqb23gl_r -lmqic_r -lpthread

C++ server application, 64-bit, non-threaded
g++ -m64 -fsigned-char -o imqsput_64 imqsput.cpp
-I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=/usr/lib64 -limqs23gl -limqb23gl -lmqm

408 IBM MQ: Programming

C++ server application, 64-bit, threaded
g++ -m64 -fsigned-char -o imqsput_64_r imqsput.cpp
-I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=/usr/lib64 -limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

C client exit, 64-bit, non-threaded
gcc -m64 -shared -fPIC -o /var/mqm/exits64/cliexit_64 cliexit.c
-I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=/usr/lib64 -lmqic

C client exit, 64-bit, threaded
gcc -m64 -shared -fPIC -o /var/mqm/exits64/cliexit_64_r cliexit.c
-I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=/usr/lib64 -lmqic_r -lpthread

C server exit, 64-bit, non-threaded
gcc -m64 -shared -fPIC -o /var/mqm/exits64/srvexit_64 srvexit.c
-I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=/usr/lib64 -lmqm

C server exit, 64-bit, threaded
gcc -m64 -shared -fPIC -o /var/mqm/exits64/srvexit_64_r srvexit.c
-I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=MQ_INSTALLATION_PATH/lib64
-Wl,-rpath=/usr/lib64 -lmqm_r -lpthread

Preparing COBOL programs in Linux
Learn about preparing COBOL programs in Linux and preparing COBOL programs using Micro Focus
COBOL.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
1. 32 bit COBOL copy books are installed in the following directory:

MQ_INSTALLATION_PATH/inc/cobcpy32

and symbolic links are created in:
MQ_INSTALLATION_PATH/inc

2. On 64 bit platforms, 64 bit COBOL copy books are installed in the following directory:
MQ_INSTALLATION_PATH/inc/cobcpy64

3. In the following examples set COBCPY to:
MQ_INSTALLATION_PATH/inc/cobcpy32

for 32 bit applications, and:
MQ_INSTALLATION_PATH/inc/cobcpy64

for 64 bit applications.

You need to link your program with one of the following:

Building a procedural application 409

Library file Program/exit type

libmqmcb.so Server for COBOL

libmqicb.so Client for COBOL

libmqmcb_r.so Server for COBOL (threaded application)

libmqicb_r.so Client for COBOL (threaded application)

Preparing COBOL programs using Micro Focus COBOL

Set environment variables before compiling your program as follows:
export COBCPY=<COBCPY>
export LIB= MQ_INSTALLATION_PATH lib:$LIB

To compile a 32 bit COBOL program, where supported, using Micro Focus COBOL, enter:
$ cob32 -xvP amqsput.cbl -L MQ_INSTALLATION_PATH/lib -lmqmcb Server for COBOL
$ cob32 -xvP amqsput.cbl -L MQ_INSTALLATION_PATH/lib -lmqicb Client for COBOL
$ cob32 -xtvP amqsput.cbl -L MQ_INSTALLATION_PATH/lib -lmqmcb_r Threaded Server for COBOL
$ cob32 -xtvP amqsput.cbl -L MQ_INSTALLATION_PATH/lib -lmqicb_r Threaded Client for COBOL

To compile a 64 bit COBOL program using Micro Focus COBOL, enter:
$ cob64 -xvP amqsput.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqmcb Server for COBOL
$ cob64 -xvP amqsput.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqicb Client for COBOL
$ cob64 -xtvP amqsput.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqmcb_r Threaded Server for COBOL
$ cob64 -xtvP amqsput.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqicb_r Threaded Client for COBOL

where amqsput is a sample program

See the Micro Focus COBOL documentation for a description of the environment variables that you need.

Building your procedural application on IBM i
The IBM i publications describe how to build executable applications from the programs that you write,
to run with IBM i on iSeries or System i® systems.

This topic describes the additional tasks, and the changes to the standard tasks, that you must perform
when building IBM MQ for IBM i procedural applications to run on IBM i systems. COBOL, C, C++, Java
and RPG programming languages are supported. For information about preparing your C++ programs,
see Using C++. For information about preparing your Java programs, see Using Java.

The tasks that you must perform to create an executable IBM MQ for IBM i application depend on the
programming language that the source code is written in. In addition to coding the MQI calls in your
source code, you must add the appropriate language statements to include the IBM MQ for IBM i data
definition files for the language that you are using. Make yourself familiar with the contents of these files.
See “IBM MQ data definition files” on page 72 for a full description.

410 IBM MQ: Programming

Preparing C programs in IBM i
IBM MQ for IBM i supports messages up to 100 MB in size. Application programs written in ILE C,
supporting IBM MQ messages greater than 16 MB, need to use the Teraspace compiler option to allocate
sufficient memory for these messages.

For more information about the C compiler options, see the WebSphere Development Studio ILE C/C++
Programmer's Guide.

To compile a C module, you can use the IBM i command, CRTCMOD. Make sure that the library
containing the include files (QMQM) is in the library list when you compile.

You must then bind the output of the compiler with the service program using the CRTPGM command.

An example of the command for a nonthreaded environment is:

Table 53. Example of CRTPGM in the nonthreaded environment

Command Program/exit type

CRTPGM PGM(pgmname) MODULE(pgmname)
BNDSRVPGM(QMQM/LIBMQM)

Server or client for C

where pgmname is the name of your program.

An example of the command for a threaded environment is:

Table 54. Example of CRTPGM in the threaded environment

Command Program/exit type

CRTPGM PGM(pgmname) MODULE(pgmname)
BNDSRVPGM(QMQM/LIBMQM_R)

Server or client for C

where pgmname is the name of your program.

The following tables list the libraries that are needed when preparing C programs on IBM i in a
non-threaded environment and threaded environment.

Table 55. Non-threaded environment

Library file Program/exit type

LIBMQM Server for C

LIBMQIC & LIBMQM Client for C

Table 56. Threaded environment

Library file Program/exit type

LIBMQM_R Server for C

LIBMQIC_R & LIBMQM_R Client for C

Building a procedural application 411

Preparing COBOL programs in IBM i
Learn about preparing COBOL programs in IBM i and the two methods of accessing the MQI from
within the COBOL program.

IBM MQ for IBM i provides two methods for accessing the MQI from within COBOL programs:
1. A dynamic call interface to programs having the names of the MQI functions, such as MQCONN and

MQOPEN. This interface is intended primarily for use with the OPM (Original Program Mode)
COBOL compiler, but can also be used with the ILE (Integrated Language Environment) COBOL
compiler. Some functions in IBM MQ for IBM i, such as MQCMIT and MQBACK, are not supported
through this interface, which is provided for compatibility with previous releases.

2. A bound procedural call interface provided by service programs. This provides access to all the MQI
functions in IBM MQ for IBM i, support for threaded applications, and potentially better performance
than the dynamic call interface. This interface can be used only with the ILE COBOL compiler.

In both cases the standard COBOL CALL syntax is used to access the MQI functions.

The COBOL copy files containing the named constants and structure definitions for use with the MQI are
contained in the source physical file QMQM/QCBLLESRC.

The COBOL copy files use the single quotation mark character (') as the string delimiter. The IBM i
COBOL compilers assume that the delimiter is the quotation mark ("). To prevent the compilers
generating warning messages, specify OPTION(*APOST) on the commands CRTCBLPGM, CRTBNDCBL,
or CRTCBLMOD.

To make the compiler accept the single quotation mark character (') as the string delimiter in the COBOL
copy files, use the compiler option \APOST.

Using the dynamic call interface
v The QMQM library must be in your library list when you compile and when you run COBOL

programs using the MQI dynamic call interface.
v Use the CRTCBLPGM command to invoke the OPM COBOL compiler.
v Use either the CRTBNDCBL command or the two separate commands CRTCBLMOD and CRTPGM to

invoke the ILE COBOL compiler.

Using the bound procedure call interface
v First create a module using the CRTCBLMOD compiler specifying the parameter:

LINKLIT(*PRC)

v Then use the CRTPGM command to create the program object specifying the parameter:
for non-threaded applications
BNDSRVPGM(QMQM/AMQ0STUB) Server for COBOL for non-threaded applications
BNDSRVPGM(QMQM/AMQCSTUB) Client for COBOL for non-threaded applications

for threaded applications
BNDSRVPGM(QMQM/AMQ0STUB_R) Server for COBOL for threaded applications
BNDSRVPGM(QMQM/AMQCSTUB_R) Client for COBOL for threaded applications

Note: Except for programs created using the V4R4 ILE COBOL compiler and containing the
THREAD(SERIALIZE) option in the PROCESS statement, COBOL programs must not use the threaded
IBM MQ libraries. Even if a COBOL program has been made thread safe in this manner, be careful when
you design the application, because THREAD(SERIALIZE) forces serialization of COBOL procedures at
the module level and might affect overall performance.

412 IBM MQ: Programming

See the WebSphere Development Studio: ILE COBOL Programmer's Guide and the WebSphere Development
Studio: ILE COBOL Reference for further information.

For more information about compiling a CICS application, see the CICS for IBM i Application Programming
Guide, SC41-5454.

Preparing CICS programs in IBM i
Learn about the steps required when preparing CICS programs in IBM i.

To create a program that includes EXEC CICS statements and MQI calls, perform these steps:
1. If necessary, prepare maps using the CRTCICSMAP command.
2. Translate the EXEC CICS commands into native language statements. Use the CRTCICSC command

for a C program. Use the CRTCICSCBL command for a COBOL program.
Include CICSOPT(*NOGEN) in the CRTCICSC or CRTCICSCBL command. This halts processing to enable
you to include the appropriate CICS and IBM MQ service programs. This command puts the code, by
default, into QTEMP/QACYCICS.

3. Compile the source code using the CRTCMOD command (for a C program) or the CRTCBLMOD
command (for a COBOL program).

4. Use CRTPGM to link the compiled code with the appropriate CICS and IBM MQ service programs.
This creates the executable program.

An example of such code follows (it compiles the shipped CICS sample program):
CRTCICSC OBJ(QTEMP/AMQSCIC0) SRCFILE(/MQSAMP/QCSRC) +

SRCMBR(AMQSCIC0) OUTPUT(*PRINT) +
CICSOPT(*SOURCE *NOGEN)

CRTCMOD MODULE(MQTEST/AMQSCIC0) +
SRCFILE(QTEMP/QACYCICS) OUTPUT(*PRINT)

CRTPGM PGM(MQTEST/AMQSCIC0) MODULE(MQTEST/AMQSCIC0) +
BNDSRVPGM(QMQM/LIBMQIC QCICS/AEGEIPGM)

Preparing RPG programs in IBM i

If you are using IBM MQ for IBM i, you can write your applications in RPG.

For more information see “Coding in RPG” on page 467, and refer to the IBM i Application Programming
Reference (ILE/RPG).

SQL programming considerations
Learn about the steps required when building an application on IBM i using SQL.

If your program contains EXEC SQL statements and MQI calls, perform these steps:
1. Translate the EXEC SQL commands into native language statements. Use the CRTSQLCI command for

a C program. Use the CRTSQLCBLI command for a COBOL program.
Include OPTION(*NOGEN) in the CRTSQLCI or CRTSQLCBLI command. This halts processing to enable
you to include the appropriate IBM MQ service programs. This command puts the code, by default,
into QTEMP/QSQLTEMP.

2. Compile the source code using the CRTCMOD command (for a C program) or the CRTCBLMOD
command (for a COBOL program).

3. Use CRTPGM to link the compiled code with the appropriate IBM MQ service programs. This creates
the executable program.

An example of such code follows (it compiles a program, SQLTEST, in library, SQLUSER):

Building a procedural application 413

CRTSQLCI OBJ(MQTEST/SQLTEST) SRCFILE(SQLUSER/QCSRC) +
SRCMBR(SQLTEST) OUTPUT(*PRINT) OPTION(*NOGEN)

CRTCMOD MODULE(MQTEST/SQLTEST) +
SRCFILE(QTEMP/QSQLTEMP) OUTPUT(*PRINT)

CRTPGM PGM(MQTEST/SQLTEST) +
BNDSRVPGM(QMQM/LIBMQIC)

IBM i programming considerations
If you have compiled programs for releases of IBM MQ for IBM i earlier than V4R4, you would have
linked to AMQZSTUB and, possibly, AMQVSTUB. These libraries are provided at this release for
compatibility purposes; you do not need to recompile your applications.

These libraries provide support for the default connection handle (MQHC_DEF_HCONN). This is no
longer provided by the standard V4R4 libraries. However, the libraries provided at this release for
compatibility purposes do not support all new features (for example, MQCONNX , MQCMIT , and
MQBACK).

QMQM activation group

When creating your program on IBM i systems, the QMQM activation group must not be used. The
QMQM activation group is for the use of IBM MQ only.

Building your procedural application on Solaris
This information describes the additional tasks, and the changes to the standard tasks, that you must
perform when building IBM MQ for Solaris applications to run under Solaris.

COBOL, C, and C++ programming languages are supported. For information about preparing your C++
programs, see Using C++.

In addition to coding the MQI calls in your source code, you must add the appropriate include files.
Make yourself familiar with the contents of these files. See “IBM MQ data definition files” on page 72 for
a full description.

Throughout this topic, the backslash (\) character is used to split long commands over more than one
line. Do not enter this character, enter each command as a single line.

Preparing C programs in Solaris
Precompiled C programs are supplied in the MQ_INSTALLATION_PATH/samp/bin directory.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

For further information about programming 64 bit applications, see Coding standards on 64-bit platforms.

If you want to use the programs on a machine that has only the IBM MQ MQI client for Solaris installed,
compile the programs to link them with the client library (-lmqic).

If you use the unsupported compiler /usr/ucb/cc, your application might compile and link successfully.
However, when you run the application, it fails when it attempts to connect to the queue manager.

Note: 32 bit Solaris x86 SSL and TLS clients configured for FIPS 140-2 compliant operation fail when
running on Intel systems. This failure occurs because the FIPS 140-2 compliant GSKit-Crypto Solaris x86
32 bit library file does not load on the Intel chipset. On affected systems, error AMQ9655 is reported in
the client error log. To resolve this issue, disable FIPS 140-2 compliance or recompile the client application
64 bit, because 64 bit code is not affected.

414 IBM MQ: Programming

Linking libraries

You must link with the IBM MQ libraries that are appropriate for your application type:

Library files Program/exit type

libmqm.so Server for C

libmqic.so & libmqm.so Client for C

Note:

1. If you are writing an installable service (for further information, see the Administering), link to the
libmqmzf.so library.

2. If you are producing an application for external coordination by an XA-compliant transaction
manager such as IBM TXSeries Encina, or BEA Tuxedo, you must link to the libmqmxa.so (or
libmqmxa64.so if your transaction manager treats the 'long' type as 64 bit) and libmqz.so libraries.

3. You must link IBM MQ libraries before any other product libraries.

Building applications on x86-64
This topic contains examples of the commands used to build programs in various environments on the
x86-64 platform.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

C client application, 32-bit
cc -xarch=386 -mt -o amqsputc_32 amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -lmqic -lsocket -lnsl -ldl

C client application, 64-bit
cc -xarch=amd64 -mt -o amqsputc_64 amqsput0.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -lmqic -lsocket -lnsl -ldl

C server application, 32-bit
cc -xarch=386 -mt -o amqsput_32 amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -lmqm -lsocket -lnsl -ldl

C server application, 64-bit
cc -xarch=amd64 -mt -o amqsput_64 amqsput0.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -lmqm -lsocket -lnsl -ldl

C++ client application, 32-bit
CC -xarch=386 -mt -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -limqc23as -limqb23as -lmqic -lsocket -lnsl -ldl

C++ client application, 64-bit
CC -xarch=amd64 -mt -o imqsputc_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -limqc23as -limqb23as
-lmqic -lsocket -lnsl -ldl

C++ server application, 32-bit
CC -xarch=386 -mt -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -limqs23as -limqb23as -lmqm
-lsocket -lnsl -ldl

C++ server application, 64-bit
CC -xarch=amd64 -mt -o imqsput_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -limqs23as -limqb23as -lmqm
-lsocket -lnsl -ldl

C client exit, 32-bit
cc -xarch=386 -mt -G -KPIC -o /var/mqm/exits/cliexit_32 cliexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib -R MQ_INSTALLATION_PATH/lib -R/usr/lib/32
-lmqic -lsocket -lnsl -ldl

Building a procedural application 415

C client exit, 64-bit
cc -xarch=amd64 -mt -G -KPIC -o /var/mqm/exits64/cliexit_64 cliexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64
-lmqic -lsocket -lnsl -ldl

C server exit, 32-bit
cc -xarch=386 -mt -G -KPIC -o /var/mqm/exits/srvexit_32 srvexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib -R MQ_INSTALLATION_PATH/lib -R/usr/lib/32
-lmqm -lsocket -lnsl -ldl

C server exit, 64-bit
cc -xarch=amd64 -mt -G -KPIC -o /var/mqm/exits64/srvexit_64 srvexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64
-lmqm -lsocket -lnsl -ldl

Building applications on SPARC
This topic contains examples of the commands used to build programs in various environments on the
SPARC platform.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

C client application, 32-bit
cc -xarch=v8plus -mt -o amqsputc_32 amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -lmqic -lsocket -lnsl -ldl

C client application, 64-bit
cc -xarch=v9 -mt -o amqsputc_64 amqsput0.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -lmqic
-lsocket -lnsl -ldl

C server application, 32-bit
cc -xarch=v8plus -mt -o amqsput_32 amqsput0.c -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -lmqm -lsocket -lnsl -ldl

C server application, 64-bit
cc -xarch=v9 -mt -o amqsput_64 amqsput0.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -lmqm
-lsocket -lnsl -ldl

C++ client application, 32-bit
CC -xarch=v8plus -mt -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -limqc23as -limqb23as -lmqic
-lsocket -lnsl -ldl

C++ client application, 64-bit
CC -xarch=v9 -mt -o imqsputc_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -limqc23as -limqb23as
-lmqic -lsocket -lnsl -ldl

C++ server application, 32-bit
CC -xarch=v8plus -mt -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib
-R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -limqs23as -limqb23as -lmqm
-lsocket -lnsl -ldl

C++ server application, 64-bit
CC -xarch=v9 -mt -o imqsput_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -limqs23as -limqb23as -lmqm
-lsocket -lnsl -ldl

C client exit, 32-bit
cc -xarch=v8plus -mt -G -KPIC -o /var/mqm/exits/cliexit_32 cliexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib -R MQ_INSTALLATION_PATH/lib -R/usr/lib/32
-lmqic -lsocket -lnsl -ldl

416 IBM MQ: Programming

C client exit, 64-bit
cc -xarch=v9 -mt -G -KPIC -o /var/mqm/exits64/cliexit_64 cliexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64
-lmqic -lsocket -lnsl -ldl

C server exit, 32-bit
cc -xarch=v8plus -mt -G -KPIC -o /var/mqm/exits/srvexit_32 srvexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib -R MQ_INSTALLATION_PATH/lib -R/usr/lib/32
-lmqm -lsocket -lnsl -ldl

C server exit, 64-bit
cc -xarch=v9 -mt -G -KPIC -o /var/mqm/exits64/srvexit_64 srvexit.c
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64
-lmqm -lsocket -lnsl -ldl

Preparing COBOL programs in Solaris
Learn about preparing COBOL programs in Solaris.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
1. 32 bit COBOL copy books are installed in the following directory:

MQ_INSTALLATION_PATH/inc/cobcpy32

and symbolic links are created in:
MQ_INSTALLATION_PATH/inc

2. 64 bit COBOL copy books are installed in the following directory:
MQ_INSTALLATION_PATH/inc/cobcpy64

3. In the following examples set COBCPY to:
MQ_INSTALLATION_PATH/inc/cobcpy32

for 32 bit applications, and:
MQ_INSTALLATION_PATH/inc/cobcpy64

for 64 bit applications.

Compile the programs using Micro Focus compiler. The copy files that declare the structures are in
MQ_INSTALLATION_PATH/inc:
 $ export LIB= MQ_INSTALLATION_PATH/lib:$LIB

$ export COBCPY=“<COBCPY>”

Compiling 32 bit programs:
v $ cob32 -xv amqs0put0.cbl -L MQ_INSTALLATION_PATH/lib -lmqmcb

Server for COBOL
v $ cob32 -xv amqs0put0.cbl -L MQ_INSTALLATION_PATH/lib -lmqicb

Client for COBOL
v $ cob32 -xtv amqs0put0.cbl -L MQ_INSTALLATION_PATH/lib -lmqmcb_r

Threaded Server for COBOL
v $ cob32 -xtv amqs0put0.cbl -L MQ_INSTALLATION_PATH/lib -lmqicb_r

Threaded Client for COBOL

Compiling 64-bit programs:
v $ cob64 -xv amqs0put0.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqmcb

Server for COBOL
v $ cob64 -xv amqs0put0.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqicb

Client for COBOL

Building a procedural application 417

v $ cob64 -xtv amqs0put0.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqmcb_r

Threaded Server for COBOL
v $ cob64 -xtv amqs0put0.cbl -L MQ_INSTALLATION_PATH/lib64 -lmqicb_r

Threaded Client for COBOL

where amqs0put0.cbl is a sample program.

You must link your program with one of the following:
v libmqmcb.so

Server for COBOL
v libmqicb.so

Client for COBOL

Preparing CICS programs in Solaris
Learn about preparing CICS programs in Solaris.

An XA switch module is provided to enable you to link CICS with IBM MQ:

Table 57. Essential code for CICS applications (Solaris)

Description C (source) C (exec)

XA initialization routine amqzscix.c amqzsc -
TXSeries for Solaris

Always link your transactions with the thread safe IBM MQ library libmqm.so.

You can find more information about supporting CICS transactions in the Administering.

TXSeries CICS support
IBM MQ for Solaris supports TXSeries CICS using the XA interface.

Write IBM MQ programs that are loaded into the same CICS region in either C or COBOL. You cannot
make a combination of C and COBOL MQI calls into the same CICS region. Most MQI calls in the second
language used fail with a reason code of MQRC_HOBJ_ERROR.

Preparing CICS COBOL programs using Micro Focus COBOL

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To use Micro Focus COBOL, follow these steps:
1. Add the IBM MQ COBOL runtime library module to the runtime library using the following

command:
cicsmkcobol -L/usr/lib/dce -L MQ_INSTALLATION_PATH/lib \

MQ_INSTALLATION_PATH/lib/libmqmcbrt.o -lmqe

Note: With cicsmkcobol, IBM MQ does not allow you to make MQI calls in the C programming
language from your COBOL application.

If your existing applications have any such calls, move these functions from the COBOL applications
to your own library, for example, myMQ.so. After moving these functions do not include the IBM MQ
library libmqmcbrt.o when building the COBOL application for CICS.

Additionally, if your COBOL application does not make any COBOL MQI call, do not link libmqmz_r
with cicsmkcobol.

418 IBM MQ: Programming

This creates the Micro Focus COBOL language method file and enables the CICS runtime COBOL
library to call IBM MQ on UNIX and Linux systems.

Note: Run cicsmkcobol only when you install one of the following products:
v New version or release of Micro Focus COBOL
v New version or release of TXSeries for Solaris
v New version or release of any supported database product (for COBOL transactions only)
v New version or release of IBM MQ

2. Export the following environment variable:
COBCPY= MQ_INSTALLATION_PATH/inc export COBCPY

3. Translate, compile, and link the program by typing:
cicstcl -l COBOL -e <yourprog>.ccp

Preparing CICS C programs

Build CICS C programs using the standard CICS facilities:
1. Export one of the following environment variables:
v LDFLAGS = "-L MQ_INSTALLATION_PATH ⌂lib -lmqm_r" export LDFLAGS
v USERLIB = "-L MQ_INSTALLATION_PATH ⌂lib -lmqm_r" export USERLIB

2. Translate, compile, and link the program by typing:
cicstcl -l C amqscic0.ccs

CICS C sample transaction

Sample C source for a CICS IBM MQ transaction is provided by AMQSCIC0.CCS. The transaction
reads messages from the transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on the
default queue manager and places them onto the local queue with a queue name that is
contained in the transmission header of the message. Any failures are sent to the queue
SYSTEM.SAMPLE.CICS.DLQ. Use the sample MQSC script AMQSCIC0.TST to create these
queues and sample input queues.

Building your procedural application on Windows systems
The Windows systems publications describe how to build executable applications from the programs that
you write.

This topic describes the additional tasks, and the changes to the standard tasks, that you must perform
when building IBM MQ for Windows applications to run under Windows systems. ActiveX, C, C++,
COBOL, and Visual Basic programming languages are supported. For information about preparing your
ActiveX programs, see Using the Component Object Model Interface (WebSphere MQ Automation Classes
for ActiveX). For information about preparing your C++ programs, see Using C++.

The tasks that you must perform to create an executable application using IBM MQ for Windows vary
with the programming language that your source code is written in. In addition to coding the MQI calls
in your source code, you must add the appropriate language statements to include the IBM MQ for
Windows include files for the language that you are using. Make yourself familiar with the contents of
these files. See “IBM MQ data definition files” on page 72 for a full description.

Building a procedural application 419

Building 64-bit applications on Windows
Both 32-bit and 64-bit applications are supported on IBM MQ for Windows. The IBM MQ executable and
library files are supplied in both 32-bit and 64-bit forms, use the appropriate version depending on the
application you are working with.

Executable files and libraries

Both 32-bit and 64-bit versions of the IBM MQ libraries are supplied in the following locations:

Table 58. Location of IBM MQ libraries

Library version Directory containing library files

32-bit MQ_INSTALLATION_PATH \Tools\Lib

64-bit MQ_INSTALLATION_PATH \Tools\Lib64

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

32-bit applications continue to work normally after migration. The 32-bit files exist in the same directory
as in previous versions of the product.

If you want to create 64-bit version you must ensure that your environment is configured to use the
library files in MQ_INSTALLATION_PATH \Tools\Lib64. Ensure that the LIB environment variable is not set to
look in the folder containing the 32-bit libraries.

Preparing C programs in Windows
Work in your typical Windows environment; IBM MQ for Windows requires nothing special.

For further information about programming 64-bit applications see Coding standards on 64-bit platforms.
v Link your programs with the appropriate libraries provided by IBM MQ:

Library file Program/exit type
MQ_INSTALLATION_PATH
\Tools\Lib\mqm.lib

server for 32-bit C

MQ_INSTALLATION_PATH
\Tools\Lib\mqic.lib

client for 32-bit C

MQ_INSTALLATION_PATH
\Tools\Lib\mqicxa.lib

client for 32-bit C with transaction co-ordination

MQ_INSTALLATION_PATH
\Tools\Lib64\mqm.lib

server for 64-bit C

MQ_INSTALLATION_PATH
\Tools\Lib64\mqic.lib

client for 64-bit C

MQ_INSTALLATION_PATH
\Tools\Lib64\mqicxa.lib

client for 64-bit C with transaction co-ordination

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
The following command gives an example of compiling the sample program amqsget0 (using the
Microsoft Visual C++ compiler).
For 32-bit applications:
cl -MD amqsget0.c -Feamqsget.exe MQ_INSTALLATION_PATH\Tools\Lib\mqm.lib

For 64-bit applications:
cl -MD amqsget0.c -Feamqsget.exe MQ_INSTALLATION_PATH\Tools\Lib64\mqm.lib

Note:

420 IBM MQ: Programming

– If you are writing an installable service (see the Administering for further information), you need to
link to the mqmzf.lib library.

– If you are producing an application for external coordination by an XA-compliant transaction
manager such as IBM TXSeries Encina, or BEA Tuxedo, you need to link to the mqmxa.lib or
mqmxa.lib library.

– If you are writing a CICS exit, link to the mqmcics4.lib library.
– You must link IBM MQ libraries before any other product libraries.

v The DLLs must be in the path (PATH) that you have specified.
v If you use lowercase characters whenever possible, you can move from IBM MQ for Windows to IBM

MQ on UNIX and Linux systems, where use of lowercase is necessary.

Preparing CICS and Transaction Server programs

Sample C source for a CICS IBM MQ transaction is provided by AMQSCIC0.CCS. You build it using the
standard CICS facilities. For example, for TXSeries for Windows 2000:
1. Set the environment variable (enter the following code on one line):

set CICS_IBMC_FLAGS=-I MQ_INSTALLATION_PATH\Tools\C\Include;
%CICS_IBMC_FLAGS%

2. Set the USERLIB environment variable:
set USERLIB=MQM.LIB;%USERLIB%

3. Translate, compile, and link the sample program:
cicstcl -l IBMC amqscic0.ccs

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

This is described in the Transaction Server for Windows NT Application Programming Guide (CICS) V4.

You can find more information about supporting CICS transactions in the Administering.

Preparing COBOL programs in Windows
Use this information to learn to prepare COBOL programs in Windows, and preparing CICS and
Transaction Server programs.
1. The 32 bit COBOL copy books are installed in the following directory: MQ_INSTALLATION_PATH

\Tools\cobol\CopyBook.
2. The 64 bit COBOL copy books are installed in the following directory: MQ_INSTALLATION_PATH

\Tools\cobol\CopyBook64

3. In the following examples set CopyBook to:
CopyBook

for 32 bit applications, and:
CopyBook64

for 64 bit applications.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To prepare COBOL programs on Windows systems, link your program to one of the following libraries
provided by IBM MQ:

Building a procedural application 421

Library file Program or exit type

MQ_INSTALLATION_PATH \Tools\Lib\mqmcbb 32 bit server for IBM COBOL

MQ_INSTALLATION_PATH \Tools\Lib\mqmcb 32 bit server for Micro Focus COBOL

MQ_INSTALLATION_PATH \Tools\Lib\mqiccbb 32 bit client for IBM COBOL

MQ_INSTALLATION_PATH \Tools\Lib\mqiccb 32 bit client for Micro Focus COBOL

MQ_INSTALLATION_PATH \Tools\Lib64\mqmcbb 64 bit server for IBM COBOL

MQ_INSTALLATION_PATH \Tools\Lib64\mqmcb 64 bit server for Micro Focus COBOL

MQ_INSTALLATION_PATH \Tools\Lib64\mqiccbb 64 bit client for IBM COBOL

MQ_INSTALLATION_PATH \Tools\Lib64\mqiccb 64 bit client for Micro Focus COBOL

When you are running a program in the MQI client environment, ensure that the DOSCALLS library
appears before any COBOL or IBM MQ library.

You can use the IBM COBOL Set compiler or Micro Focus COBOL compiler depending on the program:
v Programs beginning amqi are suitable for the IBM COBOL Set compiler,
v Programs beginning amqm are suitable for the Micro Focus COBOL compiler, and
v Programs beginning amq0 are suitable for either compiler.

IBM and Micro Focus COBOL

Relink any existing 32 bit IBM MQ Micro Focus COBOL programs using either mqmcb.lib or mqiccb.lib,
rather than the mqmcbb and mqiccbb libraries.

To compile, for example, the sample program amq0put0, using IBM VisualAge COBOL:
1. Set the SYSLIB environment variable to include the path to the IBM MQ VisualAge COBOL

copybooks (enter the following code on one line):
set SYSLIB= MQ_INSTALLATION_PATH\
Tools\Cobol\Copybook\VAcobol;%SYSLIB%

2. For use on the IBM MQ server:
cob2 amq0put0.cbl -qlib " MQ_INSTALLATION_PATH\
Tools\Lib\mqmcbb.lib"

3. For use on the IBM MQ client:
cob2 amq0put0.cbl -qlib " MQ_INSTALLATION_PATH\
Tools\Lib\mqiccbb.lib"

Note: Although you must use the compiler option CALLINT(SYSTEM), this is the default for cob2.

To compile, for example, the sample program amq0put0, using Micro Focus COBOL:
1. Set the COBCPY environment variable to point to the IBM MQ COBOL copybooks (enter the

following code on one line):
set COBCPY= MQ_INSTALLATION_PATH\
Tools\Cobol\Copybook

2. Compile the program to give you an object file:
cobol amq0put0 LITLINK

3. Link the object file to the run time system.
v Set the LIB environment variable to point to the compiler COBOL libraries.
v Link the object file for use on the IBM MQ server:

cbllink amq0put0.obj mqmcb.lib

v Or link the object file for use on the IBM MQ client:

422 IBM MQ: Programming

cbllink amq0put0.obj mqiccb.lib

Preparing CICS and Transaction Server programs

To compile and link a TXSeries for Windows NT, V5.1 program using IBM VisualAge COBOL:
1. Set the environment variable (enter the following code on one line):

set CICS_IBMCOB_FLAGS= MQ_INSTALLATION_PATH\
Cobol\Copybook\VAcobol;%CICS_IBMCOB_FLAGS%

2. Set the USERLIB environment variable:
set USERLIB=MQMCBB.LIB

3. Translate, compile, and link your program:
cicstcl -l IBMCOB myprog.ccp

This is described in the Transaction Server for Windows NT, V4 Application Programming Guide.

To compile and link a CICS for Windows V5 program using Micro Focus COBOL:
v Set the INCLUDE variable:

set
INCLUDE=<drive>:\<programname>\ibm\websphere\tools\c\include;

<drive>:\opt\cics\include;%INCLUDE%

v Set the COBCPY environment variable:
setCOBCPY=<drive>:\<programname>\ibm\websphere\tools\cobol\copybook;

<drive>:\opt\cics\include

v Set the COBOL options:
– set

– COBOPTS=/LITLINK /NOTRUNC

and run the following code:
cicstran cicsmq00.ccp
cobol cicsmq00.cbl /LITLINK /NOTRUNC
cbllink -D -Mcicsmq00 -Ocicsmq00.cbmfnt cicsmq00.obj
%CICSLIB%\cicsprCBMFNT.lib user32.lib msvcrt.lib kernel32.lib mqmcb.lib

Preparing Visual Basic programs in Windows
Use this information when considering using Visual Basic programs on Windows.

Note: Outside the .NET environment, support for Visual Basic (VB) in IBM MQ has been stabilized at the
V6.0 level. Most new function added to IBM WebSphere MQ Version 7.0 or later is not available to VB
applications. If you are programming in VB.NET, use the IBM MQ .NET classes. For more information,
see Using .NET.

Note: 64-bit versions of the Visual Basic module files are not supplied.

To prepare Visual Basic programs on Windows:
1. Create a new project.
2. Add the supplied module file, CMQB.BAS, to the project.
3. Add other supplied module files if you need them:

Building a procedural application 423

CMQBB.BAS MQAI support
CMQCFB.BAS PCF support
CMQXB.BAS Channel exits support
CMQPSB.BAS Publish/subscribe

See “Coding in Visual Basic” on page 459 for information about using the MQCONNXAny call from
within Visual Basic.

Call the procedure MQ_SETDEFAULTS before making any MQI calls in the project code. This procedure
sets up default structures that the MQI calls require.

Specify whether you are creating an IBM MQ server or client, before you compile or run the project, by
setting the conditional compilation variable MqType. Set MqType in a Visual Basic project to 1 for a server
or 2 for a client as follows:
1. Select the Project menu.
2. Select Name Properties (where Name is the name of the current project).
3. Select the Make tab in the dialog box.
4. In the Conditional Compilation Arguments field, enter this for a server:

MqType=1

or this for a client:
MqType=2

Related concepts:
“Coding in Visual Basic” on page 459
Note the information in the following section when coding IBM MQ programs in Visual Basic.
Related reference:
“Linking Visual Basic applications with the IBM MQ MQI client code” on page 301
You can link Visual Basic applications with the IBM MQ MQI client code on Windows.

SSPI security exit
IBM MQ for Windows supplies a security exit for both the IBM MQ MQI client and the IBM MQ server.
This is a channel-exit program that provides authentication for IBM MQ channels by using the Security
Services Programming Interface (SSPI). The SSPI provides the integrated security facilities of Windows
systems.

The security packages are loaded from either security.dll or secur32.dll. These DLLs are supplied with
your operating system.

One-way authentication is provided using NTLM authentication services. Two-way authentication is
provided using Kerberos authentication services.

The security exit program is supplied in source and object format. You can use the object code as it is, or
you can use the source code as a starting point to create your own user-exit programs.

See also “Using the SSPI security exit on Windows systems” on page 549.

Introduction to security exits

A security exit forms a secure connection between two security exit programs, where one program is for
the sending message channel agent (MCA), and one is for the receiving MCA.

424 IBM MQ: Programming

The program that initiates the secure connection, that is, the first program to get control after the MCA
session is established, is known as the context initiator. The partner program is known as the context
acceptor.

The following table shows some of the channel types that are context initiators and their associated
context acceptors.

Table 59. Context initiators and their associated context acceptors

Context Initiator Context Acceptor

MQCHT_CLNTCONN MQCHT_SVRCONN

MQCHT_RECEIVER MQCHT_SENDER

MQCHT_CLUSRCVR MQCHT_CLUSSDR

The security exit program has two entry points:
v SCY_NTLM

This uses NTLM authentication services, which provide one-way authentication. NTLM allows servers
to verify the identities of their clients. It does not allow clients to verify a server's identity, or one
server to verify the identity of another. NTLM authentication was designed for a network environment
in which servers are assumed to be genuine.

v SCY_KERBEROS

This uses Kerberos mutual authentication services. The Kerberos protocol does not assume that servers
in a network environment are genuine. Parties at both ends of a network connection can verify the
identity of the other party. That is, servers can verify the identity of clients and other servers, and
clients can verify the identity of a server.

What the security exit does

This topic describes what the SSPI channel-exit programs do.

The supplied channel-exit programs provide either one-way or two-way (mutual) authentication of a
partner system when a session is being established. For a particular channel, each exit program has an
associated principal (similar to a user ID, see “ IBM MQ access control and Windows principals” on page
426). A connection between two exit programs is an association between the two principals.

After the underlying session is established, a secure connection between two security exit programs (one
for the sending MCA and one for the receiving MCA), is established. The sequence of operations is as
follows:
1. Each program is associated with a particular principal, for example as a result of an explicit login

operation.
2. The context initiator requests a secure connection with the partner from the security package (for

Kerberos, the named partner) and receives a token (called token1). The token is sent, using the
underlying session that is already established, to the partner program.

3. The partner program (the context acceptor) passes token1 to the security package, which verifies that
the context initiator is authentic. For NTLM, the connection is now established.

4. For the Kerberos-supplied security exit (that is, for mutual authentication), the security package also
generates a second token (called token2), which the context acceptor returns to the context initiator by
using the underlying session.

5. The context initiator uses token2 to verify that the context acceptor is authentic.
6. At this stage, if both applications are satisfied with the authenticity of the partner's token, the secure

(authenticated) connection is established.

Building a procedural application 425

IBM MQ access control and Windows principals

The access control that IBM MQ provides is based on the user and group. The authentication that
Windows provides is based on principals, such as user and servicePrincipalName (SPN). In the case of
servicePrincipalName, there might be many of these associated with a single user.

The SSPI security exit uses the relevant Windows principals for authentication. If Windows authentication
is successful, the exit passes the user ID that is associated with the Windows principal to IBM MQ for
access control.

The Windows principals that are relevant for authentication vary, depending on the type of
authentication used.
v For NTLM authentication, the Windows principal for Context Initiator is the user ID associated with

the process that is running. Because this authentication is one way, the principal associated with the
Context Acceptor is irrelevant.

v For Kerberos authentication, on CLNTCONN channels, the Windows principal is the user ID associated
with the process that is running. Otherwise, the Windows principal is the servicePrincipalName that is
formed by adding the following prefix to the QueueManagerName.
ibmMQSeries/

Building your procedural application on z/OS
The CICS, IMS, and z/OS publications describe how to build applications that run in these environments.

This collection of topics describes the additional tasks, and the changes to the standard tasks, that you
must perform when building IBM MQ for z/OS applications for these environments. COBOL, C, C++,
Assembler, and PL/I programming languages are supported. (For information about building C++
applications see Using C++.)

The tasks that you must perform to create an executable IBM MQ for z/OS application depend on both
the programming language that the program is written in, and the environment in which the application
will run.

In addition to coding the MQI calls in your program, add the appropriate language statements to include
the IBM MQ for z/OS data definition file for the language that you are using. Make yourself familiar
with the contents of these files. See “IBM MQ data definition files” on page 72 for a full description.

Note

The name thlqual is the high-level qualifier of the installation library on z/OS.

426 IBM MQ: Programming

Preparing your program to run
After you have written the program for your IBM MQ application to create an executable application,
you have to compile or assemble it, then link-edit the resulting object code with the stub program that
IBM MQ for z/OS supplies for each environment that it supports.

How you prepare your program depends on both the environment (batch, CICS, IMS(BMP or MPP),
Linux or UNIX System services) in which the application runs, and the structure of the data sets on your
z/OS installation.

“Dynamically calling the IBM MQ stub” on page 433 describes an alternative method of making MQI
calls in your programs so that you do not need to link-edit an IBM MQ stub. This method is not available
for all languages and environments.

Do not link-edit a higher level of stub program than that of the version of IBM MQ for z/OS on which
your program is running. For example, a program running on MQSeries for OS/390®, V5.2 must not be
link-edited with a stub program supplied with IBM MQ for z/OS V7.

Building 64 bit C applications
In z/OS, 64 bit C applications are built using the LP64 compiler and binder options. The IBM MQ for
z/OS cmqc.h header file recognizes when this option is provided to the compiler, and generates IBM MQ
datatypes and structures appropriate for 64 bit operation.

C code built with this option must be built to use dynamic-link libraries (DLLs) appropriate for the
coordination semantic required. Binding the compiled code with the appropriate side-deck defined in
Side-deck name required for each coordination semantic shows the specific DLL needed.

Table 60. Side-deck name required for each coordination semantic

Coordination Side-deck name

Single phase commit MQI CSQBMQ2X

Two phase commit with RRS coordination, using RRS verbs CSQBRR2X

Two phase commit with RRS coordination, using MQI verbs CSQBRI2X

Use the EDCQCB JCL procedure, supplied with z/OS XL C/C++, to build a single phase commit IBM MQ
program as a batch job, as follows:
//PROCS JCLLIB ORDER=CBC.SCCNPRC
//CLG EXEC EDCQCB,
// INFILE=’thlqual.SCSQC37S(CSQ4BCG1)’, < MQ SAMPLES
// CPARM=’RENT,SSCOM,DLL,LP64,LIST,NOMAR,NOSEQ’, < COMPILER OPTIONS
// LIBPRFX=’CEE’, < PREFIX FOR LIBRARY DSN
// LNGPRFX=’CBC’, < PREFIX FOR LANGUAGE DSN
// BPARM=’MAP,XREF,RENT,DYNAM=DLL’, < LINK EDIT OPTIONS
// OUTFILE=’userid.LOAD(CSQ4BCG1),DISP=SHR’
//COMPILE.SYSLIB DD
// DD
// DD DISP=SHR,DSN=thlqual.SCSQC370
//BIND.SCSQDEFS DD DISP=SHR,DSN=thlqual.SCSQDEFS
//BIND.SYSIN DD *
INCLUDE SCSQDEFS(CSQBMQ2X)
NAME CSQ4BCG1

To build an RRS coordinated program in z/OS Unix System Services, compile and link as follows:
cc -o mqsamp -W c,LP64,DLL -W l,DYNAM=DLL,LP64 -I"//’thlqual.SCSQC370’" "//’thlqual.SCSQDEFS(CSQBRR2X)’" mqsamp.c

Building a procedural application 427

Building z/OS batch applications
Learn how to build z/OS batch applications and the steps to consider when doing so.

To build an application for IBM MQ for z/OS that runs under z/OS batch, create job control language
(JCL) that performs these tasks:
1. Compile (or assemble) the program to produce object code. The JCL for your compilation must

include SYSLIB statements that make the product data definition files available to the compiler. The
data definitions are supplied in the following IBM MQ for z/OS libraries:
v For COBOL, thlqual.SCSQCOBC
v For assembler language, thlqual.SCSQMACS
v For C, thlqual.SCSQC370
v For PL/I, thlqual.SCSQPLIC

2. For a C application, prelink the object code created in step 1.
3. For PL/I applications, use the compiler option EXTRN(SHORT).
4. Link-edit the object code created in step 1 (or step 2 for a C application) to produce a load module.

When you link-edit the code, you must include one of the IBM MQ for z/OS batch stub programs
(CSQBSTUB or one of the RRS stub programs: CSQBRRSI or CSQBRSTB).

CSQBSTUB
single-phase commit provided by IBM MQ for z/OS

CSQBRRSI
two-phase commit provided by RRS using the MQI

CSQBRSTB
two-phase commit provided by RRS directly

Note: If you use CSQBRSTB, you must also link-edit your application with ATRSCSS from
SYS1.CSSLIB. Figure 68 and Figure 69 on page 429 show fragments of JCL to do this. The stubs are
language-independent and are supplied in library thlqual.SCSQLOAD.

5. Store the load module in an application load library.

...
//*
//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING BATCH STUB
//*
//CSQSTUB DD DSN=++THLQUAL++.SCSQLOAD,DISP=SHR
//*...
//SYSIN DD *

INCLUDE CSQSTUB(CSQBSTUB)...
/*

Figure 68. Fragments of JCL to link-edit the object module in the batch environment, using single-phase commit

428 IBM MQ: Programming

To run a batch or RRS program, you must include the libraries thlqual.SCSQAUTH and
thlqual.SCSQLOAD in the STEPLIB or JOBLIB data set concatenation.

To run a TSO program, you must include the libraries thlqual.SCSQAUTH and thlqual.SCSQLOAD in
the STEPLIB used by the TSO session.

To run a UNIX System Services batch program from the UNIX System Services shell, add the libraries
thlqual.SCSQAUTH and thlqual.SCSQLOAD to the STEPLIB specification in your $HOME?.profile like
this:
STEPLIB= thlqual.SCSQAUTH: thlqual.SCSQLOAD
export STEPLIB

Building z/OS batch applications using Language Environment
IBM MQ for z/OS provides a set of dynamic link libraries (DLLs) that must be used when you link-edit
your applications.

There are two variants of the libraries which allow the application to use one of the following calling
interfaces:
v the 31-bit Language Environment calling interface.
v the 31-bit XPLINK calling interface. z/OS XPLINK is a high performance calling convention available

for C applications.

To use the DLLs, the application is bound or linked against so called sidedecks, instead of the stubs
provided with earlier versions. The sidedecks are found in the SCSQDEFS library (instead of the
SCSQLOAD library).

Table 61.

31-bit Language
Environment DLL 31-bit XPLINK DLL Equivalent stub name

1 phase commit MQI
libraries

CSQBMQ1 CSQBMQ1X CSQBSTUB

2 phase commit with RRS
co-ordination using RRS
transaction-control verbs

CSQBRR1 CSQBRR1X CSQBRSTB

2 phase commit with RRS
co-ordination using MQI
transaction-control verbs

CSQBRI1 CSQBRI1X CSQBRRSI

Note: All sidedecks contain a definition of the data conversion entry point, MQXCNVC, previously
resolved by including CSQASTUB.

...
//*
//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING BATCH STUB
//*
//CSQSTUB DD DSN=++THLQUAL++.SCSQLOAD,DISP=SHR
//CSSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//*...
//SYSIN DD *
INCLUDE CSQSTUB(CSQBRSTB)
INCLUDE CSSLIB(ATRSCSS)...
/*

Figure 69. Fragments of JCL to link-edit the object module in the batch environment, using two-phase commit

Building a procedural application 429

Common issues:
v The following message appears on the job log if your application uses asynchronous message consume

(MQCB, MQCTL or MQSUB calls) and the previous DLL interface is not used:
CSQB001E Language environment programs running in z/OS batch or USS must use the DLL interface to IBM MQ

Solution: Rebuild your application using sidedecks instead of stubs as detailed previously.
v At program build time, the following message appears

IEW2469E The Attributes of a reference to MQAPI-NAME from section your-code do not match the attributes of
the target symbol

Reason: This means that you have compiled your XPLINK program with V701 (or later) version of
cmqc.h, but are not binding with sidedecks.
Solution: Change your program's build file to bind against the appropriate sidedeck from SCSQDEFS
instead of a stub from SCSQLOAD

The following sample JCL demonstrates how you can compile and link-edit a C program to use the 31 bit
Language Environment DLL calling interface:
//CLG EXEC EDCCB,
// INFILE=MYPROGS.CPROGS(MYPROGRAM),
// CPARM=’OPTF(DD:OPTF)’,
// BPARM=’XREF,MAP,DYNAM=DLL’ < LINKEDIT OPTIONS
//COMPILE.OPTF DD *
RENT,CHECKOUT(ALL),SSCOM,DEFINE(MVS),NOMARGINS,NOSEQ,DLL
SE(DD:SYSLIBV)
//COMPILE.SYSLIB DD
// DD
// DD DISP=SHR,DSN=hlq.SCSQC370
//COMPILE.SYSLIBV DD DISP=SHR,DSN=hlq.BASE.H
/*
//BIND.SYSOBJ DD DISP=SHR,DSN=CEE.SCEEOBJ
// DD DISP=SHR,DSN=hlq.SCSQDEFS
//BIND.SYSLMOD DD DISP=SHR,DSN=hlq.LOAD(MYPROGAM)
//BIND.SYSIN DD *
ENTRY CEESTART
INCLUDE SYSOBJ(CSQBMQ1)
NAME MYPROGAM(R)
//

Note: The compile uses the DLL option. The link-edit uses DYNAM=DLL option and the references the
CSQBMQ1 library.

The following sample JCL demonstrates how you can compile and link-edit a C program to use the 31 bit
XPLINK DLL calling interface:
//CLG EXEC EDCXCB,
// INFILE=MYPROGS.CPROGS(MYPROGRAM),
// CPARM=’OPTF(DD:OPTF)’,
// BPARM=’XREF,MAP,DYNAM=DLL’ < LINKEDIT OPTIONS
//COMPILE.OPTF DD *
RENT,CHECKOUT(ALL),SSCOM,DEFINE(MVS),NOMARGINS,NOSEQ,XPLINK,DLL
SE(DD:SYSLIBV)
//COMPILE.SYSLIB DD
// DD
// DD DISP=SHR,DSN=hlq.SCSQC370
//COMPILE.SYSLIBV DD DISP=SHR,DSN=hlq.BASE.H
/*
//BIND.SYSOBJ DD DISP=SHR,DSN=CEE.SCEEOBJ
// DD DISP=SHR,DSN=hlq.SCSQDEFS
//BIND.SYSLMOD DD DISP=SHR,DSN=hlq.LOAD(MYPROGAM)
//BIND.SYSIN DD *
ENTRY CEESTART
INCLUDE SYSOBJ(CSQBMQ1X)
NAME MYPROGAM(R)
//

430 IBM MQ: Programming

Note: The compile uses the XPLINK and DLL options. The link-edit uses DYNAM=DLL option and
references the CSQBMQ1X library.

Ensure that you add the compile option DLL to each program in the module. Messages such as
IEW2456E 9207 SYMBOL CSQ1BAK UNRESOLVED are an indication that you need to check that all of
the programs have been compiled with the DLL option.

Building CICS applications in z/OS
Use this information when building CICS applications in z/OS.

To build an application for IBM MQ for z/OS that runs under CICS, you must:
v Translate the CICS commands in your program into the language in which the rest of your program is

written.
v Compile or assemble the output from the translator to produce object code.

– For PL/I programs, use the compiler option EXTRN(SHORT).
– For C applications, if the application is not using XPLINK, use the compiler option

DEFINE(MQ_OS_LINKAGE=1).
v Link-edit the object code to create a load module.

CICS provides a procedure to execute these steps in sequence for each of the programming languages it
supports.
v For CICS Transaction Server for z/OS, the CICS Transaction Server for z/OS System Definition Guide

describes how to use these procedures and the CICS/ESA Application Programming Guide gives more
information on the translation process.

You must include:
v In the SYSLIB statement of the compilation (or assembly) stage, statements that make the product data

definition files available to the compiler. The data definitions are supplied in the following IBM MQ for
z/OS libraries:
– For COBOL, thlqual.SCSQCOBC
– For assembler language, thlqual.SCSQMACS
– For C, thlqual.SCSQC370
– For PL/I, thlqual.SCSQPLIC

v In your link-edit JCL, the IBM MQ for z/OS CICS stub program (CSQCSTUB). Figure 70 shows
fragments of JCL code to do this. The stub is language-independent and is supplied in library
thlqual.SCSQLOAD.

v For CICS versions later than CICS TS 3.2, or, if you want to use IBM MQ message property APIs, or
IBM MQ APIs MQCB, MQCTL, MQSTAT, MQSUB or MQSUBR, you must linkedit your object code

...
//*
//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING CICS STUB
//*
//CSQSTUB DD DSN=++THLQUAL++.SCSQLOAD,DISP=SHR
//*...
//LKED.SYSIN DD *

INCLUDE CSQSTUB(CSQCSTUB)

...
/*

Figure 70. Fragments of JCL to link-edit the object module in the CICS environment

Building a procedural application 431

with the CICS supplied stub, DFHMQSTB and not the IBM MQ supplied CSQCSTUB. For more
information about building IBM MQ programs for CICS, see API stub program to access IBM MQ MQI
calls in the CICS product documentation.

When you have completed these steps, store the load module in an application load library and define
the program to CICS in the usual way.

Before you run a CICS program, your system administrator must define it to CICS as an IBM MQ
program and transaction, You can then run it in the typical way.

Building IMS (BMP or MPP) applications
Use this information when building IMS (BMP or MPP) applications.

If you are building batch DL/I programs, see “Building z/OS batch applications” on page 428. To build
other applications that run under IMS (either as a BMP or an MPP), create JCL that performs these tasks:
1. Compile (or assemble) the program to produce object code. The JCL for your compilation must

include SYSLIB statements that make the product data definition files available to the compiler. The
data definitions are supplied in the following IBM MQ for z/OS libraries:
v For COBOL, thlqual.SCSQCOBC
v For assembler language, thlqual.SCSQMACS
v For C, thlqual.SCSQC370
v For PL/I, thlqual.SCSQPLIC

2. For a C application, prelink the object module created in step 1.
3. For PL/I programs, use the compiler option EXTRN(SHORT).
4. For a C application, if the application is not using XPLINK, use the compiler option

DEFINE(MQ_OS_LINKAGE=1).
5. Link-edit the object code created in step 1 (or step 2 for a C/370 application) to produce a load

module:
a. Include the IMS language interface module (DFSLI000).
b. Include the IBM MQ for z/OS IMS stub program (CSQQSTUB). Figure 71 shows fragments of JCL

to do this. The stub is language independent and is supplied in library thlqual.SCSQLOAD.

Note: If you are using COBOL, select the NODYNAM compiler option to enable the linkage
editor to resolve references to CSQQSTUB unless you intend to use dynamic linking as described
in “Dynamically calling the IBM MQ stub” on page 433.

6. Store the load module in an application load library.

Before you run an IMS program, your system administrator must define it to IMS as an IBM MQ
program and transaction: you can then run it in the typical way.

...
//*
//* WEBSPHERE MQ FOR Z/OS LIBRARY CONTAINING IMS STUB
//*
//CSQSTUB DD DSN=thlqual.SCSQLOAD,DISP=SHR
//*...
//LKED.SYSIN DD *

INCLUDE CSQSTUB(CSQQSTUB)

...
/*

Figure 71. Fragments of JCL to link-edit the object module in the IMS environment

432 IBM MQ: Programming

Building z/OS UNIX System Services applications
Use this information when building z/OS UNIX System Services applications.

To build a C application for IBM MQ for z/OS that runs under UNIX System Services, compile and link
your application as follows:
cc -o mqsamp -W c,DLL -I "//’ thlqual.SCSQC370’" mqsamp.c "//’ thlqual.SCSQDEFS(CSQBMQ1)’"

where thlqual is the high-level qualifier used by your installation.

To run the C program, you need to add the following to your .profile file; this should be in your root
directory:
STEPLIB= thlqual.SCSQANLE:thlqual.SCSQAUTH: STEPLIB

Note that you need to exit from UNIX System Services, and enter UNIX System Services again, for the
change to be recognized.

If you want to run multiple shells, add the word export at the beginning of the line, that is:
export STEPLIB= thlqual.SCSQANLE:thlqual.SCSQAUTH: STEPLIB

Once this completes successfully you can link the CSQBSTUB and issue IBM MQ calls.

“Dynamically calling the IBM MQ stub” describes an alternative method of making MQI calls in your
programs so that you do not need to link-edit an IBM MQ stub. This method is not available for all
languages and environments.

Do not link-edit a higher level of stub program than that of the version of IBM MQ for z/OS on which
your program is running. For example, a program running on , IBM WebSphere MQ for z/OS Version 7.1
must not be link-edited with a stub program supplied with IBM MQ for z/OS, Version 8.0.

Dynamically calling the IBM MQ stub
Instead of link-editing the IBM MQ stub program with your object code, you can dynamically call the
stub from within your program.

You can do this in the batch, IMS, and CICS environments. This facility is not supported in the RRS
environment. If your application program uses RRS to coordinate updates, see “RRS Considerations” on
page 438.

However, this method:
v Increases the complexity of your programs
v Increases the storage required by your programs at execution time
v Reduces the performance of your programs
v Means that you cannot use the same programs in other environments

If you call the stub dynamically, the appropriate stub program and its aliases must be available at
execution time. To ensure this, include the IBM MQ for z/OS data set SCSQLOAD:

Building a procedural application 433

For batch and IMS In the STEPLIB concatenation of the JCL

For CICS In the CICS DFHRPL concatenation

For IMS, ensure that the library containing the dynamic stub (built as described in the information about
installing the IMS adapter in Setting up the IMS adapter) is ahead of the data set SCSQLOAD in the
STEPLIB concatenation of the region JCL.

Use the names shown in Table 62 when you call the stub dynamically. In PL/I, only declare the call
names used in your program.

Table 62. Call names for dynamic linking

MQI call Dynamic call name

Batch (non-RRS) CICS IMS

MQBACK CSQBBACK not supported Not supported

MQBUFMH CSQBBFMH CSQCBFMH 1 MQBUFMH

MQCB CSQBCB CSQCCB 1 Not supported

MQCLOSE CSQBCLOS CSQCCLOS MQCLOSE

MQCMIT CSQBCOMM not supported Not supported

MQCONN CSQBCONN CSQCCONN MQCONN

MQCONNX CSQBCONX CSQCCONX MQCONNX

MQCRTMH CSQBCTMH CSQCCTMH 1 MQCRTMH

MQCTL CSQBCTL CSQCCTL 1 Not supported

MQDISC CSQBDISC CSQCDISC MQDISC

MQDLTMH CSQBDTMH CSQCDTMH 1 MQDLTMH

MQDLTMP CSQBDTMP CSQCDTMP 1 MQDLTMP

MQGET CSQBGET CSQCGET MQGET

MQINQ CSQBINQ CSQCINQ MQINQ

MQINQMP CSQBIQMP CSQCIQMP 1 MQINQMP

MQMHBUF CSQBMHBF CSQCMHBF 1 MQMHBUF

MQOPEN CSQBOPEN CSQCOPEN MQOPEN

MQPUT CSQBPUT CSQCPUT MQPUT

MQPUT1 CSQBPUT1 CSQCPUT1 MQPUT1

MQSET CSQBSET CSQCSET MQSET

MQSETMP CSQBSTMP CSQCSTMP 1 MQSETMP

MQSTAT CSQBSTAT CSQCSTAT 1 MQSTAT

MQSUB CSQBSUB CSQCSUB 1 MQSUB

MQSUBRQ CSQBSUBR CSQCSUBR 1 MQSUBRQ

Note: 1. These API calls are available only when using CICS TS 3.2 or later and the CSQCSTUB shipped
with CICS must be used. For CICS TS 3.2, APAR PK66866 must be applied. For CICS TS 4.1, APAR
PK89844 must be applied.

For examples of how to use this technique, see the following figures:

434 IBM MQ: Programming

Batch and COBOL Figure 72

CICS and COBOL Figure 73

IMS and COBOL Figure 74 on page 436

Batch and assembler Figure 75 on page 436

CICS and assembler Figure 76 on page 436

IMS and assembler Figure 77 on page 436

Batch and C Figure 78 on page 437

CICS and C Figure 79 on page 437

IMS and C Figure 80 on page 437

Batch and PL/I Figure 81 on page 437

IMS and PL/I Figure 82 on page 438

...
WORKING-STORAGE SECTION.

...
05 WS-MQOPEN PIC X(8) VALUE ’CSQBOPEN’.

...
PROCEDURE DIVISION.

...
CALL WS-MQOPEN WS-HCONN

MQOD
WS-OPTIONS
WS-HOBJ
WS-COMPCODE
WS-REASON.

...

Figure 72. Dynamic linking using COBOL in the batch environment

...
WORKING-STORAGE SECTION.

...
05 WS-MQOPEN PIC X(8) VALUE ’CSQCOPEN’.

...
PROCEDURE DIVISION.

...
CALL WS-MQOPEN WS-HCONN

MQOD
WS-OPTIONS
WS-HOBJ
WS-COMPCODE
WS-REASON.

...

Figure 73. Dynamic linking using COBOL in the CICS environment

Building a procedural application 435

...
WORKING-STORAGE SECTION.

...
05 WS-MQOPEN PIC X(8) VALUE ’MQOPEN’.

...
PROCEDURE DIVISION.

...
CALL WS-MQOPEN WS-HCONN

MQOD
WS-OPTIONS
WS-HOBJ
WS-COMPCODE
WS-REASON.

...
* --- *
*
* If the compile option ’DYNAM’ is specified
* then you may code the MQ calls as follows
*
* --- *

...
CALL ’MQOPEN’ WS-HCONN

MQOD
WS-OPTIONS
WS-HOBJ
WS-COMPCODE
WS-REASON.

...

Figure 74. Dynamic linking using COBOL in the IMS environment

...
LOAD EP=CSQBOPEN

...
CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL

...
DELETE EP=CSQBOPEN

...

Figure 75. Dynamic linking using assembly language in the batch environment

...
EXEC CICS LOAD PROGRAM(’CSQCOPEN’) ENTRY(R15)

...
CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL

...
EXEC CICS RELEASE PROGRAM(’CSQCOPEN’)

...

Figure 76. Dynamic linking using assembly language in the CICS environment

...
LOAD EP=MQOPEN

...
CALL (15),(HCONN,MQOD,OPTIONS,HOBJ,COMPCODE,REASON),VL

...
DELETE EP=MQOPEN

...

Figure 77. Dynamic linking using assembly language in the IMS environment

436 IBM MQ: Programming

...
typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)
...
main()
{
CALL_ME * csqbopen;
...
csqbopen = (CALL_ME *) fetch("CSQBOPEN");
(*csqbopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);
...

Figure 78. Dynamic linking using C language in the batch environment

...
typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)
...
main()
{
CALL_ME * csqcopen;
...

EXEC CICS LOAD PROGRAM("CSQCOPEN") ENTRY(csqcopen);
(*csqcopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);
...

Figure 79. Dynamic linking using C language in the CICS environment

...
typedef void CALL_ME();
#pragma linkage(CALL_ME, OS)
...
main()
{
CALL_ME * mqopen;
...
mqopen = (CALL_ME *) fetch("MQOPEN");
(*mqopen)(Hconn,&ObjDesc,Options,&Hobj,&CompCode,&Reason);
...

Figure 80. Dynamic linking using C language in the IMS environment

...
DCL CSQBOPEN ENTRY EXT OPTIONS(ASSEMBLER INTER);

...
FETCH CSQBOPEN;

CALL CSQBOPEN(HQM,
MQOD,
OPTIONS,
HOBJ,
COMPCODE,
REASON);

RELEASE CSQBOPEN;

Figure 81. Dynamic linking using PL/I in the batch environment

Building a procedural application 437

RRS Considerations
Consider using this information if your application program uses RRS to coordinate updates.

IBM MQ provides two different stubs for batch programs which need RRS coordination - see “The RRS
batch adapter” on page 266. The difference in behavior of later API calls is determined at MQCONN time
by the batch adapter from information passed by the stub routine on the MQCONN or MQCONNX API.
This means that dynamic API calls are available for batch programs which need RRS coordination,
provided that the initial connection to IBM MQ was done by using the appropriate stub. The following
example illustrates this:

WORKING-STORAGE SECTION.
05 WS-MQOPEN PIC X(8) VALUE ’MQOPEN’ .

.

.

.
PROCEDURE DIVISION.

.

.

.
*
* Static call to MQCONN must be resolved by linkage edit to
* CSQBRSTB or CSQBRRSI for RRS coordination
*

CALL ’MQCONN’ USING W00-QMGR
W03-HCONN
W03-COMPCODE
W03-REASON.

.

.

.
*

CALL WS-MQOPEN WS-HCONN
MQOD
WS-OPTIONS
WS-HOBJ
WS-COMPCODE
WS-REASON.

...
DCL MQOPEN ENTRY EXT OPTIONS(ASSEMBLER INTER);

...
FETCH MQOPEN;

CALL MQOPEN(HQM,
MQOD,
OPTIONS,
HOBJ,
COMPCODE,
REASON);

RELEASE MQOPEN;

Figure 82. Dynamic linking using PL/I in the IMS environment

438 IBM MQ: Programming

Debugging your programs
Use this information to learn about debugging TSO and CICS programs, and an insight into CICS trace.

The main aids to debugging IBM MQ for z/OS application programs are the reason codes returned by
each API call. For a list of these, including ideas for corrective action, see:
v IBM MQ for z/OS messages, completion, and reason codes for IBM MQ for z/OS
v Reason codes for all other IBM MQ platforms

This topic also suggests other debugging tools to use in particular environments.

Debugging TSO programs

The following interactive debugging tools are available for TSO programs:
v TEST tool
v VS COBOL II interactive debugging tool
v INSPECT interactive debugging tool for C and PL/I programs

Debugging CICS programs

You can use the CICS Execution Diagnostic Facility (CEDF) to test your CICS programs interactively
without having to modify the program or program-preparation procedure.

For more information about EDF, see the CICS Transaction Server for z/OS CICS Application Programming
Guide.

CICS trace

You will probably also find it helpful to use the CICS Trace Control transaction (CETR) to control CICS
trace activity.

For more information about CETR, see CICS Transaction Server for z/OS CICS-Supplied Transactions manual.

To determine whether CICS trace is active, display connection status using the CKQC panel. This panel
also shows the trace number.

To interpret CICS trace entries, see Table 63.

The CICS trace entry for these values is AP0 xxx (where xxx is the trace number specified when the CICS
adapter was enabled). All trace entries except CSQCTEST are issued by CSQCTRUE. CSQCTEST is issued
by CSQCRST and CSQCDSP.

Table 63. CICS adapter trace entries

Name Description Trace sequence Trace data

CSQCABNT Abnormal termination Before issuing END_THREAD
ABNORMAL to IBM MQ. This is
because of the end of the task and
an implicit backout could be
performed by the application. A
ROLLBACK request is included in
the END_THREAD call in this
case.

Unit of work information. You can
use this information when finding
out about the status of work. (For
example, it can be verified against
the output produced by the
DISPLAY THREAD command, or
the IBM MQ for z/OS log print
utility.)

CSQCBACK Syncpoint backout Before issuing BACKOUT to IBM
MQ for z/OS. This is due to an
explicit backout request from the
application.

Unit of work information.

Building a procedural application 439

Table 63. CICS adapter trace entries (continued)

Name Description Trace sequence Trace data

CSQCCCRC Completion code and
reason code

After unsuccessful return from
API call.

Completion code and reason code.

CSQCCOMM Syncpoint commit Before issuing COMMIT to IBM
MQ for z/OS. This can be due to
a single-phase commit request or
the second phase of a two-phase
commit request. The request is
due to an explicit syncpoint
request from the application.

Unit of work information.

CSQCEXER Execute resolve Before issuing
EXECUTE_RESOLVE to IBM MQ
for z/OS.

The unit of work information of
the unit of work issuing the
EXECUTE_RESOLVE. This is the
last indoubt unit of work in the
resynchronization process.

CSQCGETW GET wait Before issuing CICS wait. Address of the ECB to be waited
on.

CSQCGMGD GET message data After successful return from
MQGET.

Up to 40 bytes of the message
data.

CSQCGMGH GET message handle Before issuing MQGET to IBM
MQ for z/OS.

Object handle.

CSQCGMGI Get message ID After successful return from
MQGET.

Message ID and correlation ID of
the message.

CSQCINDL Indoubt list After successful return from the
second INQUIRE_INDOUBT.

The indoubt units of work list.

CSQCINDO IBM use only

CSQCINDS Indoubt list size After successful return from the
first INQUIRE_INDOUBT and the
indoubt list is not empty.

Length of the list. Divided by 64
gives the number of indoubt units
of work.

CSQCINQH INQ handle Before issuing MQINQ to IBM
MQ for z/OS.

Object handle.

CSQCLOSH CLOSE handle Before issuing MQCLOSE to IBM
MQ for z/OS.

Object handle.

CSQCLOST Disposition lost During the resynchronization
process, CICS informs the adapter
that it has been restarted so no
disposition information regarding
the unit of work being
resynchronized is available.

Unit of work ID known to CICS
for the unit of work being
resynchronized.

CSQCNIND Disposition not indoubt During the resynchronization
process, CICS informs the adapter
that the unit of work being
resynchronized should not have
been indoubt (that is, perhaps it is
still running).

Unit of work ID known to CICS
for the unit of work being
resynchronized.

440 IBM MQ: Programming

Table 63. CICS adapter trace entries (continued)

Name Description Trace sequence Trace data

CSQCNORT Normal termination Before issuing END_THREAD
NORMAL to IBM MQ for z/OS.
This is due to the end of the task
and therefore the application
might perform an implicit
syncpoint commit. A COMMIT
request is included in the
END_THREAD call in this case.

Unit of work information.

CSQCOPNH OPEN handle After successful return from
MQOPEN.

Object handle.

CSQCOPNO OPEN object Before issuing MQOPEN to IBM
MQ for z/OS.

Object name.

CSQCPMGD PUT message data Before issuing MQPUT to IBM
MQ for z/OS.

Up to 40 bytes of the message
data.

CSQCPMGH PUT message handle Before issuing MQPUT to IBM
MQ for z/OS.

Object handle.

CSQCPMGI PUT message ID After successful MQPUT from
IBM MQ for z/OS.

Message ID and correlation ID of
the message.

CSQCPREP Syncpoint prepare Before issuing PREPARE to IBM
MQ for z/OS in the first phase of
two-phase commit processing.
This call can also be issued from
the distributed queuing
component as an API call.

Unit of work information.

CSQCP1MD PUTONE message data Before issuing MQPUT1 to IBM
MQ for z/OS.

Up to 40 bytes of data of the
message.

CSQCP1MI PUTONE message ID After successful return from
MQPUT1.

Message ID and correlation ID of
the message.

CSQCP1ON PUTONE object name Before issuing MQPUT1 to IBM
MQ for z/OS.

Object name.

CSQCRBAK Resolved backout Before issuing
RESOLVE_ROLLBACK to IBM
MQ for z/OS.

Unit of work information.

CSQCRCMT Resolved commit Before issuing
RESOLVE_COMMIT to IBM MQ
for z/OS.

Unit of work information.

CSQCRMIR RMI response Before returning to the CICS RMI
(resource manager interface) from
a specific invocation.

Architected RMI response value.
Its meaning depends of the type
of the invocation. These values
are documented in the CICS
Transaction Server for z/OS
Customization Guide. To determine
the type of invocation, look at
previous trace entries produced
by the CICS RMI component.

CSQCRSYN Resynchronization Before the resynchronization
process starts for the task.

Unit of work ID known to CICS
for the unit of work being
resynchronized.

CSQCSETH SET handle Before issuing MQSET to IBM
MQ for z/OS.

Object handle.

CSQCTASE IBM use only

Building a procedural application 441

Table 63. CICS adapter trace entries (continued)

Name Description Trace sequence Trace data

CSQCTEST Trace test Used in EXEC CICS ENTER
TRACE call to verify the trace
number supplied by the user or
the trace status of the connection.

No data.

CSQCDCFF IBM use only

442 IBM MQ: Programming

Handling procedural program errors

This information explains errors associated with your applications MQI calls either when it makes a call,
or when its message is delivered to its final destination.

Whenever possible, the queue manager returns any errors as soon as an MQI call is made. These are
locally determined errors.

When sending messages to a remote queue, errors might not be apparent when the MQI call is made. In
this case, the queue manager that identifies the errors reports them by sending another message to the
originating program. These are remotely determined errors.

Locally determined errors
Information about locally determined errors which include: failure on an MQI call, system interruptions,
and messages containing incorrect data.

The three most common causes of errors that the queue manager can report immediately are:
v Failure of an MQI call; for example, because a queue is full
v An interruption to the running of some part of the system on which your application depends; for

example, the queue manager
v Messages containing data that cannot be processed successfully

If you are using the asynchronous put facility, errors are not reported immediately. Use the MQSTAT call
to retrieve status information about previous asynchronous put operations.

Failure of an MQI call

The queue manager can report immediately any errors in the coding of an MQI call. It does this using a
set of predefined return codes. These are divided into completion codes and reason codes.

To show whether a call is successful, the queue manager returns a completion code when the call
completes. There are three completion codes, indicating success, partial completion, and failure of the call.
The queue manager also returns a reason code that indicates the reason for the partial completion or the
failure of the call.

The completion and reason codes for each call are listed with the description of that call in Return codes.
For more detailed information, including ideas for corrective action, see:
v z/OS IBM MQ for z/OS messages, completion, and reason codes for IBM MQ for z/OS
v Reason codes for all other IBM MQ platforms

Design your programs to handle all the return codes that can arise from each call.

System interruptions

Your application might be unaware of any interruption if the queue manager to which it is connected has
to recover from a system failure. However, you must design your application to ensure that your data is
not lost if such an interruption occurs.

The methods that you can use to make sure that your data remains consistent depends on the platform
on which your queue manager is running:

© Copyright IBM Corp. 2007, 2018 443

z/OS z/OS
In the CICS and IMS environments, you can make MQPUT and MQGET calls within units of
work that are managed by CICS or IMS. In the batch environment, you can make MQPUT and
MQGET calls in the same way, but you must declare sync points using:
v The IBM MQ for z/OS MQCMIT and MQBACK calls (see “Committing and backing out units

of work” on page 224), or
v The z/OS Transaction Management and Recoverable Resource Manager Services (RRS) to

provide two-phase sync point support. RRS allows you to update both IBM MQ and other
RRS-enabled product resources, such as Db2 stored procedure resources, within a single logical
unit of work. For information about RRS sync point support see “Transaction management and
recoverable resource manager services” on page 228.

IBM i
You can make your MQPUT and MQGET calls within global units of work that are managed by
IBM i commitment control. You can declare sync points by using the native IBM i COMMIT and
ROLLBACK commands or the language-specific commands. Local units of work are managed by
IBM MQ using the MQCMIT and MQBACK calls.

UNIX, Linux and Windows systems
In these environments, you can make your MQPUT and MQGET calls in the usual way, but you
must declare sync points by using the MQCMIT and MQBACK calls (see “Committing and
backing out units of work” on page 224). In the CICS environment, MQCMIT and MQBACK
commands are disabled, because you can make your MQPUT and MQGET calls within units of
work that are managed by CICS.

Use persistent messages for carrying all data that you cannot afford to lose. Persistent messages are
reinstated on queues if the queue manager has to recover from a failure. With IBM MQ on UNIX, Linux,
and Windows systems, an MQGET or MQPUT call within your application will fail at the point of filling
all the log files, with the message MQRC_RESOURCE_PROBLEM. For more information about log files
on AIX, HP-UX, Linux, Solaris, and Windows systems, see Administering z/OS ; for z/OS see
Planning on z/OS .

If the queue manager is stopped by an operator while an application is running, the quiesce option is
usually used. The queue manager enters a quiescing state in which applications can continue to do work,
but they must terminate as soon as convenient. Small, quick applications can probably ignore the
quiescing state and continue until they terminate as normal. Longer running applications, or ones that
wait for messages to arrive, should use the fail if quiescing option when they use the MQOPEN, MQPUT,
MQPUT1, and MQGET calls. These options mean that the calls fail when the queue manager quiesces,
but the application might still have time to terminate cleanly by issuing calls that ignore the quiescing
state. Such applications could also commit, or back out, changes that they have made, and then
terminate.

If the queue manager is forced to stop (that is, stop without quiescing), applications will receive the
MQRC_CONNECTION_BROKEN reason code when they make MQI calls. Exit the application or,

alternatively, on

IBM MQ for IBM i, UNIX, Linux, and Windows systems, issue an
MQDISC call.

Messages containing incorrect data

When you use units of work in your application, if a program cannot successfully process a message that
it retrieves from a queue, the MQGET call is backed out.

The queue manager maintains a count (in the BackoutCount field of the message descriptor) of the
number of times that happens. It maintains this count in the descriptor of each message that is affected.
This count can provide valuable information about the efficiency of an application. Messages with

444 IBM MQ: Programming

backout counts that are increasing over time are being repeatedly rejected; design your application so that
it analyzes the reasons for this and handles such messages accordingly.

z/OS

On IBM MQ for z/OS, to make the backout count survive restarts of the queue manager, set

the HardenGetBackout attribute to MQQA_BACKOUT_HARDENED; otherwise, if the queue manager has
to restart, it does not maintain an accurate backout count for each message. Setting the attribute this way
adds the penalty of extra processing.

On IBM MQ for

IBM i, Windows, UNIX and Linux systems, the backout count always
survives the queue manager restarts.

z/OS

Also, on IBM MQ for z/OS, when you remove messages from a queue within a unit of work,

you can mark one message so that it is not made available again if the unit of work is backed out by the
application. The marked message is treated as if it has been retrieved under a new unit of work. You
mark the message that is to skip backout using the MQGMO_MARK_SKIP_BACKOUT option (in the
MQGMO structure) when you use the MQGET call. See “Skipping backout” on page 163 for more
information about this technique.

Using report messages for problem determination
The remote queue manager cannot report errors such as failing to put a message on a queue when you
make your MQI call, but it can send you a report message to say how it has processed your message.

Within your application you can create (MQPUT) report messages as well as select the option to receive
them (in which case they are sent by either another application or by a queue manager).

Creating report messages

Report messages enable an application to tell another application that it cannot deal with the message
that was sent.

However, the Report field must initially be analyzed to determine whether the application that sent the
message is interested in being informed of any problems. Having determined that a report message is
required, you have to decide:
v Whether you want to include the entire original message, just the first 100 bytes of data, or none of the

original message.
v What to do with the original message. You can discard it or let it go to the dead-letter queue.
v Whether the contents of the MsgId and CorrelId fields are needed as well.

Use the Feedback field to indicate the reason for the report message being generated. Put your report
messages on an application's reply-to queue. See Feedback for further information.

Requesting and receiving (MQGET) report messages

When you send a message to another application, you are not informed of any problems unless you
complete the Report field to indicate the feedback that you require. See Structure of the report field for
the options available.

Queue managers always put report messages on an application's reply-to queue and it is recommended
that your own applications do the same. When you use the report message facility, specify the name of
your reply-to queue in the message descriptor of your message; otherwise, the MQPUT call fails.

Handling procedural program errors 445

Your application must contain procedures that monitor your reply-to queue and process any messages
that arrive on it. Remember that a report message can contain all the original message, the first 100 bytes
of the original message, or none of the original message.

The queue manager sets the Feedback field of the report message to indicate the reason for the error; for
example, the target queue does not exist. Your programs should do the same.

For more information about report messages, see “Report messages” on page 6.

Remotely determined errors
When you send messages to a remote queue, even when the local queue manager has processed your
MQI call without finding an error, other factors can influence how your message is handled by a remote
queue manager.

For example, the queue that you are targeting might be full, or might not even exist. If your message has
to be handled by other intermediate queue managers on the route to the target queue, any of these could
find an error.

Problems delivering a message

When an MQPUT call fails, you can try to put the message on the queue again, return it to the sender, or
put it on the dead-letter queue.

Each option has its merits, but you might not want to try putting a message again if the reason that the
MQPUT failed was because the destination queue was full. In this instance, putting it on the dead-letter
queue allows you to deliver it to the correct destination queue later on.

Retry message delivery

Before the message is put on a dead-letter queue, a remote queue manager attempts to put the
message on the queue again if the attributes MsgRetryCount and MsgRetryInterval have been set
for the channel, or if there is a retry exit program for it to use (the name of which is held in the
channel attribute MsgRetryExitId field).

If the MsgRetryExitId field is blank, the values in the attributes MsgRetryCount and
MsgRetryInterval are used.

If the MsgRetryExitId field is not blank, the exit program of this name runs. For more information
about using your own exit programs, see “Channel-exit programs for messaging channels” on
page 349.

Return message to sender

You return a message to the sender by requesting a report message to be generated to include all
of the original message.

See “Report messages” on page 6 for details on report message options.

446 IBM MQ: Programming

Using the dead-letter (undelivered message) queue
When a queue manager cannot deliver a message, it attempts to put the message on its dead-letter queue.
This queue should be defined when the queue manager is installed.

Your programs can use the dead-letter queue in the same way that the queue manager uses it. You can
find the name of the dead-letter queue by opening the queue manager object (using the MQOPEN call)
and inquiring about the DeadLetterQName attribute (using the MQINQ call).

When the queue manager puts a message on this queue, it adds a header to the message, the format of
which is described by the dead-letter header (MQDLH) structure; see MQDLH - Dead-letter header. This
header includes the name of the target queue and the reason that the message was put on the dead-letter
queue. It must be removed and the problem must be resolved before the message is put on the intended
queue. Also, the queue manager changes the Format field of the message descriptor (MQMD) to indicate
that the message contains an MQDLH structure.

MQDLH structure

You are recommended to add an MQDLH structure to all messages that you put on the dead-letter
queue; however, if you intend to use the dead-letter handler provided by certain IBM MQ products, you
must add an MQDLH structure to your messages.

The addition of the header to a message might make the message too long for the dead-letter queue, so
always make sure that your messages are shorter than the maximum size allowed for the dead-letter
queue, by at least the value of the MQ_MSG_HEADER_LENGTH constant. The maximum size of
messages allowed on a queue is determined by the value of the MaxMsgLength attribute of the queue. For
the dead-letter queue, make sure that this attribute is set to the maximum allowed by the queue manager.
If your application cannot deliver a message, and the message is too long to be put on the dead-letter
queue, follow the advice given in the description of the MQDLH structure.

Ensure that the dead-letter queue is monitored, and that any messages arriving on it get processed. The
dead-letter queue handler runs as a batch utility and can be used to perform various actions on selected
messages on the dead-letter queue. For further details, see “Dead-letter queue processing” on page 448.

If data conversion is necessary, the queue manager converts the header information when you use the
MQGMO_CONVERT option on the MQGET call. If the process putting the message is an MCA, the
header is followed by all the text of the original message.

Messages put on the dead-letter queue might be truncated if they are too long for this queue. A possible
indication of this situation is the messages on the dead-letter queue being the same length as the value of
the MaxMsgLength attribute of the queue.

Handling procedural program errors 447

Dead-letter queue processing
This information contains general-use programming interface information when using dead-letter queue
processing.

Dead-letter queue processing depends on local system requirements, but consider the following things
when you draw up the specification:
v The message can be identified as having a dead-letter queue header because the value of the format

field in the MQMD, is MQFMT_DEAD_LETTER_HEADER.
v On IBM MQ for z/OS using CICS, if an MCA puts this message to the dead-letter queue, the

PutApplType field is MQAT_CICS, and the PutApplName field is the ApplId of the CICS system followed
by the transaction name of the MCA.

v The reason for the message to be routed to the dead-letter queue is contained in the Reason field of the
dead-letter queue header.

v The dead-letter queue header contains details of the destination queue name and queue manager
name.

v The dead-letter queue header contains fields that have to be reinstated in the message descriptor before
the message is put to the destination queue. These are:
1. Encoding

2. CodedCharSetId

3. Format

v The message descriptor is the same as PUT by the original application, except for the three fields
shown (Encoding, CodedCharSetId, and Format).

Your dead-letter queue application must do one or more of the following things:
v Examine the Reason field. A message might have been put by an MCA for the following reasons:

– The message was longer than the maximum message size for the channel
The reason is MQRC_MSG_TOO_BIG_FOR_CHANNEL

– The message could not be put to its destination queue
The reason is any MQRC_* reason code that can be returned by an MQPUT operation

– A user exit has requested this action
The reason code is that supplied by the user exit, or the default MQRC_SUPPRESSED_BY_EXIT

v Try to forward the message to its intended destination, where this is possible.
v Retain the message for a certain length of time before discarding when the reason for the diversion is

determined, but not immediately correctable.
v Give instructions to administrators correct problems where these have been determined.
v Discard messages that are corrupted or otherwise not processible.

There are two ways to deal with the messages that you have recovered from the dead-letter queue:
1. If the message is for a local queue:
v Carry out any code translations required to extract the application data
v Carry out code conversions on that data if this is a local function
v Put the resulting message on the local queue with all the detail of the message descriptor restored

2. If the message is for a remote queue, put the message on the queue.

For information about how undelivered messages are handled in a distributed queuing environment, see
What happens when a message cannot be delivered?.

448 IBM MQ: Programming

Multicast programming

Use this information to learn about the IBM MQ Multicast programming tasks such as connecting to a
queue manager and exception reporting.

IBM MQ Multicast was designed to be as transparent to the user as possible and yet still be compatible
with existing applications. Defining a COMMINFO object and setting the TOPIC object's MCAST and
COMMINFO parameters, means that existing IBM MQ applications do not require substantial rewriting to
use multicast. However, there might be some limitations (see “Multicast and the Message Queue
Interface” for more information) and some security issues to consider (see Multicast security for more
information).

Multicast and the Message Queue Interface
Use this information to understand the major MQI concepts and how they relate to IBM MQ Multicast.

Multicast subscriptions are nondurable; because there are no physical queues involved, there is nowhere
to store the offline messages that are created by durable subscriptions.

After an application has subscribed to a multicast topic, it is given back an object handle which it can
consume or MQGET from, as if it were a handle to a queue. This means that only managed multicast
subscriptions (subscriptions created with MQSO_MANAGED) are supported, that is; it is not possible to
make a subscription and 'point' the messages at a queue. This means that messages must be consumed
from the object handle returned on the subscription call. On the client, the messages are stored in a
message buffer until they are consumed by the client; see MessageBuffer stanza of the client configuration
file for more information. If the client does not keep up with the publishing rate, the messages are
discarded as required, with the oldest messages discarded first.

It is normally an administration decision whether an application uses Multicast or not, specified by
setting the MCAST attribute of a TOPIC object. If a publishing application must ensure that multicast is
not used, it can use the MQOO_NO_MULTICAST option. Similarly, a subscribing application can ensure
that multicast is not used by subscribing with the MQSO_NO_MULTICAST option.

IBM MQ Multicast supports the use of message selectors. A selector is used by an application to register
its interest in only those messages with properties that satisfy the SQL92 query that the selection string
represents. For more information about message selectors, see “Selectors” on page 17.

The following table lists all the major MQI concepts and how they relate to Multicast:

Table 64. MQI concepts and how they relate to multicast

MQI Concept
Action when tried
using multicast Reason code

Putting a zero length message Rejected 2005 (07D5) (RC2005): MQRC_BUFFER_LENGTH_ERROR

Grouping Rejected 2046 (07FE) (RC2046): MQRC_OPTIONS_ERROR

Segmentation Rejected 2443 (098B) (RC2443):
MQRC_SEGMENTATION_NOT_ALLOWED

Distribution lists Rejected 2154 (086A) (RC2154): MQRC_RECS_PRESENT_ERROR

© Copyright IBM Corp. 2007, 2018 449

Table 64. MQI concepts and how they relate to multicast (continued)

MQI Concept
Action when tried
using multicast Reason code

MQINQ Rejected for topics
handles: MQINQ
and MQSET of
topics is not
supported.

2038 (07F6) (RC2038): MQRC_NOT_OPEN_FOR_INQUIRE

MQINQ Accepted for
managed handle.
Only Current
Depth can be
inquired.

v If the value is Current Depth, then there is no applicable
reason code.

v If the value is anything other than Current Depth, the
reason code is 2067 (0813) (RC2067):
MQRC_SELECTOR_ERROR.

MQSET Rejected for all
handles.

2040 (07F8) (RC2040): MQRC_NOT_OPEN_FOR_SET

Transactions (XA or not) Rejected 2072 (0818) (RC2072):
MQRC_SYNCPOINT_NOT_AVAILABLE

Message browse Rejected 2036 (07F4) (RC2036): MQRC_NOT_OPEN_FOR_BROWSE

Lock messages Rejected 2046 (07FE) (RC2046): MQRC_OPTIONS_ERROR

Browse with mark Rejected 2036 (07F4) (RC2036): MQRC_NOT_OPEN_FOR_BROWSE

Pass context Rejected 2046 (07FE) (RC2046): MQRC_OPTIONS_ERROR

MQPUT1 Rejected. It is
invalid to try and
MQPUT1 to a
Multicast only
topic.

2560 (0A00) (RC2560): MQRC_MULTICAST_ONLY

Durable subscription Rejected if the
topic is marked as
"Multicast only",
otherwise a
non-Multicast
subscription is
made.

2436 (0984) (RC2436):
MQRC_DURABILITY_NOT_ALLOWED

TopicString > 255 Rejected. If the
topic string is
greater than 255
characters, it is
rejected in the
client.

2425 (0979) (RC2425): MQRC_TOPIC_STRING_ERROR

Non-managed subscription made Rejected if the
topic is marked as
"Multicast only",
otherwise a
non-Multicast
subscription is
made.

2046 (07FE) (RC2046): MQRC_OPTIONS_ERROR

MQPMO_NOT_OWN_SUBS Rejected 2046 (07FE) (RC2046): MQRC_OPTIONS_ERROR

The following items expand on some of the MQI concepts from the previous table, and provides
information on some of the MQI concepts that are not in the table:

450 IBM MQ: Programming

Message persistence
For nondurable multicast subscribers, persistent messages from the publisher are delivered in an
unrecoverable fashion.

Message truncation
Message truncation is supported, which means that it is possible for an application to:
1. Issue an MQGET.
2. Get MQRC_TRUNCATED_MSG_FAILED.
3. Allocate a larger buffer.
4. Reissue the MQGET to retrieve the message.

Subscription expiry
Subscription expiry is not supported. Any attempt to set an expiry is ignored.

High availability for multicast
Use this information to understand IBM MQ Multicast continuous peer-to-peer operation; although IBM
MQ connects to an IBM MQ queue manager, messages do not flow through that queue manager.

Although a connection to a queue manager must be made in order to MQOPEN or MQSUB the multicast
topic object, the messages themselves do not flow through the queue manager. Therefore, after the
MQOPEN or MQSUB is completed on the multicast topic object, it is possible to continue transmitting
multicast messages even if the connection to the queue manager has been lost. There are two modes of
operation:

A normal connection is made to the queue manager
Multicast communication is possible while the connection to the queue manager exists. If the
connection fails, the normal MQI rules are applied, for example; an MQPUT to the multicast
object handle returns 2009 (07D9) (RC2009): MQRC_CONNECTION_BROKEN.

A reconnecting client connection is made to the queue manager
Multicast communication is possible even during the reconnection cycle. This means that even
when the connection to the queue manager has been broken, the putting and consuming of
multicast messages is not affected. The client attempts to reconnect to a queue manager, and if
that reconnection fails, the connection handle becomes broken and all MQI calls, including
multicast ones, fail. For more information, see: Automatic client reconnection

If any application explicitly issues an MQDISC, then all multicast subscriptions and object handles are
closed.

Multicast continuous peer-to-peer operation

One of the advantages of peer-to-peer communication between the clients is that the messages do not
need to flow through the queue manager; therefore if the connection to the queue manager breaks,
message transfer continues. The following restrictions apply to the continuous message requirements of
this mode:
v The connection must be made using one of the MQCNO_RECONNECT_* options for continuous

operation. This process means that although the communications session might be broken, the actual
connection handle is not broken, and is in the reconnecting state instead. If reconnection fails, the
connection handle is now broken which prevents all further MQI calls.

v Only MQPUT, MQGET, MQINQ, and Async Consume are supported in this mode. Any MQOPEN,
MQCLOSE, or MQDISC verbs require reconnection to the queue manager to complete.

v Status flows to the queue manager stop; any state in the queue manager might therefore be stale or
missing. This means that the clients might be sending and receiving messages and there is no status
known on the queue manager. For more information, see: Multicast application monitoring

Multicast programming 451

Data conversion in the MQI for multicast messaging
Use this information to understand how data conversion works for IBM MQ Multicast messaging.

IBM MQ Multicast is a shared, connectionless protocol, and so it is not possible for each client to make
specific requests for data conversion. Every client subscribed to the same multicast stream receives the
same binary data; therefore, if IBM MQ data conversion is required, the conversion is performed locally
at each client.

Data is converted on the client for IBM MQ Multicast traffic. If the MQGMO_CONVERT option is specified,
data conversion is done as requested. User defined formats need the data conversion exit installed on the
client; see “Writing data-conversion exits” on page 371 for information about which libraries are now in
the client and server packages.

For information about administering data conversion, see Enabling data conversion for Multicast
messaging.

For more information about data conversion, see Data conversion.

For more information about data conversion exits and ClientExitPath, see ClientExitPath stanza of the
client configuration file.

Multicast exception reporting
Use this information to learn about IBM MQ Multicast event handlers and reporting IBM MQ Multicast
exceptions.

IBM MQ Multicast assists with problem determination by calling the event handler to report multicast
events which are reported using the standard IBM MQ event handler mechanism.

An individual Multicast event can result in more than one IBM MQ event being called because there
might be multiple MQHCONN connection handles using the same multicast transmitter or receiver.
However, each multicast exception causes only one event handler to be called per IBM MQ connection.

The IBM MQ MQCBDO_EVENT_CALL constant enables applications to register a callback to receive only
IBM MQ events, and the MQCBDO_MC_EVENT_CALL enable applications to register a callback to
receive only multicast events. If both constants are used, both types of event are received.

Requesting Multicast events

IBM MQ Multicast events use the MQCBDO_MC_EVENT_CALL constant in the cbd.Options field. The
following example demonstrates how to request multicast events:
cbd.CallbackType = MQCBT_EVENT_HANDLER;
cbd.Options = MQCBDO_MC_EVENT_CALL;
cbd.CallbackFunction = EventHandler;
MQCB(Hcon,MQOP_REGISTER,&cbd,MQHO_UNUSABLE_HOBJ,NULL,NULL,&CompCode,&Reason);

When the MQCBDO_MC_EVENT_CALL option is specified for the cbd.Options field, the event handler
is sent only IBM MQ Multicast events instead of connection level events. To request that both types of
events are sent to the event handler, the application must specify the MQCBDO_EVENT_CALL constant
in the cbd.Options field as well as the MQCBDO_MC_EVENT_CALL constant as shown in the following
example:
cbd.CallbackType = MQCBT_EVENT_HANDLER;
cbd.Options = MQCBDO_EVENT_CALL | MQCBDO_MC_EVENT_CALL
cbd.CallbackFunction = EventHandler;
MQCB(Hcon,MQOP_REGISTER,&cbd,MQHO_UNUSABLE_HOBJ,NULL,NULL,&CompCode,&Reason);

452 IBM MQ: Programming

If neither of these constants is used, only connection level events are sent to the event handler.

For more information about values for the Options field see Options (MQLONG).

Multicast event format

IBM MQ Multicast exceptions include some supporting information which is returned in the Buffer
parameter of the callback function. The Buffer pointer points to an array of pointers and the
MQCBC.DataLength field specifies the size, in bytes, of the array. The first element of the array always
points to a short text description of the event. More parameters might be supplied depending on the type
of event. The following table lists the exceptions:

Table 65. Multicast event code descriptions

Event code Description Additional data

MQMCEV_PACKET_LOSS Unrecoverable packet loss Number of lost packets

MQMCEV_HEARTBEAT_TIMEOUT Long absence of heartbeat control
packet

N/A

MQMCEV_VERSION_CONFLICT Reception of newer protocol
version packets

N/A

MQMCEV_RELIABILITY Different reliability modes of the
transmitter and the receiver

N/A

MQMCEV_CLOSED_TRANS Topic transmission is closed by 1
source

N/A

MQMCEV_STREAM_ERROR Error detected on stream N/A

MQMCEV_NEW_SOURCE A new source starts to transmit on
the topic

Source structure

MQMCEV_RECEIVE_QUEUE_TRIMMED Packets removed from PacketQ
due to time or space expiration

Number of trimmed packets

MQMCEV_PACKET_LOSS_NACK_EXPIRE Unrecoverable packet loss due to
NACK expiration

Number of lost packets

MQMCEV_ACK_RETRIES_EXCEEDED Packets removed from history after
max_ack_retries was exceeded

Number of packets
removed

MQMCEV_STREAM_SUSPEND_NACK NACKs have been suspended on a
stream accepted by this topic

Suspend stream ID

Time in milliseconds that
the stream is suspended for

MQMCEV_STREAM_RESUME_NACK NACKs have been resumed after
they have been suspended on a
stream

Stream ID

MQMCEV_STREAM_EXPELLED A stream accepted by this topic
has been rejected due to an expel
request

Stream ID

MQMCEV_FIRST_MESSAGE First message from a source Message number

MQMCEV_LATE_JOIN_FAILURE Failed to start late join session N/A

MQMCEV_MESSAGE_LOSS Unrecoverable message loss Number of lost messages

MQMCEV_SEND_PACKET_FAILURE Multicast transmitter failed to send
a multicast packet

N/A

MQMCEV_REPAIR_DELAY Multicast receiver did not receive a
repair packet for an outstanding
NAK

N/A

Multicast programming 453

Table 65. Multicast event code descriptions (continued)

Event code Description Additional data

MQMCEV_MEMORY_ALERT_ON Receiver reception buffers are
filling up

Buffer pool utilization
percentage

MQMCEV_MEMORY_ALERT_OFF Receiver reception buffers are
down to normal

Buffer pool utilization
percentage

MQMCEV_NACK_ALERT_ON Receiver repair packet request rate
reached high water mark

Current repair request rate
in packets per second

MQMCEV_NACK_ALERT_OFF Receiver repair packet request rate
is down to normal

Current repair request rate
in packets per second

MQMCEV_REPAIR_ALERT_ON Transmitter repair packet send rate
reached high water mark

N/A

MQMCEV_REPAIR_ALERT_OFF Transmitter repair packet send rate
is down to normal

N/A

MQMCEV_SHM_DEST_UNUSABLE The Shared Memory region used
by a transmitter topic destination
has been detected to be unusable

N/A

MQMCEV_SHM_PORT_UNUSABLE The Shared Memory port used by
a receiver instance has been
detected to be unusable

N/A

MQMCEV_CCT_GETTIME_FAILED The get time from Coordinated
Cluster Time failed

N/A

MQMCEV_DEST_INTERFACE_FAILURE The network interface used by a
transmitter topic destination has
failed and a backup network
interface is unavailable

MQMCEV_DEST_INTERFACE_FAILOVER The network interface used by a
transmitter topic destination has
failed and a successful failover to
another Interface has been
completed

MQMCEV_PORT_INTERFACE-FAILURE The network interface used by a
receiver rmmPort has failed and a
backup network interface is
unavailable (or has also failed)

RMM configuration

MQMCEV_PORT_INTERFACE_FAILOVER The network interface used by a
receiver rmmPort has failed and a
successful failover to another
Interface has been completed

RMM configuration

454 IBM MQ: Programming

Coding in C

Note the information in the following sections when coding IBM MQ programs in C.
v “Parameters of the MQI calls”
v “Parameters with undefined data type”
v “Data types”
v “Manipulating binary strings” on page 456
v “Manipulating character strings” on page 456
v “Initial values for structures” on page 456
v “Initial values for dynamic structures” on page 457
v “Use from C++” on page 457

Parameters of the MQI calls

Parameters that are input-only and of type MQHCONN, MQHOBJ, MQHMSG, or MQLONG are passed
by value; for all other parameters, the address of the parameter is passed by value.

Not all parameters that are passed by address need to be specified every time a function is invoked.
Where a particular parameter is not required, a null pointer can be specified as the parameter on the
function invocation, in place of the address of the parameter data. Parameters for which this is possible
are identified in the call descriptions.

No parameter is returned as the value of the function; in C terminology, this means that all functions
return void.

The attributes of the function are defined by the MQENTRY macro variable; the value of this macro
variable depends on the environment.

Parameters with undefined data type

The MQGET, MQPUT, and MQPUT1 functions each have a Buffer parameter that has an undefined data
type. This parameter is used to send and receive the application's message data.

Parameters of this sort are shown in the C examples as arrays of MQBYTE. You can declare the
parameters in this way, but it is typically more convenient to declare them as the structure that describes
the layout of the data in the message. The function parameter is declared as a pointer-to-void, and so the
address of any data can be specified as the parameter on the function invocation.

Data types

All data types are defined with the typedef statement.

For each data type, the corresponding pointer data type is also defined. The name of the pointer data
type is the name of the elementary or structure data type prefixed with the letter P to denote a pointer.
The attributes of the pointer are defined by the MQPOINTER macro variable; the value of this macro
variable depends on the environment. The following code illustrates how to declare pointer data types:
#define MQPOINTER /* depends on environment */
...
typedef MQLONG MQPOINTER PMQLONG; /* pointer to MQLONG */
typedef MQMD MQPOINTER PMQMD; /* pointer to MQMD */

© Copyright IBM Corp. 2007, 2018 455

Manipulating binary strings

Strings of binary data are declared as one of the MQBYTEn data types.

Whenever you copy, compare, or set fields of this type, use the C functions memcpy, memcmp, or memset:
#include <string.h>
#include "cmqc.h"

MQMD MyMsgDesc;

memcpy(MyMsgDesc.MsgId, /* set "MsgId" field to nulls */
MQMI_NONE, /* ...using named constant */
sizeof(MyMsgDesc.MsgId));

memset(MyMsgDesc.CorrelId, /* set "CorrelId" field to nulls */
0x00, /* ...using a different method */
sizeof(MQBYTE24));

Do not use the string functions strcpy, strcmp, strncpy, or strncmp because these do not work correctly
with data declared as MQBYTE24.

Manipulating character strings

When the queue manager returns character data to the application, the queue manager always pads the
character data with blanks to the defined length of the field. The queue manager does not return
null-terminated strings, but you can use them in your input. Therefore, when copying, comparing, or
concatenating such strings, use the string functions strncpy, strncmp, or strncat.

Do not use the string functions that require the string to be terminated by a null (strcpy, strcmp, and
strcat). Also, do not use the function strlen to determine the length of the string; use instead the sizeof
function to determine the length of the field.

Initial values for structures

The include file <cmqc.h> defines various macro variables that you can use to provide initial values for
the structures when declaring instances of those structures. These macro variables have names of the
form MQxxx_DEFAULT, where MQxxx represents the name of the structure. Use them like this:
MQMD MyMsgDesc = {MQMD_DEFAULT};
MQPMO MyPutOpts = {MQPMO_DEFAULT};

For some character fields, the MQI defines particular values that are valid (for example, for the StrucId
fields or for the Format field in MQMD). For each of the valid values, two macro variables are provided:
v One macro variable defines the value as a string with a length, excluding the implied null, that exactly

matches the defined length of the field. For example, the symbol ⌂ represents a blank character:
#define MQMD_STRUC_ID "MD⌂⌂"
#define MQFMT_STRING "MQSTR⌂⌂⌂"

Use this form with the memcpy and memcmp functions.
v The other macro variable defines the value as an array of char; the name of this macro variable is the

name of the string form suffixed with _ARRAY. For example:
#define MQMD_STRUC_ID_ARRAY ’M’,’D’,’⌂’,’⌂’
#define MQFMT_STRING_ARRAY ’M’,’Q’,’S’,’T’,’R’,’⌂’,’⌂’,’⌂’

Use this form to initialize the field when an instance of the structure is declared with values different
from those provided by the MQMD_DEFAULT macro variable.

456 IBM MQ: Programming

Initial values for dynamic structures

When a variable number of instances of a structure are required, the instances are typically created in
main storage obtained dynamically using the calloc or malloc functions.

To initialize the fields in such structures, the following technique is recommended:
1. Declare an instance of the structure using the appropriate MQxxx_DEFAULT macro variable to

initialize the structure. This instance becomes the model for other instances:
MQMD ModelMsgDesc = {MQMD_DEFAULT};

/* declare model instance */

Code the static or auto keywords on the declaration to give the model instance static or dynamic
lifetime, as required.

2. Use the calloc or malloc functions to obtain storage for a dynamic instance of the structure:
PMQMD InstancePtr;
InstancePtr = malloc(sizeof(MQMD));

/* get storage for dynamic instance */

3. Use the memcpy function to copy the model instance to the dynamic instance:
memcpy(InstancePtr,&ModelMsgDesc,sizeof(MQMD));

/* initialize dynamic instance */

Use from C++

For the C++ programming language, the header files contain the following additional statements that are
included only when a C++ compiler is used:
#ifdef __cplusplus

extern "C" {
#endif

/* rest of header file */

#ifdef __cplusplus
}

#endif

Coding in C 457

458 IBM MQ: Programming

Coding in Visual Basic

Note the information in the following section when coding IBM MQ programs in Visual Basic.

Note: Outside the .NET environment, support for Visual Basic (VB) in IBM MQ has been stabilized at the
V6.0 level. Most new function added to IBM WebSphere MQ Version 7.0 or later is not available to VB
applications. If you are programming in VB.NET, use the IBM MQ .NET classes. For more information,
see Using .NET.

Visual Basic is supported only on Windows .

To avoid unintended translation of binary data passing between Visual Basic and IBM MQ, use an
MQBYTE definition instead of MQSTRING. CMQB.BAS defines several new MQBYTE types that are
equivalent to a C byte definition and uses these within IBM MQ structures. For example, for the MQMD
(message descriptor) structure, MsgId (message identifier) is defined as MQBYTE24.

Visual Basic does not have a pointer data type, so references to other IBM MQ data structures are by
offset rather than pointer. Declare a compound structure consisting of the two component structures, and
specify the compound structure on the call. IBM MQ support for Visual Basic provides an
MQCONNXAny call to make this possible and allow client applications to specify the channel properties
on a client connection. It accepts an untyped structure (MQCNOCD) in place of the typical MQCNO
structure.

The MQCNOCD structure is a compound structure consisting of an MQCNO followed by an MQCD.
This structure is declared in the exits header file CMQXB. Use the routine MQCNOCD_DEFAULTS to
initialize an MQCNOCD structure. A sample making MQCONNX calls is provided (amqscnxb.vbp).

MQCONNXAny has the same parameters as MQCONNX, except that the ConnectOpts parameter is
declared as being of Any data type rather than of MQCNO data type. This allows the function to accept
either the MQCNO or the MQCNOCD structure. This function is declared in the main header file CMQB.
Related concepts:
“Preparing Visual Basic programs in Windows” on page 423
Use this information when considering using Visual Basic programs on Windows.
Related reference:
“Linking Visual Basic applications with the IBM MQ MQI client code” on page 301
You can link Visual Basic applications with the IBM MQ MQI client code on Windows.

© Copyright IBM Corp. 2007, 2018 459

460 IBM MQ: Programming

Coding in COBOL

Note the information in the following section when coding IBM MQ programs in COBOL.

Named constants

The names of constants are shown containing the underscore character (_) as part of the name. In
COBOL, you must use the hyphen character (-) in place of the underscore. Constants that have
character-string values use the single quotation mark character (') as the string delimiter. To make the
compiler accept this character, use the compiler option APOST.

The copy file CMQV contains declarations of the named constants as level-10 items. To use the constants,
declare the level-01 item explicitly, then use the COPY statement to copy in the declarations of the
constants:
WORKING-STORAGE SECTION.
01 MQM-CONSTANTS.
COPY CMQV.

However, this method causes the constants to occupy storage in the program even if they are not referred
to. If the constants are included in many separate programs within the same run unit, multiple copies of
the constants will exist; this might result in a significant amount of main storage being used. You can
avoid this by adding the GLOBAL clause to the level-01 declaration:
* Declare a global structure to hold the constants
01 MQM-CONSTANTS GLOBAL.
COPY CMQV.

This allocates storage for only one set of constants within the run unit; the constants, however, can be
referred to by any program within the run unit, not just the program that contains the level-01
declaration.

Ensuring structure alignment

Care should be taken to ensure IBM MQ structures that are passed on to start on the MQ call's must be
aligned on word boundaries. A word boundary is 4 bytes for 32-bit processes, 8 bytes for 64 bit processes
and 16 bytes for 128 bit processes (IBM i).

Where possible, place all IBM MQ structures together so they are all boundary aligned.

© Copyright IBM Corp. 2007, 2018 461

462 IBM MQ: Programming

Coding in System/390 assembler language

Note the information in the following sections when coding IBM MQ for z/OS programs in assembler
language.
v “Names”
v “Using the MQI calls”
v “Declaring constants”
v “Specifying the name of a structure” on page 464
v “Specifying the form of a structure” on page 464
v “Controlling the listing” on page 464
v “Specifying initial values for fields” on page 465
v “Writing reenterable programs” on page 465
v “Using CEDF” on page 465

Names

The names of parameters in the descriptions of calls, and the names of fields in the descriptions of
structures are shown in mixed case. In the assembler-language macros supplied with IBM MQ, all names
are in uppercase.

Using the MQI calls

The MQI is a call interface, so assembler-language programs must observe the OS linkage convention.

In particular, before they issue an MQI call, assembler-language programs must point register R13 at a
save area of at least 18 full words. This save area provides storage for the called program. It stores the
registers of the caller before their contents are destroyed, and restores the contents of the caller's registers
on return.

Note: This is important for CICS assembler-language programs that use the DFHEIENT macro to set up
their dynamic storage, but that choose to override the default DATAREG from R13 to other registers.
When the CICS Resource Manager Interface receives control from the stub, it saves the current contents
of the registers at the address to which R13 is pointing. Failing to reserve a save area for this purpose
gives unpredictable results, and will probably cause an abend in CICS.

Declaring constants

Most constants are declared as equates in macro CMQA.

However, the following constants cannot be defined as equates, and these are not included when you call
the macro using default options:
v MQACT_NONE
v MQCI_NONE
v MQFMT_NONE
v MQFMT_ADMIN
v MQFMT_COMMAND_1
v MQFMT_COMMAND_2
v MQFMT_DEAD_LETTER_HEADER
v MQFMT_EVENT

© Copyright IBM Corp. 2007, 2018 463

v MQFMT_IMS
v MQFMT_IMS_VAR_STRING
v MQFMT_PCF
v MQFMT_STRING
v MQFMT_TRIGGER
v MQFMT_XMIT_Q_HEADER
v MQMI_NONE

To include them, add the keyword EQUONLY=NO when you call the macro.

CMQA is protected against multiple declaration, so you can include it many times. However, the
keyword EQUONLY takes effect only the first time that the macro is included.

Specifying the name of a structure

To allow more than one instance of a structure to be declared, the macro that generates the structure
prefixes the name of each field with a user-specifiable string and an underscore character (_).

Specify the string when you invoke the macro. If you do not specify a string, the macro uses the name of
the structure to construct the prefix:
* Declare two object descriptors
CMQODA Prefix used="MQOD_" (the default)
MY_MQOD CMQODA Prefix used="MY_MQOD_"

The structure declarations in Call descriptions show the default prefix.

Specifying the form of a structure

The macros can generate structure declarations in one of two forms, controlled by the DSECT parameter:

DSECT=YES
An assembler-language DSECT instruction is used to start a new data section; the structure
definition immediately follows the DSECT statement. No storage is allocated, so no initialization
is possible. The label on the macro invocation is used as the name of the data section; if no label
is specified, the name of the structure is used.

DSECT=NO
Assembler-language DC instructions are used to define the structure at the current position in the
routine. The fields are initialized with values, which you can specify by coding the relevant
parameters on the macro invocation. Fields for which no values are specified on the macro
invocation are initialized with default values.

DSECT=NO is assumed if the DSECT parameter is not specified.

Controlling the listing

You can control the appearance of the structure declaration in the assembler-language listing with the
LIST parameter:

LIST=YES
The structure declaration appears in the assembler-language listing.

LIST=NO
The structure declaration does not appear in the assembler-language listing. This is assumed if
the LIST parameter is not specified.

464 IBM MQ: Programming

Specifying initial values for fields

You can specify the value to be used to initialize a field in a structure by coding the name of that field
(without the prefix) as a parameter on the macro invocation, accompanied by the value required.

For example, to declare a message descriptor structure with the MsgType field initialized with
MQMT_REQUEST, and the ReplyToQ field initialized with the string MY_REPLY_TO_QUEUE, use the
following code:
MY_MQMD CMQMDA MSGTYPE=MQMT_REQUEST, X
REPLYTOQ=MY_REPLY_TO_QUEUE

If you specify a named constant (or equate) as a value on the macro invocation, use the CMQA macro to
define the named constant. You must not enclose in single quotation marks (' ') values that are character
strings.

Writing reenterable programs

IBM MQ uses its structures for both input and output. If you want your program to remain reenterable:
1. Define working storage versions of the structures as DSECTs, or define the structures inline within an

already-defined DSECT. Then copy the DSECT to storage that is obtained using:
v For batch and TSO programs, the STORAGE or GETMAIN z/OS assembler macros
v For CICS, the working storage DSECT (DFHEISTG) or the EXEC CICS GETMAIN command

To correctly initialize these working storage structures, copy a constant version of the corresponding
structure to the working storage version.

Note: The MQMD and MQXQH structures are each more than 256 bytes long. To copy these
structures to storage, use the MVCL assembler instruction.

2. Reserve space in storage by using the LIST form (MF=L) of the CALL macro. When you use the CALL
macro to make an MQI call, use the EXECUTE form (MF=E) of the macro, using the storage reserved
earlier, as shown in the example under “Using CEDF.” For more examples of how to do this, see the
assembler language sample programs as shipped with IBM MQ.

Use the assembler language RENT option to help you to determine if your program is reenterable.

For information on writing reenterable programs, see MVS/ESA Application Development Guide: Assembler
Language Programs, GC28-1644.

Using CEDF

If you want to use the CICS-supplied transaction, CEDF (CICS Execution Diagnostic Facility) to help you
to debug your program, add the ,VL keyword to each CALL statement, for example:
CALL MQCONN,(NAME,HCONN,COMPCODE,REASON),MF=(E,PARMAREA),VL

The previous example is reenterable assembler-language code where PARMAREA is an area in the working
storage that you specified.

Coding in System/390 assembler language 465

Using the MQI calls

The MQI is a call interface, so assembler-language programs must observe the OS linkage convention. In
particular, before they issue an MQI call, assembler-language programs must point register R13 at a save
area of at least 18 full words. This save area provides storage for the called program. It stores the
registers of the caller before their contents are destroyed, and restores the contents of the caller's registers
on return.

Note: This is important for CICS assembler-language programs that use the DFHEIENT macro to set up
their dynamic storage, but that choose to override the default DATAREG from R13 to other registers.
When the CICS Resource Manager Interface receives control from the stub, it saves the current contents
of the registers at the address to which R13 is pointing. Failing to reserve a proper save area for this
purpose gives unpredictable results, and will probably cause an abend in CICS.

466 IBM MQ: Programming

Coding in RPG

Note the information in the following sections when coding IBM MQ programs in RPG.

Note: Supported only on IBM MQ for IBM i.

In the IBM MQ documentation, the parameters of calls, the names of data types, the fields of structures,
and the names of constants are all described using their long names. In RPG, these names are abbreviated
to six or fewer uppercase characters. For example, the field MsgType becomes MDMT in RPG. For more
information, see the IBM i Application Programming Reference (ILE/RPG).

© Copyright IBM Corp. 2007, 2018 467

468 IBM MQ: Programming

Coding in pTAL

Note the information in the following section when coding IBM MQ programs in pTAL.

HP Integrity NonStop Server

Defining and initializing IBM MQ structures

pTAL structure definitions for IBM MQ structures are provided with names that end with ^DEF. For
example, the following pTAL declarations would be coded to create a IBM MQ Message Descriptor
(MQMD) structure and a IBM MQ Put Message Options (MQPMO) structure.
STRUCT MYMD(MQMD^DEF); ! Declare an MQMD structure
STRUCT MYPMO(MQPMO^DEF); ! Declare an MQPMO structure

IBM MQ provides pTAL DEFINE with names that end with ^DEFAULT to initialize IBM MQ structures
with default values. The following pTAL statements are coded to assign default values to the declared
MQMD and the MQPMO structures:
MQMD^DEFAULT(MYMD); ! Assign default values to an MQMD structure
MQPMO^DEFAULT(MYPMO); ! Assign default values to an MQPMO structure

You can declare and initialize other IBM MQ structures by using similar code.

pTAL and the CRE

pTAL programs cannot initialize the Common Runtime Environment and therefore they must be used
with a C-language or COBOL main routine.

The pTAL samples that are provided with IBM MQ use a C-language mainline routine that is called
AMQSPTM0.C

Parameters with MQCHAR data type

The MQGET, MQPUT, and MQPUT1 procedures each have a Buffer parameter that has an MQCHAR .EXT
data type. This parameter is used to send and receive the application's message data.

Parameters of this sort are shown in the pTAL samples as arrays of string. You can declare the
parameters in this way, but it is typically more convenient to declare them as the structure that describes
the layout of the data in the message. The procedure parameter is declared as an MQCHAR .EXT, but the
address of any data can be specified as the parameter on the procedure invocation.

Manipulating character strings

When the queue manager returns character data to the application, the queue manager always pads the
character data with blanks to the defined length of the field. The queue manager does not return
null-terminated strings, but you can use them in your input.

© Copyright IBM Corp. 2007, 2018 469

470 IBM MQ: Programming

Coding in PL/I

Note the information in the following section when coding IBM MQ in PL/I.

PL/I is supported on z/OS only.

Note the information in the following sections when coding IBM MQ for z/OS programs in PL/I.

Structures

Structures are declared with the BASED attribute, and so do not occupy any storage unless the program
declares one or more instances of a structure.

An instance of a structure can be declared using the like attribute, for example:
dcl my_mqmd like MQMD; /* one instance */
dcl my_other_mqmd like MQMD; /* another one */

The structure fields are declared with the INITIAL attribute; when the like attribute is used to declare an
instance of a structure, that instance inherits the initial values defined for that structure. You need to set
only those fields where the value required is different from the initial value.

PL/I is not sensitive to case, and so the names of calls, structure fields, and constants can be coded in
lowercase, uppercase, or mixed case.

Named constants

The named constants are declared as macro variables; as a result, named constants that are not referred to
by the program do not occupy any storage in the compiled procedure.

However, the compiler option that causes the source to be processed by the macro preprocessor must be
specified when the program is compiled.

All the macro variables are character variables, even the ones that represent numeric values. Although
this might seem counter intuitive, it does not result in any data-type conflict after the macro variables
have been substituted by the macro processor, for example:
%dcl MQMD_STRUC_ID char;
%MQMD_STRUC_ID = ’’’MD ’’’;

%dcl MQMD_VERSION_1 char;
%MQMD_VERSION_1 = ’1’;

© Copyright IBM Corp. 2007, 2018 471

472 IBM MQ: Programming

Sample IBM MQ procedural programs

This set of sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.
v “Sample procedural programs (platforms except z/OS)”

v z/OS “Sample programs for IBM MQ for z/OS” on page 578
Related concepts:
“Application development concepts” on page 1
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.
“Developing applications” on page 1
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ support applications written in procedural languages, and object oriented
languages and frameworks.
“Designing IBM MQ applications” on page 51
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Writing a procedural application for queuing” on page 76
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Writing client procedural applications” on page 293
What you need to know to write client applications on IBM MQ using a procedural language.
“Developing web services with IBM MQ” on page 1271
You can develop IBM MQ applications for Web services using the IBM MQ transport for SOAP or the
IBM MQ bridge for HTTP.
“Writing publish/subscribe applications” on page 174
Start writing publish/subscribe IBM MQ applications.
“Building a procedural application” on page 389
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
“Handling procedural program errors” on page 443
This information explains errors associated with your applications MQI calls either when it makes a call,
or when its message is delivered to its final destination.

Sample procedural programs (platforms except z/OS)
These sample programs are delivered with the product. The samples are written in C and COBOL, and
demonstrate typical uses of the Message Queue Interface (MQI).

The samples are not intended to demonstrate general programming techniques, so some error checking
that you might want to include in a production program is omitted.

The source code for all the samples is provided with the product; this source includes comments that
explain the message queuing techniques demonstrated in the programs.

For RPG programming, see IBM i Application Programming Reference (ILE/RPG).

The names of the samples start with the prefix amq . The fourth character indicates the programming
language, and the compiler where necessary.

© Copyright IBM Corp. 2007, 2018 473

s C language
0 COBOL language on both IBM and Micro Focus compilers
i COBOL language on IBM compilers only
m COBOL language on Micro Focus compilers only

The eighth character of the executable indicates whether the sample runs in local binding mode or client
mode. If there is no eighth character, then the sample runs in local bindings mode. If the eighth character
is 'c' then the sample runs in client mode. To set up the queue manager to accept client connections, see
“Preparing and running the sample programs” on page 485 for details.

Use the following links to find out more about the sample programs:
v “Features demonstrated in the sample programs” on page 475
v “The Publish/Subscribe sample programs” on page 512
v “The Put sample programs” on page 517
v “The Distribution List sample program” on page 504
v “The Browse sample programs” on page 493
v “The Browser sample program” on page 494
v “The Get sample programs” on page 506
v “The Reference Message sample programs” on page 519
v “The Request sample programs” on page 526
v “The Inquire sample programs” on page 511
v “The Inquire Properties of a Message Handle sample program” on page 512
v “The Set sample programs” on page 531
v “The Echo sample programs” on page 505
v “The Data-Conversion sample program” on page 497
v “The Triggering sample programs” on page 535
v “The Asynchronous Put sample program” on page 492
v “Database coordination samples” on page 497
v “The CICS transaction sample” on page 495
v “TUXEDO samples” on page 537
v “Dead-letter queue handler sample” on page 504
v “The Connect sample program” on page 496
v “The API exit sample program” on page 490
v “Using the SSPI security exit on Windows systems” on page 549
v “Running the samples using remote queues” on page 550
v “The Cluster Queue Monitoring sample program (AMQSCLM)” on page 550
v “Sample program for Connection Endpoint Lookup (CEPL)” on page 560

474 IBM MQ: Programming

Related concepts:

z/OS “Sample programs for IBM MQ for z/OS” on page 578
This information describes the sample applications that are delivered with IBM MQ for z/OS. These
samples demonstrate typical uses of the Message Queue Interface (MQI).
“C++ sample programs” on page 807
Four sample programs are supplied, to demonstrate getting and putting messages.

Features demonstrated in the sample programs
A collection of tables that show the techniques demonstrated by the IBM MQ sample programs.

All the samples open and close queues using the MQOPEN and MQCLOSE calls, so these techniques are
not listed separately in the tables. See the heading that includes the platform that you are interested in.

z/OS

For the z/OS platform, see “Sample programs for IBM MQ for z/OS” on page 578.

Samples for UNIX and Linux systems
This topic shows the techniques demonstrated by the sample programs for IBM MQ on UNIX and Linux
systems.

See “Preparing and running sample programs on UNIX systems” on page 488 to find out where the
sample programs for IBM MQ on UNIX and Linux systems are stored.

Table 66 The table lists which C and COBOL source files are provided, and whether a server or client
executable is included.

Table 66. IBM MQ on UNIX and Linux sample programs demonstrating use of the MQI (C and COBOL)

Technique C (source) (1
on page 477)

COBOL
(source) (2 on
page 477)

Server (C
executable)

Client (C
executable) (3
on page 477)

Using the publish/subscribe interface amqspuba
amqssuba
amqssbxa

no sample amqspub
amqssub
amqssbx

no sample

Putting messages using the MQPUT call amqsput0 amq0put0 amqsput amqsputc

Putting a single message using the MQPUT1
call

amqsinqa
amqsecha

amqminqx
amqmechx
amqiinqx
amqiechx

amqsinq
amqsech

amqsechc

Putting messages to a distribution list (4 on
page 477)

amqsptl0 amq0ptl0.cbl amqsptl amqsptlc

Replying to a request message amqsinqa amqminqx
amqiinqx

amqsinq no sample

Getting messages using browse (no wait) amqsgbr0 amq0gbr0 amqsgbr no sample

Getting messages (wait with a time limit) amqsget0 amq0get0 amqsget amqsgetc

Getting messages (unlimited wait) amqstrg0 no sample amqstrg amqstrgc

Getting messages (with data conversion) amqsecha no sample amqsech no sample

Putting Reference Messages to a queue (4 on
page 477)

amqsprma no sample amqsprm amqsprmc

Getting Reference Messages from a queue (4
on page 477)

amqsgrma no sample amqsgrm amqsgrmc

Reference Message channel exit (4 on page 477
)

amqsqrma
amqsxrma

no sample amqsxrm no sample

Browsing first 20 characters of a message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Sample IBM MQ procedural programs 475

Table 66. IBM MQ on UNIX and Linux sample programs demonstrating use of the MQI (C and COBOL) (continued)

Technique C (source) (1
on page 477)

COBOL
(source) (2 on
page 477)

Server (C
executable)

Client (C
executable) (3
on page 477)

Browsing complete messages amqsbcg0 no sample amqsbcg amqsbcgc

Using a shared input queue amqsinqa amqminqx
amqiinqx

amqsinq amqsinqc

Using an exclusive input queue amqstrg0 amq0req0 amqstrg amqstrgc

Using the MQINQ call amqsinqa amqminqx
amqiinqx

amqsinq no sample

Using the MQSET call amqsseta amqmsetx
amqisetx

amqsset amqssetc

Using a reply-to queue amqsreq0 amq0req0 amqsreq amqsreqc

Requesting message exceptions amqsreq0 amq0req0 amqsreq no sample

Accepting a truncated message amqsgbr0 amq0gbr0 amqsgbr no sample

Using a resolved queue name amqsgbr0 amq0gbr0 amqsgbr no sample

Triggering a process amqstrg0 no sample amqstrg amqstrgc

Using data conversion (5 on page 477
)

no sample no sample no sample

IBM MQ (coordinating XA-compliant database
managers) accessing a single database using
SQL

amqsxas0.sqc
Db2
amqsxas0.ec
Informix

amq0xas0.sqb no sample no sample

IBM MQ (coordinating XA-compliant database
managers) accessing two databases using SQL

amqsxag0.c
amqsxab0.sqc
amqsxaf0.sqc

amq0xag0.cbl
amq0xab0.sqb
amq0xaf0.sqb

no sample no sample

CICS transaction (6 on page 477) amqscic0.ccs no sample amqscic0 no sample

Encina transaction (4 on page 477) amqsxae0 no sample amqsxae0 no sample

TUXEDO transaction to put messages (7 on
page 477)

amqstxpx no sample no sample no sample

TUXEDO transaction to get messages (7 on
page 477)

amqstxgx no sample no sample no sample

Server for TUXEDO (7 on page 477) amqstxsx no sample no sample no sample

Dead-letter queue handler Directory
./tools/c/
Samples/dlq (8
on page 477)

no sample amqsdlq no sample

From an MQI client, putting a message no sample no sample no sample amqsputc

From an MQI client, getting a message no sample no sample no sample amqsgetc

Connecting to the queue manager using
MQCONNX

amqscnxc no sample no sample amqscnxc

Using API exits amqsaxe0 no sample amqsaxe no sample

Cluster workload balancing exit amqswlm0 no sample amqswlm no sample

Putting messages asynchronously and getting
status using the MQSTAT call

amqsapt0 no sample amqsapt amqsaptc

Reconnectable clients amqsphac
amqsghac
amqsmhac

no sample not applicable amqsphac
amqsghac
amqsmhac

476 IBM MQ: Programming

Table 66. IBM MQ on UNIX and Linux sample programs demonstrating use of the MQI (C and COBOL) (continued)

Technique C (source) (1) COBOL
(source) (2)

Server (C
executable)

Client (C
executable) (3
)

Using message consumers to asynchronously
consume messages from multiple queues

amqscbf0 no sample amqscbf amqscbfc

Specifying SSL/TLS connection information on
MQCONNX

amqssslc no sample not applicable amqssslc

Notes:

1. The executable version of the IBM MQ MQI client samples share the same source as the samples that
run in a server environment.

2. Compile programs beginning 'amqm' with the Micro Focus COBOL compiler, those beginning 'amqi'
with the IBM COBOL compiler, and those beginning 'amq0' with either.

3. The executable versions of the IBM MQ MQI client samples are not available on IBM MQ for HP-UX.
4. Supported on IBM MQ for AIX, IBM MQ for HP-UX, and IBM MQ for Solaris only.
5. On IBM MQ for AIX, IBM MQ for HP-UX, and IBM MQ for Solaris this program is called amqsvfc0.c
6. CICS is supported by IBM MQ for AIX and IBM MQ for HP-UX only.
7. TUXEDO is not supported by IBM MQ for Linux on System p.
8. The source for the dead-letter queue handler consists of several files and is provided in a separate

directory.

Detailed information about support for UNIX and Linux systems is available at the IBM MQ systems
requirements page at http://www.ibm.com/software/integration/wmq/requirements/.

Samples for IBM MQ client for HP Integrity NonStop Server
This topic shows the techniques demonstrated by the sample programs for the IBM MQ client on HP
Integrity NonStop Server systems.

Table 67 The table lists which C, COBOL, and pTAL source sample programs are provided.

Table 67. IBM MQ on HP Integrity NonStop Server sample programs demonstrating use of C, COBOL, and pTAL

Technique C COBOL pTAL

OSS
(Source)

OSS
(Executable)

Guardian
(Source)

Guardian
(Executable)

OSS
(Source)

Guardian
(Source)

OSS
(Source)

Guardian
(Source)

Using the
publish/
subscribe
interface

amqspuba.c
amqssbxa.c
amqssuba.c
amqspse0.c

amqspubc
amqssbxc
amqssubc

MQSPUBC
MQSSBXC
MQSSUBC

AMQSPUBC
AMQSSBXC
AMQSSUBC

amq0pub0.cbl
amq0sub0.cbl

MQSPUBL
MQSSUBL

amqtpub0.tal
amqtsub0.tal

MQSPUBT
MQSSUBT

Putting
messages
using the
MQPUT
call

amqsput0.c amqsputc MQSPUTC AMQSPUTC amq0put0.cblMQSPUTL amqtput0.tal MQSPUTT

Putting a
single
message
using the
MQPUT1
call

amqsecha.c amqsechc MQSECHC AMQSECHC amqtech0.tal MQSECHT

Sample IBM MQ procedural programs 477

http://www.ibm.com/software/integration/wmq/requirements/index.html

Table 67. IBM MQ on HP Integrity NonStop Server sample programs demonstrating use of C, COBOL, and
pTAL (continued)

Technique C COBOL pTAL

Putting
messages
to a
distribution
list

amqsptl0.c amqsptlc MQSPTLC AMQSPTLC amq0ptl0.cblMQSPTLL

Replying
to a
request
message

amqsinqa.c amqsinqc MQSINQC AMQSINQC

Getting
messages
(no wait)

amqsgbr0.c amqsgbrc MQSGBRC AMQSGBRC amq0gbr0.cblMQSGBRL

Getting
messages
(wait with
a time
limit)

amqsget0.c amqsgetc MQSGETC AMQSGETC amq0get0.cblMQSGETL amqtget0.tal MQSGETT

Getting
messages
(unlimited
wait)

amqstrg0.c amqstrgc MQSTRGC AMQSTRGC

Getting
messages
(with data
conversion)

amqsecha.c amqsechc MQSECHC AMQSECHC

Putting
Reference
Messages
to a queue

amqsprma.c amqsprmc MQSPRMC AMQSPRMC

Getting
Reference
Messages
from a
queue

amqsgrma.c amqsgrmc MQSGRMC AMQSGRMC

Reference
Message
channel
exit

amqsqrma.c
amqsxrma.c

MQSQRMC
MQSXRMC

Browsing
first 20
characters
of a
message

amqsgbr0.c amqsgbrc MQSGBRC AMQSGBRC amq0gbr0.cblMQSGBRL

Browsing
complete
messages

amqsbcg0.c amqsbcgc MQSBCGC AMQSBCGC

Using a
shared
input
queue

amqsinqa.c amqsinqc MQSINQC MQSINQC

478 IBM MQ: Programming

Table 67. IBM MQ on HP Integrity NonStop Server sample programs demonstrating use of C, COBOL, and
pTAL (continued)

Technique C COBOL pTAL

Using an
exclusive
input
queue

amqstrg0.c amqstrgc MQSTRGC AMQSTRGC

Using the
MQINQ
call

amqsinqa.c amqsinqc MQSINQC AMQSINQC

Using the
MQSET
call

amqsseta.c amqssetc MQSSETC AMQSSETC

Using a
reply-to
queue

amqsreq0.c amqsreqc MQSREQC AMQSREQC amq0req0.cblMQSREQL

Requesting
message
exceptions

amqsreq0.c amqsreqc MQSREQC AMQSREQC amq0req0.cblMQSREQL

Accepting
a
truncated
message

amqsgbr0.c amqsgbrc MQSGBRC AMQSGBRC amq0gbr0.cblMQSGBRL

Using a
resolved
queue
name

amqsgbr0.c amqsgbrc MQSGBRC AMQSGBRC amq0gbr0.cblMQSGBRL

Triggering
a process

amqstrg0.c amqstrgc MQSTRGC AMQSTRGC

Using
data
conversion

amqsvfc0.c

Dead
letter
queue
handler (
1)

Directory
./samp/dlq

Connecting
to a queue
manager
using
MQCONNX

amqscnxc.c amqscnxc MQSCNXC

Using API
exits

amqsaxe0.c
amqsaem0.c

Cluster
workload
balancing
exit

amqswlm0.c MQSWLMC

Cluster
queue
monitor

amqsclma.c

Sample IBM MQ procedural programs 479

Table 67. IBM MQ on HP Integrity NonStop Server sample programs demonstrating use of C, COBOL, and
pTAL (continued)

Technique C COBOL pTAL

Putting
messages
asynchronously
and
getting
status
using the
MQSTAT
call

amqsapt0.c amqsaptc MQSAPTC MQSAPTC

Reconnectable
clients

amqsghac.c
amqsmhac.c
amqsphac.c

amqsghac
amqsmhac
amqsphac

MQSGHAC
MQSMHAC
MQSPHAC
MQSFHAC

AMQSGHAC
AMQSMHAC
AMQSPHAC
AMQSFHAC

Using the
message
consumers
to
asynchronously
consume
messages
from
multiple
queues

amqscbf0.c amqscbfc

Specifying
SSL/TLS
connection
information
on
MQCONNX

amqssslc.c amqssslc MQSSSLC AMQSSSLC

Activity
trace

amqsact0.c amqsactc MQSACTC AMQSACTC

Message
properties

amqsiqma.c
amqsstma.c

amqsiqmc
amqsstmc

MQSIQMC
MQSSTMC

AMQSIQMC
AMQSSTMC

Command
server

amqsstop.c MQSSTOC

Log
events

amqslog0.c amqslogc MQSLOGC AMQSLOGC

Accounting amqsmon0.c amqsmonc MQSMONC AMQSMONC

Administration
interface

amqsaicq.c
amqsaiem.c
amqsailq.c

An
example
of a C
language
main
function
for
invoking
pTAL

MQSPTMC

480 IBM MQ: Programming

Table 67. IBM MQ on HP Integrity NonStop Server sample programs demonstrating use of C, COBOL, and
pTAL (continued)

Technique C COBOL pTAL

Notes:

1. The source for the dead-letter queue handler consists of several files and is provided in a separate directory.

2. For information about developing applications for your IBM MQ client on the HP Integrity NonStop Server
platform, see:

v “Building your procedural application on HP Integrity NonStop Server” on page 395

– “Preparing C programs in HP Integrity NonStop Server” on page 397

– “Preparing COBOL programs” on page 398

– “Preparing pTAL programs” on page 399

Samples for IBM MQ for Windows
This shows the techniques demonstrated by the sample programs for IBM MQ for Windows.

Table 68 The table lists which C and COBOL source files are provided, and whether a server or client
executable is included.

Table 68. IBM MQ for Windows sample programs demonstrating use of the MQI (C and COBOL)

Technique C (source) COBOL
(source)

Server (C
executable)

Client (C
executable)

Using the publish/subscribe interface amqspuba
amqssuba
amqssbxa

no sample amqspub
amqssub
amqssbx

no sample

Putting messages using the MQPUT call amqsput0 amq0put0 amqsput amqsputc

Putting a single message using the MQPUT1
call

amqsinqa
amqsecha

amqminq2
amqmech2
amqiinq2
amqiech2

amqsinq
amqsech

amqsinqc
amqsechc

Putting messages to a distribution list amqsptl0 amq0ptl0.cbl amqsptl amqsptlc

Replying to a request message amqsinqa amqminq2
amqiinq2

amqsinq amqsinqc

Getting messages (no wait) amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Getting messages (wait with a time limit) amqsget0 amq0get0 amqsget amqsgetc

Getting messages (unlimited wait) amqstrg0 no sample amqstrg amqstrgc

Getting messages (with data conversion) amqsecha no sample amqsech amqsechc

Putting Reference Messages to a queue amqsprma no sample amqsprm amqsprmc

Getting Reference Messages from a queue amqsgrma no sample amqsgrm amqsgrmc

Reference Message channel exit amqsqrma
amqsxrma

no sample amqsxrm no sample

Browsing first 20 characters of a message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Browsing complete messages amqsbcg0 no sample amqsbcg amqsbcgc

Using a shared input queue amqsinqa amqminq2
amqiinq2

amqsinq amqsinqc

Using an exclusive input queue amqstrg0 amq0req0 amqstrg amqstrgc

Using the MQINQ call amqsinqa amqminq2
amqiinq2

amqsinq amqsinqc

Sample IBM MQ procedural programs 481

Table 68. IBM MQ for Windows sample programs demonstrating use of the MQI (C and COBOL) (continued)

Technique C (source) COBOL
(source)

Server (C
executable)

Client (C
executable)

Using the MQSET call amqsseta amqmset2
amqiset2

amqsset amqssetc

Using the MQINQMP call amqsiqma no sample no sample no sample

Using a reply-to queue amqsreq0 amq0req0 amqsreq amqsreqc

Requesting message exceptions amqsreq0 amq0req0 amqsreq amqsreqc

Accepting a truncated message amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Using a resolved queue name amqsgbr0 amq0gbr0 amqsgbr amqsgbrc

Triggering a process amqstrg0 no sample amqstrg amqstrgc

Using data conversion amqsvfc0 no sample no sample no sample

IBM MQ (coordinating XA-compliant database
managers) accessing a single database using
SQL

amqsxas0.sqc
Db2
amqsxas0.ec
Informix

amq0xas0.sqb no sample no sample

IBM MQ (coordinating XA-compliant database
managers) accessing two databases using SQL

amqsxag0.c
amqsxab0.sqc
Db2
amqsxaf0.sqc
Db2

amq0xag0.cbl
amq0xab0.sqb
amq0xaf0.sqb

no sample no sample

TUXEDO transaction to put messages amqstxpx no sample no sample no sample

TUXEDO transaction to get messages amqstxgx no sample no sample no sample

Server for TUXEDO amqstxsx no sample no sample no sample

Dead-letter queue handler Directory
./tools/c/
Samples/dlq (1
on page 483)

no sample amqsdlq no sample

From an IBM MQ MQI client, putting a
message

no sample no sample no sample amqsputc

From an IBM MQ MQI client, getting a
message

no sample no sample no sample amqsgetc

Connecting to the queue manager using
MQCONNX

amqscnxc no sample no sample amqscnxc

Using API exits amqsaxe0 no sample amqsaxe no sample

Cluster workload balancing amqswlm0 no sample amqswlm no sample

SSPI security routines amqsspin no sample amqrspin.dll amqrspin.dll

Putting messages asynchronously and getting
status using the MQSTAT call

amqsapt0 no sample amqsapt amqsaptc

Reconnectable clients amqsphac
amqsghac
amqsmhac

no sample Not applicable amqsphac
amqsghac
amqsmhac

Using message consumers to asynchronously
consume messages from multiple queues

amqscbf0 no sample amqscbf amqscbfc

Specifying SSL/TLS connection information on
MQCONNX

amqssslc no sample not applicable amqssslc

Notes:

482 IBM MQ: Programming

1. The source for the dead-letter queue handler consists of several files and is provided in a separate
directory.

Visual Basic samples for IBM MQ for Windows

Table 69 shows the techniques demonstrated by the IBM MQ for Windows sample programs.

A project can contain several files. When you open a project within Visual Basic, the other files are loaded
automatically. No executable programs are provided.

All the sample projects, except mqtrivc.vbp, are set up to work with the IBM MQ server. To find out how
to change the sample projects to work with the IBM MQ clients see “Preparing Visual Basic programs in
Windows” on page 423.

Table 69. IBM MQ for Windows sample programs demonstrating use of the MQI (Visual Basic)

Technique Project file name

Putting messages using the MQPUT call amqsputb.vbp

Getting messages using the MQGET call amqsgetb.vbp

Browsing a queue using the MQGET call amqsbcgb.vbp

Simple MQGET and MQPUT sample (client) mqtrivc.vbp

Simple MQGET and MQPUT sample (server) mqtrivs.vbp

Putting and getting strings and user-defined structures using MQPUT and MQGET strings.vbp

Using PCF structures to start and stop a channel pcfsamp.vbp

Creating a queue using the MQAI amqsaicq.vbp

Listing a queue manager's queues using the MQAI amqsailq.vbp

Monitoring events using the MQAI amqsaiem.vbp

Samples for IBM MQ for IBM i

Table 70 shows the techniques demonstrated by the IBM MQ for IBM i sample programs. Some
techniques occur in more than one sample program, but only one program is listed in the table.

Table 70. IBM MQ for IBM i sample programs demonstrating use of the MQI (C and COBOL)

Technique C (source) (1
on page 484)

COBOL
(source) (2 on
page 484)

RPG (source) (
3 on page 484)

Client (C
executable)(4)

Putting messages using the MQPUT call AMQSPUT0 AMQ0PUT4 AMQ3PUT4 AMQSPUTC

Putting messages from a data file using the
MQPUT call

AMQSPUT4 no sample no sample no sample

Putting a single message using the MQPUT1
call

AMQSINQ4,
AMQSECH4

AMQ0INQ4,
AMQ0ECH4

AMQ3INQ4,
AMQ3ECH4

AMQSINQC,
AMQSECHC

Putting messages to a distribution list AMQSPTL4 no sample no sample AMQSPTLC

Replying to a request message AMQSINQ4 AMQ0INQ4 AMQ3INQ4 AMQSINQC

Getting messages (no wait) AMQSGBR4 AMQ0GBR4 AMQ3GBR4 AMQSGBRC

Getting messages (wait with a time limit) AMQSGET4 AMQ0GET4 AMQ3GET4 AMQSGETC

Getting messages (unlimited wait) AMQSTRG4 no sample AMQ3TRG4 AMQSTRGC

Getting messages (with data conversion) AMQSECH4 AMQ0ECH4 AMQ3ECH4 AMQSECHC

Putting Reference Messages to a queue AMQSPRM4 no sample no sample AMQSPRMC

Getting Reference Messages from a queue AMQSGRM4 no sample no sample AMQSGRMC

Sample IBM MQ procedural programs 483

Table 70. IBM MQ for IBM i sample programs demonstrating use of the MQI (C and COBOL) (continued)

Technique C (source) (1) COBOL
(source) (2)

RPG (source) (
3)

Client (C
executable)(4)

Reference Message channel exit AMQSQRM4,
AMQSXRM4

no sample no sample no Sample

Message exit AMQSCMX4 no sample no sample no Sample

Browsing first 49 characters of a message AMQSGBR4 AMQ0GBR4 AMQ3GBR4 AMQSGBRC

Browsing complete messages AMQSBCG4 no sample no sample AMQSBCGC

Using a shared input queue AMQSINQ4 AMQ0INQ4 AMQ3INQ4 AMQSINQC

Using an exclusive input queue AMQSREQ4 AMQ0REQ4 AMQ3REQ4 AMQSREQC

Using the MQINQ call AMQSINQ4 AMQ0INQ4 AMQ3INQ4 AMQSINQC

Using the MQSET call AMQSSET4 AMQ0SET4 AMQ3SET4 AMQSSETC

Using a reply-to queue AMQSREQ4 AMQ0REQ4 AMQ3REQ4 AMQSREQC

Requesting message exceptions AMQSREQ4 AMQ0REQ4 AMQ3REQ4 AMQSREQC

Accepting a truncated message AMQSGBR4 AMQ0GBR4 AMQ3GBR4 AMQSGBRC

Using a resolved queue name AMQSGBR4 AMQ0GBR4 AMQ3GBR4 AMQSGBRC

Triggering a process AMQSTRG4 no sample AMQ3TRG4 AMQSTRGC

Trigger server AMQSERV4 no sample AMQ3SRV4 no sample

Using a trigger server (including CICS
transactions)

AMQSERV4 no sample AMQ3SRV4 no sample

Using data conversion AMQSVFC4 no sample no sample no sample

Using API exits AMQSAXE0 no sample no sample no sample

Cluster workload balancing AMQSWLM0 no sample no sample no sample

Putting messages asynchronously and getting
status using the MQSTAT call

AMQSAPT0 no sample no sample AMQSAPTC

Using the publish/subscribe interface AMQSPUBA,
AMQSSUBA,
AMQSSBXA

no sample no sample AMQSPUBC,
AMQSSUBC,
AMQSSBXC

Reconnectable clients (5) AMQSPHAC,
AMQSGHAC,
AMQSMHAC

no sample no sample no sample

Using message consumers to asynchronously
consume messages from multiple queues (5)

AMQSCBFO no sample no sample no sample

Specifying SSL/TLS connection information on
MQCONNX

AMQSSSLC no sample no sample AMQSSSLC

Connecting to the queue manager using
MQCONNX

AMQSCNXC no sample no sample AMQSCNXC

Notes:

1. Source for the C samples is in the file QMQMSAMP/QCSRC. Include files exist as members in the file
QMQM/H.

2. Source for the COBOL samples are in the files QMQMSAMP/QCBLLESRC. The members are named
AMQ0 xxx 4, where xxx indicates the sample function.

3. Source for the RPG samples is in QMQMSAMP/QRPGLESRC. Members are named AMQ3 xxx 4,
where xxx indicates the sample function. Copy members exist in QMQM/QRPGLESRC. Each member
name has the suffix G.

484 IBM MQ: Programming

4. The executable version of the IBM MQ MQI client samples share the same source as the samples that
run in a server environment. Source for the samples in the client environment is same as the server.
IBM MQ MQI client samples are linked with client library LIBMQIC and IBM MQ server samples are
linked with server library LIBMQM.

5. If client executable for sample application of Reconnectable client and asynchronously consumer
application has to be run, it has to be compiled and linked with threaded library LIBMQIC_R. Hence,
it has to be run in threaded environment. Set the environment variable QIBM_MULTI_THREADED to
'Y' and run the application from qsh.
See Setting up IBM MQ with Java and JMS for more information.

In addition to these, the IBM MQ for IBM i sample option includes a sample data file, which you use as
input to the sample programs, AMQSDATA and sample CL programs that demonstrate administration
tasks. The CL samples are described in the Administering IBM i . You could use the sample CL program
amqsamp4 to create queues to use with the sample programs described in this topic.

Preparing and running the sample programs
Configure your queue manager to securely accept incoming connection requests from applications
running in client mode.

Before you begin

Ensure the queue manager already exists and has been started. Determine whether channel authentication
records are already enabled by issuing the MQSC command:
DISPLAY QMGR CHLAUTH

This task expects that channel authentication records are enabled. If this is a queue manager used by
other users and applications, changing this setting will affect all other users and applications. If your
queue manager does not make use of channel authentication records then step 4 can be replaced with an
alternate authentication method (for example a security exit) which sets the MCAUSER to the
non-privileged-user-id you will obtain in step 1.

You must know which channel name your application expects to use so that the application can be
permitted to use the channel. You must also know which objects, for example queues or topics, your
application expects to use so that your application can be permitted to use them.

About this task

This task creates a non-privileged user ID to be used for a client application which connects to the queue
manager. Access is granted for the client application only to be able to use the channel it needs and the
queue it needs by use of this user ID.

Procedure
1. Obtain a user ID on the system your queue manager is running on. For this task this user ID must

not be a privileged administrative user. This user ID will be the authority under which the client
connection will run on the queue manager.

2. Start a listener program with the following commands where:
 qmgr-name is the name of your queue manager
 nnnn is your chosen port number
a. For UNIX and Windows systems:

runmqlsr -t tcp -m qmgr-name -p nnnn

b. For IBM i:
STRMQMLSR MQMNAME(qmgr-name) PORT(nnnn)

Sample IBM MQ procedural programs 485

c. z/OS For z/OS ensure your channel initiator is started. If not, start it by issuing the START
CHINIT command.
START LISTENER TRPTYPE(TCP) PORT(nnnn)

3. If your application uses the SYSTEM.DEF.SVRCONN then this channel is already defined. If your
application uses another channel, create it by issuing the MQSC command:
DEFINE CHANNEL(’ channel-name ’) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR(’Channel for use by sample programs’)

channel-name is the name of your channel.
4. Create a channel authentication rule allowing only the IP address of your client system to use the

channel by issuing the MQSC command:
SET CHLAUTH(’ channel-name ’) TYPE(ADDRESSMAP) ADDRESS(’ client-machine-IP-address ’) +
MCAUSER(’ non-privileged-user-id ’)

channel-name is the name of your channel.
 client-machine-IP-address is the IP address of your client system.

If your sample client application is running on the same machine as the queue manager then use
an IP address of '127.0.0.1' if your application is going to connect using 'localhost'. If several
different client machines are going to connect in, you can use a pattern or a range instead of a
single IP address. See Generic IP addresses for details.

 non-privileged-user-id is the user ID you obtained in step 1 on page 485
5. If your application uses the SYSTEM.DEFAULT.LOCAL.QUEUE then this queue is already defined. If

your application uses another queue, create it by issuing the MQSC command:
DEFINE QLOCAL(’ queue-name ’) DESCR(’Queue for use by sample programs’)

queue-name is the name of your queue.
6. Grant access to connect to and inquire the queue manager:

a. For

IBM i, UNIX and Windows systems issue the MQSC commands:
SET AUTHREC OBJTYPE(QMGR) PRINCIPAL(’ non-privileged-user-id ’) +
AUTHADD(CONNECT, INQ)

non-privileged-user-id is the user ID you obtained in step 1 on page 485

b. z/OS For z/OS ensure that your channel initiator is started. If not, start the channel initiator
by issuing the START CHINIT command. Start a TCP listener for example :
START LISTENER TRPTYPE(TCP) PORT(nnnn)

7. If your application is a point-to-point application, that is it makes use of queues, grant access to allow
inquiring and the putting and getting messages using your queue by the user ID to be used, by
issuing the MQSC commands:

a. For

IBM i, UNIX and Windows systems issue the MQSC commands:
SET AUTHREC PROFILE(’ queue-name ’) OBJTYPE(QUEUE) +
PRINCIPAL(’ non-privileged-user-id ’) AUTHADD(PUT, GET, INQ, BROWSE)

queue-name is the name of your queue.
 non-privileged-user-id is the user ID you obtained in step 1 on page 485

b. z/OS For z/OS issue the RACF® commands:
RDEFINE MQQUEUE qmgr-name.QUEUE. queue-name UACC(NONE)

PERMIT qmgr-name.QUEUE. queue-name CLASS(MQQUEUE) ID(non-privileged-user-id) ACCESS(UPDATE)

qmgr-name is the name of your queue manager
 queue-name is the name of your queue.
 non-privileged-user-id is the user ID you obtained in step 1 on page 485

8. If your application is a publish/subscribe application, that is it makes use of topics, grant access to
allow publishing and subscribing using your topic by the user ID to be used, by issuing the MQSC
commands:

486 IBM MQ: Programming

a. For

IBM i, UNIX and Windows systems issue the MQSC commands:
SET AUTHREC PROFILE(’SYSTEM.BASE.TOPIC’) OBJTYPE(TOPIC) +
PRINCIPAL(’ non-privileged-user-id ’) AUTHADD(PUB, SUB)

non-privileged-user-id is the user ID you obtained in step 1 on page 485
This will give non-privileged-user-id access to any topic in the topic tree, alternatively, you can
define a topic object using DEFINE TOPIC and grant accesses only to the part of the topic tree
referenced by that topic object. See Controlling user access to topics for details.

b. z/OS For z/OS issue the RACF commands:
RDEFINE MQTOPIC qmgr-name.PUBLISH.SYSTEM.BASE.TOPIC UACC(NONE)

PERMIT qmgr-name.PUBLISH.SYSTEM.BASE.TOPIC CLASS(MQTOPIC) ID(non-privileged-user-id) ACCESS(UPDATE)

RDEFINE MQTOPIC qmgr-name.SUBSCRIBE.SYSTEM.BASE.TOPIC UACC(NONE)

PERMIT qmgr-name.SUBSCRIBE.SYSTEM.BASE.TOPIC CLASS(MQTOPIC) ID(non-privileged-user-id) ACCESS(UPDATE)

qmgr-name is the name of your queue manager
 non-privileged-user-id is the user ID you obtained in step 1 on page 485

This will give non-privileged-user-id access to any topic in the topic tree, alternatively, you can
define a topic object using DEFINE TOPIC and grant accesses only to the part of the topic tree
referenced by that topic object. See Controlling user access to topics for details.

What to do next

Your client application can now connect to the queue manager and put or get messages using the queue.
Related information:
SET CHLAUTH
DEFINE CHANNEL
DEFINE QLOCAL
SET AUTHREC

IBM MQ authorities on IBMi
Giving access to an IBM MQ object on UNIX or Linux systems and Windows

z/OS Authority to work with IBM MQ objects on z/OS

Preparing and running sample programs on IBM i systems
The source for IBM MQ for IBM i sample programs are provided in library QMQMSAMP as members of
QCSRC, QCLSRC, QCBLLESRC, and QRPGLESRC.

To run the samples use either the C executable versions, supplied in the library QMQM, or compile them
in a similar way to any other IBM MQ application. For more information see “Running the sample
programs” on page 489.

Sample IBM MQ procedural programs 487

Preparing and running sample programs on UNIX systems
Table 71. Where to find the samples for IBM MQ on UNIX and Linux systems

Content Directory

source files MQ_INSTALLATION_PATH/samp

dead-letter queue handler source files MQ_INSTALLATION_PATH/samp/dlq

executable files MQ_INSTALLATION_PATH/samp/bin

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

The IBM MQ on UNIX and Linux systems sample files are in the directories listed in Table 71 if the
defaults were used at installation time. To run the samples, either use the executable versions supplied or
compile the source versions as you would any other applications, using an ANSI compiler. For
information about how to do so, see “Running the sample programs” on page 489.

Preparing and running sample programs on Windows systems
Table 72. Where to find the samples for IBM MQ for Windows

Content Directory

C source code MQ_INSTALLATION_PATH\Tools\C\Samples

Source code for dead-letter
handler sample

MQ_INSTALLATION_PATH\Tools\C\Samples\DLQ

COBOL source code MQ_INSTALLATION_PATH\Tools\Cobol\Samples

C executable files 1 MQ_INSTALLATION_PATH\ Tools\C\Samples\Bin (32-bit versions)
MQ_INSTALLATION_PATH\ Tools\C\Samples\Bin64 (64-bit versions)

Sample MQSC files MQ_INSTALLATION_PATH\Tools\MQSC\Samples

Visual Basic source code MQ_INSTALLATION_PATH\Tools\VB\SampVB6

.NET samples MQ_INSTALLATION_PATH\Tools\dotnet\Samples

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Note:

1. 64-bit versions are available of some C executable file samples.

The IBM MQ for Windows sample files are in the directories listed in Table 72 if the defaults were used at
installation time; the installation drive defaults to <c:>. To run the samples, either use the executable
versions supplied or compile the source versions as you would any other IBM MQ for Windows
applications. For information on how to do this, see “Running the sample programs” on page 489.

488 IBM MQ: Programming

Running the sample programs
Consider using this topic when running sample programs across different platforms.

Before you can run any of the sample programs, create a queue manager and set up the default
definitions. This is explained in Administering.

On Windows, UNIX and Linux platforms

The samples need a set of queues to work with. Either use your own queues or run the sample MQSC
file amqscos0.tst to create a set.

To do this on UNIX and Linux systems, enter:
v runmqsc QManagerName <amqscos0.tst >/tmp/sampobj.out

Check the sampobj.out file to ensure that there are no errors.

To do this on Windows systems enter:
v runmqsc QManagerName <amqscos0.tst > sampobj.out

Check the sampobj.out file to ensure that there are no errors. This file is in your current directory.

You can now run the sample applications. Enter the name of the sample application followed by any
parameters, for example:
v amqsput myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be put, and qmanagername is
the queue manager that owns myqueue.

See the description of the individual samples for information on the parameters that each of them
expects.

On IBM i

You can use your own queues when you run the samples, or you can run the sample program
AMQSAMP4 to create some sample queues. The source for this program is shipped in file QCLSRC in
library QMQMSAMP. It can be compiled using the CRTCLPGM command.

To call one of the sample programs using data from member PUT in file AMQSDATA of library
QMQMSAMP, use a command like:
CALL PGM(QMQM/AMQSPUT4) PARM(’QMQMSAMP/AMQSDATA(PUT)’)

The sample data only applies to the C/400 sample programs.

Note: For a compiled module to use the IFS file system, specify the option SYSIFCOPT(*IFSIO) on
CRTCMOD, then the file name, passed as a parameter, must be specified in the following format:
home/me/myfile

Length of queue name

For the COBOL sample programs, when you pass queue names as parameters, you must provide 48
characters, padding with blank characters if necessary. Anything other than 48 characters causes the
program to fail with reason code 2085.

Sample IBM MQ procedural programs 489

Inquire, Set, and Echo examples

For the Inquire, Set, and Echo examples, the sample definitions trigger the C versions of these samples.

If you want the COBOL versions you must change the process definitions:
v SYSTEM.SAMPLE.INQPROCESS
v SYSTEM.SAMPLE.SETPROCESS
v SYSTEM.SAMPLE.ECHOPROCESS

On Windows, UNIX and Linux systems do this by editing the amqscos0.tst file and changing the C
executable file names to the COBOL executable file names before using the runmqsc command, as shown
previously.

On IBM i, you can use the CHGMQMPRC command (for details, see Change MQ Process

(CHGMQMPRC)), or edit and run the AMQSAMP4 command with the alternative definition.

The API exit sample program
The sample API exit generates an MQI trace to a user-specified file with a prefix defined in the
MQAPI_TRACE_LOGFILE environment variable.

For more information about API exits, see “Writing and compiling API exits” on page 340.

Source
amqsaxe0.c

Binary
amqsaxe

Configuring for the sample exit
1. Add the following to the qm.ini file.

Platforms other than Windows
ApiExitLocal:
Sequence=100
Function=EntryPoint
Module= MQ_INSTALLATION_PATH/samp/bin/amqsaxe
Name=SampleApiExit

where MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.

Windows
ApiExitLocal:
Sequence=100
Function=EntryPoint
Module= MQ_INSTALLATION_PATH\Tools\c\Samples\bin\amqsaxe
Name=SampleApiExit

where MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.
2. Set the environment variable

MQAPI_TRACE_LOGFILE=/tmp/MqiTrace

3. Run your application.
Output files are created in the /tmp directory with names like: MqiTrace.<pid>.<tid>.log

490 IBM MQ: Programming

The Asynchronous consumption sample program
The amqscbf sample program demonstrates the use of MQCB and MQCTL to consume messages from
multiple queues asynchronously.

amqscbf is provided as C source code, and a binary client and server executable on Windows, UNIX and
Linux platforms.

The program is started from the command line and takes the following optional parameters:
Usage: [Options] <Queue Name> { <Queue Name> }

where Options are:
-m <Queue Manager Name>
-o <Open options>
-r <Reconnect Type>

d Reconnect Disabled
r Reconnect
m Reconnect Queue Manager

Provide more than one queue name to read messages from multiple queues (a maximum of ten queues
are supported by the sample.)

Note: Reconnect type is only valid for client programs.

Example

The example shows amqscbf run as a server program reading one message from QL1 and then being
stopped.

Use IBM MQ Explorer to put a test message on QL1. Stop the program by pressing enter.
C:\>amqscbf QL1
Sample AMQSCBF0 start

Press enter to end
Message Call (9 Bytes) :
Message 1

Sample AMQSCBF0 end

What amqscbf demonstrates

The sample shows how to read messages from multiple queues in the order of their arrival. This would
require a lot more code using synchronous MQGET. In the case of asynchronous consumption, no polling
is required, and thread and storage management is performed by IBM MQ. A "real world" example
would need to deal with errors; in the sample errors are written out to the console.

The sample code has the following steps,
1. Define the single message consumption callback function,

void MessageConsumer(MQHCONN hConn,
MQMD * pMsgDesc,
MQGMO * pGetMsgOpts,
MQBYTE * Buffer,
MQCBC * pContext)

{ ... }

2. Connect to the queue manager,
MQCONNX(QMName,&cno,&Hcon,&CompCode,&CReason);

3. Open the input queues, and associate each one with the MessageConsumer callback function,

Sample IBM MQ procedural programs 491

MQOPEN(Hcon,&od,O_options,&Hobj,&OpenCode,&Reason);
cbd.CallbackFunction = MessageConsumer;
MQCB(Hcon,MQOP_REGISTER,&cbd,Hobj,&md,&gmo,&CompCode,&Reason);

cbd.CallbackFunction does not need to be set for each queue; it is an input-only field. But you could
associate a different callback function with each queue.

4. Start consumption of the messages,
MQCTL(Hcon,MQOP_START,&ctlo,&CompCode,&Reason);

5. Wait until the user has pressed enter and then stop consumption of messages,
MQCTL(Hcon,MQOP_STOP,&ctlo,&CompCode,&Reason);

6. Finally disconnect from the queue manager,
MQDISC(&Hcon,&CompCode,&Reason);

The Asynchronous Put sample program
Learn about running the amqsapt sample and the design of the Asynchronous Put sample program.

The asynchronous put sample program puts messages on a queue using the asynchronous MQPUT call
and then retrieves status information using the MQSTAT call. See “Features demonstrated in the sample
programs” on page 475 for the name of this program on different platforms.

Running the amqsapt sample

This program takes up to 6 parameters:
1. The name of the target queue (required)
2. The name of the queue manager (optional)
3. Open options (optional)
4. Close options (optional)
5. The name of the target queue manager (optional)
6. The name of the dynamic queue (optional)

If a queue manager is not specified, amqsapt connects to the default queue manager.

Design of the Asynchronous Put sample program

The program uses the MQOPEN call with the output options supplied, or with the MQOO_OUTPUT and
MQOO_FAIL_IF_QUIESCING options to open the target queue for putting messages.

If it cannot open the queue, the program outputs an error message containing the reason code returned
by the MQOPEN call. To keep the program simple, on this and on subsequent MQI calls, the program
uses default values for many of the options.

For each line of input, the program reads the text into a buffer and uses the MQPUT call with
MQPMO_ASYNC_RESPONSE to create a datagram message containing the text of that line and
asynchronously put it to the target queue. The program continues until it reaches the end of the input or
the MQPUT call fails. If the program reaches the end of the input, it closes the queue using the
MQCLOSE call.

The program then issues the MQSTAT call, returning an MQSTS structure, and displays messages
containing the number of messages put successfully, the number of messages put with a warning, and the
number of failures.

492 IBM MQ: Programming

The Browse sample programs
The Browse sample programs browse messages on a queue using the MQGET call.

See “Features demonstrated in the sample programs” on page 475 for the names of these programs.

Design of the Browse sample program

The program opens the target queue using the MQOPEN call with the MQOO_BROWSE option. If it
cannot open the queue, the program outputs an error message containing the reason code returned by the
MQOPEN call.

For each message on the queue, the program uses the MQGET call to copy the message from the queue,
then displays the data contained in the message. The MQGET call uses these options:

MQGMO_BROWSE_NEXT
After the MQOPEN call, the browse cursor is positioned logically before the first message in the
queue, so this option causes the first message to be returned when the call is first made.

MQGMO_NO_WAIT
The program does not wait if there are no messages on the queue.

MQGMO_ACCEPT_TRUNCATED_MSG
The MQGET call specifies a buffer of fixed size. If a message is longer than this buffer, the
program displays the truncated message, together with a warning that the message has been
truncated.

The program demonstrates how you must clear the MsgId and CorrelId fields of the MQMD structure
after each MQGET call, because the call sets these fields to the values contained in the message it
retrieves. Clearing these fields means that successive MQGET calls retrieve messages in the order in
which the messages are held in the queue.

The program continues to the end of the queue; the MQGET call returns the
MQRC_NO_MSG_AVAILABLE reason code and the program displays a warning message. If the MQGET
call fails, the program displays an error message that contains the reason code.

The program then closes the queue using the MQCLOSE call.

UNIX, Linux and Windows systems
Consider using this topic when learning about Browse sample programs on UNIX, Linux and Windows
systems.

The C version of the program takes 2 parameters
1. The name of the source queue (necessary)
2. The name of the queue manager (optional)

If a queue manager is not specified, it connects to the default one. For example, enter one of the
following:
v amqsgbr myqueue qmanagername

v amqsgbrc myqueue qmanagername

v amq0gbr0 myqueue

where myqueue is the name of the queue that the messages will be viewed from, and qmanagername is the
queue manager that owns myqueue.

If you omit the qmanagername, when running the C sample, it assumes that the default queue manager
owns the queue.

Sample IBM MQ procedural programs 493

The COBOL version does not have any parameters. It connects to the default queue manager and when
you run it you are prompted:
Please enter the name of the target queue

Only the first 50 characters of each message are displayed, followed by - - - truncated when this is the
case.

IBM i
Each program retrieves copies of all the messages on the queue that you specify when you call the
program; the messages remain on the queue.

You can use the supplied queue SYSTEM.SAMPLE.LOCAL; run the Put sample program first to put some
messages on the queue. You can use the queue SYSTEM.SAMPLE.ALIAS, which is an alias name for the
same local queue. The program continues until it reaches the end of the queue or an MQI call fails.

The C samples let you specify the queue manager name, generally as the second parameter, in a similar
fashion to the Windows systems samples. For example:
CALL PGM(QMQM/AMQSTRG4) PARM(’SYSTEM.SAMPLE.TRIGGER’ ’QM01’)

If a queue manager is not specified, it connects to the default one. This is also relevant to the RPG
samples. However, with the RPG samples you must supply a queue manager name rather than allowing
it to default.

The Browser sample program
The Browser sample program reads and writes both the message descriptor and the message content
fields of all the messages on a queue.

The sample program is written as a utility, not just to demonstrate a technique. See “Features
demonstrated in the sample programs” on page 475 for the names of these programs.

This program takes these positional parameters:
1. The name of the source queue (required)
2. The name of the queue manager (required)
3. An optional parameter for properties (optoinal)

These programs also use an environment variable named MQSAMP_USER_ID which should be set to the user
ID to be used for connection authentication. When this is set, the program will prompt for a password to
accompany that user ID.

To run these programs, enter one of the following:
v amqsbcg myqueue qmanagername

v amqsbcgc myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be browsed, and
qmanagername is the queue manager that owns myqueue.

It reads each message from the queue and writes the following to stdout:
v Formatted message descriptor fields
v Message data (dumped in hex and, where possible, character format)

Permissible values for the property parameter are:

494 IBM MQ: Programming

Value Behavior

0 Default behavior, as it was for V6. The properties that get delivered to the application depend on the
PropertyControl queue attribute that the message is retrieved from.

1 A message handle is created and used with the MQGET. Properties of the message, except those
contained in the message descriptor (or extension) are displayed in a similar fashion to the message
descriptor. For example:

****Message properties****
<property name>: <property value>

Or if no properties are available:

****Message properties****
None

Numeric values are displayed using printf, string values are surrounding in single quotation marks,
and byte strings are surrounded with X and single quotation marks, as for the message descriptor.

2 MQGMO_NO_PROPERTIES is specified, so that only message descriptor properties will be returned.

3 MQGMO_PROPERTIES_FORCE_MQRFH2 is specified, so that all properties are returned in the
message data.

4 MQGMO_PROPERTIES_COMPATIBILITY is specified, so that all properties can be returned
depending on whether a Version 6 property is included, otherwise the properties are discarded.

The program is restricted to printing the first 65535 characters of the message, and fails with the reason
truncated msg if a longer message is read.

For an example of the output from this utility, see .

The CICS transaction sample
A sample CICS transaction program is provided, named amqscic0.ccs for source code and amqscic0 for
the executable version. You can build transactions using the standard CICS facilities.

See “Building a procedural application” on page 389 for details on the commands needed for your
platform.

The transaction reads messages from the transmission queue SYSTEM.SAMPLE.CICS.WORKQUEUE on
the default queue manager and places them onto the local queue, the name of which is contained in the
transmission header of the message. Any failures are sent to the queue SYSTEM.SAMPLE.CICS.DLQ.

Note: You can use a sample MQSC script amqscic0.tst to create these queues and sample input queues.

Sample IBM MQ procedural programs 495

The Connect sample program
The Connect sample program allows you to explore the MQCONNX call and its options from a client.
The sample connects to the queue manager using the MQCONNX call, inquires about the name of the
queue manager using the MQINQ call, and displays it. Also, learn about running the amqscnxc sample.

Note: The Connect sample program is a client sample. You can compile and run it on a server but the
function is meaningful only on a client, and only client-executable files are supplied.

Running the amqscnxc sample

The command-line syntax of the Connect sample program is:
amqscnxc [-x ConnName [-c SvrconnChannelName]] [-u User] [QMgrName]

The parameters are optional and their order is not important except for QMgrName, which, if specified,
must come last. The parameters are:

ConnName
The TCP/IP connection name of the server queue manager

If you do not specify the TCP/IP connection name, MQCONNX is issued with the ClientConnPtr
set to NULL.

SvrconnChannelName
The name of the server connection channel

If you specify the TCP/IP connection name but not the server connection channel (the reverse is
not allowed), the sample uses the name SYSTEM.DEF.SVRCONN.

User The user name to be used for connection authentication

If you specify this the program will prompt for a password to accompany that user ID.

QMgrName
The name of the target queue manager

If you do not specify the target queue manager, the sample connects to whichever queue manager
is listening at the given TCP/IP connection name.

Note: If you enter a question mark as the only parameter, or if you enter incorrect parameters, you get a
message explaining how to use the program.

If you run the sample with no command-line options, the contents of the MQSERVER environment
variable are used to determine the connection information. (In this example MQSERVER is set to
SYSTEM.DEF.SVRCONN/TCP/machine.site.company.com.) You see output like this:
Sample AMQSCNXC start
Connecting to the default queue manager
with no client connection information specified.
Connection established to queue manager machine

Sample AMQSCNXC end

If you run the sample and provide a TCP/IP connection name and a server connection channel name but
no target queue manager name, like this:
amqscnxc -x machine.site.company.com -c SYSTEM.ADMIN.SVRCONN

the default queue manager name is used and you see output like this:
Sample AMQSCNXC start
Connecting to the default queue manager
using the server connection channel SYSTEM.ADMIN.SVRCONN

496 IBM MQ: Programming

on connection name machine.site.company.com.
Connection established to queue manager MACHINE

Sample AMQSCNXC end

If you run the sample and provide a TCP/IP connection name and a target queue manager name, like
this:
amqscnxc -x machine.site.company.com MACHINE

you see output like this:
Sample AMQSCNXC start
Connecting to queue manager MACHINE
using the server connection channel SYSTEM.DEF.SVRCONN
on connection name machine.site.company.com.
Connection established to queue manager MACHINE

Sample AMQSCNXC end

The Data-Conversion sample program
The data-conversion sample program is a skeleton of a data conversion exit routine. Learn about the
design of the data-conversion sample.

See “Features demonstrated in the sample programs” on page 475 for the names of these programs.

Design of the data-conversion sample

Each data-conversion exit routine converts a single named message format. This skeleton is intended as a
wrapper for code fragments generated by the data-conversion exit generation utility program.

The utility produces one code fragment for each data structure; several such structures make up a format,
so several code fragments are added to this skeleton to produce a routine to do data conversion of the
entire format.

The program then checks whether the conversion is a success or failure, and returns the values required
to the caller.

Database coordination samples
Two samples are provided that demonstrate how IBM MQ can coordinate both IBM MQ updates and
database updates within the same unit of work.

These samples are:
1. AMQSXAS0 (in C) or AMQ0XAS0 (in COBOL), which updates a single database within an IBM MQ

unit of work.
2. AMQSXAG0 (in C) or AMQ0XAG0 (in COBOL), AMQSXAB0 (in C) or AMQ0XAB0 (in COBOL), and

AMQSXAF0 (in C) or AMQ0XAF0 (in COBOL), which together update two databases within an IBM
MQ unit of work, showing how multiple databases can be accessed. These samples are provided to
show the use of the MQBEGIN call, mixed SQL and IBM MQ calls, and where and when to connect
to a database.

Figure 83 on page 498 shows how the samples provided are used to update databases:

Sample IBM MQ procedural programs 497

The programs read a message from a queue (under syncpoint), then, using the information in the
message, obtain the relevant information from the database and update it. The new status of the database
is then printed.

The program logic is as follows:
1. Use the name of the input queue from the program argument
2. Connect to the default queue manager (or optionally the supplied name in C) using MQCONN
3. Open a queue (using MQOPEN) for input while there are no failures
4. Start a unit of work using MQBEGIN
5. Get the next message (using MQGET) from the queue under syncpoint
6. Get information from databases
7. Update information from databases
8. Commit changes using MQCMIT
9. Print updated information (no message being available counts as a failure, and the loop ends)

10. Close the queue using MQCLOSE
11. Disconnect from the queue using MQDISC

SQL cursors are used in the samples, so that reads from the databases (that is, multiple instances) are
locked while a message is being processed, allowing multiple instances of these programs to run
simultaneously. The cursors are explicitly opened, but implicitly closed by the MQCMIT call.

The single database sample (AMQSXAS0 or AMQ0XAS0) has no SQL CONNECT statements and the
connection to the database is implicitly made by IBM MQ with the MQBEGIN call. The multiple database
sample (AMQSXAG0 or AMQ0XAG0, AMQSXAB0 or AMQ0XAB0, and AMQSXAF0 or AMQ0XAF0) has

updates

updates

updates

MQFeeDB database

MQFeeTB table

Account
FeeDue
TranFee

Transactions

MQBankDB database

MQBankT table

Name
Account
Balance

MQBankTB table

Name
Account
Balance

Transactions

AMQSXAS0/
AMQ0XAS0

Single
database
sample

Prepared and
bound with
MQBankDB

database

AMQSXAB0/

Prepared and
bound with
MQBankDB

database

AMQ0XAB0

AMQSXAF0/

Prepared and
bound with
MQFeeDB
database

AMQ0XAF0

AMQSXAG0/
AMQ0XAG0

Multiple
database
sample

Figure 83. The database coordination samples

498 IBM MQ: Programming

SQL CONNECT statements, as some database products allow only one active connection. If this is not the
case for your database product, or if you are accessing a single database in multiple database products,
the SQL CONNECT statements can be removed.

The samples are prepared with the IBM Db2 database product, so you might need to modify them to
work with other database products.

The SQL error checking uses routines in UTIL.C and CHECKERR.CBL supplied by Db2. These must be
compiled or replaced before compiling and linking.

Note: If you are using the Micro Focus COBOL source CHECKERR.MFC for SQL error checking, you
must change the program ID to uppercase, that is CHECKERR, for AMQ0XAS0 to link correctly.

Creating the databases and tables
Create the databases and tables before compiling the samples.

To create the databases, use the usual method for your database product, for example:
DB2 CREATE DB MQBankDB
DB2 CREATE DB MQFeeDB

Create the tables using SQL statements as follows:

In C:
EXEC SQL CREATE TABLE MQBankT(Name VARCHAR(40) NOT NULL,

Account INTEGER NOT NULL,
Balance INTEGER NOT NULL,
PRIMARY KEY (Account));

EXEC SQL CREATE TABLE MQBankTB(Name VARCHAR(40) NOT NULL,
Account INTEGER NOT NULL,
Balance INTEGER NOT NULL,
Transactions INTEGER,
PRIMARY KEY (Account));

EXEC SQL CREATE TABLE MQFeeTB(Account INTEGER NOT NULL,
FeeDue INTEGER NOT NULL,
TranFee INTEGER NOT NULL,
Transactions INTEGER,
PRIMARY KEY (Account));

In COBOL:
EXEC SQL CREATE TABLE

MQBankT(Name VARCHAR(40) NOT NULL,
Account INTEGER NOT NULL,
Balance INTEGER NOT NULL,
PRIMARY KEY (Account))

END-EXEC.

EXEC SQL CREATE TABLE
MQBankTB(Name VARCHAR(40) NOT NULL,

Account INTEGER NOT NULL,
Balance INTEGER NOT NULL,
Transactions INTEGER,
PRIMARY KEY (Account))

END-EXEC.

EXEC SQL CREATE TABLE
MQFeeTB(Account INTEGER NOT NULL,

FeeDue INTEGER NOT NULL,

Sample IBM MQ procedural programs 499

TranFee INTEGER NOT NULL,
Transactions INTEGER,
PRIMARY KEY (Account))

END-EXEC.

Enter data into the tables using SQL statements as follows:
EXEC SQL INSERT INTO MQBankT VALUES (’Mr Fred Bloggs’,1,0);
EXEC SQL INSERT INTO MQBankT VALUES (’Mrs S Smith’,2,0);
EXEC SQL INSERT INTO MQBankT VALUES (’Ms Mary Brown’,3,0);...
EXEC SQL INSERT INTO MQBankTB VALUES (’Mr Fred Bloggs’,1,0,0);
EXEC SQL INSERT INTO MQBankTB VALUES (’Mrs S Smith’,2,0,0);
EXEC SQL INSERT INTO MQBankTB VALUES (’Ms Mary Brown’,3,0,0);...
EXEC SQL INSERT INTO MQFeeTB VALUES (1,0,50,0);
EXEC SQL INSERT INTO MQFeeTB VALUES (2,0,50,0);
EXEC SQL INSERT INTO MQFeeTB VALUES (3,0,50,0);...

Note: For COBOL, use the same SQL statements but add END_EXEC at the end of each line.

Precompiling, compiling, and linking the samples
Learn about precompiling, compiling, and linking samples in C and COBOL.

Precompile the .SQC files (in C) and .SQB files (in COBOL), and bind them against the appropriate
database to produce the .C or .CBL files. To do this, use the typical method for your database product.

Precompiling in C
db2 connect to MQBankDB
db2 prep AMQSXAS0.SQC
db2 connect reset

db2 connect to MQBankDB
db2 prep AMQSXAB0.SQC
db2 connect reset

db2 connect to MQFeeDB
db2 prep AMQSXAF0.SQC
db2 connect reset

Precompiling in COBOL
db2 connect to MQBankDB
db2 prep AMQ0XAS0.SQB bindfile target ibmcob
db2 bind AMQ0XAS0.BND
db2 connect reset

db2 connect to MQBankDB
db2 prep AMQ0XAB0.SQB bindfile target ibmcob
db2 bind AMQ0XAB0.BND
db2 connect reset

db2 connect to MQFeeDB
db2 prep AMQ0XAF0.SQB bindfile target ibmcob
db2 bind AMQ0XAF0.BND
db2 connect reset

Compiling and linking

The following sample commands use the symbols <DB2TOP> and MQ_INSTALLATION_PATH. <DB2TOP>
represents the installation directory for the Db2 product. MQ_INSTALLATION_PATH represents the high-level
directory in which IBM MQ is installed.

500 IBM MQ: Programming

v On AIX, the directory path is:
/usr/lpp/db2_05_00

v On HP-UX and Solaris, the directory path is:
/opt/IBMdb2/V5.0

v On Windows systems, the directory path depends on the path chosen when installing the product. If
you chose the default settings the path is:
c:\sqllib

Note: Before issuing the link command on Windows systems, ensure that the LIB environment variable
contains paths to the Db2 and IBM MQ libraries.

Copy the following files into a temporary directory:
v The amqsxag0.c file from your IBM MQ installation

Note: This file can be found in the following directories:
– On UNIX and Linux systems:

MQ_INSTALLATION_PATH/samp/xatm

– On Windows systems:
MQ_INSTALLATION_PATH\tools\c\samples\xatm

v The .c files that you have obtained by precompiling the .sqc source files, amqsxas0.sqc, amqsxaf0.sqc,
and amqsxab0.sqc

v The files util.c and util.h from your Db2 installation.

Note: These files can be found in the directory:
<DB2TOP>/samples/c

Build the object files for each .c file using the following compiler command for the platform that you are
using:
v AIX

xlc_r -I MQ_INSTALLATION_PATH/inc -I <DB2TOP>/include -c -o
<FILENAME>.o <FILENAME>.c

v HP-UX
cc -Aa +z -I MQ_INSTALLATION_PATH/inc -I <DB2TOP>/include -c -o
<FILENAME>.o <FILENAME>.c

v Solaris
cc -Aa -KPIC -mt -I MQ_INSTALLATION_PATH
/inc -I <DB2TOP>/include -c -o
<FILENAME>.o <FILENAME>.c

v Windows systems
cl /c /I MQ_INSTALLATION_PATH\tools\c\include /I <DB2TOP>\include
<FILENAME>.c

Build the amqsxag0 executable file using the following link command for the platform that you are using:
v AIX

xlc_r -H512 -T512 -L <DB2TOP>/lib -ldb2 -L MQ_INSTALLATION_PATH/lib
-lmqm util.o amqsxaf0.o amqsxab0.o amqsxag0.o -o amqsxag0

v HP-UX Revision 11i
ld -E -L <DB2TOP>/lib -ldb2 -L MQ_INSTALLATION_PATH/lib -lmqm -lc -lpthread -lcl
/lib/crt0.o util.o amqsxaf0.o amqsxab0.o amqsxag0.o -o amqsxag0

v Solaris

Sample IBM MQ procedural programs 501

cc -mt -L <DB2TOP>/lib -ldb2 -L MQ_INSTALLATION_PATH/lib
-lmqm -lthread -lsocket -lc -lnsl -ldl util.o
amqsxaf0.o amqsxab0.o amqsxag0.o -o amqsxag0

v Windows systems
link util.obj amqsxaf0.obj amqsxab0.obj amqsxag0.obj mqm.lib db2api.lib
/out:amqsxag0.exe

Build the amqsxas0 executable file using the following compile and link commands for the platform that
you are using:
v AIX

xlc_r -H512 -T512 -L <DB2TOP>/lib -ldb2
-L MQ_INSTALLATION_PATH/lib -lmqm util.o amqsxas0.o -o amqsxas0

v HP-UX Revision 11i
ld -E -L <DB2TOP>/lib -ldb2 -L MQ_INSTALLATION_PATH/lib -lmqm -lc -lpthread
-lcl /lib/crt0.o util.o amqsxas0.o -o amqsxas0

v Solaris
cc -mt -L <DB2TOP>/lib -ldb2-L MQ_INSTALLATION_PATH/lib
-lqm -lthread -lsocket -lc -lnsl -ldl util.o
amqsxas0.o -o amqsxas0

v Windows systems
link util.obj amqsxas0.obj mqm.lib db2api.lib /out:amqsxas0.exe

Additional information

If you are working on AIX or HP-UX and want to access Oracle, use the xlc_r compiler and link to
libmqm_r.a.

Running the samples
Use this information to learn how to configure the queue manager before running database coordination
samples on C and COBOL.

Before you run the samples, configure the queue manager with the database product that you are using.
For information about how to do this, see Scenario 1: Queue manager performs the coordination.

The following titles provide information about how to run samples in C and COBOL:
v “C samples”
v “COBOL samples” on page 503

C samples

Messages must be in the following format to be read from a queue:
UPDATE Balance change=nnn WHERE Account=nnn

AMQSPUT can be used to put the messages on the queue.

The database coordination samples take two parameters:
1. Queue name (required)
2. Queue manager name (optional)

Assuming that you have created and configured a queue manager for the single database sample called
singDBQM, with a queue called singDBQ, you increment Mr Fred Bloggs's account by 50 as follows:
AMQSPUT singDBQ singDBQM

Then key in the following message:

502 IBM MQ: Programming

UPDATE Balance change=50 WHERE Account=1

You can put multiple messages on the queue.
AMQSXAS0 singDBQ singDBQM

The updated status of Mr Fred Bloggs's account is then printed.

Assuming that you have created and configured a queue manager for the multiple-database sample
called multDBQM, with a queue called multDBQ, you decrement Ms Mary Brown's account by 75 as
follows:
AMQSPUT multDBQ multDBQM

Then key in the following message:
UPDATE Balance change=-75 WHERE Account=3

You can put multiple messages on the queue.
AMQSXAG0 multDBQ multDBQM

The updated status of Ms Mary Brown's account is then printed.

COBOL samples

Messages must be in the following format to be read from a queue:
UPDATE Balance change=snnnnnnnn WHERE Account=nnnnnnnn

For simplicity, the Balance change must be a signed eight-character number and the Account must be an
eight-character number.

The sample AMQSPUT can be used to put the messages on the queue.

The samples take no parameters and use the default queue manager. It can be configured to run only one
of the samples at any time. Assuming that you have configured the default queue manager for the single
database sample, with a queue called singDBQ, you increment Mr Fred Bloggs's account by 50 as follows:
AMQSPUT singDBQ

Then key in the following message:
UPDATE Balance change=+00000050 WHERE Account=00000001

You can put multiple messages on the queue:
AMQ0XAS0

Type in the name of the queue:
singDBQ

The updated status of Mr Fred Bloggs's account is then printed.

Assuming that you have configured the default queue manager for the multiple database sample, with a
queue called multDBQ, you decrement Ms Mary Brown's account by 75 as follows:
AMQSPUT multDBQ

Then key in the following message:
UPDATE Balance change=-00000075 WHERE Account=00000003

You can put multiple messages on the queue:

Sample IBM MQ procedural programs 503

AMQ0XAG0

Type in the name of the queue:
multDBQ

The updated status of Ms Mary Brown's account is then printed.

Dead-letter queue handler sample
A sample dead-letter queue handler is provided, the name of the executable version is amqsdlq. If you
want a dead-letter queue handler that is different from RUNMQDLQ, the source of the sample is
available for you to use as your base.

The sample is similar to the dead-letter handler provided within the product but trace and error
reporting are different. There are two environment variables available to you:

ODQ_TRACE
Set to YES or yes to switch tracing on

ODQ_MSG
Set to the name of the file containing error and information messages. The file provided is called
amqsdlq.msg.

You need to make these variables known to your environment using either the export or set commands,
depending on your platform; trace is turned off using the unset command.

You can modify the error message file, amqsdlq.msg, to suit your own requirements. The sample puts
messages to stdout, not to the IBM MQ error log file.

The Administering or the System Management Guide for your platform explains how the dead-letter
handler works, and how you run it.

The Distribution List sample program
The Distribution List sample amqsptl0 gives an example of putting a message on several message queues.
It is based on the MQPUT sample, amqsput0.

Running the Distribution List sample, amqsptl0

The Distribution List sample runs in a similar way to the Put samples.

It takes the following parameters:
v The names of the queues
v The names of the queue managers

These values are entered as pairs. For example:
amqsptl0 queue1 qmanagername1 queue2 qmanagername2

The queues are opened using MQOPEN and messages are put to the queues using MQPUT. Reason
codes are returned if any of the queue or queue manager names are not recognized.

Remember to define channels between queue managers so that messages can flow between them. The
sample program does not do that for you.

504 IBM MQ: Programming

Design of the Distribution List sample

Put Message Records (MQPMRs) specify message attributes for each destination. The sample provides
values for MsgId and CorrelId, and these override the values specified in the MQMD structure.

The PutMsgRecFields field in the MQPMO structure indicates which fields are present in the MQPMRs:
MQLONG PutMsgRecFields=MQPMRF_MSG_ID + MQPMRF_CORREL_ID;

Next, the sample allocates the response records and object records. The object records (MQORs) require at
least one pair of names and an even number of names, that is, ObjectName and ObjectQMgrName.

The next stage involves connecting to the queue managers using MQCONN. The sample attempts to
connect to the queue manager associated with the first queue in the MQOR; if this fails, it goes through
the object records in turn. You are informed if it is not possible to connect to any queue manager and the
program exits.

The target queues are opened using MQOPEN and the message is put to these queues using MQPUT.
Any problems and failures are reported in the response records (MQRRs).

Finally, the target queues are closed using MQCLOSE and the program disconnects from the queue
manager using MQDISC. The same response records are used for each call stating the CompCode and
Reason.

The Echo sample programs
The Echo sample programs echo a message from a message queue to the reply queue.

See “Features demonstrated in the sample programs” on page 475 for the names of these programs.

The programs are intended to run as triggered programs.

On

IBM i, UNIX, Linux, and Windows systems, their only input is an MQTMC2 (trigger
message) structure that contains the name of a target queue and the queue manager. The COBOL version
uses the default queue manager.

On IBM i, for the triggering process to work, ensure that the Echo sample program that

you want to use is triggered by messages arriving on queue SYSTEM.SAMPLE.ECHO. To do this, specify
the name of the Echo sample program that you want to use in the ApplId field of the process definition
SYSTEM.SAMPLE.ECHOPROCESS. (For this, you can use the CHGMQMPRC command; for details, see
Change MQ Process (CHGMQMPRC).) The sample queue has a trigger type of FIRST, so, if there are
already messages on the queue before you run the Request sample, the Echo sample is not triggered by
the messages that you send.

When you have set the definition correctly, first start AMQSERV4 in one job, then start AMQSREQ4 in
another. You could use AMQSTRG4 instead of AMQSERV4, but potential job submission delays could
make it less easy to follow what is happening.

Use the Request sample programs to send messages to queue SYSTEM.SAMPLE.ECHO. The Echo sample
programs send a reply message containing the data in the request message to the reply-to queue specified
in the request message.

Sample IBM MQ procedural programs 505

Design of the Echo sample programs

The program opens the queue named in the trigger message structure that it was passed when it started.
(For clarity, we will call this the request queue.) The program uses the MQOPEN call to open this queue
for shared input.

The program uses the MQGET call to remove messages from this queue. This call uses the
MQGMO_ACCEPT_TRUNCATED_MSG, MQGMO_CONVERT, and MQGMO_WAIT options, with a wait
interval of 5 seconds. The program tests the descriptor of each message to see if it is a request message; if
it is not, the program discards the message and displays a warning message.

For each line of input, the program then reads the text into a buffer and uses the MQPUT1 call to put a
request message, containing the text of that line, onto the reply-to queue.

If the MQGET call fails, the program puts a report message on the reply-to queue, setting the Feedback
field of the message descriptor to the reason code returned by the MQGET.

When there are no messages remaining on the request queue, the program closes that queue and
disconnects from the queue manager.

On IBM i, the program can also respond to messages sent to the queue from platforms

other than IBM MQ for IBM i, although no sample is supplied for this situation. To make the ECHO
program work:
v Write a program, correctly specifying the Format, Encoding, and CCSID parameters, to send text request

messages.
The ECHO program requests the queue manager to perform message data conversion, if this is needed.

v Specify CONVERT(*YES) on the IBM MQ for IBM i sending channel, if the program that you have
written does not provide similar conversion for the reply.

The Get sample programs
The Get sample programs get messages from a queue using the MQGET call.

See “Features demonstrated in the sample programs” on page 475 for the names of these programs.

Design of the Get sample program

The program opens the target queue using the MQOPEN call with the MQOO_INPUT_AS_Q_DEF
option. If it cannot open the queue, the program displays an error message containing the reason code
returned by the MQOPEN call.

For each message on the queue, the program uses the MQGET call to remove the message from the
queue, then displays the data contained in the message. The MQGET call uses the MQGMO_WAIT
option, specifying a WaitInterval of 15 seconds, so that the program waits for this period if there is no
message on the queue. If no message arrives before this interval expires, the call fails and returns the
MQRC_NO_MSG_AVAILABLE reason code.

The program demonstrates how you must clear the MsgId and CorrelId fields of the MQMD structure
after each MQGET call because the call sets these fields to the values contained in the message it
retrieves. Clearing these fields means that successive MQGET calls retrieve messages in the order in
which the messages are held in the queue.

The MQGET call specifies a buffer of fixed size. If a message is longer than this buffer, the call fails and
the program stops.

506 IBM MQ: Programming

The program continues until either the MQGET call returns the MQRC_NO_MSG_AVAILABLE reason
code or the MQGET call fails. If the call fails, the program displays an error message that contains the
reason code.

The program then closes the queue using the MQCLOSE call.

Running the amqsget and amqsgetc samples

These programs each take the following positional parameters:
1. The name of the source queue (required)
2. The name of the queue manager (optional)

If a queue manager is not specified, amqsget connects to the default queue manager and amqsgetc
connects to the queue manager identified by an environment variable or the client channel definition
file.

3. The open options (optional)
If open options are not specified, the sample uses a value of 8193 which is the combination of these
two options:
v MQOO_INPUT_AS_Q_DEF
v MQOO_FAIL_IF_QUIESCING

4. The close options (optional)
If close options are not specified, the sample uses a value of 0 which is MQCO_NONE.

These programs also use an environment variable named MQSAMP_USER_ID which should be set to the user
ID to be used for connection authentication. When this is set, the program will prompt for a password to
accompany that user ID.

To run these programs, enter one of the following:
v amqsget myqueue qmanagername

v amqsgetc myqueue qmanagername

where myqueue is the name of the queue from which the program will get messages, and qmanagername is
the queue manager that owns myqueue.

High availability sample programs
The amqsghac, amqsphac, and amqsmhac high availability sample programs use automated client
reconnection to demonstrate recovery following the failure of a queue manager. amqsfhac checks that a
queue manager using networked storage maintains data integrity following a failure.

The amqsghac, amqsphac, and amqsmhac programs are started from the command line, and can be used in
combination to demonstrate reconnection after the failure of one instance of a multi-instance queue
manager.

Alternatively, you can also use the amqsghac, amqsphac, and amqsmhac samples to demonstrate client
reconnection to single instance queue managers, typically configured into a queue manager group.

To keep the example simple, so it is easy to configure, you are shown the sample programs reconnecting
to a single instance queue manager that is started, stopped and then restarted again; see “Setup and
control the queue manager” on page 509.

Use amqsfhac in parallel with amqmfsck to check file system integrity. See amqmfsck (file system check) and
Verifying shared file system behavior for more information.

amqsphac queueName [qMgrName]

Sample IBM MQ procedural programs 507

v amqsphac is an IBM MQ MQI client application. It puts a sequence of messages to a queue with
a two second delay between each message and displays events sent to its event handler.

v No sync point is used to put messages to the queue.
v Reconnection can be made to any queue manager in the same queue manager group.

amqsghac queueName [qMgrName]
v amqsghac is an IBM MQ MQI client application. It gets messages from a queue and displays

events sent to its event handler.
v No sync point is used to get messages from the queue.
v Reconnection can be made to any queue manager in the same queue manager group.

amqsmhac -s sourceQueueName -t targetQueueName [-m qMgrName] [-w waitInterval]
v amqsmhac is an IBM MQ MQI client application. It copies messages from one queue to another

with a default wait interval of 15 minutes after the last message that is received before the
program finishes.

v The messages are copied within sync point.
v Reconnection can be made only to the same queue manager.

amqsfhac QueueManagerName QueueName SideQueueName InTransactionCount RepeatCount (0 | 1 | 2)
v amqsfhac is an IBM MQ MQI client application. It checks that an IBM MQ multi-instance queue

manager using networked storage, such as a NAS or a cluster file system, maintains data
integrity. Follow the steps to run amqsfhac in Verifying shared file system behavior.

v It uses the MQCNO_RECONNECT_Q_MGR option when connecting to QueueManagerName. It
automatically reconnects when the queue manager fails over.

v It puts InTransactionCount * RepeatCount persistent messages to QueueName during which time
you cause the queue manager to fail over any number of times. amqsfhac reconnects to the
queue manager each time, and continues. The test is to make sure that no messages are lost.

v InTransactionCount messages are put within each transaction. The transaction is repeated
RepeatCount number of times. If a failure occurs within a transaction, amqsfhac rolls back and
resubmits the transaction when amqsfhac reconnects to the queue manager.

v It also puts messages to SideQueueName. It uses SideQueueName to check whether the all the
messages are committed or rolled back from QueueName successfully. If it detects an
inconsistency, it writes out an error message.

v Vary the amount of output tracing from amqsfhac by setting the last parameter to (0 | 1 | 2) .
0 Least output.
1 Middling output.
2 Most output.

Configuring a client connection

You need to configure a client and server connection channel to run the samples. The client verification
procedure explains how to set up a client test environment. See Verifying a client installation.

Alternatively, use the configuration provided in the following example.

Example using amqsghac, amqsphac, and amqsmhac

The example demonstrates reconnectable clients using a single instance queue manager.

Messages are placed on the queue SOURCE by amqsphac, transferred to TARGET by amqsmhac, and retrieved
from TARGET by amqsghac ; see Figure 84 on page 509.

508 IBM MQ: Programming

Follow these steps to run the samples.
1. Create a file hasamples.tst containing the commands:
2. Type the following commands at a command prompt:

a. crtmqm QM1

b. strmqm QM1

c. runmqsc QM1 < hasamples.tst

3. Set the environment variable MQCHLLIB to the path to the AMQCLCHL.TAB client channel definition file;
for example, SET MQCHLLIB=C:\IBM\MQ\MQ7\Data\qmgrs\QM1\@ipcc.

4. Open three new windows with MQCHLLIB set; for example on Windows, type start three times at the
previous command prompt starting each program in one of the windows. See step 5 on page 510 in
“Setup and control the queue manager.”)

5. Type the command endmqm -r -p QM1 to stop the queue manager, and then allow the clients to
reconnect.

6. Type the command strmqm QM1 to restart the queue manager.

The results from running the amqsghac, amqsphac, and amqsmhac samples on Windows are shown in the
following examples.

Setup and control the queue manager
1. Create the queue manager.

C:\> crtmqm QM1
IBM MQ queue manager created.
Directory ’C:\IBM\MQ\MQ7\Data\qmgrs\QM1’ created.
Creating or replacing default objects for QM1.
Default objects statistics : 67 created. 0 replaced. 0 failed.
Completing setup.
Setup completed.

Remember the data directory to set the MQCHLLIB variable later.
2. Start the queue manager.

C:\> strmqm QM1

IBM MQ queue manager ’QM1’ starting.
5 log records accessed on queue manager ’QM1’ during the log replay phase.
Log replay for queue manager ’QM1’ complete.
Transaction manager state recovered for queue manager ’QM1’.
IBM MQ queue manager ’QM1’ started.

3. Create the queues and channels, modify the listener port, and start the listener and channel.
4. Make the client channel table known to the clients.

amqsphac amqsmhac

SOURCE TARGET

amqsghac

Figure 84. Reconnectable client samples

Sample IBM MQ procedural programs 509

Use the data directory returned from the crtmqm command in step 1 on page 509, and add the
directory @ipcc to it to set the MQCHLLIB variable.
C:\> SET MQCHLLIB=C:\IBM\MQ\MQ7\Data\qmgrs\QM1\@ipcc

5. Start the sample programs in the other windows
C:\> start amqsphac SOURCE QM1
C:\> start amqsmhac -s SOURCE -t TARGET -m QM1
C:\> start amqsghac TARGET QM1

6. End the queue manager and restart it again.
C:\> endmqm -r -p QM1

Waiting for queue manager ’QM1’ to end.
IBM MQ queue manager ’QM1’ ending.
IBM MQ queue manager ’QM1’ ended.

C:\> strmqm QM1

IBM MQ queue manager ’QM1’ starting.
5 log records accessed on queue manager ’QM1’ during the log replay phase.
Log replay for queue manager ’QM1’ complete.
Transaction manager state recovered for queue manager ’QM1’.
IBM MQ queue manager ’QM1’ started.

amqsphac
Sample AMQSPHAC start
target queue is SOURCE
message <Message 1>
message <Message 2>
16:25:22 : EVENT : Connection Reconnecting (Delay: 0ms)
16:25:45 : EVENT : Connection Reconnecting (Delay: 0ms)
16:26:02 : EVENT : Connection Reconnectedmessage
<Message 3>
message <Message 4>
message <Message 5>

amqsmhac
Sample AMQSMHA0 start
16:25:22 : EVENT : Connection Reconnecting (Delay: 0ms)
16:25:45 : EVENT : Connection Reconnecting (Delay: 0ms)
16:26:02 : EVENT : Connection Reconnected
No more messages.
Sample AMQSMHA0 end
C:\>

amqsghac
Sample AMQSGHAC start
message <Message 1>
message <Message 2>
16:25:22 : EVENT : Connection Reconnecting (Delay: 0ms)
16:25:45 : EVENT : Connection Reconnecting (Delay: 0ms)
16:26:02 : EVENT : Connection Reconnected
message <Message 3>
message <Message 4>
message <Message 5>

510 IBM MQ: Programming

Related information:
Verifying shared file system behavior
amqmfsck (file system check)

The Inquire sample programs
The Inquire sample programs inquire about some of the attributes of a queue using the MQINQ call.

See “Features demonstrated in the sample programs” on page 475 for the names of these programs.

These programs are intended to run as triggered programs, so their only input is an MQTMC2 (trigger
message) structure for IBM i, Windows, UNIX and Linux systems. This structure contains the name of a
target queue with attributes that are to be inquired upon. The C version also uses the queue manager
name. The COBOL version uses the default queue manager.

For the triggering process to work, ensure that the Inquire sample program that you want to use is
triggered by messages arriving on queue SYSTEM.SAMPLE.INQ. To do this, specify the name of the
Inquire sample program that you want to use in the ApplicId field of the process definition

SYSTEM.SAMPLE.INQPROCESS. For IBM i, you can use the CHGMQMPRC command for
this; for details, see Change MQ Process (CHGMQMPRC). The sample queue has a trigger type of FIRST;
if there are already messages on the queue before you run the request sample, the inquire sample is not
triggered by the messages that you send.

When you have set the definition correctly:
v For UNIX, Linux and Windows systems, start the runmqtrm program in one session, then start the

amqsreq program in another.

v For IBM i, start the AMQSERV4 program in one session, then start the AMQSREQ4
program in another. You could use AMQSTRG4 instead of AMQSERV4, but potential job submission
delays could make it less easy to follow what is happening.

Use the Request sample programs to send request messages, each containing just a queue name, to queue
SYSTEM.SAMPLE.INQ. For each request message, the Inquire sample programs send a reply message
containing information about the queue specified in the request message. The replies are sent to the
reply-to queue specified in the request message.

On IBM i, if the sample input file member QMQMSAMP.AMQSDATA(INQ) is used, the

last queue named does not exist, so the sample returns a report message with a reason code for the
failure.

Design of the Inquire sample program

The program opens the queue named in the trigger message structure that it was passed when it started.
(For clarity, we will call this the request queue.) The program uses the MQOPEN call to open this queue
for shared input.

The program uses the MQGET call to remove messages from this queue. This call uses the
MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options, with a wait interval of 5 seconds.
The program tests the descriptor of each message to see if it is a request message; if it is not, the program
discards the message and displays a warning message.

For each request message removed from the request queue, the program reads the name of the queue
(which we will call the target queue) contained in the data, and opens that queue using the MQOPEN call
with the MQOO_INQ option. The program then uses the MQINQ call to inquire about the values of the
InhibitGet, CurrentQDepth, and OpenInputCount attributes of the target queue.

Sample IBM MQ procedural programs 511

If the MQINQ call is successful, the program uses the MQPUT1 call to put a reply message on the
reply-to queue. This message contains the values of the three attributes.

If the MQOPEN or MQINQ call is unsuccessful, the program uses the MQPUT1 call to put a report
message on the reply-to queue. In the Feedback field of the message descriptor of this report message is
the reason code returned by either the MQOPEN or MQINQ call, depending on which one failed.

After the MQINQ call, the program closes the target queue using the MQCLOSE call.

When there are no messages remaining on the request queue, the program closes that queue and
disconnects from the queue manager.

The Inquire Properties of a Message Handle sample program
AMQSIQMA is a sample C program to inquire properties of a message handle from a message queue,
and is an example of the use of the MQINQMP API call.

This sample creates a message handle and puts it into the MsgHandle field of the MQGMO structure.
The sample then gets one message and inquires and prints all properties with which the message handle
was populated.

C:\Program Files\IBM\WebSphere MQ\tools\c\Samples\Bin >amqsiqm Q QM1
Sample AMQSIQMA start
property name <MyProp> value <MyValue>
message text <Hello world!>
Sample AMQSIQMA end

The Publish/Subscribe sample programs
The publish/subscribe sample programs demonstrate the use of the publish and subscribe features in
IBM MQ.

There are three C language sample programs illustrating how to program to the IBM MQ
publish/subscribe interface. There are some C samples that use older interfaces, and there are Java
samples. The Java samples use the IBM MQ publish/subscribe interface in com.ibm.mq.jar and the JMS
publish/subscribe interface in com.ibm.mqjms. The JMS samples are not covered in this topic.

C

Find the publisher sample amqspub in the C samples folder. Run it with any topic name you like as the
first parameter, followed by an optional queue manager name. For example, amqspub mytopic QM3 . There
is also a client version called amqspubc. If you choose to run the client version, first see “Preparing and
running the sample programs” on page 485 for details.

The publisher connects to the default queue manager and responds with the output, target topic is
mytopic . Every line you enter into this window from now onwards is published to mytopic .

Open another command window in the same directory, and run the subscriber program, amqssub,
supplying it with the same topic name, and an optional queue manager name. For example, amqssub
mytopic QM3 .

The subscriber responds with the output, Calling MQGET : 30 seconds wait time . From now onwards,
lines you type into the publisher appear in the output of the subscriber.

Start another subscriber in another command window, and watch both subscribers receive publications.

512 IBM MQ: Programming

For full documentation of the parameters, including setting options, refer to the sample source code. The
values for the subscriber options field is described in the following topic: Options (MQLONG).

There is another subscriber sample amqssbx, which offers additional subscription options as command
line switches.

Type amqssbx -d mysub -t mytopic -k to invoke the subscriber using durable subscriptions that are
retained after the subscriber has terminated.

Test the subscription by publishing another item using the publisher. Wait for 30 seconds for the
subscriber to terminate. Publish some more items under the same topic. Restart the subscriber. The last
item published while the subscriber was not running is displayed by the subscriber immediately it is
restarted.

C legacy

There is an additional set of C samples which demonstrate queued commands. Some of these samples
were originally shipped as part of the MQ0C Supportpac. The capabilities the samples demonstrate are
fully supported, for compatibility reasons.

We discourage you from using the queued command interface. It is much more complex than the
publish/subscribe API, and there is no compelling functional reason to program complex queued
commands. However, you might find the queued approach more suitable, perhaps because you are
already using the interface, or because your programming environment makes it easier to build a
complex message and call a generic MQPUT, rather than constructing different calls to MQSUB.

The additional samples are located in the pubsub subdirectory in the samples folder.

There are six types of sample listed in Table 73.

Table 73. Categories of legacy publish/subscribe sample C programs

Category Programs Comments

RFH1
 amqssr1a.c

amqspr1a.c
Simple publish/subscribe example built using RFH1 format messages.

RFH2
 amqssr2a.c

amqssp2a.c
Simple publish/subscribe example built using RFH2 format messages.

MQAI
samples

 amqsppca.c

amqsspca.c

Simple publish/subscribe example built using PCF commands and the
MQAI command interface.

MA0C
Results
service
using RFH1

 amqsgama.c

amqsresa.c

Results service built using RFH1 headers

1. Requires the queues defined in amqsgama.tst and amqsresa.tst

2. amqsresa must be started before amqsgama

MA0C
Results
service
using RFH2

 amqsgr2a.c

amqsrr2a.c

Results service built using RFH2 headers

1. Requires the queues defined in amqsgama.tst and amqsresa.tst

2. amqsresa must be started before amqsgama

Routing exit
publish/
subscribe
sample

 amqspsra.c
Demonstrates how to change the queue or queue manager destination
for a publish/subscribe message in a routing exit.

Sample IBM MQ procedural programs 513

Java

The Java sample MQPubSubApiSample.java combines publisher and subscribers in a single program. Its
source and compiled class files are found in the wmqjava samples folder.

If you choose to run in client mode, first see “Preparing and running the sample programs” on page 485
for details.

Run the sample from the command line using the Java command, if you have a Java environment
configured. You can also run the sample from the IBM MQ Explorer Eclipse workspace that has a Java
programming workbench already set up.

You might need to change some of the sample program's properties to run it. You do this by providing
parameters to the JVM, or editing the source.

The instructions in “Running the MQPubSubApiSample Java sample” show how to run the sample from
the Eclipse workspace.

Running the MQPubSubApiSample Java sample
How to run the MQPubSubApiSample using the Java Development Tools from the Eclipse platform.

Before you begin

Open the Eclipse workbench. Create a new workspace directory and select it. Close the welcome window.

Follow the steps in “Preparing and running the sample programs” on page 485 prior to running as a
client.

About this task

The Java publish/subscribe sample program is an IBM MQ MQI client Java program. The sample runs
without modification using a default queue manager listening on port 1414. The task describes this
simple case, and indicates in general terms how to provide parameters and modify the sample to suit
different IBM MQ configurations. The example is illustrated running on Windows. The file paths will
differ on other platforms.

Procedure
1. Import the Java sample programs

a. In the workbench, click Window > Open perspective > Other > Java and click OK.
b. Switch to the Package Explorer view.
c. Right-click in the white-space in the Package Explorer view. Click New > Java project.
d. In the Project name field type MQ Java Samples. Click Next.
e. In the Java Settings panel, switch to the Libraries tab.
f. Click Add External JARs.
g. Browse to MQ_INSTALLATION_PATH \java\lib where MQ_INSTALLATION_PATH is the IBM MQ

installation folder and select com.ibm.mq.jar and com.ibm.mq.jmqi.jar
h. Click Open > Finish.

i. Right-click src in the Package Explorer view.
j. Select Import... > General > File System > Next > Browse... and browse to the path

MQ_INSTALLATION_PATH \tools\wmqjava\samples where MQ_INSTALLATION_PATH is the IBM MQ
installation directory.

k. On the Import panel, Figure 85 on page 515, click samples (do not select the check box).

514 IBM MQ: Programming

l. Select MQPubSubApiSample.java. The Into folder field should contain MQ Java Samples/src. Click
Finish.

2. Run the publish/subscribe sample program. There are two ways to run the program, depending on
whether you need to change the default parameters.
v The first choice runs the program without making any changes:

– In the workspace main menu, expand the src folder. Right-click MQPubSubApiSample.java
Run-as > 1. Java Application

v The second choice runs the program with parameters or with modified source code for your
environment:
– Open MQPubSubApiSample.java and study the MQPubSubApiSample constructor.
– Modify the attributes of the program.

These attributes are modifiable using the -D JVM switch, or by providing a default value for the
System property by editing the source code.
- topicObject
- queueManagerName
- subscriberCount
These attributes are changeable only by editing the source code in the constructor.
- hostname
- port
- channel
To set System properties, code a default value in the accessor, for example:
queueManagerName = System.getProperty("com.ibm.mq.pubSubSample.queueManagerName", "QM3");

Figure 85. File system import

Sample IBM MQ procedural programs 515

Or provide the parameter to the JVM using the -D option, as shown in the following steps:
a. Copy the full name of the System.Property you want to set, for example:

com.ibm.mq.pubSubSample.queueManagerName.
b. In the workspace, right-click Run > Open Run Dialog. Double click Java Application in Create,

Manage and Run applications and click the (x) = Arguments tab.
c. In the VM arguments: pane, type -D and paste the System.property name,

com.ibm.mq.pubSubSample.queueManagerName, followed by =QM3. Click Apply > Run.
d. Add further arguments as a comma separated list, or as additional lines in the pane, without

comma separators.
For example: -Dcom.ibm.mq.pubSubSample.queueManagerName=QM3,
-Dcom.ibm.mq.pubSubSample.subscriberCount=6.

The Publish Exit sample program
AMQSPSE0 is a sample C program of an exit to intercept a publication before it is delivered to a
subscriber. The exit can then, for example, alter the message headers, payload or destination, or prevent
the message being published to a subscriber.

To run the sample, perform the following tasks:
1. Configure the queue manager:
v On UNIX and Linux systems add a stanza like this to the qm.ini file:

PublishSubscribe:
PublishExitPath=<Module>
PublishExitFunction=EntryPoint

where the module is MQ_INSTALLATION_PATH/samp/bin/amqspse. MQ_INSTALLATION_PATH represents
the high-level directory in which IBM MQ is installed. On Windows set the equivalent attributes in
the registry.

2. Make sure the Module is accessible to IBM MQ.
3. Restart the Queue Manager to pick up the configuration.
4. In the application process to be traced, describe where the trace files should be written to. For

example:
v On UNIX and Linux systems, ensure that the directory /var/mqm/trace exists and export the

following environment variable:
export MQPSE_TRACE_LOGFILE=/var/mqm/trace/PubTrace

v On Windows, ensure that the directory C:\temp exists and set the following environment variable:
set MQPSE_TRACE_LOGFILE=C:\temp\PubTrace

516 IBM MQ: Programming

The Put sample programs
The Put sample programs put messages on a queue using the MQPUT call.

See “Features demonstrated in the sample programs” on page 475 for the names of these programs.

Design of the Put sample program

The program uses the MQOPEN call with the MQOO_OUTPUT option to open the target queue for
putting messages.

If it cannot open the queue, the program outputs an error message containing the reason code returned
by the MQOPEN call. To keep the program simple, on this and on subsequent MQI calls, the program
uses default values for many of the options.

For each line of input, the program reads the text into a buffer and uses the MQPUT call to create a
datagram message containing the text of that line. The program continues until either it reaches the end
of the input or the MQPUT call fails. If the program reaches the end of the input, it closes the queue
using the MQCLOSE call.

Running the Put sample programs

Running the amqsput and amqsputc samples

These programs each take the following positional parameters:
1. The name of the target queue (required)
2. The name of the queue manager (optional)

If a queue manager is not specified, amqsput connects to the default queue manager and amqsputc
connects to the queue manager identified by an environment variable or the client channel definition
file.

3. The open options (optional)
If open options are not specified, the sample uses a value of 8208 which is the combination of these
two options:
v MQOO_OUTPUT
v MQOO_FAIL_IF_QUIESCING

4. The close options (optional)
If close options are not specified, the sample uses a value of 0 which is MQCO_NONE.

5. The name of the target queue manager (optional)
If a target queue manager is not specified, the ObjectQMgrName field in the MQOD will be left blank.

6. The name of the dynamic queue (optional)
If a dynamic queue name is not specified, the DynamicQName field in the MQOD will be left blank.

These programs also use an environment variable named MQSAMP_USER_ID which should be set to the user
ID to be used for connection authentication. When this is set, the program will prompt for a password to
accompany that user ID.

To run these programs, enter one of the following:
v amqsput myqueue qmanagername

v amqsputc myqueue qmanagername

where myqueue is the name of the queue on which the messages are going to be put, and qmanagername is
the queue manager that owns myqueue.

Sample IBM MQ procedural programs 517

Running the amq0put sample

The COBOL version does not have any parameters. It connects to the default queue manager and when
you run it you are prompted:
Please enter the name of the target queue

It takes input from StdIn and adds each line of input to the target queue. A blank line indicates there is
no more data.

Running the AMQSPUT4 C sample (IBM i)

The C program AMQSPUT4, available only for the IBM i platform, creates messages by reading data from
a member of a source file.

You must specify the name of the file as a parameter when you start the program. The structure of the
file must be:
queue name
text of message 1
text of message 2...
text of message n
blank line

A sample of input for the put samples is supplied in library QMQMSAMP file AMQSDATA member
PUT.

Note: Remember that queue names are case sensitive. All the queues created by the sample file create
program AMQSAMP4 have names created in uppercase characters.

The C program puts messages on the queue named in the first line of the file; you can use the supplied
queue SYSTEM.SAMPLE.LOCAL. The program puts the text of each of the following lines of the file into
separate datagram messages, and stops when it reads a blank line at the end of the file.

Using the example data file the command is:
CALL PGM(QMQM/AMQSPUT4) PARM(’QMQMSAMP/AMQSDATA(PUT)’)

Running the AMQ0PUT4 COBOL sample (IBM i)

The COBOL program AMQ0PUT4, available only on the IBM i platform, creates messages by accepting
data from the keyboard.

To start the program, call the program and give the name of your target queue as a program parameter.
The program accepts input from the keyboard into a buffer and creates a datagram message for each line
of text. The program stops when you enter a blank line at the keyboard.

518 IBM MQ: Programming

The Reference Message sample programs
The Reference Message samples allow a large object to be transferred from one node to another (usually
on different systems) without the need for the object to be stored on IBM MQ queues at either the source
or the destination nodes.

A set of sample programs is provided to demonstrate how Reference Messages can be put to a queue,
received by message exits, and taken from a queue. The sample programs use Reference Messages to
move files. If you want to move other objects such as databases, or if you want to perform security
checks, define your own exit, based on our sample, amqsxrm. The following sections describe the
Reference Message sample programs.

There version of the Reference Message exit sample program to use depends on the platform on which
the channel is running. On all platforms, use amqsxrma at the sending end. Use amqsxrma at the
receiving end if the receiver is running under any IBM MQ product except IBM MQ for IBM i

; use amqsxrm4 if the receiver is running under IBM MQ for IBM i .

Notes for IBM i users
To receive a Reference Message using the sample message exit, specify a file in the root file system of IFS
or any subdirectory so that a stream file can be created.

The sample message exit on IBM i creates the file, converts the data to EBCDIC, and sets the code page
to your system code page. You can then copy this file to the QSYS.LIB file system using the
CPYFRMSTMF command. For example:
CPYFRMSTMF FROMSTMF(’JANEP/TEST.TXT’)
TOMBR(’qsys.lib.janep.lib/test.fie/test.mbr’) MBROPT(*REPLACE)
CVTDTA(*NONE)

The CPYFRMSTMF command does not create the file. You must create it before running this command.

If you send a file from QSYS.LIB, no changes are required to the samples. For any other file system
ensure that the CCSID specified in the CodedCharSetId field in the MQRMH structure matches the bulk
data that you are sending.

When using the integrated file system, create program modules with the SYSIFCOPT(*IFSIO) option set.
If you want to move database or fixed-length record files, define your own exit based on the supplied
sample AMQSXRM4.

The recommended method of transferring a database file is to convert it to IFS structure, using the
CPYTOSTMF command, and then send the Reference Message attaching the IFS file. If you choose to
transfer a database file by referring to it from within IFS, but do not convert it to IFS structure, you must
specify the member name. Data integrity is not guaranteed if you choose this method.

Sample IBM MQ procedural programs 519

Running the Reference Message samples
Use this information to learn how to run Reference Message sample programs.

The Reference Message samples run as follows:

1. Set up the environment to start the listeners, channels, and trigger monitors, and define your channels
and queues.
For the purposes of describing how to set up the Reference Message example this refers to the
sending machine as MACHINE1 with a queue manager called QMGR1 and the receiving machine as
MACHINE2 with a queue manager called QMGR2.

Note: The following definitions allow a Reference Message to be built to send a file with an object
type of FLATFILE from queue manager QMGR1 to QMGR2 and to re-create the file as defined in the
call to AMQSPRM (or AMQSPRMA on IBM i). The Reference Message (including the file data) is sent
using channel CHL1 and transmission queue XMITQ and placed on queue DQ. Exception and COA
reports are sent back to QMGR1 using the channel REPORT and transmission queue QMGR1.

Putting application, amqsprm Getting application, amqsgrm

ReplyToQ

XMITQ

amqsxrm
exit

Receiving
channel

file data
d:/files/infile.dat

Destination
queue
(DQ)

Receiving
channel

amqsxrm
exit

Sending
channel

file data
e:/files/outfile.dat

QMGR1

Q

QM

XQ RMH

RMH

RMH

RMH

COA

COA

COA

report

Check

existence

of file

RMH + data

RMH

QMGR2QMGR1

QR

Sending
channel

Figure 86. Running the Reference Message samples

520 IBM MQ: Programming

The application that receives the Reference Message (AMQSGRM or AMQSGRMA on
IBM i) is triggered using the initiation queue INITQ and process PROC. Ensure that the CONNAME
fields are set correctly and the MSGEXIT field reflects your directory structure, depending on machine
type and where the IBM MQ product is installed.

The MQSC definitions have used an AIX style for defining the exits , so if you are using
MQSC on IBM i you need to modify these accordingly. It is important to note that the message data
FLATFILE is case sensitive and the sample will not work unless it is in uppercase.
On machine MACHINE1, queue manager QMGR1
MQSC syntax
define chl(chl1) chltype(sdr) trptype(tcp) conname(’machine2’) xmitq(xmitq)
msgdata(FLATFILE) msgexit(’/usr/lpp/mqm/samp/bin/amqsxrm(MsgExit)
’)

define ql(xmitq) usage(xmitq)

define chl(report) chltype(rcvr) trptype(tcp) replace

define qr(qr) rname(dq) rqmname(qmgr2) xmitq(xmitq) replace

IBM i command syntax

Note: If you do not specify a queue manager name the system uses the default queue manager.
CRTMQMCHL CHLNAME(CHL1) CHLTYPE(*SDR) MQMNAME(QMGR1) +

REPLACE(*YES) TRPTYPE(*TCP) +
CONNAME(’MACHINE2(60501)’) TMQNAME(XMITQ) +
MSGEXIT(QMQM/AMQSXRM4) MSGUSRDATA(FLATFILE)

CRTMQMQ QNAME(XMITQ) QTYPE(*LCL) MQMNAME(QMGR1) +
REPLACE(*YES) USAGE(*TMQ)

CRTMQMCHL CHLNAME(REPORT) CHLTYPE(*RCVR) +
MQMNAME(QMGR1) REPLACE(*YES) TRPTYPE(*TCP)

CRTMQMQ QNAME(QR) QTYPE(*RMT) MQMNAME(QMGR1) +
REPLACE(*YES) RMTQNAME(DQ) +
RMTMQMNAME(QMGR2) TMQNAME(XMITQ)

On machine MACHINE2, queue manager QMGR2
MQSC syntax
define chl(chl1) chltype(rcvr) trptype(tcp)
msgexit(’/usr/lpp/mqm/samp/bin/amqsxrm(MsgExit)’)

msgdata(flatfile)

define chl(report) chltype(sdr) trptype(tcp) conname(’MACHINE1’)
xmitq(qmgr1)

define ql(initq)

define ql(qmgr1) usage(xmitq)

define pro(proc) applicid(’/usr/lpp/mqm/samp/bin/amqsgrm’)

define ql(dq) initq(initq) process(proc) trigger trigtype(first)

IBM i command syntax

Note: If you do not specify a queue manager name the system uses the default queue
manager.

Sample IBM MQ procedural programs 521

CRTMQMCHL CHLNAME(CHL1) CHLTYPE(*RCVR) MQMNAME(QMGR2) +
REPLACE(*YES) TRPTYPE(*TCP) +
MSGEXIT(QMQM/AMQSXRM4) MSGUSRDATA(FLATFILE)

CRTMQMCHL CHLNAME(REPORT) CHLTYPE(*SDR) MQMNAME(QMGR2) +
REPLACE(*YES) TRPTYPE(*TCP) +
CONNAME(’MACHINE1(60500)’) TMQNAME(QMGR1)

CRTMQMQ QNAME(INITQ) QTYPE(*LCL) MQMNAME(QMGR2) +
REPLACE(*YES) USAGE(*NORMAL)

CRTMQMQ QNAME(QMGR1) QTYPE(*LCL) MQMNAME(QMGR2) +
REPLACE(*YES) USAGE(*TMQ)

CRTMQMPRC PRCNAME(PROC) MQMNAME(QMGR2) REPLACE(*YES) +
APPID(’QMQM/AMQSGRM4’)

CRTMQMQ QNAME(DQ) QTYPE(*LCL) MQMNAME(QMGR2) +
REPLACE(*YES) PRCNAME(PROC) TRGENBL(*YES) +
INITQNAME(INITQ)

2. Once the IBM MQ objects have been created:
a. Where applicable to the platform, start the listener for the sending and receiving queue managers
b. Start the channels CHL1 and REPORT
c. On the receiving queue manager start the trigger monitor for the initiation queue INITQ

3. Invoke the put Reference Message sample program AMQSPRM (AMQSPRMA on IBM i
) from the command line using the following parameters:

-m Name of the local queue manager; this defaults to the default queue manager
-i Name and location of source file
-o Name and location of destination file
-q Name of queue
-g Name of queue manager where the queue, defined in the -q parameter exists This defaults to the queue

manager specified in the -m parameter
-t Object type
-w Wait interval, that is, the waiting time for exception and COA reports from the receiving queue manager

For example, to use the sample with the objects defined previously you would use the following
parameters:
-mQMGR1 -iInput File -oOutput File -qQR -tFLATFILE -w120

Increasing the waiting time allows time for a large file to be sent across a network before the program
putting the messages times out.
amqsprm -q QR -m QMGR1 -i d:\x\file.in -o d:\y\file.out -t FLATFILE

IBM i users:

a. Use the following command:
CALL PGM(QMQM/AMQSPRM4) PARM(’-mQMGR1’ +
’-i/refmsgs/rmsg1’ +
’-o/refmsgs/rmsgx’ ’-qQR’ +
’-gQMGR1’ ’-tFLATFILE’ ’-w15’)

This assumes that the original file rmsg1 is in IFS directory /refmsgs and that you want the
destination file to be rmsgx in IFS directory /refmsgs on the target system.

b. Create your own directory using the CRTDIR command rather than using the root directory.
c. When you call the program that puts data, remember that the output file name needs to reflect the

IFS naming convention; for example /TEST/FILENAME creates a file called FILENAME in the
directory TEST.

522 IBM MQ: Programming

Note: You can use either a forward slash (/) or a dash (-) when specifying parameters.

For example:
amqsprm /i d:\files\infile.dat /o e:\files\outfile.dat /q QR
/m QMGR1 /w 30 /t FLATFILE

Note: For UNIX and Linux platforms, you must use two backslashes (\\) instead of one to denote
the destination file directory. Therefore, the amqsprm command looks like this:
amqsprm -i /files/infile.dat -o e:\\files\\outfile.dat -q QR
-m QMGR1 -w 30 -t FLATFILE

Running the put Reference Message program does the following:
v The Reference Message is put to queue QR on queue manager QMGR1.
v The source file and path are d:\files\infile.dat and exists on the system where the example

command is issued.
v If the queue QR is a remote queue, the Reference Message is sent to another queue manager, on a

different system, where a file is created with the name and path e:\files\outfile.dat. The
contents of this file are the same as the source file.

v amqsprm waits for 30 seconds for a COA report from the destination queue manager.
v The object type is flatfile, so the channel used to move messages from the queue QR must

specify this in the MsgData field.
4. When you define your channels, select the message exit at both the sending and receiving ends to be

amqsxrm. This is defined on IBM MQ for Windows as follows:
msgexit(’ pathname\amqsxrm.dll(MsgExit)’)

This is defined on IBM MQ for AIX, IBM MQ for HP-UX, and IBM MQ for Solaris as follows:
msgexit(’ pathname/amqsxrm(MsgExit)’)

If you specify a path name, specify the complete name. If you omit the path name, it is assumed that
the program is in the path specified in the qm.ini file (or, on IBM MQ for Windows, the path
specified in the registry).

5. The channel exit reads the Reference Message header and finds the file that it refers to.
6. The channel exit can then segment the file before sending it down the channel along with the header.

On IBM MQ for AIX, IBM MQ for HP-UX, and IBM MQ for Solaris, change the group owner of the
target directory to 'mqm' so that the sample message exit can create the file in that directory. Also,
change the permissions of the target directory to allow mqm group members to write to it. The file
data is not stored on the IBM MQ queues.

7. When the last segment of the file is processed by the receiving message exit, the Reference Message is
put to the destination queue specified by amqsprm. If this queue is triggered (that is, the definition
specifies Trigger, InitQ, and Process queue attributes), the program specified by the PROC parameter
of the destination queue is triggered. The program to be triggered must be defined in the ApplId field
of the Process attribute.

8. When the Reference Message reaches the destination queue (DQ), a COA report is sent back to the
putting application (amqsprm).

9. The Get Reference Message sample, amqsgrm, gets messages from the queue specified in the input
trigger message and checks the existence of the file.

Sample IBM MQ procedural programs 523

Design of the Put Reference Message sample (amqsprma.c, AMQSPRM4)
This topic gives a detailed description of a Put Reference Message sample.

This sample creates a Reference Message that refers to a file and puts it on a specified queue:
1. The sample connects to a local queue manager using MQCONN.
2. It then opens (MQOPEN) a model queue that is used to receive report messages.
3. The sample builds a Reference Message containing the values required to move the file, for example,

the source and destination file names and the object type. As an example, the sample shipped with
IBM MQ builds a Reference Message to send the file d:\x\file.in from QMGR1 to QMGR2 and to
re-create the file as d:\y\file.out using the following parameters:
amqsprm -q QR -m QMGR1 -i d:\x\file.in -o d:\y\file.out -t FLATFILE

Where QR is a remote queue definition that refers to a target queue on QMGR2.

Note: For UNIX and Linux platforms, use two backslashes (\\) instead of one to denote the
destination file directory. Therefore, the amqsprm command looks like this:
amqsprm -q QR -m QMGR1 -i /x/file.in -o d:\\y\\file.out -t FLATFILE

4. The Reference Message is put (without any file data) to the queue specified by the /q parameter. If
this is a remote queue, the message is put to the corresponding transmission queue.

5. The sample waits, for the duration of time specified in the /w parameter (which defaults to 15
seconds), for COA reports, which, along with exception reports, are sent back to the dynamic queue
created on the local queue manager (QMGR1).

Design of the Reference Message Exit sample (amqsxrma.c, AMQSXRM4)
This sample recognizes Reference Messages with an object type that matches the object type in the
message exit user data field of the channel definition.

For these messages, the following happens:
v At the sender or server channel, the specified length of data is copied from the specified offset of the

specified file into the space remaining in the agent buffer after the Reference Message. If the end of the
file is not reached, the Reference Message is put back on the transmission queue after updating the
DataLogicalOffset field.

v At the requester or receiver channel, if the DataLogicalOffset field is zero and the specified file does
not exist, it is created. The data following the Reference Message is added to the end of the specified
file. If the Reference Message is not the last one for the specified file, it is discarded. Otherwise, it is
returned to the channel exit, without the appended data, to be put on the target queue.

For sender and server channels, if the DataLogicalLength field in the input Reference Message is zero, the
remaining part of the file, from DataLogicalOffset to the end of the file, is to be sent along the channel.
If it is not zero, only the length specified is sent.

If an error occurs (for example, if the sample cannot open a file), MQCXP. ExitResponse is set to
MQXCC_SUPPRESS_FUNCTION so that the message being processed is put to the dead-letter queue
instead of continuing to the destination queue. A feedback code is returned in MQCXP. Feedback and
returned to the application that put the message in the Feedback field of the message descriptor of a
report message. This is because the putting application requested exception reports by setting
MQRO_EXCEPTION in the Report field of the MQMD.

If the encoding or CodedCharacterSetId (CCSID) of the Reference Message is different from that of the
queue manager, the Reference Message is converted to the local encoding and CCSID. In our sample,
amqsprm, the format of the object is MQFMT_STRING, so amqsxrm converts the object data to the local
CCSID at the receiving end before the data is written to the file.

524 IBM MQ: Programming

Do not specify the format of the file being transferred as MQFMT_STRING if the file contains multibyte
characters (for example, DBCS or Unicode). This is because a multibyte character could be split when the
file is segmented at the sending end. To transfer and convert such a file, specify the format as something
other than MQFMT_STRING so that the Reference Message exit does not convert it and convert the file at
the receiving end when the transfer is complete.

Compiling the Reference Message Exit sample:

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To compile amqsxrma, use the following commands:

On AIX
xlc_r -q64 -e MsgExit -bE:amqsxrm.exp -bM:SRE -o amqsxrm_64_r
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib64 -lmqm_r amqsqrma.c

On HP-UX
$ c89 +DD64 +z -c -D_HPUX_SOURCE -o amqsxrma.o amqsqrma.c -I MQ_INSTALLATION_PATH/inc
$ ld -b amqsxrma.o -o /var/mqm/exits64/amqsxrma -L MQ_INSTALLATION_PATH/lib64
-L/usr/lib/pa20_64 -lmqm_r -lpthread

On IBM i
CRTCMOD MODULE(MYLIB/AMQSXRMA) SRCFILE(QMQMSAMP/QCSRC)
TERASPACE(*YES *TSIFC)

Note:

1. To create your module so that it uses the IFS file system, add the option SYSIFCOPT(*IFSIO)
2. To create the program for use with non-threaded channels use the following command: CRTPGM

PGM(MYLIB/AMQSXRMA) BNDSRVPGM(QMQM/LIBMQM)

3. To create the program for use with threaded channels use the following command: CRTPGM
PGM(MYLIB/AMQSXRMA) BNDSRVPGM(QMQM/LIBMQM_R)

On Linux
$ gcc -m64 -shared -fPIC -o /var/mqm/exits64/amqsxrma amqsqrma.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -lmqm_r

On Solaris
$ cc -xarch=v9 -mt -G -o /var/mqm/exits64/amqsxrma amqsqrma.c -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -lmqm

-lsocket
-lnsl -ldl

On Windows

IBM MQ now supplies the mqm library with client packages as well as server packages, so the following
example uses mqm.lib instead of mqmvx.lib:
cl amqsqrma.c /link /out:amqsxrm.dll /dll mqm.lib mqm.lib /def:amqsxrm.def

For general information about writing and compiling channel exits, see “Writing channel-exit programs”
on page 351

Sample IBM MQ procedural programs 525

Design of the Get Reference Message sample (amqsgrma.c, AMQSGRM4)
This topic explains the design of the Get Reference Message sample.

The program logic is as follows:
1. The sample is triggered and extracts the queue and queue manager names from the input trigger

message.
2. It then connects to the specified queue manager using MQCONN and opens the specified queue

using MQOPEN.
3. The sample issues MQGET with a wait interval of 15 seconds within a loop to get messages from the

queue.
4. If a message is a Reference Message, the sample checks the existence of the file that has been

transferred.
5. It then closes the queue and disconnects from the queue manager.

The Request sample programs
The Request sample programs demonstrate client/server processing. The samples are the clients that put
request messages on a target server queue that is processed by a server program. They wait for the server
program to put a reply message on a reply-to queue.

The Request samples put a series of request messages on the target server queue using the MQPUT call.
These messages specify the local queue, SYSTEM.SAMPLE.REPLY as the reply-to queue, which can be a
local or remote queue. The programs wait for reply messages, then display them. Replies are sent only if
the target server queue is being processed by a server application, or if an application is triggered for that
purpose (the Inquire, Set, and Echo sample programs are designed to be triggered). The C sample waits 1
minute (the COBOL sample waits 5 minutes), for the first reply to arrive (to allow time for a server
application to be triggered), and 15 seconds for subsequent replies, but both samples can end without
getting any replies. See “Features demonstrated in the sample programs” on page 475 for the names of
the Request sample programs.

Running the Request sample programs

Running the amqsreq0.c, amqsreq, and amqsreqc samples

The C version of the program takes three parameters:
1. The name of the target server queue (necessary)
2. The name of the queue manager (optional)
3. The reply queue (optional)

For example, enter one of the following:
v amqsreq myqueue qmanagername replyqueue

v amqsreqc myqueue qmanagername

v amq0req0 myqueue

where myqueue is the name of the target server queue, qmanagername is the name of the queue manager
that owns myqueue, and replyqueue is the name of the reply queue.

If you omit the name of the queue manager, it is assumed that the default queue manager owns the
queue. If you omit the name of the reply queue, the default reply queue is provided.

Running the amq0req0.cbl sample

The COBOL version does not have any parameters. It connects to the default queue manager and when
you run it you are prompted:

526 IBM MQ: Programming

Please enter the name of the target server queue

The program takes its input from StdIn and adds each line to the target server queue, taking each line of
text as the content of a request message. The program ends when a null line is read.

Running the AMQSREQ4 sample

The C program creates messages by taking data from stdin (the keyboard) with a blank time terminating
input. The program takes up to three parameters: the name of the target queue (required), the queue
manager name (optional), and the reply-to queue name (optional). If no queue manager name is
specified, the default queue manager is used. If no reply-to queue is specified, the
SYSTEM.SAMPLE.REPLY queue is used.

Here is an example of how to call the C sample program, specifying the reply-to queue, but letting the
queue manager default:
CALL PGM(QMQM/AMQSREQ4) PARM(’SYSTEM.SAMPLE.LOCAL’ ’’ ’SYSTEM.SAMPLE.REPLY’)

Note: Remember that queue names are case sensitive. All the queues created by the sample file create
program AMQSAMP4 have names created in uppercase characters.

Running the AMQ0REQ4 sample

The COBOL program creates messages by accepting data from the keyboard. To start the program, call
the program and specify the name of your target queue as a parameter. The program accepts input from
the keyboard into a buffer and creates a request message for each line of text. The program stops when
you enter a blank line at the keyboard.

Running the Request sample using triggering

If the sample is used with triggering and one of the Inquire, Set, or Echo sample programs, the line of
input must be the queue name of the queue that you want the triggered program to access.

UNIX, Linux and Windows systems:

To run the samples using triggering:
1. Start the trigger monitor program RUNMQTRM in one session (the initiation queue

SYSTEM.SAMPLE.TRIGGER is available for you to use).
2. Start the amqsreq program in another session.
3. Make sure that you have defined a target server queue.

The sample queues available to you to use as the target server queue for the request sample to put
messages are:
v SYSTEM.SAMPLE.INQ - for the Inquire sample program
v SYSTEM.SAMPLE.SET - for the Set sample program
v SYSTEM.SAMPLE.ECHO - for the Echo sample program

These queues have a trigger type of FIRST, so if there are already messages on the queues before you
run the Request sample, server applications are not triggered by the messages you send.

4. Make sure that you have defined a queue for the Inquire, Set or Echo sample program to use.

This means that the trigger monitor is ready when the request sample sends a message.

Note: The sample process definitions created using RUNMQSC and the amqscos0.tst file trigger the C
samples. Change the process definitions in amqscos0.tst and use RUNMQSC with this updated file to use
COBOL versions.

Sample IBM MQ procedural programs 527

Figure 87 demonstrates how to use the Request and Inquire samples together.

In Figure 87 the Request sample puts messages onto the target server queue, SYSTEM.SAMPLE.INQ, and
the Inquire sample queries the queue, MYQUEUE. Alternatively, you can use one of the sample queues
defined when you ran amqscos0.tst, or any other queue that you have defined, for the Inquire sample.

Note: The numbers in Figure 87 show the sequence of events.

To run the Request and Inquire samples, using triggering:
1. Check that the queues that you want to use are defined. Run amqscos0.tst, to define the sample

queues, and define a queue MYQUEUE.
2. Run the trigger monitor command RUNMQTRM:

RUNMQTRM -m qmanagername -q SYSTEM.SAMPLE.TRIGGER

3. Run the request sample
amqsreq SYSTEM.SAMPLE.INQ

Note: The process object defines what is to be triggered. If the client and server are not running on
the same platform, any processes started by the trigger monitor must define ApplType, otherwise the
server takes its default definitions (that is, the type of application that is normally associated with the
server machine) and causes a failure.

SYSTEM.

SAMPLE.

INQPROCESS

Process

SYSTEM.

SAMPLE.

INQ

SYSTEM.

SAMPLE.

TRIGGER

APPLICATION

APPLICATION APPLICATION

TRIGGER

MONITOR

INQUIRE

SAMPLE

REQUEST

SAMPLE

QUEUE MANAGER

Local System
Local or Remote

System

SYSTEM.

SAMPLE.

REPLY

amqsreq

amqsinq runmqtrm

MYQUEUE

t r igger

messagetr igger

event

star t

command

message

message

inquiryreply message
tr igger

message

Figure 87. Request and Inquire samples using triggering

528 IBM MQ: Programming

For a list of application types, see ApplType.
4. Enter the name of the queue that you want the Inquire sample to use:

MYQUEUE

5. Enter a blank line (to end the Request program).
6. The request sample will then display a message, containing the data the Inquire program obtained

from MYQUEUE.

You can use more than one queue; in this case, enter the names of the other queues at step 4.

For more information on triggering see “Starting IBM MQ applications using triggers” on page 237.

IBM i:

To try the samples using triggering on IBM i, start the sample trigger server, AMQSERV4, in one job, then
start AMQSREQ4 in another.

This means that the trigger server is ready when the Request sample program sends a message.

Note:

1. The sample definitions created by AMQSAMP4 trigger the C versions of the samples. If you want to
trigger the COBOL versions, change the process definitions SYSTEM.SAMPLE.ECHOPROCESS,
SYSTEM.SAMPLE.INQPROCESS, and SYSTEM.SAMPLE.SETPROCESS. You can use the
CHGMQMPRC command (for details, see Change MQ Process (CHGMQMPRC)) to do this, or edit
and run your own version of AMQSAMP4.

2. Source code for AMQSERV4 is supplied for the C language only. However, a compiled version (that
you can use with the COBOL samples) is supplied in library QMQM.

You could put your request messages on these sample server queues:
v SYSTEM.SAMPLE.ECHO (for the Echo sample programs)
v SYSTEM.SAMPLE.INQ (for the Inquire sample programs)
v SYSTEM.SAMPLE.SET (for the Set sample programs)

A flow chart for the SYSTEM.SAMPLE.ECHO program is shown in Figure 88 on page 531. Using the
example data file the command to issue the C program request to this server is:
CALL PGM(QMQMSAMP/AMQSREQ4) PARM(’QMQMSAMP/AMQSDATA(ECHO)’)

Note: This sample queue has a trigger type of FIRST, so if there are already messages on the queue
before you run the Request sample, server applications are not triggered by the messages you send.

If you want to attempt further examples, you can try the following variations:
v Use AMQSTRG4 (or its command line equivalent STRMQMTRM, for details, see Start MQ Trigger

Monitor (STRMQMTRM)) instead of AMQSERV4 to submit the job instead, but potential job
submission delays could make it less easy to follow what is happening.

v Run the SYSTEM.SAMPLE.INQUIRE and SYSTEM.SAMPLE.SET sample programs. Using the example
data file the commands to issue the C program requests to these servers are, respectively:
CALL PGM(QMQMSAMP/AMQSREQ4) PARM(’QMQMSAMP/AMQSDATA(INQ)’)
CALL PGM(QMQMSAMP/AMQSREQ4) PARM(’QMQMSAMP/AMQSDATA(SET)’)

These sample queues also have a trigger type of FIRST.

Sample IBM MQ procedural programs 529

Design of the Request sample program
The program opens the target server queue so that it can put messages. It uses the MQOPEN call with
the MQOO_OUTPUT option. If it cannot open the queue, the program displays an error message
containing the reason code returned by the MQOPEN call.

The program then opens the reply-to queue called SYSTEM.SAMPLE.REPLY so that it can get reply
messages. For this, the program uses the MQOPEN call with the MQOO_INPUT_EXCLUSIVE option. If it
cannot open the queue, the program displays an error message containing the reason code returned by
the MQOPEN call.

For each line of input, the program then reads the text into a buffer and uses the MQPUT call to create a
request message containing the text of that line. On this call the program uses the
MQRO_EXCEPTION_WITH_DATA report option to request that any report messages sent about the
request message will include the first 100 bytes of the message data. The program continues until either it
reaches the end of the input or the MQPUT call fails.

The program then uses the MQGET call to remove reply messages from the queue, and displays the data
contained in the replies. The MQGET call uses the MQGMO_WAIT, MQGMO_CONVERT, and
MQGMO_ACCEPT_TRUNCATED options. The WaitInterval is 5 minutes in the COBOL version, and 1
minute in the C version, for the first reply (to allow time for a server application to be triggered), and 15
seconds for subsequent replies. The program waits for these periods if there is no message on the queue.
If no message arrives before this interval expires, the call fails and returns the
MQRC_NO_MSG_AVAILABLE reason code. The call also uses the
MQGMO_ACCEPT_TRUNCATED_MSG option, so that messages longer than the declared buffer size are
truncated.

The program demonstrates how to clear the MsgId and CorrelId fields of the MQMD structure after each
MQGET call because the call sets these fields to the values contained in the message it retrieves. Clearing
these fields means that successive MQGET calls retrieve messages in the order in which the messages are
held in the queue.

The program continues until either the MQGET call returns the MQRC_NO_MSG_AVAILABLE reason
code or the MQGET call fails. If the call fails, the program displays an error message that contains the
reason code.

The program then closes both the target server queue and the reply-to queue using the MQCLOSE call.

530 IBM MQ: Programming

The Set sample programs
The Set sample programs inhibit put operations on a queue by using the MQSET call to change the
queue's InhibitPut attribute. Also, learn about the design of Set sample programs.

See “Features demonstrated in the sample programs” on page 475 for the names of these programs.

The programs are intended to run as triggered programs, so their only input is an MQTMC2 (trigger
message) structure that contains the name of a target queue with attributes that are to be inquired upon.
The C version also uses the queue manager name. The COBOL version uses the default queue manager.

For the triggering process to work, ensure that the Set sample program that you want to use is triggered
by messages arriving on queue SYSTEM.SAMPLE.SET. To do this, specify the name of the Set sample
program that you want to use in the ApplicId field of the process definition
SYSTEM.SAMPLE.SETPROCESS. The sample queue has a trigger type of FIRST; if there are already
messages on the queue before you run the Request sample, the Set sample is not triggered by the
messages that you send.

When you have set the definition correctly:
v For UNIX, Linux and Windows systems, start the runmqtrm program in one session, then start the

amqsreq program in another.

Data file

AMQSAMP / AMQSDATA (ECHO)

Program

AMQSREQ4

Display replies

Read queue

Star t program

Read

Tr igger message
wr i t ten to queue

Read reply

SYSTEM.SAMPLE.ECHO

SYSTEM.SAMPLE.TRIGGER

Put to queue

Write reply to queue

SYSTEM.SAMPLE.REPLY

Read queue

Program
AMQSERV4

AMQSECHA

Figure 88. Sample IBM i Client/Server (Echo) program flowchart

Sample IBM MQ procedural programs 531

v For IBM i, start the AMQSERV4 program in one session, then start the AMQSREQ4 program in
another. You could use AMQSTRG4 instead of AMQSERV4, but potential job submission delays could
make it less easy to follow what is happening.

Use the Request sample programs to send request messages, each containing just a queue name, to queue
SYSTEM.SAMPLE.SET. For each request message, the Set sample programs send a reply message
containing a confirmation that put operations have been inhibited on the specified queue. The replies are
sent to the reply-to queue specified in the request message.

Design of the Set sample program

The program opens the queue named in the trigger message structure that it was passed when it started.
(For clarity, we will call this the request queue.) The program uses the MQOPEN call to open this queue
for shared input.

The program uses the MQGET call to remove messages from this queue. This call uses the
MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options, with a wait interval of 5 seconds.
The program tests the descriptor of each message to see if it is a request message; if it is not, the program
discards the message, and displays a warning message.

For each request message removed from the request queue, the program reads the name of the queue
(which we will call the target queue) contained in the data and opens that queue using the MQOPEN call
with the MQOO_SET option. The program then uses the MQSET call to set the value of the InhibitPut
attribute of the target queue to MQQA_PUT_INHIBITED.

If the MQSET call is successful, the program uses the MQPUT1 call to put a reply message on the
reply-to queue. This message contains the string PUT inhibited.

If the MQOPEN or MQSET call is unsuccessful, the program uses the MQPUT1 call to put a report
message on the reply-to queue. In the Feedback field of the message descriptor of this report message is
the reason code returned by either the MQOPEN or MQSET call, depending on which one failed.

After the MQSET call, the program closes the target queue using the MQCLOSE call.

When there are no messages remaining on the request queue, the program closes that queue and
disconnects from the queue manager.

The SSL/TLS sample program
AMQSSSLC is a sample C program that demonstrates how to use the MQCNO and MQSCO structures to
supply SSL/TLS client connection information on the MQCONNX call. This enables a client MQI
application to provide the definition of its client connection channel and SSL/TLS settings at run time
without a client channel definition table (CCDT).

If a connection name is supplied, the program constructs a client connection channel definition in an
MQCD structure.

If the stem name of the key repository file is supplied, the program constructs an MQSCO structure; if an
OCSP responder URL is also supplied, the program constructs an authentication information record
MQAIR structure.

The program then connects to the queue manager using MQCONNX. It inquires and prints out the name
of the queue manager to which it connected.

532 IBM MQ: Programming

This program is intended to be linked as an MQI client application. However, it can be linked as a
regular MQI application. Then, it simply connects to a local queue manager and ignores the client
connection information

AMQSSSLC accepts the following parameters, all of which are optional:

-m QmgrName
Name of the queue manager to connect to

-c ChannelName
Name of the channel to use

-x ConnName
Server connection name

SSL/TLS parameters:

-k KeyReposStem
The stem name of the key repository file. This is the full path to the file without the .kdb suffix.
For example:
/home/user/client
C:\User\client

-s CipherSpec
The SSL/TLS channel CipherSpec string corresponding to the SSLCIPH on the SVRCONN
channel definition on the queue manager.

-f Specifies that only FIPS 140-2 certified algorithms must be used.

-b VALUE1[,VALUE2...]
Specifies that only Suite B compliant algorithms must be used. This parameter is a
comma-separated list of one or more of the following values: NONE,128_BIT,192_BIT. These
values have the same meaning as those for the MQSUITEB environment variable, and the
equivalent EncryptionPolicySuiteB setting in the client configuration file SSL stanza.

-p Policy
Specifies the certificate validation policy to be used. This can be one of the following values:

ANY Apply each of the certificate validation policies supported by the secure sockets library
and accept the certificate chain if any of the policies considers the certificate chain valid.
This setting can be used for maximum backwards compatibility with older digital
certificates which do not comply with the modern certificate standards.

RFC5280
Apply only the RFC 5280 compliant certificate validation policy. This setting provides
stricter validation than the ANY setting, but rejects some older digital certificates.

The default value is ANY.

OCSP certificate revocation parameter:

-o URL
The OCSP Responder URL

Sample IBM MQ procedural programs 533

Running the SSL/TLS sample program
To run the SSL/TLS sample program you must first set up your SSL or TLS environment. You then run
the sample from the command line, supplying a number of parameters.

About this task

The following instructions run the sample program using personal certificates. By varying the command
you can, for example, use CA certificates and check their status using an OCSP responder. See the
instructions within the sample.

Procedure
1. Create a queue manager with the name QM1. For more information, see crtmqm.
2. Create a key repository for the queue manager. For more information, see Setting up a key

repository on UNIX, Linux, and Windows systems.
3. Create a key repository for the client. Call it clientkey.kdb.
4. Create a personal certificate for the queue manager. For more information, see Creating a self-signed

personal certificate on UNIX, Linux, and Windows systems.
5. Create a personal certificate for the client.
6. Extract the personal certificate from the server key repository and add it to the client repository. For

more information, see Extracting the public part of a self-signed certificate from a key repository on
UNIX, Linux and Windows systems, and Adding a CA certificate (or the public part of a self-signed
certificate) into a key repository, on UNIX, Linux or Windows systems.

7. Extract the personal certificate from the client key repository and add it to the server key repository.
8. Create a server connection channel using the MQSC command:

DEFINE CHANNEL(QM1SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP) SSLCIPH(TLS_RSA_WITH_AES_128_CBC_SHA)

For more information see Server-connection channel
9. Define and start a channel listener on the queue manager. For more information see DEFINE

LISTENER and START LISTENER.
10. Run the sample program using the following command:

AMQSSSLC -m QM1 -c QM1SVRCONN -x localhost
-k "C:\Program Files\IBM\WebSphere MQ\clientkey" -s TLS_RSA_WITH_AES_128_CBC_SHA
-o http://dummy.OCSP.responder

Results

The sample program performs the following actions:
1. Connects to any specified queue manager, or to the default queue manager, using any options

specified.
2. Opens the queue manager and inquires on its name.
3. Closes the queue manager.
4. Disconnects from the queue manager.

If the sample program runs successfully, it displays output similar to the following example:

Sample AMQSSSLC start
Connecting to queue manager QM1
Using the server connection channel QM1SVRCONN
on connection name localhost.
Using SSL CipherSpec TLS_RSA_WITH_AES_128_CBC_SHA
Using SSL key repository stem C:\Program Files\IBM\WebSphere MQ\clientkey
Using OCSP responder URL http://dummy.OCSP.responder

534 IBM MQ: Programming

Connection established to queue manager QM1

Sample AMQSSSLC end

If the sample program encounters a problem, it displays an appropriate error message, for example if you
specify an invalid OCSP responder URL, you receive the following message:

MQCONNX ended with reason code 2553

For a list of reason codes see API reason codes.

The Triggering sample programs
The function provided in the triggering sample is a subset of that provided in the trigger monitor in the
runmqtrm program.

See “Features demonstrated in the sample programs” on page 475 for the names of these programs.

Design of the triggering sample

The triggering sample program opens the initiation queue using the MQOPEN call with the
MQOO_INPUT_AS_Q_DEF option. It gets messages from the initiation queue using the MQGET call with
the MQGMO_ACCEPT_TRUNCATED_MSG and MQGMO_WAIT options, specifying an unlimited wait
interval. The program clears the MsgId and CorrelId fields before each MQGET call to get messages in
sequence.

When it has retrieved a message from the initiation queue, the program tests the message by checking the
size of the message to make sure that it is the same size as an MQTM structure. If this test fails, the
program displays a warning.

For valid trigger messages, the triggering sample copies data from these fields: ApplicId, EnvrData,
Version, and ApplType. The last two of these fields are numeric, so the program creates character

replacements to use in an MQTMC2 structure for

IBM i, UNIX, Linux, and Windows
systems.

The triggering sample issues a start command to the application specified in the ApplicId field of the
trigger message, and passes an MQTMC2 or MQTMC (a character version of the trigger message)
structure. In UNIX, Linux and Windows systems, the EnvData field is used as an extension to the

invoking command string. In IBM i, it is used as job submission parameters, for example,
the job priority or the job description.

Finally, the program closes the initiation queue.

Ending the triggering sample programs on IBM i

A trigger monitor program can be ended by the sysrequest option 2 (ENDRQS) or by inhibiting gets from
the trigger queue.

If the sample trigger queue is used, the command is:
CHGMQMQ QNAME(’SYSTEM.SAMPLE.TRIGGER’) MQMNAME GETENBL(*NO)

Note: Before starting triggering again on this queue, you must enter the command:
CHGMQMQ QNAME(’SYSTEM.SAMPLE.TRIGGER’) GETENBL(*YES)

Sample IBM MQ procedural programs 535

Running the Triggering sample programs
This topic contains information about running Triggering sample programs.

Running the amqstrg0.c, amqstrg, and amqstrgc samples

The program takes 2 parameters:
1. The name of the initiation queue (necessary)
2. The name of the queue manager (optional)

If a queue manager is not specified, it connects to the default one. A sample initiation queue will have
been defined when you ran amqscos0.tst; the name of that queue is SYSTEM.SAMPLE.TRIGGER, and
you can use it when you run this program.

Note: The function in this sample is a subset of the full triggering function that is supplied in the
runmqtrm program.

Running the AMQSTRG4 sample

This is a trigger monitor for the IBM i environment. It submits one IBM i job for each application to be
started. This means that there is additional processing associated with each trigger message.

AMQSTRG4 (in QCSRC) takes two parameters: the name of the initiation queue that it is to serve, and
the name of the queue manager (optional). AMQSAMP4 (in QCLSRC) defines a sample initiation queue,
SYSTEM.SAMPLE.TRIGGER, that you can use when you try the sample programs.

Using the example trigger queue, the command to issue is:
CALL PGM(QMQM/AMQSTRG4) PARM(’SYSTEM.SAMPLE.TRIGGER’)

Alternatively, you can use the CL equivalent STRMQMTRM; for details, see Start MQ Trigger Monitor
(STRMQMTRM).

Running the AMQSERV4 sample

This is a trigger server for the IBM i environment. For each trigger message, this server runs the start
command in its own job to start the specified application. The trigger server can call CICS transactions.

AMQSERV4 takes two parameters: the name of the initiation queue that it is to serve, and the name of
the queue manager (optional). AMQSAMP4 defines a sample initiation queue,
SYSTEM.SAMPLE.TRIGGER, that you can use when you try the sample programs.

Using the example trigger queue the command to issue is:
CALL PGM(QMQM/AMQSERV4) PARM(’SYSTEM.SAMPLE.TRIGGER’)

536 IBM MQ: Programming

Design of the trigger server

The design of the trigger server is similar to that of the trigger monitor, except that the trigger server:
v Allows MQAT_CICS as well as MQAT_OS400 applications

v Calls IBM i applications in its own job (or uses STRCICSUSR to start CICS applications)
rather than submitting an IBM i job

v For CICS applications, substitutes the EnvData, for example, to specify the CICS region, from the trigger
message in the STRCICSUSR command

v Opens the initiation queue for shared input, so that many trigger servers can run at the same time

Note: Programs started by AMQSERV4 must not use the MQDISC call because this stops the trigger
server. If programs started by AMQSERV4 use the MQCONN call, they get the
MQRC_ALREADY_CONNECTED reason code.

TUXEDO samples
Learn about the Put and Get sample programs for TUXEDO, and building the server environment in
TUXEDO.

Before running these samples, you must build the server environment.

Note: Throughout this topic, the backslash (\) character is used to split long commands over more than
one line. Do not enter this character. Enter each command as a single line.

Building the server environment
Information about building the server environment for IBM MQ for different platforms.

It is assumed that you have a working TUXEDO environment.

Building the server environment for IBM MQ for AIX (32-bit):

1. Create a directory (for example, <APPDIR>) in which the server environment is built and execute all
commands in this directory.

2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO, and
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed:
$ export CFLAGS="-I MQ_INSTALLATION_PATH/inc -I /<APPDIR> -L MQ_INSTALLATION_PATH/lib"
$ export LDOPTS="-lmqm"
$ export FIELDTBLS= MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ export VIEWFILES=/<APPDIR>/amqstxvx.V
$ export LIBPATH=$TUXDIR/lib: MQ_INSTALLATION_PATH/lib:/lib

3. Add the following to the TUXEDO file udataobj/RM
MQSeries_XA_RMI:MQRMIXASwitchDynamic: -lmqmxa -lmqm

4. Run the commands:
$ mkfldhdr MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ viewc MQ_INSTALLATION_PATH/samp/amqstxvx.v
$ buildtms -o MQXA -r MQSeries_XA_RMI
$ buildserver -o MQSERV1 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \

-f MQ_INSTALLATION_PATH/lib/libmqm.a \
-r MQSeries_XA_RMI -s MPUT1:MPUT \
-s MGET1:MGET \
-v -bshm

$ buildserver -o MQSERV2 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \
-f MQ_INSTALLATION_PATH/lib/libmqm.a \
-r MQSeries_XA_RMI -s MPUT2:MPUT
-s MGET2:MGET \
-v -bshm

Sample IBM MQ procedural programs 537

$ buildclient -o doputs -f MQ_INSTALLATION_PATH/samp/amqstxpx.c \
-f MQ_INSTALLATION_PATH/lib/libmqm.a

$ buildclient -o dogets -f MQ_INSTALLATION_PATH/samp/amqstxgx.c \
-f MQ_INSTALLATION_PATH/lib/libmqm.a

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as
necessary:
$ tmloadcf -y MQ_INSTALLATION_PATH/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:
$tmadmin -c

A prompt is displayed. At this prompt, enter:
> crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:
$ strmqm

8. Start Tuxedo:
$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a
queue.

Building the server environment for IBM MQ for AIX (64-bit):

1. Create a directory (for example, <APPDIR>) in which the server environment is built and execute all
commands in this directory.

2. Export the following environment variables, where TUXDIR represents the root directory for TUXEDO,
and MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.:
$ export CFLAGS="-I MQ_INSTALLATION_PATH/inc -I /<APPDIR> -L MQ_INSTALLATION_PATH/lib64"
$ export LDOPTS="-lmqm"
$ export FIELDTBLS= MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ export VIEWFILES=/<APPDIR>/amqstxvx.V
$ export LIBPATH=$TUXDIR/lib64: MQ_INSTALLATION_PATH/lib64:/lib64

3. Add the following to the TUXEDO file udataobj/RM
MQSeries_XA_RMI:MQRMIXASwitchDynamic: -lmqmxa64 -lmqm

4. Run the commands:
$ mkfldhdr MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ viewc MQ_INSTALLATION_PATH/samp/amqstxvx.v
$ buildtms -o MQXA -r MQSeries_XA_RMI
$ buildserver -o MQSERV1 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \

-f MQ_INSTALLATION_PATH/lib64/libmqm.a \
-r MQSeries_XA_RMI -s MPUT1:MPUT \
-s MGET1:MGET \
-v -bshm

$ buildserver -o MQSERV2 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \
-f MQ_INSTALLATION_PATH/lib64/libmqm.a \
-r MQSeries_XA_RMI -s MPUT2:MPUT
-s MGET2:MGET \
-v -bshm

$ buildclient -o doputs -f MQ_INSTALLATION_PATH/samp/amqstxpx.c \
-f MQ_INSTALLATION_PATH/lib64/libmqm.a

$ buildclient -o dogets -f MQ_INSTALLATION_PATH/samp/amqstxgx.c \
-f MQ_INSTALLATION_PATH/lib64/libmqm.a

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as
necessary:
$ tmloadcf -y MQ_INSTALLATION_PATH/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:
$tmadmin -c

538 IBM MQ: Programming

A prompt is displayed. At this prompt, enter:
> crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:
$ strmqm

8. Start Tuxedo:
$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a
queue.

Building the server environment for IBM MQ for Solaris (32-bit):

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
1. Create a directory (for example, APPDIR) in which the server environment is built and execute all

commands in this directory.
2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO:

$ export CFLAGS="-I /APPDIR"
$ export FIELDTBLS=amqstxvx.flds
$ export VIEWFILES=amqstxvx.V
$ export SHLIB_PATH=$TUXDIR/lib:MQ_INSTALLATION_PATH/lib:/lib
$ export LD_LIBRARY_PATH=$TUXDIR/lib:MQ_INSTALLATION_PATH/lib:/lib

3. Add the following to the TUXEDO file udataobj/RM (RM must include MQ_INSTALLATION_PATH/lib/
libmqmcs and MQ_INSTALLATION_PATH/lib/libmqmzse).
MQSeries_XA_RMI:MQRMIXASwitchDynamic: \
MQ_INSTALLATION_PATH/lib/libmqmxa.a MQ_INSTALLATION_PATH/lib/libmqm.so \
/opt/tuxedo/lib/libtux.a MQ_INSTALLATION_PATH/lib/libmqmcs.so \
MQ_INSTALLATION_PATH/lib/libmqmzse.so

4. Run the commands:
$ mkfldhdr amqstxvx.flds
$ viewc amqstxvx.v
$ buildtms -o MQXA -r MQSERIES_XA_RMI
$ buildserver -o MQSERV1 -f amqstxsx.c \

-f MQ_INSTALLATION_PATH/lib/libmqm.so \
-r MQSERIES_XA_RMI -s MPUT1:MPUT \
-s MGET1:MGET \
-v -bshm
-l -ldl

$ buildserver -o MQSERV2 -f amqstxsx.c \
-f MQ_INSTALLATION_PATH/lib/libmqm.so \
-r MQSeries_XA_RMI -s MPUT2:MPUT \
-s MGET2:MGET \
-v -bshm
-l -ldl

$ buildclient -o doputs -f amqstxpx.c \
-f MQ_INSTALLATION_PATH/lib/libmqm.so \
-f MQ_INSTALLATION_PATH/lib/libmqmzse.co \
-f MQ_INSTALLATION_PATH/lib/libmqmcs.so

$ buildclient -o dogets -f amqstxgx.c \
-f MQ_INSTALLATION_PATH/lib/libmqm.so
-f MQ_INSTALLATION_PATH/lib/libmqmzse.co \
-f MQ_INSTALLATION_PATH/lib/libmqmcs.so

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as
necessary:
$ tmloadcf -y ubbstxcx.cfg

6. Create the TLOGDEVICE:
$tmadmin -c

A prompt is displayed. At this prompt, enter:

Sample IBM MQ procedural programs 539

> crdl -z /APPDIR/TLOG1

7. Start the queue manager:
$ strmqm

8. Start Tuxedo:
$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a
queue.

Building the server environment for IBM MQ for Solaris (64-bit):

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
1. Create a directory (for example, <APPDIR>) in which the server environment is built and execute all

commands in this directory.
2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO:

$ export CFLAGS="-I /<APPDIR>"
$ export FIELDTBLS=amqstxvx.flds
$ export VIEWFILES=amqstxvx.V
$ export SHLIB_PATH=$TUXDIR/lib: MQ_INSTALLATION_PATH/lib:/lib64
$ export LD_LIBRARY_PATH=$TUXDIR/lib64: MQ_INSTALLATION_PATH/lib64:/lib64

3. Add the following to the TUXEDO file udataobj/RM (RM must include MQ_INSTALLATION_PATH/lib/
libmqmcs and MQ_INSTALLATION_PATH/lib/libmqmzse).
MQSeries_XA_RMI:MQRMIXASwitchDynamic: \
MQ_INSTALLATION_PATH/lib64/libmqmxa64.a MQ_INSTALLATION_PATH/lib64/libmqm.so \
/opt/tuxedo/lib64/libtux.a MQ_INSTALLATION_PATH/lib64/libmqmcs.so \
MQ_INSTALLATION_PATH/lib64/libmqmzse.so

4. Run the commands:
$ mkfldhdr amqstxvx.flds
$ viewc amqstxvx.v
$ buildtms -o MQXA -r MQSeries_XA_RMI
$ buildserver -o MQSERV1 -f amqstxsx.c \

-f MQ_INSTALLATION_PATH/lib64/libmqm.so \
-r MQSeries_XA_RMI -s MPUT1:MPUT \
-s MGET1:MGET \
-v -bshm
-l -ldl

$ buildserver -o MQSERV2 -f amqstxsx.c \
-f MQ_INSTALLATION_PATH/lib64/libmqm.so \
-r MQSeries_XA_RMI -s MPUT2:MPUT \
-s MGET2:MGET \
-v -bshm
-l -ldl

$ buildclient -o doputs -f amqstxpx.c \
-f MQ_INSTALLATION_PATH/lib64/libmqm.so \
-f MQ_INSTALLATION_PATH/lib64/libmqmzse.co \
-f MQ_INSTALLATION_PATH/lib64/libmqmcs.so

$ buildclient -o dogets -f amqstxgx.c \
-f MQ_INSTALLATION_PATH/lib64/libmqm.so
-f MQ_INSTALLATION_PATH/lib64/libmqmzse.co \
-f MQ_INSTALLATION_PATH/lib64/libmqmcs.so

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as
necessary:
$ tmloadcf -y ubbstxcx.cfg

6. Create the TLOGDEVICE:
$tmadmin -c

A prompt is displayed. At this prompt, enter:
> crdl -z /<APPDIR>/TLOG1

540 IBM MQ: Programming

7. Start the queue manager:
$ strmqm

8. Start Tuxedo:
$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a
queue.

Building the server environment for IBM MQ for HP-UX (32-bit):

Note: The 32-bit TUXEDO server environment can only be built on the Itanium platform.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
1. Create a directory (for example, <APPDIR>) in which the server environment is built and execute all

commands in this directory.
2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO:

$ export CFLAGS="-Aa -D_HPUX_SOURCE"
$ export FIELDTBLS= MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ export VIEWFILES=$APPDIR/amqstxvx.V
$ export TUXCONFIG=$APPDIR/tuxconfig
$ export PATH=$TUXDIR/bin:/usr/bin:/sbin: MQ_INSTALLATION_PATH/bin:$PATH
$ export SHLIB_PATH=$TUXDIR/lib: MQ_INSTALLATION_PATH/lib:/lib
$ export FLDTBLDIR=$APPDIR:$TUXDIR/udataobj

3. Add the following to the TUXEDO file udataobj/RM
MQSeries_XA_RMI:MQRMIXASwitchDynamic: \
MQ_INSTALLATION_PATH/lib/libmqmxa.so MQ_INSTALLATION_PATH/lib/libmqm.so \
/opt/tuxedo/lib/libtux.sl

4. Run the commands:
$ mkfldhdr MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ viewc MQ_INSTALLATION_PATH/samp/amqstxvx.v

After running the mkfldhdr and viewc commands, the amqstxvx.h header file is created in the
TUXEDO application directory. Copy this file from the TUXEDO application directory into the
TUXEDO include directory, and then run the following commands.
$ buildtms -o MQXA -r MQSeries_XA_RMI
$ buildserver -o MQSERV1 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \

-f MQ_INSTALLATION_PATH/lib/libmqm.so \
-r MQSeries_XA_RMI -s MPUT1:MPUT \
-s MGET1:MGET \
-v -bshm

$ buildserver -o MQSERV2 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \
-f MQ_INSTALLATION_PATH/lib/libmqm.so \
-r MQSeries_XA_RMI -s MPUT2:MPUT \
-s MGET2:MGET \
-v -bshm

$ buildclient -o doputs -f MQ_INSTALLATION_PATH/samp/amqstxpx.c \
-f MQ_INSTALLATION_PATH/lib/libmqm.so

$ buildclient -o dogets -f MQ_INSTALLATION_PATH/samp/amqstxgx.c \
-f MQ_INSTALLATION_PATH/lib/libmqm.so

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as
necessary:
$ tmloadcf -y MQ_INSTALLATION_PATH/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:
$tmadmin -c

A prompt is displayed. At this prompt, enter:
> crdl -z /<APPDIR>/TLOG1

Sample IBM MQ procedural programs 541

7. Start the queue manager:
$ strmqm

8. Start TUXEDO:
$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a
queue.

Building the server environment for IBM MQ for HP-UX (64-bit):

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
1. Create a directory (for example, <APPDIR>) in which the server environment is built and execute all

commands in this directory.
2. Export the following environment variables, where TUXDIR is the root directory for TUXEDO:

$ export CFLAGS="-Aa -D_HPUX_SOURCE"
$ export FIELDTBLS= MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ export VIEWFILES=$APPDIR/amqstxvx.V
$ export TUXCONFIG=$APPDIR/tuxconfig
$ export PATH=$TUXDIR/bin:/usr/bin:/sbin: MQ_INSTALLATION_PATH/bin:$PATH
$ export SHLIB_PATH=$TUXDIR/lib: MQ_INSTALLATION_PATH/lib64:/lib64
$ export FLDTBLDIR=$APPDIR:$TUXDIR/udataobj

3. Add the following to the TUXEDO file udataobj/RM
On the HP-UX IA64 (IPF) platform:
MQSeries_XA_RMI:MQRMIXASwitchDynamic: \
MQ_INSTALLATION_PATH/lib64/libmqmxa64.so MQ_INSTALLATION_PATH/lib64/libmqm.so \
/opt/tuxedo/lib/libtux.sl

Note: The IBM MQ libraries shipped on the HP-UX IA64 (IPF) platform have a .so file name
extension.

4. Run the commands:
$ mkfldhdr MQ_INSTALLATION_PATH/samp/amqstxvx.flds
$ viewc MQ_INSTALLATION_PATH/samp/amqstxvx.v

After running the mkfldhdr and viewc commands, the amqstxvx.h header file is created in the
TUXEDO application directory. Copy this file from the TUXEDO application directory into the
TUXEDO include directory, and then run the following commands.
$ buildtms -o MQXA -r MQSeries_XA_RMI

On the HP-UX IA64 (IPF) platform:
$ buildserver -o MQSERV1 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \

-f MQ_INSTALLATION_PATH/lib64/libmqm.so \
-r MQSeries_XA_RMI -s MPUT1:MPUT \
-s MGET1:MGET \
-v -bshm

$ buildserver -o MQSERV2 -f MQ_INSTALLATION_PATH/samp/amqstxsx.c \
-f MQ_INSTALLATION_PATH/lib64/libmqm.so \
-r MQSeries_XA_RMI -s MPUT2:MPUT \
-s MGET2:MGET \
-v -bshm

$ buildclient -o doputs -f MQ_INSTALLATION_PATH/samp/amqstxpx.c \
-f MQ_INSTALLATION_PATH/lib64/libmqm.so

$ buildclient -o dogets -f MQ_INSTALLATION_PATH/samp/amqstxgx.c \
-f MQ_INSTALLATION_PATH/lib64/libmqm.so

5. Edit ubbstxcx.cfg and add details of the machine name, working directories, and queue manager as
necessary:
$ tmloadcf -y MQ_INSTALLATION_PATH/samp/ubbstxcx.cfg

6. Create the TLOGDEVICE:
$tmadmin -c

542 IBM MQ: Programming

A prompt is displayed. At this prompt, enter:
> crdl -z /<APPDIR>/TLOG1

7. Start the queue manager:
$ strmqm

8. Start TUXEDO:
$ tmboot -y

You can now use the doputs and dogets programs to put messages to a queue and retrieve them from a
queue.

Building the server environment for IBM MQ for Windows (32-bit):

Note: Change the fields identified as VARIABLES in the following, to the directory paths:

MQMDIR the directory path specified when IBM MQ was installed, for example g:\Program
Files\IBM\WebSphere MQ

TUXDIR the directory path specified when TUXEDO was installed, for example f:\tuxedo

APPDIR the directory path to be used for the sample application, for example
f:\tuxedo\apps\mqapp

To build the server environment and samples:
1. Create an application directory in which to build the sample application, for example:

f:\tuxedo\apps\mqapp

2. Copy the following sample files from the IBM MQ sample directory to the application directory:
amqstxmn.mak
amqstxen.env
ubbstxcn.cfg

3. Edit each of these files to set the directory names and directory paths used on your installation.
4. Edit ubbstxcn.cfg (see Figure 89 on page 544) to add details of the machine name and the queue

manager that you want to connect to.
5. Add the following line to the TUXEDO file <TUXDIR>udataobj\rm

MQSeries_XA_RMI;MQRMIXASwitchDynamic;
MQMDIR\tools\lib\mqmxa.lib MQMDIR\tools\lib\mqm.lib

Although shown here as two lines, the new entry must be one line in the file.
6. Set the following environment variables:

TUXDIR=TUXDIR
TUXCONFIG=APPDIR\tuxconfig
FIELDTBLS=MQMDIR\tools\c\samples\amqstxvx.fld
LANG=C

7. Create a TLOG device for TUXEDO. To do this, invoke tmadmin -c, and enter the command:
crdl -z APPDIR\TLOG

8. Set the current directory to APPDIR, and invoke the sample makefile (amqstxmn.mak) as an external
project makefile. For example, with Microsoft Visual C++ , issue the command:
msvc amqstxmn.mak

Select build to build all the sample programs.

Sample IBM MQ procedural programs 543

Note: Change the machine name MachineName and the directory paths to match your installation. Also
change the queue manager name MYQUEUEMANAGER to the name of the queue manager that you
want to connect to.

The sample ubbconfig file for IBM MQ for Windows is listed in Figure 89. It is supplied as ubbstxcn.cfg
in the IBM MQ samples directory.

The sample makefile (see Figure 90 on page 545) supplied for IBM MQ for Windows is called
ubbstxmn.mak, and is held in the IBM MQ samples directory.

*RESOURCES
IPCKEY 99999
UID 0
GID 0
MAXACCESSERS 20
MAXSERVERS 20
MAXSERVICES 50
MASTER SITE1
MODEL SHM
LDBAL N

*MACHINES
MachineName LMID=SITE1

TUXDIR="f:\tuxedo"
APPDIR="f:\tuxedo\apps\mqapp;g:\Program Files\IBM\WebSphere MQ\bin"
ENVFILE="f:\tuxedo\apps\mqapp\amqstxen.env"
TUXCONFIG="f:\tuxedo\apps\mqapp\tuxconfig"
ULOGPFX="f:\tuxedo\apps\mqapp\ULOG"
TLOGDEVICE="f:\tuxedo\apps\mqapp\TLOG"
TLOGNAME=TLOG
TYPE="i386NT"
UID=0
GID=0

*GROUPS
GROUP1

LMID=SITE1 GRPNO=1
TMSNAME=MQXA
OPENINFO="MQSERIES_XA_RMI:MYQUEUEMANAGER"

*SERVERS
DEFAULT: CLOPT="-A -- -m MYQUEUEMANAGER"

MQSERV1 SRVGRP=GROUP1 SRVID=1
MQSERV2 SRVGRP=GROUP1 SRVID=2

*SERVICES
MPUT1
MGET1
MPUT2
MGET2

Figure 89. Example of ubbstxcn.cfg file for IBM MQ for Windows

544 IBM MQ: Programming

Building the server environment for IBM MQ for Windows (64-bit):

Note: Change the fields identified by <> in the following, to the directory paths:

<MQMDIR> the directory path specified when IBM MQ was installed, for example
g:\Program⌂Files\IBM\WebSphere MQ

<TUXDIR> the directory path specified when TUXEDO was installed, for example f:\tuxedo

<APPDIR> the directory path to be used for the sample application, for example
f:\tuxedo\apps\mqapp

To build the server environment and samples:
1. Create an application directory in which to build the sample application, for example:

f:\tuxedo\apps\mqapp

2. Copy the following sample files from the IBM MQ sample directory to the application directory:
amqstxmn.mak
amqstxen.env
ubbstxcn.cfg

3. Edit each of these files to set the directory names and directory paths used on your installation.
4. Edit ubbstxcn.cfg (see Figure 91 on page 546) to add details of the machine name and the queue

manager that you want to connect to.
5. Add the following line to the TUXEDO file <TUXDIR>udataobj\rm

MQSeries_XA_RMI;MQRMIXASwitchDynamic;
<MQMDIR>\tools\lib64\mqmxa64.lib <MQMDIR>\tools\lib64\mqm.lib

where <MQMDIR> is replaced. Although shown here as two lines, the new entry must be one line in
the file.

6. Set the following environment variables:

TUXDIR = f:\tuxedo
MQMDIR = g:\Program Files\IBM\WebSphere MQ
APPDIR = f:\tuxedo\apps\mqapp
MQMLIB = $(MQMDIR)\tools\lib
MQMINC = $(MQMDIR)\tools\c\include
MQMSAMP = $(MQMDIR)\tools\c\samples
INC = -f "-I$(MQMINC) -I$(APPDIR)"
DBG = -f "/Zi"

amqstx.exe:
$(TUXDIR)\bin\mkfldhdr -d$(APPDIR) $(MQMSAMP)\amqstxvx.fld
$(TUXDIR)\bin\viewc -d$(APPDIR) $(MQMSAMP)\amqstxvx.v
$(TUXDIR)\bin\buildtms -o MQXA -r MQSERIES_XA_RMI
$(TUXDIR)\bin\buildserver -o MQSERV1 -f $(MQMSAMP)\amqstxsx.c \

-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
-r MQSERIES_XA_RMI \
-s MPUT1:MPUT -s MGET1:MGET

$(TUXDIR)\bin\buildserver -o MQSERV2 -f $(MQMSAMP)\amqstxsx.c \
-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
-r MQSERIES_XA_RMI \
-s MPUT2:MPUT -s MGET2:MGET

$(TUXDIR)\bin\buildclient -o doputs -f $(MQMSAMP)\amqstxpx.c \
-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG)

$(TUXDIR)\bin\buildclient -o dogets -f $(MQMSAMP)\amqstxgx.c \
-f $(MQMLIB)\mqm.lib $(INC) -v $(DBG)

$(TUXDIR)\bin\tmloadcf -y $(APPDIR)\ubbstxcn.cfg

Figure 90. Sample TUXEDO makefile for IBM MQ for Windows

Sample IBM MQ procedural programs 545

TUXDIR=<TUXDIR>
TUXCONFIG=<APPDIR>\tuxconfig
FIELDTBLS=<MQMDIR>\tools\c\samples\amqstxvx.fld
LANG=C

7. Create a TLOG device for TUXEDO. To do this, invoke tmadmin -c, and enter the command:
crdl -z < APPDIR >\TLOG

where < APPDIR > is replaced as shown in the previous example.
8. Set the current directory to <APPDIR>, and invoke the sample makefile (amqstxmn.mak) as an

external project makefile. For example, with Microsoft Visual C++ , issue the command:
msvc amqstxmn.mak

Select build to build all the sample programs.

Note: Change the directory names and directory paths to match your installation. Also change the queue
manager name MYQUEUEMANAGER to the name of the queue manager that you want to connect to.
Other information that you need to add is identified by <> characters.

*RESOURCES
IPCKEY 99999
UID 0
GID 0
MAXACCESSERS 20
MAXSERVERS 20
MAXSERVICES 50
MASTER SITE1
MODEL SHM
LDBAL N

*MACHINES
<MachineName> LMID=SITE1

TUXDIR="f:\tuxedo"
APPDIR="f:\tuxedo\apps\mqapp;g:\Programï¿½Files\IBM\WebSphere MQ\bin"
ENVFILE="f:\tuxedo\apps\mqapp\amqstxen.env"
TUXCONFIG="f:\tuxedo\apps\mqapp\tuxconfig"
ULOGPFX="f:\tuxedo\apps\mqapp\ULOG"
TLOGDEVICE="f:\tuxedo\apps\mqapp\TLOG"
TLOGNAME=TLOG
TYPE="i386NT"
UID=0
GID=0

*GROUPS
GROUP1

LMID=SITE1 GRPNO=1
TMSNAME=MQXA
OPENINFO="MQSeries_XA_RMI:MYQUEUEMANAGER"

*SERVERS
DEFAULT: CLOPT="-A -- -m MYQUEUEMANAGER"

MQSERV1 SRVGRP=GROUP1 SRVID=1
MQSERV2 SRVGRP=GROUP1 SRVID=2

*SERVICES
MPUT1
MGET1
MPUT2
MGET2

Figure 91. Example of ubbstxcn.cfg file for IBM MQ for Windows

546 IBM MQ: Programming

The sample ubbconfig file for IBM MQ for Windows is listed in Figure 91 on page 546. It is supplied as
ubbstxcn.cfg in the IBM MQ samples directory.

The sample makefile (see Figure 92) supplied for IBM MQ for Windows is called ubbstxmn.mak, and is
held in the IBM MQ samples directory.

Sample server program for TUXEDO
The sample server program (amqstxsx) is designed to run with the Put (amqstxpx.c) and the Get
(amqstxgx.c) sample programs. The sample server program runs automatically when TUXEDO is started.

Note: You must start your queue manager before you start TUXEDO.

The sample server provides two TUXEDO services, MPUT1 and MGET1:
v The MPUT1 service is driven by the PUT sample and uses MQPUT1 in syncpoint to put a message in a

unit of work controlled by TUXEDO. It takes the parameters QName and Message Text, which are
supplied by the PUT sample.

v The MGET1 service opens and closes the queue each time that it gets a message. It takes the
parameters QName and Message Text, which are supplied by the GET sample.

Any error messages, reason codes, and status messages are written to the TUXEDO log file.

TUXDIR = f:\tuxedo
MQMDIR = g:\Programï¿½Files\IBM\WebSphere MQ
APPDIR = f:\tuxedo\apps\mqapp
MQMLIB = $(MQMDIR)\tools\lib64
MQMINC = $(MQMDIR)\tools\c\include
MQMSAMP = $(MQMDIR)\tools\c\samples
INC = -f "-I$(MQMINC) -I$(APPDIR)"
DBG = -f "/Zi"

amqstx.exe:
$(TUXDIR)\bin\mkfldhdr -d$(APPDIR) $(MQMSAMP)\amqstxvx.fld
$(TUXDIR)\bin\viewc -d$(APPDIR) $(MQMSAMP)\amqstxvx.v
$(TUXDIR)\bin\buildtms -o MQXA -r MQSeries_XA_RMI
$(TUXDIR)\bin\buildserver -o MQSERV1 -f $(MQMSAMP)\amqstxsx.c \

-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
-r MQSeries_XA_RMI \
-s MPUT1:MPUT -s MGET1:MGET

$(TUXDIR)\bin\buildserver -o MQSERV2 -f $(MQMSAMP)\amqstxsx.c \
-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG) \
-r MQSeries_XA_RMI \
-s MPUT2:MPUT -s MGET2:MGET

$(TUXDIR)\bin\buildclient -o doputs -f $(MQMSAMP)\amqstxpx.c \
-f $(MQMLIB)\mqm.lib -v $(INC) $(DBG)

$(TUXDIR)\bin\buildclient -o dogets -f $(MQMSAMP)\amqstxgx.c \
-f $(MQMLIB)\mqm.lib $(INC) -v $(DBG)

$(TUXDIR)\bin\tmloadcf -y $(APPDIR)\ubbstxcn.cfg

Figure 92. Sample TUXEDO makefile for IBM MQ for Windows

Sample IBM MQ procedural programs 547

Put sample program for TUXEDO
This sample allows you to put a message on a queue multiple times, in batches, demonstrating
syncpointing using TUXEDO as the resource manager.

The sample server program amqstxsx must be running for the put sample to succeed; the server sample
program connects to the queue manager and uses the XA interface. To run the sample enter:
v doputs -n queuename -b batchsize -c trancount -t message

For example:
v doputs -n myqueue -b 5 -c 6 -t “Hello World”

This puts 30 messages onto the queue named myqueue, in six batches, each with five messages in it. If
there are any problems it backs a batch of messages out, otherwise it commits them.

Any error messages are written to the TUXEDO log file and to stderr. Any reason codes are written to
stderr.

Local SystemLocal or Remote
System

(queue used
by samples)

Server Machine
Client Machine

amqstxgx
(GET)

Client Machine

amqstxpx
(PUT)

QUEUE
MANAGER

XA

Interface

TUXEDO Application

MQSERV1
(amqstxsx)

WebSphere MQ

Figure 93. How TUXEDO samples work together

548 IBM MQ: Programming

Get sample for TUXEDO
This sample allows you to get messages from a queue in batches.

The sample server program amqstxsx must be running for the Get sample to succeed; the sample server
program connects to the queue manager and uses the XA interface. To run the sample, enter the
following command:
v dogets -n queuename -b batchsize -c trancount

For example:
v dogets -n myqueue -b 6 -c 4

This takes 24 messages off the queue named myqueue, in six batches, each with four messages in it. If you
run this after the put example, which puts 30 messages on myqueue, you have only six messages on
myqueue. The number of batches and the batch size can vary between putting the messages and getting
them.

Any error messages are written to the TUXEDO log file and to stderr. Any reason codes are written to
stderr.

Using the SSPI security exit on Windows systems
This topic describes how to use the SSPI channel-exit programs on Windows systems. The supplied exit
code is in two formats: object and source.

Object code

The object code file is called amqrspin.dll. For both client and server, it is installed as a standard part of
IBM MQ for Windows in the MQ_INSTALLATION_PATH/exits/INSTALLATION_NAME folder. For example,
C:\Program Files\IBM\WebSphere MQ\exits\installation2. It is loaded as a standard user exit. You can
run the supplied security channel exit and use authentication services in your definition of the channel.

To do this, specify either of the following:
SCYEXIT(’amqrspin(SCY_KERBEROS)’)

SCYEXIT(’amqrspin(SCY_NTLM)’)

To provide support for a restricted channel, specify the following on the SRVCONN channel:
SCYDATA(’remote_principal_name’)

where remote_principal_name is in the form DOMAIN\user. The secure channel is established only if the
name of the remote principal matches remote_principal_name.

To use the supplied channel-exit programs between systems that operate within a Kerberos security
domain, create a servicePrincipalName for the queue manager.

Source code

The exit source code file is called amqsspin.c. It is in C:\Program Files\IBM\WebSphere
MQ\Tools\c\Samples.

If you modify the source code, you must recompile the modified source.

You compile and link it in the same way as any other channel exit for the relevant platform, except that
SSPI headers need to be accessed at compile time, and the SSPI security libraries, together with any
recommended associated libraries, need to be accessed at link time.

Sample IBM MQ procedural programs 549

Before you execute the following command, make sure that cl.exe, and the Visual C++ library, and the
include folder are available in your path. For example:
cl /VERBOSE /LD /MT /Ipath_to_Microsoft_platform_SDK\include
/Ipath_to_IBM_MQ\tools\c\include amqsspin.c /DSECURITY_WIN32
-link /DLL /EXPORT:SCY_KERBEROS /EXPORT:SCY_NTLM STACK:8192

Note: The source code does not include any provision for tracing or error handling. If you modify and
use the source code, add your own tracing and error-handling routines.

Running the samples using remote queues
You can demonstrate remote queuing by running the samples on connected queue managers.

Program amqscos0.tst provides a local definition of a remote queue (SYSTEM.SAMPLE.REMOTE) that
uses a remote queue manager named OTHER. To use this sample definition, change OTHER to the name
of the second queue manager that you want to use. You must also set up a message channel between
your two queue managers; for information on how to do this, see Defining the channels.

The Request sample programs put their own local queue manager name in the ReplyToQMgr field of
messages that they send. The Inquire and Set samples send reply messages to the queue and message
queue manager named in the ReplyToQ and ReplyToQMgr fields of the request messages that they process.

The Cluster Queue Monitoring sample program (AMQSCLM)
This sample uses the built-in IBM MQ cluster workload balancing features to direct messages to instances
of queues that have consuming applications attached. This automatic direction prevents the build-up of
messages on an instance of a cluster queue to which no consuming application is attached.

Overview

You can set up a cluster that has more than one definition for the same queue on different queue
managers. This configuration provides the benefit of increased availability and workload balancing.
However, there is no capability built into IBM MQ to dynamically modify the distribution of messages
across a cluster based on the state of attached applications. For this reason, a consuming application must
always be attached to every instance of a queue to ensure that messages are processed.

The cluster queue monitoring sample program monitors the state of attached applications. The program
dynamically adjusts the built-in workload balancing configuration to direct messages to instances of a
clustered queue with consuming applications attached. In certain situations this program can be used to
relax the need for a consuming application to always be connected to every instance of a queue. It also
resends messages that become queued on an instance of a queue with no consuming applications
attached. Resending messages enables messages to be routed around a consuming application that is
temporarily shut down.

The program is designed to be used where the consuming applications are long running applications,
rather than frequently attaching and detaching applications.

The cluster queue monitoring sample program is the compiled executable program of the C sample file
amqsclma.c.

Further information about clusters and workload can be found in Using clusters for workload
management

550 IBM MQ: Programming

AMQSCLM: Design and Planning for using the sample
Information about how the cluster queue monitoring sample program works, points to consider when
setting up a system for the sample program to run on, and modifications that can be made to the sample
source code.

Design

The cluster queue monitoring sample program monitors local clustered queues that have consuming
applications attached. The program monitors queues specified by the user. The name of the queue might
be specific, for example APP.TEST01, or generic. Generic names must be in a format that conforms to PCF
(Programmable Command Format). Examples of generic names are APP.TEST*, or APP*.

Each queue manager in a cluster that owns an instance of a local queue to be monitored, requires an
instance of the cluster queue monitoring sample program to be connected to it.

Dynamic message routing

The cluster queue monitoring sample program uses the IPPROCS (open for input process count) value of a
queue to determine whether that queue has any consumers. A value greater than 0 indicates that the
queue has at least one consuming application attached. Such queues are active. A value of 0 indicates that
the queue has no attached consuming programs. Such queues are inactive.

For a clustered queue with multiple instances in a cluster, IBM MQ uses the cluster workload priority
property CLWLPRTY of each queue instance to determine which instances to send messages to. IBM MQ
sends messages to the available instances of a queue with the highest CLWLPRTY value.

The cluster queue monitoring sample program activates a cluster queue by setting the local CLWLPRTY
value to 1. The program deactivates a cluster queue by setting its CLWLPRTY value to 0.

IBM MQ clustering technology propagates the updated CLWLPRTY property of a clustered queue to all
relevant queue managers in the cluster. For example,
v A queue manager with a connected application that puts messages to the queue.
v A queue manager that owns a local queue of the same name in the same cluster.

The propagation is done using the full repository queue managers of the cluster. New messages for the
cluster queue are directed to the instances with the highest CLWLPRTY value within the cluster.

Queued message transfer

The dynamic modification of the value of CLWLPRTY influences the routing of new messages. This dynamic
modification does not affect messages already queued on a queue instance with no attached consumers,
or messages that have been through the workload balancing mechanism before a modified CLWLPRTY
value was propagated across the cluster. As a result, messages remain on any inactive queue and not be
processed by a consuming application. To solve this, the cluster queue monitoring sample program is
able to get messages from a local queue with no consumers, and send these messages to remote instances
of the same queue where consumers are attached.

The cluster queue monitoring sample program transfers messages from an inactive local queue to one or
more active remote queues by getting messages (using MQGET) and putting messages (using MQPUT) to the
same clustered queue. This transfer causes the IBM MQ cluster workload management to select a
different target instance, based on a higher CLWLPRTY value than that of the local queue instance. Message
persistence and context are preserved during the message transfer. Message order, and any binding
options are not preserved.

Sample IBM MQ procedural programs 551

Planning

The cluster queue monitoring sample program modifies the cluster configuration when there is a change
in the connectivity of consuming applications. Modifications are transmitted from the queue managers
where the cluster queue monitoring sample program is monitoring queues, to the full repository queue
managers in the cluster. The full repository queue managers process the configuration updates and
resend them to all relevant queue managers in the cluster. Relevant queue managers include those queue
managers that own clustered queues of the same name (where an instance of the cluster queue
monitoring sample program is running), and any queue manager where an application opened the cluster
queue to put messages to it in the last 30 days.

Changes are asynchronously processed across the cluster. Therefore, after each change, different queue
managers in the cluster might have different views of the configuration for a period of time.

The cluster queue monitoring sample program is only suitable for systems where consuming applications
infrequently attach or detach; for example, long running consuming applications. When used to monitor
systems where consuming applications are only attached for short periods, the latency incurred when
distributing the configuration updates might result in queue managers in the cluster having an incorrect
view of the queues where consumers are attached. This latency might result in incorrectly routed
messages.

When monitoring many queues, a relatively low rate of change in attached consumers across all queues
might increase cluster configuration traffic across the cluster. Increased cluster configuration traffic can
result in excessive load on one or more of the following queue managers.
v The queue managers where the cluster queue monitoring sample program is running
v The full repository queue managers
v A queue manager with a connected application that puts messages to the queue
v A queue manager that owns a local queue of the same name in the same cluster

Processor usage on the full repository queue managers must be assessed. Additional processor usage is
visible as message traffic on the full repository queue SYSTEM.CLUSTER.COMMAND.QUEUE. If
messages build up on that queue, it indicates that the full repository queue managers are unable to keep
up with the rate of cluster configuration change in the system.

When many queues are being monitored by the cluster queue monitoring sample program, there is an
amount of work performed by the sample program and the queue manager. This work is performed,
even when there are no changes to the attached consumers. The -i argument can be modified to reduce
processor usage of the sample program on the local system, by decreasing the frequency of the
monitoring cycle.

To help detect excessive activity, the cluster queue monitoring sample program reports average processing
time per polling interval, elapsed processing time, and number of configuration changes. The reports are
delivered in an information message, CLM0045I, every 30 minutes, or every 600 poll intervals, whichever
is sooner.

Cluster queue monitoring usage requirements

The cluster queue monitoring sample program has requirements and restrictions. You can modify the
sample source code provided to change some of these restrictions in how it can be used. Examples listed
in this section detail modifications that can be made.
v The cluster queue monitoring sample program is designed to be used to monitor queues where

consuming applications are either attached, or not attached. If the system has consuming applications
that are frequently attaching and detaching, the sample program might generate excessive cluster
configuration activity across the entire cluster. This might have an impact on the performance of the
queue managers in the cluster.

552 IBM MQ: Programming

v The cluster queue monitoring sample program depends upon the underlying IBM MQ system and
cluster technology. The number of queues being monitored, the frequency of monitoring and the
frequency of the change of the state of each queue affects the load on the overall system. These factors
must be considered when selecting the queues to be monitored and the poll interval of the monitoring.

v An instance of the cluster queue monitoring sample program must be connected to every queue
manager in the cluster that owns an instance of a queue to be monitored. It is not necessary to connect
the sample program to queue managers in the cluster that do not own the queues.

v The cluster queue monitoring sample program must be run with suitable authorization to access all of
the IBM MQ resources required. For example,
– The queue manager to be connected to
– The SYSTEM.ADMIN.COMMAND.QUEUE
– All the queues to be monitored when message transfer is performed

v The command server must be running for each queue manager with the cluster queue monitoring
sample program connected.

v Each instance of the cluster queue monitoring sample program requires exclusive use of a local
(non-clustered) queue on the queue manager that it is connected to. This local queue is used to control
the sample program, and receive reply messages from inquires made to the command server of the
queue manager.

v All queues to be monitored by a single instance of the cluster queue monitoring sample program must
be in the same cluster. If a queue manager has queues in multiple clusters that require monitoring,
multiple instances of the sample program are required. Each instance needs a local queue for control
and reply messages.

v All queues to be monitored must be in a single cluster. Queues configured to use a cluster namelist are
not monitored.

v Enabling the transfer of messages from inactive queues is optional. It applies to all queues being
monitored by the instance of the cluster queue monitoring sample program. If only a subset of the
queues being monitored require message transfer enabled, two instances of the cluster queue
monitoring sample program are needed. One sample program has message transfer enabled, and the
other has message transfer disabled. Each instance of the sample program needs a local queue for
control and reply messages.

v IBM MQ cluster workload balancing will, by default, send messages to instances of clustered queues
that reside on the same queue manager that a putting application is connected to. This must be
disabled while the local queue is inactive in the following circumstances:
– Putting applications connect to queue managers that own instances of an inactive queue that are

being monitored
– Queued messages are being transferred from inactive queues to active queues.

The local workload balancing preference on the queue can be disabled statically, through setting the
CLWLUSEQ value to ANY. In this configuration messages put on local queues are distributed to local and
remote queue instances to balance workload, even when there are local consuming applications.
Alternatively, the cluster queue monitoring sample program can be configured to temporarily set the
CLWLUSEQ value to ANY while the queue has no attached consumers which results in only local messages
going to local instances of a queue while that queue is active.

v The IBM MQ system and applications must not use CLWLPRTY for the queues to be monitored, or
channels being used. Otherwise, the actions of the cluster queue monitoring sample program on
CLWLPRTY queue attributes might have undesired effects.

v The cluster queue monitoring sample program logs runtime information to a set of report files. A
directory to store these reports is required, and the cluster queue monitoring sample program must
have authorization to write to it.

Sample IBM MQ procedural programs 553

AMQSCLM: Preparing and running the sample
In order to run the cluster queue monitoring sample, you must configure the queue manager to securely
accept incoming connection requests from applications running in client mode.

Before you begin

The following steps must be completed before running the cluster queue monitoring sample.
1. Create a working queue on each queue manager for the internal use of the sample.

Each instance of the sample needs a local non-cluster queue for exclusive internal use. You can choose
the name of the queue. The example uses the name AMQSCLM.CONTROL.QUEUE. For example, on
Windows, you can create this queue by using the MQSC command
DEFINE QLOCAL(AMQSCLM.CONTROL.QUEUE)

You can leave the values of MAXDEPTH and MAXMSGL as default.
2. Create a directory for error and information message logs.

The sample writes diagnostic messages to report files. You must choose a directory in which to store
the files. For example, on Windows, you can create a directory using the following command:
mkdir C:\AMQSCLM\rpts

The report files created by the sample have the following naming convention:
QmgrName. ClusterName.RPT0n.LOG

3. (Optional) Define the cluster queue monitoring sample as a IBM MQ service.
To monitor queues, the sample must always be running. To ensure that the cluster queue monitoring
sample is always running, you can define the sample as a queue manager service. Defining the
sample as a service means that AMQSCLM is started when the queue manager starts. You can use the
following example to define the cluster queue monitoring sample as an IBM MQ service.
define service(AMQSCLM) +

descr(’Active Cluster Queue Message Distribution Monitor - AMQSCLM’) +
control(qmgr) +
servtype(server) +
startcmd(’<Install Root>\tools\c\samples\Bin\AMQSCLM.exe’) +
startarg(’-m +QMNAME+ -c CLUSTER1 -q ABC* -r AMQSCLM.CONTROL.QUEUE -l c:\AMQSCLM\rpts’) +
stdout(’C:\AMQSCLM\rpts\+QMNAME+.TSTCLUS.stdout.log’) +
stderr(’C:\AMQSCLM\rpts\+QMNAME+.TSTCLUS.stderr.log’)

where <Install Root> is the location of your installation.

Definition Description

service Specifies the service name. You can choose the service
name.

descr Specifies a textual description of the service.

control Indicates that the service starts and stops at the same
time as the queue manager.

servtype Indicates a server service object, meaning only one
instance, can be executed at a time for this queue
manager.

startcmd Specifies the location and name of the program.

startarg Specifies the arguments of the sample. Note the use of
+QMNAME+. The name of the queue manager is
automatically substituted.

554 IBM MQ: Programming

Definition Description

stdout The fully qualified file name to which standard output is
redirected. The sample writes to this file only messages
confirming that the sample has terminated. The sample
does this because the standard error file has already
closed in an earlier stage of the sample termination
process.

stderr The fully qualified file name to which standard error
output is redirected. The sample writes to the standard
error file any error messages prior to termination of the
sample.

About this task

This task enables you to start and stop the cluster queue monitoring sample in different ways. It also
enables you to run the sample in a mode that generates report files containing statistical information
about the queues being monitored.

The sample program can be run by using the following command.
AMQSCLM -m QMgrName -c ClusterName (-q QNameMask | -f QListFile) -r MonitorQName
[-l ReportDir] [-t] [-u ActiveVal] [-i Interval] [-d] [-s] [-v]

Argument Variable Further Information

-m QMgrName The queue manager to monitor.

-c ClusterName The cluster containing the queues to
monitor.

-q QNameMask The queue, or queues, to monitor. A
trailing * monitors all queues with
names that match zero or more
trailing characters.

-f QListFile The full path and file name of a file
containing a list of queue names or
queue name masks to monitor. The
file must contain one queue
name/mask per line. You can specify
-q or -f, but not both.

-r MonitorQName The local queue being used
exclusively by the sample.

-l ReportDir The directory path in which to store
logged information messages in a set
of wrapping(For each queue manager
and queue combination a fixed-size
log file is generated that, when full,
is overwritten. The logger always
writes into the same file, and also
keeps the two previous versions of
the file.) report files.

-t (Optional) Enables the transfer of
queued messages from inactive local
queues to active queues. If not
enabled, only new messages entering
the cluster are dynamically routed to
active instances of a queue.

Sample IBM MQ procedural programs 555

Argument Variable Further Information

-u ActiveVal (Optional) Automatically switches the
CLWLUSEQ property of a monitored
queue instance to ANY when it is
inactive, and to the value of
ActiveVal when active. ActiveVal
can be LOCAL or QMGR. If this
argument is not set in a system
where putting applications connect to
the same queue manager, or where
message transfer is enabled, then
monitored queues must have a
CLWLUSEQ value of ANY, or QMGR with
the queue manager having a value of
ANY.

-i Interval (Optional) The time interval in
seconds, at which the monitor checks
the queues. Default is 300 seconds (5
minutes).

-d (Optional) Enables additional
diagnostic output. Debug output
might be useful when initially
configuring the system, or when
working with the sample code.

-s (Optional) Enables minimal statistical
output per interval.

-v (Optional) Log report information to
standard out, in addition to the
report files.

Argument list examples:
-m QMGR1 -c CLUS1 -f c:\QList.txt -r CLMQ -l c:\amqsclm\rpts -s
-m QMGR2 -c CLUS1 -q ABC* -r CLMQ -l c:\amqsclm\rpts -i 600
-m QMGR1 -c CLUSDEV -q QUEUE.* -r CLMQ -l c:\amqsclm\rpts -t -u QMGR -d

Example queue list file:
Q1
QUEUE.*
ABC
ABD

Procedure
1. Start the cluster queue monitoring sample. You can start the sample in one of the following ways:
v Use a command prompt with the appropriate user authorizations.
v Use the MQSC START SERVICE command, if the sample is configured as an IBM MQ service.

The argument list is the same in both cases. The sample does not start monitoring the queues for 10
seconds after the program is initialized. This delay allows consuming applications to connect to the
monitored queues first, preventing unnecessary changes to the active state of the queue.

2. Stop the cluster queue monitoring sample. The sample automatically stops when the queue manager
is stopped, stopping, quiescing, or if the connection to the queue manager is broken. There are ways
to stop the sample without ending the queue manager:
v Configure the local queue used exclusively by the sample to disable the Get function.
v Send a message with a CorrelId of "STOP CLUSTER MONITOR\0\0\0\0", to the local queue used

exclusively by the sample.

556 IBM MQ: Programming

v Terminate the sample process. This might result in the loss of non-persistent messages being
transferred to active queues. It might also result in the local queue used by the sample being held
open for a number of seconds after the termination. This situation prevents a new instance of the
cluster queue monitoring sample from starting immediately.

If the sample has been started as an IBM MQ service, STOP SERVICE has no effect. It is possible to use
one of the termination methods described as a configured STOP SERVICE mechanism in the queue
manager.

What to do next

Check the status of the sample.

If reporting is enabled, you can review the report files for status. Use the following command to review
the most current report file.
QMgrName.ClusterName.RPT01.LOG

To review older report files, use the following commands.
QMgrName.ClusterName.RPT02.LOG
QMgrName.ClusterName.RPT03.LOG

Report files grow to a maximum size of approximately 1 MB. When the RPT01 file fills up, a new RPT01
file is created. The old RPT01 file is renamed to RPT02. RPT02 is renamed to RPT03. The old RPT03 is
discarded.

The sample creates information messages in the following situations:
v At startup
v At termination
v When it marks a queue ACTIVE or INACTIVE
v when it requeues messages from an inactive queue to an active instance, or instances

The sample creates an error message CLMnnnnE to report a problem that requires attention.

Every 30 minutes, the sample reports average processing time per polling interval, and elapsed
processing time. This information is held in message CLM0045I.

When statistical messages are enabled -s, the sample reports the following statistical information about
each queue check:
v Time taken to process the queues (in milliseconds)
v Number of queues checked
v Number of active/inactive changes made
v Number of messages transferred

This information is reported in message CLM0048I.

Report files might grow rapidly in debug mode, and quickly wrap. In this situation, the 1-MB size limit
for individual files might be exceeded.

Sample IBM MQ procedural programs 557

AMQSCLM: Troubleshooting
The following sections contain information about scenarios that might be encountered while using the
sample. Information about potential explanations for a scenario, and options on how to resolve it, are
provided.

Scenario: AMQSCLM is not starting

Potential explanation: Incorrect syntax.

Action: Check standard error output for correct syntax

Potential explanation: Queue manager is not available.

Action: Check the report file for message id CLM0010E.

Potential explanation: Cannot open or create report file or files.

Action: Check standard error output for error messages during initialization.

Scenario: AMQSCLM is not changing a queue to ACTIVE or INACTIVE

Potential explanation: The queue is not in the list of queues to be monitored

Action: Check the -q and -f parameter values.

Potential explanation: The queue is not a local queue in the correct cluster.

Action: Check that the queue is local and in the correct cluster.

Potential explanation: AMQSCLM is not running for this queue manager and cluster.

Action: Start AMQSCLM for the relevant queue manager and cluster.

Potential explanation: The queue is left INACTIVE, CLWLPRTY =0, because it has no consumers.
Alternatively, it is left ACTIVE CLWLPRTY >=1, because it has at least 1 consumer.

Action: Check whether consuming applications are attached to the queue.

Potential explanation: The command server of the queue manager is not running.

Action: Check the report files for errors.

Scenario: Messages are not being routed around INACTIVE queues

Potential explanation: Messages are put directly to the queue manager that owns the inactive queue, and
the CLWLUSEQ value of the queue is not ANY, and the -u argument is not being used for AMQSCLM.

Action: Check the CLWLUSEQ value of the relevant queue manager, or ensure that the -u argument is used
for AMQSCLM.

Potential explanation: There are no active queues on any queue managers. Messages are evenly
workload balanced across all inactive queues until a queue becomes active.

Action: Check the status of the queues on all queue managers.

558 IBM MQ: Programming

Potential explanation: Messages are put to a different queue manager in the cluster to the one that owns
the inactive queue, and the updated CLWLPRTY value of 0 is not propagated to the queue manager of the
putting application.

Action: Check that the cluster channels between the monitored queue manager, and the full repository
queue manager, are running. Check that the channels between the putting queue manager, and the full
repository queue manager, are running. Check the error logs of the monitored, putting, and full
repository queue managers.

Potential explanation: The remote queue instances are active (CLWLPRTY=1), but messages cannot be
routed to those queue instances because the cluster sender channel from the local queue manager is not
running.

Action: Check the status of the cluster sender channels from the local queue manager to the remote
queue manager, or managers, with an active instance of the queue.

Scenario: AMQSCLM is not transferring messages from an inactive queue

Potential explanation: Message transfer is not enabled (-t).

Action: Ensure that message transfer is enabled (-t).

Potential explanation: The queue is not in the list of queues to be monitored.

Action: Check the -q and -f parameter values.

Potential explanation: AMQSCLM is not running for this, or other queue managers in the cluster, that
own instances of the same queue.

Action: Start AMQSCLM.

Potential explanation: The queue has CLWLUSEQ = LOCAL or CLWLUSEQ = QMGR, and the -u argument is not
set.

Action: Set the -u parameter, or change the queue, or queue manager configuration, to ANY.

Potential explanation: There are no active instances of the queue in the cluster.

Action: Check for instances of the queue with a CLWLPRTY value of 1, or greater.

Potential explanation: Remote queue instances have consumers (IPPROCS >=1) but are inactive on those
queue managers (CLWLPRTY =0) because AMQSCLM is not monitoring those remote instances.

Action: Ensure that AMQSCLM is running on those queue managers, and / or the queue is in the list of
queues to be monitored by checking the -q and -f parameter values.

Potential explanation: The remote queue instances are active (CLWLPRTY =1), but are seen as inactive on
the local queue manager (CLWLPRTY =0). This situation is due to the updated CLWLPRTY value not being
propagated to this queue manager.

Action: Ensure that the remote queue managers are connected to at least one of the full repository queue
managers in the cluster. Ensure that the full repository queue managers are functioning correctly. Check
that the channels between the full repository queue managers, and the monitored queue managers, are
running.

Potential explanation: The messages are not committed, therefore they are not retrievable.

Sample IBM MQ procedural programs 559

Action: Check that the sending application is functioning correctly.

Potential explanation: AMQSCLM does not have access to the local queue where messages are queued.

Action: Check whether AMQSCLM is running as a user with sufficient authorization to access the queue.

Potential explanation: The command server of the queue manager is not running.

Action: Start the command server of the queue manager.

Potential explanation: AMQSCLM encountered an error.

Action: Check the report files for errors.

Potential explanation: The remote queue instances are active (CLWLPRTY=1), but messages cannot be
transferred to those queue instances because the cluster sender channel from the local queue manager is
not running. This is often accompanied by a CLM0030W warning in the amqsclm report log.

Action: Check the status of the cluster sender channels from the local queue manager to the remote
queue manager, or managers, with an active instance of the queue.

Sample program for Connection Endpoint Lookup (CEPL)
IBM MQ Connection Endpoint Lookup sample provides a simple yet powerful exit module that offers
IBM MQ users a way to retrieve connection definitions from an LDAP repository such as Tivoli Directory
Server.

Tivoli Directory Server v6.3 Client must be installed in order to use CEPL.

A working knowledge of IBM MQ administration on the supported platforms is required to use this
sample.

Introduction
Configure a global repository, for example, an LDAP (Lightweight Directory Access Protocol) directory, to
store client connection definitions to aid maintenance and administration.

Using an IBM MQ Client application to establish a connection to a Queue Manager via a Client
Connection Definition Table (CCDT).

The CCDT is created through the standard IBM MQ MQSC Administration interface. The user must be
connected to a Queue Manager in order to create client connection definitions, even though the data
contained within the definition is not restricted to the Queue Manager. The CCDT file generated must be

560 IBM MQ: Programming

manually distributed among client machines and applications.

WebSphere MQ Server
(Queue Manager)

WebSphere
MQ Client

CCDT

WebSphere
MQ Client

WebSphere
MQ Client

WebSphere
MQ Client

CCDT

CCDT

CCDT

WebSphere MQ Server
(Queue Manager)

The CCDT file must be distributed to each IBM MQ client. Where thousands of clients can exist either
locally or globally, it would soon become difficult to maintain and administer. A more flexible approach is
needed to help ensure that each client has the correct client definitions available to them.

One such approach is to store the client connection definitions in a global repository such as an LDAP
(Lightweight Directory Access Protocol) directory. An LDAP directory can also provide additional
security, indexing, and search facilities, thereby allowing each client access to only those connection
definitions pertaining to them.

The LDAP directory can be configured so that only specific definitions are available to certain user
groups. For example, the Test Clients can access both Queue Manager #1 and #2, whereas the

Sample IBM MQ procedural programs 561

Development Clients can access Queue Manager #2 only.

WebSphere MQ Server
(Queue Manager #1)

WebSphere
MQ Client

WebSphere
MQ Client

Test Clients

WebSphere
MQ Client

WebSphere
MQ Client

Development Clients

LDAP Directory

Client Connection
Definitions

WebSphere MQ Server
(Queue Manager #2)

The exit module can look up an LDAP repository, for example, IBM Tivoli Directory Server, to retrieve
channel definitions. Using those connection definitions, an IBM MQ client application can establish
connection to a queue manager.

The exit module is a pre-connect exit module which enables channel definition to be obtained during the
MQCONN/MQCONNX call from an LDAP repository.

The exit module and schema might be implemented by:
v Customers who have already built a skill base using the existing CCDT file based technology and want

to ease the administration and distribution costs.
v Existing customers who already employ their own propriety technology for distributing client

connection definitions.
v New or existing customers who currently do not employ any type of client connection solution and

want to use the features offered by IBM MQ.
v New or existing customers who want to directly use or tune their messaging model inline with any

current LDAP business architecture.

562 IBM MQ: Programming

Supported environments
Verify that you have a supported operating system and the relevant software before running the
Connection Endpoint Lookup sample.

The sample program for IBM MQ Connection Endpoint Lookup requires the following software:
v IBM WebSphere MQ Version 7.0, or later
v Tivoli Directory Server V6.3 Client, or later

Operating Systems supported:
1. Windows (7/8/2008/2012)
2. Solaris (SPARC and x86-64)
3. AIX
4. Linux
v RHEL v4 and v5 on System p
v SUSE v9 and v10 on System p
v RHEL v4 and v5 System x 32 bit and 64 bit
v SUSE v9 and v10 System x 32 bit and 64 bit

5. HP IA64.

Note: The sample is not available for z/OS, i/5, and HP PARISC platforms.

Installation and configuration
Installing and configuring the exit module and connection endpoint schema.

Installing exit module

During installation of IBM MQ, the exit module is installed under tools/samples/c/preconnexit/bin. For
32 bit platforms, the exit module must be copied to exit/<install name>/ before it can be used. For 64
bit platforms, the exit module must be copied to exit64/<installation name>/ before it can be used.

Installing Connection Endpoint schema

The exit uses the Connection Endpoint schema, ibm-amq.schema. The schema file must be imported into
any LDAP server before the exit can be used. After importing the schema, values for the attributes must
be added.

Here is an example for importing Connection Endpoint schema. The example assumes IBM Tivoli
Directory Server (ITDS) is being used.
v Ensure that IBM Tivoli Directory Server is running, then copy or FTP the ibm-amq.schema file to the

ITDS server.
v On the ITDS server, enter the following command to install the schema into ITDS store, where LDAP

ID and LDAP password are the root DN and password for the LDAP server:
ldapadd -D "LDAP ID" -w "LDAP password" -f ibm-amq.schema

v In a command window, enter the following command or use a third party tool to browse the schema
for verification:
ldapsearch objectclass=ibm-amqClientConnection

Refer to your LDAP Server documentation for further details on importing the schema file.

Sample IBM MQ procedural programs 563

Configuration

A new section called PreConnect must be added to the client configuration file say mqclient.ini file. The
PreConnect section contains the following keywords:

Module : The name of the module containing the API exit code. If this field contains the full path of the
module, it is used as is else exit or exit64 folder in IBM MQ installation is searched.

Function : Name of the functional entry point into the library that contains the PreConnect exit code. The
function definition adheres to the MQ_PRECONNECT_EXIT prototype.

Data : URI of the LDAP repository containing channel definitions.

The following snippet is an example of the changes required to mqclient.ini file.
PreConnect:
Module=amqlcelp
Function=PreConnectExit
Data=ldap://myLDAPServer.com:389/cn=wmq,ou=ibm,ou=com
Sequence=1

Overview of the exit and schema
Syntax, and parameters used to establish a connection to a queue manager.

IBM MQ v7.0.1.4 defines the following syntax for an entry point in an exit module.
void MQENTRY MQ_PRECONNECT_EXIT (PMQNXP pExitParms

, PMQCHAR pQMgrName
, PPMQCNO ppConnectOpts
, PMQLONG pCompCode
, PMQLONG pReason)

During the MQCONN/X call execution, IBM MQ C Client loads the exit module containing an
implementation of the function syntax. It then invokes an exit function to retrieve channel definitions.
The retrieved channel definitions are then used to establish connection to a queue manager.

Parameters

pExitParms
Type: PMQNXP input/output

The PreConnection exit parameter structure. The structure is allocated and maintained by the
caller of the exit.
struct tagMQNXP
{

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG ExitId; /* Type of exit */
MQLONG ExitReason; /* Reason for invoking exit */
MQLONG ExitResponse; /* Response from exit */
MQLONG ExitResponse2; /* Secondary response from exit */
MQLONG Feedback; /* Feedback code (reserved) */
MQLONG ExitDataLength; /* Exit data length */
PMQCHAR pExitDataPtr; /* Exit data */
MQPTR pExitUserAreaPtr; /* Exit user area */
PMQCD * ppMQCDArrayPtr; /* Array of pointers to MQCDs */
MQLONG MQCDArrayCount; /* Number of entries found */
MQLONG MaxMQCDVersion; /* Maximum MQCD version */

};

pQMgrName
Type: PMQCHAR input/output

564 IBM MQ: Programming

Name of the queue manager. On input, this parameter is the filter string supplied to the
MQCONN API call through the QMgrName parameter. This field might be blank, explicit, or
contain certain wildcard characters. The field is changed by the exit. The parameter is NULL
when the exit is called with MQXR_TERM.

ppConnectOpts
Type: ppConnectOpts input/output

Options that control the action of MQCONNX. This is a pointer to an MQCNO connection
options structure that controls the action of the MQCONN API call. The parameter is NULL
when the exit is called with MQXR_TERM. The MQI client always provides an MQCNO
structure to the exit, even if it was not originally provided by the application. If an application
provides an MQCNO structure, the client makes a duplicate to pass it to the exit where it is
modified. The client retains the ownership of the MQCNO. An MQCD referenced through the
MQCNO takes precedence over any connection definition provided through the array. The client
uses the MQCNO structure to connect to the queue manager and the others are ignored.

pCompCode
Type: PMQLONG input/output

Completion code. Pointer to an MQLONG that receives the exits completion code. It must be one
of the following values:

MQCC_OK - Successful completion

MQCC_WARNING - Warning (partial completion)

MQCC_FAILED - Call failed

pReason
Type: PMQLONG input/output

Reason qualifying pCompCode. Pointer to an MQLONG that receives the exit reason code. If the
completion code is MQCC_OK, the only valid value is:

MQRC_NONE - (0, x'000') No reason to report.

If the completion code is MQCC_FAILED or MQCC_WARNING, the exit function can set the
reason code field to any valid MQRC_* value.

MQ LDAP Context Information
The exit uses the following data structure for context information.

MQNLDAPCTX
The MQNLDAPCTX structure has the following C prototype.
typedef struct tagMQNLDAPCTX MQNLDAPCTX;
typedef MQNLDAPCTX MQPOINTER PMQNLDAPCTX;

struct tagMQNLDAPCTX
{

MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
LDAP * objectDirectory /* LDAP Instance */
MQLONG ldapVersion; /* Which LDAP version to use? */
MQLONG port; /* Port number for LDAP server*/
MQLONG sizeLimit; /* Size limit */
MQBOOL ssl; /* SSL enabled? */
MQCHAR * host; /* Hostname of LDAP server */
MQCHAR * password; /* Password of LDAP server */
MQCHAR * searchFilter; /* LDAP search filter */
MQCHAR * baseDN; /* Base Distinguished Name */
MQCHAR * charSet; /* Character set */

};

Sample IBM MQ procedural programs 565

Sample code for building the connection endpoint lookup exit
You can use the sample code snippets for compiling the source on Windows and distributed platforms.

Compiling source

You can compile the source with any LDAP client libraries, for example, IBM Tivoli Directory Server V6.3
Client libraries. This documentation assumes that you are using Tivoli Directory Server V6.3 client
libraries.

Note: The pre-connect exit library is supported with the following LDAP servers:
v IBM Tivoli Directory Server V6.3
v Novell eDirectory V8.2

The following code snippets describe how to compile the exits on Windows, and other distributed
platforms:

Compiling the exit on the Windows platform
You can use the following snippet for compiling the exit source on Windows:
CC=cl.exe
LL=link.exe
CCARGS=/c /I. /DWIN32 /W3 /DNDEBUG /EHsc /D_CRT_SECURE_NO_DEPRECATE /Zl

The libraries to include
LDLIBS=Ws2_32.lib Advapi32.lib libibmldapstatic.lib libibmldapdbgstatic.lib \
kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib \
shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib msvcrt.lib

OBJS=amqlcel0.obj

all: amqlcelp.dll

amqlcelp.dll: $(OBJS)
$(LL) /OUT:amqlcelp.dll /INCREMENTAL /NOLOGO /DLL /SUBSYSTEM:WINDOWS /MACHINE: X86 \

/DEF:amqlcelp.def $(OBJS) $(LDLIBS) /NODEFAULTLIB:msvcrt.lib

The exit source
amqlcel0.obj: amqlcel0.c
$(CC) $(CCARGS) $*.c

Note: If you are using the IBM Tivoli Directory Server V6.3 Client libraries that are compiled with
Microsoft Visual Studio 2003 compiler, you might get warnings while you are compiling the IBM Tivoli
Directory Server V6.3 Client libraries with Microsoft Visual Studio 2005, or later, compiler

Compiling the exit on other distributed platforms
You can use the following snippet for compiling the exit source on other distributed platforms,
for example, Linux. Some compiler options might differ on other distributed platforms.
#Make file to build exit
CC=gcc

MQML=/opt/mqm/lib
MQMI=/opt/mqm/inc
TDSI=/opt/ibm/ldap/V6.3/include
XFLAG=-m32

TDSL=/opt/ibm/ldap/V6.3/lib

IBM Tivoli Directory Server ships both static and dynamic link libraries, but you can use only one
type of library. This script assumes that you are using the static libraries.
#Use static libraries.
LDLIBS=-L$(TDSL) -libibmldapstatic

566 IBM MQ: Programming

CFLAGS=-I. -I$(MQMI) -I$(TDSI)

all:amqlcepl

amqlcepl: amqlcel0.c
$(CC) -o cepl amqlcel0.c -shared -fPIC $(XFLAG) $(CFLAGS) $(LDLIBS)

Invocation of the PreConnect exit module
The PreConnect exit module can be invoked with three different reason codes: the MQXR_INIT reason
code for initializing and establishing a connection to an LDAP server, the MQXR_PRECONNECT reason
code for retrieving channel definitions from an LDAP server, or the MQXR_TERM reason code when the
exit is to be cleaned.

MQXR_INIT
The exit is invoked with MQXR_INIT reason code for initializing and establishing a connection to
an LDAP server.

Before the MQXR_INIT call, the pExitDataPtr field of the MQNXP structure is populated with the
Data attribute from the PreConnect stanza within the mqclient.ini file (that is, the LDAP).

An LDAP URL consists of at least the protocol, hostname, port number, and base DN for the
search. The exit parses the LDAP URL contained within the pExitDataPtr field, allocates an
MQNLDAPCTX LDAP Lookup Context structure and populates it accordingly. The address of
this structure is stored in the pExitUserAreaPtr field. Failure to correctly parse the LDAP URL
results in the error MQCC_FAILED.

At this point, the exit connects and binds to the LDAP server using the MQNLDAPCTX parameters.
The resulting LDAP API handles are also stored within this structure.

MQXR_PRECONNECT
The exit module is invoked with the MQXR_PRECONNECT reason code for retrieving channel
definitions from an LDAP server.

The exit searches the LDAP server for channel definitions matching the given filter. If the
QMgrNameparameter contains a specific queue manager name, the search returns all channel
definitions for which the ibm-amqQueueManagerName LDAP attribute value matches with the given
queue manager name.

If the QMgrName parameter is '*' or ' '(blank), then the search returns all channel definitions for
which the ibm-amqIsClientDefault Connection endpoint attribute is set to TRUE.

After a successful search, the exit prepares one or an array of MQCD definitions and returns back
to the caller.

MQXR_TERM
The exit is invoked with this reason code when the exit is to be cleaned. During this cleaning, the
exit disconnects from the LDAP server, and releases all the memory allocated and maintained by
the exit, including the MQNLDAPCTX structure, the pointer array, and every MQCD it
references. Any other fields are set to the default values. The pQMgrName and ppConnectOpts exit
parameters are unused during an exit with the MQXR_TERM reason code and may be NULL.

Sample IBM MQ procedural programs 567

LDAP schemas
Client connection data is stored in a global repository called the LDAP (Lightweight Directory Access
Protocol) directory. An IBM MQ client uses an LDAP directory to obtain the connection definitions. The
structure of the IBM MQ client connection definitions within the LDAP directory is known as the LDAP
schema. An LDAP schema is the collection of attribute type definitions, object class definitions, and other
information which a server uses to determine whether a filter or attribute value assertion matches against
the attributes of an entry, and whether to permit, add, and modify operations.

Storing data in the LDAP directory

The client connection definitions are located under a specific branch within the directory tree known as
the connection point. Like all other nodes within an LDAP directory, the connection point has a
Distinguished Name (DN) associated with it. You can use this node as the starting point for any queries
you make on the directory. Use filtering when querying the LDAP directory to return a subset of client
connection definitions. You can restrict access to sub-trees based on permissions granted in other parts of
the directory tree - for example, to users, departments, or groups.

Defining your own attributes and classes
Store the client channel definition by modifying the LDAP schema. All LDAP data definitions
require objects and attributes. The objects and attributes are identified by an object identifier
(OID) number which uniquely identifies the object or attribute. All classes within an LDAP
schema inherit either directly or indirectly from the top object. The client channel definition object
contains the attributes of the top object. All LDAP data definitions require objects and attributes:
v Object definitions are collections of LDAP attributes.
v Attributes are LDAP data types.

The description of each attribute and how they map to the normal IBM MQ properties are
described in LDAP attributes.

LDAP attributes
LDAP attributes defined are specific to IBM MQ and maps directly to the client connection properties.

IBM MQ Client Channel Directory String Attributes
The character string attributes with their mapping to IBM MQ properties are listed in the
following table. The attributes can hold values of directoryString (UTF-8 encoded Unicode, that
is, a variable byte encoding system that includes IA5/ASCII as a subset) syntax. The syntax is
specified by its object identification number (OID).

Table 74. IBM MQ client channel directory string attributes

LDAP Attribute Description IBM MQ Property

CN The common name consisting of the channel name and
the defining queue manager name.

ibm-amqChannelName The name of the channel definition. CHANNEL

ibm-amqConnectionName The communication connection identifier. CONNAME

ibm-amqDescription The channel description. DESCR

ibm-amqLocalAddress The local communication address of the channel. LOCLADDR

ibm-amqModeName The LU 6.2 mode name. MODENAME

ibm-amqPassword The password that can be used. PASSWORD

ibm-amqQueueManagerName The name of the queue manager or queue manager
group to which an IBM MQ client application can
request connection.

QMNAME

ibm-amqSecurityExitUserData The user data that is passed to the security exit. SCYDATA

ibm-amqSecurityExitName The name of the exit program to be run by the channel
security exit.

SCYEXIT

568 IBM MQ: Programming

Table 74. IBM MQ client channel directory string attributes (continued)

LDAP Attribute Description IBM MQ Property

ibm-amqSslCipherSpec A single CipherSpec for an SSL connection. SSLCIPH

ibm-amqSslPeerName Checks the Distinguished Name (DN) of the certificate
from the peer queue manager or client at the other end
of an IBM MQ channel.

SSLPEER

ibm-amqTransactionProgramName The transaction program name. TPNAME

ibm-amqUserID The user ID to be used by the MCA when attempting to
initiate a secure SNA session with a remote MCA.

USERID

IBM MQ client connection integer attributes
The attributes with predefined values (for example, an enumerated type) are stored as standard
integers. These values are stored in the LDAP directory as integer values, and not by using the
associated constant name.

Table 75. IBM MQ client channel directory integer attributes

LDAP attribute Description IBM MQ Property

ibm-amqConnectionAffinity Determines whether client applications, which connect
multiple times through the same queue manager name,
use the same client channel.

AFFINITY

ibm-amqClientChannelWeight A weighting to influence which client connection channel
definition is used.

CLNTWGHT

ibm-amqHeartBeatInterval The approximate time between heartbeat flows that are to
be passed from a sending MCA when there are no
messages on the transmission queue.

HBINT

ibm-amqKeepAliveInterval A time-out value for a channel. KAINT

ibm-amqMaximumMessageLength The maximum length of a message that can be
transmitted on the channel.

MAXMSGL

ibm-amqSharingConversations The maximum number of conversations that share each
TCP/IP channel instance.

SHARECNV

ibm-amqTransportType The transport type to be used. TRPTYPE

IBM MQ client channel boolean attribute
This Boolean attribute is not mapped to any IBM MQ property. The syntax of this attribute
indicates a boolean value.

Table 76. IBM MQ client channel boolean attribute

LDAP attribute Description

ibm-amqIsClientDefault This boolean attribute is defined to resolve the problem of searching
entries whose ibm-amqQueueManagerName attribute has not been
defined.

IBM MQ client channel list attributes
IBM MQ properties are stored as single-value, comma-separated list attribute within the LDAP
directory. The attributes are defined in the same manner as the other directory string attributes.
The list attributes along with their mapping to the IBM MQ properties are described in the
following table.

Sample IBM MQ procedural programs 569

Table 77. IBM MQ client channel list attributes

LDAP attribute Description IBM MQ Property

ibm-amqHeaderCompression A list of header data compression techniques supported
by the channel.

COMPHDR

ibm-amqMessageCompression A list of message data compression techniques
supported by the channel.

COMPMSG

ibm-amqSendExitUserData The user data that is passed to the send exit. SENDDATA

ibm-amqSendExitUserName The name of the exit program to be run by the channel
send exit.

SENDEXIT

ibm-amqReceiveExitUserData The user data that is passed to the receive exit. RCVDATA

ibm-amqReceiveExitName The name of the user exit program to be run by the
channel receive user exit.

RCVEXIT

Common Name:

The common name (CN) consists of the channel name and the defining queue manager name.

It is a preexisting attribute.

The format of the CN is:
CN=CHANNEL_NAME(DEFINING_Q_MGR_NAME)

For example:
CN=TC1(QM_T1)

You can specify only one value for this attribute.

This attribute is a string attribute and the values are not case-sensitive. The substring matching is
ignored. The substring matching is a matching rule used in sub-schema that specifies the behavior of the
attribute in a search filter, using a substring (for example, CN=jim* where CN is an attribute) and
contains one or more wild cards.

ibm-amqChannelName:

This attribute specifies the name of the channel definition.

This attribute has a single string value with a maximum of 20 characters that are not case-sensitive. It is
not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter, using a substring and contains one or more wild
cards.

570 IBM MQ: Programming

ibm-amqDescription:

This LDAP attribute provides the channel description.

This attribute has a single string value with a maximum of 64 bytes, which are not case-sensitive. It is not
a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqConnectionName:

This LDAP attribute is the communications connection identifier. It specifies the particular
communications links to be used by this channel.

This attribute has a single string value with a maximum of 264 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqLocalAddress:

This attribute specifies the local communications address for the channel.

This attribute has a single string value with a maximum of 48 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqModeName:

This attribute is for use with LU 6.2 connections. It gives extra definition for the session characteristics of
the connection when a communication session allocation is performed.

This attribute has a single string value of exactly 8 characters, which are not case-sensitive. It is not a
pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Sample IBM MQ procedural programs 571

ibm-amqPassword:

This LDAP attribute specifies a password that can be used by the MCA when attempting to initiate a
secure LU 6.2 session with a remote MCA.

This attribute has a single integer value with a maximum of 12 digits. It is not a pre-existing attribute.

ibm-amqQueueManagerName:

This attribute specifies the name of the queue manager or queue manager group to which an IBM MQ
client application can request connection.

This attribute has a single string value with a maximum of 48 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.
Related reference:
“ibm-amqIsClientDefault” on page 575
This Boolean attribute solves the problem of searching entries where the ibm-amqQueueManagerName
attribute has not been defined.

ibm-amqSecurityExitUserData:

This LDAP attribute specifies user data that is passed to the security exit.

This attribute has a single string value with a maximum of 999 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqSecurityExitName:

This LDAP attribute specifies the name of the exit program to be run by the channel security exit.

Leave blank if no channel security exit is in effect.

This attribute has a single string value with a maximum of 999 characters, which are not case-sensitive.
This attribute is not a pre-exiting one.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

572 IBM MQ: Programming

ibm-amqSslCipherSpec:

This LDAP attribute specifies a single CipherSpec for an SSL connection.

This attribute has a single string value with a maximum of 32 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqSslPeerName:

This LDAP attribute is used to check the Distinguished Name (DN) of the certificate from the peer queue
manager or client at the other end of an IBM MQ channel.

This LDAP attribute has a single string value with a maximum of 1024 bytes, which are not
case-sensitive. It is not a pre-existing one.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqTransactionProgramName:

This LDAP attribute specifies the transaction program name. It is for use with LU 6.2 connections.

This attribute has a single string value with a maximum of 64 characters, which are not case-sensitive. It
is not a pre-existing one.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

ibm-amqUserID:

This LDAP attribute specifies the user ID to be used by the MCA when attempting to initiate a secure
SNA session with a remote MCA.

This attribute has a single string value of exactly 12 characters, which are not case-sensitive. It is not a
pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Sample IBM MQ procedural programs 573

ibm-amqConnectionAffinity:

This LDAP attribute specifies whether client applications, which connect multiple times using the same
queue manager name, use the same client channel.

This attribute has a single integer value. It is not a pre-existing attribute.

ibm-amqClientChannelWeight:

This LDAP attribute specifies a weighting that influences which client connection channel definition is
used.

The client channel weighting attribute is used to bias the selection of client channel definitions when
more than one suitable definition is available.

This attribute has a single integer value. It is not a pre-existing attribute.

ibm-amqHeartBeatInterval:

This LDAP attribute specifies the approximate time between heartbeat flows that are to be passed from a
sending MCA when there are no messages on the transmission queue.

This attribute has a single integer value. It is not a pre-existing attribute. The default value is 1. The
default is set in the current MQSERVER environment variable operation.

ibm-amqKeepAliveInterval:

This LDAP attribute is used to specify a time-out value for a channel.

The value of this attribute is passed to the communications stack specifying the keepalive timing for the
channel. You can use this to specify a different keepalive value for each channel.

This attribute has a single integer value. It is not a pre-existing attribute.

ibm-amqMaximumMessageLength:

This LDAP attribute specifies the maximum length of a message that can be transmitted on the channel.

The default value of this attribute is 104857600 as per the current MQSERVER environment variable
operation. This attribute has a single integer value and it is not a pre-existing attribute.

574 IBM MQ: Programming

ibm-amqSharingConversations:

This LDAP attribute specifies the maximum number of conversations that share each TCP/IP channel
instance.

This attribute has a single integer value. This attribute is not a pre-existing attribute.

ibm-amqTransportType:

This LDAP attribute specifies the transport type to be used.

This attribute has a single integer value. It is not a pre-existing attribute.

ibm-amqIsClientDefault:

This Boolean attribute solves the problem of searching entries where the ibm-amqQueueManagerName
attribute has not been defined.

Preconnect exit modules generally search the LDAP servers with the value of the ibm-
amqQueueManagerName attribute as the search criteria. Such a query would return all entries where the
ibm-amqQueueManagerName attribute value matches the name of the queue manager specified on the
MQCONN/X call. However when using the client channel definition tables (CCDT), you can either set
the queue manager name on a MQCONN/X call as blank or prefix the name with an asterisk (*). If the
name of the queue manager is blank, the client connects to the default queue manager. If the name is
prefixed with an asterisk (*) to the queue manager, then the client connects any queue manager.

Similarly, the ibm-amqQueueManagerName attribute in an entry can be left undefined. In this case, it is
expected that the client using this endpoint information can connect to any queue manager. For example,
an entry contains the following lines:
ibm-amqChannelName = "CHANNEL1"
ibm-amqConnectionName = myhost(1414)

In this example, the client attempts to connect to the specified queue manager running on myhost.

However in LDAP Servers, a search is not made on an attribute value that has not been defined. For
example, if an entry contains the connection information except ibm-amqQueueManagerName, then the
search results would not include this entry. To overcome this problem, you can set ibm-
amqIsClientDefault. This is a Boolean attribute and is assumed to have a value of FALSE if not defined.

For entries where the ibm-amqQueueManagerName has not been defined and are expected to be part of
the search, set ibm-amqIsClientDefault to TRUE. When a blank or asterisk (*) is specified as the queue
manager name in a call to MQCONN/X, the preconnect exit searches the LDAP sever for all entries
where ibm-amqIsClientDefault attribute value is set to TRUE.

Note: Do not set or define ibm-amqQueueManagerName attribute if ibm-amqIsClientDefault is set to
TRUE.

Sample IBM MQ procedural programs 575

Related reference:
“ibm-amqQueueManagerName” on page 572
This attribute specifies the name of the queue manager or queue manager group to which an IBM MQ
client application can request connection.

ibm-amqHeaderCompression:

This LDAP attribute is a list of header data compression techniques supported by the channel.

The maximum size of this attribute is of 48 characters. It is not a pre-existing attribute.

You can specify only one value for this attribute.

This list attribute is specified as directory strings using a comma-separated format. For example, the
value specified for ibm-amqHeaderCompression is 0 which is mapped to NONE. Any values that exceed the
maximum allowed limit are ignored by the client. For example, ibm-amqHeaderCompression contains a
maximum of 2 integers in the list.

ibm-amqMessageCompression:

This LDAP attribute is a list of message data compression techniques supported by the channel.

The maximum size of this attribute is of 48 characters. It is not a pre-existing attribute.

This attribute does not support multiple values.

This list attribute is specified as directory strings using a comma-separated format. For example, the
value specified for this attribute is 1,2,4, which maps to the underlying compression sequence RLE,
ZLIBFAST, and ZLIBHIGH.

Any values that exceed the maximum allowed limit are ignored by the client. For example,
ibm-amqMessageCompression contains a maximum of 16 integers in the list.

ibm-amqSendExitUserData:

This LDAP attribute specifies user data that is passed to the send exit.

This LDAP attribute has a single string value with a maximum of 999 characters, which are not
case-sensitive. It is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Note: ibm-amqSendExitName and ibm-amqSendExitUserData need to be synchronized in pairs . The user
data should be synchronized with the exit name. So if one is specified, the other also has to be
symmetrically specified, even if it contains no data.

576 IBM MQ: Programming

ibm-amqSendExitName:

This LDAP attribute specifies the name of the exit program to be run by the channel send exit.

This attribute has a single string value with a maximum of 999 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Note: ibm-amqSendExitName and ibm-amqSendExitUserData must be synchronized in pairs. The user data
must be synchronized with the exit name. So if one is specified, the other also must be symmetrically
specified even if it contains no data.

ibm-amqReceiveExitUserData:

This LDAP attribute specifies user data that is passed to the receive exit.

You can run a sequence of receive exits. The string of user data for a series of exits is separated by a
comma, spaces, or both.

This attribute has a single string value with a maximum of 999 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Note: ibm-amqReceiveExitName and ibm-amqReceiveExitUserData must be synchronized in pairs. The
user data must be synchronized with the exit name. So if one is specified, the other also must be
symmetrically specified even if it contains no data.

ibm-amqReceiveExitName:

This LDAP attribute specifies the name of the user exit program to be run by the channel receive user
exit.

This attribute is a list of names of programs that are to be run in succession. Leave blank, if no channel
receive user exit is in effect.

This attribute has a single string value with a maximum of 999 characters, which are not case-sensitive. It
is not a pre-existing attribute.

The substring matching is ignored. The substring matching is a matching rule used in sub-schema that
specifies the behavior of the attribute in a search filter.

Note: ibm-amqReceiveExitName and ibm-amqReceiveExitUserData must be synchronized in pairs. The
user data must be synchronized with the exit name. So if one is specified, the other must also be
symmetrically specified, even if it contains no data.

Sample IBM MQ procedural programs 577

Sample programs for IBM MQ for z/OS
This information describes the sample applications that are delivered with IBM MQ for z/OS. These
samples demonstrate typical uses of the Message Queue Interface (MQI).

IBM MQ for z/OS also provides sample data-conversion exits, described in “Writing data-conversion
exits” on page 371.

All the sample applications are supplied in source form; several are also supplied in executable form. The
source modules include pseudocode that describes the program logic.

Note: Although some of the sample applications have basic panel-driven interfaces, they do not aim to
demonstrate how to design the look and feel of your applications. For more information about how to
design panel-driven interfaces for nonprogrammable terminals, see the SAA Common User Access: Basic
Interface Design Guide (SC26-4583) and its addendum (GG22-9508). These provide guidelines to help you
to design applications that are consistent both within the application and across other applications.

Use the following links to find out more about the sample programs:
v “Features demonstrated in the sample applications” on page 579
v “Preparing and running sample applications for the batch environment” on page 583
v “Preparing sample applications for the TSO environment” on page 586
v “Preparing the sample applications for the CICS environment” on page 588
v “Preparing the sample application for the IMS environment” on page 591
v “The Put samples” on page 592
v “The Get samples” on page 594
v “The Browse sample” on page 596
v “The Print Message sample” on page 598
v “The Queue Attributes sample” on page 602
v “The Mail Manager sample” on page 603
v “The Credit Check sample” on page 610
v “The Message Handler sample” on page 623
v “The Asynchronous Put sample” on page 627
v “The Batch Asynchronous Consumption sample” on page 628
v “The CICS Asynchronous Consumption and Publish/Subscribe sample” on page 629
v “The Publish/Subscribe Sample” on page 632
v “The Set and Inquire message property sample” on page 634

578 IBM MQ: Programming

Related concepts:
“Sample procedural programs (platforms except z/OS)” on page 473
These sample programs are delivered with the product. The samples are written in C and COBOL, and
demonstrate typical uses of the Message Queue Interface (MQI).

Features demonstrated in the sample applications
This section summarizes the MQI features demonstrated in each of the sample applications, shows the
programming languages in which each sample is written, and the environment in which each sample
runs.

Put samples
The Put samples demonstrate how to put messages on a queue using the MQPUT call.

The application uses these MQI calls:
v MQCONN
v MQOPEN
v MQPUT
v MQCLOSE
v MQDISC

The program is delivered in COBOL and C, and runs in the batch and CICS environment. See Table 80 on
page 584 for the batch application and Table 87 on page 589 for the CICS application.

Get samples
The Get samples demonstrate how to get messages from a queue using the MQGET call.

The application uses these MQI calls:
v MQCONN
v MQOPEN
v MQGET
v MQCLOSE
v MQDISC

The program is delivered in COBOL and C, and runs in the batch and CICS environment. See Table 80 on
page 584 for the batch application and Table 87 on page 589 for the CICS application.

Browse sample
The Browse sample demonstrates how to use the Browse option to find a message, print it, then step
through the messages on a queue.

The application uses these MQI calls:
v MQCONN
v MQOPEN
v MQGET for browsing messages
v MQCLOSE
v MQDISC

The program is delivered in the COBOL, assembler, PL/I, and C languages. The application runs in the
batch environment. See Table 81 on page 584 for the batch application.

Sample IBM MQ procedural programs 579

Print Message sample
The Print Message sample demonstrates how to remove a message from a queue and print the data in
the message, together with all the fields of its message descriptor. It can, optionally, display all of the
message properties associated with each message.

By removing comment characters from two lines in the source module, you can change the program so
that it browses, rather than removes, the messages on a queue. This program can usefully be used for
diagnosing problems with an application that is putting messages on a queue.

The application uses these MQI calls:
v MQCONN
v MQOPEN
v MQGET for removing messages from a queue (with an option to browse)
v MQCLOSE
v MQDISC
v MQCRTMH
v MQDLTMH
v MQINQMP

The program is delivered in the C language. The application runs in the batch environment. See Table 82
on page 585 for the batch application.

Queue Attributes sample
The Queue Attributes sample demonstrates how to inquire about and set the values of IBM MQ for z/OS
object attributes.

The application uses these MQI calls:
v MQOPEN
v MQINQ
v MQSET
v MQCLOSE

The program is delivered in the COBOL, assembler, and C languages. The application runs in the CICS
environment. See Table 88 on page 589 for the CICS application.

Mail Manager sample
Considerations to note when using Mail Manager sample.

The Mail Manager sample demonstrates these techniques:
v Using alias queues
v Using a model queue to create a temporary dynamic queue
v Using reply-to queues
v Using syncpoints in the CICS and batch environments
v Sending commands to the system-command input queue
v Testing return codes
v Sending messages to remote queue managers, both by using a local definition of a remote queue and

by putting messages directly on a named queue at a remote queue manager

The application uses these MQI calls:
v MQCONN
v MQOPEN

580 IBM MQ: Programming

v MQPUT1
v MQGET
v MQINQ
v MQCMIT
v MQCLOSE
v MQDISC

Three versions of the application are provided:
v A CICS application written in COBOL
v A TSO application written in COBOL
v A TSO application written in C

The TSO applications use the IBM MQ for z/OS batch adapter and include some ISPF panels.

See Table 85 on page 586 for the TSO application, and Table 89 on page 589 for the CICS application.

Credit Check sample
This information contains points to consider when using Credit Check sample.

The Credit Check sample is a suite of programs that demonstrates these techniques:
v Developing an application that runs in more than one environment
v Using a model queue to create a temporary dynamic queue
v Using a correlation identifier
v Setting and passing context information
v Using message priority and persistence
v Starting programs by using triggering
v Using reply-to queues
v Using alias queues
v Using a dead-letter queue
v Using a namelist
v Testing return codes

The application uses these MQI calls:
v MQOPEN
v MQPUT
v MQPUT1
v MQGET for browsing and getting messages, using the wait and signal options, and for getting a

specific message
v MQINQ
v MQSET
v MQCLOSE

The sample can run as a stand-alone CICS application. However, to demonstrate how to design a
message queuing application that uses the facilities provided by both the CICS and IMS environments,
one module is also supplied as an IMS batch message processing program.

The CICS programs are delivered in C and COBOL. The single IMS program is delivered in C.

See Table 90 on page 590 for the CICS application, and Table 92 on page 591 for the IMS application.

Sample IBM MQ procedural programs 581

The Message Handler sample
The Message Handler sample allows you to browse, forward, and delete messages on a queue.

The application uses these MQI calls:
v MQCONN
v MQOPEN
v MQINQ
v MQPUT1
v MQCMIT
v MQBACK
v MQGET
v MQCLOSE
v MQDISC

The program is delivered in C and COBOL programming languages. The application runs under TSO.
SeeTable 86 on page 587for the TSO application.

Distributed queuing exit samples
A table of source programs of Distributed queuing exit samples.

The names of the source programs of the distributed queuing exit samples are listed in the following
table:

Table 78. Source for the distributed queuing exit samples

Member name For language Description Supplied in library

CSQ4BAX0 Assembler Source program SCSQASMS

CSQ4BCX1 C Source program SCSQC37S

CSQ4BCX2 C Source program SCSQC37S

Note: The source programs are link-edited with CSQXSTUB.

Data-conversion exit samples
A skeleton is provided for a data-conversion exit routine, and a sample is shipped with IBM MQ
illustrating the MQXCNVC call.

The names of the source programs of the data-conversion exit samples are listed in the following table:

Table 79. Source for the data conversion exit samples (assembler language only)

Member name Description Supplied in library

CSQ4BAX8 Source program SCSQASMS

CSQ4BAX9 Source program SCSQASMS

CSQ4CAX9 Source program SCSQASMS

Note: The source programs are link-edited with CSQASTUB.

See “Writing data-conversion exits” on page 371 for more information.

582 IBM MQ: Programming

Publish/Subscribe samples
The Publish/Subscribe sample programs demonstrate the use of the publish and subscribe features in
IBM MQ.

There are four C and two COBOL programming language sample programs demonstrating how to
program to the IBM MQ Publish/Subscribe interface.

The applications use these MQI calls:
v MQCONN
v MQOPEN
v MQPUT
v MQSUB
v MQGET
v MQCLOSE
v MQDISC
v MQCRTMH
v MQDLTMH
v MQINQMP

The Public/Subscribe sample programs are delivered in the C and COBOL programming languages. The
sample applications run in the batch environment. See Publish/Subscribe samples for the batch
applications.

Preparing and running sample applications for the batch environment
To prepare a sample application that runs in the batch environment, perform the same steps that you
would when building any batch IBM MQ for z/OS application.

These steps are listed in “Building z/OS batch applications” on page 428.

Alternatively, where we supply an executable form of a sample, you can run it from the
thlqual.SCSQLOAD load library.

Note: The assembler language version of the Browse sample uses data control blocks (DCBs), so you
must link-edit it using RMODE(24).

The library members to use are listed in Table 80 on page 584, Table 81 on page 584, Table 82 on page 585,
and Table 83 on page 585.

You must edit the run JCL supplied for the samples that you want to use (see Table 80 on page 584,
Table 81 on page 584, Table 82 on page 585, and Table 83 on page 585).

The PARM statement in the supplied JCL contains a number of parameters that you need to modify. To
run the C sample programs, separate the parameters by spaces; to run the assembler, COBOL, and PL/I
sample programs, separate them by commas. For example, if the name of your queue manager is CSQ1
and you want to run the application with a queue named LOCALQ1, in the COBOL, PL/I, and
assembler-language JCL, your PARM statement should look like this:
PARM=(CSQ1,LOCALQ1)

In the C language JCL, your PARM statement should look like this:
PARM=(’CSQ1 LOCALQ1’)

You are now ready to submit the jobs.

Sample IBM MQ procedural programs 583

Names of the sample batch applications
This topic provides a summary of the programs supplied for sample batch applications.

The batch application programs are summarized in the following tables:

Put and Get samples Table 80
Browse sample Table 81
Print message sample Table 82 on page 585
Publish/Subscribe samples Table 83 on page 585
Other samples Table 84 on page 585

Table 80. Batch Put and Get samples

Member name For language Description Source file supplied
in library

Executable file
supplied in library

CSQ4BCJ1 C Get source program SCSQC37S SCSQLOAD

CSQ4BCK1 C Put source program SCSQC37S SCSQLOAD

CSQ4BCJR C Sample run JCL for
CSQ4BCJ1 and
CSQBCK1

SCSQPROC None

CSQ4BVJ1 COBOL Get source program SCSQCOBS SCSQLOAD

CSQ4BVK1 COBOL Put source program SCSQCOBS SCSQLOAD

CSQ4BVJR COBOL Sample run JCL for
CSQBVJ1 and
CSQBVK1

SCSQPROC None

Table 81. Batch Browse sample

Member name For language Description Source file supplied
in library

Executable file
supplied in library

CSQ4BVA1 COBOL Source program SCSQCOBS SCSQLOAD

CSQ4BVAR COBOL Sample run JCL for
CSQ4BVA1

SCSQPROC None

CSQ4BAA1 Assembler Source program SCSQASMS SCSQLOAD

CSQ4BAAR Assembler Sample run JCL for
CSQ4BAA1

SCSQPROC None

CSQ4BCA1 C Source program SCSQC37S SCSQLOAD

CSQ4BCAR C Sample run JCL for
CSQ4BCA1

SCSQPROC None

CSQ4BPA1 PL/I Source program SCSQPLIS SCSQLOAD

CSQ4BPAR PL/I Sample run JCL for
CSQ4BPA1

SCSQPROC None

584 IBM MQ: Programming

Table 82. Batch Print Message sample (C language only)

Member name Description Source file supplied in
library

Executable file supplied in
library

CSQ4BCG1 Source program SCSQC37S SCSQLOAD

CSQ4BCGR Sample run JCL for
CSQ4BCG1

SCSQPROC None

CSQ4BCL1 Browse source program SCSQC37S SCSQLOAD

CSQ4BCLR Sample run JCL for
CSQ4BCL1

SCSQPROC None

Table 83. Publish/Subscribe samples

Member name For
language

Description Source file
supplied in
library

JCL in
SCSQPROC

Executable file
supplied in
library

CSQ4BCP1 C Publish to topic source
program

SCSQC37S CSQ4BCPP SCSQLOAD

CSQ4BCP2 C Subscribe to topic and
get messages source
program

SCSQC37S CSQ4BCPS SCSQLOAD

CSQ4BCP3 C Subscribe to topic using
a user provided
destination and get
messages source
program

SCSQC37S CSQ4BCPD SCSQLOAD

CSQ4BCP4 C Subscribe to topic using
extended options and
get messages source
program

SCSQC37S CSQ4BCPE SCSQLOAD

CSQ4BVP1 COBOL Publish to topic source
program

SCSQCOBS CSQ4BVPP SCSQLOAD

CSQ4BVP2 COBOL Subscribe to topic and
get messages source
program

SCSQCOBS CSQ4BVPS SCSQLOAD

Table 84. Other samples

Member name For
language

Description Source file
supplied in
library

JCL in
SCSQPROC

Executable file
supplied in
library

CSQ4BCS1 C Asynchronous
consumption source
program

SCSQC37S CSQ4BCSC SCSQLOAD

CSQ4BCS2 C Asynchronous Put, and
Check status source
program

SCSQC37S CSQ4BCSP SCSQLOAD

CSQ4BCM1 C Inquire message
properties source
program

SCSQC37S CSQ4BCMP SCSQLOAD

CSQ4BCM2 C Set message properties
source program

SCSQC37S CSQ4BCMP SCSQLOAD

Sample IBM MQ procedural programs 585

Preparing sample applications for the TSO environment
To prepare a sample application that runs in the TSO environment, perform the same steps that you
would when building any batch IBM MQ for z/OS application.

These steps are listed in “Building z/OS batch applications” on page 428. The library members to use are
listed in Table 85.

Alternatively, where we supply an executable form of a sample, you can run it from the
thlqual.SCSQLOAD load library.

For the Mail Manager sample application, ensure that the queues that it uses are available on your
system. They are defined in the member thlqual.SCSQPROC(CSQ4CVD). To ensure that these queues are
always available, you could add these members to your CSQINP2 initialization input data set, or use the
CSQUTIL program to load these queue definitions.

Names of the sample TSO applications
A collection of tables to list the names of the programs supplied for each of the sample TSO applications,
and the libraries where the source, JCL, and, for the Message Handler sample only, the executable files
reside.

These tables are:

Mail manager sample Table 85
Message handler sample Table 86 on page 587

These samples use ISPF panels. You must therefore include the ISPF stub, ISPLINK, when you link-edit
the programs.

Table 85. TSO Mail Manager sample

Member name For language Description Source file supplied in
library

CSQ4CVD independent IBM MQ for z/OS object
definitions

SCSQPROC

CSQ40 independent ISPF messages SCSQMSGE

CSQ4RVD1 COBOL CLIST to initiate
CSQ4TVD1

SCSQCLST

CSQ4TVD1 COBOL Source program for Menu
program

SCSQCOBS

CSQ4TVD2 COBOL Source program for Get
Mail program

SCSQCOBS

CSQ4TVD4 COBOL Source program for Send
Mail program

SCSQCOBS

CSQ4TVD5 COBOL Source program for
Nickname program

SCSQCOBS

CSQ4VDP1-6 COBOL Panel definitions SCSQPNLA

CSQ4VD0 COBOL Data definition SCSQCOBC

CSQ4VD1 COBOL Data definition SCSQCOBC

CSQ4VD2 COBOL Data definition SCSQCOBC

CSQ4VD4 COBOL Data definition SCSQCOBC

CSQ4RCD1 C CLIST to initiate
CSQ4TCD1

SCSQCLST

586 IBM MQ: Programming

Table 85. TSO Mail Manager sample (continued)

Member name For language Description Source file supplied in
library

CSQ4TCD1 C Source program for Menu
program

SCSQC37S

CSQ4TCD2 C Source program for Get
Mail program

SCSQC37S

CSQ4TCD4 C Source program for Send
Mail program

SCSQC37S

CSQ4TCD5 C Source program for
Nickname program

SCSQC37S

CSQ4CDP1-6 C Panel definitions SCSQPNLA

CSQ4TC0 C Include file SCSQC370

Table 86. TSO Message Handler sample

Member name For language Description Source file supplied
in library

Executable file
supplied in library

CSQ4TCH0 C Data definition SCSQC370 None

CSQ4TCH1 C Source program SCSQC37S SCSQLOAD

CSQ4TCH2 C Source program SCSQC37S SCSQLOAD

CSQ4TCH3 C Source program SCSQC37S SCSQLOAD

CSQ4RCH1 C and COBOL CLIST to initiate
CSQ4TCH1 or
CSQ4TVH1

SCSQCLST None

CSQ4CHP1 C and COBOL Panel definition SCSQPNLA None

CSQ4CHP2 C and COBOL Panel definition SCSQPNLA None

CSQ4CHP3 C and COBOL Panel definition SCSQPNLA None

CSQ4CHP9 C and COBOL Panel definition SCSQPNLA None

CSQ4TVH0 COBOL Data definition SCSQCOBC None

CSQ4TVH1 COBOL Source program SCSQCOBS SCSQLOAD

CSQ4TVH2 COBOL Source program SCSQCOBS SCSQLOAD

CSQ4TVH3 COBOL Source program SCSQCOBS SCSQLOAD

Sample IBM MQ procedural programs 587

Preparing the sample applications for the CICS environment
Before you run the CICS sample programs, log on to CICS using a LOGMODE of 32702. This is because
the sample programs have been written to use a 3270 mode 2 screen.

To prepare a sample application that runs in the CICS environment, perform the following steps:
1. Create the symbolic description map and the physical screen map for the sample by assembling the

BMS screen definition source (supplied in library thlqual.SCSQMAPS, where thlqual is the high-level
qualifier used by your installation). When you name the maps, use the name of the BMS screen
definition source (not available for Put and Get sample programs), but omit the last character of that
name.

2. Perform the same steps that you would when building any CICS IBM MQ for z/OS application.
These steps are listed in “Building CICS applications in z/OS” on page 431. The library members to
use are listed in Table 87 on page 589, Table 88 on page 589, Table 89 on page 589, and Table 90 on
page 590.
Alternatively, where we supply an executable form of a sample, you can run it from the
thlqual.SCSQCICS load library.

3. Identify the map set, programs, and transaction to CICS by updating the CICS system definition
(CSD) data set. The definitions that you require are in the member thlqual.SCSQPROC(CSQ4S100).
For guidance on how to do this, see The CICS-IBM MQ Adapter section in the CICS Transaction Server
for z/OS Version 4.1 product documentation at: CICS Transaction Server for z/OS Version 4.1, The
CICS-IBM MQ adapter.

Note: For the Credit Check sample application, you get an error message at this stage if you have not
already created the VSAM data set that the sample uses.

4. For the Credit Check and Mail Manager sample applications, ensure that the queues that they use are
available on your system. For the Credit Check sample, they are defined in the member
thlqual.SCSQPROC(CSQ4CVB) for COBOL, and thlqual.SCSQPROC(CSQ4CCB) for C. For the Mail
Manager sample, they are defined in the member thlqual.SCSQPROC(CSQ4CVD). To ensure that
these queues are always available, you could add these members to your CSQINP2 initialization input
data set, or use the CSQUTIL program to load these queue definitions.
For the Queue Attributes sample application, you could use one or more of the queues that are
supplied for the other sample applications. Alternatively, you could use your own queues. However,
in the form that it is supplied, this sample works only with queues that have the characters CSQ4SAMP
in the first eight bytes of their name.

Names of the sample CICS applications
This topic provides a summary of the programs supplied for sample CICS applications.

The CICS application programs are summarized in the following tables:

Put and Get samples Table 87 on page 589
Queue attributes sample Table 88 on page 589
Mail Manager (CICS)
sample

Table 89 on page 589

Credit Check (CICS)
sample

Table 90 on page 590

Asynchronous Consumption
and Publish/Subscribe
sample

Table 91 on page 590

588 IBM MQ: Programming

Table 87. CICS Put and Get samples

Member name For language Description Source file supplied
in library

Executable file
supplied in library

CSQ4CCK1 C Put source program SCSQC37S SCSQCICS

CSQ4CCJ1 C Get source program SCSQC37S SCSQCICS

CSQ4CVJ1 COBOL Get source program SCSQCOBS SCSQCICS

CSQ4CVK1 COBOL Put source program SCSQCOBS SCSQCICS

CSQ4S100 independent CICS system
definition data set

SCSQPROC None

Table 88. CICS Queue Attributes sample

Member name For language Description Source file supplied
in library

Executable file
supplied in library

CSQ4CVC1 COBOL Source program SCSQCOBS SCSQCICS

CSQ4VMSG COBOL Message definition SCSQCOBC None

CSQ4VCMS COBOL BMS screen definition SCSQMAPS SCSQCICS (named
CSQ4ACM)

CSQ4CAC1 Assembler Source program SCSQASMS SCSQCICS

CSQ4AMSG Assembler Message definition SCSQMACS None

CSQ4ACMS Assembler BMS screen definition SCSQMAPS SCSQCICS (named
CSQ4ACM)

CSQ4CCC1 C Source program SCSQC37S SCSQCICS

CSQ4CMSG C Message definition SCSQC370 None

CSQ4CCMS C BMS screen definition SCSQMAPS SCSQCICS (named
CSQ4ACM)

CSQ4S100 independent CICS system
definition data set

SCSQPROC None

Table 89. CICS Mail Manager sample (COBOL only)

Member name Description Source file supplied in library

CSQ4CVD IBM MQ for z/OS object definitions SCSQPROC

CSQ4CVD1 Source for Menu program SCSQCOBS

CSQ4CVD2 Source for Get Mail program SCSQCOBS

CSQ4CVD3 Source for Display Message program SCSQCOBS

CSQ4CVD4 Source for Send Mail program SCSQCOBS

CSQ4CVD5 Source for Nickname program SCSQCOBS

CSQ4VDMS BMS screen definition source SCSQMAPS

CSQ4S100 CICS system definition data set SCSQPROC

CSQ4VD0 Data definition SCSQCOBC

CSQ4VD3 Data definition SCSQCOBC

CSQ4VD4 Data definition SCSQCOBC

Sample IBM MQ procedural programs 589

Table 90. CICS Credit Check sample

Member name For language Description Source file supplied
in library

CSQ4CVB independent IBM MQ object definitions SCSQPROC

CSQ4CCB independent IBM MQ object definitions SCSQPROC

CSQ4CVB1 COBOL Source for user-interface program SCSQCOBS

CSQ4CVB2 COBOL Source for credit application manager SCSQCOBS

CSQ4CVB3 COBOL Source for checking-account program SCSQCOBS

CSQ4CVB4 COBOL Source for distribution program SCSQCOBS

CSQ4CVB5 COBOL Source for agency-query program SCSQCOBS

CSQ4CCB1 C Source for user-interface program SCSQC37S

CSQ4CCB2 C Source for credit application manager SCSQC37S

CSQ4CCB3 C Source for checking-account program SCSQC37S

CSQ4CCB4 C Source for distribution program SCSQC37S

CSQ4CCB5 C Source for agency-query program SCSQC37S

CSQ4CB0 C Include file SCSQC370

CSQ4CBMS C BMS screen definition source SCSQMAPS

CSQ4VBMS COBOL BMS screen definition source SCSQMAPS

CSQ4VB0 COBOL Data definition SCSQCOBC

CSQ4VB1 COBOL Data definition SCSQCOBC

CSQ4VB2 COBOL Data definition SCSQCOBC

CSQ4VB3 COBOL Data definition SCSQCOBC

CSQ4VB4 COBOL Data definition SCSQCOBC

CSQ4VB5 COBOL Data definition SCSQCOBC

CSQ4VB6 COBOL Data definition SCSQCOBC

CSQ4VB7 COBOL Data definition SCSQCOBC

CSQ4VB8 COBOL Data definition SCSQCOBC

CSQ4BAQ independent Source for VSAM data set SCSQPROC

CSQ4FILE independent JCL to build VSAM data set used by
CSQ4CVB3

SCSQPROC

CSQ4S100 independent CICS system definition data set SCSQPROC

Table 91. CICS Asynchronous Consumption and Publish/Subscribe samples

Member name Description Source file supplied in library

CSQ4CVCN Source for Simple Message
Consumption program

SCSQCOBS

CSQ4CVCT Source for Control Message
Consumption program

SCSQCOBS

CSQ4CVEV Source for Event Handler program SCSQCOBS

CSQ4CVPT Source for Message Put Client
program

SCSQCOBS

CSQ4CVRG Source for Registration Client
program

SCSQCOBS

CSQ4S100 CICS System Definition data set SCSQPROC

590 IBM MQ: Programming

Preparing the sample application for the IMS environment
Part of the Credit Check sample application can run in the IMS environment.

To prepare this part of the application to run with the CICS sample, first perform the steps described in
“Preparing the sample applications for the CICS environment” on page 588.

Then perform the following steps:
1. Perform the same steps that you would when building any IMS IBM MQ for z/OS application. These

steps are listed in “Building IMS (BMP or MPP) applications” on page 432. The library members to
use are listed in Table 92.

2. Identify the application program and database to IMS. Samples are provided with PSBGEN,
DBDGEN, ACB definition, IMSGEN, and IMSDALOC statements to enable this.

3. Load the database CSQ4CA by tailoring and running the sample JCL provided for this purpose
(CSQ4ILDB). This JCL loads the database with data from the file CSQ4BAQ. Update the IMS control
region with a DD statement for the database CSQ4CA.

4. Start the checking-account program as a batch message processing (BMP) program by tailoring and
running the sample JCL provided for this purpose. This JCL starts a batch-oriented BMP program. To
run the program as a message-oriented BMP program, remove the comment characters from the line
in the JCL that contains the IN= statement.

Names of the sample IMS application
This information provides a table with the list of the sources and JCLs that are supplied for the Credit
Check sample IMS application.

Table 92. Source and JCL for the Credit Check IMS sample (C only)

Member name Description Supplied in library

CSQ4CVB IBM MQ object definitions SCSQPROC

CSQ4ICB3 Source for checking-account program SCSQC37S

CSQ4ICBL Source for loading the
checking-account database

SCSQC37S

CSQ4CBI Data definition SCSQC370

CSQ4PSBL PSBGEN JCL for database-load
program

SCSQPROC

CSQ4PSB3 PSBGEN JCL for checking-account
program

SCSQPROC

CSQ4DBDS DBDGEN JCL for database CSQ4CA SCSQPROC

CSQ4GIMS IMSGEN macro definitions for
CSQ4IVB3 and CSQ4CA

SCSQPROC

CSQ4ACBG Application control block (ACB)
definition for CSQ4IVB3

SCSQPROC

CSQ4BAQ Source for database SCSQPROC

CSQ4ILDB Sample run JCL for database-load job SCSQPROC

CSQ4ICBR Sample run JCL for checking-account
program

SCSQPROC

CSQ4DYNA IMSDALOC macro definitions for
database

SCSQPROC

Sample IBM MQ procedural programs 591

The Put samples
The Put sample programs put messages on a queue using the MQPUT call.

The source programs are supplied in C and COBOL in the batch and CICS environments (see Table 80 on
page 584 and Table 87 on page 589).

Design of the Put sample

The flow through the program logic is:
1. Connect to the queue manager using the MQCONN call. If this call fails, print the completion and

reason codes and stop processing.

Note: If you are running the sample in a CICS environment, you do not need to issue an MQCONN
call; if you do, it returns DEF_HCONN. You can use the connection handle MQHC_DEF_HCONN for
the MQI calls that follow.

2. Open the queue using the MQOPEN call with the MQOO_OUTPUT option. On input to this call, the
program uses the connection handle that is returned in step 1 on page 594. For the object descriptor
structure (MQOD), it uses the default values for all fields except the queue name field, which is
passed as a parameter to the program. If the MQOPEN call fails, print the completion and reason
codes and stop processing.

3. Create a loop within the program issuing MQPUT calls until the required number of messages are put
on the queue. If an MQPUT call fails, the loop is abandoned early, no further MQPUT calls are
attempted, and the completion and reason codes are returned.

4. Close the queue using the MQCLOSE call with the object handle returned in step 2 on page 594. If
this call fails, print the completion and reason codes.

5. Disconnect from the queue manager using the MQDISC call with the connection handle returned in
step 1 on page 594. If this call fails, print the completion and reason codes.

Note: If you are running the sample in a CICS environment, you do not need to issue an MQDISC
call.

The Put samples for the batch environment
Use this topic when considering Put samples for the batch environment.

To run the samples, edit and run the sample JCL, as described in “Preparing and running sample
applications for the batch environment” on page 583.

The programs take the following parameters in an EXEC PARM, separated by spaces in C and commas in
COBOL:
1. The name of the queue manager (4 characters)
2. The name of the target queue (48 characters)
3. The number of messages (up to 4 digits)
4. The padding character to write in the message (1 character)
5. The number of characters to write in the message (up to 4 digits)
6. The persistence of the message (1 character: P for persistent or N for nonpersistent)

If you enter any of the these parameters wrongly, you receive appropriate error messages.

Any messages from the samples are written to the SYSPRINT data set.

592 IBM MQ: Programming

Usage notes
v To keep the samples simple, there are some minor functional differences between language versions.

However, these differences are minimized if you use the layout of the parameters shown in the sample
run JCL, CSQ4BCJR, and CSQ4BVJR. None of the differences relate to the MQI.

v CSQ4BCK1 allows you to enter more than four digits for the number of messages sent and the length
of the messages.

v For the two numeric fields, enter any digit in the range 1 through 9999. The value that you enter
should be a positive number. For example, to put a single message, you can enter 1, 01, 001, or 0001 as
the value. If you enter nonnumeric or negative values, you might receive an error. For example, if you
enter -1, the COBOL program sends a 1-byte message, but the C program receives an error.

v For both programs, CSQ4BCK1 and CSQ4BVK1, you must enter P in the persistence parameter,
++PER++, if you want the message to be persistent. If you fail to do so, the message will be
nonpersistent.

The Put samples for the CICS environment
Use this topic when considering Put samples for the CICS environment.

The transactions take the following parameters separated by commas:
1. The number of messages (up to 4 digits)
2. The padding character to write in the message (1 character)
3. The number of characters to write in the message (up to 4 digits)
4. The persistence of the message (1 character: P for persistent or N for nonpersistent)
5. The name of the target queue (48 characters)

If you enter any of these parameters wrongly, you receive appropriate error messages.

For the COBOL sample, invoke the Put sample in the CICS environment by entering:
MVPT,9999,*,9999,P,QUEUE.NAME

For the C sample, invoke the Put sample in the CICS environment by entering:
MCPT,9999,*,9999,P,QUEUE.NAME

Any messages from the samples are displayed on the screen.

Usage notes
v To keep the samples simple, there are some minor functional differences between language versions.

None of the differences relate to the MQI.
v If you enter a queue name that is longer than 48 characters, its length is truncated to the maximum of

48 characters but no error message is returned.
v Before entering the transaction, press the CLEAR key.
v For the two numeric fields, enter any number in the range 1 through 9999. The value that you enter

should be a positive number. For example, to put a single message, you can enter the value 1, 01, 001,
or 0001. If you enter nonnumeric or negative values, you might receive an error. For example, if you
enter -1, the COBOL program sends a 1-byte message, and the C program abends with an error from
malloc().

v For both programs, CSQ4CCK1 and CSQ4CVK1, enter P in the persistence parameter if you want the
message to be persistent. For non-persistent messages, enter N in the persistence parameter. If you
enter any other value you receive an error message.

v The messages are put in syncpoint because default values are used for all parameters except those set
during program invocation.

Sample IBM MQ procedural programs 593

The Get samples
The Get sample programs get messages from a queue using the MQGET call.

The source programs are supplied in C and COBOL in the batch and CICS environments (see Table 80 on
page 584 and Table 87 on page 589).

Design of the Get sample
Learn about the design of the Get sample, and some usage notes to consider.

The flow through the program logic is:
1. Connect to the queue manager using the MQCONN call. If this call fails, print the completion and

reason codes and stop processing.

Note: If you are running the sample in a CICS environment, you do not need to issue an MQCONN
call; if you do, it returns DEF_HCONN. You can use the connection handle MQHC_DEF_HCONN for
the MQI calls that follow.

2. Open the queue using the MQOPEN call with the MQOO_INPUT_SHARED and MQOO_BROWSE
options. On input to this call, the program uses the connection handle that is returned in step 1. For
the object descriptor structure (MQOD), it uses the default values for all fields except the queue name
field, which is passed as a parameter to the program. If the MQOPEN call fails, print the completion
and reason codes and stop processing.

3. Create a loop within the program issuing MQGET calls until the required number of messages are
retrieved from the queue. If an MQGET call fails, the loop is abandoned early, no further MQGET
calls are attempted, and the completion and reason codes are returned. The following options are
specified on the MQGET call:
v MQGMO_NO_WAIT
v MQGMO_ACCEPT_TRUNCATED_MESSAGE
v MQGMO_SYNCPOINT or MQGMO_NO_SYNCPOINT
v MQGMO_BROWSE_FIRST and MQGMO_BROWSE_NEXT

For a description of these options, see MQGET. For each message, the message number is printed
followed by the length of the message and the message data.

4. Close the queue using the MQCLOSE call with the object handle returned in step 2. If this call fails,
print the completion and reason codes.

5. Disconnect from the queue manager using the MQDISC call with the connection handle returned in
step 1. If this call fails, print the completion and reason codes.

Note: If you are running the sample in a CICS environment, you do not need to issue an MQDISC
call.

Usage notes
v To keep the samples simple, there are some minor functional differences between language versions.

However, these differences are minimized if you use the layout of the parameters shown in the sample
run JCL, CSQ4BCJR, and CSQ4BVJR,. None of the differences relate to the MQI.

v CSQ4BCJ1 allows you to enter more than four digits for the number of messages retrieved.
v Messages longer than 64 KB are truncated.
v CSQ4BCJ1 can only correctly display character messages because it only displays until the first NULL

(\0) character is displayed.
v For the numeric number-of-messages field, enter any digit in the range 1 through 9999. The value that

you enter should be a positive number. For example, to get a single message, you can enter 1, 01, 001,
or 0001 as the value. If you enter nonnumeric or negative values, you might receive an error. For
example, if you enter -1, the COBOL program retrieves one message, but the C program does not
retrieve any messages.

594 IBM MQ: Programming

v For both programs, CSQ4BCJ1 and CSQ4BVJ1, enter B in the get parameter, ++GET++, if you want to
browse the messages.

v For both programs, CSQ4BCJ1 and CSQ4BVJ1, enter S in the syncpoint parameter, ++SYNC++, for
messages to be retrieved in syncpoint.

The Get samples for the batch environment

To run the samples, edit and run the sample JCL, as described in “Preparing and running sample
applications for the batch environment” on page 583.

The programs take the following parameters in an EXEC PARM, separated by spaces in C and commas in
COBOL:
1. The name of the queue manager (4 characters)
2. The name of the target queue (48 characters)
3. The number of messages to get (up to 4 digits)
4. The browse/get message option (1 character: B to browse or D to destructively get the messages)
5. The syncpoint control (1 character: S for syncpoint or N for no syncpoint)

If you enter any of these parameters incorrectly, you receive appropriate error messages.

Output from the samples is written to the SYSPRINT data set:
=====================================
PARAMETERS PASSED :
QMGR - VC9
QNAME - A.Q
NUMMSGS - 000000002
GET - D
SYNCPOINT - N
=====================================
MQCONN SUCCESSFUL
MQOPEN SUCCESSFUL
000000000 : 000000010 : **********
000000001 : 000000010 : **********
000000002 MESSAGES GOT FROM QUEUE
MQCLOSE SUCCESSFUL
MQDISC SUCCESSFUL

The Get samples for the CICS environment
Special considerations for the Get samples for the CICS environment.

The transactions take the following parameters in an EXEC PARM, separated by commas:
1. The number of messages to get (up to four digits)
2. The browse/get message option (one character: B to browse or D to destructively get the messages)
3. The syncpoint control (one character: S for syncpoint or N for no syncpoint)
4. The name of the target queue (48 characters)

If you enter any of these parameters incorrectly, you receive appropriate error messages.

For the COBOL sample, invoke the Get sample in the CICS environment by entering:
MVGT,9999,B,S,QUEUE.NAME

For the C sample, invoke the Get sample in the CICS environment by entering:
MCGT,9999,B,S,QUEUE.NAME

When the messages are retrieved from the queue, they are put on a CICS temporary storage queue with
the same name as the CICS transaction (for example, MCGT for the C sample).

Sample IBM MQ procedural programs 595

Here is example output of the Get samples:
**************************** TOP OF QUEUE ************************
000000000 : 000000010: **********
000000001 : 000000010 :**********
*************************** BOTTOM OF QUEUE **********************

Usage notes
v To keep the samples simple, there are some minor functional differences between language versions.

None of the differences relate to the MQI.
v If you enter a queue name that is longer than 48 characters, its length is truncated to the maximum of

48 characters but no error message is returned.
v Before entering the transaction, press the CLEAR key.
v CSQ4CCJ1 can only correctly display character messages because it only displays until the first NULL

(\0) character is displayed.
v For the numeric field, enter any number in the range 1 through 9999. The value that you enter should

be a positive number. For example, to get a single message, you can enter the value 1, 01, 001, or 0001.
If you enter a nonnumeric or negative value, you might receive an error.

v Messages longer than 24 526 bytes in C and 9 950 bytes in COBOL are truncated. This is due to the
way that the CICS temporary storage queues are used.

v For both programs, CSQ4CCK1 and CSQ4CVK1, enter B in the get parameter if you want to browse
the messages, otherwise enter D. This performs destructive MQGET calls. If you enter any other value
you receive an error message.

v For both programs, CSQ4CCJ1 and CSQ4CVJ1, enter S in the syncpoint parameter to retrieve messages
in syncpoint. If you enter N in the syncpoint parameter, the MQGET calls are issued out of syncpoint.
If you enter any other value you receive an error message.

The Browse sample
The Browse sample is a batch application that demonstrates how to browse messages on a queue using
the MQGET call.

The application steps through all the messages in a queue, printing the first 80 bytes of each one. You
could use this application to look at the messages on a queue without changing them.

Source programs and sample run JCL are supplied in the COBOL, assembler, PL/I, and C languages (see
Table 81 on page 584).

To start the application, edit and run the sample run JCL, as described in “Preparing and running sample
applications for the batch environment” on page 583. You can look at messages on one of your own
queues by specifying the name of the queue in the run JCL.

When you run the application (and there are some messages on the queue), the output data set looks
this:
07/12/1998 SAMPLE QUEUE REPORT PAGE 1
QUEUE MANAGER NAME : VC4
QUEUE NAME : CSQ4SAMP.DEAD.QUEUE
RELATIVE
MESSAGE MESSAGE
NUMBER LENGTH ------------------- MESSAGE DATA -------------

1 740 HELLO. PLEASE CALL ME WHEN YOU GET BACK.
2 429 CSQ4BQRM
3 429 CSQ4BQRM
4 429 CSQ4BQRM
5 22 THIS IS A TEST MESSAGE

596 IBM MQ: Programming

6 8 CSQ4TEST
7 36 CSQ4MSG - ANOTHER TEST MESSAGE.....
!8 9 CSQ4STOP
********** END OF REPORT **********

If there are no messages on the queue, the data set contains the headings and the End of report message
only. If an error occurs with any of the MQI calls, the completion and reason codes are added to the
output data set.

Design of the Browse sample
The Browse sample application uses a single program module; one is provided in each of the supported
programming languages.

The flow through the program logic is:
1. Open a print data set and print the title line of the report. Check that the names of the queue

manager and queue have been passed from the run JCL. If both names have been passed, print the
lines of the report that contain the names. If they have not, print an error message, close the print
data set, and stop processing.
The way that the program tests the parameters it is passed from the JCL depends on the language in
which the program is written; for more information, see “Language-dependent design considerations”
on page 598.

2. Connect to the queue manager using the MQCONN call. If this call is not successful, print the
completion and reason codes, close the print data set, and stop processing.

3. Open the queue using the MQOPEN call with the MQOO_BROWSE option. On input to this call, the
program uses the connection handle returned in step 2. For the object descriptor structure (MQOD), it
uses the default values for all the fields except the queue name (which was passed in step 1). If this
call is not successful, print the completion and reason codes, close the print data set, and stop
processing.

4. Browse the first message on the queue, using the MQGET call. On input to this call, the program
specifies:
v The connection and queue handles from steps 2 and 3
v An MQMD structure with all fields set to their initial values
v Two options:

– MQGMO_BROWSE_FIRST
– MQGMO_ACCEPT_TRUNCATED_MSG

v A buffer of size 80 bytes to hold the data copied from the message
The MQGMO_ACCEPT_TRUNCATED_MSG option allows the call to complete even if the message is
longer than the 80-byte buffer specified in the call. If the message is longer than the buffer, the
message is truncated to fit the buffer, and the completion and reason codes are set to show this. The
sample was designed so that messages are truncated to 80 characters to make the report easy to read.
The buffer size is set by a DEFINE statement, so you can easily change it if you want to.

5. Perform the following loop until the MQGET call fails:
a. Print a line of the report showing:
v The sequence number of the message (this is a count of the browse operations).
v The true length of the message (not the truncated length). This value is returned in the

DataLength field of the MQGET call.
v The first 80 bytes of the message data.

b. Reset the MsqId and CorrelId fields of the MQMD structure to nulls
c. Browse the next message, using the MQGET call with these two options:
v MQGMO_BROWSE_NEXT
v MQGMO_ACCEPT_TRUNCATED_MSG

Sample IBM MQ procedural programs 597

6. If the MQGET call fails, test the reason code to see if the call has failed because the browse cursor has
got to the end of the queue. In this case, print the End of report message and go to step 7 ; otherwise,
print the completion and reason codes, close the print data set, and stop processing.

7. Close the queue using the MQCLOSE call with the object handle returned in step 3 on page 597.
8. Disconnect from the queue manager using the MQDISC call with the connection handle returned in

step 2 on page 597.
9. Close the print data set and stop processing.

Language-dependent design considerations
Source modules are provided for the Browse sample in four programming languages.

There are two main differences between the source modules:
v When testing the parameters passed from the run JCL, the COBOL, PL/I, and assembler-language

modules search for the comma character (,). If the JCL passes PARM=(,LOCALQ1), the application
attempts to open queue LOCALQ1 on the default queue manager. If there is no name after the comma
(or no comma), the application returns an error. The C module does not search for the comma
character. If the JCL passes a single parameter (for example, PARM=(’LOCALQ1’)), the C module uses this
as a queue name on the default queue manager.

v To keep the assembler-language module simple, it uses the date format yy/ddd (for example, 05/116)
when it creates the print report. The other modules use the calendar date in mm/dd/yy format.

The Print Message sample
The Print Message sample is a batch application that demonstrates how to remove all the messages from
a queue using the MQGET call.

The Print Message sample uses three parameters:
1. The name of the queue manager
2. The name of the source queue
3. An optional parameter for properties

It also prints, for each message, the fields of the message descriptor, followed by the message data. The
program prints the data both in hexadecimal and as characters (if they are printable). If a character is not
printable, the program replaces it with a period character (.). You can use the program when diagnosing
problems with an application that is putting messages on a queue.

Permissible values for the property parameter are:

Value Behavior

0 Default behavior, as it was for V6. The properties that get delivered to the application depend on the
PropertyControl queue attribute that the message is retrieved from.

1 A message handle is created and used with the MQGET. Properties of the message, except those
contained in the message descriptor (or extension) are displayed in a similar fashion to the message
descriptor. For example:

****Message properties****
<property name>: <property value>

Or if no properties are available:

****Message properties****
None

Numeric values are displayed using printf, string values are surrounding in single quotation marks,
and byte strings are surrounded with X and single quotation marks, as for the message descriptor.

2 MQGMO_NO_PROPERTIES is specified, so that only message descriptor properties will be returned.

598 IBM MQ: Programming

Value Behavior

3 MQGMO_PROPERTIES_FORCE_MQRFH2 is specified, so that all properties are returned in the
message data.

4 MQGMO_PROPERTIES_COMPATIBILITY is specified, so that all properties can be returned
depending on whether a Version 6 property is included, otherwise the properties are discarded.

You can change the application so that it browses the messages, rather than removing them from the
queue. To do this, compile with the option of -DBROWSE, to define the BROWSE macro, as indicated in
“Design of the print message sample” on page 600. Executable code is provided for you in the
SCSQLOAD library. Module CSQ4BCG0 is built with -DBROWSE; module CSQ4BCG1 destructively reads
the queue.

The application has a single source program, which is written in the C language. Sample run JCL code is
also supplied (see Table 82 on page 585).

To start the application, edit and run the sample run JCL, as described in “Preparing and running sample
applications for the batch environment” on page 583. When you run the application (and there are some
messages on the queue), the output data set looks like that in Figure 94 on page 600.

Sample IBM MQ procedural programs 599

Design of the print message sample
The Print message sample application uses a single program written in the C language.

The flow through the program logic is:
1. Check that the names of the queue manager and queue have been passed from the run JCL. If they

have not, print an error message and stop processing.
2. Connect to the queue manager using the MQCONN call. If this call is not successful, print the

completion and reason codes and stop processing; otherwise print the name of the queue manager.

CSQ4BCG1 - starts here

MQCONN to MQ1E
MQOPEN - ’TEST.QUEUE’
MQCRTMH

MQGET of message number 1
****Message descriptor****
StrucId : ’MD ’ Version : 2
Report : 0 MsgType : 8
Expiry : -1 Feedback : 0
Encoding : 785 CodedCharSetId : 500
Format : ’MQSTR ’
Priority : 0 Persistence : 0
MsgId : X’C3E2D840D4D8F1C54040404040404040C1EA537F03167D88’
CorrelId : X’C3E2D840D4D8F1C54040404040404040C1EA537F0317A928’
BackoutCount : 0
ReplyToQ : ’ ’
ReplyToQMgr : ’’
** Identity Context
UserIdentifier : ’FRED ’
AccountingToken :
X’00’
ApplIdentityData : ’ ’
** Origin Context
PutApplType : ’2’
PutApplName : ’FRED6 ’
PutDate : ’20080207’ PutTime : ’17373745’
ApplOriginData : ’ ’
GroupId : X’00’
MsgSeqNumber : ’1’
Offset : ’0’
MsgFlags : ’0’
OriginalLength : ’-1’

****Message properties****
None

**** Message ****

length - 30 bytes

00000000: E388 89A2 4089 A240 8140 A289 9497 9385 ’This is a simple’
00000010: 40A3 85A2 A340 9485 A2A2 8187 855A ’ test message! ’

No more messages
MQDLTMH
MQCLOSE
MQDISC

Figure 94. Example of a report from the Print Message sample application

600 IBM MQ: Programming

3. Open the queue using the MQOPEN call with the MQOO_INPUT_SHARED option.

Note: If you want the application to browse the messages rather than remove them from the queue,
compile the sample with -DBROWSE, or, add #define BROWSE at the beginning of the source. When
you do this, the macro preprocessor adds the line in the program that selects the MQOO_BROWSE
option in the compilation.
On input to this call, the program uses the connection handle returned in step 2 on page 600. For the
object descriptor structure (MQOD), it uses the default values for all the fields except the queue
name (which was passed in step 1 on page 600). If this call is not successful, print the completion
and reason codes and stop processing; otherwise, print the name of the queue.

4. If you use a message handle to obtain the message properties use MQCRTMH to create such a
handle for use with subsequent MQGET calls. If this call is not successful, print the completion and
reason codes and stop processing.

5. Set the get message options to reflect the request action for any message properties.
6. Perform the following loop until the MQGET call fails:

a. Initialize the buffer to blanks so that the message data does not get corrupted by any data
already in the buffer.

b. Set the MsgId and CorrelId fields of the MQMD structure to nulls so that the MQGET call selects
the first message from the queue.

c. Get a message from the queue, using the MQGET call. On input to this call, the program
specifies:
v The connection and object handles from steps 2 on page 600 and 3.
v An MQMD structure with all fields set to their initial values. (MsgId and CorrelId are reset to

nulls for each MQGET call.)
v The option MQGMO_NO_WAIT.

Note: If you want the application to browse the messages rather than remove them from the
queue, compile the sample with -DBROWSE, or, add #define BROWSE at the beginning of the
source. When you do this, the macro preprocessor adds the line in the program that selects the
MQGMO_BROWSE_NEXT option to the compilation. When this option is used on a call
against a queue for which no browse cursor has previously been used with the current object
handle, the browse cursor is positioned logically before the first message.

v A buffer of size 64KB to hold the data copied from the message.
d. Call the printMD subroutine. This prints the name of each field in the message descriptor,

followed by its contents.
e. If you created a message handle in step 4 call the printProperties subroutine to display any

message properties.
f. Print the length of the message, followed by the message data. Each line of message data is in

this format:
v Relative position (in hexadecimal) of this part of the data
v 16 bytes of hexadecimal data
v The same 16 bytes of data in character format, if it is printable (nonprintable characters are

replaced by periods)
7. If the MQGET call fails, test the reason code to see if the call failed because there are no more

messages on the queue. In this case, print the message: No more messages; otherwise, print the
completion and reason codes. In both cases, go to step 9 on page 602.

Note: The MQGET call fails if it finds a message that has more than 64KB of data. To change the
program to handle larger messages, you could do one of the following:
v Add the MQGMO_ACCEPT_TRUNCATED_MSG option to the MQGET call, so that the call gets

the first 64KB of data and discards the remainder

Sample IBM MQ procedural programs 601

v Make the program leave the message on the queue when it finds one with this amount of data
v Increase the size of the buffer

8. If you created a message handle in step 4 on page 601 call MQDLTMH to delete it.
9. Close the queue using the MQCLOSE call with the object handle returned in step 3 on page 601.

10. Disconnect from the queue manager using the MQDISC call with the connection handle returned in
step 2 on page 600.

The Queue Attributes sample
The Queue Attributes sample is a conversational-mode CICS application that demonstrates the use of the
MQINQ and MQSET calls.

It shows how to inquire about the values of the InhibitPut and InhibitGet attributes of queues, and
how to change them so that programs cannot put messages on, or get messages from, a queue. You might
want to lock a queue in this way when you are testing a program.

To prevent accidental interference with your own queues, this sample works only on a queue object that
has the characters CSQ4SAMP in the first 8 bytes of its name. However, the source code includes
comments to show you how to remove this restriction.

Source programs are supplied in the COBOL, assembler, and C languages (see Table 88 on page 589).

The assembler-language version of the sample uses reenterable code. To do this, you will notice that the
code for each MQI call in that version of the sample includes the MF keyword; for example:
CALL MQCONN,(NAME,HCONN,COMPCODE,REASON),MF=(E,PARMAREA),VL

(The VL keyword means that you can use the CICS Execution Diagnostic Facility (CEDF) supplied
transaction for debugging the program.) For more information about writing reenterable programs, see
Coding in System/390 assembler language.

To start the application, start your CICS system and use the following CICS transactions:
v For COBOL, MVC1
v For assembler language, MAC1
v For C, MCC1

You can change the name of any of these transactions by changing the CSD data set mentioned in step 3.

Design of the sample

When you start the sample, it displays a screen map that has fields for:
v Name of the queue
v User request (valid actions are: inquire, allow, or inhibit)
v Current status of put operations for the queue
v Current status of get operations for the queue

The first two fields are for user input. The last two fields are filled by the application: they show the
word INHIBITED or the word ALLOWED.

The application validates the values that you enter in the first two fields. It checks that the queue name
starts with the characters CSQ4SAMP and that you entered one of the three valid requests in the Action
field. The application converts all your input to uppercase, so you cannot use any queues with names
that contain lowercase characters.

If you enter inquire in the Action field, the flow through the program logic is:

602 IBM MQ: Programming

1. Open the queue using the MQOPEN call with the MQOO_INQUIRE option
2. Call MQINQ using the selectors MQIA_INHIBIT_GET and MQIA_INHIBIT_PUT
3. Close the queue using the MQCLOSE call
4. Analyze the attributes that are returned in the IntAttrs parameter of the MQINQ call and move the

words INHIBITED or ALLOWED, as appropriate, to the relevant screen fields

If you enter inhibit in the Action field, the flow through the program logic is:
1. Open the queue using the MQOPEN call with the MQOO_SET option
2. Call MQSET using the selectors MQIA_INHIBIT_GET and MQIA_INHIBIT_PUT, and with the values

MQQA_GET_INHIBITED and MQQA_PUT_INHIBITED in the IntAttrs parameter
3. Close the queue using the MQCLOSE call
4. Move the word INHIBITED to the relevant screen fields

If you enter allow in the Action field, the application performs similar processing to that for an inhibit
request. The only differences are the settings of the attributes and the words displayed on the screen.

When the application opens the queue, it uses the default connection handle to the queue manager. (
CICS establishes a connection to the queue manager when you start your CICS system.) The application
can trap the following errors at this stage:
v The application is not connected to the queue manager
v The queue does not exist
v The user is not authorized to access the queue
v The application is not authorized to open the queue

For other MQI errors, the application displays the completion and reason codes.

The Mail Manager sample
The Mail Manager sample application is a suite of programs that demonstrates sending and receiving
messages, both within a single environment and across different environments. The application is a
simple electronic mailing system that allows users to exchange messages, even if they use different queue
managers.

The application demonstrates how to create queues using the MQOPEN call and by putting IBM MQ for
z/OS commands on the system-command input queue.

Three versions of the application are provided:
v A CICS application written in COBOL
v A TSO application written in COBOL
v A TSO application written in C

Sample IBM MQ procedural programs 603

Preparing the sample
The Mail Manager is provided in versions that run in two environments. The preparation that you must
carry out before you run the application depends on the environment that you want to use.

Users can access mail queues and nickname queues from both TSO and CICS so long as their sign-on
user IDs are the same on each system.

Before you can send messages to another queue manager, you must set up a message channel to that
queue manager. To do this, use the channel control function of IBM MQ, described in Channel control
function.

Preparing the sample for the TSO environment

Follow these steps:
1. Prepare the sample as described in “Preparing sample applications for the TSO environment” on page

586.
2. Tailor the CLIST provided for the sample to define:
v The location of the panels
v The location of the message file
v The location of the load modules
v The name of the queue manager that you want to use with the application
A separate CLIST is provided for each language version of the sample:

For the COBOL version: CSQ4RVD1
For the C version: CSQ4RCD1

3. Ensure that the queues used by the application are available on the queue manager. (The queues are
defined in CSQ4CVD.)

Note: VS COBOL II does not support multitasking with ISPF. This means that you cannot use the Mail
Manager sample application on both sides of a split screen. If you do, the results are unpredictable.

Running the sample
To start the sample in the TSO environment, execute your tailored version of the CLIST from the TSO
command processor within ISPF.

To start the sample in the CICS Transaction Server for z/OS environment, run transaction MAIL. If you
have not already signed on to CICS, the application prompts you to enter a user ID to which it can send
your mail.

When you start the application, it opens your mail queue. If this queue does not exist, the application
creates one for you. Mail queues have names of the form CSQ4SAMP.MAILMGR. userid, where userid
depends on the environment:

In TSO
The user's TSO ID

In CICS
The user's CICS sign-on or the user ID entered by the user when prompted when the Mail
Manager started

All parts of the queue names that the Mail Manager uses must be uppercase.

The application then presents a menu panel that has options for:
v Read incoming mail

604 IBM MQ: Programming

v Send mail
v Create nickname

The menu panel also shows you how many messages are waiting on your mail queue. Each of the menu
options displays a further panel:

Read incoming mail
The Mail Manager displays a list of the messages that are on your mail queue. (Only the first 99
messages on the queue are displayed.) For an example of this panel, see Figure 97 on page 608.
When you select a message from this list, the contents of the message are displayed (see Figure 98
on page 609).

Send mail
A panel prompts you to enter:
v The name of the user to whom you want to send a message
v The name of the queue manager that owns their mail queue
v The text of your message

In the user name field, you can enter either a user ID or a nickname that you created using the
Mail Manager. You can leave the queue manager name field blank if the user's mail queue is
owned by the same queue manager that you are using, and you must leave it blank if you
entered a nickname in the user name field:
v If you specify only a user name, the program first assumes that the name is a nickname, and

sends the message to the object defined by that name. If there is no such nickname, the
program attempts to send the message to a local queue of that name.

v If you specify both a user name and a queue manager name, the program sends the message to
the mail queue that is defined by those two names.

For example, if you want to send a message to user JONESM on remote queue manager QM12,
you could send them a message in either of two ways:
v Use both fields to specify user JONESM at queue manager QM12.
v Define a nickname (for example, MARY) for that user and send them a message by putting

MARY in the user name field and nothing in the queue manager name field.

Create nickname
You can define an easy-to-remember name that you can use when you send a message to another
user who you contact frequently. You are prompted to enter the user ID of the other user and the
name of the queue manager that owns their mail queue.

Nicknames are queues that have names of the form CSQ4SAMP.MAILMGR. userid.nickname,
where userid is your own user ID and nickname is the nickname that you want to use. With names
structured in this way, users can each have their own set of nicknames.

The type of queue that the program creates depends on how you complete the fields of the
Create Nickname panel:
v If you specify only a user name, or the queue manager name is the same as that of the queue

manager to which the Mail Manager is connected, the program creates an alias queue.
v If you specify both a user name and a queue manager name (and the queue manager is not the

one to which the Mail Manager is connected), the program creates a local definition of a
remote queue. The program does not check the existence of the queue to which this definition
resolves, or even that the remote queue manager exists.

For example, if your own user ID is SMITHK and you create a nickname called MARY for user
JONESM (who uses the remote queue manager QM12), the nickname program creates a local
definition of a remote queue named CSQ4SAMP.MAILMGR.SMITHK.MARY. This definition
resolves to Mary's mail queue, which is CSQ4SAMP.MAILMGR.JONESM at queue manager
QM12. If you are using queue manager QM12 yourself, the program instead creates an alias
queue of the same name (CSQ4SAMP.MAILMGR.SMITHK.MARY).

Sample IBM MQ procedural programs 605

The C version of the TSO application makes greater use of ISPF's message-handling capabilities than does
the COBOL version. You might notice that different error messages are displayed by the C and COBOL
versions.

Design of the sample
The following sections describe each of the programs that make up the Mail Manager sample application.

The relationships between the programs and the panels that the application uses is shown in Figure 95
for the TSO version, and Figure 96 on page 607 for the CICS Transaction Server for z/OS version.

Send mail

CSQ4TVD4

Nickname

CSQ4TVD5

Get mail

CSQ4TVD2

Mail
awaiting

CSQ4VDP2

Create
nickname

CSQ4VDP5

Menu

CSQ4TVD1

Main menu

CSQ4VDP1

CSQ4RVD1

KEY

Program module

Panel

Received
mail

CSQ4VDP3

Send mail

CSQ4VDP4

Figure 95. Programs and panels for the TSO versions of the Mail Manager. This figure shows the names for the
COBOL version.

606 IBM MQ: Programming

Menu program:

In the TSO environment, the menu program is invoked by the CLIST. In the CICS environment, the
program is invoked by transaction MAIL.

The menu program (CSQ4TVD1 for TSO, CSQ4CVD1 for CICS) is the initial program in the suite. It
displays the menu (CSQ4VDP1 for TSO, VD1 for CICS) and invokes the other programs when they are
selected from the menu.

The program first obtains the user's ID:
v In the CICS version of the program, if the user has signed on to CICS, the user ID is obtained by using

the CICS command ASSIGN USERID. If the user has not signed on, the program displays the sign on
panel (CSQ4VD0) to prompt the user to enter a user ID. There is no security processing within this
program; the user can give any user ID.

v In the TSO version, the user's ID is obtained from TSO in the CLIST. It is passed to the menu program
as a variable in the ISPF shared pool.

After the program has obtained the user ID, it checks to ensure that the user has a mail queue
(CSQ4SAMP.MAILMGR. userid). If a mail queue does not exist, the program creates one by putting a

Send mail

CSQ4CVD4

Nickname

CSQ4CVD5

Get mail

CSQ4CVD2

Mail
awaiting

Mail - VD2

Menu

CSQ4CVD1 Main menu

Mail - VD1

MAIL

KEY

Program module

Panel

Received
mail

Mail - VD3

Display
message

CSQ4CVD3

Get user ID

Mail - VD0

Create
nickname

Mail - VD5

Send mail

Mail - VD4

Figure 96. Programs and panels for the CICS version of the Mail Manager

Sample IBM MQ procedural programs 607

message on the system-command input queue. The message contains the IBM MQ for z/OS command
DEFINE QLOCAL. The object definition that this command uses sets the maximum depth of the queue to
9999 messages.

The program also creates a temporary dynamic queue to handle replies from the system-command input
queue. To do this, the program uses the MQOPEN call, specifying the
SYSTEM.DEFAULT.MODEL.QUEUE as the template for the dynamic queue. The queue manager creates
the temporary dynamic queue with a name that has the prefix CSQ4SAMP; the remainder of the name is
generated by the queue manager.

The program then opens the user's mail queue and finds the number of messages on the queue by
inquiring about the current depth of the queue. To do this, the program uses the MQINQ call, specifying
the MQIA_CURRENT_Q_DEPTH selector.

The program then performs a loop that displays the menu and processes the selection that the user
makes. The loop is stopped when the user presses the PF3 key. When a valid selection is made, the
appropriate program is started; otherwise an error message is displayed.

Get-mail and display-message programs:

In the TSO versions of the application, the get-mail and display-message functions are performed by the
same program (CSQ4TVD2). In the CICS version of the application, these functions are performed by
separate programs (CSQ4CVD2 and CSQ4CVD3).

The Mail Awaiting panel (CSQ4VDP2 for TSO, VD2 for CICS ; see Figure 97 for an example) shows all
the messages that are on the user's mail queue. To create this list, the program uses the MQGET call to
browse all the messages on the queue, saving information about each one. In addition to the information
displayed, the program records the MsgId and CorrelId of each message.

From the Mail Awaiting panel the user can select one message and display the contents of the message
(see Figure 98 on page 609 for an example). The program uses the MQGET call to remove this message
from the queue, using the MsgId and CorrelId that the program noted when it browsed all the messages.
This MQGET call is performed using the MQGMO_SYNCPOINT option. The program displays the
contents of the message, then declares a syncpoint: this commits the MQGET call, so the message now no
longer exists.

--------------------- IBM MQ for z/OS Sample Programs ------- ROW 16 OF 29
COMMAND ==> Scroll ===> PAGE
USERID - NTSFV02
Mail Manager System QMGR - VC4
Mail Awaiting

Msg Mail Date Time
No From Sent Sent
16
16 Deleted
17 JOHNJ 01/06/1993 12:52:02
18 JOHNJ 01/06/1993 12:52:02
19 JOHNJ 01/06/1993 12:52:03
20 JOHNJ 01/06/1993 12:52:03
21 JOHNJ 01/06/1993 12:52:03
22 JOHNJ 01/06/1993 12:52:04
23 JOHNJ 01/06/1993 12:52:04
24 JOHNJ 01/06/1993 12:52:04
25 JOHNJ 01/06/1993 12:52:05
26 JOHNJ 01/06/1993 12:52:05
27 JOHNJ 01/06/1993 12:52:05
28 JOHNJ 01/06/1993 12:52:06
29 JOHNJ 01/06/1993 12:52:06

Figure 97. Example of a panel showing a list of waiting messages

608 IBM MQ: Programming

An obvious extension to the function provided by the Mail Manager is to give the user the option to
leave the message on the queue after viewing its contents. To do this, you would have to back out the
MQGET call that removes the message from the queue, after displaying the message.

Send-mail program:

When the user has completed the Send Mail panel (CSQ4VDP4 for TSO, VD4 for CICS), the send-mail
program (CSQ4TVD4 for TSO, CSQ4CVD4 for CICS) puts the message on the receiver's mail queue.

To do this, the program uses the MQPUT1 call. The destination of the message depends on how the user
has filled the fields in the Send Mail panel:
v If the user has specified only a user name, the program first assumes that the name is a nickname, and

sends the message to the object defined by that name. If there is no such nickname, the program
attempts to send the message to a local queue of that name.

v If the user has specified both a user name and a queue manager name, the program sends the message
to the mail queue that is defined by those two names.

The program does not accept blank messages, and it removes leading blanks from each line of the
message text.

If the MQPUT1 call is successful, the program displays a message that shows that the user name and
queue manager name to which the message was put. If the call is unsuccessful, the program checks
specifically for the reason codes that indicate the queue or the queue manager do not exist; these are
MQRC_UNKNOWN_OBJECT_NAME and MQRC_UNKNOWN_OBJECT_Q_MGR. The program displays
its own error message for each of these errors; for other errors, the program displays the completion and
reason codes returned by the call.

--------------------- IBM MQ for z/OS Sample Programs ---------------------
COMMAND ==>
USERID - NTSFV02
Mail Manager System QMGR - VC4
Received Mail

Mail sent from JOHNJ at VC4

Sent on the 01/06/1993 at 12:52:02
------------------------------------ Message -------------------------------
| HELLO FROM JOHNJ |
| |
| |
| |
| |
| |
| |
| |
| |
| |
’--’

Figure 98. Example of a panel showing the contents of a message

Sample IBM MQ procedural programs 609

Nickname program:

When the user defines a nickname, the nickname program (CSQ4TVD5 for TSO, CSQ4CVD5 for CICS)
creates a queue that has the nickname as part of its name.

The program does this by putting a message on the system-command input queue. The message contains
the IBM MQ for z/OS command DEFINE QALIAS or DEFINE QREMOTE. The type of queue that the
program creates depends on how the user has filled the fields of the Create Nickname panel (CSQ4VDP5
for TSO, VD5 for CICS):
v If the user has specified only a user name, or the queue manager name is the same as that of the queue

manager to which the Mail Manager is connected, the program creates an alias queue.
v If the user has specified both a user name and a queue manager name (and the queue manager is not

the one to which the Mail Manager is connected), the program creates a local definition of a remote
queue. The program does not check the existence of the queue to which this definition resolves, or
even that the remote queue manager exists.

The program also creates a temporary dynamic queue to handle replies from the system-command input
queue.

If the queue manager cannot create the nickname queue for a reason that the program expects (for
example, the queue already exists), the program displays its own error message. If the queue manager
cannot create the queue for a reason that the program does not expect, the program displays up to two of
the error messages that are returned to the program by the command server.

Note: For each nickname, the nickname program creates only an alias queue or a local definition of a
remote queue. The local queues to which these queue names resolve are created only when the user ID
that is contained in the nickname is used to start the Mail Manager application.

The Credit Check sample
The Credit Check sample application is a suite of programs that demonstrates how to use many of the
features provided by IBM MQ for z/OS. It shows how the many component programs of an application
can pass messages to each other using message queuing techniques.

The sample can run as a stand-alone CICS application. However, to demonstrate how to design a
message queuing application that uses the facilities provided by both the CICS and IMS environments,
one module is also supplied as an IMS batch message processing program. This extension to the sample
is described in “The IMS extension to the Credit Check sample” on page 622.

You can also run the sample on more than one queue manager, and send messages between each instance
of the application. To do so, see “The Credit Check sample with multiple queue managers” on page 621.

The CICS programs are delivered in C and COBOL. The single IMS program is delivered only in C. The
supplied data sets are shown in Table 90 on page 590 and Table 92 on page 591.

The application demonstrates a method of assessing the risk when bank customers ask for loans. The
application shows how a bank could work in two ways to process loan requests:
v When dealing directly with a customer, bank staff want immediate access to account and credit-risk

information.
v When dealing with written applications, bank staff can submit a series of requests for account and

credit-risk information, and deal with the replies at a later time.

The financial and security details in the application have been kept simple so that the message queuing
techniques are clear.

610 IBM MQ: Programming

Preparing and running the Credit Check sample

To prepare and run the Credit Check sample, perform the following steps:
1. Create the VSAM data set that holds information about some example accounts. Do this by editing

and running the JCL supplied in data set CSQ4FILE.
2. Perform the steps in “Preparing the sample applications for the CICS environment” on page 588. (The

additional steps that you must perform if you want to use the IMS extension to the sample are
described in “The IMS extension to the Credit Check sample” on page 622.)

3. Start the CKTI trigger monitor (supplied with IBM MQ for z/OS) against queue
CSQ4SAMP.INITIATION.QUEUE, using the CICS transaction CKQC.

4. To start the application, start your CICS system and use the transaction MVB1.
5. Select Immediate or Batch inquiry from the first panel.

The immediate and batch inquiry panels are similar; Figure 99 shows the Immediate Inquiry panel.

6. Enter an account number and loan amount in the appropriate fields. See “Entering information in the
inquiry panels” for guidance on what information to enter in these fields.

Entering information in the inquiry panels

The Credit Check sample application checks that the data you enter in the Amount requested field of the
inquiry panels is in the form of integers.

If you enter one of the following account numbers, the application finds the appropriate account name,
average account balance, and credit worthiness index in the VSAM data set CSQ4BAQ:
v 2222222222
v 3111234329
v 3256478962
v 3333333333
v 3501676212
v 3696879656
v 4444444444

CSQ4VB2 IBM MQ for z/OS Sample Programs

Credit Check - Immediate Inquiry

Specify details of the request, then press Enter.
Name ____________________
Social security number ___ __ ____
Bank account name . . ______________________________
Account number __________
Amount requested . . . 012345
Response from CHECKING ACCOUNT for name : ____________________
Account information not found
Credit worthiness index - NOT KNOWN
..
..
..
..
..
..
..
..
..
MESSAGE LINE
F1=Help F3=Exit F5=Make another inquiry

Figure 99. Immediate Inquiry panel for the Credit Check sample application

Sample IBM MQ procedural programs 611

v 5555555555
v 6666666666
v 7777777777

You can enter any, or no, information in the other fields. The application retains any information that you
enter and returns the same information in the reports that it generates.

Design of the sample
This section describes the design of each of the programs that make up the Credit Check sample
application.

For more information about of some of the techniques that were considered during the design of the
application, see “Design considerations” on page 619.

Figure 100 on page 613 shows the programs that make up the application, and also the queues that these
programs serve. In this figure, the prefix CSQ4SAMP has been omitted from all the queue names to make
the figure easier to understand.

612 IBM MQ: Programming

CSQ4CVB5

CSQ4CVB5

CSQ4CVB5

CSQ4CVB2

Credit
Application
Manager

CSQ4CVB3

B5.MESSAGES

B6.MESSAGES

B7.MESSAGES

B2.REPLY.n

Dynamic QueueB2.RESPONSE

B3.MESSAGESB4.MESSAGES

B2.INQUIRY

B2.WAITING.n

Queue

Program
module

Symbols:

CSQ4CVB4

CSQ4CVB1
User
Interface

MVB1

Figure 100. Programs and queues for the Credit Check sample application (COBOL programs only). In the sample
application, the queue names shown in this figure have the prefix CSQ4SAMP.

Sample IBM MQ procedural programs 613

User interface program (CSQ4CVB1):

When you start the conversational-mode CICS transaction MVB1, this starts the user interface program
for the application.

This program puts inquiry messages on queue CSQ4SAMP.B2.INQUIRY and gets replies to those
inquiries from a reply-to queue that it specifies when it makes the inquiry. From the user interface you
can submit either immediate or batch inquiries:
v For immediate inquiries, the program creates a temporary dynamic queue that it uses as a reply-to

queue. This means that each inquiry has its own reply-to queue.
v For batch inquiries, the user-interface program gets replies from the queue CSQ4SAMP.B2.RESPONSE.

For simplicity, the program gets replies for all its inquiries from this one reply-to queue. It is easy to
see that a bank might want to use a separate reply-to queue for each user of MVB1, so that they could
each see replies to only those inquiries that they had initiated.

Important differences between the properties of messages used in the application when in batch and
immediate mode are:
v For batch working, the messages have a low priority, so they are processed after any loan requests that

are entered in immediate mode. Also, the messages are persistent, so they are recovered if the
application or the queue manager has to restart.

v For immediate working, the messages have a high priority, so they are processed before any loan
requests that are entered in batch mode. Also, messages are not persistent so they are discarded if the
application or the queue manager has to restart.

However, in all cases, the properties of loan request messages are propagated throughout the application.
So, for example, all messages that result from a high-priority request will also have a high priority.

Credit application manager (CSQ4CVB2): z/OS

The Credit Application Manager (CAM) program performs most of the processing for the Credit Check
application.

The CAM is started by the CKTI trigger monitor (supplied with IBM MQ for z/OS) when a trigger event
occurs on either queue CSQ4SAMP.B2.INQUIRY or queue CSQ4SAMP.B2.REPLY. n, where n is an integer
that identifies one of a set of reply queues. The trigger message contains data that includes the name of
the queue on which the trigger event occurred.

The CAM uses queues with names of the form CSQ4SAMP.B2.WAITING.n to store information about
inquiries that it is processing. The queues are named so that they are each paired with a reply-to queue;
for example, queue CSQ4SAMP.B2.WAITING.3 contains the input data for a particular inquiry, and queue
CSQ4SAMP.B2.REPLY.3 contains a set of reply messages (from programs that query databases) all relating
to that same inquiry. To understand the reasons behind this design, see “Separate inquiry and reply
queues in the CAM” on page 619.

614 IBM MQ: Programming

Startup logic:

If the trigger event occurs on queue CSQ4SAMP.B2.INQUIRY, the CAM opens the queue for shared
access. It then tries to open each reply queue until a free one is found. If it cannot find a free reply queue,
the CAM logs the fact and terminates normally.

If the trigger event occurs on queue CSQ4SAMP.B2.REPLY.n, the CAM opens the queue for exclusive
access. If the return code reports that the object is already in use, the CAM terminates normally. If any
other error occurs, the CAM logs the error and terminates. The CAM opens the corresponding waiting
queue and the inquiry queue, then starts getting and processing messages. From the waiting queue, the
CAM recovers details of partially-completed inquiries.

For the sake of simplicity in this sample, the names of the queues used are held in the program. In a
business environment, the queue names would probably be held in a file accessed by the program.

Getting a message:

The CAM first attempts to get a message from the inquiry queue using the MQGET call with the
MQGMO_SET_SIGNAL option. If a message is available immediately, the message is processed; if no
message is available, a signal is set.

The CAM then attempts to get a message from the reply queue, again using the MQGET call with the
same option. If a message is available immediately, the message is processed; otherwise a signal is set.

When both signals are set, the program waits until one of the signals is posted. If a signal is posted to
indicate that a message is available, the message is retrieved and processed. If the signal expires or the
queue manager is terminating, the program terminates.

Processing the message retrieved:

Use this information to learn about processing the messages retrieved by the Credit Application Manager
(CAM).

A message retrieved by the CAM can be one of four types:
v An inquiry message
v A reply message
v A propagation message
v An unexpected or unwanted message

The CAM processes these messages as follows:

Inquiry message
Inquiry messages come from the user interface program. It creates an inquiry message for each
loan request.

For all loan requests, the CAM requests the average balance of the customer's checking account. It
does this by putting a request message on alias queue CSQ4SAMP.B2.OUTPUT.ALIAS. This
queue name resolves to queue CSQ4SAMP.B3.MESSAGES, which is processed by the
checking-account program, CSQ4CVB3. When the CAM puts a message on this alias queue, it
specifies the appropriate CSQ4SAMP.B2.REPLY.n queue for the reply-to queue. An alias queue is
used here so that program CSQ4CVB3 can easily be replaced by another program that processes a
base queue of a different name. To do this, you redefine the alias queue so that its name resolves
to the new queue. Also, you could assign differing access authorities to the alias queue and to the
base queue.

If a user requests a loan that is larger than 10000 units, the CAM initiates checks on other
databases as well. It does this by putting a request message on queue CSQ4SAMP.B4.MESSAGES,

Sample IBM MQ procedural programs 615

which is processed by the distribution program, CSQ4CVB4. The process serving this queue
propagates the message to queues served by programs that have access to other records such as
credit card history, savings accounts, and mortgage payments. The data from these programs is
returned to the reply-to queue specified in the put operation. Additionally, a propagation message
is sent to the reply-to queue by this program to specify how many propagation messages have
been sent.

In a business environment, the distribution program would probably reformat the data provided
to match the format required by each of the other types of bank account.

Any of the queues referred to can be on a remote system.

For each inquiry message, the CAM initiates an entry in the memory-resident Inquiry Record
Table (IRT). This record contains:
v The MsgId of the inquiry message
v In the ReplyExp field, the number of responses expected (equal to the number of messages

sent)
v In the ReplyRec field, the number of replies received (zero at this stage)
v In the PropsOut field, an indication of whether a propagation message is expected

The CAM copies the inquiry message onto the waiting queue with:
v Priority set to 3
v CorrelId set to the MsgId of the inquiry message
v The other message-descriptor fields set to those of the inquiry message

Propagation message
A propagation message contains the number of queues to which the distribution program has
forwarded the inquiry. The message is processed as follows:
1. Add to the ReplyExp field of the appropriate record in the IRT the number of messages sent.

This information is in the message.
2. Increment by 1 the ReplyRec field of the record in the IRT.
3. Decrement by 1 the PropsOut field of the record in the IRT.
4. Copy the message onto the waiting queue. The CAM sets the Priority to 2 and the other

fields of the message descriptor to those of the propagation message.

Reply message
A reply message contains the response to one of the requests to the checking-account program or
to one of the agency-query programs. Reply messages are processed as follows:
1. Increment by 1 the ReplyRec field of the record in the IRT.
2. Copy the message onto the waiting queue with Priority set to 1 and the other fields of the

message descriptor set to those of the reply message.
3. If ReplyRec = ReplyExp, and PropsOut = 0, set the MsgComplete flag.

Other messages
The application does not expect other messages. However, the application might receive messages
broadcast by the system, or reply messages with unknown CorrelId s.

The CAM puts these messages on queue CSQ4SAMP.DEAD.QUEUE, where they can be
examined. If this put operation fails, the message is lost and the program continues. For more
information about the design of this part of the program, see “How the sample handles
unexpected messages” on page 619.

616 IBM MQ: Programming

Sending an answer:

When the CAM has received all the replies it is expecting for an inquiry, it processes the replies and
creates a single response message.

It consolidates into one message all the data from all reply messages that have the same CorrelId. This
response is put on the reply-to queue specified in the original loan request. The response message is put
within the same unit of work that contains the retrieval of the final reply message. This is to simplify
recovery by ensuring that there is never a completed message on queue CSQ4SAMP.B2.WAITING.n.

Recovery of partially-completed inquiries:

The CAM copies onto queue CSQ4SAMP.B2.WAITING.n all the messages that it receives. It sets the fields
of the message descriptor like this:
v Priority is determined by the type of message:

– For request messages, priority = 3
– For datagrams, priority = 2
– For reply messages, priority = 1

v CorrelId is set to the MsgId of the loan request message
v Other MQMD fields are copied from those of the received message

When an inquiry has been completed, the messages for a specific inquiry are removed from the waiting
queue during answer processing. Therefore, at any time, the waiting queue contains all messages relevant
to in-progress inquiries. These messages are used to recover details of in-progress inquiries if the program
has to restart. The different priorities are set so that inquiry messages are recovered before propagations
or reply messages.

Checking-account program (CSQ4CVB3):

The checking-account program is started by a trigger event on queue CSQ4SAMP.B3.MESSAGES. After it
has opened the queue, this program gets a message from the queue using the MQGET call with the wait
option, and with the wait interval set to 30 seconds.

The program searches VSAM data set CSQ4BAQ for the account number in the loan request message. It
retrieves the corresponding account name, average balance, and credit worthiness index, or notes that the
account number is not in the data set.

The program then puts a reply message (using the MQPUT1 call) on the reply-to queue named in the
loan request message. For this reply message, the program:
v Copies the CorrelId of the loan request message
v Uses the MQPMO_PASS_IDENTITY_CONTEXT option

The program continues to get messages from the queue until the wait interval expires.

Sample IBM MQ procedural programs 617

Distribution program (CSQ4CVB4):

The distribution program is started by a trigger event on queue CSQ4SAMP.B4.MESSAGES.

To simulate the distribution of the loan request to other agencies that have access to records such as
credit card history, savings accounts, and mortgage payments, the program puts a copy of the same
message on all the queues in the namelist CSQ4SAMP.B4.NAMELIST. There are three of these queues,
with names of the form CSQ4SAMP.B n.MESSAGES, where n is 5, 6, or 7. In a business application, the
agencies could be at separate locations, so these queues could be remote queues. If you want to modify
the sample application to show this, see “The Credit Check sample with multiple queue managers” on
page 621.

The distribution program performs the following steps:
1. From the namelist, gets the names of the queues that the program is to use. The program does this by

using the MQINQ call to inquire about the attributes of the namelist object.
2. Opens these queues and also CSQ4SAMP.B4.MESSAGES.
3. Performs the following loop until there are no more messages on queue CSQ4SAMP.B4.MESSAGES:

a. Get a message using the MQGET call with the wait option, and with the wait interval set to 30
seconds.

b. Put a message on each queue listed in the namelist, specifying the name of the appropriate
CSQ4SAMP.B2.REPLY.n queue for the reply-to queue. The program copies the CorrelId of the loan
request message to these copy messages, and it uses the MQPMO_PASS_IDENTITY_CONTEXT
option on the MQPUT call.

c. Send a datagram message to queue CSQ4SAMP.B2.REPLY.n to show how many messages it has
successfully put.

d. Declare a syncpoint.

Agency-query program (CSQ4CVB5/CSQ4CCB5):

The agency-query program is supplied as both a COBOL program and a C program. Both programs have
the same design. This shows that programs of different types can easily coexist within an IBM MQ
application, and that the program modules that make up such an application can easily be replaced.

An instance of the program is started by a trigger event on any of these queues:
v For the COBOL program (CSQ4CVB5):

– CSQ4SAMP.B5.MESSAGES
– CSQ4SAMP.B6.MESSAGES
– CSQ4SAMP.B7.MESSAGES

v For the C program (CSQ4CCB5), queue CSQ4SAMP.B8.MESSAGES

Note: If you want to use the C program, you must alter the definition of the namelist
CSQ4SAMP.B4.NAMELIST to replace the queue CSQ4SAMP.B7.MESSAGES with
CSQ4SAMP.B8.MESSAGES. To do this, you can use any one of:
v The IBM MQ for z/OS operations and control panels
v The ALTER NAMELIST command
v The CSQUTIL utility

After it has opened the appropriate queue, this program gets a message from the queue using the
MQGET call with the wait option, and with the wait interval set to 30 seconds.

618 IBM MQ: Programming

The program simulates the search of an agency's database by searching the VSAM data set CSQ4BAQ for
the account number that was passed in the loan request message. It then builds a reply that includes the
name of the queue that it is serving and a creditworthiness index. To simplify the processing, the
creditworthiness index is selected at random.

When putting the reply message, the program uses the MQPUT1 call and:
v Copies the CorrelId of the loan request message
v Uses the MQPMO_PASS_IDENTITY_CONTEXT option

The program sends the reply message to the reply-to queue named in the loan request message. (The
name of the queue manager that owns the reply-to queue is also specified in the loan request message.)

Design considerations
Design considerations for the Credit Check sample.

This topic contains information about:
v “Separate inquiry and reply queues in the CAM”
v “How the sample handles errors”
v “How the sample handles unexpected messages”
v “How the sample uses syncpoints” on page 620
v “How the sample uses message context information” on page 620
v “Use of message and correlation identifiers in the CAM” on page 621

Separate inquiry and reply queues in the CAM

The application could use a single queue for both inquiries and replies, but it was designed to use
separate queues for the following reasons:
v When the program is handling the maximum number of inquiries, further inquiries can be left on the

queue. If a single queue is being used, this would have to be taken off the queue and stored elsewhere.
v Other instances of the CAM could be started automatically to service the same inquiry queue if

message traffic was high enough to warrant it. But the program must track in-progress inquiries, and
to do this, it must get back all replies to inquiries it has initiated. If only one queue is used, the
program would have to browse the messages to see if they were for this program or for another. This
would make the operation much less efficient.
The application can support multiple CAMs and can recover in-progress inquiries effectively by using
paired reply-to and waiting queues.

v The program can wait on multiple queues effectively by using signaling.

How the sample handles errors

The user interface program handles errors by reporting them directly to the user.

The other programs do not have user interfaces, so they have to handle errors in other ways. Also, in
many situations (for example, if an MQGET call fails) these other programs do not know the identity of
the user of the application.

The other programs put error messages on a CICS temporary storage queue called CSQ4SAMP. You can
browse this queue using the CICS-supplied transaction CEBR. The programs also write error messages to
the CICS CSML log.

How the sample handles unexpected messages

When you design a message-queuing application, you must decide how to handle messages that arrive
on a queue unexpectedly.

Sample IBM MQ procedural programs 619

The two basic choices are:
v The application does no more work until it has processed the unexpected message. This probably

means that the application notifies an operator, terminates itself, and ensures that it is not restarted
automatically (it can do this by setting triggering off). This choice means that all processing for the
application can be halted by a single unexpected message, and the intervention of an operator is
required to restart the application.

v The application removes the message from the queue it is serving, puts the message in another
location, and continues processing. The best place to put this message is on the system dead-letter
queue.

If you choose the second option:
v An operator, or another program, should examine the messages that are put on the dead-letter queue

to find out where the messages are coming from.
v An unexpected message is lost if it cannot be put on the dead-letter queue.
v A long unexpected message is truncated if it is longer than the limit for messages on the dead-letter

queue, or longer than the buffer size in the program.

To ensure that the application smoothly handles all inquiries with minimal effect from outside activities,
the Credit Check sample application uses the second option. To allow you to keep the sample separate
from other applications that use the same queue manager, the Credit Check sample does not use the
system dead-letter queue; instead, it uses its own dead-letter queue. This queue is named
CSQ4SAMP.DEAD.QUEUE. The sample truncates any messages that are longer than the buffer area
provided for the sample programs. You can use the Browse sample application to browse messages on
this queue, or use the Print Message sample application to print the messages together with their
message descriptors.

However, if you extend the sample to run across more than one queue manager, unexpected messages, or
messages that cannot be delivered, could be put on the system dead-letter queue by the queue manager.

How the sample uses syncpoints

The programs in the Credit Check sample application declare syncpoints to ensure that:
v Only one reply message is sent in response to each expected message
v Multiple copies of unexpected messages are never put on the sample's dead-letter queue
v The CAM can recover the state of all partially completed inquiries by getting persistent messages from

its waiting queue

To achieve this, a single unit of work is used to cover the getting of a message, the processing of that
message, and any subsequent put operations.

How the sample uses message context information

When the user interface program (CSQ4CVB1) sends messages, it uses the
MQPMO_DEFAULT_CONTEXT option. This means that the queue manager generates both identity and
origin context information. The queue manager gets this information from the transaction that started the
program (MVB1) and from the user ID that started the transaction.

When the CAM sends inquiry messages, it uses the MQPMO_PASS_IDENTITY_CONTEXT option. This
means that the identity context information of the message being put is copied from the identity context
of the original inquiry message. With this option, origin context information is generated by the queue
manager.

When the CAM sends reply messages, it uses the MQPMO_ALTERNATE_USER_AUTHORITY option.
This causes the queue manager to use an alternate user ID for its security check when the CAM opens a

620 IBM MQ: Programming

reply-to queue. The CAM uses the user ID of the submitter of the original inquiry message. This means
that users are allowed to see replies to only those inquiries that they have originated. The alternate user
ID is obtained from the identity context information in the message descriptor of the original inquiry
message.

When the query programs (CSQ4CVB3/4/5) send reply messages, they use the
MQPMO_PASS_IDENTITY_CONTEXT option. This means that the identity context information of the
message being put is copied from the identity context of the original inquiry message. With this option,
origin context information is generated by the queue manager.

Note: The user ID associated with the MVB3/4/5 transactions requires access to the B2.REPLY.n queues.
These user IDs might not be the same as those associated with the request being processed. To get
around this possible security exposure, the query programs could use the
MQPMO_ALTERNATE_USER_AUTHORITY option when putting their replies. This would mean that
each individual user of MVB1 needs authority to open the B2.REPLY.n queues.

Use of message and correlation identifiers in the CAM

The application has to monitor the progress of all the live inquiries it is processing at any one time. To do
this it uses the unique message identifier of each loan request message to associate all the information
that it has about each inquiry.

The CAM copies the MsgId of the inquiry message into the CorrelId of all the request messages it sends
for that inquiry. The other programs in the sample (CSQ4CVB3 - 5) copy the CorrelId of each message
that they receive into the CorrelId of their reply message.

The Credit Check sample with multiple queue managers
You can use the Credit Check sample application to demonstrate distributed queuing by installing the
sample on two queue managers and CICS systems (with each queue manager connected to a different
CICS system).

When the sample program is installed, and the trigger monitor (CKTI) is running on each system, you
need to:
1. Set up the communication link between the two queue managers. For information on how to do this,

see Configuring distributed queuing.
2. On one queue manager, create a local definition for each of the remote queues (on the other queue

manager) that you want to use. These queues can be any of CSQ4SAMP.B n.MESSAGES, where n is 3,
5, 6, or 7. (These are the queues that are served by the checking-account program and the
agency-query program.) For information on how to do this, see DEFINE QREMOTE and DEFINE
queues.

3. Change the definition of the namelist (CSQ4SAMP.B4.NAMELIST) so that it contains the names of the
remote queues that you want to use. For information on how to do this, see DEFINE NAMELIST.

Sample IBM MQ procedural programs 621

The IMS extension to the Credit Check sample
A version of the checking-account program is supplied as an IMS batch message processing (BMP)
program. It is written in the C language.

The program performs the same function as the CICS version, except that to obtain the account
information, the program reads an IMS database instead of a VSAM file. If you replace the CICS version
of the checking-account program with the IMS version, you see no difference in the method of using the
application.

To prepare and run the IMS version you must:
1. Follow the steps in “Preparing and running the Credit Check sample” on page 611.
2. Follow the steps in “Preparing the sample application for the IMS environment” on page 591.
3. Alter the definition of the alias queue CSQ4SAMP.B2.OUTPUT.ALIAS to resolve to queue

CSQ4SAMP.B3.IMS.MESSAGES (instead of CSQ4SAMP.B3.MESSAGES). To do this, you can use one
of:
v The IBM MQ for z/OS operations and control panels
v The ALTER QALIAS command .

Another way of using the IMS checking-account program is to make it serve one of the queues that
receives messages from the distribution program. In the delivered form of the Credit Check sample
application, there are three of these queues (B5/6/7.MESSAGES), all served by the agency-query
program. This program searches a VSAM data set. To compare the use of the VSAM data set and the IMS
database, you could make the IMS checking-account program serve one of these queues instead. To do
this, you must alter the definition of the namelist CSQ4SAMP.B4.NAMELIST to replace one of the
CSQ4SAMP.B n.MESSAGES queues with the CSQ4SAMP.B3.IMS.MESSAGES queue. You can use one of:
v The IBM MQ for z/OS operations and control panels
v The ALTER NAMELIST command.

You can then run the sample from CICS transaction MVB1. The user sees no difference in operation or
response. The IMS BMP stops either after receiving a stop message or after being inactive for 5 minutes.

Design of the IMS checking-account program (CSQ4ICB3)

This program runs as a BMP. Start the program using its JCL before any IBM MQ messages are sent to it.

The program searches an IMS database for the account number in the loan request messages. It retrieves
the corresponding account name, average balance, and credit worthiness index.

The program sends the results of the database search to the reply-to queue named in the IBM MQ
message being processed. The message returned appends the account type and the results of the search to
the message received so that the transaction building the response can confirm that the correct query is
being processed. The message is in the form of three 79-character groups, as follows:
’Response from CHECKING ACCOUNT for name : JONES J B’
’ Opened 870530, 3-month average balance = 000012.57’
’ Credit worthiness index - BBB’

When running as a message-oriented BMP, the program drains the IMS message queue, then reads
messages from the IBM MQ for z/OS queue and processes them. No information is received from the
IMS message queue. The program reconnects to the queue manager after each checkpoint because the
handles have been closed.

When running in a batch-oriented BMP, the program continues to be connected to the queue manager
after each checkpoint because the handles are not closed.

622 IBM MQ: Programming

The Message Handler sample
The Message Handler sample TSO application allows you to browse, forward, and delete messages on a
queue. The sample is available in C and COBOL.

Preparing and running the sample

Follow these steps:
1. Prepare the sample as described in “Preparing sample applications for the TSO environment” on page

586.
2. Tailor the CLIST (CSQ4RCH1) provided for the sample to define the location of the panels, the

location of the message file, and the location of the load modules.

You can use CLIST CSQ4RCH1 to run both the C and the COBOL version of the sample. The supplied
version of CSQ4RCH1 runs the C version, and contains instructions on the tailoring necessary for the
COBOL version.

Note:

1. There are no sample queue definitions provided with the sample.
2. VS COBOL II does not support multitasking with ISPF, so do not use the Message Handler sample

application on both sides of a split screen. If you do, the results are unpredictable.

Using the sample

Having installed the sample and invoked it from the tailored CLIST CSQ4RCH1, the screen shown in
Figure 101 is displayed.

Enter the queue manager and queue name to be viewed (case sensitive) and the message list screen is
displayed (see Figure 102 on page 624).

----------------------- IBM MQ for z/OS -- Samples ------------------------
COMMAND ===>
User Id : JOHNJ

Enter information. Press ENTER :

Queue Manager Name : __ :

Queue Name : __ :

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 101. Initial screen for Message Handler sample

Sample IBM MQ procedural programs 623

This screen shows the first 99 messages on the queue and, for each, shows the following fields:

Msg No
Message number

Put Date MM/DD/YYYY
Date that the message was put on the queue (GMT)

Put Time HH:MM:SS
Time that the message was put on the queue (GMT)

Format Name
MQMD.Format field

User Identifier
MQMD.UserIdentifier field

Put Application Type
MQMD.PutApplType field

Put Application Name
MQMD.PutApplName field

The total number of messages on the queue is also displayed.

From this screen a message can be chosen, by number not by cursor position, and then displayed. For an
example, see Figure 103 on page 625.

----------------------- IBM MQ for z/OS -- Samples ------- Row 1 to 4 of 4
COMMAND ==>

Queue Manager : VM03 :
Queue : MQEI.IMS.BRIDGE.QUEUE :

Message number 01 of 04

Msg Put Date Put Time Format User Put Application
No MM/DD/YYYY HH:MM:SS Name Identifier Type Name
01 10/16/1998 13:51:19 MQIMS NTSFV02 00000002 NTSFV02A
02 10/16/1998 13:55:45 MQIMS JOHNJ 00000011 EDIT\CLASSES\BIN\PROGTS
03 10/16/1998 13:54:01 MQIMS NTSFV02 00000002 NTSFV02B
04 10/16/1998 13:57:22 MQIMS johnj 00000011 EDIT\CLASSES\BIN\PROGTS
******************************* Bottom of data ********************************

Figure 102. Message list screen for Message Handler sample

624 IBM MQ: Programming

Once the message has been displayed it can be deleted, left on the queue, or forwarded to another queue.
The Forward to Q Mgr and Forward to Queue fields are initialized with values from the MQMD, these can
be changed before forwarding the message.

The sample design allows only messages with unique MsgId / CorrelId combinations to be selected and
displayed, because the message is retrieved using the MsgId and CorrelId as the key. If the key is not
unique the sample cannot retrieve the chosen message with certainty.

Note: When you use the SCSQCLST(CSQ4RCH1) sample to browse messages, each invocation causes the
backout count of the message to increase. If you want to change the behavior of this sample, copy the
sample and modify the contents as necessary. You should be aware that other applications that rely on
this backout count can be influenced by this increasing count.

----------------------- IBM MQ for z/OS -- Samples ----- Row 1 to 35 of 35
COMMAND ==>

Queue Manager : VM03 :
Queue : MQEI.IMS.BRIDGE.QUEUE :
Forward to Q Mgr : VM03 :
Forward to Queue : QL.TEST.ISCRES1 :

Action : _ : (D)elete (F)orward

Message Content :

Message Descriptor
StrucId : `MD `
Version : 000000001
Report : 000000000
MsgType : 000000001
Expiry : -00000001
Feedback : 000000000
Encoding : 000000785
CodedCharSetId : 000000500
Format : `MQIMS `
Priority : 000000000
Persistence : 000000001
MsgId : `C3E2D840E5D4F0F34040404040404040AF6B30F0A89B7605`X
CorrelId : `00`X
BackoutCount : 000000000
ReplyToQ : `QL.TEST.ISCRES1 `
ReplyToQMgr : `VM03 `
UserIdentifier : `NTSFV02 `
AccountingToken :
`06F2F5F5F3F0F100`X
ApplIdentityData : ` `
PutApplType : 000000002
PutApplName : `NTSFV02A `
PutDate : `19971016`
PutTime : `13511903`
ApplOriginData : ` `

Message Buffer : 108 byte(s)
00000000 : C9C9 C840 0000 0001 0000 0054 0000 0311 `IIH`
00000010 : 0000 0000 4040 4040 4040 4040 0000 0000 `....`
00000020 : 4040 4040 4040 4040 4040 4040 4040 4040 ` `
00000030 : 4040 4040 4040 4040 4040 4040 4040 4040 ` `
00000040 : 0000 0000 0000 0000 0000 0000 0000 0000 `................`
00000050 : 40F1 C300 0018 0000 C9C1 D7D4 C4C9 F2F8 ` 1C.....IAPMDI28`
00000060 : 40C8 C5D3 D3D6 40E6 D6D9 D3C4 ` HELLO WORLD `
******************************* Bottom of data ********************************

Figure 103. Chosen message is displayed

Sample IBM MQ procedural programs 625

Design of the sample
This topic describes the design of each of the programs that make up the Message Handler sample
application.

Object validation program

This requests a valid queue and queue manager name.

If you do not specify a queue manager name, the default queue manager is used, if available. Only local
queues can be used; an MQINQ is issued to check that the queue type and an error is reported if the
queue is not local. If the queue is not opened successfully, or the MQGET call is inhibited on the queue,
error messages are returned indicating the CompCode and Reason return code.

Message list program

This displays a list of messages on a queue with information about them such as the putdate, puttime,
and the message format.

The maximum number of messages stored in the list is 99. If there are more messages on the queue than
this, the current queue depth is also displayed. To choose a message for display, type the message
number into the entry field (the default is 01). If your entry is not valid, you receive an appropriate error
message.

Message content program

This displays message content.

The content is formatted and split into two parts:
1. Message descriptor
2. Message buffer

The message descriptor shows the contents of each field on a separate line.

The message buffer is formatted depending on its contents. If the buffer holds a dead letter header
(MQDLH) or a transmission queue header (MQXQH), these are formatted and displayed before the
buffer itself.

Before the buffer data is formatted, a title line shows the buffer length of the message in bytes. The
maximum buffer size is 32768 bytes, and any message longer than this is truncated. The full size of the
buffer is displayed along with a message indicating that only the first 32768 bytes of the message are
displayed.

The buffer data is formatted in two ways:
1. After the offset into the buffer is printed, the buffer data is displayed in hexadecimal.
2. The buffer data is then displayed again as EBCDIC values. If any EBCDIC value cannot be printed, it

prints a period (.) instead.

You can enter D for delete, or F for forward into the action field. If you choose to forward the message,
the forward-to queue and queue manager name must be set correctly. The defaults for these fields are read
from the message descriptor ReplyToQ and ReplyToQMgr fields.

If you forward a message, any header block stored in the buffer is stripped. If the message is forwarded
successfully, it is removed from the original queue. If you enter invalid actions, error messages are
displayed.

626 IBM MQ: Programming

An example help panel called CSQ4CHP9 is also available.

The Asynchronous Put sample
The Asynchronous Put sample program puts messages on a queue using the asynchronous MQPUT call.
The sample also retrieves status information using the MQSTAT call.

The Asynchronous Put applications use these MQI calls:
v MQCONN
v MQOPEN
v MQPUT
v MQSTAT
v MQCLOSE
v MQDISC

The sample programs are delivered in the C programming language.

The Asynchronous Put applications run in the batch environment. See Other samples for the batch
applications.

This topic also provides information about the design of the Asynchronous Consumption program, and
running the CSQ4BCS2 sample.
v “Running the CSQ4BCS2 sample”
v “Design of the Asynchronous Put sample program”

Running the CSQ4BCS2 sample

This sample program takes up to six parameters:
1. The name of the target queue (required).
2. The name of the queue manager (optional).
3. Open options (optional).
4. Close options (optional).
5. The name of the target queue manager (optional).
6. The name of the dynamic queue (optional).

If a queue manager is not specified, CSQ4BCS2 connects to the default queue manager. Message content
is provided through standard input (SYSIN DD).

There is a sample JCL to run the program, it resides in CSQ4BCSP.

Design of the Asynchronous Put sample program

The program uses the MQOPEN call with either the output options supplied, or with the
MQOO_OUTPUT and MQOO_FAIL_IF_QUIESCING options, to open the target queue for putting
messages.

If the program cannot open the queue, the program outputs an error message containing the reason code
returned by the MQOPEN call. To keep the program simple on this and subsequent MQI calls, default
values are used for many of the options.

For each line of input, the program reads the text into a buffer and uses the MQPUT call with
MQPMO_ASYNC_RESPONSE to create a datagram message containing the text of that line and

Sample IBM MQ procedural programs 627

asynchronously puts the message on the target queue. The program continues until it reaches the end of
the input, or until the MQPUT call fails. If the program reaches the end of the input, it closes the queue
using the MQCLOSE call.

The program then issues the MQSTAT call which returns an MQSTS structure, and displays messages
containing the number of messages put successfully, the number of messages put with a warning, and the
number of failures.

Note: To observe what happens when an MQPUT error is detected by the MQSTAT call, set MAXDEPTH
on the target queue to a low value.

The Batch Asynchronous Consumption sample
The CSQ4BCS1 sample program is delivered in C, it demonstrates the use of MQCB and MQCTL to
consume messages from multiple queues asynchronously.

The Asynchronous Consumption samples run in the batch environment. See Other samples for the batch
applications.

There is also a COBOL sample which runs in the CICS environment, see “The CICS Asynchronous
Consumption and Publish/Subscribe sample” on page 629.

The applications use these MQI calls:
v MQCONN
v MQOPEN
v MQCLOSE
v MQDISC
v MQCB
v MQCTL

This topic also provided information about the following headings:
v “Running the CSQ4BCS1 sample”
v “Design of the Batch Asynchronous Consumption sample program” on page 629

Running the CSQ4BCS1 sample

This sample program follows the following syntax:

►► ▼ ▼
(1)

CSQ4BCS1 Queue name
-m Queue Manager Name
-0 Open options
-t Run time

►◄

Notes:

1 A maximum of 10 queues are supported by this sample. Provide more than one queue name in
order to read messages from multiple queues.

There is a sample JCL to run this program, it resides in CSQ4BCSC.

628 IBM MQ: Programming

Design of the Batch Asynchronous Consumption sample program

The sample shows how to read messages from multiple queues in the order of their arrival. This would
require more code using synchronous MQGET. With asynchronous consumption, no polling is required,
and thread and storage management is performed by IBM MQ. In the sample program, errors are written
to the console.

The sample code has the following steps:
1. Define the single message consumption callback function.

void MessageConsumer(MQHCONN hConn,
MQMD * pMsgDesc,
MQGMO * pGetMsgOpts,
MQBYTE * Buffer,
MQCBC * pContext)
{ ... }

2. Connect to the queue manager.
MQCONN(QMName,&Hcon,&CompCode,&CReason);

3. Open the input queues, and associate each queue with the MessageConsumer callback function.
MQOPEN(Hcon,&od,O_options,&Hobj,&OpenCode,&Reason);
cbd.CallbackFunction = MessageConsumer;
MQCB(Hcon,MQOP_REGISTER,&cbd,Hobj,&md,&gmo,&CompCode,&Reason);

cbd.CallbackFunction does not need to be set for each queue; it is an input-only field. You can
associate a different callback function with each queue.

4. Start consumption of the messages.
MQCTL(Hcon,MQOP_START,&ctlo,&CompCode,&Reason);

5. Wait for the user to press Enter, then stop consumption of messages.
MQCTL(Hcon,MQOP_STOP,&ctlo,&CompCode,&Reason);

6. Finally, disconnect from the queue manager.
MQDISC(&Hcon,&CompCode,&Reason);

The CICS Asynchronous Consumption and Publish/Subscribe sample
The Asynchronous Consumption and Publish/Subscribe sample programs demonstrate the use of
asynchronous consumption, and publish and subscribe features within CICS.

A Registration client program registers three Callback handlers (an event handler, and two message
consumers), and starts Asynchronous Consumption. A Messaging client program puts messages to a
queue, or publishes suitable messages from a CICS console for consumption by the two Message
Consumers (CSQ4CVCN and CSQ4CVCT).

To provide runtime control over the behavior of the sample, one of the message consumers can be
instructed using the messages it receives, to SUSPEND, RESUME, or DEREGISTER any of the Callback
handlers. It can also be used to issue an MQCTL STOP to end Asynchronous Consumption under control.
The other message consumer is registered to subscribe to a topic.

Each program issues COBOL DISPLAY statements at appropriate points to display the behavior of the
sample.

The applications use these MQI calls:
v MQOPEN
v MQPUT
v MQSUB
v MQGET
v MQCLOSE

Sample IBM MQ procedural programs 629

v MQCB
v MQCTL

The programs are delivered in the COBOL language. See CICS Asynchronous Consumption and
Publish/Subscribe samples for the CICS applications.

This topic also provides information on the following topics:
v “Setup”
v “Registration Client CSQ4CVRG”
v “Event handler CSQ4CVEV”
v “Simple Message Consumer CSQ4CVCN”
v “Control Message Consumer CSQ4CVCT” on page 631
v “Messaging Client CSQ4CVPT” on page 631

Setup

The names of the Queue and Topic used by the Message Consumers are hardcoded in the Registration
and Messaging Client programs.

The Queue, SAMPLE.CONTROL.QUEUE, should be defined to the Queue Manager associated with the
CICS region before running the sample. The Topic, News/Media/Movies, can be defined if required, or it
is created at runtime under the default Administrative Object if it does not exist.

CICS programs and transaction definitions can be installed by installing a group: CSQ4SAMP.

Registration Client CSQ4CVRG

The Registration Client program must be started under the CICS transaction MVRG. It takes no input.

When started, the Registration Client registers the following Callback handlers using MQCB:
v CSQ4CVEV as an Event Handler.
v CSQ4CVCN as a Message Consumer on a topic, News/Media/Movies.
v CSQ4CVCT as a Message Consumer on a Queue, SAMPLE.CONTROL.QUEUE.

The Registration Client passes a data structure containing the names of all three registered Callback
handlers to CSQ4CVCT, together with the object handles associated with the two message consumers.

Having registered the Callback handlers, the Registration Client issues an MQCTL START_WAIT to start
Asynchronous Consumption, and suspend until control is returned to it (for example, by one of the
Callback handlers issuing an MQCTL STOP).

Event handler CSQ4CVEV

When driven, the Event Handler displays a message indicating the call type (for example, START). When
driven for IBM MQ reason code CONNECTION_QUIESCING, the Event Handler issues an MQCTL
STOP to end Asynchronous Consumption and return control to the Registration Client.

Simple Message Consumer CSQ4CVCN

When driven, this Message Consumer displays a message indicating the call type (for example,
REGISTER). When driven for the MSG_REMOVED call type, the Message Consumer retrieves the
inbound message and outputs it to the CICS job log.

630 IBM MQ: Programming

Control Message Consumer CSQ4CVCT

When driven, this Message Consumer displays a message indicating the call type (for example, START).
When driven for the MSG_REMOVED call type, the Message Consumer retrieves the inbound message
and the data structure passed by the Registration Client. Based on the message content, it issues
appropriate MQCB or MQCTL commands to one of the following:
v STOP Asynchronous Consumption (returning control to the Registration Client).
v SUSPEND, RESUME, or DEREGISTER a named Callback handler (including itself).

Messaging Client CSQ4CVPT

The Messaging Client has two functions:
v It publishes a message to a topic for consumption by the Message Consumer CSQ4CVCN.
v It puts a control message to a queue for consumption by the Control Message Consumer CSQ4CVCT,

resulting in a potential change in behavior of the sample.

The Messaging Client program must be started from a CICS console under a CICS transaction, and it
takes command line input with the following syntax:

►► MVMP , PUBLISH , ,
Message Text ,

STOP ,
DEREGISTER , Callback Handler ,
RESUME ,
SUSPEND ,

►◄

PUBLISH
Publish the Message Text (or a default message) as a Retained Message for consumption by the
Simple Message Consumer.

STOP Stop Asynchronous Consumption.

DEREGISTER
Deregister the named Callback handler.

RESUME
Resume the named Callback handler.

SUSPEND
Suspend the named Callback handler.

Input fields are positional, and comma-separated. Keywords and Callback Handler names are not
case-sensitive.

Examples:

MVMP,PUBLISH,, Publish a default message

MVMP,publish, A short message, Publish the given text

MVMP,STOP, Stop Asynchronous Consumption

MVMP,DEREGISTER,CSQ4CVEV, Deregister the Event Handler

MVMP,resume,csq4cvcn, Resume the Simple Message Consumer

MVMP,SUSPEND,CSQ4CVEV, Suspend the Event Handler

Where MVMP is the CICS transaction associated with the Messaging Client program CSQ4CVPT.

Note:

Sample IBM MQ procedural programs 631

v Suspending or deregistering all Callback handlers terminates the START_WAIT issued by the
Registration Client, returning control to it, and ending the task.

v Suspending or deregistering the Control Callback Handler has deliberately not been prevented, but it
removes the ability to further control the behavior of the sample.

The Publish/Subscribe Sample
The Publish/Subscribe sample programs demonstrate the use of the publish and subscribe features in
IBM MQ.

There are four C and two COBOL programming language sample programs demonstrating how to
program to the IBM MQ Publish/Subscribe interface. The programs are delivered in the C and COBOL
language. The applications run in the batch environment; see Publish/Subscribe samples for the batch
applications.

There are also COBOL samples that run in the CICS environment; see “The CICS Asynchronous
Consumption and Publish/Subscribe sample” on page 629.

This topic also provides information about how to run Publish/Subscribe sample programs. These sample
programs include:
v “Running the CSQ4BCP1 sample”
v “Running the CSQ4BCP2 sample”
v “Running the CSQ4BCP3 sample” on page 633
v “Running the CSQ4BCP4 sample” on page 633
v “Running the CSQ4BVP1 sample” on page 633
v “Running the CSQ4BVP2 sample” on page 634

Running the CSQ4BCP1 sample

This program is written in C, it publishes messages to a topic. Start one of the subscriber samples before
running this program.

This program takes up to four parameters:
1. The name of the target topic (required).
2. The name of the queue manager (optional).
3. Open options (optional).
4. Close options (optional).

If a queue manager is not specified, CSQ4BCP1 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BCPP.

Message content is provided through standard input (SYSIN DD).

Running the CSQ4BCP2 sample

This program is written in C, it subscribes to a topic and prints the messages received.

This program takes up to three parameters:
1. The name of the target topic (required).
2. The name of the queue manager (optional).
3. MQSD subscription options (optional).

632 IBM MQ: Programming

If a queue manager is not specified, CSQ4BCP2 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BCPS.

Running the CSQ4BCP3 sample

This program is written in C, it subscribes to a topic using a user-specified destination queue and prints
the messages received.

This program takes up to four parameters:
1. The name of the target topic (required).
2. The name of the destination (required).
3. The name of the queue manager (optional).
4. MQSD subscription options (optional).

If a queue manager is not specified, CSQ4BCP3 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BCPD.

Running the CSQ4BCP4 sample

This program is written in C, it subscribes and gets messages from a topic allowing the use of extended
options on the MQSUB call, extending those available on the simpler MQSUB sample: CSQ4BCP2. In
addition to the message payload, message properties for each message is received and displayed.

This program takes a variable set of parameters:
1. -t < string >: Topic string (required).
2. -o < name >: Topic object name (required).
3. -m < name >: Queue manager name (optional).
4. -q < name >: Destination queue name (optional).
5. -w < seconds >: Wait interval on MQGET in seconds (optional).

unlimited MQWI_UNLIMITED

none No wait

n Wait interval in seconds

When no value is specified, the default is 30 seconds

6. -d < subname >: Create or resume named durable subscription (optional).
7. -k: Keep durable subscription on MQCLOSE (optional).

If a queue manager is not specified, CSQ4BCP4 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BCPE.

Running the CSQ4BVP1 sample

This program is written in COBOL, it publishes messages to a topic. Start one of the subscriber samples
before running this program.

This program takes no parameters. SYSIN DD provides the input topic name, queue manager name, and
message content.

If a queue manager is not specified, CSQ4BVP1 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BVPP.

Sample IBM MQ procedural programs 633

Running the CSQ4BVP2 sample

This program is written in COBOL, it subscribes to a topic and prints the messages received.

This program takes no parameters. SYSIN DD provides the input for topic name and queue manager
name.

If a queue manager is not specified, CSQ4BVP1 connects to the default queue manager. There is a sample
JCL to run the program, it resides in CSQ4BVPP.

The Set and Inquire message property sample
The message property sample programs demonstrate the addition of user-defined properties to a message
handle, and the inquisition of the properties associated with that message.

The applications use these MQI calls:
v MQCONN
v MQOPEN
v MQPUT
v MQGET
v MQCLOSE
v MQDISC
v MQCRTMH
v MQDLTMH
v MQINQMP
v MQSETMP

The programs are delivered in the C language. The applications run in the batch environment. See Other
samples for the batch applications.

The CSQ4BCM1 program is used to inquire the properties of a message handle from a message queue,
and it is an example of the use of the MQINQMP API call. The sample gets one message from a queue
and then prints all the message handle properties.

The CSQ4BCM2 program is used to set the properties of a message handle on a message queue, and it is
an example of the use of the MQSETMP API call. The sample creates a message handle and puts it into
the MsgHandle field of the MQGMO structure. It then puts the message to a queue.

Other examples of inquiring and printing message properties are included in the CSQ4BCG1 and
CSQ4BCP4 sample programs.

This topic also provides information on running the Set and Inquire message property samples under the
following headings:
v “Running the CSQ4BCM1 sample”
v “Running the CSQ4BCM2 sample” on page 635

Running the CSQ4BCM1 sample

This program takes up to four parameters:
1. The name of the target queue (required).
2. The name of the queue manager (optional).
3. Open options (optional).

634 IBM MQ: Programming

4. Close options (optional).

Running the CSQ4BCM2 sample

This program takes up to six parameters:
1. The name of the target queue (required).
2. The name of the queue manager (optional).
3. Open options (optional).
4. Close options (optional).
5. The name of the target queue manager (optional).
6. The name of the dynamic queue (optional).

The property names, values, and message content are provided through the standard input (SYSIN DD).
There is a sample JCL to run the program, it resides in CSQ4BCMP.

Sample IBM MQ procedural programs 635

636 IBM MQ: Programming

Developing object-oriented applications with IBM MQ

IBM MQ provides support for .NET, ActiveX, C++, Java, and JMS. These languages and frameworks use
the IBM MQ Object Model, which provides classes that provide the same functionality as IBM MQ calls
and structures. Some of the languages and frameworks that use the IBM MQ Object Model provide
additional functions that are not available when you use procedural languages with the message queue
interface (MQI).

For details of the classes, methods and properties provided by this model, see “The IBM MQ Object
Model” on page 638.

.NET See Using .NET for information about coding .NET programs using the IBM MQ .NET classes.
Message Service Clients for C/C++ and .NET provide an application programming Interface
(API) called XMS that has the same set of interfaces as the Java Message Service (JMS) API.

ActiveX
The IBM MQ ActiveX is commonly known as the MQAX. The MQAX is included as part of IBM
MQ for Windows. Support for ActiveX has been stabilized at the IBM WebSphere MQ Version 6.0
level. To exploit features introduced to IBM MQ later than Version 6.0, consider using .NET
instead. Refer to Using the Component Object Model Interface (WebSphere MQ Automation
Classes for ActiveX) for information about coding programs using the IBM MQ Object Model in
ActiveX.

C++ IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes
equivalent to the array data types. It provides a number of features not available through the
MQI. See Using C++ for information about coding programs using the IBM MQ Object Model in
C++. Message Service Clients for C/C++ and .NET provide an application programming Interface
(API) called XMS that has the same set of interfaces as the Java Message Service (JMS) API.

Java See Using Java for information about coding programs using the IBM MQ Object Model in Java.
For information about the differences between IBM MQ classes for Java and IBM MQ classes to
help you decide which to use, see “Should I use IBM MQ classes for Java or IBM MQ classes for
JMS?” on page 54.

JMS Websphere MQ also provides classes that implement the Java Message Service (JMS) specification.
For details of the Websphere MQ classes for JMS, see Using JMS. For information about the
differences between IBM MQ classes for Java and IBM MQ classes to help you decide which to
use, see “Should I use IBM MQ classes for Java or IBM MQ classes for JMS?” on page 54.

Message Service Clients for C/C++ and .NET provide an application programming Interface
(API) called XMS that has the same set of interfaces as the Java Message Service (JMS) API.

© Copyright IBM Corp. 2007, 2018 637

Related concepts:
“Developing MQI applications with IBM MQ” on page 72
IBM MQ provides support for C, Visual Basic, COBOL, Assembler, RPG, pTAL, and PL/I. These
procedural languages use the message queue interface (MQI) to access message queuing services.
“Application development concepts” on page 1
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.
Related information:
Technical overview
Application development reference

The IBM MQ Object Model
The IBM MQ Object Model consists of classes, methods and properties. Use this information to learn
about each of these concepts.

The IBM MQ Object Model consists of the following:
v Classes representing familiar IBM MQ concepts such as queue managers, queues, and messages.
v Methods on each class corresponding to MQI calls.
v Properties on each class corresponding to attributes of IBM MQ objects.

When creating an IBM MQ application using the IBM MQ Object Model, you create instances of these
classes in the program. An instance of a class in object-oriented programming is called an object. When an
object has been created, you interact with the object by examining or setting the values of the object's
properties (the equivalent of issuing an MQINQ or MQSET call), and by making method calls against the
object (the equivalent of issuing the other MQI calls).

These topics describe each of the IBM MQ Object Models in detail:
v “Classes”
v “Object references” on page 639
v “Return codes” on page 639

Classes

The IBM MQ Object Model provides the following base set of classes.

The actual implementation of the model varies slightly between the different supported object-oriented
environments.

MQQueueManager
An object of the MQQueueManager class represents a connection to a queue manager. It has
methods to Connect(), Disconnect(), Commit(), and Backout() (the equivalent of MQCONN or
MQCONNX, MQDISC, MQCMIT, and MQBACK). It has properties corresponding to the
attributes of a queue manager. Accessing a queue manager attribute property implicitly connects
to the queue manager if not already connected. Destroying an MQQueueManager object
implicitly disconnects from the queue manager.

MQQueue
An object of the MQQueue class represents a queue. It has methods to Put() and Get() messages
to and from the queue (the equivalent of MQPUT and MQGET). It has properties corresponding
to the attributes of a queue. Accessing a queue attribute property, or issuing a Put() or Get()
method call, implicitly opens the queue (the equivalent of MQOPEN). Destroying an MQQueue
object implicitly closes the queue (the equivalent of MQCLOSE).

638 IBM MQ: Programming

MQTopic
An object of the MQTopic class represents a topic. It has methods to Put() (publish) and Get()
(receive or subscribe) messages to and from the topic (the equivalent of MQPUT and MQGET). It
has properties corresponding to the attributes of a topic. An MQTopic object can only be accessed
for publication or subscription, not both simultaneously. When used for receiving messages the
MQTopic object can be created with an unmanaged or managed subscription and as a durable or
non-durable subscriber - multiple overloaded constructors are provided for these differing
scenarios.

MQMessage
An object of the MQMessage class represents a message to be put on a queue or got from a
queue. It contains a buffer, and encapsulates both application data and MQMD. It has properties
corresponding to MQMD fields, and methods that allow you to write and read user data of
different types (for example, strings, long integers, short integers, single bytes) to and from the
buffer.

MQPutMessageOptions
An object of the MQPutMessageOptions class represents the MQPMO structure. It has properties
corresponding to MQPMO fields.

MQGetMessageOptions
An object of the MQGetMessageOptions class represents the MQGMO structure. It has properties
corresponding to MQGMO fields.

MQProcess
An object of the MQProcess class represents a process definition (used with triggering). It has
properties that represent the attributes of a process definition.

MQDistributionList
z/OS (Not IBM MQ for z/OS.) An object of the MQDistributionList class represents a

distribution list (used to send multiple messages with a single MQPUT). It contains a list of
MQDistributionListItem objects.

MQDistributionListItem
z/OS (Not IBM MQ for z/OS.) An object of the MQDistributionListItem class represents a

single distribution list destination. It encapsulates the MQOR, MQRR, and MQPMR structures,
and has properties corresponding to the fields of these structures.

Object references

In an IBM MQ program that uses the MQI, IBM MQ returns connection handles and object handles to the
program.

These handles must be passed as parameters on subsequent IBM MQ calls. With the IBM MQ Object
Model, these handles are hidden from the application program. Instead, the creation of an object from a
class results in an object reference being returned to the application program. It is this object reference
that is used when making method calls and property accesses against the object.

Return codes

Issuing a method call or setting a property value results in return codes being set.

These return codes are a completion code and a reason code, and are themselves properties of the object.
The values of completion code and reason code are the same as those defined for the MQI, with some
extra values specific to the object-oriented environment.

Developing object-oriented applications with IBM MQ 639

Using .NET
IBM MQ classes for .NET allow a program written in the .NET programming framework to connect to
IBM MQ as an IBM MQ MQI client or to connect directly to an IBM MQ server.

If you have applications which use Microsoft .NET Framework and want to take advantage of the
facilities of IBM MQ, you must use IBM MQ classes for .NET.

The object-oriented IBM MQ .NET interface is different from the MQI interface in that it uses methods of
objects rather than using the MQI verbs.

The procedural IBM MQ application programming interface is built around verbs such as those in the
following list:

MQCONN, MQDISC, MQOPEN, MQCLOSE,
MQINQ, MQSET, MQGET, MQPUT, MQSUB

These verbs all take, as a parameter, a handle to the IBM MQ object on which they are to operate.
Because .NET is object-oriented, the .NET programming interface turns this round. Your program consists
of a set of IBM MQ objects, which you act upon by calling methods on those objects. You can write
programs in any language supported by .NET.

When you use the procedural interface, you disconnect from a queue manager by using the call
MQDISC(Hconn, CompCode, Reason), where Hconn is a handle to the queue manager.

In the .NET interface, the queue manager is represented by an object of class MQQueueManager. You
disconnect from the queue manager by calling the Disconnect() method on that class.
// declare an object of type queue manager
MQQueueManager queueManager=new MQQueueManager();
...
// do something...
...
// disconnect from the queue manager
queueManager.Disconnect();

IBM MQ classes for .NET is a set of classes that enable .NET applications to interact with IBM MQ. They
represent the various components of IBM MQ which your application uses, such as queue managers,
queues, channels and messages. For details of these classes, see The IBM MQ .NET classes and interfaces.

Before you can compile any applications that you write, you must have a .NET Framework installed. For
instructions on installing the IBM MQ classes for .NET and the .NET Framework, see “Installing IBM MQ
classes for .NET” on page 642.

640 IBM MQ: Programming

Related concepts:
“Options for connecting to a queue manager”
There are three modes of connecting IBM MQ classes for .NET to a queue manager. Consider which type
of connection best suits your requirements.
“Troubleshooting IBM MQ.NET problems” on page 645
You can use the .NET sample applications to help with troubleshooting problems.
“Writing and deploying IBM MQ .NET programs” on page 656
To use IBM MQ classes for .NET to access IBM MQ queues, you write programs in any language
supported by .NET containing calls that put messages onto, and get messages from, IBM MQ queues.
“Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ” on page
1231
The Microsoft Windows Communication Foundation (WCF) custom channel for IBM MQ sends and
receives messages between WCF clients and services.
“Developing applications” on page 1
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ support applications written in procedural languages, and object oriented
languages and frameworks.
Related information:
Technical overview

Getting started with IBM MQ classes for .NET
IBM MQ classes for .NET allow a program written in the .NET programming framework to connect to
IBM MQ as an IBM MQ MQI client or to connect directly to an IBM MQ server.

Options for connecting to a queue manager
There are three modes of connecting IBM MQ classes for .NET to a queue manager. Consider which type
of connection best suits your requirements.

Client bindings connection

To use IBM MQ classes for .NET as an IBM MQ MQI client, you can install it, with the IBM MQ MQI
client, either on the IBM MQ server machine, or on a separate machine. A client bindings connection can
use XA or non-XA transactions

Server bindings connection

When used in server bindings mode, IBM MQ classes for .NET use the queue manager API, rather than
communicating through a network. This provides better performance for IBM MQ applications than
using network connections.

To use the bindings connection, you must install IBM MQ classes for .NET on the IBM MQ server.

Managed client connection

A connection made in this mode connects as an IBM MQ client to an IBM MQ server running either on
the local or a remote machine.

The IBM MQ classes for .NET connecting in this mode remain in .NET managed code and make no calls
to native services. For more information about managed code, refer to Microsoft documentation.

There are a number of limitations to using the managed client. For more information about these, see
“Managed client connections” on page 657.

Developing object-oriented applications with IBM MQ 641

Installing IBM MQ classes for .NET
IBM MQ classes for .NET, including samples, is installed with IBM MQ. There is a prerequisite of
Microsoft.NET Framework.

The latest version of IBM MQ classes for .NET is installed by default as part of the standard IBM MQ
installation in the Java and .NET Messaging and Web Services feature. For installation instructions, see
Installing IBM MQ server on Windows or Installing an IBM MQ client on Windows systems.

In a multiple installation environment, if you have previously installed the IBM MQ classes for .NET as a
support pack, you cannot install IBM MQ unless you first uninstall the support pack. The IBM MQ
classes for .NET feature that is installed with IBM MQ contains the same functionality as the support
pack.

Sample applications, including source files, are also supplied; see “Sample applications.”

To run IBM MQ classes for .NET on 32-bit or 64-bit platforms you must have installed Microsoft.NET
Framework V3.5 or later.

Note: If the Microsoft.NET Framework v3.5 or higher is not installed before installing IBM MQ Version
8.0, then the IBM MQ product installation will continue without error, but the IBM MQ classes for .NET
will not be available. If the .NET Framework is installed after installing IBM MQ Version 8.0, then the
IBM MQ.NET assemblies must be registered by running the WMQInstallDir\bin\amqiRegisterdotNet.cmd
script, where WMQInstallDir is the directory where IBM MQ Version 8.0 is installed. This script installs
the required assemblies in the Global Assembly Cache (GAC). A set of amqi*.log files recording the
actions taken are created in the %TEMP% directory.

For information about using the IBM MQ custom channel for the Microsoft WCF with .NET 3, see
“Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ” on page
1231

Sample applications
To run your own .NET applications, use the instructions for the verification programs, substituting your
application name in place of the sample applications.

Five sample applications are supplied:
v A put message application
v A get message application
v A 'hello world' application
v A publish/subscribe application
v An application using message properties

All these sample applications are supplied in the C# language, and some are also supplied in C++ and
Visual Basic. You can write applications in any language supported by .NET.

"Put message" program SPUT (nmqsput.cs, mmqsput.cpp, vmqsput.vb)
This program shows how to put a message to a named queue. The program has three
parameters:
v The name of a queue (required), for example, SYSTEM.DEFAULT.LOCAL.QUEUE
v The name of a queue manager (optional)
v The definition of a channel (optional), for example, SYSTEM.DEF.SVRCONN/TCP/

hostname(1414)

If no queue manager name is given, the queue manager defaults to the default local queue
manager. If a channel is defined, it has the same format as the MQSERVER environment variable.

642 IBM MQ: Programming

"Get message" program SGET (nmqsget.cs, mmqsget.cpp, vmqsget.vb)
This program shows how to get a message from a named queue. The program has three
parameters:
v The name of a queue (required), for example, SYSTEM.DEFAULT.LOCAL.QUEUE
v The name of a queue manager (optional)
v The definition of a channel (optional), for example, SYSTEM.DEF.SVRCONN/TCP/

hostname(1414)

If no queue manager name is given, the queue manager defaults to the default local queue
manager. If a channel is defined, it has the same format as the MQSERVER environment variable.

"Hello World" program (nmqwrld.cs, mmqwrld.cpp, vmqwrld.vb)
This program shows how to put and get a message. The program has three parameters:
v The name of a queue (optional), for example, SYSTEM.DEFAULT.LOCAL.QUEUE or

SYSTEM.DEFAULT.MODEL.QUEUE
v The name of a queue manager (optional)
v A channel definition (optional), for example, SYSTEM.DEF.SVRCONN/TCP/hostname(1414)

If no queue name is given, the name defaults to SYSTEM.DEFAULT.LOCAL.QUEUE. If no queue
manager name is given, the queue manager defaults to the default local queue manager.

"Publish/subscribe" program (MQPubSubSample.cs)
This program shows how to use IBM MQ publish/subscribe. It is supplied in C# only. The
program has two parameters:
v The name of a queue manager (optional)
v A channel definition (optional)

"Message properties" program (MQMessagePropertiesSample.cs)
This program shows how to use message properties. It is supplied in C# only. The program has
two parameters:
v The name of a queue manager (optional)
v A channel definition (optional)

You can verify your installation by compiling and running these applications.

The sample applications are installed to the following locations, according to the language in which they
are written. MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

C#

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\nmqswrld.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\nmqsput.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\nmqsget.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\MQPubSubSample.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\MQMessagePropertiesSample.cs

Managed C++

MQ_INSTALLATION_PATH\Tools\dotnet\samples\mcp\mmqswrld.cpp

MQ_INSTALLATION_PATH\Tools\dotnet\samples\mcp\mmqsput.cpp

MQ_INSTALLATION_PATH\Tools\dotnet\samples\mcp\mmqsget.cpp

Visual Basic

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\vmqswrld.vb

Developing object-oriented applications with IBM MQ 643

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\vmqsput.vb

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\vmqsget.vb

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\xmqswrld.vb

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\xmqsput.vb

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\xmqsget.vb

To build the sample applications a batch file has been supplied for each language.

C#

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\bldcssamp.bat

The bldcssamp.bat file contains a line for each sample, which is all that is necessary to build this
sample program:
csc /t:exe /r:System.dll /r:amqmdnet.dll /lib: MQ_INSTALLATION_PATH\bin
/out:nmqwrld.exe nmqwrld.cs

Managed C++

MQ_INSTALLATION_PATH\Tools\dotnet\samples\mcp\bldmcpsamp.bat

The bldmcpsamp.bat file contains a line for each sample, which is all that is necessary to build
this sample program:
cl /clr:oldsyntax MQ_INSTALLATION_PATH\bin mmqwrld.cpp

If you want to compile these applications on Microsoft Visual Studio 2003/.NET SDKv1.1, replace
the compile command:
cl /clr:oldsyntax MQ_INSTALLATION_PATH\bin mmqwrld.cpp

with
cl /clr MQ_INSTALLATION_PATH\bin mmqwrld.cpp

Visual Basic

MQ_INSTALLATION_PATH\Tools\dotnet\samples\vb\bldvbsamp.bat

The bldvbsamp.bat file contains a line for each sample, which is all that is necessary to build this
sample program:
vbc /r:System.dll /r: MQ_INSTALLATION_PATH\bin\amqmdnet.dll /out:vmqwrld.exe vmqwrld.vb

Configuring your queue manager to accept TCP/IP client connections
Configure a queue manager to accept incoming connection requests from the clients.

About this task

This task explains the basic steps for configuring a queue manager to accept TCP/IP client connections.
For a production system, you must also consider the security implications when configuring queue
managers.

Procedure
1. Define a server connection channel:

a. Start the queue manager.
b. Define a sample channel called NET.CHANNEL:

DEF CHL(’NET.CHANNEL’) CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(’ ’) +
DESCR(’Sample channel for WebSphere MQ classes for .NET’)

644 IBM MQ: Programming

Important: This sample is intended for use in a sandbox environment only, as it does not include
any consideration of security implications. For a production system, consider using SSL or a
security exit. See Security for more information.

2. Start a listener:
runmqlsr -t tcp [-m qmnqme] [-p portnum]

Note: The square brackets indicate optional parameters; qmname is not required for the default queue
manager, and the port number portnum is not required if you are using the default (1414).

Troubleshooting IBM MQ.NET problems
You can use the .NET sample applications to help with troubleshooting problems.

Using the sample applications

If a program does not complete successfully, run one of the .NET sample applications, and follow the
advice given in the diagnostic messages. These sample applications are described in “Sample
applications” on page 642.

If the problems continue and you need to contact the IBM service team, you might be asked to turn on
the trace facility. For information on using the trace facility, see “Tracing IBM MQ .NET programs” on
page 688.

Error messages

You might see the following common error message:

An unhandled exception of type System.IO.FileNotFoundException occurred in unknown module
If this error occurs for either amqmdnet.dll or amqmdxcs.dll, either ensure that both are
registered in the Global Assembly Cache or create a configuration file that points to the
amqmdnet.dll and amqmdxcs.dll assemblies. You can examine and change the contents of the
assembly cache using mscorcfg.msc, which is supplied as part of the .NET framework.

If the .NET framework was unavailable when IBM MQ was installed, the classes might not be
registered in the global assembly cache. You can manually rerun the registration process using the
command
amqidnet -c MQ_INSTALLATION_PATH\bin\amqidotn.txt -l logfile.txt

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Information about this installation is written to the specified log file (logfile.txt in this example).

Developing object-oriented applications with IBM MQ 645

Distributed transactions in .NET
Distributed transactions or global transactions allows client applications to include several different
sources of data on two or more networked systems in one transaction.

In distributed transactions, a transaction manager coordinates and manages the transaction among two or
more resource managers.

Transactions can be either single phase or two-phase commit process. The single-phase commit is a
process where only one resource manager participates in the transaction and two-phase commit process is
where there are more than one resource manager participating in the transaction. In the two-phase
commit process, the transaction manager sends a prepare call to check whether all the resource managers
are prepared to commit. When it receives the acknowledgment from all the resource managers, the
commit call is issued. Else, a rollback on the whole transaction happens. See Transaction management
and support for more details. The resource managers should inform the transaction managers of their
participation in the transaction. When the resource manager informs the transaction manager of its
participation, the resource manager gets callbacks from the transaction manager when the transaction is
going to commit or roll back.

IBM MQ .NET classes already supports distributed transactions in unmanaged and server bindings mode
connections. In these modes, IBM MQ .NET classes delegates all its calls to C extended transaction client,
which manages the transaction processing on behalf of .NET.

IBM MQ.NET classes now support distributed transactions in managed mode where IBM MQ .NET
Classes uses System.Transactions namespace for the distributed transactions support. The
System.Transactions infrastructure makes transactional programming simple and efficient by supporting
the transactions initiated in all the resource managers including IBM MQ. The IBM MQ .NET application
can put and get messages using .NET implicit transaction programming or explicit transaction
programming model. In implicit transactions, the transaction boundaries are created by the application
program that decides when to commit, rollback (for explicit transactions) or complete the transaction. In
explicit transactions, you have to explicitly specify whether you want to commit, roll back, and complete
the transaction.

IBM MQ.NET uses Microsoft distributed transaction coordinator (MS DTC) as the transaction manager,
which coordinates and manages the transaction between multiple resource managers. IBM MQ is used as
the resource manager.

IBM MQ.NET follows the X/Open Distributed Transaction Processing (DTP) model. The X/Open
Distributed Transaction Processing model is a distributed transaction processing model proposed by the
Open Group, a vendor consortium. This model is a standard among most of the commercial vendors in
the transaction processing and database domains. Most of the commercial transaction management
products support the X/DTP model.

Modes of transaction
v “Distributed transactions in managed mode” on page 648
v Distributed transactions for unmanaged mode

Coordinating transactions in various scenarios
v A connection might participate in several transactions, but only one transaction is active at any point of

time.
v During a transaction, the MQQueueManager.Disconnect call is honored. In this case the transaction is

asked to roll back.
v During a transaction, the MQQueue.Close or MQTopic.Close call is honored. In this case transaction is

asked to roll back.

646 IBM MQ: Programming

v The transaction boundaries are created by the application program that decides when to commit,
rollback (for explicit transactions) or complete (for implicit transactions) the transaction.

v If the client application breaks during a transaction with an unexpected error before issuing a Put or
Get call on a queue or topic call, the transaction is rolled back and a MQException is thrown.

v If MQCC_FAILED reason code is returned during a Put or Get call on a queue or Topic call, an
MQException is thrown with reason code and the transaction is rolled. If a prepare call has been
already issued by the transaction manager, then IBM MQ .NET returns the prepare request by forcibly
rolling back the transaction. Then the transaction manager DTC causes a rollback on current work with
all the resource managers in current ambient transactions.

v During a transaction involving multiple resource managers if some environmental reason causes the
Put or Get call to hang indefinitely, the transaction manager waits until a stipulated time. After the
time is out, it causes the rollback of all current work with all the resource managers in current ambient
transactions. If this indefinite wait happens during the prepare phase, the transaction manager might
timeout or issue an in-doubt call on the resource in which case the transaction is rolled back.

v Applications using transactions must Put or Get messages under SYNC_POINT. If a message Put or
Get call is issued under a transactional context that is not under SYNC_POINT, the call fails with
MQRC_UNIT_OF_WORK_NOT_STARTED reason code.

Behavioral differences between Managed and Unmanaged Client transaction support
using Microsoft.NET System.Transactions namespace

Nested Transactions have a TransactionScope inside another TransactionScope
v IBM MQ .NET fully managed client does support nested TransactionScope
v IBM MQ .NET unmanaged client does not support nested TransactionScope

Dependent Transactions from System.Transactions
v IBM MQ .NET fully managed client does support the dependent transactions facility provided by

System.Transactions.
v IBM MQ .NET unmanaged client does not support the dependent transactions facility provided by

System.Transactions.

Product Samples

New product samples SimpleXAPut, and SimpleXAGet are available under WebSphere MQ\tools\dotnet\
samples\cs\base. The samples are C# applications, which demonstrate using MQPUT and MQGET under
Distributed Transactions using SystemTransactions namespace. For more information about these samples,
see “Creating simple put and get messages within a TransactionScope” on page 651

Developing object-oriented applications with IBM MQ 647

Distributed transactions in managed mode:

IBM MQ .NET classes use System.Transactions namespace for the distributed transactions support in
managed mode. In the managed mode, MS DTC coordinates and manages distributed transactions across
all the servers enlisted in a transaction.

IBM MQ .NET classes provide an explicit programming model based on the
System.Transactions.Transaction class and an implicit programming model using the
System.Transactions.TransactionScope, class where the transactions are automatically managed by the
infrastructure.

Implicit Transaction
The following piece of code describes how an IBM MQ .NET application puts a message using
.NET implicit transaction programming.

Using (TransactionScope scope = new TransactionScope ())
{
Q.Put (putMsg,pmo);
scope.Complete ();
}

Q.close();
qMgr.Disconect();}

Explanation of the code flow of implicit transaction
The code creates TransactionScope and puts the message under the scope. It then calls Complete to
inform the transaction coordinator of the completion of the transaction. The transaction
coordinator now issues prepare and commit to complete the transaction. If an issue is detected,
then a rollback is called.

Explicit Transaction
The following code describes how an IBM MQ .NET application puts messages using .NET
explicit transaction programming model.

MQQueueManager qMgr = new MQQueuemanager ("MQQM);
MQQueue Q = QMGR.AccessQueue("Q", MQC.MQOO_OUTPUT+MQC.MQOO_INPUT_SHARED);
MQPutMessageOptions pmo = new MQPutMessageOptions();
pmo.Options = MQC.MQPMO_SYNCPOINT;
MQMessage putMsg1 = new MQMessage();
Using(CommittableTransaction tx = new CommittableTransaction())
{
try
{
Q.Put(MSG,pmo);
tx.commit();
}
catch(Exception)
{tx.rollback();}
}

Q.close();
qMgr.Disconnect();
}

Explanation of the code flow of explicit transaction
The piece of code creates transaction using CommitableTransaction class. It puts a message under
that scope and then explicitly calls commit to complete the transaction. If there are any issues
rollback is called.

648 IBM MQ: Programming

Distributed transactions in unmanaged mode:

IBM MQ.NET classes support unmanaged connections (client) using extended transaction client and
COM+/MTS as the transaction coordinator, using either implicit or explicit transaction programming
model. In the unmanaged mode, IBM MQ .NET classes delegate all its calls to C extended transaction
client that manages the transaction processing on behalf of .NET.

The transaction processing is controlled by an external transaction manager, coordinating the global unit
of work under the control of the API of the transaction manager. The MQBEGIN, MQCMIT, and
MQBACK verbs are unavailable. IBM MQ .NET classes expose this support by way of its unmanaged
transport mode (C client). See Configuring XA-compliant transaction managers

MTS is evolved as a transaction processing (TP) system to provide the same features on Windows NT as
available in CICS, Tuxedo, and on other platforms. When the MTS is installed, a separate service is added
to Windows NT called the Microsoft Distributed Transaction Coordinator (MSDTC). The MSDTC
coordinates the transactions that span separate data stores or resources. To work, it requires each data
store to implement its own proprietary resource manager.

IBM MQ becomes compatible with MSDTC by implementing an interface (proprietary resource manager
interface) where it manages to map DTC XA calls to IBM MQ(X/Open) calls. IBM MQ plays the role of a
resource manager.

When a component such as COM+ requests access to an IBM MQ, the COM usually checks with the
appropriate MTS context object if a transaction is required. If a transaction is required, the COM informs
the DTC and automatically starts an integral IBM MQ transaction for this operation. Then the COM
works with the data through the MQMTS software, putting and getting messages as required. The object
instance obtained from the COM calls the SetComplete or SetAbort method after all the actions on the
data are over. When the application issues SetComplete, the call signals the DTC that the application has
completed the transaction and the DTC can go ahead with the two-phase commit process. The DTC then
issues calls to MQMTS which in turn issues calls to IBM MQ to commit or roll back the transaction.

Writing an IBM MQ .NET application using unmanaged client

To run within the context of COM+, a .NET class must inherit from System
.EnterpriseServices.ServicedComponent. The rules and recommendations to create assemblies that use
serviced components are the following:

Note: The following steps are relevant only if you are using System.EnterpriseServices mode.
v The class and method being started in COM+ must both be public (no internal classes, and no

protected or static methods).
v The class and method attributes: The TransactionOption attribute dictates the transaction level of the

class, that is whether the transactions are disabled, supported, or required. The AutoComplete attribute
on the ExecuteUOW() method instructs COM+ to commit the transaction if no unhandled exception is
thrown.

v Strong-naming an assembly: The assembly must be strong-named and registered in the Global
Assembly Cache (GAC). The assembly is registered in COM+ explicitly or by lazy registration after it is
registered in the GAC.

v Registering an assembly in COM+: Prepare the assembly to be exposed to COM clients. Then create a
type library by using the Assembly Registration tool, regasm.exe.
regasm UnmanagedToManagedXa.dll

v Register the assembly into GAC gacutil /i UnmanagedToManagedXa.dll.
v Register the assembly in COM+ by using the .NET services installer tool, regsvcs.exe. See the type

library created by regasm.exe:
Regsvcs /appname:UnmanagedToManagedXa /tlb:UnmanagedToManagedXa.tlb UnmanagedToManagedXa.dll

Developing object-oriented applications with IBM MQ 649

v The assembly is deployed into the GAC, and later it is registered in COM+ by lazy registration. The
.NET framework takes care of the registration after the code is run for the first time.

The example code flow using System.EnterpriseServices model and System.Transactions with COM+ are
described in the following sections:

Example code flow using System.EnterpriseServices model
using System;
using IBM.WMQ;
using IBM.WMQ.Nmqi;
using System.Transactions;
using System.EnterpriseServices;

namespace UnmanagedToManagedXa
{

[ComVisible(true)] [System.EnterpriseServices.Transaction(System.EnterpriseServices.TransactionOption.Required)]
public class MyXa : System.EnterpriseServices.ServicedComponent
{

public MQQueueManager QMGR = null;
public MQQueueManager QMGR1 = null;
public MQQueue QUEUE = null;
public MQQueue QUEUE1 = null;
public MQPutMessageOptions pmo = null;
public MQMessage MSG = null;

public MyXa()
{
}

[System.EnterpriseServices.AutoComplete()]
public void ExecuteUOW()
{

QMGR = new MQQueueManager("usemq");

QUEUE = QMGR.AccessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",
MQC.MQOO_INPUT_SHARED +
MQC.MQOO_OUTPUT +
MQC.MQOO_BROWSE);

pmo = new MQPutMessageOptions();
pmo.Options = MQC.MQPMO_SYNCPOINT;
MSG = new MQMessage();
QUEUE.Put(MSG, pmo);
QMGR.Disconnect();

}
}

}

public void RunNow()
{

MyXa xa = new MyXa();
xa.ExecuteUOW();

}

Example code flow using System.Transactions for interactions with COM+
[STAThread]
public void ExecuteUOW()
{
Hashtable t1 = new Hashtable();
t1.Add(MQC.CHANNEL_PROPERTY, "SYSTEM.DEF.SVRCONN");
t1.Add(MQC.HOST_NAME_PROPERTY, "localhost");
t1.Add(MQC.PORT_PROPERTY, 1414);
t1.Add(MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES_CLIENT);
TransactionOptions opts = new TransactionOptions();

using(TransactionScope scope = new TransactionScope(TransactionScopeOption.RequiresNew,
opts, EnterpriseServicesInteropOption.Full)

{

QMGR = new MQQueueManager("usemq", t1);

650 IBM MQ: Programming

QUEUE = QMGR.AccessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",
MQC.MQOO_INPUT_SHARED +
MQC.MQOO_OUTPUT +
MQC.MQOO_BROWSE);

pmo = new MQPutMessageOptions();
pmo.Options = MQC.MQPMO_SYNCPOINT;
MSG = new MQMessage();
QUEUE.Put(MSG, pmo);
scope.Complete();

}
QMGR.Disconnect();

}

Creating simple put and get messages within a TransactionScope:

Product sample C# applications are available within IBM MQ. These simple applications demonstrate
putting and getting messages within a TransactionScope. At the end of the task, you will be able to put
and get messages from a queue or topic.

Before you begin

MSDTC service must be running and enabled for XA Transactions.

About this task

The example is a simple application, SimpleXAPut and SimpleXAGet. The programs SimpleXAPut and
SimpleXAGet are C# applications available within IBM MQ. SimpleXAPut demonstrates using MQPUT,
under Distributed Transactions using SystemTransactions namespace. SimpleXAGet demonstrates using
MQGET, under Distributed Transactions using SystemTransactions namespace.

SimpleXAPut is located in WebSphere MQ\tools\dotnet\samples\cs\base

Procedure

The applications can be run with the command-line parameters from tools\dotnet\samples\cs\base\bin
SimpleXAPut.exe -d destinationURI [-h host -p port -l channel -tx transaction -tm mode -n numberOfMsgs]

SimpleXAGet.exe -d destinationURI [-h host -p port -l channel -tx transaction -tm mode -n numberOfMsgs]

where the parameters are:
-destinationURI
This can be queue or topic. For a queue, specify as queue://queueName and for a topic specify as
topic://topicName.
-host
This can be a hostname such as localhost or an IP address.
-port
The port on which the queue manager is running.
-channel
The connection channel being used. The default is SYSTEM.DEF.SVRCONN
-transaction
The transaction result, for example commit or rollback.
-mode
The transport mode, for example managed or unmanaged.
-numberOfMsgs
The number of messages. The default is 1.

Developing object-oriented applications with IBM MQ 651

Example
SimpleXAPut -d topic://T01 -h localhost -p 2345 -tx rollback -tm unmanaged

SimpleXAGet -d queue://Q01 -h localhost -p 2345 -tx rollback -tm unmanaged

Recovering transactions:

This section describes the process of recovering transactions in IBM MQ .NET XA using managed mode.

Overview

In distributed transaction processing, the transactions can be successfully completed. But, there can be
scenarios where a transaction may fail for many reasons. These reasons could include a system failure,
hardware failure, network error, incorrect or invalid data, application errors or natural or man-made
disasters. It is not possible to prevent transaction failures. The distributed transaction system must be
capable of handling these failures. It must be able to detect and correct errors when they occur. This
process is known as Transaction Recovery.

An important aspect of the Distributed Transaction Processing is to recover the incomplete or in doubt
transactions. It is essential to run the recovery as the Unit of Work part of a particular transaction is held
locked until it is recovered. Microsoft.NET from its System.Transactions class library provides the option
for recovering incomplete/in-doubt transactions. This recovery support expects Resource Manager to
maintain the transaction logs and run the recovery when in need.

Recovery Model

In the Microsoft .NET transaction recovery model, the Transaction Manager (System.Transactions, or
Microsoft Distributed Transaction coordinator (MS DTC), or both), initiates, coordinates, and controls the
transaction recovery. The OLE Tx Protocol (the Microsoft XA protocol) based Resource Managers provide
the options to configure the DTC to drive, coordinate, and control the recovery for them. To do this,
Resource Managers must register XA_Switch with MS DTC by using native interface.

XA_Switch provides the entry points of XA functions like xa_start, xa_end, and xa_recover in the
Resource Manager to the Distributed Transaction Coordinator.

Recovery using Microsoft Distributed Transaction coordinator (DTC):

Microsoft Distributed Transaction coordinator provides two kinds of recovery processes.

Cold Recovery

Cold recovery is performed if the transaction manager process fails while a connection to a XA
resource manager is open. When the transaction manager restarts, it reads the transaction
manager logs and re-establishes the connection to the XA resource manager and then initiates
recovery.

Hot Recovery

Hot recovery is performed if the transaction manager remains up while the connection between
the transaction manager and the XA resource manager fails because the XA resource manager or
the network fails. After the failure, the transaction manager periodically attempts to reconnect to
the XA resource manager. When the connection is re-established, the transaction manager initiates
XA recovery.

System.Transactions namespace provides managed implementation of Distributed transactions
that are based on MS DTC as the transaction manager. It provides similar features as that of MS
DTC's native interface but in fully managed environment. The only difference is about the
transaction recovery. System.Transactions expects Resource Managers to drive the recovery by
themselves and then coordinate with the Transaction Managers (MS DTC). Resource Manager

652 IBM MQ: Programming

must ask for recovery of a particular incomplete transaction and then Transaction Manager
accepts it and coordinates based on the actual outcome of that particular transaction.

IBM MQ .NET Distributed Transaction Processing - Recovering Transaction:

This section describes how transactions can be recovered with IBM MQ .NET classes.

Overview

To recover an incomplete transaction the recovery information is required. The transaction recovery
information must be logged to storage by the resource managers. IBM MQ .NET classes follow a similar
path. The transaction recovery information is logged to a system queue called
SYSTEM.DOTNET.XARECOVERY.QUEUE.

Transaction recovery in IBM MQ .NET is a two stage process.
1. Logging of transaction recovery information.
v For every transaction, during the prepare phase a persistent message containing the recovery

information is added to SYSTEM.DOTNET.XARECOVERY.QUEUE.
v The message is deleted if the commit call succeeds.

2. Recovering transactions using a monitor application WmqDotnetXAMonitor.
v WmqDotnetXAMonitor is a .NET managed application that processes messages in

SYSTEM.DOTNET.XARECOVERY.QUEUE and recovers incomplete transactions
If the MCA is unable to put the message to the destination queue, it generates an exception report
containing the original message, and puts it on a transmission queue to be sent to the reply-to queue
specified in the original message. (If the reply-to queue is on the same queue manager as the MCA,
the message is put directly to that queue, not to a transmission queue.)

SYSTEM.DOTNET.XARECOVERY.QUEUE

This is a system queue that holds transaction recovery information of incomplete transactions. This queue
gets created when a queue manager is created.

Note: You should not delete SYSTEM.DOTNET.XARECOVERY.QUEUE queue.

WMQDotnetXAMonitor Application

IBM MQ .NET XA Monitor application monitors a given queue manager and recovers incomplete
transactions if any. Following are deemed as incomplete transactions and are recovered:

Incomplete Transactions

v If the transaction is prepared but COMMIT did not complete within the timeout period.
v If the transaction is prepared but IBM MQ Queue manager has gone down.
v If the transaction is prepared but then Transaction Manager has gone down.

Monitor application must be run from the same system where your IBM MQ .NET client application is
running. If there are applications running on multiple systems connecting to the same queue manager,
the monitor application must be run from all the systems. Though each client machine has a monitor
application running to recover the application, each monitor should be able to identify the message
that corresponds to transaction that the current monitor's local MS DTC was coordinating so that it can
reenlist and complete it.

Developing object-oriented applications with IBM MQ 653

Using WMQDotnetXAMonitor application:

The WMQDotnetXAMonitor application must be run manually. It can be started at any time. You can
start it when you see the messages on the SYSTEM.DOTNET.XARECOVERY.QUEUE or you can keep it
running in the background before you do any transactional work with the applications that are written
using IBM MQ .NET classes.

Use the following command to start the monitor application
WmqDotnetXAMonitor.exe -m <QueueManagerName> -n <ConnectionName> -c <Channel> -h

Where
v

n Connection name in host (port) format. Connection Name can contain more than one
connection name. Multiple connection names must be given in comma separated list, for
example localhost (1414), localhost (1415), localhost (1416). Monitor application run the
recovery for each of the connection names specified in the comma separated list.

c Channel name.

m Queue manager name.

Optional

h Heuristic branch completion.

Optional

The monitor application performs the following actions:
1. Checks the queue depth of SYSTEM.DOTNET.XARECOVERY.QUEUE at an interval of 100 seconds.
2. If the queue depth is greater than zero the XA monitor browses the queue for messages and checks if

the message satisfies the incomplete transaction criteria.
3. If any of the messages satisfy the incomplete transaction criteria, monitor pulls it out, and retrieves

the transaction recovery information.
4. It then determines if the recovery information relates to the local MS DTC. If yes then it proceeds to

recover the transaction. Otherwise it goes back to browse the next message.
5. It then makes calls to the queue manager to recover the incomplete transaction.

WmqDotNETXAMonitor Configuration Settings:

To monitor the application, inputs can also be provided using the application configuration file. A sample
application configuration file is shipped with IBM MQ .NET. This file can be modified according your
requirements.

Application Configuration file takes the highest precedence while considering the input values. If input
values are provided at both command line and Application Configuration file, then values from
application configuration are considered.

Sample application configuration file.
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<configSections>
<sectionGroup name="IBM.WMQ">
<section name="dnetxa" type="System.Configuration.NameValueFileSectionHandler" />
</sectionGroup>
</configSections>
<IBM.WMQ>
<dnetxa>
<add key="ConnectionName" value=""/>

654 IBM MQ: Programming

<add key="ChannelName" value="" />
<add key="QueueManagerName" value="" />
<add key="UserId" value="" />
<add key="SecurityExit" value="" />
<add key="SecurityExitUserData" value = "">
</dnetxa>
</dnetxa>
</configuration>

WmqDotNetXAMonitor Application log:

Monitor Application creates a log file in the application directory for logging the Monitor's progress and
transaction recovery status. Logging starts with the connection name and the channel details to show
current queue manager for which the recovery is running.

Once the recovery starts, MessageId of the transaction recovery message, TransactionId of the incomplete
transaction and actual outcome of the transaction as per Transaction Manager Coordination will be
logged.

Sample log file:
Time|ProcessId|ThreadId|WMQ .NET XA Recovery Monitor, Running now for
ConnectionName:xxxx, Time|ProcessId|ThreadId|Channel=xxxx
Time|ProcessId|ThreadId|Current QueueDepth = n
Time|ProcessId|ThreadId|Current MessageId = xxxx
Time|ProcessId|ThreadId|Current Incomplete Transaction being recovered = xxxxx
Time|ProcessId|ThreadId|Actual Outcome of the transaction(as per DTC)= Commit/Rollback
Time|ProcessId|ThreadId|Recovery Completed for TransactionId= xxxxx
Time|ProcessId|ThreadId|Current QueueDepth = n
Time|ProcessId|ThreadId|Current MessageId = xxxx
Time|ProcessId|ThreadId|Current Incomplete Transaction being recovered = xxxxx
Time|ProcessId|ThreadId|Actual Outcome of the transaction(as per DTC)= Commit/Rollback
Time|ProcessId|ThreadId| Recovery Completed for TransactionId= xxxxx

Recovering transactions: Use cases:

There are several different use cases from which transactions might need to be recovered.
v IBM MQ Application using single DTC and single Queue Manager instance: In this use case, when

you connect to the queue manager and run Unit of Work (UoW) under transaction, and if the
transaction fails and becomes incomplete, the monitor application recovers the transaction and
completes it.
In this use case, there will be a single instance of monitor application running, as a single Queue
manager is associated with the transactions.

v Multiple IBM MQ Applications using single DTC and single Queue Manager instance: In this use
case, there are more than one WMQ applications under single DTC and all are connecting to the same
queue manager and running UoW under transactions.
If the transactions fail and become incomplete, the monitor application recovers them and completes
the transactions pertaining to all the applications.
In this use case, a single monitor application runs, as one queue manager is used in transactions.

v Multiple IBM MQ Applications, multiple DTCs, different Queue Manager instances: In this use
case, there are more than one WMQ applications under different DTCs (that is, each application is
running on a different machine) and connecting to different queue managers.
If failure occurs and transaction becomes incomplete, monitor application checks the
TransactionManagerWhereabouts in the message to determine the DTC address. If the
TransactionManagerWhereabouts value matches with the DTC address under which the monitor is
running, it completes the recovery, else, it continues to search until the message corresponding to its
DTC is found.

Developing object-oriented applications with IBM MQ 655

In this use case, there will be only one instance of monitor application running per client (user or
computer) as each client has its own queue manager used in transactions.

v Multiple IBM MQ Applications, multiple DTCs, multiple same Queue Managers instances: In this
use case, there are more than one WMQ applications under different DTCs (that is each application is
running on a different machine) and all are connecting to same queue manager.
If failure occurs and transaction becomes incomplete, monitor application verifies the
TransactionManagerWhereabouts in the message to check if the DTC address and value match with the
DTC under which the monitor is running. If both the values match, it completes the recovery else
continues to search until it finds the message corresponding to its DTC.
In this use case, there will be only a single instance of monitor application running per client (user or
computer), as each client has its own queue manager association used in transactions.

v Multiple IBM MQ Applications, single DTC, different Queue Manager instances: In this use case,
there are more than one WMQ applications under a single DTC (that is, on a computer, there are more
than one WMQ applications running) and connecting to different queue managers.
If transaction fails and becomes incomplete, monitor application recovers the transaction.
In this use case, there will be as many instances of monitor application running as queue managers
connected to, as each application has its own queue manager used in transactions and each of it must
be recovered.

Note: If the monitor application is not running in the background, you can start it.

Writing and deploying IBM MQ .NET programs
To use IBM MQ classes for .NET to access IBM MQ queues, you write programs in any language
supported by .NET containing calls that put messages onto, and get messages from, IBM MQ queues.

The IBM MQ documentation contains information only on the C#, C++ and Visual Basic languages.

This collection of topics provides information to assist with writing applications to interact with IBM MQ
systems. For details of individual classes, see The IBM MQ .NET classes and interfaces.

Connection differences
The way that you program for IBM MQ.NET has some dependencies on the connection modes that you
want to use.

When IBM MQ classes for .NET are used as a managed client, there are a number of differences from a
standard IBM MQ MQI client, as some features are not available to a managed client.

IBM MQ.NET determines which connection type to use from the settings that you specify for the
connection name, channel name, the customization value NMQ_MQ_LIB and the property
MQC.TRANSPORT_PROPERTY.

656 IBM MQ: Programming

Managed client connections:

When IBM MQ classes for .NET are used as a managed client, there are a number of differences from a
standard IBM MQ MQI client.

The following features are not available to a managed client:
v Channel compression
v Channel exit chaining

If you try to use these features with a managed client, it will return an MQException. If the error is
detected at the client end of a connection, it will use reason code MQRC_ENVIRONMENT_ERROR. If it
is detected at the server end, the reason code returned by the server will be used.

Channel exits written for an unmanaged client do not work. You must write new exits specifically for the
managed client. Check that there are no invalid channel exits specified in your client channel definition
table (CCDT).

The name of a managed channel exit can be up to 999 characters long. However, if you use the CCDT to
specify the channel exit name, it is limited to 128 characters.

Communication is supported only over TCP/IP.

When you stop a queue manager using the endmqm command, a server-connection channel to a .NET
managed client can take longer to close than server-connection channels to other clients.

If you are have set NMQ_MQ_LIB to managed in order to use managed IBM MQ problem diagnostics,
none of the parameters -i, -p, -s, -b, or -c of the strmqtrc command is supported.

A managed .NET application using XA transactions will not work with a z/OS queue manager. A
managed .NET client attempting to connect to a z/OS queue manager fails with an error,
MQRC_UOW_ENLISTMENT_ERROR (mqrc=2354), on MQOPEN call. However, a managed .NET
application using XA transactions will work with distributed queue manager.

Defining which connection type to use:

The connection type is determined by the setting of the connection name, channel name, the
customization value NMQ_MQ_LIB and the property MQC.TRANSPORT_PROPERTY.

You can specify the connection name as follows:
v Explicitly on an MQQueueManager constructor:

public MQQueueManager(String queueManagerName, MQLONG Options, string Channel,
string ConnName)

public MQQueueManager(String queueManagerName, string Channel, string ConnName)

v By setting the properties MQC.HOST_NAME_PROPERTY and, optionally, MQC.PORT_PROPERTY in a
hashtable entry on an MQQueueManager constructor:
public MQQueueManager(String queueManagerName, Hashtable properties)

v As explicit MQEnvironment values
MQEnvironment.Hostname

MQEnvironment.Port (optional).
v By setting the properties MQC.HOST_NAME_PROPERTY and, optionally, MQC.PORT_PROPERTY in

the MQEnvironment.properties hashtable.

You can specify the channel name as follows:

Developing object-oriented applications with IBM MQ 657

v Explicitly on an MQQueueManager constructor:
public MQQueueManager(String queueManagerName, MQLONG Options, string Channel,
string ConnName)

public MQQueueManager(String queueManagerName, string Channel, string ConnName)

v By setting the property MQC.CHANNEL_PROPERTY in a hashtable entry on an MQQueueManager
constructor:
public MQQueueManager(String queueManagerName, Hashtable properties)

v As an explicit MQEnvironment value
MQEnvironment.Channel

v By setting the property MQC.CHANNEL_PROPERTY in the MQEnvironment.properties hashtable.

You can specify the transport property as follows:
v By setting the property MQC.TRANSPORT_PROPERTY in a hashtable entry on an MQQueueManager

constructor:
public MQQueueManager(String queueManagerName, Hashtable properties)

v By setting the property MQC.TRANSPORT_PROPERTY in the MQEnvironment.properties hashtable.

Select the connection type you require by using one of the following values:
MQC.TRANSPORT_MQSERIES_BINDINGS - connect as server
MQC.TRANSPORT_MQSERIES_CLIENT - connect as non-XA client
MQC.TRANSPORT_MQSERIES_XACLIENT - connect as XA client
MQC.TRANSPORT_MQSERIES_MANAGED - connect as non-XA managed client

You can set the customization value NMQ_MQ_LIB to explicitly choose the connection type as shown in
the following table.

NMQ_MQ_LIB value Connection type

mqic.dll Connect as a non-XA client

mqicxa.dll Connect as an XA client

mqm.dll Connect as a server or as a non-XA client

managed Connect as a non-XA managed client

Note: Values of mqic32.dll and mqic32xa.dll are accepted as synonyms of mqic.dll and mqicxa.dll for
compatibility with earlier releases. However, mqm.dll and mqm.pdb are only part of the client package
from Version 7.1 onwards.

If you choose a connection type which is unavailable in your environment, for example you specify
mqic32xa.dll and do not have XA support, IBM MQ.NET throws an exception.

Setting NMQ_MQ_LIB to "managed" causes the client to use managed IBM MQ problem diagnostic tests,
.NET data conversion, and other managed low-level IBM MQ functions.

All other values for NMQ_MQ_LIB cause the .NET process to use unmanaged IBM MQ problem
diagnostic tests and data conversion, and other unmanaged low-level IBM MQ functions (assuming an
IBM MQ MQI client or server is installed on the system).

IBM MQ.NET chooses the connection type as follows:
1. If MQC.TRANSPORT_PROPERTY is specified, it connects according to the value of

MQC.TRANSPORT_PROPERTY.

658 IBM MQ: Programming

Note, however, that setting MQC.TRANSPORT_PROPERTY to
MQC.TRANSPORT_MQSERIES_MANAGED does not guarantee that the client process runs managed.
Even with this setting, the client is not managed in the following cases:
v If another thread in the process has connected with MQC.TRANSPORT_PROPERTY set to

something other than MQC.TRANSPORT_MQSERIES_MANAGED.
v If NMQ_MQ_LIB is not set to "managed", problem diagnostic tests, data conversion, and other

low-level functions are not fully managed (assuming an IBM MQ MQI client or server is installed
on the system).

2. If a connection name has been specified without a channel name, or a channel name has been
specified without a connection name, it throws an error.

3. If both a connection name and a channel name have been specified:
v If NMQ_MQ_LIB is set to mqic32xa.dll, it connects as an XA client.
v If NMQ_MQ_LIB is set to managed, it connects as a managed client.
v Otherwise it connects as a non-XA client.

4. If NMQ_MQ_LIB is specified, it connects according to the value of NMQ_MQ_LIB.
5. If an IBM MQ server is installed, it connects as a server.
6. If an IBM MQ MQI client is installed, it connects as a non-XA client.
7. Otherwise, it connects as a managed client.

Configuration files for IBM MQ classes for .NET
A .NET client application can use an IBM MQ MQI client configuration file and, if you are using the
managed connection type, a .NET application configuration file. Settings in the application configuration
file have priority.

Client configuration file

An IBM MQ classes for .NET client application can use a client configuration file in the same way as any
other IBM MQ MQI client. This file is typically called mqclient.ini, but you can specify a different file
name. For more information about the client configuration file, see Configuring a client using a
configuration file.

Only the following attributes in an IBM MQ MQI client configuration file are relevant to IBM MQ classes
for .NET. If you specify other attributes, it has no effect.

Stanza Attribute

CHANNELS CCSID

CHANNELS ChannelDefinitionDirectory

CHANNELS ChannelDefinitionFile

CHANNELS ServerConnectionParms

ClientExitPath ExitsDefaultPath

ClientExitPath ExitsDefaultPath64

MessageBuffer MaximumSize

MessageBuffer PurgeTime

MessageBuffer UpdatePercentage

TCP ClntRcvBufSize

TCP ClntSndBufSize

TCP IPAddressVersion

TCP KeepAlive

Developing object-oriented applications with IBM MQ 659

You can override any of these attributes using the appropriate environment variable.

Application configuration file

If you are running with the managed connection type, you can also override the IBM MQ client
configuration file and the equivalent environment variables using the .NET application configuration file.

The .NET application configuration file settings are only acted upon when running with the managed
connection type, and are ignored for other connection types.

The .NET application configuration file and its format are defined by Microsoft for general use within the
.NET framework, but the particular section names, keys and values mentioned in this documentation are
specific to IBM MQ.

The format of the .NET application configuration file is a number of sections. Each section contains one or
more keys, and each key has an associated value. The following example shows the sections, keys, and
values used in a .NET application configuration file to control the TCP/IP KeepAlive property:
<configuration>

<configSections>
<section name="TCP" type="System.Configuration.NameValueSectionHandler"/>

</configSections>
<TCP>

<add key="KeepAlive" value="true"></add>
</TCP>

<configuration>

The keywords used in the .NET application configuration file section names and keys exactly match the
keywords for the Stanzas and Attributes defined in the client configuration file.

See your Microsoft documentation for further information.

Example code fragment
A C# code fragment demonstrating that an application connects to a queue manager, puts a message on
to a queue and receives a reply.

The following C# code fragment demonstrates an application that performs three actions:
1. Connect to a queue manager
2. Put a message onto SYSTEM.DEFAULT.LOCAL.QUEUE
3. Get the message back

It also shows how to change the connection type.
// ===
// Licensed Materials - Property of IBM
// 5724-H72
// (c) Copyright IBM Corp. 2003, 2005
// ===
using System;
using System.Collections;

using IBM.WMQ;

class MQSample
{

// The type of connection to use, this can be:-
// MQC.TRANSPORT_MQSERIES_BINDINGS for a server connection.
// MQC.TRANSPORT_MQSERIES_CLIENT for a non-XA client connection
// MQC.TRANSPORT_MQSERIES_XACLIENT for an XA client connection
// MQC.TRANSPORT_MQSERIES_MANAGED for a managed client connection
const String connectionType = MQC.TRANSPORT_MQSERIES_CLIENT;

660 IBM MQ: Programming

// Define the name of the queue manager to use (applies to all connections)
const String qManager = "your_Q_manager";

// Define the name of your host connection (applies to client connections only)
const String hostName = "your_hostname";

// Define the name of the channel to use (applies to client connections only)
const String channel = "your_channelname";

/// <summary>
/// Initialise the connection properties for the connection type requested
/// </summary>
/// <param name="connectionType">One of the MQC.TRANSPORT_MQSERIES_ values</param>
static Hashtable init(String connectionType)
{

Hashtable connectionProperties = new Hashtable();

// Add the connection type
connectionProperties.Add(MQC.TRANSPORT_PROPERTY, connectionType);

// Set up the rest of the connection properties, based on the
// connection type requested
switch(connectionType)
{

case MQC.TRANSPORT_MQSERIES_BINDINGS:
break;

case MQC.TRANSPORT_MQSERIES_CLIENT:
case MQC.TRANSPORT_MQSERIES_XACLIENT:
case MQC.TRANSPORT_MQSERIES_MANAGED:

connectionProperties.Add(MQC.HOST_NAME_PROPERTY, hostName);
connectionProperties.Add(MQC.CHANNEL_PROPERTY, channel);
break;

}

return connectionProperties;
}
/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static int Main(string[] args)
{

try
{

Hashtable connectionProperties = init(connectionType);

// Create a connection to the queue manager using the connection
// properties just defined
MQQueueManager qMgr = new MQQueueManager(qManager, connectionProperties);

// Set up the options on the queue we want to open
int openOptions = MQC.MQOO_INPUT_AS_Q_DEF | MQC.MQOO_OUTPUT;

// Now specify the queue that we want to open,and the open options
MQQueue system_default_local_queue =

qMgr.AccessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE", openOptions);

// Define a WebSphere MQ message, writing some text in UTF format
MQMessage hello_world = new MQMessage();
hello_world.WriteUTF("Hello World!");

// Specify the message options
MQPutMessageOptions pmo = new MQPutMessageOptions(); // accept the defaults,

// same as MQPMO_DEFAULT

Developing object-oriented applications with IBM MQ 661

// Put the message on the queue
system_default_local_queue.Put(hello_world, pmo);

// Get the message back again

// First define a WebSphere MQ message buffer to receive the message
MQMessage retrievedMessage =new MQMessage();
retrievedMessage.MessageId =hello_world.MessageId;

// Set the get message options
MQGetMessageOptions gmo =new MQGetMessageOptions(); //accept the defaults

//same as MQGMO_DEFAULT

// Get the message off the queue
system_default_local_queue.Get(retrievedMessage,gmo);

// Prove we have the message by displaying the UTF message text
String msgText = retrievedMessage.ReadUTF();
Console.WriteLine("The message is: {0}", msgText);

// Close the queue
system_default_local_queue.Close();

// Disconnect from the queue manager
qMgr.Disconnect();

}

//If an error has occurred,try to identify what went wrong.

//Was it a WebSphere MQ error?
catch (MQException ex)
{

Console.WriteLine("A WebSphere MQ error occurred: {0}", ex.ToString());
}

catch (System.Exception ex)
{

Console.WriteLine("A System error occurred: {0}", ex.ToString());
}

return 0;
}//end of start

}//end of sample

Setting up the IBM MQ environment
Before you use the client connection to connect to a queue manager, you must set up the IBM MQ
environment.

Note: This step is not necessary when using IBM MQ classes for .NET in server bindings mode.

The .NET programming interface allows you to use the NMQ_MQ_LIB customization value but also
includes a class MQEnvironment. This class allows you to specify details that are to be used during the
connection attempt, such as those in the following list:
v Channel name
v Host name
v Port number
v Channel exits
v SSL parameters
v User ID and password

662 IBM MQ: Programming

For full information about the MQEnvironment class, see MQEnvironment.NET class

To specify the channel name and host name, use the following code:
MQEnvironment.Hostname = "host.domain.com";
MQEnvironment.Channel = "client.channel";

By default, the clients attempt to connect to a IBM MQ listener at port 1414. To specify a different port,
use the code:
MQEnvironment.Port = nnnn;

Connecting to and disconnecting from a queue manager
When you have configured the IBM MQ environment, you are ready to connect to a queue manager.

To connect to a queue manager, create a new instance of the MQQueueManager class:
MQQueueManager queueManager = new MQQueueManager("qMgrName");

To disconnect from a queue manager, call the Disconnect method on the queue manager:
queueManager.Disconnect();

You must have inquire (inq) authority on the queue manager when attempting to connect to the queue
manager. Without inquire authority, the connection attempt fails.

If you call the Disconnect method, all open queues and processes that you have accessed through that
queue manager are closed. However, it is good programming practice to close these resources explicitly
when you finish using them. To close the resources, use the Close method on the object associated with
each resource.

The Commit and Backout methods on a queue manager replace the MQCMIT and MQBACK calls that
are used with the procedural interface.

Accessing queues and topics
You can access queues and topics using methods of MQQueueManager or appropriate constructors.

To access queues, use the methods of the MQQueueManager class. The MQOD (object descriptor
structure) is collapsed into the parameters of these methods. For example, to open a queue on a queue
manager represented by an MQQueueManager object called queueManager, use the following code:
MQQueue queue = queueManager.AccessQueue("qName",

MQC.MQOO_OUTPUT,
"qMgrName",
"dynamicQName",
"altUserId");

The options parameter is the same as the Options parameter in the MQOPEN call.

The AccessQueue method returns a new object of class MQQueue.

When you have finished using the queue, use the Close() method to close it, as in the following example:
queue.Close();

With IBM MQ .NET, you can also create a queue by using the MQQueue constructor. The parameters are
exactly the same as for the accessQueue method, with the addition of a queue manager parameter
specifying the instantiated MQQueueManager object to use. For example:

Developing object-oriented applications with IBM MQ 663

MQQueue queue = new MQQueue(queueManager,
"qName",
MQC.MQOO_OUTPUT,
"qMgrName",
"dynamicQName",
"altUserId");

Constructing a queue object in this way enables you to write your own subclasses of MQQueue.

Similarly, you can also access topics using the methods of the MQQueueManager class. Use an
AccessTopic() method to open a topic. This returns a new object of class MQTopic. When you have
finished using the topic, use the Close() method of the MQTopic to close it.

You can also create a topic by using an MQTopic constructor. There are a number of constructors for
topics; for more information see MQTopic.NET class.

Handling messages
Messages are handled using the methods of the queue or topic classes. To build a new message, create a
new MQMessageobject.

Put messages onto queues or topics using the Put() method of the MQQueue or MQTopic class. Get
messages from queues or topics using the Get() method of the MQQueue or MQTopic class. Unlike the
procedural interface, where MQPUT and MQGET put and get arrays of bytes, the IBM MQ classes for
.NET put and get instances of the MQMessage class. The MQMessage class encapsulates the data buffer
that contains the actual message data, together with all the MQMD (message descriptor) parameters that
describe that message.

To build a new message, create a new instance of the MQMessage class and use the WriteXXX methods
to put data into the message buffer.

When the new message instance is created, all the MQMD parameters are automatically set to their
default values, as defined in Initial values and language declarations for MQMD. The Put() method of
MQQueue also takes an instance of the MQPutMessageOptions class as a parameter. This class represents
the MQPMO structure. The following example creates a message and puts it onto a queue:
// Build a new message containing my age followed by my name
MQMessage myMessage = new MQMessage();
myMessage.WriteInt(25);

String name = "Charlie Jordan";
myMessage.WriteUTF(name);

// Use the default put message options...
MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message
!queue.Put(myMessage,pmo);

The Get() method of MQQueue returns a new instance of MQMessage, which represents the message just
taken from the queue. It also takes an instance of the MQGetMessageOptions class as a parameter. This
class represents the MQGMO structure.

You do not need to specify a maximum message size, because the Get() method automatically adjusts the
size of its internal buffer to fit the incoming message. Use the ReadXXX methods of the MQMessage class
to access the data in the returned message.

The following example shows how to get a message from a queue:
// Get a message from the queue
MQMessage theMessage = new MQMessage();
MQGetMessageOptions gmo = new MQGetMessageOptions();

664 IBM MQ: Programming

queue.Get(theMessage,gmo); // has default values

// Extract the message data
int age = theMessage.ReadInt();
String name1 = theMessage.ReadUTF();

You can alter the number format that the read and write methods use by setting the encoding member
variable.

You can alter the character set to use for reading and writing strings by setting the characterSet member
variable.

See MQMessage.NET class for more details.

Note: The WriteUTF() method of MQMessage automatically encodes the length of the string as well as
the Unicode bytes it contains. When your message will be read by another .NET program (using
ReadUTF()), this is the simplest way to send string information.

Handling message properties:

Message properties allow you to select messages, or to retrieve information about a message without
accessing its headers. The MQMessage class contains methods to get and set properties.

You can use message properties to allow an application to select messages to process, or to retrieve
information about a message without accessing MQMD or MQRFH2 headers. They also facilitate
communication between IBM MQ and JMS applications. For more information about message properties
in IBM MQ, see Message properties.

The MQMessage class provides a number of methods to get and set properties, according to the data
type of the property. The get methods have names of the format Get*Property, and the set methods have
names of the format Set*Property, where the asterisk (*) represents one of the following strings:
v Boolean
v Byte
v Bytes
v Double
v Float
v Int
v Int2
v Int4
v Int8
v Long
v Object
v Short
v String

For example, to get the IBM MQ property myproperty (a character string), use the call
message.GetStringProperty(’myproperty’). You can optionally pass a property descriptor, which IBM
MQ will complete.

Developing object-oriented applications with IBM MQ 665

Handling errors
Handle errors arising from IBM MQ classes for .NET using try and catch blocks.

Methods in the .NET interface do not return a completion code and reason code. Instead, they throw an
exception whenever the completion code and reason code resulting from an IBM MQ call are not both
zero. This simplifies the program logic so that you do not have to check the return codes after each call
to IBM MQ. You can decide at which points in your program you want to deal with the possibility of
failure. At these points, you can surround your code with try and catch blocks, as in the following
example:
try
{

myQueue.Put(messageA,PutMessageOptionsA);
myQueue.Put(messageB,PutMessageOptionsB);

}
catch (MQException ex)
{

// This block of code is only executed if one of
// the two put methods gave rise to a non-zero
// completion code or reason code.
Console.WriteLine("An error occurred during the put operation:" +

"CC = " + ex.CompletionCode +
"RC = " + ex.ReasonCode);

Console.WriteLine("Cause exception:" + ex);
}

Getting and setting attribute values
The classes MQManagedObject, MQQueue, and MQQueueManager contain methods that allow you to
get and set their attribute values. Note that for MQQueue, the methods work only if you specify the
appropriate inquire and set flags when you open the queue.

For common attributes, the MQQueueManager and MQQueue classes inherit from a class called
MQManagedObject. This class defines the Inquire() and Set() interfaces.

When you create a new queue manager object by using the new operator, it is automatically opened for
inquire. When you use the AccessQueue() method to access a queue object, that object is not
automatically opened for either inquire or set operations, this could cause problems with some types of
remote queues. To use the Inquire and Set methods and to set properties on a queue, you must specify
the appropriate inquire and set flags in the openOptions parameter of the AccessQueue() method.

The inquire and set methods take three parameters:
v selectors array
v intAttrs array
v charAttrs array

You do not need the SelectorCount, IntAttrCount, and CharAttrLength parameters that are found in
MQINQ, because the length of an array is always known. The following example shows how to make an
inquiry on a queue:
//inquire on a queue
int [] selectors = new int [2] ;
int [] intAttrs = new int [1] ;
byte [] charAttrs = new byte [MQC.MQ_Q_DESC_LENGTH];
selectors [0] = MQC.MQIA_DEF_PRIORITY;
selectors [1] = MQC.MQCA_Q_DESC;
queue.Inquire(selectors,intAttrs,charAttrs);
ASCIIEncoding enc = new ASCIIEncoding();
String s1 = "";
s1 = enc.GetString(charAttrs);

666 IBM MQ: Programming

All attributes of these objects can be inquired on. A subset of attributes is exposed as the properties of an
object. For a list of object attributes, see Attributes of objects. For object properties, see the appropriate
class description.

Multithreaded programs
The .NET runtime environment is inherently multithreaded. IBM MQ classes for .NET allows a queue
manager object to be shared across multiple threads but ensures that all access to the target queue
manager is synchronized.

Consider a simple program that connects to a queue manager and opens a queue at startup. The program
displays a single button on the screen. When a user clicks that button, the program fetches a message
from the queue. In this situation, the application initialization occurs in one thread, and the code that
executes in response to the button press executes in a separate thread (the user interface thread).

The implementation of IBM MQ .NET ensures that, for a particular connection (MQQueueManager object
instance), all access to the target IBM MQ queue manager is synchronized. The default behavior is that a
thread that wants to issue a call to a queue manager is blocked until all other calls in progress for that
connection are complete. If you require simultaneous access to the same queue manager from multiple
threads within your program, create a new MQQueueManager object for each thread that requires
concurrent access. (This is equivalent to issuing a separate MQCONN call for each thread.)

If the default connection options are overridden by MQC.MQCNO_HANDLE_SHARE_NONE or
MQC.MQCNO_SHARE_NO_BLOCK then the queue manager is no longer synchronized.

Using a client channel definition table with .NET
You can use a client channel definition table (CCDT) with the .NET classes for IBM MQ. You specify the
location of the CCDT in different ways, depending on whether you are using a managed or unmanaged
connection.

Non-XA or XA unmanaged client connection type

With an unmanaged connection type, you can specify the location of the CCDT in two ways:
v Using the environment variables MQCHLLIB to specify the directory where the table is located, and

MQCHLTAB to specify the file name of the table.
v Using the client configuration file. In the CHANNELS stanza, use the attributes

ChannelDefinitionDirectory to specify the directory where the table is located, and
ChannelDefinitionFile to specify the file name.

If the location is specified both in the client configuration file and by using environment variables, the
environment variables take priority. You can use this feature to specify a standard location in the client
configuration file and override it using environment variables when necessary.

Managed client connection type

With a managed connection type, you can specify the location of the CCDT in three ways:
v Using the .NET application configuration file. In the CHANNELS section, use the keys

ChannelDefinitionDirectory to specify the directory where the table is located, and
ChannelDefinitionFile to specify the file name.

v Using the environment variables MQCHLLIB to specify the directory where the table is located, and
MQCHLTAB to specify the file name of the table.

v Using the client configuration file. In the CHANNELS stanza, use the attributes
ChannelDefinitionDirectory to specify the directory where the table is located, and
ChannelDefinitionFile to specify the file name.

If the location is specified in more than one of these ways, the environment variables take priority over
the client configuration file, and the .NET Application Configuration File takes priority over both other

Developing object-oriented applications with IBM MQ 667

methods. You can use this feature to specify a standard location in the client configuration file and
override it using environment variables or the application configuration file when necessary.

How a .NET application determines what channel definition to use
In the IBM MQ .NET client environment, the channel definition to be used can be specified in a number
of different ways. Multiple specifications of the channel definition can exist. An application derives the
channel definition from one or more sources.

If more than one channel definition exists, the one used is selected in the following priority order:
1. Properties specified on the MQQueueManager constructor, either explicitly or by including

MQC.CHANNEL_PROPERTY in the properties hashtable
2. A property MQC.CHANNEL_PROPERTY in the MQEnvironment.properties hashtable
3. The property Channel in MQEnvironment
4. The .NET application configuration file, section name CHANNELS, key ServerConnectionParms

(applies to managed connections only)
5. The MQSERVER environment variable
6. The client configuration file, stanza CHANNELS, Attribute ServerConnectionParms
7. The client channel definition table (CCDT). The location of the CCDT is specified in the .NET

application configuration file (applies to managed connections only)
8. The client channel definition table (CCDT). The location of the CCDT is specified using the

environment variables MQCHLIB and MQCHLTAB

9. The client channel definition table (CCDT). The location of the CCDT is specified using the client
configuration file

For items 1-3, the channel definition is built up field by field from values provided by the application.
These values can be provided using different interfaces and multiple values can exist for each one. Field
values are added to the channel definition following the priority order given:
1. The value of connName on the MQQueueManager constructor
2. Values of properties from the MQQueueManager.properties hashtable
3. Values of properties from the MQEnvironment.properties hashtable
4. Values set as MQEnvironment fields (for example, MQEnvironment.Hostname, MQEnvironment.Port)

For items 4-6, the entire channel definition is supplied as the value. Unspecified fields on the channel
definition take the system defaults. No values from other methods of defining channels and their fields
are merged with these specifications.

For items 7-9, the entire channel definition is taken from the CCDT. Fields which were not specified
explicitly when the channel was defined take the system defaults. No values from other methods of
defining channels and their fields are merged with these specifications.

668 IBM MQ: Programming

Using channel exits in IBM MQ .NET
If you use client bindings, you can use channel exits as for any other client connection. If you use
managed bindings, you must write an exit program that implements an appropriate interface.

Client bindings

If you use client bindings, you can use channel exits as described in Channel exits. You cannot use
channel exits written for managed bindings.

Managed bindings

If you use a managed connection, to implement an exit, you define a new .NET class that implements the
appropriate interface. Three exit interfaces are defined in the IBM MQ package:
v MQSendExit
v MQReceiveExit
v MQSecurityExit

Note: User exits written using these interfaces are not supported as channel exits in the unmanaged
environment.

The following sample defines a class that implements all three:
class MyMQExits : MQSendExit, MQReceiveExit, MQSecurityExit
{

// This method comes from the send exit
byte[] SendExit(MQChannelExit channelExitParms,

MQChannelDefinition channelDefinition,
byte[] dataBuffer
ref int dataOffset
ref int dataLength
ref int dataMaxLength)

{
// complete the body of the send exit here

}

// This method comes from the receive exit
byte[] ReceiveExit(MQChannelExit channelExitParms,

MQChannelDefinition channelDefinition,
byte[] dataBuffer
ref int dataOffset
ref int dataLength
ref int dataMaxLength)

{
// complete the body of the receive exit here

}

// This method comes from the security exit
byte[] SecurityExit(MQChannelExit channelExitParms,

MQChannelDefinition channelDefParms,
byte[] dataBuffer
ref int dataOffset
ref int dataLength
ref int dataMaxLength)

{
// complete the body of the security exit here

}

}

Developing object-oriented applications with IBM MQ 669

Each exit is passed an MQChannelExit and an MQChannelDefinition object instance. These objects
represent the MQCXP and MQCD structures defined in the procedural interface.

The data to be sent by a send exit, and the data received in a security or receive exit is specified using
the exit's parameters.

On entry, the data at offset dataOffset with length dataLength in the byte array dataBuffer is the data that is
about to be sent by a send exit, and the data received in a security or receive exit. The parameter
dataMaxLength gives the maximum length (from dataOffset) available to the exit in dataBuffer. Note: For a
security exit, it is possible for the dataBuffer to be null, if this is the first time the exit is called or the
partner end elected to send no data.

On return, the value of dataOffset and dataLength should be set to point to the offset and length within the
returned byte array that the .NET classes should then use. For a send exit, this indicates the data that it
should send, and for a security or receive exit, the data that should be interpreted. The exit should
normally return a byte array; exceptions are a security exit which could elect to send no data, and any
exit called with the INIT or TERM reasons. The simplest form of exit that can be written therefore is one
which does nothing more than return dataBuffer:

The simplest possible exit body is:
{

return dataBuffer;
}

MQChannelDefinition class

From IBM MQ Version 8.0.0, Fix Pack 4, the userid and password that are specified with the managed
.NET client application are set in the IBM MQ .NET MQChannelDefinition class that is passed to the
client security exit. The security exit copies the userid and password into the
MQCD.RemoteUserIdentifier and MQCD.RemotePassword fields (see “Writing a security exit” on page
362).

Specifying channel exits (managed client):

If you specify a channel name and connection name when creating your MQQueueManager object (either
in the MQEnvironment or on the MQQueueManager constructor) you can specify channel exits in two
ways.

In order of precedence, these are:
1. Passing hashtable properties MQC.SECURITY_EXIT_PROPERTY, MQC.SEND_EXIT_PROPERTY or

MQC.RECEIVE_EXIT_PROPERTY on the MQQueueManager constructor.
2. Setting the MQEnvironment SecurityExit, SendExit or ReceiveExit properties.

If you do not specify a channel name and connection name, the channel exits to use come from the
channel definition picked up from a client channel definition table (CCDT). It is not possible to override
the values stored in the channel definition. See Client channel definition table and “Using a client channel
definition table with .NET” on page 667 for more information about channel definition tables.

In each case, the specification takes the form of a string with the following format:
Assembly_name(Class_name)

Class_name is the fully qualified name, including namespace specification, of a .NET class that
implements the IBM.WMQ.MQSecurityExit, IBM.WMQ.MQSendExit or IBM.WMQ.MQReceiveExit
interface (as appropriate). Assembly_name is the fully qualified location, including file extension, of the
assembly that houses the class. The length of the string is limited to 999 characters if you use the
properties of MQEnvironment or MQQueueManager. However, if the channel exit name is specified in

670 IBM MQ: Programming

the CCDT, it is limited to 128 characters. When necessary, the .NET client code loads and creates an
instance of the specified class by parsing the string specification.

Specifying channel exit user data (managed client):

Channel exits can have user data associated with them. If you specify a channel name and connection
name when creating your MQQueueManager object (either in the MQEnvironment or on the
MQQueueManager constructor) you can specify the user data in two ways.

In order of precedence, these are:
1. Passing hashtable properties MQC.SECURITY_USERDATA_PROPERTY,

MQC.SEND_USERDATA_PROPERTY or MQC.RECEIVE_USERDATA_PROPERTY on the
MQQueueManager constructor.

2. Setting the MQEnvironment SecurityUserData, SendUserData or ReceiveUserData properties.

If you do not specify a channel name and connection name, the exit user data values to use come from
the channel definition picked up from the client channel definition table (CCDT). It is not possible to
override the values stored in the channel definition. See Client channel definition table and “Using a
client channel definition table with .NET” on page 667 for more information about channel definition
tables.

In each case, the specification is a string, limited to 32 characters.

Automatic client reconnection in .NET
You can make your client reconnect automatically to a queue manager during an unexpected connection
break.

A client can unexpectedly become disconnected from a queue manager if, for example, the queue
manager stops, or the network or server fails.

Without automatic client reconnection, an error is produced when the connection fails. You can use the
error code to help you reestablish the connection.

A client that uses the automatic client reconnection facility is called a reconnectable client. To create a
reconnectable client, specify certain options called reconnect options while connecting to the queue
manager.

If the client application is an IBM MQ .NET client, it can opt to get automatic client reconnection by
specifying an appropriate value for CONNECT_OPTIONS_PROPERTY when you use the
MQQueueManager class to create a queue manager. See Reconnection options for details of
CONNECT_OPTIONS_PROPERTY values.

You can select whether the client application always connects and reconnects to a queue manager of the
same name, to the same queue manager, or to any set of queue managers that are defined with the same
QMNAME in the client connection table (See Queue Manager Groups in CCDT for details).

Developing object-oriented applications with IBM MQ 671

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) support for .NET
IBM MQ classes for .NET client applications support Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) encryption. The SSL and TLS protocols provide communications security over the internet,
and allow client/server applications to communicate in a way that is confidential and reliable.
Related information:
IBM MQ.NET managed client SSL and TLS support
Cryptographic security protocols: SSL and TLS

SSL and TLS support for the unmanaged .NET client:

SSL and TLS support for the unmanaged .NET client is based on the C MQI and GSKit. The C MQI
handles the SSL operations and GSKit implements the SSL and TLS secure socket protocols.

Enabling SSL for the unmanaged .NET client:

SSL is supported only for client connections. To enable SSL, you must specify the CipherSpec to use
when communicating with the queue manager, and this must match the CipherSpec set on the target
channel.

To enable SSL, specify the CipherSpec using the SSLCipherSpec static member variable of
MQEnvironment. The following example attaches to a SVRCONN channel named
SECURE.SVRCONN.CHANNEL, which has been set up to require SSL with a CipherSpec of NULL_MD5:
MQEnvironment.Hostname = "your_hostname";
MQEnvironment.Channel = "SECURE.SVRCONN.CHANNEL";
MQEnvironment.SSLCipherSpec = "NULL_MD5";
MQEnvironment.SSLKeyRepository = "C:\mqm\key";
MQQueueManager qmgr = new MQQueueManager("your_Q_manager");

See Specifying CipherSpecs for a list of CipherSpecs.

The SSLCipherSpec property can also be set using the MQC.SSL_CIPHER_SPEC_PROPERTY in the hash
table of connection properties.

To successfully connect using SSL, the client keystore must be set up with Certificate Authority root
certificates chain from which the certificate presented by the queue manager can be authenticated.
Similarly, if SSLClientAuth on the SVRCONN channel has been set to
MQSSL_CLIENT_AUTH_REQUIRED, the client keystore must contain an identifying personal certificate
that is trusted by the queue manager.

Using the Distinguished Name of the queue manager:

The queue manager identifies itself using an SSL certificate, which contains a Distinguished Name (DN).

An IBM MQ .NET client application can use this DN to ensure that it is communicating with the correct
queue manager. A DN pattern is specified using the sslPeerName variable of MQEnvironment. For
example, setting:
MQEnvironment.SSLPeerName = "CN=QMGR.*, OU=IBM, OU=WEBSPHERE";

allows the connection to succeed only if the queue manager presents a certificate with a Common Name
beginning QMGR., and at least two Organizational Unit names, the first of which must be IBM and the
second WEBSPHERE.

The SSLPeerName property can also be set using the MQC.SSL_PEER_NAME_PROPERTY in the hash
table of connection properties. For more information about Distinguished Names and rules for setting
peer names, refer to Security.

672 IBM MQ: Programming

If SSLPeerName is set, connections succeed only if it is set to a valid pattern and the queue manager
presents a matching certificate.

Error handling when using SSL:

The following reason codes can be issued by IBM MQ classes for .NET when connecting to a queue
manager using SSL:

MQRC_SSL_NOT_ALLOWED
The SSLCipherSpec property was set, but bindings connect was used. Only client connect
supports SSL.

MQRC_SSL_PEER_NAME_MISMATCH
The DN pattern specified in the SSLPeerName property did not match the DN presented by the
queue manager.

MQRC_SSL_PEER_NAME_ERROR
The DN pattern specified in the SSLPeerName property was not valid.

SSL and TLS support for the managed .NET client:

The managed .NET client uses the Microsoft.NET Framework libraries to implement SSL and TLS secure
socket protocols. The Microsoft System.Net.SecuritySslStream class operates as a stream over connected
TCP sockets and sends and receives data over that socket connection.

The minimum required .NET Framework level is .NET Framework v3.5. The level of Cipher Algorithm
support is based on the .NET Framework level that the application is using.
v For applications that are based on .NET Framework level 3.5 and v4.0, the available secure socket

protocols are SSLv3.0 and TSL v1.0.
v For applications that are based on .NET Framework level4.5, the available secure socket protocols are

SSLv3.0, TLS v1.1 and TLSv1.2.

You might need to move applications that expect higher SSL protocol support to a later version of the
framework as defined for Microsoft Security support in the .NET Framework.

The main features of SSL and TLS support for the managed .NET client are as follows:

SSL protocol support
SSL support for the .NET managed client is defined through the .NET SSLStream class, and
depends on the .NET Framework that the application is using. For more information see “SSL
protocol support for the managed .NET client” on page 674.

CipherSpec support
The SSL settings for the .NET managed client are as for the Microsoft.NET SSL steams. For more
information see “CipherSpec support for the managed .NET client” on page 675 and “CipherSpec
mappings for the managed .NET client” on page 676.

Key repositories
The key repository on the client side is a Windows key store. The server side repository is a
Cryptographic Message Syntax (CMS) type of repository. For more information see “Key
repositories for the managed .NET client” on page 677.

Certificates
You can use self-signed SSL or TLS certificates to implement mutual authentication between a
client and a queue manager. For more information see “Using certificates for the managed .NET
client” on page 678.

SSLPEERNAME
In .NET, applications can use the optional SSLPEERNAME attribute to specify a Distinguished
Name (DN) pattern. For more information see “SSLPEERNAME” on page 678.

Developing object-oriented applications with IBM MQ 673

FIPS compliance
Enabling FIPS programmatically is not supported by the Microsoft.NET Security library. FIPS
enablement is controlled by the Windows Group Policy setting.

NSA Suite B compliance
IBM MQ implements RFC 6460. The Microsoft.NET implementation for NSA suite B is 5430. This
is supported from .NET Framework 3.5 onwards.

Secret key reset or renegotiation
Although the SSLStream class does not support secret key resetting or renegotiation, for
consistency with other IBM MQ clients, the .NET managed client allows applications to set
SSLKeyResetCount. For more information see “Secret key reset or renegotiation” on page 679.

Revocation check
The SSLStream class supports certificate revocation checking, which is automatically done by the
certificate chaining engine. For more information see “Revocation check” on page 679.

IBM MQ security exit support
The SSLStream class provides limited support for IBM MQ security exits. Querying local and
remote certificates to get SSLPeerNamePtr(Subject DN) and SSLRemCertIssNamePtr (Issuer DN)
is possible since this is supported in Microsoft.NET. However, there is no support for getting
attributes like DNQ, UNSTRUCTUREDNAME and UNSTRUCTUREDADDRESS, so these values
cannot be retrieved using the exits.

Cryptographic hardware support
Cryptographic hardware is not supported for the managed .NET client.

SSL protocol support for the managed .NET client:

IBM MQ.NET SSL support is based on the .NET SSLStream class.

Note: SSL protocol support for the managed .NET client depends on the .NET Framework level that the
application is using. For more information, see “SSL and TLS support for the managed .NET client” on
page 673.

For the Microsoft.NET SSLStream class to initialize SSL and perform a hand-shake with the queue
manager, one of the required parameters that you must set is SSLProtocol, where you must specify the
SSL or TLS version number, which must be one of the following values:
v SSL3.0
v TLS1.0
v TLS1.2

The value of this parameter is tightly coupled with the Protocol family to which the preferred CipherSpec
belongs. When SSLStream starts an SSL handshake with the server (queue manager), it uses the SSL or
TLS version specified in SSLProtocol to identify list of CipherSpecs to be used for negotiation.

IBM MQ.NET does not make any properties available for applications to use to set this value. Instead,
IBM MQ uses a mapping table to internally map the CipherSpec set to the Protocol family and identifies
the SSLProtocol version to be used. This table shows the mapping each of the supported CipherSpec
between Microsoft.NET and IBM MQ, and the Protocol version to which they belong. For more
information, see “CipherSpec mappings for the managed .NET client” on page 676.

674 IBM MQ: Programming

CipherSpec support for the managed .NET client:

The CipherSpec settings for an application are used during the handshake with the server.

IBM MQ clients allow you to set a CipherSpec value that is used during the handshake with the queue
manager. Leaving this field blank indicates a plain-text channel without any security on the sockets.

For the IBM MQ.NET managed client, the SSL settings are for the Microsoft.NET SSLStream class. For
SSLStream, a CipherSpec, or a preference list of CipherSpecs, can be set only in the Windows group
policy, which is a computer-wide setting. SSLStream then uses the specified CipherSpec or preference list
during the handshake with the server. In case of other IBM MQ clients, the CipherSpec property can be
set in the application on the IBM MQ channel definition and the same setting is used for SSL negotiation.
As a result of this restriction, the SSL/TLS handshake might negotiate any supported CipherSpec
regardless of what is specified in the IBM MQ channel configuration. Therefore, it is likely that this will
result in error AMQ9631 on the queue manager. To avoid this error, set the same CipherSpec as the one
that you have set in the application as the SSL configuration in the Windows group policy.

The new IBM MQ.NET SSL/TLS client code checks only that the correct protocol version was negotiated.
The SSL protocol version is derived from the CipherSpec that the application sets and is used for the SSL
handshake with the server (queue manager). Hence it is required by design to set the CipherSpec in the
IBM MQ.NET managed client application.

Setting a CipherSpec

There are three ways of setting a CipherSpec:

MQEnvironment .NET class
The following example shows how to set a CipherSpec with the MQEnvironment class.
MQEnvironment.SSLKeyRepository = "*USER";
MQEnvironment.ConnectionName = connectionName;
MQEnvironment.Channel = channelName;
MQEnvironment.properties.Add(MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES_MANAGED);
MQEnvironment.SSLCipherSpec = "TLS_RSA_WITH_AES_128_CBC_SHA";

SSL CipherSpec property
The following example shows how to set a CipherSpec by adding a hashtable parameter into the
MQQueueManager constructor.
properties = new Hashtable();
properties.Add(MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES_MANAGED);
properties.Add(MQC.HOST_NAME_PROPERTY, hostName);
properties.Add(MQC.PORT_PROPERTY, port);
properties.Add(MQC.CHANNEL_PROPERTY, channelName);
properties.Add(MQC.SSL_CERT_STORE_PROPERTY, sslKeyRepository);
properties.Add(MQC.SSL_CIPHER_SPEC_PROPERTY, cipherSpec);
properties.Add(MQC.SSL_PEER_NAME_PROPERTY, sslPeerName);
properties.Add(MQC.SSL_RESET_COUNT_PROPERTY, keyResetCount);
queueManager = new MQQueueManager(queueManagerName, properties);

Windows group policy
When a CipherSpec is set on the Windows group policy, the same CipherSpec must be set for the
SSLCipherSpec property value on the SVRCONN channel and in the application. If the Windows
group policy is set to the default, that is the group policy is not enabled/edited for CipherSpec
setting, applications must set the same default value of the CipherSpec from the Windows group
policy SSL configuration in the MQEnvironment class or in the MQQueueManager constructor
hashtable properties.

Developing object-oriented applications with IBM MQ 675

CCDT usage

IBM MQ.NET only supports Client Channel Definition Tables (.TAB files) that are on a local computer.
Existing CCDT files that have a CipherSpec value set can be used for IBM MQ.NET connections.
However, the CipherSpec value set on the client connection channel determines the SSL protocol version
and also must match the CipherSpec set in the Windows group policy.
Related concepts:
“Setting up the IBM MQ environment” on page 662
Before you use the client connection to connect to a queue manager, you must set up the IBM MQ
environment.
Related information:
Specifying CipherSpecs
MQEnvironment .NET class

CipherSpec mappings for the managed .NET client:

The IBM MQ.NET interface maintains an IBM MQ to Microsoft.NET mapping table that is used to
determine the version of the SSL protocol that the managed client needs to use to establish a secure
connection with a queue manager.

If a CipherSpec is specified on the SVRCONN channel, then after the SSL handshake is complete, the
queue manager tries to match that CipherSpec with the negotiated CipherSpec that the client application
is using. If the queue manager cannot find a matching CipherSpec, the communication fails with error
AMQ9631.

The IBM MQ.NET interface maintains an IBM MQ to Microsoft.NET CipherSpec mapping table. This
table is used to determine the SSL protocol version that client wants to use to establish a secured socket
connection with the queue manager. Based on the SSLCipherSpec value, the SSLProtocol version can be
SSL3.0, TLS v1.0, or TLS v1.2, depending on which version of the Microsoft.NET Framework you are
using.

Make sure that you provide the correct the SSLCipherSpec value as specifying an incorrect value might
result in failure during the authentication and handshake process. For example, if your application is
running on .NET v4.0 you must specify a CipherSpec for SSL v3.0 or TLS v1.0. Specifying a TLS v1.2
CipherSpec might cause failures during authentication.

Note: From IBM MQ Version 8.0.0, Fix Pack 2, the SSLv3 protocol and the use of some IBM MQ
CipherSpecs is deprecated. For more information, see Deprecated CipherSpecs.

Table 93. IBM MQ and Microsoft.NET mapping table

IBM MQ CipherSpec Microsoft.NET CipherSpec
SSL or TLS
version

TLS_RSA_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_128_CBC_SHA TLS 1.0

TLS_RSA_WITH_AES_256_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHA TLS 1.0

TLS_RSA_WITH_3DES_EDE_CBC_SHA 1 TLS_RSA_WITH_3DES_EDE_CBC_SHA 1 TLS 1.0

RC4_SHA_US TLS_RSA_WITH_RC4_128_SHA SSL 3.0

RC4_MD5_EXPORT TLS_RSA_EXPORT_WITH_RC4_40_MD5 SSL 3.0

RC4_56_SHA_EXPORT1024 TLS_RSA_EXPORT1024_WITH_RC4_56_SHA SSL 3.0

RC4_MD5_US TLS_RSA_WITH_RC4_128_MD5 SSL 3.0

TLS_RSA_WITH_AES_128_CBC_SHA256 TLS_RSA_WITH_AES_128_CBC_SHA256 TLS 1.2

TLS_RSA_WITH_AES_256_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256 TLS 1.2

676 IBM MQ: Programming

Table 93. IBM MQ and Microsoft.NET mapping table (continued)

IBM MQ CipherSpec Microsoft.NET CipherSpec
SSL or TLS
version

ECDHE_RSA_AES_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256_P256TLS 1.2

ECDHE_RSA_AES_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256_P384TLS 1.2

ECDHE_RSA_AES_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256_P521TLS 1.2

ECDHE_RSA_AES_256_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA256_P256TLS 1.2

ECDHE_RSA_AES_256_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA256_P384TLS 1.2

ECDHE_RSA_AES_256_CBC_SHA256 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA256_P521TLS 1.2

ECDHE_ECDSA_AES_128_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256_P256TLS 1.2

ECDHE_ECDSA_AES_128_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256_P384TLS 1.2

ECDHE_ECDSA_AES_128_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256_P521TLS 1.2

ECDHE_ECDSA_AES_256_CBC_SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384_P384TLS 1.2

ECDHE_ECDSA_AES_256_CBC_SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384_P521TLS 1.2

ECDHE_ECDSA_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256_P256TLS 1.2

ECDHE_ECDSA_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256_P384TLS 1.2

ECDHE_ECDSA_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256_P521TLS 1.2

ECDHE_ECDSA_AES_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384_P384TLS 1.2

ECDHE_ECDSA_AES_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384_P521TLS 1.2

Notes:

1. This CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be used
to transfer up to 32 GB of data before the connection is terminated with error AMQ9288. To avoid this
error, you need to either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

Key repositories for the managed .NET client:

The key repository on the client side of the SSL configuration is a Windows key store. The server side
repository is a Cryptographic Message Syntax (CMS) type of repository.

Client side

The client side of the SSL configuration in IBM MQ.NET consists of client side key repository, client
certificates, and the choices the application program makes.
v The client side key repository is always a Windows key store. It can be either a User or a Computer

account under which certificates can be stored.
v In the application, you can set either of the following values for the key repository:

– "*USER": IBM MQ.NET accesses the current user's certificate store to retrieve the client certificates.
– "*SYSTEM": IBM MQ.NET accesses the local Computer account to retrieve the certificates.

v The client's certificates must be stored in the My certificate store of the User or Computer account. All
the server (CA) certificates must be stored in the root directory of the certificate store.

Server side

The server side key repository is of type CMS and a traceable local computer's directory path must set on
the queue manager SSL properties.

Developing object-oriented applications with IBM MQ 677

Using certificates for the managed .NET client:

For client certificates, the IBM MQ managed .NET client accesses the Windows key store and loads all of
the client's certificates that are matched either by certificate label or matched by the string.

When selecting a certificate to use, the IBM MQ managed .NET client always uses the first matching
certificate for the SSLStream SSL handshake.

Matching certificates by certificate label

If you set the certificate label, the IBM MQ managed .NET client searches the Windows certificate store
with the given label name to identify the client certificate. It loads all matching certificates and uses the
first certificate on the list. There are two options for setting the certificate label:
v The certificate label can set on the MQEnvironment class accessing MQEnvironment.CertificateLabel.
v The certificate label can also be set in a hash table properties, supplied as input parameter with

MQQueueManager constructor as shown in the following example.
Hashtable properties = new Hashtable();
properties.Add("CertificateLabel", "mycert");

The name("CertificateLabel") and the value are case sensitive.

Matching certificates by string

If certificate label is not set, then the certificate that matches the string "ibmwebspheremq" and the current
logged on user (in lower case) is searched for and used.
Related information:
MQEnvironment .NET class
Connecting a client to a queue manager securely

SSLPEERNAME:

The SSLPEERNAME attribute is used to check the Distinguished Name (DN) of the certificate from the
peer queue manager.

In IBM MQ.NET, applications can use SSLPEERNAME to specify a distinguished name pattern as shown
in the following example.
SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

As for other IBM MQ clients, SSLPEERNAME is an optional parameter.

If SSLPEERNAME value is not set, the IBM MQ.NET managed client does not do any Remote(Server)
certificate validation and the managed client just accepts the Remote(/server) certificate as-is.

The way in which you set SSLPEERNAME depends on which of the IBM MQ stack offerings you are
using.

IBM MQ classes for .NET
There are three options as follows.
1. Set MQEnvironment.SSLPeerName in the MQEnvironment class.
2. MQEnvironment.properties.Add(MQC.SSL_PEER_NAME_PROPERTY, <value>)

3. Use the queue manager constructor MQQueueManager (String queueManagerName, Hashtable
properties). Supply the SSLPEERNAME in the Hashtable properties as for option 2.

XMS .NET
Set the SSL peer name in the connection factory:

678 IBM MQ: Programming

ConnectionFactory.SetStringProperty(XMSC.WMQ_SSL_PEER_NAME, <value>);

WCF Include SslPeerName as a semicolon separated field in the URI.
Related information:
MQEnvironment .NET class

Secret key reset or renegotiation:

The SSLStream class does not support secret key reset/renegotiation. However, to be consistent with
other IBM MQ clients, the IBM MQ managed .NET client allows applications to set SSLKeyResetCount.

When the limit is reached, IBM MQ.NET disconnects from the queue manager and application are
notified of that as an exception with MQRC_CONNECTION_BROKEN as the reason code. Applications
can choose to handle the exception and re-establish connections or enable the MQCNO_RECONNECT
option for IBM MQ.NET to automatically reconnect to the queue manager.

Enabling the automatic client reconnection facility means that, when the key reset count is reached, all
existing connections are brought down and the IBM MQ.NET client recreates all the connections afresh.
For more information about automatic client reconnection, see Automatic client reconnection.
Related information:
Resetting SSL and TLS secret keys

Revocation check:

The SSLStream class supports certificate revocation checking.

The revocation checking is automatically done by the certificate chaining engine. This applies for both
Online Certificate Status Protocol (OCSP) and Certificate Revocation lists (CRLs). The SSLStream class
uses the certificate revocation that uses only the server specified in the certificate, that is the server is
dictated by the certificate itself. It is possible for HTTP CDP extensions and OCSP HTTP requests to
proxy through HTTP proxy server.

The way in which you set the revocation check depends on which of the IBM MQ stack offerings you are
using.

IBM MQ.NET
The revocation check can be set by accessing the MQEnvironment.SSLCertRevocationCheck
property on the MQEnvironment.cs class file.

XMS .NET
The revocation check can be set on the connection factory property context as shown in the
following example.
ConnectionFactory.SetBooleanProperty(XMSC.WMQ_SSL_CERT_REVOCATION_CHECK, true);

WCF The revocation check can be set on the URI using the following naming convention.
"SslCertRevocationCheck=true"

Developing object-oriented applications with IBM MQ 679

Configuring SSL for managed IBM MQ .NET:

Configuring SSL for managed IBM MQ .NET consists of creating the signer certificates, then configuring
the server side, the client side, and the application program.

About this task

To configure SSL, you must first create the appropriate signer certificates. Signer certificates can be either
self signed or certificates provided by a certificate authority. Although self-signed certificates can be used
on a development, test or pre-production system, do not use them on a production system. On a
production system, use certificates that you have obtained from a trusted external certificate authority
(CA).

Procedure

1. Create the signer certificates.
a. To create self-signed certificates, use one of the following tools provided with IBM MQ : Use either

the iKeyman GUI or iKeycmd or runmqakm from the command line. For more information on using
these tools, see Using iKeyman, iKeycmd, runmqakm, and runmqckm.

b. To obtain certificates for the queue manager and clients from a certificate authority (CA), follow
the instructions in Obtaining personal certificates from a certificate authority.

2. Configure the server side.
a. Configure SSL on the queue manager, using GSKit, as described in Connecting a client to a queue

manager securely.
b. Set the SVRCONN channel SSL attributes:
v Set SSLCAUTH to "REQUIRED/OPTIONAL".
v Set SSLCIPH to an appropriate CipherSpec.

For more information, see“Enabling SSL for the unmanaged .NET client” on page 672.
3. Configure the client side.

a. Import the client certificates into the Windows certificate store (under the User/Computer
account). IBM MQ .NET accesses client certificates from the Windows certificate store, therefore
you must import your certificates into the Windows certificate store to establish a secure socket
connection to IBM MQ . For more information about how to access the Windows key store and
import the client side certificates, see Import or export certificates and private keys.

b. Supply the CertificateLabel as described in Connecting a client to a queue manager securely.
c. If needed, edit the Windows Group Policy to set the CipherSpec, then, for the Windows Group

Policy updates to take effect, restart the computer.
4. Configure the application program.

a. Set the MQEnvironment or the SSLCipherSpec value to denote the connection as a secured
connection. The value that you specify is used to identify the SSL protocol being used (SSL or TLS)
and must match with any preference that you have specified in the Windows Group Policy.

b. Set the SSLKeyRepository property to either "*SYSTEM" or "*USER".
c. Optional: Set SSLPEERNAME to the distinguished name (DN) of the server certificate.
d. Supply the CertificateLabel as described in Connecting a client to a queue manager securely.
e. Set any further optional parameters that you require such as KeyResetCount,

CertificationRevocationCheck, and enable FIPS.

Examples of how to set the SSL protocol and SSL key repository

For Base .NET, you can set the SSL protocol and SSL key repository through the MQEnvironment class as
shown in the following example:

680 IBM MQ: Programming

http://windows.microsoft.com/en-us/windows/import-export-certificates-private-keys

MQEnvironment.SSLCipherSpec = "TLS_RSA_WITH_AES_128_CBC_SHA256";
MQEnvironment.SSLKeyRepository = "*USER";

MQEnvironment.properties.Add(MQC.SSL_CIPHER_SPEC_PROPERTY, "TLS_RSA_WITH_AES_128_CBC_SHA256")

Alternatively, you can set the SSL protocol and SSL key repository by supplying a hashtable as part of the
MQQueueManager constructor as shown in the following example.
Hashtable properties = new Hashtable();
properties.Add(MQC.SSL_CERT_STORE_PROPERTY, sslKeyRepository);
properties.Add(MQC.SSL_CIPHER_SPEC_PROPERTY, "TLS_RSA_WITH_AES_128_CBC_SHA256")

What to do next

For more information about getting started with developing IBM MQ .NET managed SSL applications,
see“Writing a simple application.”
Related information:
MQEnvironment .NET class
KeyResetCount (MQLONG)
Federal Information Processing Standards (FIPS) for UNIX, Linux, and Windows

Writing a simple application:

Tips for writing a simple IBM MQ managed .NET SSL application, including examples for setting the SSL
properties for connection factories, creating a queue manager instance, connection, session and
destination, and sending a test message.

Before you begin

You must first configure SSL for managed IBM MQ.NET as described in “Configuring SSL for managed
IBM MQ .NET” on page 680.

For application program configuration in base .NET, set SSL properties either using the MQEnvironment
class or by supplying a hashtable as part of the MQQueueManager constructor.

For application program configuration in XMS .NET, you set the SSL properties on the property context
of the connection factories.

Procedure

1. Set the SSL properties for the connection factories as shown in the following examples.

Example for IBM MQ.NET
properties = new Hashtable();
properties.Add(MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES_MANAGED);
properties.Add(MQC.HOST_NAME_PROPERTY, hostName);
properties.Add(MQC.PORT_PROPERTY, port);
properties.Add(MQC.CHANNEL_PROPERTY, channelName);
properties.Add(MQC.SSL_CERT_STORE_PROPERTY, sslKeyRepository);
properties.Add(MQC.SSL_CIPHER_SPEC_PROPERTY, cipherSpec);
properties.Add(MQC.SSL_PEER_NAME_PROPERTY, sslPeerName);
properties.Add(MQC.SSL_RESET_COUNT_PROPERTY, keyResetCount);
properties.Add("CertificateLabel", "ibmwebspheremq");
MQEnvironment.SSLCertRevocationCheck = sslCertRevocationCheck;

Example for XMS .NET
cf.SetStringProperty(XMSC.WMQ_SSL_KEY_REPOSITORY, "sslKeyRepository");
cf.SetStringProperty(XMSC.WMQ_SSL_CIPHER_SPEC, cipherSpec);
cf.SetStringProperty(XMSC.WMQ_SSL_PEER_NAME, sslPeerName);
cf.SetIntProperty(XMSC.WMQ_SSL_KEY_RESETCOUNT, keyResetCount);
cf.SetBooleanProperty(XMSC.WMQ_SSL_CERT_REVOCATION_CHECK, true);

Developing object-oriented applications with IBM MQ 681

2. Create the queue manager instance, connections, session and destination as shown in the following
examples.

Example for MQ .NET
queueManager = new MQQueueManager(queueManagerName, properties);
Console.WriteLine("done");

// accessing queue
Console.Write("Accessing queue " + queueName + ".. ");
queue = queueManager.AccessQueue(queueName, MQC.MQOO_OUTPUT + MQC.MQOO_FAIL_IF_QUIESCING);
Console.WriteLine("done");

Example for XMS .NET
connectionWMQ = cf.CreateConnection();
// Create session
sessionWMQ = connectionWMQ.CreateSession(false, AcknowledgeMode.AutoAcknowledge);

// Create destination
destination = sessionWMQ.CreateQueue(destinationName);

// Create producer
producer = sessionWMQ.CreateProducer(destination);

3. Send a message as shown in the following examples.

Example for MQ .NET
// creating a message object
message = new MQMessage();
message.WriteString(messageString);

// putting messages continuously
for (int i = 1; i <= numberOfMsgs; i++)
{
Console.Write("Message " + i + " <" + messageString + ">.. ");
queue.Put(message);
Console.WriteLine("put");
}

Example for XMS .NET
textMessage = sessionWMQ.CreateTextMessage();
textMessage.Text = simpleMessage;
producer.Send(textMessage);

4. Verify the SSL connection. Check the channel status to verify that the SSL connection has been
established and is working correctly.

Configuring trace for SSLStream:

To capture tracing events and messages relating to the SSLStream class, you must add a configuration
section for system diagnostics to the application configuration file for your application.

About this task

If you do not add a configuration section for system diagnostics to the application configuration file, the
IBM MQ managed .NET client will not capture any events, traces or debugging points relating to SSL and
the SSLStream class.

Note: Starting IBM MQ tracing using strmqtrc does not capture all the required SSL tracing.

Procedure

1. Create an application configuration (App.Config) file for your application project.
2. Add a system diagnostics configuration section as shown in the following example.

682 IBM MQ: Programming

<system.diagnostics>
<sources>

<source name="System.Net" tracemode="includehex">
<listeners>

<add name="ExternalSourceTrace"/>
</listeners>

</source>
<source name="System.Net.Sockets">

<listeners>
<add name="ExternalSourceTrace"/>

</listeners>
</source>
<source name="System.Net.Cache">

<listeners>
<add name="ExternalSourceTrace"/>

</listeners>
</source>
<source name="System.Net.Security">

<listeners>
<add name="ExternalSourceTrace"/>

</listeners>
</source>
<source name="System.Security">

<listeners>
<add name="ExternalSourceTrace"/>

</listeners>
</source>

</sources>
<switches>

<add name="System.Net" value="Verbose"/>
<add name="System.Net.Sockets" value="Verbose"/>
<add name="System.Net.Cache" value="Verbose"/>
<add name="System.Security" value="Verbose"/>
<add name="System.Net.Security" value="Verbose"/>

</switches>

<sharedListeners>
<add name="ExternalSourceTrace" type="IBM.WMQ.ExternalSourceTrace, amqmdnet, Version=8.0.0.0, Culture=neutral, PublicKeyToken=dd3cb1c9aae9ec97" />

</sharedListeners>
<trace autoflush="true"/>

</system.diagnostics>

Sample applications for implementing SSL in managed .NET:

Sample applications are provided to show the implementation of SSL for managed .NET in IBM MQ
classes for .NET, XMS .NET and IBM MQ custom channel for WCF.

The following table shows the location of the sample applications. MQ_INSTALLATION_PATH represents
the high-level directory in which IBM MQ is installed.

Table 94. Location of sample applications for implementing SSL in managed .NET

IBM MQ.NET stack offering Location of samples

Base .NET MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\base\SimplePut\
SimplePut.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\base\SimpleGet\
SimpleGet.cs

XMS .NET MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\xms\simple\wmq\
SimpleProducer\SimpleProducer.cs

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\xms\simple\wmq\
SimpleConsumer\SimpleConsumer.cs

Developing object-oriented applications with IBM MQ 683

Table 94. Location of sample applications for implementing SSL in managed .NET (continued)

IBM MQ.NET stack offering Location of samples

IBM MQ custom channel for
WCF

MQ_INSTALLATION_PATH\Tools\dotnet\samples\cs\wcf\samples\WCF\
oneway\service\MQMessagingOneWayService.cs

Using the .NET Monitor
The .NET Monitor is an application similar to an IBM MQ trigger monitor.

Important: See Features that can be used only with the primary installation on Windows for important
information.

You can create .NET components which are instantiated whenever a message is received on a monitored
queue, and which then process that message. The .NET Monitor is started by the runmqdnm command
and stopped by the endmqdnm command. For details of these commands, see runmqdnm and
endmqdnm.

To use the .NET Monitor, you write a component that implements the IMQObjectTrigger interface, which
is defined in amqmdnm.dll.

Components can be either transactional or non-transactional. A transactional component must inherit
from System.EnterpriseServices.ServicedComponent and be registered as either RequiresTransaction or
SupportsTransaction. It must not be registered as RequiresNew as the .NET Monitor has already initiated
a transaction.

The component receives MQQueueManager, MQQueue, and MQMessage objects from runmqdnm . It
may also receive a User Parameter string if one was specified, using the -u command-line option, when
runmqdnm was started. Note that your component receives the contents of a message that arrived on the
monitored queue in an MQMessage object. It does not have to connect to the queue manager, open the
queue, or get the message itself. The component must then process the message as appropriate and
return control to the .NET Monitor.

If your component has been written as a transactional component, it registers to commit or roll back the
transaction using the facilities provided by System.EnterpriseServices.ServicedComponent.

As the component receives MQQueueManager and MQQueue objects as well as the message, it has
complete context information for that message and can, for example, open another queue on the same
queue manager without needing to separately connect to IBM MQ.

Example code fragments:

This topic contains two examples of components which obtain a message from the .NET Monitor and
print it, one using transactional processing and the other non-transactional processing. A third example
shows common utility routines, applicable to both the first two examples. All the examples are in C#.

Example 1: Transactional processing
/***/
/* Licensed materials, property of IBM */
/* 63H9336 */
/* (C) Copyright IBM Corp. 2005 */
/***/
using System;
using System.EnterpriseServices;

using IBM.WMQ;
using IBM.WMQMonitor;

684 IBM MQ: Programming

[assembly: ApplicationName("dnmsamp")]

// build:
//
// csc -target:library -reference:amqmdnet.dll;amqmdnm.dll TranAssembly.cs
//
// run (with dotnet monitor)
//
// runmqdnm -m <QMNAME> -q <QNAME> -a dnmsamp.dll -c Tran

namespace dnmsamp
{

[TransactionAttribute(TransactionOption.Required)]
public class Tran : ServicedComponent, IMQObjectTrigger
{

Util util = null;

[AutoComplete(true)]
public void Execute(MQQueueManager qmgr, MQQueue queue,

MQMessage message, string param)
{

util = new Util("Tran");

if (param != null)
util.Print("PARAM: ’" +param.ToString() + "’");

util.PrintMessage(message);

//System.Console.WriteLine("SETTING ABORT");
//ContextUtil.MyTransactionVote = TransactionVote.Abort;

System.Console.WriteLine("SETTING COMMIT");
ContextUtil.SetComplete();
//ContextUtil.MyTransactionVote = TransactionVote.Commit;

}
}

}

Example 2: Non-transactional processing
/***/
/* Licensed materials, property of IBM */
/* 63H9336 */
/* (C) Copyright IBM Corp. 2005 */
/***/

using System;

using IBM.WMQ;
using IBM.WMQMonitor;

// build:
//
// csc -target:library -reference:amqmdnet.dll;amqmdnm.dll NonTranAssembly.cs
//
// run (with dotnet monitor)
//
// runmqdnm -m <QMNAME> -q <QNAME> -a dnmsamp.dll -c NonTran
namespace dnmsamp
{

public class NonTran : IMQObjectTrigger
{

Util util = null;

public void Execute(MQQueueManager qmgr, MQQueue queue,
MQMessage message, string param)

{

Developing object-oriented applications with IBM MQ 685

util = new Util("NonTran");

try
{

util.PrintMessage(message);
}

catch (Exception ex)
{

System.Console.WriteLine(">>> NonTran\n{0}", ex.ToString());
}

}
}

}

Example 3: Common routines
/***/
/* Licensed materials, property of IBM */
/* 63H9336 */
/* (C) Copyright IBM Corp. 2005 */
/***/

using System;

using IBM.WMQ;

namespace dnmsamp
{
/// <summary>
/// Summary description for Util.
/// </summary>
public class Util
{

/* -- */
/* Default prefix string of the namespace. */
/* -- */
private string prefixText = "dnmsamp";

/* -- */
/* Constructor that takes the replacement prefix string to use. */
/* -- */
public Util(String text)
{

prefixText = text;
}

/* -- */
/* Display an arbitrary string to the console. */
/* -- */
public void Print(String text)
{

System.Console.WriteLine("{0} {1}\n", prefixText, text);
}

/* -- */
/* Display the content of the message passed to the console. */
/* -- */
public void PrintMessage(MQMessage message)
{

if (message.Format.CompareTo(MQC.MQFMT_STRING) == 0)
{

try
{

string messageText = message.ReadString(message.MessageLength);

686 IBM MQ: Programming

Print(messageText);
}

catch(Exception ex)
{

Print(ex.ToString());
}

}
else
{

Print("UNRECOGNISED FORMAT");
}

}

/* -- */
/* Convert the byte array into a hex string. */
/* -- */
static public string ToHexString(byte[] byteArray)
{

string hex = "0123456789ABCDEF";

string retString = "";

for(int i = 0; i < byteArray.Length; i++)
{

int h = (byteArray[i] & 0xF0)>>4;
int l = (byteArray[i] & 0x0F);

retString += hex.Substring(h,1) + hex.Substring(l,1);
}

return retString;
}

}
}

Compiling IBM MQ .NET programs
Specimen commands to compile .NET applications written in various languages.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To build a C# application using IBM MQ classes for .NET, use the following command:
csc /t:exe /r:System.dll /r:amqmdnet.dll /lib: MQ_INSTALLATION_PATH\bin /out:MyProg.exe MyProg.cs

To build a Visual Basic application using IBM MQ classes for .NET, use the following command:
vbc /r:System.dll /r: MQ_INSTALLATION_PATH\bin\amqmdnet.dll /out:MyProg.exe MyProg.vb

To build a Managed C++ application using IBM MQ classes for .NET, use the following command:
cl /clr MQ_INSTALLATION_PATH\bin Myprog.cpp

For other languages, see the documentation supplied by the language vendor.

Developing object-oriented applications with IBM MQ 687

Tracing IBM MQ .NET programs
In IBM MQ .NET, you start and control the trace facility as in IBM MQ programs using the MQI.

However, the -i and -p parameters of the strmqtrc command, which allow you to specify process and
thread identifiers, and named processes, have no effect.

You normally need to use the trace facility only at the request of IBM service.

See Using trace on Windows for information on trace commands.

Using the stand-alone IBM MQ .NET client

From IBM MQ Version 8.0.0, Fix Pack 2, the IBM MQ .NET client offers you the ability to package and
deploy an IBM MQ .NET assembly without needing to use the full IBM MQ client installation on
production systems for running your applications.

About this task

From IBM MQ Version 8.0.0, Fix Pack 2, you can build your IBM MQ.NET applications on a machine
where the full IBM MQ client is installed and later package the IBM MQ.NET assembly, that is,
amqmdnet.dll, along with your application and deploy it on production systems.

The applications that you build and deploy can be the traditional Windows .NET applications, Services,
or Microsoft Azure Web/Worker applications.

In such deployments, the IBM MQ .NET client supports only the managed mode of connectivity to a
queue manager. The server bindings and unmanaged client mode connectivity are not available as these
two modes require a full IBM MQ client installation. Any attempt to use these other two modes results in
an application exception.

Procedure

Referencing the IBM MQ .NET client assembly in applications
v Reference the amqmdnet.dll assembly in your application in the same way that you did for earlier

releases. Set the CopyLocal property of the amqmdnet assembly to True to ensure that the amqmdnet
assembly is copied to the bin directory of the application. Setting this property also helps the
application packaging tool to package the required binary files for deployment on production systems
as well as Microsoft Azure PaaS cloud environments.

Adding global transaction support
v Ensure that your application deploys the monitor application WMQDotnetXAMonitor on the machine

along with the application itself. If an application uses the IBM MQ .NET managed global transaction
feature, then it must also deploy the WMQDotnetXAMonitor on the machine along with the
application itself. This utility is needed for recovering any in-doubt transactions.

Starting and stopping trace
v To start and stop trace, use the application configuration file and an IBM MQ specific trace

configuration file.

Note: The following steps for generating trace apply to the .NET redistributable managed client as
well as the stand-alone .NET client.
You must use the application configuration file and an IBM MQ specific trace configuration file
because, since there is no full IBM MQ client installation, the standard tools that are used for starting
and stopping trace, strmqtrc and endmqtrc, are not available.

688 IBM MQ: Programming

Application configuration file (app.config or web.config)
Applications need to define the MQTRACECONFIGFILEPATH property under the <appSettings>
section of the application configuration file, that is, the app.config or web.config file. (The
actual name of the application configuration file depends on the name of your application.)
The value of the MQTRACECONFIGFILEPATH property specifies the path for the location of the IBM
MQ specific trace configuration file, mqtrace.config, as show in the following example:
<appSettings>
<add key="MQTRACECONFIGFILEPATH" value="C:\MQTRACECONFIG" />
</appSettings>

Tracing is disabled if the mqtrace.config file is not found in the path that is specified
application configuration file. However, First Failure Support Technology™ (FFST) and error
logs are created in the application's directory, if the application has authority to write to the
current directory.

IBM MQ specific trace configuration file (mqtrace.config)

The mqtrace.config file is an XML file that defines properties for starting and stopping trace,
the path to the trace files, and the path to the error logs. The following table describes these
properties.

Table 95. Properties defined in the mqtrace.config file

Attribute Description

MQTRACELEVEL 0: Stops tracing - this is the default value.

1: Starts tracing with lesser details.

2: Starts tracing with full details - recommended.

MQTRACEPATH Points to a folder where the trace files will be created.
The current directory of the application is used if the
path is blank or the MQTRACEPATH attribute is not defined.

MQERRORPATH Points to a folder where error log files will be created.
The current directory of the application is used if the
path is blank or the MQERRORPATH attribute is not defined.

The following example shows a sample mqtrace.config file:
<?xml version="1.0" encoding="utf-8"?>
<traceSettings>

<MQTRACELEVEL>2</MQTRACELEVEL>
<MQTRACEPATH>C:\MQTRACEPATH</MQTRACEPATH>
<MQERRORPATH>C:\MQERRORLOGPATH</MQERRORPATH>

</traceSettings>

Tracing can be started and stopped dynamically when an application is running by altering the
value of the MQTRACELEVEL attribute in the mqtrace.config file.

The running application must have create and write permissions for the folder specified by the
MQTRACELEVEL attribute for generating trace files. Applications that are running in an Microsoft
Azure PaaS environment must also ensure similar access permissions since web applications
that use an IBM MQ .NET assembly running in Microsoft Azure PaaS might not have create
and write permissions. The generation of the trace, first failure data capture (FDC), and error
logs fails if the application does not have the required create and write permissions for the
specified folder.

Enabling binding redirection
v To enable compile time binding reference of the IBM MQ .NET assembly to a later version of the

assembly, add the <dependentAssembly> property to the application configuration file. The following
example snippet in the app.config file redirects an application that was compiled using the IBM MQ

Developing object-oriented applications with IBM MQ 689

Version 8.0.0, Fix Pack 2 (8.0.0.2) version of the IBM MQ .NET assembly but later a fix pack, IBM MQ
Version 8.0.0, Fix Pack 3, was then applied that updated IBM MQ.NET assembly to 8.0.0.3.
<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<!-- amqmdnet related binding redirect -->
<dependentAssembly>

<assemblyIdentity name="amqmdnet"
publicKeyToken="dd3cb1c9aae9ec97"
culture="neutral" />

<codeBase version="8.0.0.2"
href="file:///amqmdnet.dll"/>

<bindingRedirect oldVersion="1.0.0.3-8.0.0.2"
newVersion="8.0.0.3"/>

<publisherPolicy apply="no" />
</dependentAssembly>

</assemblyBinding>
</runtime>

Related concepts:
“Using WMQDotnetXAMonitor application” on page 654
The WMQDotnetXAMonitor application must be run manually. It can be started at any time. You can
start it when you see the messages on the SYSTEM.DOTNET.XARECOVERY.QUEUE or you can keep it
running in the background before you do any transactional work with the applications that are written
using IBM MQ .NET classes.
Related information:
Installing an IBM MQ client
Redistributable clients

Windows .NET application runtime - Windows only

Using the Component Object Model Interface (IBM MQ Automation
Classes for ActiveX)
The IBM MQ Automation Classes for ActiveX (MQAX) are ActiveX components that provide classes that
you can use in your application to access IBM MQ.

MQAX requires an IBM MQ environment and a corresponding IBM MQ application with which to
communicate.

It gives your ActiveX application the ability to run transactions and access data on any of your enterprise
systems that you can access through IBM MQ.

IBM MQ Automation Classes for ActiveX:
v Give you access to the functions and features of the IBM MQ API, permitting full interconnectivity to

other IBM MQ platforms.
v Conform to the normal conventions expected of an ActiveX component.
v Conform to the IBM MQ object model, also available for .NET, C++, Java, and LotusScript®.

MQAX starter samples are provided. You can use these samples initially to check that your installation of
the MQAX is successful and that you have the basic IBM MQ environment in place. The samples also
demonstrate how MQAX can be used.

690 IBM MQ: Programming

COM and ActiveX scripting

The Component Object Model (COM) is an object-based programming model defined by Microsoft. It
specifies how software components can be provided in a way that allows them to locate and
communicate with each other irrespective of the computer language in which they are written or their
location.

ActiveX is a set of technologies, based on COM, that integrates application development, reusable
components, and Internet technologies on the Microsoft Windows platforms. ActiveX components provide
interfaces that can be accessed dynamically by applications. An ActiveX scripting client is an application,
for example a compiler, that can build or execute a program or script that uses the interfaces provided by
ActiveX (or COM) components.

IBM MQ environment support

IBM MQ Automation Classes for ActiveX can only be used with 32-bit ActiveX scripting clients.

The COM component can only be used for 32-bit applications. If you want to write 64-bit COM
application, you can use the .NET interface.

To run the MQAX in an IBM MQ server environment you must have Windows 2000 or later installed on
your system.

To run the MQAX in an IBM MQ MQI client environment you need IBM MQ MQI client on Windows
2000 or later installed on your system:

The IBM MQ MQI client requires access to at least one IBM MQ server. When both the IBM MQ MQI
client and the IBM MQ server are installed on your system, MQAX applications always run against the
server. The ActiveX interface to the MQAI is only available in IBM MQ server environments.

Designing and programming using IBM MQ Automation Classes for
ActiveX

Designing MQAX applications that access non-ActiveX applications
The IBM MQ Automation Classes provide access to the functions of the IBM MQ API. You can therefore
benefit from all the advantages that using IBM MQ can bring to your Windows application.

The overall design of your application is the same as for any IBM MQ application, so consider all the
design aspects described in the “Designing IBM MQ applications” on page 51 section.

To use the IBM MQ Automation Classes, you code the Windows programs in your application using a
language that supports the creation and use of COM objects. For example, Visual Basic, Java, and other
ActiveX scripting clients. The classes can then be easily integrated into your application because the IBM
MQ objects you need can be coded using the native syntax of the implementation language.

Using IBM MQ Automation Classes for ActiveX

When designing an ActiveX application that uses IBM MQ Automation Classes for ActiveX, the most
important item of information is the message that is sent or received from the remote IBM MQ system.
Therefore you must know the format of the items that are inserted into the message. For an MQAX script
to a work, both it and the IBM MQ application that picks up or sends the message must know the
message structure.

If you are sending a message with an MQAX application and you want to perform data conversion at the
MQAX end, you must also know:

Developing object-oriented applications with IBM MQ 691

v The code page used by the remote system
v The encoding used by the remote system

To keep your code portable, it is good practice to set the code page and encoding, even if they are
currently the same in both the sending and receiving systems.

When considering how to structure the implementation of the system you design, remember that your
MQAX scripts run on the same machine as the one on which you have either the IBM MQ queue
manager or the IBM MQ client installed.

Programming hints and tips
The following hints and tips are in no significant order. They are subjects that, if relevant to the work you
are doing, might save you time.

Message Descriptor properties

If you manipulate message descriptor properties in a program, it can be better to use the hexadecimal
equivalents of the fields.

The information in this section refers to the following properties:
v AccountingToken
v CorrelationId
v GroupId
v MessageId

Where an IBM MQ application is the originator of a message and IBM MQ generates these properties, it
is better to use the AccountingTokenHex, CorrelationIdHex, GroupIdHex, and MessageIdHex properties if
you want to look at their values, or manipulate them in any way, including passing them back in a
message to IBM MQ. The reason for this is that IBM MQ generated values are strings of bytes that have
any value from 0 through 255 inclusive, they are not strings of printable characters.

Where your MQAX script is the originator of a message you can use either the AccountingToken,
CorrelationId, GroupId, and MessageId properties or their Hex equivalents.

IBM MQ constants

IBM MQ constants are provided as members of the enum IBM MQ in library MQAX200.

IBM MQ string constants

IBM MQ string constants and their corresponding character strings.

IBM MQ string constants are not available when using IBM MQ Automation Classes for ActiveX. You
must use the explicit character string for those shown in the following list and any others you might
need. The commands must be padded to eight characters using spaces:

692 IBM MQ: Programming

MQFMT_NONE " "
MQFMT_ADMIN "MQADMIN "
MQFMT_CHANNEL_COMPLETED "MQCHCOM "
MQFMT_CICS "MQCICS "
MQFMT_COMMAND_1 "MQCMD1 "
MQFMT_COMMAND_2 "MQCMD2 "
MQFMT_DEAD_LETTER_HEADER "MQDEAD "
MQFMT_DIST_HEADER "MQHDIST "
MQFMT_EVENT "MQEVENT "
MQFMT_IMS "MQIMS "
MQFMT_IMS_VAR_STRING "MQIMSVS "
MQFMT_MD_EXTENSION "MQHMDE "
MQFMT_PCF "MQPCF "
MQFMT_REF_MSG_HEADER "MQHREF "
MQFMT_RF_HEADER "MQHRF "
MQFMT_STRING "MQSTR "
MQFMT_TRIGGER "MQTRIG "
MQFMT_WORK_INFO_HEADER "MQHWIH "
MQFMT_XMIT_Q_HEADER "MQXMIT "

Null string constants

The IBM MQ constants, used for the initialization of four MQMessage properties, MQMI_NONE (24
NULL characters), MQCI_NONE (24 NULL characters), MQGI_NONE (24 NULL characters), and
MQACT_NONE (32 NULL characters), are not supported by IBM MQ Automation Classes for ActiveX.
Setting them to empty strings has the same effect.

For example, to set the various IDs of an MQMessage to these values: mymessage. MessageId = ""
mymessage. CorrelationId = "" mymessage. AccountingToken = ""

Receiving a message from IBM MQ

There are several ways of receiving a message from IBM MQ:
v Polling by issuing a GET followed by a Wait, using the Visual Basic TIMER function.
v Issuing a GET with the Wait option; you specify the wait duration by setting the WaitInterval property.

Consider this when, even though you set your system up to run in multithreaded environment, the
software running at the time might run only single threaded. This avoids your system locking up
indefinitely.
Other threads operate unaffected. However, if your other threads require access to IBM MQ, they
require a second connection to IBM MQ using additional MQAX queue manager and queue objects.

Issuing a GET with the Wait option and setting the WaitInterval to MQWI_UNLIMITED causes your
system to lock up until the GET call completes, if the process is single threaded.

Developing object-oriented applications with IBM MQ 693

Using data conversion
Two forms of data conversion are supported by IBM MQ Automation Classes for ActiveX - numeric
encoding, and character set conversion.

Numeric encoding

If you set the MQMessage Encoding property, the following methods convert between different numeric
encoding systems:
v ReadDecimal2 method
v ReadDecimal4 method
v ReadDouble method
v ReadDouble4 method
v ReadFloat method
v ReadInt2 method
v ReadInt4 method
v ReadLong method
v ReadShort method
v ReadUInt2 method
v WriteDecimal2 method
v WriteDecimal4 method
v WriteDouble method
v WriteDouble4 method
v WriteFloat method
v WriteInt2 method
v WriteInt4 method
v WriteLong method
v WriteShort method
v WriteUInt2 method

The Encoding property can be set and interpreted using the supplied IBM MQ constants. Figure 104
shows an example of these:

For example, to send an integer from an Intel system to a System/390 operating system in System/390
encoding:

/* Encodings for Binary Integers */
MQENC_INTEGER_UNDEFINED
MQENC_INTEGER_NORMAL
MQENC_INTEGER_REVERSED

/* Encodings for Decimals */
MQENC_DECIMAL_UNDEFINED
MQENC_DECIMAL_NORMAL
MQENC_DECIMAL_REVERSED

/* Encodings for Floating-Point Numbers */
MQENC_FLOAT_UNDEFINED
MQENC_FLOAT_IEEE_NORMAL
MQENC_FLOAT_IEEE_REVERSED
MQENC_FLOAT_S390

Figure 104. Supplied IBM MQ constants for encoding

694 IBM MQ: Programming

Dim msg As New MQMessage ’Define a WebSphere MQ message for our use..
Print msg.Encoding ’Currently 546 (or X’222’)

’Set the encoding property
to 785 (or X’311’)

msg.Encoding = MQENC_INTEGER_NORMAL OR MQENC_DECIMAL_NORMAL
OR MQENC_FLOAT_S390

Print msg.Encoding ’Print it to see the change
Dim local_num As long ’Define a long integer
local_num = 1234 ’Set it
msg.WriteLong(local_num) ’Write the number into the message

Character set conversion

Character set conversion is necessary when you send a message from one system to another system
where the code pages are different. Code page conversion is used by:
v ReadString method
v ReadNullTerminatedString method
v WriteString method
v WriteNullTerminatedString method
v MessageData Property

You must set the MQMessage CharacterSet property to a supported character set value (CCSID).

IBM MQ Automation Classes for ActiveX uses conversion tables to perform character set conversion.

For example, to convert strings automatically to code page 437:
Dim msg As New MQMessage ’Define a WebSphere MQ message
msg.CharacterSet = 437 ’Set code page required
msg.WriteString "A character string"’Put character string in message

The WriteString method receives the string data (A character string in the example) as a Unicode
string. It then converts this data from Unicode into code page 437 using the conversion table
34B001B5.TBL.

Characters in the Unicode string that are not supported by code page 437 are given the standard
substitution character from code page 437.

Similarly, when you use the ReadString method, the incoming message has a character set established by
the IBM MQ Message Descriptor (MQMD) value and there is a conversion from this code page into
Unicode before it is passed back to your scripting language.

Developing object-oriented applications with IBM MQ 695

Threading
IBM MQ Automation Classes for ActiveX implement a free-threading model where objects can be used
between threads.

While MQAX permits the use of MQQueue and MQQueueManager objects, IBM MQ does not currently
permit the sharing of handles between different threads.

Attempts to use these on another thread result in an error and IBM MQ returns a return code of
MQRC_HCONN_ERROR.

Note: There is only one MQSession object per process. Using the MQSession CompletionCode and
ReasonCode is not recommended in multithreaded environments. The MQSession error values might be
overwritten by a second thread between an error being raised and checked on the first thread. Threads
are serialized for the duration of each method call or property access. So, issuing a Get with the Wait
option causes other threads accessing MQAX objects to be suspended until the operation completes.

Error handling
This information describes MQAX object properties, how error handling works, rules describing how
raising exceptions are handled, and getting a property.

Each MQAX object includes properties to hold error information and a method to reset or clear them. The
properties are:
v CompletionCode
v ReasonCode
v ReasonName

The method is:
v ClearErrorCodes

How error handling works

Your MQAX script or application invokes an MQAX object's method, or accesses or updates a property of
the MQAX object:
1. The ReasonCode and CompletionCode in the object concerned are updated.
2. The ReasonCode and CompletionCode in the MQSession object are also updated with the same

information.

Note: See “Threading” for restrictions on the use of MQSession error codes in threaded applications.
If the CompletionCode is greater than or equal to the ExceptionThreshold property of MQSession,
MQAX throws an exception (number 32000). Use this within your script using the On Error (or
equivalent) statement to process it.

3. Use the Error function to retrieve the associated error string, which has the form:
MQAX: CompletionCode=xxx, ReasonCode=xxx, ReasonName=xxx

For more information about how to use the On Error statements, see the documentation for your
ActiveX scripting language.
Using the CompletionCode and ReasonCode in the MQSession object is convenient for simple error
handlers.
ReasonName property returns the IBM MQ symbolic name for the current value of the ReasonCode.

Raising exceptions

The following rules describe how raising exceptions are handled:

696 IBM MQ: Programming

v Whenever a property or method sets the completion code to a value greater than or equal to the
exception threshold (typically set to 2) an exception is raised.

v All method calls and property sets set the completion code.

Getting a property

This is a special case because the CompletionCode and ReasonCode are not always updated:
v If a property get succeeds, the object and MQSession object ReasonCode and CompletionCode remain

unchanged.
v If a property get fails with a CompletionCode of warning, the ReasonCode and CompletionCode

remain unchanged.
v If a property get fails with a CompletionCode of error, the ReasonCode and CompletionCode are

updated to reflect the true values, and error processing proceeds as described.

The MQSession class has a method ReasonCodeName which might be used to replace an IBM MQ reason
code with a symbolic name. This is especially useful while developing programs where unexpected errors
might occur. However, the name is not ideal for presentation to users.

Each class also has a property ReasonName, that returns the symbolic name of the current reason code for
that class.

IBM MQ Automation Classes for ActiveX reference

This section describes the classes of the IBM MQ Automation Classes for ActiveX (MQAX), developed for
ActiveX. The classes enable you to write ActiveX applications that can access other applications running
in your non-ActiveX environments, using IBM MQ.

IBM MQ Automation Classes for ActiveX interface
IBM MQ Automation Classes for ActiveX provides predefined numeric ActiveX constants (such as
MQMT_REQUEST) needed to use the classes.

The ActiveX automation classes consist of the following:
v “MQSession Class” on page 699
v “MQQueueManager class” on page 703
v “MQQueue class” on page 718
v “MQMessage class” on page 737
v “MQPutMessageOptions class” on page 767
v “MQGetMessageOptions class” on page 770
v “MQDistributionList class” on page 772
v “MQDistributionListItem class” on page 778

In addition, IBM MQ Automation Classes for ActiveX provides predefined numeric ActiveX constants
(such as MQMT_REQUEST) needed to use the classes. These are provided in the enum MQ in library
MQAX200. The constants are a subset of those defined in the IBM MQ C header files (cmqc*.h) with
some additional IBM MQ Automation Classes for ActiveX Reason codes.

Developing object-oriented applications with IBM MQ 697

About IBM MQ Automation Classes for ActiveX classes

Read this information alongside the reference topics under Developing applications reference.

See Features that can be used only with the primary installation on Windows for important information.

The MQSession class provides a root object that contains the status of the last action performed on any of
the MQAX objects. See “Error handling” on page 696 for more information.

The MQQueueManager and MQQueue classes provide access to the underlying IBM MQ objects.
Methods or property accesses for these classes in general result in calls being made across the IBM MQ
MQI.

The MQMessage, MQPutMessageOptions, and MQGetMessageOptions classes encapsulate the MQMD,
MQPMO, and MQGMO data structures, and are used to help you send messages to queues and retrieve
messages from them.

The MQDistributionList class encapsulates a collection of queues - local, remote, or alias for output. The
MQDistributionListItem class encapsulates the MQOR, MQRR, and MQPMR structures and associates
them with an owning distribution list.

Parameter passing

Parameters on method invocations are all passed by value, except where that parameter is an object, in
which case it is a reference that is passed.

The class definitions provided list the Data Type for each parameter or property. For many ActiveX
clients, such as Visual Basic, if the variable used is not of the required type, the value is automatically
converted to or from the required type - providing such a conversion is possible. This follows standard
rules of the client; MQAX provides no such conversion.

Many of the methods take fixed-length string parameters, or return a fixed-length character string. The
conversion rules are as follows:
v If the user supplies a fixed-length string of the wrong length, as an input parameter or as a return

value, the value is truncated or padded with trailing spaces as required.
v If the user supplies a variable-length string of the wrong length as an input parameter, the value is

truncated or padded with trailing spaces.
v If the user supplies a variable-length string of the wrong length as a return value, the string is adjusted

to the required length (because returning a value destroys the previous value in the string anyway).
v Strings provided as input parameters can contain embedded Nulls.

These classes can be found in the MQAX200 library.

Object access methods

These methods do not relate directly to any single IBM MQ call. Each of these methods creates an object
in which reference information is then held, followed by connecting to or opening an IBM MQ object:

When a connection is made to a queue manager, it holds the 'connection handle' attribute generated by
IBM MQ.

When a queue is opened, it holds the 'object handle' attribute generated by IBM MQ.

These IBM MQ attributes are not directly available to the MQAX program.

698 IBM MQ: Programming

Errors

Syntactic errors on parameter passing can be detected at compile time and run time by the ActiveX client.
Errors can be trapped using On Error in Visual Basic.

The IBM MQ ActiveX classes all contain two special read-only properties - ReasonCode and
CompletionCode. These properties can be read at any time.

An attempt to access any other property, or to issue any method call might generate an error from IBM
MQ.

If a property set or method invocation succeeds, the ReasonCode of the owning object is set to
MQRC_NONE and CompletionCode is set to MQCC_OK.

If the property access or method invocation does not succeed, reason and completion codes are set in
these fields.

MQSession Class

This is the root class for IBM MQ Automation Classes for ActiveX.

There is always only one MQSession object per ActiveX client process. An attempt to create a second
object creates a second reference to the original object.

Creation

New creates a new MQSession object.

Syntax

Dim mqsess As New MQSession Set mqsess = New MQSession

Properties
v “CompletionCode property” on page 700.
v “ExceptionThreshold property” on page 700.
v “ReasonCode property” on page 701.
v “ReasonName property” on page 701.

Method
v “AccessGetMessageOptions method” on page 701.
v “AccessMessage method” on page 702.
v “AccessPutMessageOptions method” on page 702.
v “AccessQueueManager method” on page 702.
v “ClearErrorCodes method” on page 703.
v “ReasonCodeName method” on page 703.

Developing object-oriented applications with IBM MQ 699

CompletionCode property:

Read-only. Returns the IBM MQ completion code set by the most recent method or property set issued
against any IBM MQ object.

It is reset to MQCC_OK when a method or a property set is invoked successfully against any MQAX
object.

An error event handler can inspect this property to diagnose the error, without having to know which
object was involved.

Using the CompletionCode and ReasonCode in the MQSession object is very convenient for simple error
handlers.

Note: See “Threading” on page 696 for restrictions on the use of MQSession error codes in threaded
applications.

Defined in:
MQSession class

Data Type:
Long

Values:

v MQCC_OK
v MQCC_WARNING
v MQCC_FAILED

Syntax:
To get: completioncode& = MQSession.CompletionCode

ExceptionThreshold property:

Read-write. Defines the level of IBM MQ error for which MQAX will throw an exception. Defaults to
MQCC_FAILED. A value greater than MQCC_FAILED effectively prevents exception processing, leaving
the programmer to perform checks on the CompletionCode and ReasonCode.

Defined in: MQSession class

Data Type: Long

Values:

v Any, but consider MQCC_WARNING, MQCC_FAILED or greater.

Syntax:

To get: ExceptionThreshold& = MQSession. ExceptionThreshold

To set: MQSession. ExceptionThreshold = ExceptionThreshold$

700 IBM MQ: Programming

ReasonCode property:

Read-only. Returns the reason code set by the most recent method or property set issued against any IBM
MQ object.

An error event handler can inspect this property to diagnose the error, without having to know which
object was involved.

Using the CompletionCode and ReasonCode in the MQSession object is very convenient for simple error
handlers.

Note: See “Threading” on page 696 for restrictions on the use of MQSession error codes in threaded
applications.

Defined in: MQSession class

Data Type: Long

Values:

v See Reason (MQLONG) and the additional MQAX values listed under “Reason codes” on page 787.

Syntax: To get: reasoncode& = MQSession. ReasonCode

ReasonName property:

Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE".

Note: See “Threading” on page 696 for restrictions on the use of MQSession error codes in threaded
applications.

Defined in: MQSession class

Data Type: String

Values:

v See API reason codes.

Syntax: To get: reasonname$ = MQSession .ReasonName

AccessGetMessageOptions method:

Creates a new MQGetMessageOptions object.

Defined in:
MQSession class

Syntax:
gmo = MQSession .AccessGetMessageOptions()

Developing object-oriented applications with IBM MQ 701

AccessMessage method:

Creates a new MQMessage object.

Defined in:
MQSession class

Syntax:
msg = MQSession .AccessMessage()

AccessPutMessageOptions method:

Creates a new MQPutMessageOptions object.

Defined in:
MQSession class

Syntax:
pmo = MQSession .AccessPutMessageOptions()

AccessQueueManager method:

Creates a new MQQueueManager object and connects it to a real queue manager by means of the IBM
MQ MQI client or IBM MQ server. As well as performing a connect, this method also performs an open
for the queue manager object.

When both the IBM MQ MQI client and IBM MQ server are installed on your system, MQAX
applications will run against the server by default. To run MQAX against the client, the client bindings
library must be specified in the GMQ_MQ_LIB environment variable, for example, set GMQ_MQ_LIB=mqic.dll.

For a client only installation, it is not necessary to set the GMQ_MQ_LIB environment variable. When this
variable is not set, IBM MQ attempts to load amqzst.dll. If this DLL is not present (as is the case in a
client only installation), IBM MQ attempts to load mqic.dll.

If successful it sets the MQQueueManager's ConnectionStatus to TRUE.

A queue manager can be connected to at most one MQQueueManager object per ActiveX instance.

If the connection to the queue manager fails, an error event is raised, and the MQSession object's
ReasonCode and CompletionCode are set.

Defined in: MQSession class

Syntax: set qm = MQSession .AccessQueueManager (Name$)

Parameter: Name$ String. Name of Queue Manager to be connected to.

702 IBM MQ: Programming

ClearErrorCodes method:

Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE.

Defined in: MQSession class

Syntax:
Call MQSession.ClearErrorCodes()

ReasonCodeName method:

Returns the name of the reason code with the given numeric value. It is useful to give clearer indications
of error conditions to users. The name is still somewhat cryptic (for example, ReasonCodeName(2059) is
MQRC_Q_MGR_NOT_AVAILABLE), so where possible errors should be caught and replaced with
descriptive text appropriate to the application.

Defined in: MQSession class

Syntax: errname$ = MQSession .ReasonCodeName (reasonCode&)

Parameter: reasoncode& Long. The reason code for which the symbolic name is required.

MQQueueManager class

This class represents a connection to a queue manager. The queue manager can be running locally (an
IBM MQ server) or remotely with access provided by the IBM MQ client. An application must create an
object of this class and connect it to a queue manager. When an object of this class is destroyed it is
automatically disconnected from its queue manager.

Containment

MQQueue class objects are associated with this class.

New creates a new MQQueueManager object and sets all the properties to initial values. Alternatively use
the AccessQueueManager method of the MQSession class.

Creation

New creates a new MQQueueManager object and sets all the properties to initial values. Alternatively
use the AccessQueueManager method of the MQSession class.

Syntax

Dim mgr As New MQQueueManager set mgr = New MQQueueManager

Properties
v “AlternateUserId property” on page 705.
v “AuthorityEvent property” on page 705.
v “BeginOptions property” on page 706.
v “ChannelAutoDefinition property” on page 706.
v “ChannelAutoDefinitionEvent property” on page 706.
v “ChannelAutoDefinitionExit property” on page 707.
v “CharacterSet property” on page 707.
v “CloseOptions property” on page 707.

Developing object-oriented applications with IBM MQ 703

v “CommandInputQueueName property” on page 707.
v “CommandLevel property” on page 708.
v “CompletionCode property” on page 708.
v “ConnectionHandle property” on page 708.
v “ConnectionStatus property” on page 708.
v “ConnectOptions property” on page 709.
v “DeadLetterQueueName property” on page 709.
v “DefaultTransmissionQueueName property” on page 709.
v “Description property” on page 709.
v “DistributionLists property” on page 710.
v “InhibitEvent property” on page 710.
v “IsConnected property” on page 710.
v “IsOpen property” on page 711.
v “LocalEvent property” on page 711.
v “MaximumHandles property” on page 711.
v “MaximumMessageLength property” on page 711.
v “MaximumPriority property” on page 712.
v “MaximumUncommittedMessages property” on page 712.
v “Name property” on page 712.
v “ObjectHandle property” on page 712.
v “PerformanceEvent property” on page 713.
v “Platform property” on page 713.
v “ReasonCode property” on page 713.
v “ReasonName property” on page 714.
v “RemoteEvent property” on page 714.
v “StartStopEvent property” on page 714.
v “SyncPointAvailability property” on page 715.
v “TriggerInterval property” on page 715.

Methods
v “AccessQueue method” on page 715.
v “AddDistributionList method” on page 716.
v “Backout method” on page 716.
v “Begin method” on page 716.
v “ClearErrorCodes method” on page 717.
v “Commit method” on page 717.
v “Connect method” on page 717.
v “Disconnect method” on page 717.

Property Access

The following properties can be accessed at any time .
v “AlternateUserId property” on page 705.
v “CompletionCode property” on page 708.
v “ConnectionStatus property” on page 708.
v “ReasonCode property” on page 713.

704 IBM MQ: Programming

The remaining properties can be accessed only if the object is connected to a queue manager, and the
user ID is authorized to inquire against that queue manager. If an alternate user ID is set and the current
user ID is authorized to use it, the alternate user ID is checked for authorization for inquire instead

If these conditions do not apply, IBM MQ Automation Classes for ActiveX attempts to connect to the
queue manager and open it for inquire automatically. If this is unsuccessful, the call sets a
CompletionCode of MQCC_FAILED and one of the following ReasonCodes:
v MQRC_CONNECTION_BROKEN
v MQRC_NOT_AUTHORIZED
v MQRC_Q_MGR_NAME_ERROR
v MQRC_Q_MGR_NOT_AVAILABLE

AlternateUserId property:

Read-write. The alternate user ID to be used to validate access to the queue manager attributes.

This property must not be set if IsConnected is TRUE.

This property cannot be set while the object is open.

Defined in: MQQueueManager class

Data Type: String of 12 characters

Syntax: To get: altuser$ = MQQueueManager .AlternateUserId To set: MQQueueManager .AlternateUserId
= altuser$

AuthorityEvent property:

Read-only. The MQI AuthorityEvent attribute.

Defined in:
MQQueueManager class

Data Type:
Long

Values:

v MQEVR_DISABLED
v MQEVR_ENABLED

Syntax: To get: authevent = MQQueueManager .AuthorityEvent

Developing object-oriented applications with IBM MQ 705

BeginOptions property:

Read-write. These are the options that apply to the Begin method. Initially MQBO_NONE.

Defined in:
MQQueueManager class

Data Type:
Long

Values:

v MQBO_NONE

Syntax: To get: beginoptions&=MQQueueManager. BeginOptions

To set: MQQueueManager .BeginOptions = beginoptions&

ChannelAutoDefinition property:

Read-only. This controls whether automatic channel definition is permitted.

Defined in:
MQQueueManager class

Data Type:
Long

Values:

v MQCHAD_DISABLED
v MQCHAD_ENABLED

Syntax: To get: channelautodef&= MQQueueManager. ChannelAutoDefinition

ChannelAutoDefinitionEvent property:

Read-only. This controls whether automatic channel definition events are generated.

Defined in:
MQQueueManager class

Data Type:
Long

Values:

v MQEVR_DISABLED
v MQEVR_ENABLED

Syntax: To get: channelautodefevent&=MQQueueManager. ChannelAutoDefinitionEvent

706 IBM MQ: Programming

ChannelAutoDefinitionExit property:

Read-only. The name of the user exit used for automatic channel definition.

Defined in:
MQQueueManager class

Data Type:
String

Syntax: To get: channelautodefexit$= MQQueueManager. ChannelAutoDefinitionExit

CharacterSet property:

Read-only. The MQI CodedCharSetId attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax: To get: characterset&= MQQueueManager .CharacterSet

CloseOptions property:

Read-write. Options used to control what happens when the queue manager is closed. The initial value is
MQCO_NONE.

Defined in:
MQQueueManager class

Data Type:
Long

Values:

v MQCO_NONE

Syntax: To get: closeopt& = MQQueueManager .CloseOptions

To set: MQQueueManager .CloseOptions = closeopt&

CommandInputQueueName property:

Read-only. The MQI CommandInputQName attribute.

Defined in: MQQueueManager class

Data Type: String of 48 characters

Syntax: To get: commandinputqname$ = MQQueueManager .CommandInputQueueName

Developing object-oriented applications with IBM MQ 707

CommandLevel property:

Read-only. Returns the version and level of the IBM MQ queue manager implementation (MQI
CommandLevel attribute)

Defined in: MQQueueManager class

Data Type: Long

Syntax: To get: level& = MQQueueManager .CommandLevel

CompletionCode property:

Read-only. Returns the completion code set by the last method or property access issued against the
object.

Defined in: MQQueueManager class

Data Type: Long

Values:

v MQCC_OK
v MQCC_WARNING
v MQCC_FAILED

Syntax: To get: completioncode& = MQQueueManager .CompletionCode

ConnectionHandle property:

Read-only. The connection handle for the IBM MQ queue manager object.

Defined in:
MQQueueManager class

Data Type:
Long

Syntax: To get: hconn& = MQQueueManager. ConnectionHandle

ConnectionStatus property:

Read-only. Indicates if the object is connected to its queue manager or not.

Defined in: MQQueueManager class

Data Type: Boolean

Values:

v TRUE (-1)
v FALSE (0)

Syntax: To get: status = MQQueueManager .ConnectionStatus

708 IBM MQ: Programming

ConnectOptions property:

Read-Write. These options apply to the Connect method. Initially MQCNO_NONE.

Defined in:
MQQueueManager class

Data Type:
Long

Values:

v MQCNO_STANDARD_BINDING
v MQCNO_FASTPATH_BINDING
v MQCNO_NONE

Syntax: To get: connectoptions&=MQQueueManager. ConnectOptions

To set: MQQueueManager .ConnectOptions = connectoptions&

DeadLetterQueueName property:

Read-only. The MQI DeadLetterQName attribute.

Defined in: MQQueueManager class

Data Type: String of 48 characters

Syntax: to get: dlqname$ = MQQueueManager .DeadLetterQueueName

DefaultTransmissionQueueName property:

Read-only. The MQI DefXmitQName attribute.

Defined in: MQQueueManager class

Data Type: String of 48 characters

Syntax: To get: defxmitqname$ = MQQueueManager .DefaultTransmissionQueueName

Description property:

Read-only. The MQI QMgrDesc attribute.

Defined in: MQQueueManager class

Data Type: String of 64 characters

Syntax: To get: description$ = MQQueueManager .Description

Developing object-oriented applications with IBM MQ 709

DistributionLists property:

Read-Only. This is the capability of the queue manager to support distribution lists.

Defined in:
MQQueueManager class

Data Type:
Boolean

Values:

v TRUE (-1)
v FALSE (0)

Syntax: To get: distributionlists= MQQueueManager. DistributionLists

InhibitEvent property:

Read-only. The MQI InhibitEvent attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

v MQEVR_DISABLED
v MQEVR_ENABLED

Syntax: To get: inhibevent& = MQQueueManager .InhibitEvent

IsConnected property:

A value that indicates whether the queue manager is currently connected.

Read-only.

Defined in: MQQueueManager class

Data Type: Boolean

Values:

v TRUE (-1)
v FALSE (0)

Syntax: To get: isconnected = MQQueueManager .IsConnected

710 IBM MQ: Programming

IsOpen property:

A value that indicates whether the queue manager is currently open for inquire.

Read-only.

Defined in:
MQQueueManager class

Data Type:
Boolean

Values:

v TRUE (-1)
v FALSE (0)

Syntax: To get: IsOpen = MQQueueManager. IsOpen

LocalEvent property:

Read-only. The MQI LocalEvent attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

v MQEVR_DISABLED
v MQEVR_ENABLED

Syntax: To get: localevent& = MQQueueManager .LocalEvent

MaximumHandles property:

Read-only. The MQI MaxHandles attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax: To get: maxhandles& = MQQueueManager .MaximumHandles

MaximumMessageLength property:

Read-only. The MQI MaxMsgLength Queue Manager attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax: To get: maxmessagelength& = MQQueueManager .MaximumMessageLength

Developing object-oriented applications with IBM MQ 711

MaximumPriority property:

Read-only. The MQI MaxPriority attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax: To get: maxpriority& = MQQueueManager .MaximumPriority

MaximumUncommittedMessages property:

Read-only. The MQI MaxUncommittedMsgs attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax: To get: maxuncommitted& = MQQueueManager .MaximumUncommittedMessages

Name property:

Read-write. The MQI QMgrName attribute. This property cannot be written once the MQQueueManager
is connected.

Defined in: MQQueueManager class

Data Type: String of 48 characters

Syntax: To get: name$ = MQQueueManager .name

To set: MQQueueManager .name = name$

Note: Visual Basic reserves the "Name" property for use in the visual interface. Therefore, when using
within Visual Basic use lower-case, that is, "name".

ObjectHandle property:

Read-only. The object handle for the IBM MQ queue manager object.

Defined in:
MQQueueManager class

Data type
Long

Syntax: To get: hobj& = MQQueueManager. ObjectHandle

712 IBM MQ: Programming

PerformanceEvent property:

Read-only. The MQI PerformanceEvent attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

v MQEVR_DISABLED
v MQEVR_ENABLED

Syntax: To get: perfevent& = MQQueueManager.PerformanceEvent

Platform property:

Read-only. The MQI Platform attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

v MQPL_WINDOWS_NT
v MQPL_WINDOWS

Syntax: To get: platform& = MQQueueManager .Platform

ReasonCode property:

Read-only. Returns the reason code set by the last method or property access issued against the object.

Defined in: MQQueueManager class

Data Type: Long

Values:

v See API reason codes.

Syntax: To get: reasoncode& = MQQueueManager .ReasonCode

Developing object-oriented applications with IBM MQ 713

ReasonName property:

Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE".

Defined in: MQQueueManager class

Data Type: String

Values:

v See API reason codes.

Syntax: To get: reasonname$ = MQQueueManager .ReasonName

RemoteEvent property:

Read-only. The MQI RemoteEvent attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

v MQEVR_DISABLED
v MQEVR_ENABLED

Syntax: To get: remoteevent& = MQQueueManager .RemoteEvent

StartStopEvent property:

Read-only. The MQI StartStopEvent attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

v MQEVR_DISABLED
v MQEVR_ENABLED

Syntax: To get: strstpevent& = MQQueueManager .StartStopEvent

714 IBM MQ: Programming

SyncPointAvailability property:

Read-only. The MQI SyncPoint attribute.

Defined in: MQQueueManager class

Data Type: Long

Values:

v MQSP_AVAILABLE
v MQSP_NOT_AVAILABLE

Syntax: To get: syncpointavailability& = MQQueueManager .SyncPointAvailability

TriggerInterval property:

Read-only. The MQI TriggerInterval attribute.

Defined in: MQQueueManager class

Data Type: Long

Syntax: To get: trigint& = MQQueueManager .TriggerInterval

AccessQueue method:

Creates an MQQueue object and associates it with this MQQueueManager object by setting the
connection reference property of the queue. It sets the Name, OpenOptions, DynamicQueueName, and
AlternateUserId properties of the MQQueue object to the values provided, and attempts to open it.

If the open is unsuccessful the call fails. An error event is raised against the object. The ReasonCode and
CompletionCode, and the MQSession ReasonCode and CompletionCode of the object are set.

The DynamicQueueName, QueueManagerName, and AlternateUserId parameters are optional and
default to "".

The OpenOption MQOO_INQUIRE should be specified in addition to other options if queue properties
are to be read.

Do not set the QueueManagerName, or set it to "" if the queue to be opened is local. Otherwise, set it to
the name of the remote queue manager that owns the queue, and an attempt is made to open a local
definition of the remote queue. For more information about remote queue name resolution and queue
manager aliasing, see What are aliases?.

If the Name property is set to a model queue name, specify the name of the dynamic queue to be created
in the DynamicQueueName$ parameter. If the value provided in the DynamicQueueName$ parameter is
"", the value set into the queue object and used on the open call is "AMQ.*". See “Creating dynamic
queues” on page 111 for more information about naming dynamic queues.

Definition

Defined in: MQQueueManager class.

Developing object-oriented applications with IBM MQ 715

Syntax

Syntax: set queue = MQQueueManager. AccessQueue (Name$, OpenOptions&, QueueManagerName$,
DynamicQueueName$, AlternateUserId$)

Parameters

Name$ String. Name of IBM MQ queue.

OpenOptions: Long. Options to be used when queue is opened. See OpenOptions (MQLONG).

QueueManagerName$ String. Name of the queue manager that owns the queue to be opened. A value of ""
implies the queue manager is local.

DynamicQueueName$ String. The name assigned to the dynamic queue at the time the queue is opened
when the Name$ parameter specifies a model queue.

AlternateUserId$ String. The alternate user ID used to validate access when opening the queue.

AddDistributionList method:

Creates a new MQDistributionList object and sets its connection reference to the owning queue manager.

Defined in:
MQQueueManager class

Syntax: set distributionlist = MQQueueManager. AddDistributionList

Backout method:

Backs out any uncommitted message puts and gets that have occurred as part of a unit of work since the
last syncpoint.

Defined in: MQQueueManager class

Syntax:
Call MQQueueManager.Backout()

Begin method:

Begins a unit of work that is coordinated by the queue manager. The begin options affect the behavior of
this method.

Defined in:
MQQueueManager class

Syntax:
Call MQQueueManager.Begin()

716 IBM MQ: Programming

ClearErrorCodes method:

Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE for both the
MQQueueManager class and the MQSession class.

Defined in:
MQQueueManager class

Syntax:
Call MQQueueManager .ClearErrorCodes()

Commit method:

Commits any message puts and gets that have occurred as part of a unit of work since the last syncpoint.

Defined in: MQQueueManager class

Syntax:
Call MQQueueManager.Commit()

Connect method:

Connects the MQQueueManager object to a real queue manager via the IBM MQ MQI client or server. As
well as making the connection, this method also opens the queue manager object so that it can be
queried.

Sets IsConnected to TRUE.

A maximum of one MQQueueManager object per ActiveX instance is allowed to connect to a queue
manager.

Defined in: MQQueueManager class

Syntax:
Call MQQueueManager.Connect()

Disconnect method:

Disconnects the MQQueueManager object from the queue manager.

Sets IsConnected to FALSE.

All Queue objects associated with the MQQueueManager object are made unusable and cannot be
re-opened.

Any uncommitted changes (message puts and gets) are committed.

Defined in: MQQueueManager class

Syntax:
Call MQQueueManager.Disconnect()

Developing object-oriented applications with IBM MQ 717

MQQueue class

This class represents access to an IBM MQ queue. This connection is provided by an associated
MQQueueManager object. When an object of this class is destroyed it is automatically closed.

Containment

The MQQueue class is contained by the MQQueueManager class.

Creation

New creates a new MQQueue object and sets all the properties to initial values. Alternatively, use the
AccessQueue method of the MQQueueManager class.

Syntax
Dim que As New MQQueue Set que = New MQQueue

Properties
v “AlternateUserId property” on page 720.
v “BackoutRequeueName property” on page 721.
v “BackoutThreshold property” on page 721.
v “BaseQueueName property” on page 721.
v “CloseOptions property” on page 721.
v “CompletionCode property” on page 722.
v “ConnectionReference property” on page 722.
v “CreationDateTime property” on page 722.
v “CurrentDepth property” on page 723.
v “DefaultInputOpenOption property” on page 723.
v “DefaultPersistence property” on page 723.
v “DefaultPriority property” on page 723.
v “DefinitionType property” on page 724.
v “DepthHighEvent property” on page 724.
v “DepthHighLimit property” on page 724.
v “DepthLowEvent property” on page 724.
v “DepthLowLimit property” on page 725.
v “DepthMaximumEvent property” on page 725.
v “DepthHighEvent property” on page 724.
v “DepthHighLimit property” on page 724.
v “DepthLowEvent property” on page 724.
v “DepthLowLimit property” on page 725.
v “DepthMaximumEvent property” on page 725.
v “Description property” on page 725.
v “DynamicQueueName property” on page 725.
v “HardenGetBackout property” on page 726.
v “InhibitGet property” on page 726.
v “InhibitPut property” on page 726.
v “InitiationQueueName property” on page 727.
v “IsOpen property” on page 727.

718 IBM MQ: Programming

v “MaximumDepth property” on page 727.
v “MaximumMessageLength property” on page 727.
v “MessageDeliverySequence property” on page 728.
v “ObjectHandle property” on page 728.
v “OpenInputCount property” on page 728.
v “OpenOptions property” on page 729.
v “OpenOutputCount property” on page 729.
v “OpenStatus property” on page 729.
v “ProcessName property” on page 730.
v “QueueManagerName property” on page 730.
v “QueueType Property” on page 730.
v “ReasonCode property” on page 730.
v “ReasonName property” on page 731.
v “RemoteQueueManagerName property” on page 731.
v “RemoteQueueName property” on page 731.
v “ResolvedQueueManagerName property” on page 731.
v “ResolvedQueueName property” on page 732.
v “RetentionInterval property” on page 732.
v “Scope property” on page 732.
v “ServiceInterval property” on page 732.
v “ServiceIntervalEvent property” on page 733.
v “Shareability property” on page 733.
v “TransmissionQueueName property” on page 733.
v “TriggerControl property” on page 733.
v “TriggerData property” on page 734.
v “TriggerDepth property” on page 734.
v “TriggerMessagePriority property” on page 734.
v “TriggerType property” on page 734.
v “Usage property” on page 735.

Methods
v “ClearErrorCodes method” on page 735
v “Close method” on page 735
v “Get method” on page 735
v “Open method” on page 736
v “Put method” on page 737

Property Access

If the queue object is not connected to a queue manager, you can read the following properties:
v “CompletionCode property” on page 722
v “OpenStatus property” on page 729
v “ReasonCode property” on page 730

and you can read and write to:
v “AlternateUserId property” on page 720
v “CloseOptions property” on page 721

Developing object-oriented applications with IBM MQ 719

v “ConnectionReference property” on page 722
v “Name property” on page 728
v “OpenOptions property” on page 729

If the queue object is connected to a queue manager, you can read all the properties.

Queue Attribute properties

Properties not listed in the previous section are all attributes of the underlying IBM MQ queue. They can
be accessed only if the object is connected to a queue manager, and the user's user ID is authorized for
Inquire or Set against that queue. If an alternate user ID is set and the current user ID is authorized to
use it, the alternate user ID is checked for authorization instead.

The property must be an appropriate property for the given QueueType. See Attributes for queues for
more information.

If these conditions do not apply, the property access will set a CompletionCode of MQCC_FAILED and
one of the following ReasonCodes:
v MQRC_CONNECTION_BROKEN
v MQRC_NOT_AUTHORIZED
v MQRC_Q_MGR_NAME_ERROR
v MQRC_Q_MGR_NOT_CONNECTED
v MQRC_SELECTOR_NOT_FOR_TYPE (CompletionCode is MQCC_WARNING)

Opening a queue

The only way to create an MQQueue object is by using the MQQueueManager AccessQueue method or
by New. An open MQQueue object remains open (OpenStatus=TRUE) until it is closed or deleted or until
the creating queue manager object is deleted or connection is lost to the queue manager. The value of the
MQQueue CloseOptions property controls the behavior of the close operation that takes place when the
MQQueue object is deleted.

The MQQueueManager AccessQueue method opens the queue using the OpenOptions parameter. The
MQQueue.Open method opens the queue using the OpenOptions property. IBM MQ validates the
OpenOptions against the user authorization as part of the open queue process.

AlternateUserId property:

Read-write. The alternate user ID used to validate access to the queue when it is opened.

This property cannot be set while the object is open (that is, when IsOpen is TRUE).

Defined in: MQQueue class

Data Type: String of 12 characters

Syntax: To get: altuser$ = MQQueue .AlternateUserId

To set: MQQueue. AlternateUserId = altuser$

720 IBM MQ: Programming

BackoutRequeueName property:

Read-only. The MQI BackOutRequeueQName attribute.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax: To get: backoutrequeuename$ = MQQueue .BackoutRequeueName

BackoutThreshold property:

Read-only. The MQI BackoutThreshold attribute.

Defined in: MQQueue class

Data Type: Long

Values:

v See BackoutThreshold (MQLONG).

Syntax: To get: backoutthreshold& = MQQueue. BackoutThreshold

BaseQueueName property:

Read-only. The queue name to which the alias resolves.

Valid only for alias queues.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax: To get: baseqname$ = MQQueue .BaseQueueName

CloseOptions property:

Read-Write. Options used to control what happens when the queue is closed.

Defined in: MQQueue class

Data Type: Long

Values:

v MQCO_NONE
v MQCO_DELETE
v MQCO_DELETE_PURGE

MQCO_DELETE and MQCO_DELETE_PURGE are valid only for dynamic queues.

Syntax: To get: closeopt& = MQQueue .CloseOptions

To set: MQQueue .CloseOptions = closeopt&

Developing object-oriented applications with IBM MQ 721

CompletionCode property:

Read-only. Returns the completion code set by the last method or property access issued against the
object.

Defined in: MQQueue class

Data Type: Long

Values:

v MQCC_OK
v MQCC_WARNING
v MQCC_FAILED

Syntax: To get: completioncode& = MQQueue .CompletionCode

ConnectionReference property:

Read-write. Defines the queue manager object to which a queue object belongs. The connection reference
cannot be written while a queue is open.

Defined in: MQQueue class

Data Type: MQQueueManager

Values:

v A reference to an active IBM MQ Queue Manager object

Syntax: To set: set MQQueue .ConnectionReference = ConnectionReference

To get: set ConnectionReference = MQQueue .ConnectionReference

CreationDateTime property:

Read-only. Date and time this queue was created.

Defined in: MQQueue class

Data Type: Variant of type 7 (date/time) or EMPTY

Syntax: To get: datetime = MQQueue .CreationDateTime

722 IBM MQ: Programming

CurrentDepth property:

Read-only. The number of messages currently on the queue.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: currentdepth& = MQQueue .CurrentDepth

DefaultInputOpenOption property:

Read-only. Controls the way that the queue is opened if the OpenOptions specify
MQOO_INPUT_AS_Q_DEF.

Defined in: MQQueue class

Data Type: Long

Values:

v MQOO_INPUT_EXCLUSIVE
v MQOO_INPUT_SHARED

Syntax: To get: defaultinop& = MQQueue .DefaultInputOpenOption

DefaultPersistence property:

Read-only. The default persistence for messages on a queue.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: defpersistence& = MQQueue .DefaultPersistence

DefaultPriority property:

Read-only. The default priority for messages on a queue.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: defpriority& = MQQueue .DefaultPriority

Developing object-oriented applications with IBM MQ 723

DefinitionType property:

Read-only. Queue definition type.

Defined in: MQQueue class

Data Type: Long

Values:

v MQQDT_PREDEFINED
v MQQDT_PERMANENT_DYNAMIC
v MQQDT_TEMPORARY_DYNAMIC

Syntax: To get: deftype& = MQQueue .DefinitionType

DepthHighEvent property:

Read-only. The MQI QDepthHighEvent attribute.

Defined in: MQQueue class

Data Type: Long

Values:

v MQEVR_DISABLED
v MQEVR_ENABLED

Syntax: To get: depthhighevent& = MQQueue. DepthHighEvent

DepthHighLimit property:

Read-only. The MQI QDepthHighLimit attribute.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: depthhighlimit& = MQQueue. DepthHighLimit

DepthLowEvent property:

Read-only. The MQI QDepthLowEvent attribute.

Defined in: MQQueue class

Data Type: Long

Values:

v MQEVR_DISABLED
v MQEVR_ENABLED

Syntax: To get: depthlowevent& = MQQueue. DepthLowEvent

724 IBM MQ: Programming

DepthLowLimit property:

Read-only. The MQI QDepthLowLimit attribute.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: depthlowlimit& = MQQueue. DepthLowLimit

DepthMaximumEvent property:

Read-only. The MQI QDepthMaxEvent attribute.

Defined in: MQQueue class

Data Type: Long

Values:

v MQEVR_DISABLED
v MQEVR_ENABLED

Syntax: To get: depthmaximumevent& = MQQueue. DepthMaximumEvent

Description property:

Read-only. A description of the queue.

Defined in: MQQueue class

Data Type: String of 64 characters

Syntax: To get: description$ = MQQueue .Description

DynamicQueueName property:

Read-write, read-only when the queue is open.

This controls the dynamic queue name used when a model queue is opened. It can be set with a
wildcard by the user either as a property set (only when the queue is closed) or as a parameter to
MQQueueManager.AccessQueue().

The actual name of the dynamic queue is found by querying QueueName.

Defined in: MQQueue class

Data Type: String of 48 characters

Values:

v Any valid IBM MQ queue name.

Syntax: To set: MQQueue .DynamicQueueName = dynamicqueuename$

To get: dynamicqueuename$ = MQQueue .DynamicQueueName

Developing object-oriented applications with IBM MQ 725

HardenGetBackout property:

Read-only. Whether to maintain an accurate back-out count.

Defined in: MQQueue class

Data Type: Long

Values:

v MQQA_BACKOUT_HARDENED
v MQQA_BACKOUT_NOT HARDENED

Syntax: To get: hardengetback& = MQQueue .HardenGetBackout

InhibitGet property:

Read-write. The MQI InhibitGet attribute.

Defined in: MQQueue class

Data Type: Long

Values:

v MQQA_GET_INHIBITED
v MQQA_GET_ALLOWED

Syntax: To get: getstatus& = MQQueue .InhibitGet

To set: MQQueue .InhibitGet = getstatus&

InhibitPut property:

Read-write. The MQI InhibitPut attribute.

Defined in: MQQueue class

Data Type: Long

Values:

v MQQA_PUT_INHIBITED
v MQQA_PUT_ALLOWED

Syntax: To get: putstatus& = MQQueue .InhibitPut

To set: MQQueue .InhibitPut = putstatus&

726 IBM MQ: Programming

InitiationQueueName property:

Read-only. Name of initiation queue.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax: To get: initqname$ = MQQueue .InitiationQueueName

IsOpen property:

Returns whether the queue is open.

Read-only.

Defined in: MQQueue class

Data Type: Boolean

Values:

v TRUE (-1)
v FALSE (0)

Syntax: To get: open = MQQueue .IsOpen

MaximumDepth property:

Read-only. Maximum queue depth.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: maxdepth& = MQQueue .MaximumDepth

MaximumMessageLength property:

Read-only. Maximum permitted message length in bytes for this queue.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: maxmlength& = MQQueue .MaximumMessageLength

Developing object-oriented applications with IBM MQ 727

MessageDeliverySequence property:

Read-only. Message delivery sequence.

Defined in: MQQueue class

Data Type: Long

Values:

v MQMDS_PRIORITY
v MQMDS_FIFO

Syntax: To get: messdelseq& = MQQueue .MessageDeliverySequence

Name property:

Read-write. The MQI Queue attribute. This property cannot be written after the MQQueue is open.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax: To get: name$ = MQQueue .name

To set: MQQueue .name = name$

Note: Visual Basic reserves the "Name" property for use in the visual interface. Therefore, when using
within Visual Basic use lower-case, that is "name".

ObjectHandle property:

Read-only. The object handle for the IBM MQ queue object.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: hobj& = MQQueue. ObjectHandle

OpenInputCount property:

Read-only. Number of opens for input.

Defined in: MQQueue class

Data Type: Long

Syntax: To get:
openincount& = MQQueue.OpenInputCount

728 IBM MQ: Programming

OpenOptions property:

Read-write. Options to be used for opening the queue.

Defined in: MQQueue class

Data Type: Long

Values:

v See OpenOptions (MQLONG).

Syntax: To get:
openopt& = MQQueue.OpenOptions

To set: MQQueue. OpenOptions = openopt&

OpenOutputCount property:

Read-only. Number of opens for output.

Defined in: MQQueue class

Data Type: Long

Syntax: To get:
openoutcount& = MQQueue.OpenOutputCount

OpenStatus property:

Read-only. Indicates if the queue is opened or not. Initial value is TRUE after AccessQueue method or
FALSE after New.

Defined in: MQQueue class

Data Type: Boolean

Values:

v TRUE (-1)
v FALSE (0)

Syntax: To get:
status& = MQQueue.OpenStatus

Developing object-oriented applications with IBM MQ 729

ProcessName property:

Read-only. The MQI ProcessName attribute.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax: To get: procname$ = MQQueue .ProcessName

QueueManagerName property:

Read-write. The IBM MQ queue manager name.

Defined in: MQQueue class

Data Type: String

Syntax: To get: QueueManagerName$ = MQQueue .QueueManagerName

To set: MQQueue .QueueManagerName = QueueManagerName$

QueueType Property:

Read-only. The MQI QType attribute.

Defined in: MQQueue class

Data Type: Long

Values:

v MQQT_ALIAS
v MQQT_LOCAL
v MQQT_MODEL
v MQQT_REMOTE

Syntax: To get: queuetype& = MQQueue .QueueType

ReasonCode property:

Read-only. Returns the reason code set by the last method or property access issued against the object.

Defined in: MQQueue class

Data Type: Long

Values:

v See API reason codes.

Syntax: To get: reasoncode& = MQQueue .ReasonCode

730 IBM MQ: Programming

ReasonName property:

Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE".

Defined in: MQQueue class

Data Type: String

Values:

v See API reason codes.

Syntax: To get: reasonname$ = MQQueue .ReasonName

RemoteQueueManagerName property:

Read-only. Name of remote queue manager. Valid for remote queues only.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax: To get: remqmanname$ = MQQueue .RemoteQueueManagerName

RemoteQueueName property:

Read-only. The name of the queue as it is known on the remote queue manager. Valid for remote queues
only.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax: To get: remqname$ = MQQueue .RemoteQueueName

ResolvedQueueManagerName property:

Read-only. The name of the final destination queue manager as known to the local queue manager.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax: To get: resqmanname$ = MQQueue .ResolvedQueueManagerName

Developing object-oriented applications with IBM MQ 731

ResolvedQueueName property:

Read-only. The name of the final destination queue as known to the local queue manager.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax: To get: resqname$ = MQQueue .ResolvedQueueName

RetentionInterval property:

Read-only. The period of time for which the queue should be retained.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: retinterval& = MQQueue .RetentionInterval

Scope property:

Read-only. Controls whether an entry for this queue also exists in a cell directory.

Defined in: MQQueue class

Data Type: Long

Values:

v MQSCO_Q_MGR
v MQSCO_CELL

Syntax: To get: scope& = MQQueue .Scope

ServiceInterval property:

Read-only. The MQI QServiceInterval attribute.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: serviceinterval& = MQQueue. ServiceInterval

732 IBM MQ: Programming

ServiceIntervalEvent property:

Read-only. The MQI QServiceIntervalEvent attribute.

Defined in: MQQueue class

Data Type: Long

Values:

v MQQSIE_HIGH
v MQQSIE_OK
v MQQSIE_NONE

Syntax: To get: serviceintervalevent& = MQQueue. ServiceIntervalEvent

Shareability property:

Read-only. Queue shareability.

Defined in: MQQueue class

Data Type: Long

Values:

v MQQA_SHAREABLE
v MQQA_NOT_SHAREABLE

Syntax: To get: shareability& = MQQueue .Shareability

TransmissionQueueName property:

Read-only. Transmission queue name. Valid for remote queues only.

Defined in: MQQueue class

Data Type: String of 48 characters

Syntax: To get: transqname$ = MQQueue .TransmissionQueueName

TriggerControl property:

Read-write. Trigger control.

Defined in: MQQueue class

Data Type: Long

Values:

v MQTC_OFF
v MQTC_ON

Syntax: To get: trigcontrol& = MQQueue .TriggerControl

To set: MQQueue .TriggerControl = trigcontrol&

Developing object-oriented applications with IBM MQ 733

TriggerData property:

Read-write. Trigger data.

Defined in: MQQueue class

Data Type: String of 64 characters

Syntax: To get: trigdata$ = MQQueue .TriggerData

To set: MQQueue .TriggerData = trigdata$

TriggerDepth property:

Read-write. The number of messages that have to be on the queue before a trigger message is written.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: trigdepth& = MQQueue .TriggerDepth

To set: MQQueue .TriggerDepth = trigdepth&

TriggerMessagePriority property:

Read-write. Threshold message priority for triggers.

Defined in: MQQueue class

Data Type: Long

Syntax: To get: trigmesspriority& = MQQueue .TriggerMessagePriority

To set: MQQueue .TriggerMessagePriority = trigmesspriority&

TriggerType property:

Read-write. Trigger type.

Defined in: MQQueue class

Data Type: Long

Values:

v MQTT_NONE
v MQTT_FIRST
v MQTT_EVERY
v MQTT_DEPTH

Syntax: To get: trigtype& = MQQueue .TriggerType

To set: MQQueue .TriggerType = Trigtype&

734 IBM MQ: Programming

Usage property:

Read-only. Indicates what the queue is used for.

Defined in: MQQueue class

Data Type: Long

Values:

v MQUS_NORMAL
v MQUS_TRANSMISSION

Syntax: To get: usage& = MQQueue .Usage

ClearErrorCodes method:

Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE for both the MQQueue
class and the MQSession class.

Defined in: MQQueue class

Syntax:
Call MQQueue.ClearErrorCodes()

Close method:

Closes a queue using the current values of CloseOptions.

Defined in: MQQueue class

Syntax:
Call MQQueue.Close()

Get method:

Retrieves a message from the queue.

This method takes an MQMessage object as a parameter, using some of the fields in the MQMD of the
object as input parameters. In particular, the MessageId and CorrelId fields are used, so it is important to
ensure that these fields are set as required. For more information about these fields, see MsgId
(MQBYTE24) and CorrelId (MQBYTE24).

If the method fails then the MQMessage object is unchanged. If it succeeds, the MQMD and Message
Data portions of the MQMessage object are replaced by the MQMD and Message Data from the incoming
message. The MQMessage control properties are set as follows
v MessageLength is set to length of the IBM MQ message
v DataLength is set to length of the IBM MQ message
v DataOffset is set to zero

Defined in:
MQQueue class

Syntax:
Call MQQueue.Get(Message, GetMsgOptions, GetMsgLength)

Developing object-oriented applications with IBM MQ 735

Parameters
Message:

MQMessage Object representing message to be retrieved.

GetMsgOptions:

Optional MQGetMessageOptions object to control the get operation. If this parameter is not
specified, default MQGetMessageOptions are used.

GetMsgLength:

Optional 2 or 4 byte length value to control the maximum length of the IBM MQ message that is
retrieved from the queue.

If the MQGMO_ACCEPT_TRUNCATED_MSG option is specified, the GET succeeds with a
completion code of MQCC_WARNING and a reason code of
MQRC_TRUNCATED_MSG_ACCEPTED if the message size exceeds the specified length.

The MessageData holds the first GetMsgLength bytes of data.

If MQGMO_ACCEPT_TRUNCATED_MSG is not specified, and the message size exceeds the
specified length, the completion code of MQCC_FAILED together with reason code
MQRC_TRUNCATED_MESSAGE_FAILED is returned.

If the contents of the message buffer are undefined, the total message length is set to the full
length of the message that would have been retrieved.

If the message length parameter is not specified, the length of the message buffer is automatically
adjusted to at least the size of the incoming message.

Open method:

Opens a queue using the current values of:
1. QueueName
2. QueueManagerName
3. AlternateUserId
4. DynamicQueueName

Defined in:
MQQueue class

Syntax:
Call MQQueue.Open()

736 IBM MQ: Programming

Put method:

Places a message onto the queue.

This method takes an MQMessage object as a parameter. The Message Descriptor (MQMD) properties of
this object might be altered as a result of this method. The values they have immediately after this
method has run are the values that were put onto the IBM MQ.

Modifications to the MQMessage object after the Put has completed do not affect the actual message on
the IBM MQ queue.

Defined in:
MQQueue class

Syntax:
Call MQQueue.Put(Message, PutMsgOptions)

Parameters
Message

MQMessage object representing message to be put.

PutMsgOptions

MQPutMessageOptions object containing options to control the put operation. If these are not
specified, default PutMessageOptions are used.

MQMessage class

This class represents an IBM MQ message. It includes properties to encapsulate the IBM MQ message
descriptor (MQMD), and provides a buffer to hold the application-defined message data.

The class includes Write methods to copy data from an ActiveX application to an MQMessage object.
Similarly, the class includes Read methods to copy data from an MQMessage object to an ActiveX
application. The class manages the allocation and deallocation of memory for the buffer automatically.
The application does not have to declare the size of the buffer when an MQMessage object is created
because the buffer grows to accommodate data written to it.

You cannot place a message onto an IBM MQ queue if the buffer size exceeds the
MaximumMessageLength property of that queue.

After it has been constructed, an MQMessage object can be Put onto an IBM MQ queue using the
MQQueue.Put method. This method takes a copy of the MQMD and message data portions of the object
and places that copy on the queue. The application can therefore modify or delete an MQMessage object
after the Put, without affecting the message on the IBM MQ queue. The queue manager can adjust some
of the fields in the MQMD when it copies the message on the IBM MQ queue.

An incoming message can be read into an MQMessage object using the MQQueue.Get method. This
replaces any MQMD or message data that might already have been in the MQMessage object with values
from the incoming message. It adjusts the size of the data buffer of the MQMessage object to match the
size of the incoming message data.

Containment

Messages are contained by the MQSession class.

Developing object-oriented applications with IBM MQ 737

Creation

New creates an MQMessage object. Its Message Descriptor properties are initially set to default values,
and its Message Data buffer is empty.

Syntax
Dim msg As New MQMessage

or
Set msg = New MQMessage

Properties

The control properties are:
v “CompletionCode property” on page 740
v “DataLength property” on page 741
v “DataOffset property” on page 741
v “MessageLength property” on page 742
v “ReasonCode property” on page 742
v “ReasonName property” on page 742

The Message Descriptor properties are:
v “AccountingToken property” on page 743
v “AccountingTokenHex property” on page 743
v “ApplicationIdData property” on page 743
v “ApplicationOriginData property” on page 744
v “BackoutCount property” on page 744
v “CharacterSet property” on page 744
v “CorrelationId property” on page 745
v “CorrelationIdHex property” on page 745
v “Encoding property” on page 746
v “Expiry property” on page 747
v “Feedback property” on page 747
v “Format property” on page 747
v “GroupId property” on page 748
v “GroupIdHex property” on page 748
v “MessageData property” on page 749
v “MessageFlags property” on page 749
v “MessageId property” on page 749
v “MessageIdHex property” on page 750
v “MessageSequenceNumber property” on page 750
v “MessageType property” on page 751
v “Offset property” on page 751
v “OriginalLength property” on page 751
v “Persistence property” on page 752
v “Priority property” on page 752
v “PutApplicationName property” on page 752
v “PutApplicationType property” on page 753

738 IBM MQ: Programming

v “PutDateTime property” on page 753
v “ReplyToQueueManagerName property” on page 753
v “ReplyToQueueName property” on page 754
v “Report property” on page 754
v “TotalMessageLength property” on page 754
v “UserId property” on page 755

Methods
v “ClearErrorCodes method” on page 755
v “ClearMessage method” on page 755
v “Read method” on page 755
v “ReadBoolean method” on page 756
v “ReadByte method” on page 756
v “ReadDecimal2 method” on page 756
v “ReadDecimal4 method” on page 756
v “ReadDouble method” on page 757
v “ReadDouble4 method” on page 757
v “ReadFloat method” on page 758
v “ReadInt2 method” on page 758
v “ReadInt4 method” on page 758
v “ReadLong method” on page 758
v “ReadNullTerminatedString method” on page 759
v “ReadShort method” on page 759
v “ReadString method” on page 759
v “ReadUInt2 method” on page 760
v “ReadUnsignedByte method” on page 760
v “ReadUTF method” on page 760
v “ResizeBuffer method” on page 761
v “Write method” on page 761
v “WriteBoolean method” on page 762
v “WriteByte method” on page 762
v “WriteDecimal2 method” on page 762
v “WriteDecimal4 method” on page 763
v “WriteDouble method” on page 763
v “WriteDouble4 method” on page 763
v “WriteFloat method” on page 764
v “WriteInt2 method” on page 764
v “WriteInt4 method” on page 764
v “WriteLong method” on page 764
v “WriteNullTerminatedString method” on page 765
v “WriteShort method” on page 765
v “WriteString method” on page 765
v “WriteUInt2 method” on page 766
v “WriteUnsignedByte method” on page 766
v “WriteUTF method” on page 766

Developing object-oriented applications with IBM MQ 739

Property access

All properties can be read at any time.

The control properties are read-only, except for DataOffset which is read-write. The Message Descriptor
properties are all read-write, except BackoutCount and TotalMessageLength which are both read-only.

Note however that some of the MQMD properties might be modified by the queue manager when the
message is put onto an IBM MQ queue. See the fields in MQMD for details of how they might be
modified.

Data conversion

You can pass binary data to an IBM MQ message by setting the CharacterSet property to match the
Coded Character Set Identifier of the queue manager (MQCCSI_Q_MGR), and passing the data to the
message as a string. If the string needs to include Unicode or ASCII code numbers, you can use the chr$
function to convert them to string format.

The Read and Write methods perform data conversion. They convert between the ActiveX internal
formats, and the IBM MQ message formats as defined by the Encoding and CharacterSet properties from
the message descriptor. When writing a message, set values into Encoding and CharacterSet that match
the characteristics of the recipient of the message before issuing a Write method. When reading a
message, this step is not normally required because these values will have been set from those in the
incoming MQMD.

This is an additional data conversion step that happens after any conversion performed by the
MQQueue.Get method.

CompletionCode property:

Read-only. Returns the IBM MQ completion code set by the most recent method or property access issued
against this object.

Defined in: MQMessage class

Data Type: Long

Values:

v MQCC_OK
v MQCC_WARNING
v MQCC_FAILED

Syntax: To get: completioncode& = MQMessage .CompletionCode

740 IBM MQ: Programming

DataLength property:

Read-only. This property returns the value:
MQMessage.MessageLength - MQMessage.DataOffset

It can be used before a Read method, to check that the expected number of characters are actually present
in the buffer.

The initial value is zero.

Defined in: MQMessage class

Data Type: Long

Syntax: To get: bytesleft& = MQMessage .DataLength

DataOffset property:

Read-write. The current position within the Message Data portion of the message object.

The value is expressed as a byte offset from the start of the message data buffer; the first character in the
buffer corresponds to a DataOffset value of zero.

A read or write method commences its operation at the character referenced by DataOffset. These
methods process data in the buffer sequentially from this position, and update DataOffset to point to the
byte (if any) immediately following the last byte processed.

DataOffset can take only values in the range zero to MessageLength inclusive. When DataOffset =
MessageLength it is pointing to the end, that is the first invalid character of the buffer. Write methods are
permitted in this situation - they extend the data in the buffer and increase MessageLength by the
number of bytes added. Reading beyond the end of the buffer is not valid.

The initial value is zero.

Defined in: MQMessage class

Data Type: Long

Syntax: To get: currpos& = MQMessage .DataOffset

To set: MQMessage .DataOffset = currpos&

Developing object-oriented applications with IBM MQ 741

MessageLength property:

Read-only. Returns the total length of the Message Data portion of the message object in characters,
irrespective of the value of DataOffset.

The initial value is zero. It is set to the incoming Message Length after a Get method invocation that
referenced this message object. It is incremented if the application uses a Write method to add data to the
object. It is unaffected by Read methods.

Defined in: MQMessage class

Data Type: Long

Syntax: To get: msglength& = MQMessage .MessageLength

ReasonCode property:

Read-only. Returns the reason code set by the most recent method or property access issued against this
object.

Defined in: MQMessage class

Data Type: Long

Values:

v See API reason codes.

Syntax: To get: reasoncode& = MQMessage .ReasonCode

ReasonName property:

Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE". Defined in: MQMessage class

Data Type: String

Values:

v See API reason codes.

Syntax: To get: reasonname$ = MQMessage .ReasonName

742 IBM MQ: Programming

AccountingToken property:

Read-write. The MQMD AccountingToken - part of the message Identity Context.

Its initial value is all nulls.

Defined in: MQMessage class

Data Type: String of 32 characters

Syntax: To get: actoken$ = MQMessage .AccountingToken

To set: MQMessage. AccountingToken = actoken$

See “Message Descriptor properties” on page 692 for more information about when you must use
AccountingTokenHex in place of the AccountingToken property.

AccountingTokenHex property:

Read-write. The MQMD AccountingToken - part of the message Identity Context.

Every two characters represent the hexadecimal equivalent of a single ASCII character. For example, the
pair of characters "6" and "1" represent the single character "A", the pair of characters "6" and "2"
represent the single character "B", and so on.

You must supply 64 valid hexadecimal characters.

Its initial value is "0...0"

Defined in: MQMessage class

Data Type: String of 64 hexadecimal characters representing 32 ASCII characters

Syntax: To get: actokenh$ = MQMessage .AccountingTokenHex

To set: MQMessage. AccountingTokenHex = actokenh$

See “Message Descriptor properties” on page 692 for more information about when you must use
AccountingTokenHex in place of the AccountingToken property.

ApplicationIdData property:

Read-write. The MQMD ApplIdentityData - part of the message Identity Context.

Its initial value is all blanks.

Defined in: MQMessage class

Data Type: String of 32 characters

Syntax: To get: applid$ = MQMessage .ApplicationIdData

To set: MQMessage .ApplicationIdData = applid$

Developing object-oriented applications with IBM MQ 743

ApplicationOriginData property:

Read-write. The MQMD ApplOriginData - part of the message origin context.

Its initial value is all blanks.

Defined in: MQMessage class

Data Type: String of 4 characters

Syntax: To get: applor$ = MQMessage .ApplicationOriginData

To set: MQMessage .ApplicationOriginData = applor$

BackoutCount property:

Read-only. The MQMD BackoutCount.

Its initial value is 0

Defined in: MQMessage class

Data Type: Long

Syntax: To get: backoutct& = MQMessage .BackoutCount

CharacterSet property:

Read-write. The MQMD CodedCharSetId.

Its initial value is the special value MQCCSI_Q_MGR.

If the CharacterSet is set to MQCCSI_Q_MGR, the code page for the current locale is used for character
conversion in the WriteString method. For server applications, the code page used is the code page of the
queue manager. For client applications, it is the default current locale code page.

For example:
msg.CharacterSet = MQCCSI_Q_MGR
msg.WriteString(chr$(n))

where 'n' is greater than or equal to zero and less than or equal to 255, results in a single byte of value of
'n' being written to the buffer.

Defined in: MQMessage class

Data Type: Long

Syntax: To get: :30ccid& = MQMessage .CharacterSet

To set: MQMessage .CharacterSet = ccid&

Example

If you want the string written out in code page 437, issue:
Message.CharacterSet = 437
Message.WriteString ("string to be written")

744 IBM MQ: Programming

Set the value you want in the CharacterSet before issuing any WriteString calls.

CorrelationId property:

Read-write. The CorrelationId to be included in the MQMD of a message when put on a queue. Also the
ID to be matched against when getting a message from a queue.

Its initial value is null.

Defined in: MQMessage class

Data Type: String of 24 characters

Syntax: To get: correlid$ = MQMessage .CorrelationId To set: MQMessage .CorrelationId = correlid$

See “Message Descriptor properties” on page 692 for more information about when you must use
CorrelationIdHex in place of the CorrelationId property.

CorrelationIdHex property:

Read-write. The CorrelationId to be included in the MQMD of a message when put on a queue. Also the
CorrelationId to be matched against when getting a message from a queue.

Every two characters of the string represent the hexadecimal equivalent of a single ASCII character. For
example, the pair of characters "6" and "1" represent the single character "A", the pair of characters "6"
and "2" represent the single character "B", and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0...0".

Defined in: MQMessage class

Data Type: String of 48 hexadecimal characters representing 24 ASCII characters

Syntax: To get: correlidh$ = MQMessage .CorrelationIdHex

To set: MQMessage .CorrelationIdHex = correlidh$

See “Message Descriptor properties” on page 692 for a discussion of when you must use
CorrelationIdHex in place of the CorrelationId property.

Developing object-oriented applications with IBM MQ 745

Encoding property:

Read-write. The MQMD field that identifies the representation used for numeric values in the application
message data.

Its initial value is the special value MQENC_NATIVE, which varies by platform.

This property is used by the following methods:
v ReadDecimal2 method
v ReadDecimal4 method
v ReadDouble method
v ReadDouble4 method
v ReadFloat method
v ReadInt2 method
v ReadInt4 method
v ReadLong method
v ReadShort method
v ReadUInt2 method
v WriteDecimal2 method
v WriteDecimal4 method
v WriteDouble method
v WriteDouble4 method
v WriteFloat method
v WriteInt2 method
v WriteInt4 method
v WriteLong method
v WriteShort method
v WriteUInt2 method

Defined in: MQMessage class

Data Type: Long

Syntax: To get: encoding& = MQMessage .Encoding To set: MQMessage .Encoding = encoding&

If you are preparing to write data to the message buffer, you should set this field to match the
characteristics of the receiving queue manager platform if the receiving queue manager is incapable of
performing its own data conversion.

746 IBM MQ: Programming

Expiry property:

Read-write. The MQMD expiry time field, expected in tenths of a second.

Its initial value is the special value MQEI_UNLIMITED

Defined in: MQMessage class

Data Type: Long

Syntax: To get: expiry& = MQMessage .Expiry

To set: MQMessage .Expiry = expiry&

Feedback property:

Read-write. The MQMD feedback field.

Its initial value is the special value MQFB_NONE.

Defined in: MQMessage class

Data Type: Long

Values:

v See Feedback.

Syntax: To get: feedback& = MQMessage .Feedback

To set: MQMessage .Feedback = feedback&

Format property:

Read-write. The MQMD format field. Gives the name of a built-in or user-defined format that describes
the nature of the Message Data.

Its initial value is the special value MQFMT_NONE.

Defined in: MQMessage class

Data Type: String of 8 characters

Syntax: To get: format$ = MQMessage .Format

To set: MQMessage .Format = format$

Developing object-oriented applications with IBM MQ 747

GroupId property:

Read-write. The GroupId to be included in the MQPMR of a message when put on a queue. Also the ID
to be matched against when getting a message from a queue. Its initial value is all nulls.

Defined in:
MQMessage class

Data Type:
String of 24 characters

Syntax: To get: groupid$ = MQMessage. GroupId

To set: MQMessage. GroupId = groupid$

See “Message Descriptor properties” on page 692 for more information about when you must use
GroupIdHex in place of the GroupId property.

GroupIdHex property:

Read-write. The GroupId to be included in the MQPMR of a message when put on a queue. Also the ID
to be matched against when getting a message from a queue.

Every two characters of the string represent the hexadecimal equivalent of a single ASCII character. For
example, the pair of characters "6" and "1" represent the single character "A", the pair of characters "6"
and "2" represent the single character "B" and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0...0".

Defined in:
MQMessage class

Data Type:
String of 48 hexadecimal characters representing 24 ASCII characters.

Syntax: To get: groupidh$ = MQMessage. GroupIdHex

To set: MQMessage. GroupIdHex = groupidh$

See “Message Descriptor properties” on page 692 for more information about when you must use
GroupIdHex in place of the GroupId property.

748 IBM MQ: Programming

MessageData property:

Read-write. Retrieves or sets the entire contents of a message as a character string.

Defined in: MQMessage class

Data Type: Variant

Note: The data type used by this property is Variant but MQAX expects this to be a variant type of
String. If you pass in a variant of other than this type then the error MQRC_OBJECT_TYPE_ERROR will
be returned.

Syntax: To get: String$ = MQMessage .MessageData

To set: MQMessage .MessageData = String$

MessageFlags property:

Read-Write. Message flags specifying Segmentation control information. The initial value is 0.

Defined in:
MQMessage class

Data Type:
Long

Values:
See MsgFlags (MQLONG).

Syntax: To get: messageflags& = MQMessage. MessageFlags

To set: MQMessage. MessageFlags = messageflags&

MessageId property:

Read-write. The MessageId to be included in the MQMD of a message when put on a queue. Also the ID
to be matched against when getting a message from a queue.

Its initial value is all nulls.

Defined in: MQMessage class

Data Type: String of 24 characters

Syntax: To get: messageid$ = MQMessage .MessageId

To set: MQMessage .MessageId = messageid$

See “Message Descriptor properties” on page 692 for more information about when you must use
MessageIdHex in place of the MessageId property.

Developing object-oriented applications with IBM MQ 749

MessageIdHex property:

Read-write. The MessageId to be included in the MQMD of a message when put on a queue. Also the
MessageId to be matched against when getting a message from a queue.

Every two characters of the string represent the hexadecimal equivalent of a single ASCII character. For
example, the pair of characters "6" and "1" represent the single character "A", the pair of characters "6"
and "2" represent the single character "B", and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0...0".

Defined in: MQMessage class

Data Type: String of 48 hexadecimal characters representing 24 ASCII characters

Syntax: To get: messageidh$ = MQMessage .MessageIdHex

To set: MQMessage .MessageIdHex = messageidh$

See “Message Descriptor properties” on page 692 for more information about when you must use
MessageIdHex in place of the MessageId property.

MessageSequenceNumber property:

Read-Write. Sequence information identifying a message within a group. The initial value is 1.

Defined in:
MQMessage class

Data Type:
Long

Values:
See MsgSeqNumber (MQLONG).

Syntax: To get: sequencenumber& = MQMessage. SequenceNumber

To set: MQMessage. SequenceNumber = sequencenumber&

750 IBM MQ: Programming

MessageType property:

Read-write. The MQMD MsgType field.

Its initial value is MQMT_DATAGRAM.

Defined in: MQMessage class

Data Type: Long

Values:

v See MsgType (MQLONG).

Syntax: To get: msgtype& = MQMessage .MessageType

To set: MQMessage .MessageType = msgtype&

Offset property:

Read-Write. The offset in a segmented message. The initial value is 0.

Defined in:
MQMessage class

Data Type:
Long

Values:
See Offset (MQLONG).

Syntax: To get: offset& = MQMessage. Offset

To set: MQMessage. Offset = offset&

OriginalLength property:

Read-Write. The original length of a segmented message. The initial value is MQOL_UNDEFINED.

Defined in:
MQMessage class

Data Type:
Long

Values:
See OriginalLength (MQLONG).

Syntax: To get: originallength& = MQMessage. OriginalLength

To set: MQMessage. OriginalLength = originallength&

Developing object-oriented applications with IBM MQ 751

Persistence property:

Read-write. The message's persistence setting.

Its initial value is MQPER_PERSISTENCE_AS_Q_DEF.

Defined in: MQMessage class

Data Type: Long

Syntax: To get: persist& = MQMessage .Persistence

To set: MQMessage .Persistence = persist&

Priority property:

Read-write. The message's priority.

Its initial value is the special value MQPRI_PRIORITY_AS_Q_DEF

Defined in: MQMessage class

Data Type: Long

Syntax: To get: priority& = MQMessage .Priority

To set: MQMessage .Priority = priority&

PutApplicationName property:

Read-write. The MQMD PutApplName - part of the Message Origin context.

Its initial value is all blanks.

Defined in: MQMessage class

Data Type: String of 28 characters

Syntax: To get: putapplnm$ = MQMessage .PutApplicationName

To set: MQMessage .PutApplicationName = putapplnm$

752 IBM MQ: Programming

PutApplicationType property:

Read-write. The MQMD PutApplType - part of the Message Origin context.

Its initial value is MQAT_NO_CONTEXT

Defined in: MQMessage class

Data Type: Long

Values:

v See PutApplType (MQLONG).

Syntax: To get: putappltp& = MQMessage .PutApplicationType

To set: MQMessage .PutApplicationType = putappltp&

PutDateTime property:

Read/write. This property combines the MQMD PutDate and PutTime fields. These are parts of the
Message Origin context that indicate when the message was put.

The ActiveX Extension converts between ActiveX date/time format and the Date and Time formats used
in an IBM MQ MQMD. If a message is received which has an invalid PutDate or PutTime, then the
PutDateTime property after the get method is set to EMPTY.

Its initial value is EMPTY.

Defined in: MQMessage class

Data Type: Variant of type 7 (date/time) or EMPTY.

Syntax: To get: datetime = MQMessage .PutDateTime

To set: MQMessage .PutDateTime = datetime

ReplyToQueueManagerName property:

Read-write. The MQMD ReplyToQMgr field.

Its initial value is all blanks

Defined in: MQMessage class

Data Type: String of 48 characters

Syntax: To get: replytoqmgr$ = MQMessage .ReplyToQueueManagerName

To set: MQMessage .ReplyToQueueManagerName = replytoqmgr$

Developing object-oriented applications with IBM MQ 753

ReplyToQueueName property:

Read-write. The MQMD ReplyToQ field.

Its initial value is all blanks

Defined in: MQMessage class

Data Type: String of 48 characters

Syntax: To get: replytoq$ = MQMessage .ReplyToQueueName

To set: MQMessage .ReplyToQueueName = replytoq$

Report property:

Read-write. The message's Report options.

Its initial value is MQRO_NONE.

Defined in: MQMessage class

Data Type: Long

Values:

v See Report.

Syntax: To get: report& = MQMessage .Report

To set: MQMessage .Report = report&

TotalMessageLength property:

Read-only. Retrieves the length of the last message received by MQGET. If the message has not been
truncated, this value is equal to the value of the MessageLength property.

Defined in: MQMessage class

Data Type: Long

Syntax: To get: totalmessagelength& = MQMessage .TotalMessageLength

754 IBM MQ: Programming

UserId property:

Read-write. The MQMD UserIdentifier - part of the message Identity Context.

Its initial value is all blanks.

Defined in: MQMessage class

Data Type: String of 12 characters

Syntax: To get: userid$ = MQMessage .UserId

To set: MQMessage .UserId = userid$

ClearErrorCodes method:

Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE for both the
MQMessage class and the MQSession class.

Defined in: MQMessage class

Syntax:
Call MQMessage.ClearErrorCodes()

ClearMessage method:

This method clears the data buffer portion of the MQMessage object. Any Message Data in the data
buffer is lost, because MessageLength, DataLength, and DataOffset are all set to zero.

The Message Descriptor (MQMD) portion is unaffected; an application might need to modify some of the
MQMD fields before reusing the MQMessage object. To set the MQMD fields back use New to replace
the object with a new instance.

Defined in: MQMessage class

Syntax:
Call MQMessage.ClearMessage()

Read method:

Reads a sequence of bytes from the message buffer into a byte array. DataOffset is incremented and Data
Length decremented by the number of bytes read.

Defined in:
MQMessage class

Syntax: Data = MQMessage. Read (len&)

Parameters:
len&: Long. Length of data in bytes to be read.

Developing object-oriented applications with IBM MQ 755

ReadBoolean method:

Reads a 1-byte Boolean value from the current position in the message buffer and returns a 2-byte
Boolean TRUE(-1)/FALSE(0) value. DataOffset is incremented by one and Data Length is decremented by
one.

Defined in:
MQMessage class

Syntax: value = MQMessage. ReadBoolean

ReadByte method:

Starting with the byte referred to by DataOffset, the ReadByte method reads 1 byte from the Message
Data buffer and returns it as an Integer (signed 2-byte) integer value in the range -128 to 127.

The method fails if MQMessage.DataLength is less than 1 when it is issued.

DataOffset is incremented by 1 and DataLength is decremented by 1 if the method succeeds.

The byte of message data is assumed to be a signed binary integer.

Defined in:
MQMessage class

Syntax:
integerv% = MQMessage .ReadByte

ReadDecimal2 method:

Reads a 2-byte packed decimal number and returns it as a signed 2-byte integer value. DataOffset is
incremented by two and Data Length is decremented by two.

Defined in:
MQMessage class

Syntax: value% = MQMessage. ReadDecimal2

ReadDecimal4 method:

Reads a 4-byte packed decimal number and returns it as a signed 4-byte integer value. DataOffset is
incremented by four and Data Length is decremented by four.

Defined in:
MQMessage class

Syntax:
Call value& = MQMessage.ReadDecimal4

756 IBM MQ: Programming

ReadDouble method:

Starting with the byte referred to by DataOffset, the ReadDouble method reads 8 bytes from the Message
Data buffer and returns them as a Double (signed 8-byte) floating point value.

The method fails if MQMessage.DataLength is less than 8 when it is issued.

DataOffset is incremented by 8 and DataLength is decremented by 8 if the method succeeds.

The 8 characters of message data are assumed to be a binary floating point number. The encoding is
specified by the MQMessage.Encoding property. Note that conversion from System/360 format is not
supported.

Defined in:
MQMessage class

Syntax:
doublev# = MQMessage .ReadDouble

ReadDouble4 method:

The ReadDouble4 and WriteDouble4 methods are alternatives to ReadFloat and WriteFloat. This is
because they support 4-byte System/390 floating point message values that are too large to convert to
4-byte IEEE floating point format.

Starting with the byte referred to by DataOffset, the ReadDouble4 method reads 4 bytes from the
Message Data buffer and returns them as a Double (signed 8-byte) floating point value.

The method fails if MQMessage.DataLength is less than 4 when it is issued.

DataOffset is incremented by 4 and DataLength is decremented by 4 if the method succeeds.

The 4 characters of message data are assumed to be a binary floating point number. The encoding is
specified by the MQMessage.Encoding property. Note that conversion from System/360 format is not
supported.

Defined in:
MQMessage class

Syntax:
doublev# = MQMessage. ReadDouble4

Developing object-oriented applications with IBM MQ 757

ReadFloat method:

Starting with the byte referred to by DataOffset, the ReadFloat method reads 4 bytes from the Message
Data buffer and returns them as a Single (signed 4-byte) floating point value.

The method fails if MQMessage.DataLength is less than 4 when it is issued.

DataOffset is incremented by 4 and DataLength is decremented by 4 if the method succeeds.

The 4 characters of message data are assumed to be a floating point number. The encoding is specified by
the MQMessage.Encoding property. Note that conversion from System/360 format is not supported.

Defined in:
MQMessage class

Syntax:
singlev! = MQMessage .ReadFloat

ReadInt2 method:

The method is identical to the ReadShort method.

Syntax:
integerv% = MQMessage .ReadInt2

ReadInt4 method:

This method is identical to the ReadLong method.

Syntax:
bigint& = MQMessage .ReadInt4

ReadLong method:

Starting with the byte referred to by DataOffset, the ReadLong method reads 4 bytes from the Message
Data buffer and returns them as a Long (signed 4-byte) integer value.

The method fails if MQMessage.DataLength is less than 4 when it is issued.

DataOffset is incremented by 4 and DataLength is decremented by 4 if the method succeeds.

The 4 characters of message data are assumed to be a binary integer. The encoding is specified by the
MQMessage.Encoding property.

Defined in:
MQMessage class

Syntax:
bigint& = MQMessage .ReadLong

758 IBM MQ: Programming

ReadNullTerminatedString method:

This method is for use in place of ReadString if the string might contain embedded null characters.

This method reads the specified number of bytes from the message data buffer starting with the byte
referred to by DataOffset and returns it as an ActiveX string. If the string contains an embedded null
before the end then the length of the returned string is reduced to reflect only those characters before the
null.

DataOffset is incremented and DataLength is decremented by the value specified regardless of whether
the string contains embedded null characters.

The characters in the message data are assumed to be a string in the code page that is specified by the
MQMessage.CharacterSet property. Conversion to ActiveX representation is performed for the application.

Defined in:
MQMessage class

Syntax: string$ = MQMessage. ReadNullTerminatedString(length&)

Parameters:
length& Long. Length of string field in bytes.

ReadShort method:

Starting with the byte referred to by DataOffset, the ReadShort method reads 2 bytes from the Message
Data buffer and returns them as an Integer (signed 2-byte) value.

The method fails if MQMessage.DataLength is less than 2 when it is issued.

DataOffset is incremented by 2 and DataLength is decremented by 2 if the method succeeds.

The 2 characters of message data are assumed to be a binary integer. The encoding is specified by the
MQMessage.Encoding property.

Defined in:
MQMessage class

Syntax:
integerv% = MQMessage .ReadShort

ReadString method:

This method reads n bytes from the Message Data buffer starting with the byte referred to by DataOffset
and returns it as an ActiveX string.

The method fails if MQMessage.DataLength is less than n when it is issued.

DataOffset is incremented by n and DataLength is decremented by n if the method succeeds.

The n characters of message data are assumed to be a string in the code page that is specified by the
MQMessage.CharacterSet property. Conversion to ActiveX representation is performed for the application.

Defined in: MQMessage class

Syntax: stringv$ = MQMessage .ReadString (length&)

Parameter
length& Long. Length of string field in bytes.

Developing object-oriented applications with IBM MQ 759

ReadUInt2 method:

Starting with the byte referred to by DataOffset, the ReadUInt2 method reads 2 bytes from the Message
Data buffer and returns them as a Long (signed 4-byte) integer value.

The method fails if MQMessage.DataLength is less than 2 when it is issued.

DataOffset is incremented by 2 and DataLength is decremented by 2 if the method succeeds.

The 2 bytes of message data are assumed to be an unsigned binary integer. The encoding is specified by
the MQMessage.Encoding property.

Defined in:
MQMessage class

Syntax:
bigint& = MQMessage .ReadUInt2

ReadUnsignedByte method:

Starting with the byte referred to by DataOffset, the ReadUnsignedByte method reads 1 byte from the
Message Data buffer and returns it as an Integer (signed 2-byte) integer value in the range 0 to 255.

The method fails if MQMessage.DataLength is less than 1 when it is issued.

DataOffset is incremented by 1 and DataLength is decremented by 1 if the method succeeds.

The 1 character of message data is assumed to be an unsigned binary integer.

Defined in:
MQMessage class

Syntax:
integerv% = MQMessage .ReadUnsignedByte

ReadUTF method:

This method reads a UTF format string from the message, starting from the byte referred to by
DataOffset, and returns the UTF format string as an ActiveX string. The UTF format string being read
comprises 2 bytes of data that indicate the length of the string, followed by the UTF character data.

The method fails if MQMessage.DataLength is less than the string length when it is issued.

DataOffset is incremented by the string length and DataLength is decremented by the string length if the
method succeeds.

Defined in:
MQMessage class

Syntax:
value$ = MQMessage.ReadUTF

760 IBM MQ: Programming

ResizeBuffer method:

This method alters the amount of storage currently allocated internally to hold the Message Data buffer.
It gives the application some control over the automatic buffer management, in that if the application
knows that it is going to deal with a large message, it can ensure that a sufficiently large buffer is
allocated. The application does not need to use this call - if it does not, the automatic buffer management
code will grow the buffer size to fit.

If you resize the buffer to be smaller that the current MessageLength, you risk losing data. If you do lose
data, the method returns a CompletionCode of MQCC_WARNING and a ReasonCode of
MQRC_DATA_TRUNCATED.

If you resize the buffer to be smaller than the value of the DataOffset property the:
v DataOffset property is changed to point to the end of the new buffer
v DataLength property is set to zero
v MessageLength property is changed to the new buffer size

Defined in:
MQMessage class

Syntax: MQMessage .ResizeBuffer (Length&)

Parameter:
Length& Long. Size required in characters.

Write method:

Writes a sequence of bytes to the message buffer from a byte array at the position referred to by Data
Offset. If necessary the length of the buffer (MQMessage.MQMessageLength) is extended to accommodate
the full length of the byte array. DataOffset is incremented by the number of bytes written if the method
succeeds.

Defined in:
MQMessage class

Syntax:
Call MQMessage.Write(value)

Parameters:
data: a byte array or a variant reference to a byte array

Developing object-oriented applications with IBM MQ 761

WriteBoolean method:

Writes a 1-byte Boolean value at the current position in the message buffer from a 2-byte Boolean value.
DataOffset is incremented by one.

Defined in:
MQMessage class

Syntax:
Call MQMessage.WriteBoolean(value)

Parameter:
value: Boolean (2-bytes). Value to be written.

WriteByte method:

This method takes a signed 2-byte integer value and writes it into the Message Data buffer as a 1-byte
binary number at the position referred to by DataOffset. It replaces any data already at the position in the
buffer, and extends the length of the buffer (MQMessage.MessageLength) if necessary.

DataOffset is incremented by one if the method succeeds.

The value specified should be in the range -128 to 127. If it is not, the method returns with
CompletionCode MQCC_FAILED and ReasonCode MQRC_WRITE_VALUE_ERROR.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteByte(value%)

Parameter: value% Integer. Value to be written.

WriteDecimal2 method:

Writes a signed 2-byte integer as a 2-byte packed decimal number. DataOffset is incremented by two.

Defined in:
MQMessage class

Syntax:
Call MQMessage.WriteDecimal2(value%)

Parameter:
value% Integer. Value to be written.

762 IBM MQ: Programming

WriteDecimal4 method:

Writes a signed 4-byte integer as a 4-byte packed decimal number. DataOffset is incremented by four.

Defined in:
MQMessage class

Syntax:
Call MQMessage.WritedDecimal4(value&)

Parameter:
value& Long. Value to be written.

WriteDouble method:

This method takes a signed 8-byte floating point value and writes it into the Message Data buffer as an
8-byte floating point number starting at the position referred to by DataOffset. It replaces any data
already at these positions in the buffer, and extends the length of the buffer (MQMessage.MessageLength)
if necessary.

DataOffset is incremented by 8 if the method succeeds.

The method converts to the floating point representation specified by the MQMessage.Encoding property.
Conversion to System/360 format is not supported.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteDouble(value#)

Parameter:
value# Double. Value to be written.

WriteDouble4 method:

See “ReadDouble4 method” on page 757 for a description of when ReadDouble4 and WriteDouble4
should be used in place of ReadFloat and WriteFloat.

This method takes a signed 8-byte floating point value and writes it into the Message Data buffer as a
4-byte floating number starting at the position referred to by DataOffset.

DataOffset is incremented by 4 if the method succeeds.

It replaces any data already at these positions in the buffer, and extends the length of the buffer
(MQMessage.MessageLength) if necessary.

The method converts to the floating point representation specified by the MQMessage.Encoding property.
Conversion to System/360 format is not supported.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteDouble4(value#)

Parameter: value# Double. Value to be written.

Developing object-oriented applications with IBM MQ 763

WriteFloat method:

This method takes a signed 4-byte floating point value and writes it into the Message Data buffer as a
4-byte floating point number starting at the character referred to by DataOffset. It replaces any data
already at these positions in the buffer, and extends the length of the buffer (MQMessage.MessageLength)
if necessary.

DataOffset is incremented by 4 if the method succeeds.

The method converts to the binary representation specified by the MQMessage.Encoding property.
Conversion to System/360 format is not supported.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteFloat(value!)

Parameter value! Float. Value to be written.

WriteInt2 method:

This method is identical to the WriteShort method.

Syntax:
Call MQMessage.WriteInt2(value%)

Parameter value% Integer. Value to be written.

WriteInt4 method:

This method is identical to the WriteLong method.

Syntax:
Call MQMessage.WriteInt4(value&)

Parameter value& Long. Value to be written.

WriteLong method:

This method takes a signed 4-byte integer value and writes it into the Message Data buffer as a 4-byte
binary number starting at the byte referred to by DataOffset. It replaces any data already at these
positions in the buffer, and extends the length of the buffer (MQMessage.MessageLength) if necessary.

DataOffset is incremented by 4 if the method succeeds.

The method converts to the binary representation specified by the MQMessage.Encoding property.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteLong(value&)

Parameter value& Long. Value to be written.

764 IBM MQ: Programming

WriteNullTerminatedString method:

This method performs a normal WriteString and pads any remaining bytes up to the specified length
with null. If the number of bytes written by the initial write string is equal to the specified length then no
nulls are written. If the number of bytes exceeds the specified length then an error (reason code
MQRC_WRITE_VALUE_ERROR) is set.

DataOffset is incremented by the specified length if the method succeeds.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteNullTerminatedString(value$, length&)

Parameters:
value$ String. Value to be written.

length& Long. Length of string field in bytes.

WriteShort method:

This method takes a signed 2-byte integer value and writes it into the Message Data buffer as a 2-byte
binary number starting at the byte referred to by DataOffset. It replaces any data already at these
positions in the buffer, and will extend the length of the buffer (MQMessage.MessageLength) if necessary.

DataOffset is incremented by 2 if the method succeeds.

The method converts to the binary representation specified by the MQMessage.Encoding property.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteShort(value%)

Parameter value% Integer. Value to be written.

WriteString method:

This method takes an ActiveX string and writes it into the Message Data buffer starting at the byte
referred to by DataOffset. It replaces any data already at these positions in the buffer, and will extend the
length of the buffer (MQMessage.MessageLength) if necessary.

DataOffset is incremented by the length of the string in bytes if the method succeeds.

The method converts characters into the code page specified by the MQMessage.CharacterSet property.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteString(value$)

Parameter value$ String. Value to be written.

Developing object-oriented applications with IBM MQ 765

WriteUInt2 method:

This method takes a signed 4-byte integer value and writes it into the Message Data buffer as a 2-byte
unsigned binary number starting at the byte referred to by DataOffset. It replaces any data already at
these positions in the buffer, and extends the length of the buffer (MQMessage.MessageLength) if
necessary.

DataOffset is incremented by 2 if the method succeeds.

The method converts to the binary representation specified by the MQMessage.Encoding property. The
value specified should be in the range 0 to 2**16-1. If it is not the method returns with CompletionCode
MQCC_FAILED and ReasonCode MQRC_WRITE_VALUE_ERROR.

Defined in: MQMessage class

Syntax:
Call MQMessage.WriteUInt2(value&)

Parameter value& Long. Value to be written.

WriteUnsignedByte method:

This method takes a signed 2-byte integer value and writes it into the Message Data buffer as a 1-byte
unsigned binary number starting at the character referred to by DataOffset. It replaces any data already at
these positions in the buffer, and extends the length of the buffer (MQMessage.MessageLength) if
necessary.

DataOffset is incremented by 1 if the method succeeds.

The value specified should be in the range 0 to 255. If it is not the method returns with CompletionCode
MQCC_FAILED and ReasonCode MQRC_WRITE_VALUE_ERROR.

Defined in:
MQMessage class

Syntax:
Call MQMessage.WriteUnsignedByte(value%)

Parameter value% Integer. Value to be written.

WriteUTF method:

This method takes an ActiveX string and writes it into the message data buffer at the current position in
UTF format. The data written consists of a 2-byte length followed by the character data. DataOffset is
incremented by the length of the string if the method succeeds.

Defined in:
MQMessage class

Syntax: Call MQMessage. WriteUTF (value$)

Parameter:
value$ String. Value to be written.

766 IBM MQ: Programming

MQPutMessageOptions class

This class encapsulates the various options that control the action of putting a message onto an IBM MQ
Queue.

Containment

The MQPutMessageOptions class is contained by the MQSession class.

Creation

New creates a new MQPutMessageOptions object and sets all its properties to initial values.

Alternatively, use the AccessPutMessageOptions method of the MQSession class.

Syntax

Dim pmo As New MQPutMessageOptions or

Set pmo = New MQPutMessageOptions

Properties
v “CompletionCode property.”
v “Options property” on page 768.
v “ReasonCode property” on page 768.
v “ReasonName property” on page 768.
v “RecordFields property” on page 769.
v “ResolvedQueueManagerName property” on page 769.
v “ResolvedQueueName property” on page 769.

Methods
v “ClearErrorCodes method” on page 769.

CompletionCode property:

Read-only. Returns the completion code set by the last method or property access issued against the
object.

Defined in: MQPutMessageOptions class

Data Type: Long

Values:

v MQCC_OK
v MQCC_WARNING
v MQCC_FAILED

Syntax: To get: completioncode& = PutOpts .CompletionCode

Developing object-oriented applications with IBM MQ 767

Options property:

Read-write. The MQPMO Options field. The initial value of this field is MQPMO_NONE. For more
information, see MQPMO options.

Defined in: MQPutMessageOptions Class.

Data Type: Long

Syntax: To get: options& = PutOpts .Options

To set: PutOpts .Options = options&

The MQPMO_PASS_IDENTITY_CONTEXT and MQPMO_PASS_ALL_CONTEXT options are not
supported.

ReasonCode property:

Read-only. Returns the reason code set by the last method or property access issued against the object.

Defined in: MQPutMessageOptions class

Data Type: Long

Values:

v See API reason codes.

Syntax: To get: reasoncode& = PutOpts .ReasonCode

ReasonName property:

Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE".

Defined in: MQPutMessageOptions class

Data Type: String

Values:

v See API reason codes.

Syntax: To get: reasonname$ = PutOpts .ReasonName

768 IBM MQ: Programming

RecordFields property:

Read-write. Flags indicating which fields are to be customized on a per-queue basis when putting a
message to a distribution list. The initial value is zero.

This property corresponds to the PutMsgRecFields flags in the MQI MQPMO structure. In the MQI, these
flags control which fields (in the MQPMR structure) are present and used by the MQPUT. In an
MQPutMessageOptions object these fields are always present and the flags therefore only affect which
fields are used by the Put.

Defined in:
MQPutMessageOptions class

Data Type:
Long

Syntax: To get: recordfields& = PutOpts .RecordFields

To set: PutOpts. RecordFields = recordfields&

ResolvedQueueManagerName property:

Read-only. The MQPMO ResolvedQMgrName field. See ResolvedQMgrName (MQCHAR48) for details.
The initial value is all blanks.

Defined in: MQPutMessageOptions class

Data Type: String of 48 characters

Syntax: To get: qmgr$ = PutOpts .ResolvedQueueManagerName

ResolvedQueueName property:

Read-only. The MQPMO ResolvedQName field. See ResolvedQName (MQCHAR48) for details. The
initial value is all blanks.

Defined in: MQPutMessageOptions class

Data Type: String of 48 characters

Syntax: To get: qname$ = PutOpts .ResolvedQueueName

ClearErrorCodes method:

Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE for both the
MQPutMessageOptions class and the MQSession class.

Defined in:
MQPutMessageOptions class

Syntax:
Call PutOpts .ClearErrorCodes()

Developing object-oriented applications with IBM MQ 769

MQGetMessageOptions class

This class encapsulates the various options that control the action of getting a message from an IBM MQ
queue.

Containment

The MQGetMessageOptions class is contained by the MQSession class.

Creation

New creates a new MQGetMessageOptions object and sets all its properties to initial values.

Alternatively, use the AccessGetMessageOptions method of the MQSession class.

Properties
v “CompletionCode property”
v “MatchOptions property” on page 771
v “Options property” on page 771
v “ReasonCode property” on page 771
v “ReasonName property” on page 771
v “ResolvedQueueName property” on page 772
v “WaitInterval property” on page 772

Methods
v “ClearErrorCodes method” on page 772

Syntax

Dim gmo As New MQGetMessageOptions or

Set gmo = New MQGetMessageOptions

CompletionCode property:

Read-only. Returns the completion code set by the last method or property access issued against the
object.

Defined in: MQGetMessageOptions Class.

Data Type: Long

Values:

v MQCC_OK
v MQCC_WARNING
v MQCC_FAILED

Syntax: To get: completioncode& = GetOpts .CompletionCode

770 IBM MQ: Programming

MatchOptions property:

Read-write. Options controlling selection criteria used for MQGET. The initial value is
MQMO_MATCH_MSG_ID + MQMO_MATCH_CORREL_ID.

Defined in:
MQGetMessageOptions class

Data Type:
Long

Values:
See MatchOptions (MQLONG).

Syntax: To get: matchoptions& = GetOpts. MatchOptions

To set: GetOpts. MatchOptions = matchoptions&

Options property:

Read-write. The MQGMO Options field. See Options for details. Initial value is MQGMO_NO_WAIT.

Defined in: MQGetMessageOptions Class.

Data Type: Long

Syntax: To get: options& = GetOpts .Options To set: GetOpts .Options = options&

ReasonCode property:

Read-only. Returns the reason code set by the last method or property access issued against the object.

Defined in: MQGetMessageOptions class

Data Type: Long

Values:

v See API reason codes.

Syntax: To get: reasoncode& = GetOpts .ReasonCode

ReasonName property:

Read-only. Returns the symbolic name of the latest reason code. For example,
"MQRC_QMGR_NOT_AVAILABLE". Defined in: MQGetMessageOptions class

Data Type: String

Values:

v See API reason codes.

Syntax: To get: reasonname$ = MQGetMessageOptions .ReasonName

Developing object-oriented applications with IBM MQ 771

ResolvedQueueName property:

Read-only. The MQGMO ResolvedQName field. See ResolvedQName (MQCHAR48) for details. The
initial value is all blanks.

Defined in: MQGetMessageOptions class

Data Type: String of 48 characters

Syntax: To get: qname$ = GetOpts .ResolvedQueueName

WaitInterval property:

Read/write. The MQGMO WaitInterval field. The maximum time, in milliseconds, that the Get waits for
a suitable message to arrive - if wait action has been requested by the Options property. This field has an
initial value of 0. For details of MQGMO options, see MQGMO.

Defined in: MQGetMessageOptions class

Data Type: Long

Syntax: To get: wait& = GetOpts .WaitInterval

To set: GetOpts .WaitInterval = wait&

ClearErrorCodes method:

Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE for both the
MQGetMessageOptions class and the MQSession class.

Defined in:
MQGetMessageOptions class

Syntax:
Call GetOpts .ClearErrorCodes()

MQDistributionList class

This class encapsulates a collection of queues - local, remote, or alias for output.

Creation

new creates a new MQDistributionList object.

Alternatively, use the AddDistributionList method of the MQQueueManager class

Properties
v “AlternateUserId property” on page 773
v “CloseOptions property” on page 773
v “CompletionCode property” on page 774
v “ConnectionReference property” on page 774
v “FirstDistributionListItem property” on page 774
v “IsOpen property” on page 775
v “OpenOptions property” on page 775
v “ReasonCode property” on page 775

772 IBM MQ: Programming

v “ReasonName property” on page 776

Method
v “AddDistributionListItem method” on page 776
v “ClearErrorCodes method” on page 777
v “Close method” on page 777
v “Open method” on page 777
v “Put method” on page 777

Syntax

Dim distlist. A s New MQDistributionList or Set distlist = New MQDistributionList

AlternateUserId property:

Read-write. The alternate user ID used to validate access to the list of queues when they are opened.

Defined in:
MQDistributionList class

Data Type:
String of 12 characters

Syntax: To get: altuser$ = MQDistributionList. AlternateUserId

To set: MQDistributionList. AlternateUserId = altuser$

CloseOptions property:

Read-write. Options used to control what happens when the distribution list is closed. The initial value is
MQCO_NONE.

Defined in:
MQDistributionList class

Data Type:
Long

Values:

v MQCO_NONE
v MQCO_DELETE
v MQCO_DELETE_PURGE

Syntax: To get: closeopt& = MQDistributionList. CloseOptions

To set: MQDistributionList. CloseOptions = closeopt&

Developing object-oriented applications with IBM MQ 773

CompletionCode property:

Read-only. The completion code set by the last method or property access issued against the object.

Defined in:
MQDistributionList class

Data Type:
Long

Values:

v MQCC_OK
v MQCC_WARNING
v MQCC_FAILED

Syntax: To get: completioncode& = MQDistributionList. CompletionCode

ConnectionReference property:

Read-write. The queue manager to which the distribution list belongs.

Defined in:
MQDistributionList class

Data Type:
MQQueueManager

Syntax: To get: set queuemanager = MQDistributionList. ConnectionReference

To set: set MQDistributionList. ConnectionReference = queuemanager

FirstDistributionListItem property:

Read-only. The first distribution list item object associated with the distribution list.

Defined in:
MQDistributionList class

Data Type:
MQDistributionListItem

Values:

Syntax: To get: set distributionlistitem = MQDistributionList. FirstDistributionListItem

774 IBM MQ: Programming

IsOpen property:

Read-only.

Defined in:
MQDistributionList class

Data Type:
Boolean

Values:

v TRUE (-1)
v FALSE (0)

Syntax: To get: IsOpen = MQDistributionList. IsOpen

OpenOptions property:

Read-write. Options to be used when the distribution list is opened.

Defined in:
MQDistributionList class

Data Type:
Long

Values:
See MQPMO options.

Syntax: To get: openopt& = MQDistributionList. OpenOptions

To set: MQDistributionList. OpenOptions = openopt&

ReasonCode property:

Read-only. The reason code set by the last method or property access issued against the object.

Defined in:
MQDistributionList class

Data Type:
Long

Values:
See API reason codes.

Syntax: To get: reasoncode& = MQDistributionList. ReasonCode

Developing object-oriented applications with IBM MQ 775

ReasonName property:

Read-only. The symbolic name for the ReasonCode. For example "MQRC_QMGR_NOT_AVAILABLE".

Defined in:
MQDistributionList class

Data Type:
String

Values:
See API reason codes.

Syntax: To get: reasonname$ = MQDistributionList. ReasonName

AddDistributionListItem method:

Use this method to create a new MQDistributionListItem object and associate it with the distribution list
object. The queue name parameter is mandatory.

This method inserts a new distribution list item as the first item in an existing list. Specifically, this
method creates the following configuration:
v In the distribution list, it sets the FirstDistributionListItem property to point to the new distribution

list item.
v In the new distribution list item, it sets the following properties:

– It sets the DistributionList property to point to the distribution list.
– It sets the PreviousDistributionListItem property to null.
– It sets the NextDistributionListItem property to point to the distribution list item that was

previously first, or to null if there were no previous items in the list.

You cannot use this method to add a new item when the distribution list is open.

Defined in:
MQDistributionList class

Syntax: set distributionlistitem = MQDistributionList .AddDistributionListItem (QName$, QMgrName$)

Parameters:

QName$ String. Name of the IBM MQ queue.

QMgrName$ String. Name of the IBM MQ queue manager.

776 IBM MQ: Programming

ClearErrorCodes method:

Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE for both the
MQDistributionList class and the MQSession class.

Defined in:
MQDistributionList class

Syntax:
Call MQDistributionList.ClearErrorCodes()

Close method:

Closes a distribution list using the current value of Close options.

Defined in:
MQDistributionList class

Syntax:
Call MQDistributionList. Close ()

Open method:

Opens each of the queues specified by the QueueName and (where appropriate) QueueManagerName
properties of the distribution list items associated with the current object using the current value of
AlternateUserId.

Defined in:
MQDistributionList class

Syntax:
Call MQDistributionList.Open()

Put method:

Places a message on each of the queues identified by the distribution list items associated with the
distribution list.

Defined in:

MQDistributionList class

Syntax

Call MQDistributionList. Put (Message, PutMsgOptions&)

Parameters

Message MQMessage object representing the message to be put.

PutMsgOptions MQPutMessageOptions object containing options to control the put operation. If not
specified, default PutMessageOptions are used.

This method takes an MQMessage object as a parameter. The following distribution list item properties
can be altered as a result of this method:
v CompletionCode
v ReasonCode

Developing object-oriented applications with IBM MQ 777

v ReasonName
v MessageId
v MessageIdHex
v CorrelationId
v CorrelationIdHex
v GroupId
v GroupIdHex
v Feedback
v AccountingToken
v AccountingTokenHex

MQDistributionListItem class

This class encapsulates the MQOR, MQRR, and MQPMR structures and associates them with an owning
distribution list.

Creation

Use the AddDistributionListItem Method of the MQDistributionList class

Properties

Methods
v “AccountingToken property” on page 779.
v “AccountingTokenHex property” on page 780.
v “CompletionCode property” on page 780.
v “CorrelationId property” on page 780.
v “CorrelationIdHex property” on page 781.
v “DistributionList property” on page 781.
v “Feedback property” on page 781.
v “GroupId property” on page 782.
v “GroupIdHex property” on page 782.
v “MessageId property” on page 782.
v “MessageIdHex property” on page 783.
v “NextDistributionListItem property” on page 783.
v “PreviousDistributionListItem property” on page 783.
v “QueueManagerName property” on page 784.
v “QueueName property” on page 784.
v “ReasonCode property” on page 784.
v “ReasonName property” on page 785.
v “ClearErrorCodes method” on page 785.

778 IBM MQ: Programming

Properties::

v AccountingToken property
v AccountingTokenHex property
v CompletionCode property
v CorrelationId property
v CorrelationIdHex property
v DistributionList property
v Feedback property
v GroupId property
v GroupIdHex property
v MessageId property
v MessageIdHex property
v NextDistributionListItem property
v PreviousDistributionListItem property
v QueueManagerName property
v QueueName property
v ReasonCode property
v ReasonName property

Methods::

v ClearErrorCodes method

Creation::

Use the AddDistributionListItem Method of the MQDistributionList class

AccountingToken property:

Read-write. The AccountingToken to be included in the MQPMR of a message when put on a queue. Its
initial value is all nulls.

Defined in:
MQDistributionListItem class

Data Type:
String of 32 characters

Syntax: To get: accountingtoken$ = MQDistributionListItem. AccountingToken

To set: MQDistributionListItem. AccountingToken = accountingtoken$

Developing object-oriented applications with IBM MQ 779

AccountingTokenHex property:

Read-write. The AccountingToken to be included in the MQPMR of a message when put on a queue.

Every two characters of the string represent the hexadecimal equivalent of a single ASCII character. For
example, the pair of characters "6" and "1" represent the single character "A", the pair of characters "6"
and "2" represent the single character "B" and so on.

You must supply 64 valid hexadecimal characters.

Its initial value is "0...0".

Defined in:
MQDistributionListItem class

Data Type:
String of 64 hexadecimal characters reqpresenting 32 ASCII characters.

Syntax: To get: accountingtokenh$ = MQDistributionListItem. AccountingTokenHex

To set: MQDistributionListItem. AccountingTokenHex = accountingtokenh$

CompletionCode property:

Read-only. The completion code set by the last open or put request issued against the owning distribution
list object.

Defined in:
MQDistributionListItem class

Data Type:
Long

Values:

v MQCC_OK
v MQCC_WARNING
v MQCC_FAILED

Syntax: To get: completioncode$ = MQDistributionListItem. CompletionCode

CorrelationId property:

Read-write. The CorrelId to be included in the MQPMR of a message when put on a queue. Its initial
value is all nulls.

Defined in:
MQDistributionListItem class

Data Type:
String of 24 characters

Syntax: To get: correlid$ = MQDistributionListItem. CorrelationId

To set: MQDistributionListItem. CorrelationId = correlid$

780 IBM MQ: Programming

CorrelationIdHex property:

Read-write. The CorrelId to be included in the MQPMR of a message when put on a queue.

Every two characters of the string represent the hexadecimal equivalent of a single ASCII character. For
example, the pair of characters "6" and "1" represent the single character "A", the pair of characters "6"
and "2" represent the single character "B" and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0..0".

Defined in:
MQDistributionListItem class

Data Type:
String of 48 hexadecimal characters representing 24 ASCII characters.

Syntax: To get: correlidh$ = MQDistributionListItem. CorrelationIdHex

To set: MQDistributionListItem. CorrelationIdHex = correlidh$

DistributionList property:

Read-only. The distribution list with which this distribution list item is associated.

Defined in:
MQDistributionListItem class

Data Type:
MQDistributionList

Syntax: To get: set distributionlist = MQDistributionListItem. DistributionList

Feedback property:

Read-write. The Feedback value to be included in the MQPMR of a message when put on a queue.

Defined in:
MQDistributionListItem class

Data Type:
Long

Values:
See Feedback (MQLONG).

Syntax: To get: feedback& = MQDistributionListItem. Feedback

To set: MQDistributionListItem. Feedback = feedback&

Developing object-oriented applications with IBM MQ 781

GroupId property:

Read-write. The GroupId to be included in the MQPMR of a message when put on a queue. Its initial
value is all nulls.

Defined in:
MQDistributionListItem class

Data Type:
String of 24 characters

Syntax: To get: groupid$ = MQDistributionListItem. GroupId

To set: MQDistributionListItem. GroupId = groupid$

GroupIdHex property:

Read-write. The GroupId to be included in the MQPMR of a message when put on a queue.

Every two characters of the string represent the hexadecimal equivalent of a single ASCII character. For
example, the pair of characters "6" and "1" represent the single character "A", the pair of characters "6"
and "2" represent the single character "B" and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0..0".

Defined in:
MQDistributionListItem class

Data Type:
String of 48 hexadecimal characters reqpresenting 24 ASCII characters.

Syntax: To get: groupidh$ = MQDistributionListItem. GroupIdHex

To set: MQDistributionListItem. GroupIdHex = groupidh$

MessageId property:

Read-write. The MessageId to be included in the MQPMR of a message when put on a queue. Its initial
value is all nulls.

Defined in:
MQDistributionListItem class

Data Type:
String of 24 characters

Syntax: To get: messageid$ = MQDistributionListItem. MessageId

To set: MQDistributionListItem. MessageId = messageid$

782 IBM MQ: Programming

MessageIdHex property:

Read-write. The MessageId to be included in the MQPMR of a message when put on a queue.

Every two characters of the string represent the hexadecimal equivalent of a single ASCII character. For
example, the pair of characters "6" and "1" represent the single character "A", the pair of characters "6"
and "2" represent the single character "B" and so on.

You must supply 48 valid hexadecimal characters.

Its initial value is "0..0".

Defined in:
MQDistributionListItem class

Data Type:
String of 48 hexadecimal characters representing 24 ASCII characters.

Syntax: To get: messageidh$ = MQDistributionListItem. MessageIdHex

To set: MQDistributionListItem. MessageIdHex = messageidh$

NextDistributionListItem property:

Read-only. The next distribution list item object associated with the same distribution list.

Defined in:
MQDistributionListItem class

Data Type:
MQDistributionListItem

Syntax: To get: set distributionlistitem = MQDistributionListItem. NextDistributionListItem

PreviousDistributionListItem property:

Read-only. The previous distribution list item object associated with the same distribution list.

Defined in:
MQDistributionListItem class

Data Type:
MQDistributionListItem

Syntax: To get: set distributionlistitem = MQDistributionListItem. PreviousDistributionListItem

Developing object-oriented applications with IBM MQ 783

QueueManagerName property:

Read-write. The IBM MQ queue manager name.

Defined in:
MQDistributionListItem class

Data Type:
String of 48 characters.

Syntax: To get: qmname$ = MQDistributionListItem. QueueManagerName

To set: MQDistributionListItem. QueueManagerName = qmname$

QueueName property:

Read-write. The IBM MQ queue name.

Defined in:
MQDistributionListItem class

Data Type:
String of 48 characters.

Syntax: To get: qname$ = MQDistributionListItem. QueueName

To set: MQDistributionListItem. QueueName = qname$

ReasonCode property:

Read-only. The reason code set by the last open or put issued to the owning distribution list object.

Defined in:
MQDistributionListItem class

Data Type:
Long

Values:
See API reason codes.

Syntax: To get:
reasoncode& = MQDistributionListItem.ReasonCode

784 IBM MQ: Programming

ReasonName property:

Read-only. The symbolic name for the ReasonCode. For example "MQRC_QMGR_NOT_AVAILABLE".

Defined in:
MQDistributionListItem class

Data Type:
String

Values:
See API reason codes.

Syntax: To get: reasonname$ = MQDistributionListItem. ReasonName

ClearErrorCodes method:

Resets the CompletionCode to MQCC_OK and the ReasonCode to MQRC_NONE for both the
MQDistributionListItem class and the MQSession class.

Defined in:
MQDistributionListItem class

Syntax:
Call MQDistributionListItem.ClearErrorCodes

Troubleshooting
Information on the trace facility provided, common pitfalls and help on how to avoid them.

This following section explains the trace facility provided and details common pitfalls, with help to avoid
them:
v “Using trace”
v “When your IBM MQ Automation Classes for ActiveX script fails” on page 787
v “Reason codes” on page 787
v “Code level tool” on page 790

Using trace

MQAX includes a trace facility to help the service organization identify what is happening when you
have a problem. It shows the paths taken when you run your MQAX script. Unless you have a problem,
run with tracing switched off to avoid any unnecessary use of system resources.

There are three environment variables that you set to control trace:
v OMQ_TRACE
v OMQ_TRACE_PATH
v OMQ_TRACE_LEVEL

Note: Specifying any value for the OMQ_TRACE variable switches the trace facility on. Even if you set the
OMQ_TRACE variable to OFF, trace is still active. To switch off tracing, do not specify a value for OMQ_TRACE.
1. Click Start

2. Click Control Panel

3. Double-click System

4. Click Advanced

5. Click Environment

Developing object-oriented applications with IBM MQ 785

6. In the section titled User variables for (username), click New

7. Enter the variable name and a valid value in the appropriate fields and click OK

8. Click OK to close the Environment Variables window
9. Click OK to close the System Properties window

10. Close the Control Panel window

When deciding where you want the trace files written, ensure that you have sufficient authority to write
to, as well as read from, the disk.

With tracing switched on, it slows down the running of the MQAX, but it does not affect the performance
of your ActiveX or IBM MQ environments. When you no longer need a trace file, you can delete it.

You cannot change the status of the OMQ_TRACE variable while MQAX is running.

Trace file name and directory

The trace file name takes the form OMQnnnnn.trc, where nnnnn is the ID of the ActiveX process running at
the time.

Command Effect

SET OMQ_TRACE_PATH = drive:\directory Sets the trace directory in which the trace file is
written.

SET OMQ_TRACE_PATH = Removes any existing setting for the trace
directory. When the trace directory is not set, the
current working directory (when ActiveX is
started) is used.

ECHO %OMQ_TRACE_PATH% Displays the current setting for the trace directory
on Windows.

SET OMQ_TRACE = xxxxxxxx Switches on tracing. You switch on tracing by
putting one or more characters after the '=' sign.
For example: SET OMQ_TRACE=yes and SET
OMQ_TRACE=no. In both of these examples, tracing is
switched on. This setting is only effective for a
single window/session.

SET OMQ_TRACE= Switches off tracing.
ECHO %OMQ_TRACE% Displays the contents of the environment variable

on Windows.
SET Displays the contents of all the environment

variables on Windows.
SET OMQ_TRACE_LEVEL = 9 Sets the trace level to 9. Values greater than 9 do

not produce any additional information in the
trace file.

786 IBM MQ: Programming

When your IBM MQ Automation Classes for ActiveX script fails

If your IBM MQ Automation Classes for ActiveX script fails, there are a number of sources of
information.

First failure symptom report

Independently of the trace facility, for unexpected and internal errors, a First failure symptom report
might be produced.

This report is found in a file named OMQnnnnn.fdc, where nnnnn is the number of the ActiveX process
that is running at the time. You find this file in the working directory from which you started ActiveX or
in the path specified in the OMQ_PATH environment variable.

Other sources of information

IBM MQ provides various error logs and trace information, depending on the platform involved. See
your Windows NT application event log.

Reason codes

The following reason codes can occur in addition to those documented for the IBM MQ MQI. For other
codes, refer to your IBM MQ application event log.

Reason code Explanation

MQRC_LIBRARY_LOAD_ERROR (6000) One or more of the IBM MQ libraries could not be
loaded. Check that all IBM MQ libraries are in the
correct search path on the system you are using. For
example, make sure that the directories containing the
IBM MQ libraries are in PATH.

MQRC_CLASS_LIBRARY_ERROR (6001) One of the IBM MQ classlibrary calls returned an
unexpected ReasonCode or CompletionCode value. Check
the First Failure Symptom Report for details. Take note
of the last method/property and class being used and
inform IBM Support of the problem.

MQRC_STRING_LENGTH_TOO_BIG (6002) An attempt has been made to write a UTF format string
with a length greater than 65,535 bytes to the message
buffer.

MQRC_WRITE_VALUE_ERROR (6003) A value is used that is out of range; for example
msg.WriteByte (240).

MQRC_PACKED_DECIMAL_ERROR (6004) An attempt has been made to read a packed decimal
number from the message buffer, but the data at the data
pointer is not in a valid packed data format.

MQRC_FLOAT_CONVERSION_ERROR (6005) An attempt has been made to read a single or double
floating point number from the message buffer but the
data at the data pointer is not in an appropriate floating
point format.

MQRC_REOPEN_EXCL_INPUT_ERROR (6100) An open object does not have the correct OpenOptions
settings and requires one or more additional options. An
implicit reopen is required but closure has been
prevented because the queue is open for exclusive input
and closure would present a window of opportunity for
others potentially to gain access to the queue. Set the
OpenOptions values explicitly to cover all eventualities so
that implicit reopening is not required.

Developing object-oriented applications with IBM MQ 787

Reason code Explanation

MQRC_REOPEN_INQUIRE_ERROR (6101) An open object does not have the correct OpenOptions
settings and requires one or more additional options. An
implicit reopen is required but closure has been
prevented because one or more characteristics of the
object need to be checked dynamically prior to closure,
and the OpenOptions values do not already include the
MQOO_INQUIRE option. Set the OpenOptions values
explicitly to include the MQOO_INQUIRE option.

MQRC_REOPEN_SAVED_CONTEXT_ERR (6102) An open object does not have the correct OpenOptions
settings and requires one or more additional options. An
implicit reopen is required but closure has been
prevented because the queue is open with the
MQOO_SAVE_ALL_CONTEXT option, and a destructive Get call
has been performed previously. This has caused retained
state information to be associated with the open queue
and this information would be destroyed by closure. Set
the OpenOptions values explicitly to cover all
eventualities so that implicit reopening is not required.

MQRC_REOPEN_TEMPORARY_Q_ERROR (6103) An open object does not have the correct OpenOptions
settings and requires one or more additional options. An
implicit reopen is required, but closure has been
prevented because the queue is a local queue of the
definition type MQQDT_TEMPORARY_DYNAMIC, which would
be destroyed by closure. Set the OpenOptions values
explicitly to cover all eventualities so that implicit
reopening is not required.

MQRC_ATTRIBUTE_LOCKED (6104) An attempt has been made to change the value or
attribute of an object while that object is open. Certain
attributes, such as AlternateUserId, cannot be changed
while an object is open.

MQRC_CURSOR_NOT_VALID (6105) The browse cursor for an open queue has been
invalidated since it was last used by an implicit reopen.
Set the OpenOptions values explicitly to cover all
eventualities so that implicit reopening is not required.

MQRC_ENCODING_ERROR (6106) The encoding of the next message item needs to be
MQENC_NATIVE encoding for reading.

MQRC_STRUCID_ERROR (6107) The structure of the ID for the next message item, which
is derived from the 4 characters beginning at the data
pointer, is either missing or is inconsistent with the type
of variable into which the item is being read.

MQRC_NULL_POINTER (6108) A null pointer has been supplied where a non-null
pointer is either required or implied. This might be
caused by using explicit declarations for IBM MQ objects
that are used from Visual Basic or Excel as parameters to
calls. For example:

v From Visual Basic, dim msg as Object works correctly,
whereas dim msg as MqMessage might not work
correctly.

v From Visual Basic, with a queue defined and set, dim
msg as MqMessageq.put msg works correctly, whereas
from Excel this command generates an
MQRC_NULL_POINTER exception.

MQRC_NO_CONNECTION_REFERENCE (6109) The MQQueue object has lost its connection to the
MQQueueManager object. This will occur if the queue
manager is disconnected. Delete the MQQueue object.

788 IBM MQ: Programming

Reason code Explanation

MQRC_NO_BUFFER (6110) No buffer is available. For an MQMessage object, a
buffer cannot be allocated because there is an internal
inconsistency in the object state.

MQRC_BINARY_DATA_LENGTH_ERROR (6111) The length of the binary data is inconsistent with the
length of the target attribute. Zero is a correct length for
all attributes. 24 is a correct length for a CorrelationId
attribute and for a MessageId attribute. 32 is a correct
length for an AccountingToken attribute.

MQRC_BUFFER_NOT_AUTOMATIC (6112) A user-defined and managed buffer cannot be resized.
Because message buffers are system managed, this
indicates an internal inconsistency.

MQRC_INSUFFICIENT_BUFFER (6113) There is insufficient buffer space available after the data
pointer to accommodate the request. This could be
because the buffer cannot be resized.

MQRC_INSUFFICIENT_DATA (6114) There is insufficient data after the data pointer to
accommodate the read request. Reduce the buffer to the
correct size and read the data again.

MQRC_DATA_TRUNCATED (6115) Data has been truncated when copying from one buffer
to another. This could be because the target buffer cannot
be resized, or because there is a problem addressing one
or other buffer, or because a buffer is being downsized
with a smaller replacement.

MQRC_ZERO_LENGTH (6116) A zero length has been supplied where a positive length
is either required or implied.

MQRC_NEGATIVE_LENGTH (6117) A negative length has been supplied where a zero or
positive length is required.

MQRC_NEGATIVE_OFFSET (6118) A negative offset has been supplied where a zero or
positive offset is required.

MQRC_INCONSISTENT_FORMAT (6119) The format of the next message item is inconsistent with
the type of variable into which the item is being read.

MQRC_INCONSISTENT_OBJECT_STATE (6120) There is an inconsistency between this object, which is
open, and the referenced MQQueueManager object,
which is not connected.

MQRC_CONTEXT_OBJECT_NOT_VALID (6121) The MQPutMessageOptions context reference does not
reference a valid MQQueue object. The object has been
previously destroyed.

MQRC_CONTEXT_OPEN_ERROR (6122) The MQPutMessageOptions context reference refers to an
MQQueue object that could not be opened to establish a
context. This might be because the MQQueue object has
inappropriate open options. Inspect the referenced object
reason code to establish the cause.

MQRC_STRUC_LENGTH_ERROR (6123) The length of an internal data structure is inconsistent
with its content. For an MQRMH header, the length is
insufficient to contain the fixed fields and all offset data.

MQRC_NOT_CONNECTED (6124) A method failed because a required connection to a
queue manager is not available, and a connection cannot
be established implicitly.

MQRC_NOT_OPEN (6125) A method failed because an IBM MQ object is not open,
and opening cannot be accomplished implicitly.

MQRC_DISTRIBUTION_LIST_EMPTY (6126) An MQDistributionList failed to open because there are
no MQDistributionListItem objects in the distribution list.

Corrective action: Add at least one
MQDistributionListItem object to the distribution list.

Developing object-oriented applications with IBM MQ 789

Reason code Explanation

MQRC_INCONSISTENT_OPEN_OPTIONS (6127) A method failed because the object is open, and the open
options are inconsistent with the required operation.

Corrective action: Open the object with appropriate open
options then retry.

MQRC_WRONG_VERSION (6128) A method failed because a version number specified or
encountered is either incorrect or not supported.

Code level tool

You might be asked by the IBM Service Team which level of code you have installed.

To find this out, run the 'MQAXLEV' utility program.

From the command prompt, change to the directory containing the MQAX200.dll or add the full path
length and enter:

MQAXLev MQAX200.dll > MQAXLEV.OUT

where MQAXLEV.OUT is the name of the output file.

If you do not specify an output file, the detail is displayed on the screen.

An example output file from code level tool is detailed in the following example:

Example output file from code level tool

5639-B43 (C) Copyright IBM Corp. 1996, 1998. ALL RIGHTS RESERVED.
***** Code Level is 5.1 *****

lib/mqole/mqole.cpp, mqole, p000, p000 L981119 1.8 98/08/21
lib/mqlsx/gmqdyn0a.c, mqlsx, p000, p000 L990212 1.6 99/02/11 16:40:24
lib/mqlsx/pc/gmqdyn1p.c, mqlsx, p000, p000 L990212 1.6 99/02/11 16:44:14
lib/mqlsx/xmqcsa.c, mqole, p000, p000 L990216 1.3 99/02/15 13:24:34
lib/mqlsx/xmqfdca.c, mqlsx, p000, p000 L990212 1.3 99/02/11 16:40:35
lib/mqlsx/xmqtrca.c, mqlsx, p000, p000 L990212 1.5 99/02/11 16:12:02
lib/mqlsx/xmqutila.c, mqlsx, p000, p000 L990212 1.3 99/02/11 16:40:40
lib/mqlsx/xmqutl1a.c, mqlsx, p000, p000 L990212 1.4 99/02/11 16:40:30
lib/mqlsx/xmqcnv1a.c, mqlsx, p000, p000 L990212 1.9 99/02/11 16:40:56
lib/mqlsx/xmqmsg.c, mqole, p000, p000 L990219 1.11 99/02/18 12:12:59

790 IBM MQ: Programming

ActiveX interface to the MQAI

For a brief overview of COM interfaces and their use in the MQAI, see “Using the Component Object
Model Interface (IBM MQ Automation Classes for ActiveX)” on page 690.

The MQAI enables applications to build and send Programmable Command Format (PCF) commands
without directly obtaining and formatting the variable length buffers required for PCF. For more
information about the MQAI, see Introduction to the IBM MQ Administration Interface (MQAI). The
MQAI ActiveX MQBag class encapsulates the data bags supported by the MQAI in a way that is possible
to use in any language that supports the creation of COM objects; for example, Visual Basic, C++, Java,
and other ActiveX scripting clients.

The MQAI ActiveX interface is for use with the MQAX classes that provide a COM interface to the MQI.
For more information about the MQAX classes, see “Designing MQAX applications that access
non-ActiveX applications” on page 691.

The ActiveX interface provides a single class called MQBag. This class is used to create MQAI data bags
and its properties and methods are used to create and work with data items within each bag. The MQBag
Execute method sends the bag data to an IBM MQ queue manager as a PCF message and collects the
replies.

For more information about MQBag class, its properties and methods, see “The MQBag class.”

The PCF message is sent to the queue manager object specified, optionally using specified request and
reply queues. Replies are returned in a new MQBag object. The full set of commands and replies is
described in Definitions of the Programmable Command Formats. Commands can be sent to any queue
manager in the IBM MQ network by selecting the appropriate request and reply queues.

The MQBag class

The class, MQBag, is used to create MQBag objects as required. When instantiated, the MQBag class
returns a new MQBag object reference.

Create a MQBag object in Visual Basic as follows:
Dim mqbag As MQBag
Set mqbag = New MQBag

MQBag Property

The properties of MQBag objects are explained in the following list:
v “Item property” on page 792.
v “Count property” on page 793.
v “Options property” on page 794.

MQBag methods

The methods of the MQBag objects are explained in the following list:
v “Add method” on page 794.
v “AddInquiry method” on page 795.
v “Clear method” on page 795.
v “Execute method” on page 795.
v “FromMessage method” on page 796.
v “ItemType method” on page 797.

Developing object-oriented applications with IBM MQ 791

v “Remove method” on page 797.
v “Selector method” on page 798.
v “ToMessage method” on page 799.
v “Truncate method” on page 799.

Error Handling

If an error is detected during an operation on an MQBag object, including those errors returned to the
bag by an underlying MQAX or MQAI object, an error exception is raised. The MQBag class supports the
COM ISupportErrorInfo interface so the following information is available to your error handling routine:
v Error number: composed of the IBM MQ reason code for the error detected and a COM facility code.

The facility field, as standard for COM, indicates the area of responsibility for the error. For errors
detected by IBM MQ it is always FACILITY_ITF.

v Error source: identifies the type and version of the object that detected the error. For errors detected
during MQBag operations, the error source is always MQBag.MQBag1.

v Error description: the string giving the symbolic name for the IBM MQ reason code.

How you access the error information depends on your scripting language; for example, in Visual Basic
the information is returned in the Err object and the IBM MQ reason code is obtained by subtracting the
constant vbObjectError from Err.Number.

ReasonCode = Err.Number - vbObjectError

If the MQBag Execute method sends a PCF message and a reply is received, the operation is considered
successful although the command sent might have failed. In this case, the reply bag itself contains the
completion and error reason codes as described in Definitions of the Programmable Command Formats.

Item property

Purpose

The Item property represents an item in a bag. It is used to set or inquire about the value of an item. Use
of this property corresponds to the following MQAI calls:
v "mqSetString"
v "mqSetInteger"
v "mqInquireInteger"
v "mqInquireString"
v "mqInquireBag"

in the Programmable command formats reference.

Format

Item (Selector, ItemIndex, Value)

Parameters

Selector (VARIANT) - input
Selector of the item to be set or inquired.

When inquiring about an item, MQSEL_ANY_USER_SELECTOR is the default. When setting an item,
MQIA_LIST or MQCA_LIST is the default.

If the Selector is not of type long, MQRC_SELECTOR_TYPE_ERROR results.

This parameter is optional.

792 IBM MQ: Programming

ItemIndex (LONG) - input
This value identifies the occurrence of the item of the specified selector that is to be set or inquired
on. MQIND_NONE is the default.

This parameter is optional.

Value (VARIANT) - input/output
The value returned or the value to be set. When inquiring about an item, the return value can be of
type long, string, or MQBag. However, when setting an item, the value must be of type long or
string; if not, MQRC_ITEM_VALUE_ERROR results.

Visual Basic Language Invocation

When inquiring about a value of an item within a bag:
Value = mqbag[.Item]([Selector],
[ItemIndex])

For MQBag references:
Set abag = mqbag[.Item]([Selector].
[ItemIndex])

To set the value of an item in a bag:
mqbag[.Item]([Selector],
[ItemIndex]) = Value

Count property

Purpose

The Count property represents the number of data items within a bag. This property corresponds to the
MQAI call, "mqCountItems," in the Programmable command formats reference.

Format

Count (Selector, Value)

Parameters

Selector (VARIANT) - input
Selector of the data items to be included in the count.

MQSEL_ALL_USER_SELECTORS is the default.

If the Selector is not of type long, MQRC_SELECTOR_TYPE_ERROR is returned.

Value (LONG) - output
The number of items in the bag included by the Selector.

Visual Basic Language Invocation

To return the number of items in a bag:
ItemCount = mqbag.Count([Selector])

Developing object-oriented applications with IBM MQ 793

Options property

Purpose

The Options property sets options for the use of a bag. This property corresponds to the Options
parameter of the MQAI call, "mqCreateBag," in the Programmable command formats reference.

Format

Parameters

Options (LONG) - input/output
The bag options.

Note: The bag options must be set before data items are added to or set within the bag. If the options
are changed when the bag is not empty, MQRC_OPTIONS_ERROR results. This applies even if the
bag is subsequently cleared.

Visual Basic Language Invocation

When inquiring about the options of an item within a bag:
Options = mqbag.Options

To set an option of an item in a bag:
mqbag.Options = Options

MQBag methods

The methods of the MQBag objects are explained over the following pages.

Add method:

Purpose

The Add method adds a data item to a bag. This method corresponds to the MQAI calls,
"mqAddInteger"and "mqAddString," in the Programmable command formats reference.

Format

Parameters

Value (VARIANT) - input
Integer or string value of the data item.

Selector (VARIANT) - input
Selector identifying the item to be added.

Depending on the type of Value, MQIA_LIST or MQCA_LIST is the default. If the Selector
parameter is not of type long, MQRC_SELECTOR_TYPE_ERROR results.

Visual Basic Language Invocation

To add an item to a bag:
mqbag.Add(Value,[Selector])

Options (Options)

Add (Value, Selector)

794 IBM MQ: Programming

AddInquiry method:

Purpose

The AddInquiry method adds a selector specifying the attribute to be returned when an administration
bag is sent to execute an INQUIRE command. This method corresponds to the MQAI call,
"mqAddInquiry,", in the Programmable command formats reference.

Format

Parameters

Inquiry (LONG) - input
Selector of the IBM MQ attribute to be returned by the INQUIRE administration command.

Visual Basic Language Invocation

To use the AddInquiry method:
mqbag.AddInquiry(Inquiry)

Clear method:

Purpose

The Clear method deletes all data items from a bag. This method corresponds to the MQAI call,
"mqClearBag,", in the Programmable command formats reference.

Format

Visual Basic Language Invocation

To delete all data itmes from a bag:
mqbag.Clear

Execute method:

Purpose

The Execute method sends an administration command message to the command server and waits for
any reply messages. This method corresponds to the MQAI call, "mqExecute,", in the Programmable
command formats reference.

Format

AddInquiry (Inquiry)

Clear

Developing object-oriented applications with IBM MQ 795

Parameters

QueueManager (MQQueueManager) - input
The queue manager to which the application is connected.

Command (LONG) - input
The command to be executed.

OptionsBag (MQBag) - input
The bag containing options that affect the processing of the call.

RequestQ (MQQueue) - input
The queue on which the administration command message will be placed.

ReplyQ (MQQueue) - input
The queue on which any reply messages are received.

ReplyBag (MQBag) - output
A bag reference containing data from reply messages.

Visual Basic Language Invocation

To send an administration command message and wait for any reply messages:
Set ReplyBag = mqbag.Execute(QueueManager, Command,
[OptionsBag],[RequestQ],[ReplyQ])

FromMessage method:

Purpose

The FromMessage method loads data from a message into a bag. This method corresponds to the MQAI
call, "mqBufferToBag," in the Programmable command formats reference.

Format

Parameters

Message (MQMessage) - input
The message containing the data to be converted.

OptionsBag (MQBag) - input
Options to control the processing of the call.

Visual Basic Language Invocation

To load data from a message into a bag:
mqbag.FromMessage(Message,[OptionsBag])

Execute (QueueManager, Command, OptionsBag, RequestQ, ReplyQ, ReplyBag)

FromMessage (Message, OptionsBag)

796 IBM MQ: Programming

ItemType method:

Purpose

The ItemType method returns the type of the value in a specified item in a bag. This method corresponds
to the MQAI call, "mqInquireItemInfo," in the Programmable command formats reference.

Format

Parameters

Selector (VARIANT) - input
Selector identifying the item to be inquired.

MQSEL_ANY_USER_SELECTOR is the default. If the Selector parameter is not of type long,
MQRC_SELECTOR_TYPE_ERROR results.

ItemIndex (LONG) - input
Index of items to be inquired.

MQIND_NONE is the default.

ItemType (LONG) - output
Data type of the specified item.

Note: Either the Selector parameter, ItemIndex parameter, or both must be specified. If neither
parameter is present, MQRC_PARAMETER_MISSING results.

Visual Basic Language Invocation

To return the type of a value:
ItemType = mqbag.ItemType([Selector],
[ItemIndex])

Remove method:

Purpose

The Remove method deletes an item from a bag. This method corresponds to the MQAI call,
"mqDeleteItem," in the Programmable command formats reference.

Format

Parameters

Selector (VARIANT) - input
Selector identifying the item to be deleted.

MQSEL_ANY_USER_SELECTOR is the default. If the Selector parameter is not of type long,
MQRC_SELECTOR_TYPE_ERROR results.

ItemIndex (LONG) - input
Index of the item to be deleted.

MQIND_NONE is the default.

ItemType (Selector, ItemIndex, ItemType)

Remove (Selector, ItemIndex)

Developing object-oriented applications with IBM MQ 797

Note: Either the Selector parameter, ItemIndex parameter, or both must be specified. If neither
parameter is present, MQRC_PARAMETER_MISSING results.

Visual Basic Language Invocation

To delete an item from a bag:
mqbag.Remove([Selector],[ItemIndex])

Selector method:

Purpose

The Selector method returns the selector of a specified item within a bag. This method corresponds to the
MQAI call, "mqInquireItemInfo," in the Programmable command formats reference.

Format

Parameters

Selector (VARIANT) - input
Selector identifying the item to be inquired.

MQSEL_ANY_USER_SELECTOR is the default. If the Selector parameter is not of type long,
MQRC_SELECTOR_TYPE_ERROR results.

ItemIndex (LONG) - input
Index of the item to be inquired.

MQIND_NONE is the default.

OutSelector (VARIANT) - output
Selector of the specified item.

Note: Either the Selector parameter, ItemIndex parameter, or both must be specified. If neither
parameter is present, MQRC_PARAMETER_MISSING results.

Visual Basic Language Invocation

To return the selector of an item:
OutSelector = mqbag.Selector([Selector],
[ItemIndex])

Selector (Selector, ItemIndex, OutSelector)

798 IBM MQ: Programming

ToMessage method:

Purpose

The ToMessage method returns a reference to an MQMessage object. The reference contains data from a
bag. This method corresponds to the MQAI call, "mqBagToBuffer," in the Programmable command
formats reference.

Format

Parameters

OptionsBag (MQBag) - input
A bag containing options that control the processing of the method.

Message (MQMessage) - output
An MQMessage object reference containing data from the bag.

Visual Basic Language Invocation

To use the ToMessage Method:
Set Message = mqbag.ToMessage([OptionsBag])

Truncate method:

Purpose

The Truncate method reduces the number of user items in a bag. This method corresponds to the MQAI
call, "mqTruncateBag," in the Programmable command formats reference.

Format

Parameters

ItemCount (LONG) - input
The number of user items to remain in the bag after truncation has occurred.

Visual Basic Language Invocation

To reduce the number of user items in a bag:
mqbag.Truncate(ItemCount)

ToMessage (OptionsBag, Message)

Truncate (ItemCount)

Developing object-oriented applications with IBM MQ 799

About the IBM MQ Automation Classes for ActiveX Starter samples

This appendix describes the IBM MQ Automation Classes for ActiveX Starter samples, and explains how
to use them.

IBM MQ for Windows provides the following Visual Basic sample programs:
v MQAXTRIV.VBP
v MQAXBSRV.VBP
v MQAXDLST.VBP
v MQAXCLSS.VBP

These samples run on Visual Basic 4 or Visual Basic 5. You will find them in the directory
...\tools\mqax\samples\vb.

In the same directory you will also find samples for Microsoft Excel and html. These are:
v MQAX.XLS
v MQAXTRIV.XLS
v MQAXTRIV.HTM

Note: If using Visual Basic 5, you must select and install Visual Basic component grid32.ocx.

What is demonstrated in the samples

The samples demonstrate how to use IBM MQ Automation Classes for ActiveX to:
v Connect to a queue manager
v Access a queue
v Put a message on a queue
v Get a message from a queue

The central part of the Visual Basic sample is shown on the following pages.

“Preparing to run the samples” on page 801 and

“Error handling in the samples” on page 801

Running the ActiveX Starter samples

Before you run the IBM MQ Automation Classes for ActiveX Starter samples check that you have a
default queue manager running and that you have created the required queue definitions. For details of
creating and running a queue manager and creating a queue, refer to Administering. The sample uses the
queue SYSTEM.DEFAULT.LOCAL.QUEUE which should be defined on any normally set up IBM MQ
server.

The different ways of using data bags are as shown in the following list:
v Connect to a queue manager
v Access a queue
v Put a message on a queue
v Get a message from a queue

For information on the MQAX starter samples for Microsoft Basic Version 4 or later, see “Running the
MQAXTRIV sample” on page 801

800 IBM MQ: Programming

For information on a sample that allow you to browse properties and methods of queue managers and
queue objects, see “Starting the MQAXCLSS sample” on page 803

For information on the MQAXDLST sample, “The MQAXDLST sample” on page 803

For information on running the MQAX starter sample for Microsoft Excel 95 or later, MQAXTRIV.XLS,
see “Running the MQAXTRIV.XLS sample” on page 804.

For information on running the Bank demonstration with MQAX.XLS, see “Running the Bank
demonstration with MQAX.XLS” on page 804

For information on starter sample using an ActiveX compatible WWW browser, see “Starter sample using
an ActiveX compatible WWW browser” on page 804

Preparing to run the samples

To run any of the samples you need one of the following depending on which of the samples you intend
to run.
v Microsoft Visual Basic Version 4 (or later)
v Microsoft Excel 95 (or later)
v A web browser

You also need:
v An IBM MQ queue manager running.
v An IBM MQ queue already defined.

Error handling in the samples

Most of the samples provided in the IBM MQ Automation Classes for ActiveX package exhibit little or no
error handling. For more information about error handling, see “Error handling” on page 696.

Running the MQAXTRIV sample
1. Start the queue manager.
2. In Windows Explorer or File Manager, select the icon for the sample, MQAXTRIV.VBP (Visual Basic

Project file) and open the file.
The Visual Basic program starts and opens the file, MQAXTRIV.VBP.

3. In Visual Basic, press function key 5 (F5) to run the sample.
4. Click anywhere in the window form, MQAX trivial tester.

If everything is working correctly, the window background should change to green. If there is a problem
with your setup, the window background should change to red and error information will be displayed.

The following figure shows the central part of the Visual Basic sample.
Option Explicit

Private Sub Form_Click()

’***
’* This simple example illustrates how to put and get a WebSphere MQ message to
’* and from a WebSphere MQ message queue. The data from the message returned by the
’* get is read and compared with that from the original message.
’***
Dim MQSess As MQSession ’* session object
Dim QMgr As MQQueueManager ’* queue manager object
Dim Queue As MQQueue ’* queue object
Dim PutMsg As MQMessage ’* message object for put
Dim GetMsg As MQMessage ’* message object for get

Developing object-oriented applications with IBM MQ 801

Dim PutOptions As MQPutMessageOptions ’* put message option
Dim GetOptions As MQGetMessageOptions ’* get message options
Dim PutMsgStr As String ’* put message data string
Dim GetMsgStr As String ’* get message data string
’***
’* Handle errors
’***
On Error GoTo HandleError

’***
’* Initialize the current position for the form
’***
CurrentX = 0
CurrentY = 0

’***
’* Create the MQSession object and access the MQQueueManager and (local) MQQueue
’***
Set MQSess = New MQSession
Set QMgr = MQSess.AccessQueueManager("")
Set Queue = QMgr.AccessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE", _

MQOO_OUTPUT Or MQOO_INPUT_AS_Q_DEF)

’***
’* Create a new MQMessage object for use with put, add some data then create an
’* MQPutMessageOptions object and put the message
’***
Set PutMsg = MQSess.AccessMessage()
PutMsgStr = "12345678 " & Time
PutMsg.MessageData = PutMsgStr
Set PutOptions = MQSess.AccessPutMessageOptions()
Queue.Put PutMsg, PutOptions

’***
’* Create a new MQMessage object for use with get, set the MessageId (to that of
’* the message that was put), create an MQGetMessageOptions object and get the
’* message.
’*
’* Note: Setting the MessageId ensures that the get returns the MQMessage
’* that was put earlier.
’***

Set GetMsg = MQSess.AccessMessage()
GetMsg.MessageId = PutMsg.MessageId
Set GetOptions = MQSess.AccessGetMessageOptions()
Queue.Get GetMsg, GetOptions
’***
’* Read the data from the message returned by the get, compare it with
’* that from the original message and output a suitable message.
’***
GetMsgStr = GetMsg.MessageData
Cls
If GetMsgStr = PutMsgStr Then

BackColor = RGB(127, 255, 127) ’* set to green for ok
Print
Print "Message data comparison was successful."
Print "Message data: """ & GetMsgStr & """"

Else
BackColor = RGB(255, 255, 127) ’* set to amber for compare error
Print "Compare error: "
Print "The message data returned by the get did not match the " &_
"input data from the original message that was put."
Print
Print "Input message data: """ & PutMsgStr & """"
Print "Returned message data: """ & GetMsgStr & """"

End If

802 IBM MQ: Programming

Exit Sub
’***
’* Handle errors
’***
HandleError:
Dim ErrMsg As String
Dim StrPos As Integer

Cls
BackColor = RGB(255, 0, 0) ’* set to red for error
Print "An error occurred as follows:"
Print ""
If MQSess.CompletionCode <> MQCC_OK Then

ErrMsg = Err.Description
StrPos = InStr(ErrMsg, " ") ’* search for first blank
If StrPos > 0 Then

Print Left(ErrMsg, StrPos) ’* print offending MQAX object name
Else

Print Error(Err) ’* print complete error object
End If
Print ""
Print "WebSphere MQ Completion Code = " & MQSess.CompletionCode
Print "WebSphere MQ Reason Code = " & MQSess.ReasonCode
Print "(" & MQSess.ReasonName & ")"

Else
Print "Visual Basic error: " & Err
Print Error(Err)

End If

Exit Sub

End Sub

Starting the MQAXCLSS sample

This sample allows you to browse properties and methods of queue managers and queue objects.
1. Start the queue manager.
2. Open the file, MQAXCLSS.VBP, by double clicking on the document icon in Windows Explorer or by

clicking File - Open from the file menu in Visual Basic.
3. Start the sample.
4. Enter the appropriate queue manager and queue names then click the corresponding buttons.

The MQAXDLST sample

The Visual Basic MQAXDLST sample demonstrates the use of a distribution list to send the same
message to two queues with one put. To run the sample, do the same as for the MQAXCLSS sample.

Developing object-oriented applications with IBM MQ 803

MQAX Starter sample for Microsoft Excel 95 or later

This section explains how to run the MQAX starter sample for Microsoft Excel 95 or later,
MQAXTRIV.XLS.

Running the MQAXTRIV.XLS sample:

1. Start the queue manager.
2. In Explorer or File Manager, select the icon for the MQAX sample MQAXTRIV.XLS.
3. Click the button in the spreadsheet.
4. The screen is updated with a success (or failure) message.

Running the Bank demonstration with MQAX.XLS:

Follow these steps to run the Bank demonstration.
1. Start the queue manager.
2. Run the IBM MQ MQSC command file, BANK.TST. This sets up the necessary IBM MQ queue

definitions.
To find out how to use an MQSC command file, refer to Script (MQSC) Commands.

3. Run MQAXBSRV.VBP. This sample program is the server simulating a back-end application, and it
has to run with Microsoft Excel.

4. Run MQAX.XLS. This sample is the client IBM MQ demonstration.
5. Select a customer from the list.
6. Click Submit.

After a short pause (approximately 3 seconds), the fields populate with values and a bar chart is
displayed.

Starter sample using an ActiveX compatible WWW browser

Note: To run this sample, you must be running an ActiveX compatible Web browser. Microsoft Internet
Explorer (but not Netscape Navigator) is a compatible Web browser.

Running the HTML sample

This sample demonstrates how you can invoke MQAX from both VBScript and JavaScript.
1. Start the queue manager.
2. Open the file, "MQAXTRIV.HTM", in your ActiveX compatible Web browser.

You can do this either by double-clicking the file icon in Windows Explorer or you can choose File -
Open from the File menu of your ActiveX compatible Web browser.

3. Follow the instructions on the screen.

804 IBM MQ: Programming

Using C++
IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQI.

IBM WebSphere MQ Version 7.0, enhancements to the IBM MQ programming interfaces are not applied
to the C++ classes.

IBM MQ C++ provides the following features:
v Automatic initialization of IBM MQ data structures.
v Just-in-time queue manager connection and queue opening.
v Implicit queue closure and queue manager disconnection.
v Dead-letter header transmission and receipt.
v IMS bridge header transmission and receipt.
v Reference message header transmission and receipt.
v Trigger message receipt.
v CICS bridge header transmission and receipt.
v Work header transmission and receipt.
v Client channel definition.

The following Booch class diagrams show that all the classes are broadly parallel to those IBM MQ
entities in the procedural MQI (for example using C) that have either handles or data structures. All
classes inherit from the ImqError class (see ImqError C++ class), which allows an error condition to be
associated with each object.

Trigger

Dead Letter
Header

CICS
Bridge
Header

IMS
Bridge
Header

Work
Header

A

Reference
Header

A

copyOut()
pasteIn()

format :String
formatIs()
readItem()
writeItem()

character set : Integer
encoding : Integer

format :String
header flags : Integer

Message

Header

Item

Figure 105. IBM MQ C++ classes (item handling)

Developing object-oriented applications with IBM MQ 805

To interpret Booch class diagrams correctly, be aware of the following conventions:
v Methods and noteworthy attributes are shown below the class name.
v A small triangle within a cloud denotes an abstract class.
v Inheritance is denoted by an arrow to the parent class.
v An undecorated line between clouds denotes a cooperative relationship between classes.
v A line decorated with a number denotes a referential relationship between two classes. The number

indicates the number of objects that can participate in a particular relationship at any one time.

The following classes and data types are used in the C++ method signatures of the queue management
classes (see Figure 106) and the item handling classes (see Figure 105 on page 805):
v The ImqBinary class (see ImqBinary C++ class), which encapsulates byte arrays such as MQBYTE24.
v The ImqBoolean data type, which is defined as typedef unsigned char ImqBoolean.
v The ImqString class (see ImqString C++ class), which encapsulates character arrays such as

MQCHAR64.

Entities with data structures are subsumed within appropriate object classes. Individual data structure
fields (see C++ and MQI cross-reference) are accessed with methods.

priority : Integer

Distribution
List

wait interval : Integer

A

close()
name :String

open()

backout()
begin()

commit()
connect()

disconnect()

get()
put()

queue manager name :String

Queue Manager

Queue

Object

Put Message
Options

correlation id :Binary
group id :Binary

message id :Binary

MessageTracker

buffer length : Integer
data offset : Integer

message length : Integer
useEmptyBuffer()

useFullBuffer()

Cache

Message

Get Message
Options

n

1

1

1

referenced by

referenced by

n

managed by

1

Namelist

channel name
connection name

transport type

Channel

Figure 106. IBM MQ C++ classes (queue management)

806 IBM MQ: Programming

Entities with handles come under the ImqObject class hierarchy (see ImqObject C++ class) and provide
encapsulated interfaces to the MQI. Objects of these classes exhibit intelligent behavior that can reduce
the number of method invocations required relative to the procedural MQI. For example, you can
establish and discard queue manager connections as required, or you can open a queue with appropriate
options, then close it.

The ImqMessage class (see ImqMessage C++ class) encapsulates the MQMD data structure and also acts
as a holding point for user data and items (see “Reading messages in C++” on page 817) by providing
cached buffer facilities. You can provide fixed-length buffers for user data and use the buffer many times.
The amount of data present in the buffer can vary from one use to the next. Alternatively, the system can
provide and manage a buffer of flexible length. Both the size of the buffer (the amount available for
receipt of messages) and the amount actually used (either the number of bytes for transmission or the
number of bytes actually received) become important considerations.
Related concepts:
“C++ sample programs”
Four sample programs are supplied, to demonstrate getting and putting messages.
“C++ language considerations” on page 812
This collection of topics details the aspects of the C++ language usage and conventions that you must
consider when writing application programs that use the Message Queue Interface (MQI).
“Preparing message data in C++” on page 816
Message data is prepared in a buffer, which can be supplied by the system or the application. There are
advantages to either method. Examples of using a buffer are given.
“Developing applications” on page 1
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ support applications written in procedural languages, and object oriented
languages and frameworks.
Related reference:
“Building IBM MQ C++ programs” on page 823
The URL of supported compilers is listed, together with the commands to use to compile, link and run
C++ programs and samples on IBM MQ platforms.
Related information:
Technical overview
C++ and MQI cross reference
IBM MQ C++ classes

C++ sample programs
Four sample programs are supplied, to demonstrate getting and putting messages.

The sample programs are:
v HELLO WORLD (imqwrld.cpp)
v SPUT (imqsput.cpp)
v SGET (imqsget.cpp)
v DPUT (imqdput.cpp)

The sample programs are located in the directories shown in Table 96 on page 808.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Developing object-oriented applications with IBM MQ 807

Table 96. Location of sample programs

Environment Directory containing source Directory containing built
programs

AIX MQ_INSTALLATION_PATH/samp MQ_INSTALLATION_PATH/samp/bin/ia

IBM i

/QIBM/ProdData/mqm/samp/ (see note 1)

HP-UX MQ_INSTALLATION_PATH/samp MQ_INSTALLATION_PATH/samp/bin/ah
(see note 2)

z/OS

z/OS

thlqual.SCSQCPPS None

Solaris MQ_INSTALLATION_PATH/samp MQ_INSTALLATION_PATH/samp/bin/as

Linux MQ_INSTALLATION_PATH/samp MQ_INSTALLATION_PATH/samp/bin/

Windows MQ_INSTALLATION_PATH\tools\cplus\samples MQ_INSTALLATION_PATH\tools\cplus\
samples\bin\vn
(see note 3)

Notes:

1. Programs built using the ILE C++ compiler for IBM i are in the library QMQM. The include files are
in /QIBM/ProdData/mqm/inc.

2. Programs built using the HP ANSI C++ compiler are found in directory MQ_INSTALLATION_PATH/
samp/bin/ah. For further information, see “Building C++ programs on HP-UX” on page 824.

3. Programs built using the Microsoft Visual Studio are found in MQ_INSTALLATION_PATH\tools\cplus\
samples\bin\vn. For further information about these compilers, see “Building C++ programs on
Windows” on page 829.

Sample program HELLO WORLD (imqwrld.cpp)
This C++ sample program shows how to put and get a regular datagram (C structure) using the
ImqMessage class.

This program shows how to put and get a regular datagram (C structure) using the ImqMessage class.
This sample uses few method invocations, taking advantage of implicit method invocations such as open,
close, and disconnect.

On all platforms except z/OS

If you are using a server connection to IBM MQ, follow one of the following procedures:
v To use the existing default queue, SYSTEM.DEFAULT.LOCAL.QUEUE, run the program imqwrlds

without passing any parameters
v To use a temporary dynamically assigned queue, run imqwrlds passing the name of the default model

queue, SYSTEM.DEFAULT.MODEL.QUEUE.

If you are using a client connection to IBM MQ, follow one of the following procedures:
v Set up the MQSERVER environment variable (see MQSERVER for more information) and run imqwrldc,

or
v Run imqwrldc passing as parameters the queue-name, queue-manager-name, and channel-definition,

where a typical channel-definition might be SYSTEM.DEF.SVRCONN/TCP/hostname (1414)

z/OS

808 IBM MQ: Programming

On z/OS

Construct and run a batch job, using the sample JCL imqwrldr.

See z/OS Batch, RRS Batch and CICS for more information.

Sample code
extern "C" {
#include <stdio.h>
}

#include <imqi.hpp> // WebSphere MQ C++

#define EXISTING_QUEUE "SYSTEM.DEFAULT.LOCAL.QUEUE"

#define BUFFER_SIZE 12

static char gpszHello[BUFFER_SIZE] = "Hello world" ;
int main (int argc, char * * argv) {

ImqQueueManager manager ;
int iReturnCode = 0 ;

// Connect to the queue manager.
if (argc > 2) {

manager.setName(argv[2]);
}
if (manager.connect()) {

ImqQueue * pqueue = new ImqQueue ;
ImqMessage * pmsg = new ImqMessage ;

// Identify the queue which will hold the message.
pqueue -> setConnectionReference(manager);
if (argc > 1) {

pqueue -> setName(argv[1]);

// The named queue can be a model queue, which will result in
// the creation of a temporary dynamic queue, which will be
// destroyed as soon as it is closed. Therefore we must ensure
// that such a queue is not automatically closed and reopened.
// We do this by setting open options which will avoid the need
// for closure and reopening.
pqueue -> setOpenOptions(MQOO_OUTPUT | MQOO_INPUT_SHARED |

MQOO_INQUIRE);
} else {

pqueue -> setName(EXISTING_QUEUE);

// The existing queue is not a model queue, and will not be
// destroyed by automatic closure and reopening. Therefore we
// will let the open options be selected on an as-needed basis.
// The queue will be opened implicitly with an output option
// during the "put", and then implicitly closed and reopened
// with the addition of an input option during the "get".

}

// Prepare a message containing the text "Hello world".
pmsg -> useFullBuffer(gpszHello , BUFFER_SIZE);
pmsg -> setFormat(MQFMT_STRING);

// Place the message on the queue, using default put message
// Options.
// The queue will be automatically opened with an output option.
if (pqueue -> put(* pmsg)) {

ImqString strQueue(pqueue -> name());

Developing object-oriented applications with IBM MQ 809

// Discover the name of the queue manager.
ImqString strQueueManagerName(manager.name());
printf("The queue manager name is %s.\n",

(char *)strQueueManagerName);

// Show the name of the queue.
printf("Message sent to %s.\n", (char *)strQueue);

// Retrieve the data message just sent ("Hello world" expected)
// from the queue, using default get message options. The queue
// is automatically closed and reopened with an input option
// if it is not already open with an input option. We get the
// message just sent, rather than any other message on the
// queue, because the "put" will have set the ID of the message
// so, as we are using the same message object, the message ID
// acts as in the message object, a filter which says that we
// are interested in a message only if it has this
// particular ID.

if (pqueue -> get(* pmsg)) {
int iDataLength = pmsg -> dataLength();

// Show the text of the received message.
printf("Message of length %d received, ", iDataLength);

if (pmsg -> formatIs(MQFMT_STRING)) {
char * pszText = pmsg -> bufferPointer();

// If the last character of data is a null, then we can
// assume that the data can be interpreted as a text
// string.
if (! pszText[iDataLength - 1]) {

printf("text is \"%s\".\n", pszText);
} else {

printf("no text.\n");
}

} else {
printf("non-text message.\n");

}
} else {

printf("ImqQueue::get failed with reason code %ld\n",
pqueue -> reasonCode());

iReturnCode = (int)pqueue -> reasonCode();
}

} else {
printf("ImqQueue::open/put failed with reason code %ld\n",

pqueue -> reasonCode());
iReturnCode = (int)pqueue -> reasonCode();

}

// Deletion of the queue will ensure that it is closed.
// If the queue is dynamic then it will also be destroyed.
delete pqueue ;
delete pmsg ;

} else {
printf("ImqQueueManager::connect failed with reason code %ld\n"

manager.reasonCode());
iReturnCode = (int)manager.reasonCode();

}

// Destruction of the queue manager ensures that it is
// disconnected. If the queue object were still available
// and open (which it is not), the queue would be closed

810 IBM MQ: Programming

// prior to disconnection.

return iReturnCode ;
}

Sample programs SPUT (imqsput.cpp) and SGET (imqsget.cpp)
These C++ programs place messages to, and retrieve messages from, a named queue.

These samples show the use of the following classes:
v ImqError (see ImqError C++ class)
v ImqMessage (see ImqMessage C++ class)
v ImqObject (see ImqObject C++ class)
v ImqQueue (see ImqQueue C++ class)
v ImqQueueManager (see ImqQueueManager C++ class)

Follow the appropriate instructions to run the programs.

On all platforms except z/OS
1. Run imqsputs queue-name.
2. Type lines of text at the console. These lines are placed as messages onto the specified queue.
3. Enter a null line to end the input.
4. Run imqsgets queue-name to retrieve all the lines and display them at the console.

z/OS

See “Building C++ programs on z/OS Batch, RRS Batch and CICS” on page 830 for more

information.

z/OS

On z/OS
1. Construct and run a batch job using the sample JCL imqsputr. The messages are read from the SYSIN

data set.
2. Construct and run a batch job using the sample JCL imqsgetr. The messages are retrieved from the

queue and sent to the SYSPRINT data set.

Sample program DPUT (imqdput.cpp)
This C++ sample program puts messages to a distribution list consisting of two queues.

DPUT shows the use of the ImqDistributionList class (see ImqDistributionList C++ class). This sample is
not supported on z/OS.
1. Run imqdputs queue-name-1 queue-name-2 to place messages on the two named queues.
2. Run imqsgets queue-name-1 and imqsgets queue-name-2 to retrieve the messages from those queues.

Developing object-oriented applications with IBM MQ 811

C++ language considerations
This collection of topics details the aspects of the C++ language usage and conventions that you must
consider when writing application programs that use the Message Queue Interface (MQI).

C++ Header files
Header files are provided as part of the definition of the MQI, to help you write IBM MQ application
programs in the C++ language.

These header files are summarized in the following table.

Table 97. C/C++ header files

Filename Contents

IMQI.HPP C++ MQI Classes (includes CMQC.H and IMQTYPE.H)

IMQTYPE.H Defines the ImqBoolean data type

CMQC.H MQI data structures and manifest constants

To improve the portability of applications, code the name of the header file in lowercase on the #include
preprocessor directive:
#include <imqi.hpp> // C++ classes

C++ methods and attributes
Method names are in mixed case. Various considerations apply to parameters and return values.
Attributes are accessed using set and get methods as appropriate.

Parameters of methods that are const are for input only. Parameters with signatures including a pointer
(*) or a reference (&) are passed by reference. Return values that do not include a pointer or a reference
are passed by value; in the case of returned objects, these are new entities that become the responsibility
of the caller.

Some method signatures include items that take a default if not specified. Such items are always at the
end of signatures and are denoted by an equal sign (=); the value after the equal sign indicates the
default value that applies if the item is omitted.

All method names in these classes are mixed case, beginning with lowercase. Each word, except the first
within a method name, begins with a capital letter. Abbreviations are not used unless their meaning is
widely understood. Abbreviations used include id (for identity) and sync (for synchronization).

Object attributes are accessed using set and get methods. A set method begins with the word set ; a get
method has no prefix. If an attribute is read-only, there is no set method.

Attributes are initialized to valid states during object construction, and the state of an object is always
consistent.

812 IBM MQ: Programming

Data types in C++
All data types are defined by the C typedef statement.

The type ImqBoolean is defined as unsigned char in IMQTYPE.H and can have the values TRUE and
FALSE. You can use ImqBinary class objects in place of MQBYTE arrays, and ImqString class objects in
place of char *. Many methods return objects instead of char or MQBYTE pointers to ease storage
management. All return values become the responsibility of the caller, and, in the case of a returned
object, the storage can be disposed of using delete.

Manipulating binary strings in C++
Strings of binary data are declared as objects of the ImqBinary class. Objects of this class can be copied,
compared, and set using the familiar C operators. Example code is provided.

The following code sample shows operations on a binary string:
#include <imqi.hpp> // C++ classes

ImqMessage message ;
ImqBinary id, correlationId ;
MQBYTE24 byteId ;

correlationId.set(byteId, sizeof(byteId)); // Set.
id = message.id(); // Assign.
if (correlationId == id) { // Compare.
...

Manipulating character strings in C++
Character data is often returned in ImqString class objects which can be cast to char * using a conversion
operator. The ImqString class contains methods to assist in the processing of character strings.

When character data is accepted or returned using MQI C++ methods, the character data is always
null-terminated and can be of any length. However, certain limits are imposed by IBM MQ that might
result in information being truncated. To ease storage management, character data is often returned in
ImqString class objects. These objects can be cast to char * using the conversion operator provided, and
used for read-only purposes in many situations where a char * is required.

Note: The char * conversion result from an ImqString class object might be null.

Although C functions can be used on the char *, there are special methods of the ImqString class that are
preferable; operator length () is the equivalent of strlen and storage () indicates the memory allocated
for the character data.

Initial state of objects in C++
All objects have a consistent initial state reflected by their attributes. The initial values are defined in the
class descriptions.

Developing object-oriented applications with IBM MQ 813

Using C from C++
When you use C functions from a C++ program, include appropriate headers.

The following example shows string.h included in a C++ program:
extern "C" {
#include <string.h>
}

C++ notational conventions
This example shows how to invoke methods and declare parameters.

This code sample uses the methods and parameters ImqBoolean ImqQueue:: get (ImqMessage & msg)

Declare and use the parameters as follows:
ImqQueueManager * pmanager ; // Queue manager
ImqQueue * pqueue ; // Message queue
ImqMessage msg ; // Message
char szBuffer[100]; // Buffer for message data

pmanager = new ImqQueueManager ;
pqueue = new ImqQueue ;
pqueue -> setName("myreplyq");
pqueue -> setConnectionReference(pmanager);

msg.useEmptyBuffer(szBuffer, sizeof(szBuffer));

if (pqueue -> get(msg)) {
long lDataLength = msg.dataLength();

...
}

Implicit operations in C++
Several operations can occur implicitly, just in time, to satisfy the prerequisite conditions for the successful
execution of a method. These implicit operations are connect, open, reopen, close, and disconnect. You
can control connect and open implicit behavior using class attributes.

Connect

An ImqQueueManager object is connected automatically for any method that results in any call to the
MQI (see C++ and MQI cross-reference).

Open

An ImqObject object is opened automatically for any method that results in an MQGET, MQINQ,
MQPUT, or MQSET call. Use the openFor method to specify one or more relevant open option values.

Reopen

An ImqObject is reopened automatically for any method that results in an MQGET, MQINQ, MQPUT, or
MQSET call, where the object is already open, but the existing open options are not adequate to allow
the MQI call to be successful. The object is temporarily closed using a temporary close options value of
MQCO_NONE. Use the openFor method to add a relevant open option.

Reopen can cause problems in specific circumstances:
v A temporary dynamic queue is destroyed when it is closed and can never be reopened.
v A queue opened for exclusive input (either explicitly or by default) might be accessed by others in the

window of opportunity during closure and reopening.

814 IBM MQ: Programming

v A browse cursor position is lost when a queue is closed. This situation does not prevent closure and
reopening, but prevents subsequent use of the cursor until MQGMO_BROWSE_FIRST is used again.

v The context of the last message retrieved is lost when a queue is closed.

If any of these circumstances occur or can be foreseen, avoid reopens by explicitly setting adequate open
options before an object is opened (either explicitly or implicitly).

Setting the open options explicitly for complex queue-handling situations results in better performance
and avoids the problems associated with the use of reopen.

Close

An ImqObject is closed automatically at any point where the object state is no longer viable, for example
if an ImqObject connection reference is severed, or if an ImqObject object is destroyed.

Disconnect

An ImqQueueManager is disconnected automatically at any point where the connection is no longer
viable, for example if an ImqObject connection reference is severed, or if an ImqQueueManager object is
destroyed.

Binary and character strings in C++
The ImqString class encapsulates the traditional char * data format. The ImqBinary class encapsulates the
binary byte array. Some methods that set character data might truncate the data.

Methods that set character (char *) data always take a copy of the data, but some methods might
truncate the copy, because certain limits are imposed by IBM MQ.

The ImqString class (see ImqString C++ class) encapsulates the traditional char * and provides support
for:
v Comparison
v Concatenation
v Copying
v Integer-to-text and text-to-integer conversion
v Token (word) extraction
v Uppercase translation

The ImqBinary class (see ImqBinary C++ class) encapsulates binary byte arrays of arbitrary size. In
particular, it is used to hold the following attributes:
v accounting token (MQBYTE32)
v connection tag (MQBYTE128)
v correlation id (MQBYTE24)
v facility token (MQBYTE8)
v group id (MQBYTE24)
v instance id (MQBYTE24)
v message id (MQBYTE24)
v message token (MQBYTE16)
v transaction instance id (MQBYTE16)

Where these attributes belong to objects of the following classes:
v ImqCICSBridgeHeader (see ImqCICSBridgeHeader C++ class)
v ImqGetMessageOptions (see ImqGetMessageOptions C++ class)

Developing object-oriented applications with IBM MQ 815

v ImqIMSBridgeHeader (see ImqIMSBridgeHeader C++ class)
v ImqMessageTracker (see ImqMessageTracker C++ class)
v ImqQueueManager (see ImqQueueManager C++ class)
v ImqReferenceHeader (see ImqReferenceHeader C++ class)
v ImqWorkHeader (see ImqWorkHeader C++ class)

The ImqBinary class also provides support for comparison and copying.

Unsupported functions in C++
The IBM MQ C++ classes and methods are independent of IBM MQ platform. They might therefore offer
some functions that are not supported on certain platforms.

If you try to use a function on a platform on which it is not supported, the function is detected by IBM
MQ but not by the C++ language bindings. IBM MQ reports the error to your program, like any other
MQI error.

Messaging in C++
This collection of topics details how to prepare, read, and write messages in C++.

Preparing message data in C++
Message data is prepared in a buffer, which can be supplied by the system or the application. There are
advantages to either method. Examples of using a buffer are given.

When you send a message, message data is first prepared in a buffer managed by an ImqCache object
(see ImqCache C++ class). A buffer is associated (by inheritance) with each ImqMessage object (see
ImqMessage C++ class): it can be supplied by the application (using either the useEmptyBuffer or
useFullBuffer method) or automatically by the system. The advantage of the application supplying the
message buffer is that no data copying is necessary in many cases because the application can use
prepared data areas directly. The disadvantage is that the supplied buffer is of a fixed length.

The buffer can be reused, and the number of bytes transmitted can be varied each time, by using the
setMessageLength method before transmission.

When supplied automatically by the system, the number of bytes available is managed by the system,
and data can be copied into the message buffer using, for example, the ImqCache write method, or the
ImqMessage writeItem method. The message buffer grows according to need. As the buffer grows, there
is no loss of previously written data. A large or multipart message can be written in sequential pieces.

The following examples show simplified message sends.
1. Use prepared data in a user-supplied buffer

char szBuffer[] = "Hello world" ;

msg.useFullBuffer(szBuffer, sizeof(szBuffer));
msg.setFormat(MQFMT_STRING);

2. Use prepared data in a user-supplied buffer, where the buffer size exceeds the data size
char szBuffer[24] = "Hello world" ;

msg.useEmptyBuffer(szBuffer, sizeof(szBuffer));
msg.setFormat(MQFMT_STRING);
msg.setMessageLength(12);

3. Copy data to a user-supplied buffer
char szBuffer[12];

msg.useEmptyBuffer(szBuffer, sizeof(szBuffer));
msg.setFormat(MQFMT_STRING);
msg.write(12, "Hello world");

816 IBM MQ: Programming

4. Copy data to a system-supplied buffer
msg.setFormat(MQFMT_STRING);
msg.write(12, "Hello world");

5. Copy data to a system-supplied buffer using objects (objects set the message format as well as
content)
ImqString strText("Hello world");

msg.writeItem(strText);

Reading messages in C++
A buffer can be supplied by the application or the system. Data can be accessed directly from the buffer
or read sequentially. There is a class equivalent to each message type. Sample code is given.

When receiving data, the application or the system can supply a suitable message buffer. The same buffer
can be used for both multiple transmission and multiple receipt for a particular ImqMessage object. If the
message buffer is supplied automatically, it grows to accommodate whatever length of data is received.
However, a message buffer supplied by the application might not be big enough to hold the data
received. Then either truncation or failure might occur, depending on the options used for message
receipt.

Incoming data can be accessed directly from the message buffer, in which case the data length indicates
the total amount of incoming data. Alternatively, incoming data can be read sequentially from the
message buffer. In this case, the data pointer addresses the next byte of incoming data, and the data
pointer and data length are updated each time data is read.

Items are pieces of a message, all in the user area of the message buffer, that need to be processed
sequentially and separately. Apart from regular user data, an item might be a dead-letter header or a
trigger message. Items are always associated with message formats; message formats are not always
associated with items.

There is a class of object for each item that corresponds to a recognizable IBM MQ message format. There
is one for a dead-letter header and one for a trigger message. There is no class of object for user data.
That is, once the recognizable formats have been exhausted, processing the remainder is left to the
application program. Classes for user data can be written by specializing the ImqItem class.

The following example shows a message receipt that takes account of a number of potential items that
can precede the user data, in an imaginary situation. Non-item user data is defined as anything that
occurs after items that can be identified. An automatic buffer (the default) is used to hold an arbitrary
amount of message data.
ImqQueue queue ;
ImqMessage msg ;

if (queue.get(msg)) {

/* Process all items of data in the message buffer. */
do while (msg.dataLength()) {

ImqBoolean bFormatKnown = FALSE ;
/* There remains unprocessed data in the message buffer. */

/* Determine what kind of item is next. */

if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {
ImqDeadLetterHeader header ;
/* The next item is a dead-letter header. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. */
bFormatKnown = TRUE ;

if (msg.readItem(header)) {

Developing object-oriented applications with IBM MQ 817

/* The dead-letter header has been extricated from the */
/* buffer and transformed into a dead-letter object. */
/* The encoding and character set of the dead-letter */
/* object itself are MQENC_NATIVE and MQCCSI_Q_MGR. */
/* The encoding and character set from the dead-letter */
/* header have been copied to the message attributes */
/* to reflect any remaining data in the buffer. */

/* Process the information in the dead-letter object. */
/* Note that the encoding and character set have */
/* already been processed. */
...

}
/* There might be another item after this, */
/* or just the user data. */

}
if (msg.formatIs(MQFMT_TRIGGER)) {

ImqTrigger trigger ;
/* The next item is a trigger message. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. */
bFormatKnown = TRUE ;
if (msg.readItem(trigger)) {

/* The trigger message has been extricated from the */
/* buffer and transformed into a trigger object. */
/* Process the information in the trigger object. */
...

}

/* There is usually nothing after a trigger message. */
}

if (msg.formatIs(FMT_USERCLASS)) {
UserClass object ;
/* The next item is an item of a user-defined class. */
/* For the next statement to work and return TRUE, */
/* the correct class of object pointer must be supplied. */
bFormatKnown = TRUE ;

if (msg.readItem(object)) {
/* The user-defined data has been extricated from the */
/* buffer and transformed into a user-defined object. */

/* Process the information in the user-defined object. */
...

}

/* Continue looking for further items. */
}
if (! bFormatKnown) {

/* There remains data that is not associated with a specific*/
/* item class. */
char * pszDataPointer = msg.dataPointer(); /* Address.*/
int iDataLength = msg.dataLength(); /* Length. */

/* The encoding and character set for the remaining data are */
/* reflected in the attributes of the message object, even */
/* if a dead-letter header was present. */
...

}

}
}

818 IBM MQ: Programming

In this example, FMT_USERCLASS is a constant representing the 8-character format name associated with an
object of class UserClass, and is defined by the application.

UserClass is derived from the ImqItem class (see ImqItem C++ class), and implements the virtual
copyOut and pasteIn methods from that class.

The next two examples show code from the ImqDeadLetterHeader class (see ImqDeadLetterHeader C++
class). The first example shows custom-encapsulated message- writing code.
// Insert a dead-letter header.
// Return TRUE if successful.
ImqBoolean ImqDeadLetterHeader :: copyOut (ImqMessage & msg) {

ImqBoolean bSuccess ;
if (msg.moreBytes(sizeof(omqdlh))) {

ImqCache cacheData(msg); // Preserve original message content.
// Note original message attributes in the dead-letter header.
setEncoding(msg.encoding());
setCharacterSet(msg.characterSet());
setFormat(msg.format());

// Set the message attributes to reflect the dead-letter header.
msg.setEncoding(MQENC_NATIVE);
msg.setCharacterSet(MQCCSI_Q_MGR);
msg.setFormat(MQFMT_DEAD_LETTER_HEADER);
// Replace the existing data with the dead-letter header.
msg.clearMessage();
if (msg.write(sizeof(omqdlh), (char *) & omqdlh)) {

// Append the original message data.
bSuccess = msg.write(cacheData.messageLength(),

cacheData.bufferPointer());
} else {

bSuccess = FALSE ;
}

} else {
bSuccess = FALSE ;

}
// Reflect and cache error in this object.
if (! bSuccess) {

setReasonCode(msg.reasonCode());
setCompletionCode(msg.completionCode());

}

return bSuccess ;
}

The second example shows custom-encapsulated message- reading code.
// Read a dead-letter header.
// Return TRUE if successful.
ImqBoolean ImqDeadLetterHeader :: pasteIn (ImqMessage & msg) {

ImqBoolean bSuccess = FALSE ;

// First check that the eye-catcher is correct.
// This is also our guarantee that the "character set" is correct.
if (ImqItem::structureIdIs(MQDLH_STRUC_ID, msg)) {

// Next check that the "encoding" is correct, as the MQDLH
// contains numeric data.
if (msg.encoding() == MQENC_NATIVE) {

// Finally check that the "format" is correct.
if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {

char * pszBuffer = (char *) & omqdlh ;
// Transfer the MQDLH from the message and move pointer on.
if (bSuccess = msg.read(sizeof(omdlh), pszBuffer)) {

// Update the encoding, character set and format of the
// message to reflect the remaining data.

Developing object-oriented applications with IBM MQ 819

msg.setEncoding(encoding());
msg.setCharacterSet(characterSet());
msg.setFormat(format());

} else {

// Reflect the cache error in this object.
setReasonCode(msg.reasonCode());
setCompletionCode(msg.completionCode());

}
} else {

setReasonCode(MQRC_INCONSISTENT_FORMAT);
setCompletionCode(MQCC_FAILED);

}
} else {

setReasonCode(MQRC_ENCODING_ERROR);
setCompletionCode(MQCC_FAILED);

{
} else {

setReasonCode(MQRC_STRUC_ID_ERROR);
setCompletionCode(MQCC_FAILED);

}

return bSuccess ;
}

With an automatic buffer, the buffer storage is volatile. That is, buffer data might be held at a different
physical location after each get method invocation. Therefore, each time buffer data is referenced, use the
bufferPointer or dataPointer methods to access message data.

You might want a program to set aside a fixed area for receiving message data. In this case, invoke the
useEmptyBuffer method before using the get method.

Using a fixed, nonautomatic area limits messages to a maximum size, so it is important to consider the
MQGMO_ACCEPT_TRUNCATED_MSG option of the ImqGetMessageOptions object. If this option is not
specified (the default), the MQRC_TRUNCATED_MSG_FAILED reason code can be expected. If this
option is specified, the MQRC_TRUNCATED_MSG_ACCEPTED reason code might be expected
depending on the design of the application.

The next example shows how a fixed area of storage can be used to receive messages:
char * pszBuffer = new char[100];

msg.useEmptyBuffer(pszBuffer, 100);
gmo.setOptions(MQGMO_ACCEPT_TRUNCATED_MSG);
queue.get(msg, gmo);

delete [] pszBuffer ;

In this code fragment, the buffer can always be addressed directly, with pszBuffer, as opposed to using the
bufferPointer method. However, it is better to use the dataPointer method for general-purpose access.
The application (not the ImqCache class object) must discard a user-defined (nonautomatic) buffer.

Attention: Specifying a null pointer and zero length with useEmptyBuffer does not nominate a
fixed-length buffer of length zero as might be expected. This combination is interpreted as a request to
ignore any previous user-defined buffer, and instead revert to the use of an automatic buffer.

820 IBM MQ: Programming

Writing a message to the dead-letter queue in C++
Example program code for writing a message to the dead-letter queue.

A typical case of a multipart message is one containing a dead-letter header. The data from a message
that cannot be processed is appended to the dead-letter header.
ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueDead ; // Dead-letter message queue.
ImqMessage msg ; // Incoming and outgoing message.
ImqDeadLetterHeader header ; // Dead-letter header information.

// Retrieve the message to be rerouted.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Set up the dead-letter header information.
header.setDestinationQueueManagerName(mgr.name());
header.setDestinationQueueName(queueIn.name());
header.setPutApplicationName(/* ? */);
header.setPutApplicationType(/* ? */);
header.setPutDate(/* TODAY */);
header.setPutTime(/* NOW */);
header.setDeadLetterReasonCode(FB_APPL_ERROR_1234);

// Insert the dead-letter header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the dead-letter queue.
queueDead.setConnectionReference(mgr);
queueDead.setName(mgr.deadLetterQueueName());
queueDead.put(msg);

Writing a message to the IMS bridge in C++
Example program code for writing a message to the IMS bridge.

Messages sent to the IBM MQ - IMS bridge might use a special header. The IMS bridge header is prefixed
to regular message data.
ImqQueueManager mgr; // The queue manager.
ImqQueue queueBridge; // IMS bridge message queue.
ImqMessage msg; // Outgoing message.
ImqIMSBridgeHeader header; // IMS bridge header.

// Set up the message.
//
// Here we are constructing a message with format
// MQFMT_IMS_VAR_STRING, and appropriate data.
//
msg.write(2, /* ? */); // Total message length.
msg.write(2, /* ? */); // IMS flags.
msg.write(7, /* ? */); // Transaction code.
msg.write(/* ? */, /* ? */); // String data.
msg.setFormat(MQFMT_IMS_VAR_STRING); // The format attribute.

// Set up the IMS bridge header information.
//
// The reply-to-format is often specified.
// Other attributes can be specified, but all have default values.
//
header.setReplyToFormat(/* ? */);

// Insert the IMS bridge header into the message.

Developing object-oriented applications with IBM MQ 821

//
// This will:
// 1) Insert the header into the message buffer, before the existing
// data.
// 2) Copy attributes out of the message descriptor into the header,
// for example the IMS bridge header format attribute will now
// be set to MQFMT_IMS_VAR_STRING.
// 3) Set up the message attributes to describe the header, in
// particular setting the message format to MQFMT_IMS.
//
msg.writeItem(header);

// Send the message to the IMS bridge queue.
//
queueBridge.setConnectionReference(mgr);
queueBridge.setName(/* ? */);
queueBridge.put(msg);

Writing a message to the CICS bridge in C++
Example program code for writing a message to the CICS bridge.

Messages sent to IBM MQ for z/OS using the CICS bridge require a special header. The CICS bridge
header is prefixed to regular message data.
ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueBridge ; // CICS bridge message queue.
ImqMessage msg ; // Incoming and outgoing message.
ImqCicsBridgeHeader header ; // CICS bridge header information.

// Retrieve the message to be forwarded.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Set up the CICS bridge header information.
// The reply-to format is often specified.
// Other attributes can be specified, but all have default values.
header.setReplyToFormat(/* ? */);

// Insert the CICS bridge header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the CICS bridge queue.
queueBridge.setConnectionReference(mgr);
queueBridge.setName(/* ? */);
queueBridge.put(msg);

822 IBM MQ: Programming

Writing a message with a work header in C++
Example program code for writing a message destined for a queue managed by the z/OS Workload
Manager.

Messages sent to IBM MQ for z/OS, which are destined for a queue managed by the z/OS Workload
Manager, require a special header. The work header is prefixed to regular message data.
ImqQueueManager mgr ; // The queue manager.
ImqQueue queueIn ; // Incoming message queue.
ImqQueue queueWLM ; // WLM managed queue.
ImqMessage msg ; // Incoming and outgoing message.
ImqWorkHeader header ; // Work header information

// Retrieve the message to be forwarded.
queueIn.setConnectionReference(mgr);
queueIn.setName(MY_QUEUE);
queueIn.get(msg);

// Insert the Work header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

// Send the message to the WLM managed queue.
queueWLM.setConnectionReference(mgr);
queueWLM.setName(/* ? */);
queueWLM.put(msg);

Building IBM MQ C++ programs
The URL of supported compilers is listed, together with the commands to use to compile, link and run
C++ programs and samples on IBM MQ platforms.

The compilers for each supported platform and version of IBM MQ are listed at the IBM MQ system
requirements page at http://www.ibm.com/software/integration/wmq/requirements/.

The command you need to compile and link your IBM MQ C++ program depends on your installation
and requirements. The examples that follow show typical compile and link commands for some of the
compilers using the default installation of IBM MQ on a number of platforms.

Building C++ programs on AIX
Build IBM MQ C++ programs on AIX using the XL C Enterprise Edition compiler.

Client

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

32-bit unthreaded application
xlC -o imqsputc_32 imqsput.cpp -qchars=signed -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqc23ia -limqb23ia -lmqic

32-bit threaded application
xlC_r -o imqsputc_32_r imqsput.cpp -qchars=signed -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqc23ia_r -limqb23ia_r -lmqic_r

64-bit unthreaded application
xlC -q64 -o imqsputc_64 imqsput.cpp -qchars=signed -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqc23ia -limqb23ia -lmqic

64-bit threaded application
xlC_r -q64 -o imqsputc_64_r imqsput.cpp -qchars=signed -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqc23ia_r -limqb23ia_r -lmqic_r

Developing object-oriented applications with IBM MQ 823

http://www.ibm.com/software/integration/wmq/requirements/index.html

Server

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

32-bit unthreaded application
xlC -o imqsput_32 imqsput.cpp -qchars=signed -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqs23ia -limqb23ia -lmqm

32-bit threaded application
xlC_r -o imqsput_32_r imqsput.cpp -qchars=signed -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -limqs23ia_r -limqb23ia_r -lmqm_r

64-bit unthreaded application
xlC -q64 -o imqsput_64 imqsput.cpp -qchars=signed -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqs23ia -limqb23ia -lmqm

64-bit threaded application
xlC_r -q64 -o imqsput_64_r imqsput.cpp -qchars=signed -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -limqs23ia_r -limqb23ia_r -lmqm_r

Building C++ programs on HP-UX
Build IBM MQ C++ programs on HP-UX using the aC++ or aCC compilers.

On HP-UX Itanium, IBM MQ supports only the Standard runtime. Use the aCC compiler.
v libimqi23bh.sl provides the IBM MQ C++ classes for the Standard runtime.
v For compatibility with earlier releases, a symbolic link is provided from libimqi23ah.sl to

libimqi23bh.sl.

IA64 (IPF)

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Client: IA64 (IPF)

32-bit unthreaded application
aCC -Wl,+b,: +e -D_HPUX_SOURCE -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -L/usr/lib/hpux32 -limqi23bh -lmqic

32-bit threaded application
aCC -Wl,+b,: +e -D_HPUX_SOURCE -o imqsputc_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -L/usr/lib/hpux32 -limqi23bh_r -lmqic_r -lpthread

64-bit unthreaded application
aCC +DD64 +e -D_HPUX_SOURCE -o imqsputc_64 imqsput.cpp
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -limqi23bh -lmqic

64-bit threaded application
aCC +DD64 +e -D_HPUX_SOURCE -o imqsputc_64_r imqsput.cpp
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -limqi23bh_r -lmqic_r
-lpthread

Server: IA64 (IPF)

32-bit unthreaded application
aCC -Wl,+b,: +e -D_HPUX_SOURCE -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -L/usr/lib/hpux32 -limqi23bh -lmqm

32-bit threaded application
aCC -Wl,+b,: +e -D_HPUX_SOURCE -o imqsput_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -L/usr/lib/hpux32 -limqi23bh_r -lmqm_r -lpthread

64-bit unthreaded application
aCC +DD64 +e -D_HPUX_SOURCE -o imqsput_64 imqsput.cpp
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -limqi23bh -lmqm

824 IBM MQ: Programming

64-bit threaded application
aCC +DD64 +e -D_HPUX_SOURCE -o imqsput_64_r imqsput.cpp
-I MQ_INSTALLATION_PATH/inc -L MQ_INSTALLATION_PATH/lib64 -L/usr/lib/hpux64 -limqi23bh_r -lmqm_r
-lpthread

Building C++ programs on IBM i
Build IBM MQ C++ programs on IBM i using the ILE C++ compiler.

IBM ILE C++ for IBM i is a native compiler for C++ programs. The following instructions describe how
to use this compiler to create IBM MQ C++ applications using the Hello World! IBM MQ sample program
as an example.
1. Install the ILE C++ for IBM i compiler as directed in the Read Me first! manual that accompanies the

product.
2. Ensure that the QCXXN library is in your library list.
3. Create the HELLO WORLD sample program:

a. Create a module:
CRTCPPMOD MODULE(MYLIB/IMQWRLD) +
SRCSTMF(’/QIBM/ProdData/mqm/samp/imqwrld.cpp’) +
INCDIR(’/QIBM/ProdData/mqm/inc’) DFTCHAR(*SIGNED) +
TERASPACE(*YES)

The source for the C++ sample programs can be found in /QIBM/ProdData/mqm/samp and the
include files in /QIBM/ProdData/mqm/inc.
Alternatively, the source can be found in library SRCFILE(QCPPSRC/LIB) SRCMBR(IMQWRLD).

b. Bind this with IBM MQ-supplied service programs to produce a program object:
CRTPGM PGM(MYLIB/IMQWRLD) MODULE(MYLIB/IMQWRLD) +
BNDSRVPGM(QMQM/IMQB23I4 QMQM/IMQS23I4)

To build a threaded application use the re-entrant service programs:
CRTPGM PGM(MYLIB/IMQWRLD) MODULE(MYLIB/IMQWRLD) +
BNDSRVPGM(QMQM/IMQB23I4[_R] QMQM/IMQS23I4[_R])

c. Execute the HELLO WORLD sample program, using SYSTEM.DEFAULT.LOCAL.QUEUE:
CALL PGM(MYLIB/IMQWRLD)

Building C++ programs on Linux
Build IBM MQ C++ programs on Linux using the GNU g++ compiler.

System p

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Client: System p

32-bit unthreaded application
g++ -m32 -o imqsputc_32 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqc23gl
-limqb23gl -lmqic

32-bit threaded application
g++ -m32 -o imqsputc_r32 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqc23gl_r
-limqb23gl_r -lmqic_r

64-bit unthreaded application
g++ -m64 -o imqsputc_64 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqc23gl -limqb23gl -lmqic

Developing object-oriented applications with IBM MQ 825

64-bit threaded application
g++ -m64 -o imqsputc_r64 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqc23gl_r -limqb23gl_r -lmqic_r

Server: System p

32-bit unthreaded application
g++ -m32 -o imqsput_32 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqs23gl
-limqb23gl -lmqm

32-bit threaded application
g++ -m32 -o imqsput_r32 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqs23gl_r
-limqb23gl_r -lmqm_r

64-bit unthreaded application
g++ -m64 -o imqsput_64 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqs23gl -limqb23gl -lmqm

64-bit threaded application
g++ -m64 -o imqsput_r64 imqsput.cpp -fsigned-char -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqs23gl_r -limqb23gl_r -lmqm_r

IBM Z

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Client: IBM Z

32-bit unthreaded application
g++ -m31 -fsigned-char -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqc23gl -limqb23gl -lmqic

32-bit threaded application
g++ -m31 -fsigned-char -o imqsputc_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqc23gl_r -limqb23gl_r -lmqic_r
-lpthread

64-bit unthreaded application
g++ -m64 -fsigned-char -o imqsputc_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqc23gl -limqb23gl -lmqic

64-bit threaded application
g++ -m64 -fsigned-char -o imqsputc_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqc23gl_r -limqb23gl_r -lmqic_r -lpthread

Server: IBM Z

32-bit unthreaded application
g++ -m31 -fsigned-char -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqs23gl -limqb23gl -lmqm

32-bit threaded application
g++ -m31 -fsigned-char -o imqsput_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib
-limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

826 IBM MQ: Programming

64-bit unthreaded application
g++ -m64 -fsigned-char -o imqsput_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqs23gl -limqb23gl -lmqm

64-bit threaded application
g++ -m64 -fsigned-char -o imqsput_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64
-limqs23gl_r -limqb23gl_r -lmqm_r -lpthread

System x (32-bit)

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Client: System x (32-bit)

32-bit unthreaded application
g++ -m32 -fsigned-char -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -L MQ_INSTALLATION_PATH/lib -Wl,
-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqc23gl -limqb23gl -lmqic

32-bit threaded application
g++ -m32 -fsigned-char -o imqsputc_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqc23gl_r -limqb23gl_r
-lmqic_r -lpthread

64-bit unthreaded application
g++ -m64 -fsigned-char -o imqsputc_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -limqc23gl -limqb23gl
-lmqic

64-bit threaded application
g++ -m64 -fsigned-char -o imqsputc_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -limqc23gl_r -limqb23gl_r
-lmqic_r -lpthread

Server: System x (32-bit)

32-bit unthreaded application
g++ -m32 -fsigned-char -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqs23gl -limqb23gl -lmqm

32-bit threaded application
g++ -m32 -fsigned-char -o imqsput_32_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH lib -Wl,-rpath= MQ_INSTALLATION_PATH/lib -L MQ_INSTALLATION_PATH/lib
-Wl,-rpath= MQ_INSTALLATION_PATH/lib -Wl,-rpath=/usr/lib -limqs23gl_r -limqb23gl_r
-lmqm_r -lpthread

64-bit unthreaded application
g++ -m64 -fsigned-char -o imqsput_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -limqs23gl -limqb23gl -lmqm

64-bit threaded application
g++ -m64 -fsigned-char -o imqsput_64_r imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -L MQ_INSTALLATION_PATH/lib64
-Wl,-rpath= MQ_INSTALLATION_PATH/lib64 -Wl,-rpath=/usr/lib64 -limqs23gl_r -limqb23gl_r
-lmqm_r -lpthread

Developing object-oriented applications with IBM MQ 827

Building C++ programs on Solaris
Build IBM MQ C++ programs on Solaris using the Sun ONE compiler.

SPARC

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Client: SPARC

32-bit application
CC -xarch=v8plus -mt -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -limqc23as -limqb23as
-lmqic -lsocket -lnsl -ldl

64-bit application
CC -xarch=v9 -mt -o imqsputc_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -limqc23as -limqb23as
-lmqic -lsocket -lnsl -ldl

Server: SPARC

32-bit application
CC -xarch=v8plus -mt -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -limqs23as -limqb23as
-lmqm -lsocket -lnsl -ldl

64-bit application
CC -xarch=v9 -mt -o imqsput_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -limqs23as -limqb23as
-lmqm -lsocket -lnsl -ldl

x86-64

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Client: x86-64

32-bit application
CC -xarch=386 -mt -o imqsputc_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -limqc23as -limqb23as
-lmqic -lsocket -lnsl -ldl

64-bit application
CC -xarch=amd64 -mt -o imqsputc_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -limqc23as -limqb23as
-lmqic -lsocket -lnsl -ldl

Server: x86-64

32-bit application
CC -xarch=386 -mt -o imqsput_32 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib -R MQ_INSTALLATION_PATH/lib -R/usr/lib/32 -limqs23as -limqb23as
-lmqm -lsocket -lnsl -ldl

64-bit application
CC -xarch=amd64 -mt -o imqsput_64 imqsput.cpp -I MQ_INSTALLATION_PATH/inc
-L MQ_INSTALLATION_PATH/lib64 -R MQ_INSTALLATION_PATH/lib64 -R/usr/lib/64 -limqs23as -limqb23as
-lmqm -lsocket -lnsl -ldl

828 IBM MQ: Programming

Building C++ programs on Windows
Build IBM MQ C++ programs on Windows by using the Microsoft Visual Studio C++ compiler.

Library (.lib) files and dll files for use with 32-bit applications are installed in MQ_INSTALLATION_PATH/
Tools/Lib, files for use with 64-bit applications are installed in MQ_INSTALLATION_PATH/Tools/Lib64.
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Client
cl -MD imqsput.cpp /Feimqsputc.exe imqb23vn.lib imqc23vn.lib

Server
cl -MD imqsput.cpp /Feimqsput.exe imqb23vn.lib imqs23vn.lib

C++ client libraries built by using Microsoft Visual Studio 2005 compiler

From Version 8.0.0, Fix Pack 2, IBM MQ provides C++ client libraries that are built with the Microsoft
Visual Studio 2005 C++ compiler. Applications that are built by using a release of IBM MQ earlier than
Version 8.0 can use these libraries. These libraries are provided in addition to the existing IBM MQ
Version 8.0 C++ libraries that are built with the Microsoft Visual Studio 2012 C++ compiler.

Both 32-bit and 64-bit versions of the IBM MQ C++ libraries are provided. While the 32-bit libraries are
installed under the bin\vs2005 folder, the 64-bit libraries are installed under the bin64\vs2005 folders.
Applications requiring the IBM MQ C++ libraries that are built with Microsoft Visual Studio 2005, must
prefix their PATH environment variable with bin\vs2005 or bin64\vs2005, depending on the type of
application, as shown in the following examples.
v For 32-bit applications:

SET PATH=<install folder>\bin\vs2005

v For 64-bit applications:
SET PATH=<install folder>\bin64\vs2005

Using differently named IBM MQ C++ libraries

From Version 8.0.0, Fix Pack 4, IBM MQ provides some additional C++ client libraries that are named
differently. These libraries are built with the Microsoft Visual Studio 2012 C++ compiler. These libraries
are provided in addition to the existing IBM MQ Version 8.0 C++ libraries that are built with the
Microsoft Visual Studio 2012 C++ compiler. Since these additional IBM MQ C++ libraries have different
names, you can run IBM MQ C++ applications built by using IBM MQ C++ and compiled with Microsoft
Visual Studio 2012 and Microsoft Visual Studio 2005 on the same machine.

These additional libraries are named as follows:
v imqb23vnvs2012.dll
v imqc23vnvs2012.dll
v imqs23vnvs2012.dll
v imqx23vnvs2012.dll

Both 32-bit and 64-bit versions of these libraries are provided. The 32-bit libraries are installed under the
bin folder, and the 64-bit libraries are installed under the bin64 folder. Corresponding import libraries are
installed under the Tools\lib and Tools\lib64 directories.

If your application uses imq*vs2012.lib files, you must compile it using the Microsoft Visual Studio 2012
compiler. To run IBM MQ C++ applications that are compiled with Microsoft Visual Studio 2012 and

Developing object-oriented applications with IBM MQ 829

applications that are compiled with Microsoft Visual Studio 2005 on the same machine, the PATH
environment variable must be prefixed as shown in the following examples:
v For 32-bit applications:

SET PATH=<install folder>\bin\vs2005;%PATH%

v For 64-bit applications:
SET PATH=<install folder>\bin64\vs2005;%PATH%

Related information:
Windows: changes for IBM MQ Version 8.0

Building C++ programs on z/OS Batch, RRS Batch and CICS
Build IBM MQ C++ programs on z/OS for the Batch, RRS batch or CICS environments and run the
sample programs.

You can write C++ programs for three of the environments that IBM MQ for z/OS supports:
v Batch
v RRS batch
v CICS

Compile, prelink and link

Create an z/OS application by compiling, pre-linking, and link-editing your C++ source code.

IBM MQ C++ for z/OS is implemented as z/OS DLLs for the IBM C++ for z/OS language. Using DLLs,
you concatenate the supplied definition sidedecks with the compiler output at pre-link time. This allows
the linker to check your calls to the IBM MQ C++ member functions.

Note: There are three sets of sidedecks for each of the three environments.

To build an IBM MQ for z/OS C++ application, create and run JCL. Use the following procedure:
1. If your application runs under CICS, use the CICS-supplied procedure to translate CICS commands in

your program.
In addition, for CICS applications you need to:
a. Add the SCSQLOAD library to the DFHRPL concatenation.
b. Define the CSQCAT1 CEDA group using the member IMQ4B100 in the SCSQPROC library.
c. Install CSQCAT1.

2. Compile the program to produce object code. The JCL for your compilation must include statements
that make the product data definition files available to the compiler. The data definitions are supplied
in the following IBM MQ for z/OS libraries:
v thlqual.SCSQC370
v thlqual.SCSQHPPS
Be sure to specify the /cxx compiler option.

Note: The name thlqual is the high level qualifier of the IBM MQ installation library on z/OS.
3. Pre-link the object code created in step 2, including the following definition sidedecks, which are

supplied in thlqual.SCSQDEFS:
a. imqs23dm and imqb23dm for batch
b. imqs23dr and imqb23dr for RRS batch
c. imqs23dc and imqb23dc for CICS
These are the corresponding DLLs.
a. imqs23im and imqb23im for batch

830 IBM MQ: Programming

b. imqs23ir and imqb23ir for RRS batch
c. imqs23ic and imqb23ic for CICS

4. Link-edit the object code created in step 3 on page 830, to produce a load module, and store it in your
application load library.

To run batch or RRS batch programs, include the libraries thlqual.SCSQAUTH and thlqual.SCSQLOAD
in the STEPLIB or JOBLIB data set concatenation.

To run a CICS program, first get your system administrator to define it to CICS as an IBM MQ program
and transaction. You can then run it in the usual way.

Run the sample programs

The programs are described in “C++ sample programs” on page 807.

The sample applications are supplied in source form only. The files are:

Table 98. z/OS sample program files

Sample Source program (in library
thlqual.SCSQCPPS)

JCL (in library thlqual.SCSQPROC)

HELLO WORLD imqwrld imqwrldr

SPUT imqsput imqsputr

SGET imqsget imqsgetr

To run the samples, compile and link-edit them as with any C++ program (see “Building C++ programs
on z/OS Batch, RRS Batch and CICS” on page 830). Use the supplied JCL to construct and run a batch
job. You must initially customize the JCL, by following the commentary included with it.

Building C++ programs on z/OS UNIX System Services
Build IBM MQ C++ programs on z/OS for Unix System Services.

To build an application under the UNIX System Services shell, you must give the compiler access to the
IBM MQ include files (located in thlqual.SCSQC370 and hlqual.SCSQHPPS), and link against two of the
DLL sidedecks (located in thlqual.SCSQDEFS). At runtime, the application needs access to the IBM MQ
data sets thlqual.SCSQLOAD, thlqual.SCSQAUTH, and one of the language specific data sets, such as
thlqual.SCSQANLE3 .

Compiling
1. Copy the sample into the HFS using the TSO oput command, or use FTP. The rest of this example

assumes that you have copied the sample into a directory called /u/fred/sample, and named it
imqwrld.cpp.

2. Log into the UNIX System Services shell, and change to the directory where you placed the sample.
3. Set up the C++ compiler so that it can accept the DLL sidedeck and .cpp files as input:

/u/fred/sample:> export _CXX_EXTRA_ARGS=1
/u/fred/sample:> export _CXX_CXXSUFFIX="cpp"

4. Compile and link the sample program. The following command links the program with the batch
sidedecks; the RRS batch sidedecks can be used instead. The \ character is used to split the command
over more than one line. Do not enter this character; enter the command as a single line:

3. You can link with any of the sidedecks listed in "Pre-link the object code to run your UNIX system service in any of the three
environments, “Building C++ programs on z/OS Batch, RRS Batch and CICS” on page 830

Developing object-oriented applications with IBM MQ 831

/u/fred/sample:> c++ -o imqwrld -I "//’thlqual.SCSQC370’" \
-I "//’thlqual.SCSQHPPS’" imqwrld.cpp \
"//’thlqual.SCSQDEFS(IMQS23DM)’" "//’thlqual.SCSQDEFS(IMQB23DM)’"

For more information on the TSO oput command, refer to the z/OS UNIX System Services Command
Reference.

You can also use the make utility to simplify building C++ programs. Here is a sample makefile to build
the HELLO WORLD C++ sample program. It separates the compile and link stages. Set up the
environment as in step 3 on page 831 before running make.
flags = -I "//’thlqual.SCSQC370’" -I "//’thlqual.SCSQHPPS’"
decks = "//’thlqual.SCSQDEFS(IMQS23DM)’" "//’thlqual.SCSQDEFS(IMQB23DM)’"

imqwrld: imqwrld.o
c++ -o imqwrld imqwrld.o $(decks)

imqwrld.o: imqwrld.cpp
c++ -c -o imqwrld $(flags) imqwrld.cpp

Refer to z/OS UNIX System Services Programming Tools for more information on using make.

Running
1. Log into the UNIX System Services shell, and change to the directory where you built the sample.
2. Set up the STEPLIB environment variable to include the IBM MQ data sets:

/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQLOAD
/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQAUTH
/u/fred/sample:> export STEPLIB=$STEPLIB:thlqual.SCSQANLE

3. Run the sample:
/u/fred/sample:> ./imqwrld

Using IBM MQ classes for Java
IBM MQ classes for Java enable you to use IBM MQ in a Java environment. IBM MQ classes for Java
allow a Java application to connect to IBM MQ as an IBM MQ client, or connect directly to an IBM MQ
queue manager.

Note: IBM MQ classes for Java are not supported in IMS.

IBM MQ classes for Java is one of two alternative APIs that Java applications can for use to access IBM
MQ resources. The other API is IBM MQ classes for JMS.

From IBM MQ Version 8.0, the IBM MQ classes for Java are built with Java 7.

The Java 7 runtime environment supports running earlier class file versions.

IBM MQ classes for Java encapsulate the Message Queue Interface (MQI), the native IBM MQ API and
use a similar object model to the C++ and .NET interfaces to IBM MQ.

Programmable options allow IBM MQ classes for Java to connect to IBM MQ in either of the following
ways:
v In client mode as an IBM MQ MQI client by using Transmission Control Protocol/Internet Protocol

(TCP/IP)
v In bindings mode, connecting directly to IBM MQ by using the Java Native Interface (JNI)

832 IBM MQ: Programming

Client mode connection

An IBM MQ classes for Java application can connect to any supported queue manager by using client
mode.

To connect to a queue manager in client mode, an IBM MQ classes for Java application can run on the
same system on which the queue manager is running, or on a different system. In each case, IBM MQ
classes for Java connects to the queue manager over TCP/IP.

For more information on how to write applications to use client mode connections, see “IBM MQ classes
for Java connection modes” on page 853.

Bindings mode connection

When used in bindings mode, IBM MQ classes for Java uses the Java Native Interface (JNI) to call
directly into the existing queue manager API, rather than communicating through a network. In most
environments, connecting in bindings mode provides better performance for IBM MQ classes for Java
applications than connecting in client mode, by avoiding the cost of TCP/IP communication.

Applications that use the IBM MQ classes for Java to connect in bindings mode must run on the same
system as the queue manager to which they are connecting.

The Java Runtime Environment, that is being used to run the IBM MQ classes for Java application, must
be configured to load the IBM MQ classes for Java libraries; see “IBM MQ classes for Java libraries” on
page 841 for further information.

For more information on how to write applications to use bindings mode connections, see “IBM MQ
classes for Java connection modes” on page 853.
Related information:
IBM MQ Java language interfaces
Tracing IBM MQ classes for Java applications
Java and JMS troubleshooting
Using IBM MQ classes for JMS

Why should I use IBM MQ classes for Java?
A Java application can use either IBM MQ classes for Java or IBM MQ classes for JMS to access IBM MQ
resources.

Note: Although existing applications that use the IBM MQ classes for Java continue to be fully
supported, new applications should use the IBM MQ classes for JMS. Features that have recently been
added to IBM MQ, such as asynchronous consume and automatic reconnection, are not available in the
IBM MQ classes for Java, but are available in the IBM MQ classes for JMS. For more information, see
“Why should I use IBM MQ classes for JMS?” on page 904.

Developing object-oriented applications with IBM MQ 833

Prerequisites for IBM MQ classes for Java
To use IBM MQ classes for Java, you need certain other software products.

For the latest information about the prerequisites for IBM MQ classes for Java, see the IBM MQ README
file, which is available to download from the product readmes web page.

To develop IBM MQ classes for Java applications, you need a Java Development Kit (JDK). Details of the
JDKs supported with your operating system can be found on the IBM MQ system requirements page at
http://www.ibm.com/software/integration/wmq/requirements/.

To run IBM MQ classes for Java applications, you need the following software components:
v An IBM MQ queue manager, for applications that connect to a queue manager
v A Java Runtime Environment (JRE), for each system on which you run applications. A suitable JRE is

supplied with IBM MQ.

v For IBM i, QShell, which is option 30 of the operating system

v z/OS For z/OS, UNIX and Linux System Services (USS)

If you require SSL connections to use cryptographic modules that have been FIPS 140-2 certified, you
need the IBM Java JSSE FIPS provider (IBMJSSEFIPS). Every IBM JDK and JRE at Version 1.4.2 or later
contains IBMJSSEFIPS.

You can use Internet Protocol Version 6 (IPv6) addresses in your IBM MQ classes for Java applications if
IPv6 is supported by your Java virtual machine (JVM) and the TCP/IP implementation on your operating
system.

Running IBM MQ classes for Java applications within Java EE
There are certain restrictions and design considerations that must be taken into account before using IBM
MQ classes for Java in Java EE.

IBM MQ classes for Java has restrictions when used within a Java Platform, Enterprise Edition (Java EE)
environment. There are also additional considerations that must be taken into account when designing,
implementing, and managing an IBM MQ classes for Java application that runs inside a Java EE
environment. These restrictions and considerations are outlined in the following sections.

JTA transactions restrictions

The only supported transaction manager for applications using IBM MQ classes for Java is IBM MQ
itself. Although an application under JTA control can make use IBM MQ classes for Java, any work
performed through these classes is not controlled by the JTA units of work. They instead form local units
of work separate from those managed by the application server through the JTA interfaces. In particular,
any rollback of the JTA transaction does not result in a rollback of any sent or received messages. This
restriction applies to application or bean managed transactions and to container managed transactions,
and all Java EE containers. To perform messaging work directly with IBM MQ inside application
server-coordinated transactions, IBM MQ classes for JMS must be used instead.

Thread creation

IBM MQ classes for Java creates threads internally for various operations. For example, when running in
BINDINGS mode to call directly on a local queue manager, the calls are made on a 'worker' thread
created internally by IBM MQ classes for Java. Other threads can be created internally, for example to
clear unused connections from a connection pool or to remove subscriptions for terminated
publish/subscribe applications.

834 IBM MQ: Programming

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006097
http://www.ibm.com/software/integration/wmq/requirements/index.html

Some Java EE applications (for example those running in EJB and Web containers) must not create new
threads. Instead, all work must be performed on the main application threads managed by the
application server. When applications use IBM MQ classes for Java, the application server might not be
able to distinguish between application code and the IBM MQ classes for Java code, so the threads
previously described cause the application to be non-compliant with the container specification. IBM MQ
classes for JMS does not break these Java EE specifications and so can be used instead.

Security restrictions

Security policies implemented by an application server might prevent certain operations that are
undertaken by the IBM MQ classes for Java API, such as creating and operating new threads of control
(as described in the preceding sections).

For example, application servers typically run with Java Security disabled by default, and allow it to be
enabled through some application server-specific configuration (some application servers also allow more
detailed configuration of the policies used within Java Security). When Java Security is enabled, IBM MQ
classes for Java might break the Java Security policy threading rules defined for the application server,
and the API might not be able to create all the threads that it needs in order to function. To prevent
problems with thread management, the use of IBM MQ classes for Java is not supported in environments
where Java Security is enabled.

Application isolation considerations

An intended benefit of running applications within a Java EE environment is application isolation. The
design and implementation of IBM MQ classes for Java predate the Java EE environment. IBM MQ
classes for Java can be used in a manner which does not support the concept of application isolation.
Specific examples of considerations in this area include:
v The use of static (JVM process-wide) settings within the MQEnvironment class, such as:

– the user ID and password to be used for connection identification and authentication
– the host name, port, and channel used for client connections
– SSL configuration for secured client connections

Modifying any of the MQEnvironment properties for the benefit of one application also affect other
applications using the same properties. When running in a multi-application environment such as Java
EE, each application must use its own distinct configuration through the creation of MQQueueManager
objects with a specific set of properties, rather than defaulting to the properties configured in the
process-wide MQEnvironment class.

v The MQEnvironment class introduces a number of static methods which act globally on all applications
using IBM MQ classes for Java within the same JVM process, and there is no way to override this
behavior for particular applications. Examples include:
– configuring SSL properties, such as the location of the keystore
– configuring client channel exits
– enabling or disabling diagnostic tracing
– managing the default connection pool used to optimize the use of connections to queue managers

Invoking such methods affects all applications running in the same Java EE environment.
v Connection pooling is enabled to optimize the process of making multiple connections to the same

queue manager. The default connection pool manager is process-wide, and shared by multiple
applications. Changes to connection pool configuration, such as replacing the default connection
manager for one application using the MQEnvironment.setDefaultConnectionManager() method
therefore affects other applications running in the same Java EE application server.

v SSL is configured for applications using IBM MQ classes for Java using the MQEnvironment class and
MQQueueManager object properties. It is not integrated with the managed security configuration of

Developing object-oriented applications with IBM MQ 835

the application server itself. You must ensure that you configure IBM MQ classes for Java appropriately
to provide your required level of security, and not use the application server configuration.

Bindings mode restrictions

IBM MQ and WebSphere Application Server can be installed on the same machine such that the major
versions of the queue manager and of the IBM MQ resource adapter (RA) shipped in WebSphere
Application Server are different. For instance WebSphere Application Server Version 7.0, which ships an
IBM MQ RA level of 7.0.1, can be installed on the same machine as a Version 6 queue manager.

If the queue manager and resource adapter major versions are different, bindings connections cannot be
used. Any connections from WebSphere Application Server to the queue manager using the resource
adapter must use client type connections. Bindings connections can be used if the versions are the same.

Character string conversions in IBM MQ classes for Java
From IBM MQ Version 8.0, some of the default behavior regarding character string conversion in the IBM
MQ classes for Java has changed.

Before IBM MQ Version 8.0, string conversions in IBM MQ classes for Java was done by calling the
java.nio.charset.Charset.decode(ByteBuffer) and Charset.encode(CharBuffer) methods.

Using either of these methods results in a default replacement (REPLACE) of malformed or untranslatable
data.

This behavior can obscure errors in applications, and lead to unexpected characters, for example ?, in
translated data. From IBM MQ Version 8.0, to detect such issues earlier and more effectively, the IBM MQ
classes for Java use CharsetEncoders and CharsetDecoders directly and configure the handling of
malformed and untranslatable data explicitly.

From IBM MQ Version 8.0, the default behavior is to REPORT such issues by throwing a suitable
MQException or JMSException.

Configuring

Translating from UTF-16 (the character representation used in Java) to a native character set, such as
UTF-8, is termed encoding, while translating in the opposite direction is termed decoding.

Currently, decoding takes the default behavior for CharsetDecoders, reporting errors by throwing an
exception.

One setting is used to specify a java.nio.charset.CodingErrorAction to control error handling on both
encoding and decoding. One other setting is used to control the replacement byte, or bytes, when
encoding. The default Java replacement String is used in decoding operations.

IBM MQ Classes for Java

com.ibm.mq.MQMD

Two new fields have been added:

byte[] unMappableReplacement
The byte sequence that will be written to an encoded string if an input character cannot be
translated, and you have specified REPLACE.

Default: "?".getBytes()
The default Java replacement String is used in decoding operations.

836 IBM MQ: Programming

java.nio.charset.CodingErrorAction unmappableAction
Specifies the action to be taken for untranslatable data on encoding and decoding:

Default: CodingErrorAction.REPORT;

Setting system defaults

From IBM MQ Version 8.0, the following two Java system properties are available to configure default
behavior regarding character string conversion. Note that destinations or messages override these
properties.

com.ibm.mq.cfg.jmqi.UnmappableCharacterAction
Specifies the action to be taken for untranslatable data on encoding and decoding. The value can
be REPORT, REPLACE, or IGNORE.

com.ibm.mq.cfg.jmqi.UnmappableCharacterReplacement
Sets or gets the replacement bytes to apply when a character cannot be mapped in an encoding
operation The default Java replacement string is used in decoding operations.

To avoid confusion between Java character and native byte representations, you should specify
com.ibm.mq.cfg.jmqi.UnmappableCharacterReplacement as a decimal number representing the
replacement byte in the native character set.

For example, the decimal value of ?, as a native byte, is 63 if the native character set is ASCII-based, such
as ISO-8859-1, while it is 111 if the native character set is EBCDIC.
Related concepts:
“Character string conversions in IBM MQ classes for JMS” on page 948
From IBM MQ Version 8.0, some of the default behavior regarding character string conversion in the IBM
MQ classes for JMS has changed.

Installation and configuration of IBM MQ classes for Java
This section describes the directories and files that are created when you install IBM MQ classes for Java,
and tells you how to configure IBM MQ classes for Java after installation.

What is installed for IBM MQ classes for Java
The latest version of IBM MQ classes for Java is installed with IBM MQ. You might need to override
default installation options to make sure this is done.

For more information about installing IBM MQ see:
 Installing an IBM MQ server
 Installing an IBM MQ client

z/OS

Installing the IBM MQ for z/OS product

IBM MQ classes for Java are contained in the Java archive (JAR) files, com.ibm.mq.jar, and
com.ibm.mq.jmqi.jar.

Support for standard message headers, such as Programmable Command Format (PCF), is contained in
the JAR file com.ibm.mq.headers.jar.

Support for Programmable Command Format (PCF) is contained in the JAR file com.ibm.mq.pcf.jar.

Note: It is not recommended to use the IBM MQ classes for Java within an application server. For
information about the restrictions that apply when running in this environment, see “Running IBM MQ
classes for Java applications within Java EE” on page 834. For more information, see Using WebSphere
MQ Java Interfaces in J2EE/JEE Environments.

Developing object-oriented applications with IBM MQ 837

http://www.ibm.com/support/docview.wss?uid=swg21266535
http://www.ibm.com/support/docview.wss?uid=swg21266535

Important: Apart from the two relocatable JAR files described in this topic, copying the IBM MQ classes
for Java JAR files or native libraries to other machines, or to a different location on a machine where the
IBM MQ classes for Java have been installed, is not supported. In addition to this, including the
com.ibm.mq.allclient.jar file, or the IBM MQ classes for Java, within application archives (such as
enterprise application archives, or EAR files), is not supported.

The JSON4J.jar file and com.ibm.msg.client.mqlight package are not needed by the IBM

MQ classes for Java and IBM MQ classes for JMS. From Version 8.0.0, Fix Pack 7, the following changes
are therefore made to the com.ibm.mq.allclient.jar file :
v The reference to JSON4J.jar file is removed from the class path statement within the manifest file for

the com.ibm.mq.allclient.jar file.
v The package com.ibm.msg.client.mqlight is no longer included inside the com.ibm.mq.allclient.jar

file.

Relocatable JAR files

Within an enterprise, the following files can be moved to systems that need to run IBM MQ classes for
Java applications:
v -com.ibm.mq.allclient.jar
v -com.ibm.mq.traceControl.jar

The file com.ibm.mq.allclient.jar contains the IBM MQ classes for JMS, the IBM MQ classes for Java,
and the PCF and Headers Classes. If you move this file to a new location, make sure that you take steps
to keep this new location maintained with new IBM MQ Fix Packs. Also, make sure that the use of this
file is made known to IBM Support if you are getting an interim fix.

To determine the version of the com.ibm.mq.allclient.jar file, use the command:
java -jar com.ibm.mq.allclient.jar

The following example shows some sample output from this command:
C:\Program Files\IBM\WebSphere MQ_1\java\lib>java -jar com.ibm.mq.allclient.jar
Name: Java Message Service Client
Version: 8.0.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/WebSphere MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: WebSphere MQ classes for Java Message Service
Version: 8.0.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/WebSphere MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: WebSphere MQ JMS Provider
Version: 8.0.0.0
Level: p000-L140428.1 mqjbnd=p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/WebSphere MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: Common Services for Java Platform, Standard Edition
Version: 8.0.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/WebSphere MQ_1/java/lib/com.ibm.mq.allclient.jar

The com.ibm.mq.traceControl.jar file is used to dynamically control trace for IBM MQ classes for JMS
applications.

838 IBM MQ: Programming

Installation directories for IBM MQ classes for Java:

IBM MQ classes for Java files and samples are installed in different locations according to platform. The
location of the Java Runtime Environment (JRE) that is installed with IBM MQ also varies according to
the platform.

Installation directories for IBM MQ classes for Java files

Table 99 shows where the IBM MQ classes for Java files are installed.

Table 99. IBM MQ classes for Java installation directories

Platform Directory

AIX AIX MQ_INSTALLATION_PATH/java/lib

HP-UX Linux

Solaris HP-UX, Linux, and Solaris

MQ_INSTALLATION_PATH/java/lib

IBM i
/QIBM/ProdData/mqm/java/lib

Windows Windows MQ_INSTALLATION_PATH\java\lib

z/OS z/OS MQ_INSTALLATION_PATH/mqm/V8R0M0/java /lib

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Installation directories for samples

Some sample applications, such as the Installation Verification Programs (IVPs), are supplied with IBM
MQ. Table 100 shows where the sample applications are installed. The IBM MQ classes for Java samples
are in a subdirectory called wmqjava. The PCF samples are in a subdirectory called pcf.

Table 100. Samples directories

Platform Directory

AIX AIX MQ_INSTALLATION_PATH/samp/wmqjava/

HP-UX Linux

Solaris HP-UX, Linux, and Solaris

MQ_INSTALLATION_PATH/samp/wmqjava/

IBM i
/QIBM/ProdData/mqm/java/samples

Windows Windows MQ_INSTALLATION_PATH\tools\wmqjava\

z/OS z/OS MQ_INSTALLATION_PATH/mqm/V8R0M0/java/samples

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Installation directories for JRE

The IBM MQ classes for JMS require a Java 7 (or above) Java Runtime Environment (JRE). A suitable JRE
is installed with IBM MQ. Table 101 on page 840 shows where this JRE is installed. To run Java programs
such as the provided samples, using this JRE, either explicitly invoke JRE_LOCATION/bin/java or add
JRE_LOCATION/bin to the PATH environment (or equivalent) for your platform, where JRE_LOCATION is the
directory given in Table 101 on page 840.

Developing object-oriented applications with IBM MQ 839

Table 101. JRE directories

Platform Directory

AIX AIX MQ_INSTALLATION_PATH/java/jre

HP-UX Linux Solaris HP-UX, Linux, and
Solaris

MQ_INSTALLATION_PATH/java/jre

IBM i
/QIBM/ProdData/mqm/java/jre

Windows Windows MQ_INSTALLATION_PATH\java\jre

z/OS z/OS MQ_INSTALLATION_PATH/mqm/V8R0M0/java/jre

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Environment variables relevant to IBM MQ classes for Java:

Some environment variables must be set. Specimen values for classpath are given.

For IBM MQ classes for Java, applications to run, their class path must include the appropriate IBM MQ
classes for Java directory. To run the sample applications, the class path must also include the appropriate
samples directories. This information can be provided in the Java invocation command or in the
CLASSPATH environment variable.

Important: Setting the Java option -Xbootclasspath, to include the IBM MQ classes for Java, is not
supported.

Table 102 shows the appropriate CLASSPATH setting to use on each platform to run IBM MQ classes for
Java applications, including the sample applications.

Table 102. CLASSPATH setting to run IBM MQ classes for Java applications, including the IBM MQ classes for Java
sample applications

Platform CLASSPATH setting

AIX AIX CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mq.jar:
MQ_INSTALLATION_PATH/samp/wmqjava/samples:

HP-UX Linux

Solaris HP-UX,
Linux, and Solaris

CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mq.jar:
MQ_INSTALLATION_PATH/samp/wmqjava/samples:

IBM i
CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar:
/QIBM/ProdData/mqm/java/samples/wmqjava/samples:

Windows Windows CLASSPATH= MQ_INSTALLATION_PATH\Java\lib\com.ibm.mq.jar;
MQ_INSTALLATION_PATH\tools\wmqjava\samples;

z/OS z/OS CLASSPATH= MQ_INSTALLATION_PATH/mqm/V8R0M0/java/lib/com.ibm.mq.jar:
MQ_INSTALLATION_PATH/mqm/V8R0M0/java/samples/wmqjava:
MQ_INSTALLATION_PATH/mqm/V8R0M0/java/samples/pcf

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

If you compile using the -Xlint option, you might see a message warning you that com.ibm.mq.ese.jar is
not present. You can ignore the warning. This file is only present if you have installed IBM MQ
Advanced Message Security.

The scripts provided with IBM MQ classes for JMS use the following environment variables:

840 IBM MQ: Programming

MQ_JAVA_DATA_PATH
This environment variable specifies the directory for log and trace output.

MQ_JAVA_INSTALL_PATH
This environment variable specifies the directory where IBM MQ classes for Java are installed, as
shown in IBM MQ classes for Java installation directories.

MQ_JAVA_LIB_PATH
This environment variable specifies the directory where the IBM MQ classes for Java libraries are
stored, as shown in The location of the IBM MQ classes for Java libraries for each platform. Some
scripts supplied with IBM MQ classes for Java, such as IVTRun, use this environment variable.

On Windows, all the environment variables are set automatically during installation. On any other
platform, you must set them yourself. On a UNIX system, you can use the script setjmsenv (if you are
using a 32-bit JVM) or setjmsenv64 (if you are using a 64-bit JVM) to set the environment variables. On
AIX, HP-UX, Linux, and Solaris, these scripts are in the MQ_INSTALLATION_PATH/java/bin directory.

On IBM i, the environment variable QIBM_MULTI_THREADED must be set to Y. You can

then run multithreaded applications in the same way that you run single threaded applications. See
Setting up IBM MQ with Java and JMS for more information.

IBM MQ classes for Java require a Java 7 Java Runtime Environment (JRE). For information about the
location of a suitable JRE that is installed with IBM MQ, see “Installation directories for IBM MQ classes
for Java” on page 839.

IBM MQ classes for Java libraries:

The location of the IBM MQ classes for Java libraries varies according to platform. Specify this location
when you start an application.

To specify the location of the Java Native Interface (JNI) libraries, start your application by using a java
command with the following format:
java -Djava.library.path= library_path application_name

where library_path is the path to the IBM MQ classes for Java, which include the JNI libraries. Table 103
shows the location of the IBM MQ classes for Java libraries for each platform. In this table,
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Table 103. The location of the IBM MQ classes for Java libraries for each platform

Platform Directory containing the IBM MQ classes for Java libraries

AIX MQ_INSTALLATION_PATH/java/lib (32-bit libraries)
MQ_INSTALLATION_PATH/java/lib64 (64-bit libraries)

HP-UX
Linux (
POWER, x86-64
and
zSeries s390x platforms)
Solaris (x86-64 and SPARC platforms)

MQ_INSTALLATION_PATH/java/lib (32-bit libraries)
MQ_INSTALLATION_PATH/java/lib64 (64-bit libraries)

Linux (x86 platform) MQ_INSTALLATION_PATH/java/lib

Windows MQ_INSTALLATION_PATH\Java\lib (32-bit libraries)
MQ_INSTALLATION_PATH\Java\lib64 (64-bit libraries)

z/OS z/OS MQ_INSTALLATION_PATH/mqm/V8R0M0/java/lib
(32-bit and 64-bit libraries)

Note:

Developing object-oriented applications with IBM MQ 841

1. AIX HP-UX Linux Solaris On AIX, HP-UX, Linux (Power platform), or Solaris, use
either the 32-bit libraries or the 64-bit libraries. Use the 64-bit libraries only if you are running your
application in a 64-bit Java virtual machine (JVM) on a 64-bit platform. Otherwise, use the 32-bit
libraries.

2. Windows On Windows, you can use the PATH environment variable to specify the location of the
IBM MQ classes for Java libraries instead of specifying their location on the java command.

3. To use IBM MQ classes for Java in bindings mode on IBM i, ensure that the library
QMQMJAVA is in your library list.

4. z/OS On z/OS, you can use either a 32-bit or 64-bit Java virtual machine (JVM). You do not have
to specify which libraries to use; IBM MQ classes for Java can determine for itself which JNI libraries
to load.

Related concepts:
Using IBM MQ classes for Java
Use this information to learn how to configure your system to run the sample applications to verify your
IBM MQ classes for Java installation. You can also find out how to modify the procedures to run your
own applications.

Support for OSGi with IBM MQ classes for Java:

OSGi provides a framework that supports the deployment of applications as bundles. Three OSGi
bundles are supplied as part of the IBM MQ classes for Java.

OSGi provides a general purpose, secure, and managed Java framework, which supports the deployment
of applications that come in the form of bundles. OSGi-compliant devices can download and install
bundles, and remove them when they are no longer required. The framework manages the installation
and updating of bundles in a dynamic and scalable fashion.

The IBM MQ classes for Java include the following OSGi bundles.

com.ibm.mq.osgi.java_version_number.jar
The JAR files to allow applications to use the IBM MQ classes for Java.

com.ibm.mq.osgi.allclient_version_number.jar
This JAR file allows applications to use both the IBM MQ classes for JMS and the IBM MQ
classes for Java, and also includes the code to handle PCF messages.

com.ibm.mq.osgi.allclientprereqs_version_number.jar
This JAR file provides the prerequisites for com.ibm.mq.osgi.allclient_version_number.jar.

where version_number is the version number of IBM MQ that has been installed.

The bundles are installed into the java/lib/OSGi subdirectory of your IBM MQ installation, or the
java\lib\OSGi folder on Windows.

From IBM MQ Version 8.0, use the bundles com.ibm.mq.osgi.allclient_8.0.0.0.jar, and
com.ibm.mq.osgi.allclientprereqs_8.0.0.0.jar for any new applications. Using these bundles removes
the restriction of not being able to run both IBM MQ classes for JMS and the IBM MQ classes for Java
within the same OSGi framework. All other restrictions still apply however. For versions of IBM MQ
before Version 8.0, the restriction of using either IBM MQ classes for JMS or IBM MQ classes for Java
applies.

Nine other bundles are also installed into the java/lib/OSGi sub directory of your IBM MQ installation,
or the java\lib\OSGi folder on Windows. These bundles are part of the IBM MQ classes for JMS, and
must not be loaded into an OSGi runtime environment that has the IBM MQ classes for Java bundle
loaded. If the IBM MQ classes for Java OSGi bundle is loaded into an OSGi runtime environment that

842 IBM MQ: Programming

also has the IBM MQ classes for JMS bundles loaded, errors as shown in the following example occur
when applications using either the IBM MQ classes for Java bundle or the IBM MQ classes for JMS
bundles are run:
java.lang.ClassCastException: com.ibm.mq.MQException incompatible with com.ibm.mq.MQException

The OSGi bundle for the IBM MQ classes for Java has been written to the OSGi Release 4 specification; it
does not work in an OSGi Release 3 environment.

You must set your system path or library path correctly so that the OSGi runtime environment can find
any required DLL files or shared libraries.

If you use the OSGi bundle for the IBM MQ classes for Java, channel exit classes written in Java are not
supported because of an inherent problem in loading classes in a multiple class loader environment such
as OSGi. A user bundle can be aware of the IBM MQ classes for Java bundle, but the IBM MQ classes for
Java bundle is not aware of any user bundle. As a result, the class loader used in an IBM MQ classes for
Java bundle cannot load a channel exit class that is in a user bundle.

For more information about OSGi, see the OSGi alliance website.

IBM MQ classes installation on z/OS:

On z/OS, the STEPLIB used at runtime must contain the IBM MQ SCSQAUTH and SCSQANLE libraries.

From UNIX and Linux System Services, you can add these using a line in your .profile as shown in the
following example, replacing thlqual with the high level data set qualifier that you chose when installing
IBM MQ:
export STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQANLE:$STEPLIB

In other environments, you typically need to edit the startup JCL to include SCSQAUTH on the STEPLIB
concatenation:
STEPLIB DD DSN=thlqual.SCSQAUTH,DISP=SHR

DD DSN=thlqual.SCSQANLE,DISP=SHR

The IBM MQ classes for Java configuration file:

An IBM MQ classes for Java configuration file specifies properties that are used to configure IBM MQ
classes for Java.

The format of an IBM MQ classes for Java configuration file is that of a standard Java properties file.

From IBM MQ Version 8.0.0, Fix Pack 7, a sample configuration file, mqjava.config, is

supplied in the bin subdirectory of the IBM MQ classes for Java installation directory. This file documents
all the supported properties and their default values.

Note: The sample configuration file is overwritten when the IBM MQ installation is upgraded to a future
Fix Pack. Therefore, it is recommended that you make a copy of the sample configuration file for use
with your applications.

You can choose the name and location of an IBM MQ classes for Java configuration file. When you start
your application, use a java command with the following format:
java -Dcom.ibm.msg.client.config.location=config_file_url application_name

In the command, config_file_url is a uniform resource locator (URL) that specifies the name and location
of the IBM MQ classes for Java configuration file. URLs of the following types are supported: http, file,
ftp, and jar.

Developing object-oriented applications with IBM MQ 843

http://www.osgi.org

The following example shows a java command:
java -Dcom.ibm.msg.client.config.location=file:/D:/mydir/mqjava.config MyAppClass

This command identifies the IBM MQ classes for Java configuration file as the file D:\mydir\
mqjava.config on the local Windows system.

When an application starts, IBM MQ classes for Java reads the contents of the configuration file and
stores the specified properties in an internal property store. If the java command does not identify a
configuration file, or if the configuration file cannot be found, IBM MQ classes for Java uses the default
values for all the properties. If required, you can override any property in the configuration file by
specifying it as a system property on the java command.

An IBM MQ classes for Java configuration file can be used with any of the supported transports between
an application and a queue manager or broker.

Overriding properties specified in an IBM MQ MQI client configuration file

An IBM MQ MQI client configuration file can also specify properties that are used to configure IBM MQ
classes for Java. However, properties that are specified in an IBM MQ MQI client configuration file apply
only when an application connects to a queue manager in client mode.

If required, you can override any attribute in an IBM MQ MQI client configuration file by specifying it as
a property in an IBM MQ classes for Java configuration file. To override an attribute in an IBM MQ MQI
client configuration file, use an entry with the following format in the IBM MQ classes for Java
configuration file:
com.ibm.mq.cfg.stanza.propName=propValue

The variables in the entry have the following meanings:

stanza The name of the stanza in the IBM MQ MQI client configuration file that contains the attribute.

propName
The name of the attribute as specified in the IBM MQ MQI client configuration file.

propValue
The value of the property that overrides the value of the attribute that is specified in the IBM MQ
MQI client configuration file.

Alternatively, you can override an attribute in an IBM MQ MQI client configuration file by specifying the
property as a system property on the java command. Use the preceding format to specify the property as
a system property.

Only the following attributes in an IBM MQ MQI client configuration file are relevant to IBM MQ classes
for Java. If you specify or override other attributes, it has no effect. Specifically, note that the
ChannelDefinitionFile and ChannelDefinitionDirectory in the CHANNELS stanza of the client
configuration file are not used. See “Using a client channel definition table with IBM MQ classes for
Java” on page 857 for details of how to use the CCDT with the IBM MQ classes for Java.

844 IBM MQ: Programming

Table 104. Which stanza of the client configuration file contains which attribute

Stanza Attribute

CHANNELS stanza of the client configuration file Put1DefaultAlwaysSync

CHANNELS stanza of the client configuration file PasswordProtection

ClientExitPath stanza of the client configuration file ExitsDefaultPath

ClientExitPath stanza of the client configuration file ExitsDefaultPath64

ClientExitPath stanza of the client configuration file JavaExitsClasspath

JMQI stanza of the client configuration file useMQCSPauthentication

MessageBuffer stanza of the client configuration file MaximumSize

MessageBuffer stanza of the client configuration file PurgeTime

MessageBuffer stanza of the client configuration file UpdatePercentage

TCP stanza of the client configuration file ClntRcvBufSize

TCP stanza of the client configuration file ClntSndBufSize

TCP stanza of the client configuration file Connect_Timeout

TCP stanza of the client configuration file KeepAlive

For more information on the IBM MQ MQI client configuration, see Configuring a client using a
configuration file.
Related information:
Tracing IBM MQ classes for Java applications

Java Standard Environment Trace stanza:

Use the Java Standard Environment Trace Settings stanza to configure the IBM MQ classes for Java trace
facility.

com.ibm.msg.client.commonservices.trace.outputName = traceOutputName
traceOutputName is the directory and file name to which trace output is sent.

traceOutputName defaults to a file named mqjms_ PID.trc in the current working directory where PID
is the current process ID. If a process ID is unavailable, a random number is generated and prefixed
with the letter f. To include the process ID in a file name you specify, use the string %PID%.

If you specify an alternative directory, it must exist, and you must have write permission for this
directory. If you do not have write permission, the trace output is written to System.err.

com.ibm.msg.client.commonservices.trace.include = includeList
includeList is a list of packages and classes that are traced, or the special values ALL or NONE.

Separate package or class names with a semicolon, ;. includeList defaults to ALL, and traces all
packages and classes in IBM MQ classes for Java.

Note: You can include a package but then exclude subpackages of that package. For example, if you
include package a.b and exclude package a.b.x, the trace includes everything in a.b.y and a.b.z,
but not a.b.x or a.b.x.1.

com.ibm.msg.client.commonservices.trace.exclude = excludeList
excludeList is a list of packages and classes that are not traced, or the special values ALL or NONE.

Separate package or class names with a semicolon, ;. excludeList defaults to NONE, and therefore
excludes no packages and classes in IBM MQ classes for JMS from being traced.

Note: You can exclude a package but then include subpackages of that package. For example, if you
exclude package a.b and include package a.b.x, the trace includes everything in a.b.x and a.b.x.1,
but not a.b.y or a.b.z.

Developing object-oriented applications with IBM MQ 845

Any package or class that is specified, at the same level, as both included and excluded is included.

com.ibm.msg.client.commonservices.trace.maxBytes = maxArrayBytes
maxArrayBytes is the maximum number of bytes that are traced from any byte arrays.

If maxArrayBytes is set to a positive integer, it limits the number of bytes in a byte-array that are
written out to the trace file. It truncates the byte array after writing maxArrayBytes out. Setting
maxArrayBytes reduces the size of the resulting trace file, and reduces the effect of tracing on the
performance of the application.

A value of 0 for this property means that none of the contents of any byte arrays are sent to the trace
file.

The default value is -1, which removes any limit on the number of bytes in a byte array that are sent
to the trace file.

com.ibm.msg.client.commonservices.trace.limit = maxTraceBytes
maxTraceBytes is the maximum number of bytes that are written to a trace output file.

maxTraceBytes works with traceCycles. If the number of bytes of trace written is near to the limit,
the file is closed, and a new trace output file is started.

A value of 0 means that a trace output file has zero length. The default value is -1, which means that
the amount of data to be written to a trace output file is unlimited.

com.ibm.msg.client.commonservices.trace.count = traceCycles
traceCycles is the number of trace output files to cycle through.

If the current trace output file reaches the limit specified by maxTraceBytes, the file is closed. Further
trace output is written to the next trace output file in sequence. Each trace output file is distinguished
by a numeric suffix appended to the file name. The current or most recent trace output file is
mqjms.trc.0, the next most recent trace output file is mqjms.trc.1. Older trace files follow the same
numbering pattern up to the limit.

The default value of traceCycles is 1. If traceCycles is 1, when the current trace output file reaches
its maximum size, the file is closed and deleted. A new trace output file with the same name is
started. Therefore, only one trace output file exists at a time.

com.ibm.msg.client.commonservices.trace.parameter = traceParameters
traceParameters controls whether method parameters and return values are included in the trace.

traceParameters defaults to TRUE. If traceParameters is set to FALSE, only method signatures are
traced.

com.ibm.msg.client.commonservices.trace.startup = startup
There is an initialization phase of IBM MQ classes for Java during which resources are allocated. The
main trace facility is initialized during the resource allocation phase.

If startup is set to TRUE, startup trace is used. Trace information is produced immediately and
includes the setup of all components, including the trace facility itself. Startup trace information can
be used to diagnose configuration problems. Startup trace information is always written to
System.err.

startup defaults to FALSE.

startup is checked before initialization is complete. For this reason, only specify the property on the
command line as a Java system property. Do not specify it in the IBM MQ classes for Java
configuration file.

com.ibm.msg.client.commonservices.trace.compress = compressedTrace
Set compressedTrace to TRUE to compress trace output.

The default value of compressedTrace is FALSE.

846 IBM MQ: Programming

If compressedTrace is set to TRUE, trace output is compressed. The default trace output file name has
the extension .trz. If compression is set to FALSE, the default value, the file has the extension .trc to
indicate it is uncompressed. However if the file name for the trace output has been specified in
traceOutputName that name is used instead; no suffix is applied to the file.

Compressed trace output is smaller than uncompressed. Because there is less I/O, it can be written
out faster than uncompressed trace. Compressed tracing has less effect on the performance of IBM
MQ classes for Java than uncompressed tracing.

If maxTraceBytes and traceCycles are set, multiple compressed trace files are created in place of
multiple flat files.

If IBM MQ classes for Java ends in an uncontrolled manner, a compressed trace file might not be
valid. For this reason, trace compression must only be used when IBM MQ classes for Java closes
down in a controlled manner. Only use trace compression if the problems being investigated do not
cause the JVM itself to stop unexpectedly. Do not use trace compression when diagnosing problems
that can result in System.Halt() shutdowns or abnormal, uncontrolled JVM terminations.

com.ibm.msg.client.commonservices.trace.level = traceLevel
traceLevel specifies a filtering level for the trace. The defined trace levels are as follows:

TRACE_NONE 0

TRACE_EXCEPTION 1

TRACE_WARNING 3

TRACE_INFO 6

TRACE_ENTRYEXIT 8

TRACE_DATA 9

TRACE_ALL Integer.MAX_VALUE

Each trace level includes all lower levels. For example, if trace level is set at TRACE_INFO, then any
trace point with a defined level of TRACE_EXCEPTION, TRACE_WARNING, or TRACE_INFO is written to the
trace. All other trace points are excluded.

com.ibm.msg.client.commonservices.trace.standalone = standaloneTrace

standaloneTrace controls whether the IBM MQ classes for Java client tracing service is used in a
WebSphere Application Server environment.

If standaloneTrace is set to TRUE, the IBM MQ classes for Java client tracing properties are used to
determine the trace configuration.

If standaloneTrace is set to FALSE, and the IBM MQ classes for Java client is running in an
WebSphere Application Server container, the WebSphere Application Server trace service is used. The
trace information that is generated depends upon the trace settings of the application server.

The default value of standaloneTrace is FALSE.

Developing object-oriented applications with IBM MQ 847

IBM MQ classes for Java and software management tools:

Software management tools such as Apache Maven can be used with the IBM MQ classes for Java.

Many large development organizations use these tools to centrally manage repositories of third-party
libraries.

The IBM MQ classes for Java are composed of a number of JAR files. When you are developing Java
language applications by using this API, an installation of either an IBM MQ Server, IBM MQ Client, or
IBM MQ Client SupportPac is required on the machine where the application is being developed.

If you want to use a software management tool and add the JAR files that make up the IBM MQ classes
for Java to a centrally managed repository, the following points must be observed:
v A repository or container must be made available only to developers within your organization. Any

distribution outside of the organization is not permitted.
v The repository needs to contain a complete and consistent set of JAR files from a single IBM MQ

release or Fix Pack.
v You are responsible for updating the repository with any maintenance provided by IBM Support.

For IBM MQ Version 8.0, the com.ibm.mq.allclient.jar JAR file needs to be installed into the repository.

Running IBM MQ classes for Java applications under the Java Security Manager
IBM MQ classes for Java can run with the Java Security Manager enabled. To successfully run
applications with the Security Manager enabled, you must configure your JVM with a suitable policy
definition file.

The simplest way to do this is to change the policy file supplied with the JRE. On most systems this file
is stored in the path lib/security/java.policy, relative to your JRE directory. You can edit policy files
using your preferred editor or the policytool program supplied with your JRE.

You must give authority to the com.ibm.mq.jmqi.jar file so that it can:
v Create sockets (in client mode)
v Load the native library (in bindings mode)
v Read various properties from the environment

The system property os.name must be available to the IBM MQ classes for Java when running under the
Java Security Manager.

An IBM MQ queue manager can send notifications to connected clients requesting a controlled closure of
conversations (connection handles), for example when the queue manager is being quiesced. If a thread
within a Java client receives one of these notifications at the same time as another thread within the client
requests a new conversation, a deadlock can occur as both threads need access to the internal
"connectionsLock" on the RemoteConnectionSpecification object.

From IBM MQ Version 8.0.0, Fix Pack 9 and with APAR IT22127, the deadlock within the

IBM MQ Java client is fixed. If your Java application uses the Java Security Manager, you must add the
following permission to the java.security.policy file used by the application, otherwise, exceptions will
be thrown to the application:
permission java.lang.RuntimePermission "modifyThread";

This RuntimePermission is required by the client as part of managing the assignment and closure of
multiplexed conversations over TCP/IP connections to queue managers.

848 IBM MQ: Programming

http://www.ibm.com/support/docview.wss?uid=swg1IT22127

Example policy file entry

Here is an example of a policy file entry that allows IBM MQ classes for Java to run successfully under
the default security manager. Replace the string MQ_INSTALLATION_PATH in this example with the location
where IBM MQ classes for Java are installed on your system.
grant codeBase "file: MQ_INSTALLATION_PATH/java/lib/*" {
//We need access to these properties, mainly for tracing
permission java.util.PropertyPermission "user.name","read";
permission java.util.PropertyPermission "os.name","read";
permission java.util.PropertyPermission "user.dir","read";
permission java.util.PropertyPermission "line.separator","read";
permission java.util.PropertyPermission "path.separator","read";
permission java.util.PropertyPermission "file.separator","read";
permission java.util.PropertyPermission "com.ibm.msg.client.commonservices.log.*","read";
permission java.util.PropertyPermission "com.ibm.msg.client.commonservices.trace.*","read";
permission java.util.PropertyPermission "Diagnostics.Java.Errors.Destination.Filename","read";
permission java.util.PropertyPermission "com.ibm.mq.commonservices","read";
permission java.util.PropertyPermission "com.ibm.mq.cfg.*","read";

//Tracing - we need the ability to control java.util.logging
permission java.util.logging.LoggingPermission "control";
// And access to create the trace file and read the log file - assumed to be in the current directory
permission java.io.FilePermission "*","read,write";

// We’d like to set up an mBean to control trace
permission javax.management.MBeanServerPermission "createMBeanServer";
permission javax.management.MBeanPermission "*","*";

// We need to be able to read manifests etc from the jar files in the installation directory
permission java.io.FilePermission "MQ_INSTALLATION_PATH/java/lib/-","read";

//Required if mqclient.ini/mqs.ini configuration files are used
permission java.io.FilePermission "MQ_DATA_DIRECTORY/mqclient.ini","read";
permission java.io.FilePermission "MQ_DATA_DIRECTORY/mqs.ini","read";

//For the client transport type.
permission java.net.SocketPermission "*","connect,resolve";

//For the bindings transport type.
permission java.lang.RuntimePermission "loadLibrary.*";

//For applications that use CCDT tables (access to the CCDT AMQCLCHL.TAB)
permission java.io.FilePermission "MQ_DATA_DIRECTORY/qmgrs/QM_NAME/@ipcc/AMQCLCHL.TAB","read";

//For applications that use User Exits
permission java.io.FilePermission "MQ_DATA_DIRECTORY/exits/*","read";
permission java.io.FilePermission "MQ_DATA_DIRECTORY/exits64/*","read";
permission java.lang.RuntimePermission "createClassLoader";

//Required for the z/OS platform
permission java.util.PropertyPermission "com.ibm.vm.bitmode","read";

// Used by the internal ConnectionFactory implementation
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

// Used for controlled class loading
permission java.lang.RuntimePermission "setContextClassLoader";

// Used to default the Application name in Client mode connections
permission java.util.PropertyPermission "sun.java.command","read";

// Used by the IBM JSSE classes
permission java.util.PropertyPermission "com.ibm.crypto.provider.AESNITrace","read";

//Required to determine if an IBM Java Runtime is running in FIPS mode,
//and to modify the property values status as required.

Developing object-oriented applications with IBM MQ 849

permission java.util.PropertyPermission "com.ibm.jsse2.usefipsprovider","read,write";
permission java.util.PropertyPermission "com.ibm.jsse2.JSSEFIPS","read,write";
//Required if an IBM FIPS provider is to be used for SSL communication.
permission java.security.SecurityPermission "insertProvider.IBMJCEFIPS";

// Required for non-IBM Java Runtimes that establish secure client
// transport mode connections using mutual TLS authentication
permission java.util.PropertyPermission "javax.net.ssl.keyStore","read";
permission java.util.PropertyPermission "javax.net.ssl.keyStorePassword","read";
};

// Required for Java applications that use the Java Security Manager permission
java.lang.RuntimePermission "modifyThread";

This example of a policy file enables the IBM MQ classes for Java to work correctly under the security
manager, but you might still need to enable your own code to run correctly before your applications
work.

The sample code shipped with IBM MQ classes for Java has not been specifically enabled for use with
the security manager; however the IVT tests run with this policy file and the default security manager in
place.

Running IBM MQ classes for Java applications under CICS Transaction Server
An IBM MQ classes for Java application can be run as a transaction under CICS Transaction Server.

To run an IBM MQ classes for Java application as a transaction under CICS Transaction Server for z/OS,
perform the following steps:
1. Define the application and transaction to CICS by using the supplied CEDA transaction.

2. Ensure that the IBM MQ CICS adapter is installed in your CICS system. z/OS (See Using IBM MQ
with CICS for details.)

3. Ensure that the JVM environment specified in CICS includes the appropriate CLASSPATH and
LIBPATH entries.

4. Initiate the transaction by using any of your normal processes.

For more information on running CICS Java transactions, refer to your CICS system documentation.

Using IBM MQ classes for Java
Use this information to learn how to configure your system to run the sample applications to verify your
IBM MQ classes for Java installation. You can also find out how to modify the procedures to run your
own applications.

The procedures depend on the connection option that you want to use. Follow the instructions in the
section that is appropriate for your requirements.

Remember to check the IBM MQ product readme file for the latest information, or for more specific
information about your environment. The latest version of the product readme file is available on the
product readmes web page.

Before attempting to run an IBM MQ classes for Java application in bindings mode, make sure that you
have configured IBM MQ as described in Configuring.

850 IBM MQ: Programming

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006097

Configuring your queue manager to accept client connections from IBM MQ
classes for Java
To configure your queue manager to accept incoming connection requests from clients, define and permit
use of a server connection channel and start a listener program.

See “Preparing and running the sample programs” on page 485 for details.

Verifying your IBM MQ classes for Java installation with the sample application
An installation verification program, MQIVP, is supplied with IBM MQ classes for Java. You can use this
program to test all the connection modes of IBM MQ classes for Java.

The program prompts for a number of choices and other data to determine which connection mode you
want to verify. Use the following procedure to verify your installation:
1. If you are going to run the program in client mode, configure your queue manager as described in

“Preparing and running the sample programs” on page 485 noting that the queue to be used is
SYSTEM.DEFAULT.LOCAL.QUEUE.

2. If you are going to run the program in client mode, see also “Using IBM MQ classes for Java” on
page 832.
Perform the remaining steps of this procedure on the system on which you are going to run the
program.

3. Make sure that you have updated your CLASSPATH environment variable according to the
instructions in “Environment variables relevant to IBM MQ classes for Java” on page 840.

4. Change Directory to MQ_INSTALLATION_PATH/mqm/java/samples/wmqjava, where
MQ_INSTALLATION_PATH is the path to your IBM MQ installation. Then at the command prompt,
enter:
java -Djava.library.path= library_path MQIVP

where library_path is the path to the IBM MQ classes for Java libraries (see “IBM MQ classes for Java
libraries” on page 841).
At the prompt marked (1):
v To use a TCP/IP connection, enter an IBM MQ server host name.
v To use native connection (bindings mode), leave the field blank (do not enter a name).

The program tries to:
v 1. Connect to the queue manager
v 2. Open the queue SYSTEM.DEFAULT.LOCAL.QUEUE, put a message on the queue, get a message

from the queue, and then close the queue
v 3. Disconnect from the queue manager
v 4. Return a message if the operations are successful

Here is an example of the prompts and responses you might see. The actual prompts and your responses
depend on your IBM MQ network.
Please enter the IP address of the MQ server : ipaddress(1)

Please enter the port to connect to : (1414) (2)

Please enter the server connection channel name : channelname (2)

Please enter the queue manager name : qmname
Success: Connected to queue manager.
Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Disconnected from queue manager

Developing object-oriented applications with IBM MQ 851

Tests complete -
SUCCESS: This MQ Transport is functioning correctly.
Press Enter to continue ...

Note:

1. z/OS On z/OS, leave the field blank at prompt marked (1).
2. If you choose server connection, you do not see the prompts marked (2).

3. On IBM i, you can only issue the java MQIVP command from QShell. Alternatively, you
can run the application by using the CL command RUNJVA CLASS(MQIVP).

Solving IBM MQ classes for Java problems
Initially, run the installation verification program. You might also have to use the trace facility.

If a program does not complete successfully, run the installation verification program, and follow the
advice given in the diagnostic messages. This program is described in “Verifying your IBM MQ classes
for Java installation with the sample application” on page 851.

If the problems continue and you need to contact the IBM service team, you might be asked to turn on
the trace facility. Do this as shown in the following example.

To trace the MQIVP program:
v Create a com.ibm.mq.commonservices properties file (see Using com.ibm.mq.commonservices.
v Enter the following command:

java -Dcom.ibm.mq.commonservices=commonservices_properties_file java
-Djava.library.path= library_path MQIVP -trace

where:
v commonservices_properties_file is the path (including the filename) to the com.ibm.mq.commonservices

properties file.
v library_path is the path to the IBM MQ classes for Java libraries (see“IBM MQ classes for Java libraries”

on page 841).

For more information about how to use trace, see Tracing IBM MQ classes for Java applications.

Writing IBM MQ classes for Java applications
This collection of topics provides information to assist with writing Java applications to interact with IBM
MQ systems.

To use IBM MQ classes for Java to access IBM MQ queues, you write Java applications that contain calls
that put messages onto, and get messages from, IBM MQ queues. For details of individual classes, see
IBM MQ classes for Java .

The IBM MQ classes for Java interface

The procedural IBM MQ application programming interface uses verbs, which act on objects. The Java
programming interface uses objects, which you act upon by calling methods.

The procedural IBM MQ application programming interface is built around verbs such as these:
MQBACK, MQBEGIN, MQCLOSE, MQCONN, MQDISC,
MQGET, MQINQ, MQOPEN, MQPUT, MQSET, MQSUB

These verbs all take, as a parameter, a handle to the IBM MQ object on which they are to operate. Your
program consists of a set of IBM MQ objects, which you act upon by calling methods on those objects.

852 IBM MQ: Programming

When you use the procedural interface, you disconnect from a queue manager by using the call
MQDISC(Hconn, CompCode, Reason), where Hconn is a handle to the queue manager.

In the Java interface, the queue manager is represented by an object of class MQQueueManager. You
disconnect from the queue manager by calling the disconnect() method on that class.
// declare an object of type queue manager
MQQueueManager queueManager=new MQQueueManager();
...
// do something...
...
// disconnect from the queue manager
queueManager.disconnect();

IBM MQ classes for Java connection modes
The way you program for IBM MQ classes for Java has some dependencies on the connection modes you
want to use.

If you use client connections, there are a number of differences from the IBM MQ MQI client but it is
conceptually similar. If you use bindings mode you can use fastpath bindings and can issue the
MQBEGIN command. You specify which mode to use by setting variables in the MQEnvironment class.

IBM MQ classes for Java client connections:

When IBM MQ classes for Java is used as a client, it is like the IBM MQ MQI client, but has a number of
differences.

If you are programming for IBM MQ classes for Java for use as a client, be aware of the following
differences:
v It supports only TCP/IP.
v It does not read any IBM MQ environment variables at startup.
v Information that would be stored in a channel definition and in environment variables can be stored in

a class called Environment. Alternatively, this information can be passed as parameters when the
connection is made.

v Error and exception conditions are written to a log specified in the MQException class. The default
error destination is the Java console.

v Only the following attributes in an IBM MQ client configuration file are relevant to IBM MQ classes for
Java. If you specify other attributes, they are ineffective.

Stanza Attribute

ClientExitPath stanza of the client configuration file ExitsDefaultPath

ClientExitPath stanza of the client configuration file ExitsDefaultPath64

ClientExitPath stanza of the client configuration file JavaExitsClasspath

MessageBuffer stanza of the client configuration file MaximumSize

MessageBuffer stanza of the client configuration file PurgeTime

MessageBuffer stanza of the client configuration file UpdatePercentage

TCP stanza of the client configuration file ClntRcvBufSize

TCP stanza of the client configuration file ClntSndBufSize

TCP stanza of the client configuration file Connect_Timeout

TCP stanza of the client configuration file KeepAlive

Developing object-oriented applications with IBM MQ 853

v If connecting to a queue manager that requires character data to be converted, then the V7 Java client
is now capable of doing the conversion if queue manager is unable to do so. The client JVM must
support the conversion between the CCSID of the client and that of the queue manager.

v Automatic client reconnect is not supported by IBM MQ classes for Java.

When used in client mode, IBM MQ classes for Java does not support the MQBEGIN call.

IBM MQ classes for Java bindings mode:

The bindings mode of IBM MQ classes for Java differs from the client mode in three main ways.

When used in bindings mode, IBM MQ classes for Java uses the Java Native Interface (JNI) to call
directly into the existing queue manager API, rather than communicating through a network.

By default, applications that use the IBM MQ classes for Java in bindings mode connect to a queue
manager using the ConnectOption, MQCNO_STANDARD_BINDINGS.

The IBM MQ classes for Java support the following ConnectOptions:
v MQCNO_FASTPATH_BINDING
v MQCNO_STANDARD_BINDING
v MQCNO_SHARED_BINDING
v MQCNO_ISOLATED_BINDING

For further information on ConnectOptions, see “Connecting to a queue manager using the MQCONNX
call” on page 95.

Bindings mode supports the MQBEGIN call to initiate global units of work that are coordinated by the
queue manager, on all platforms apart from IBM MQ for IBM i and IBM MQ for z/OS.

Most of the parameters provided by the MQEnvironment class are not relevant to bindings mode and are
ignored.

Defining which IBM MQ classes for Java connection to use:

The type of connection to use is determined by the setting of variables in the MQEnvironment class.

Two variables are used:

MQEnvironment.properties
The connection type is determined by the value associated with the key name
CMQC.TRANSPORT_PROPERTY. Possible values are as follows:

CMQC.TRANSPORT_MQSERIES_BINDINGS
Connect in bindings mode

CMQC.TRANSPORT_MQSERIES_CLIENT
Connect in client mode

CMQC.TRANSPORT_MQSERIES
Connection mode is determined by the value of the hostname property

MQEnvironment.hostname
Set the value of this variable as follows:
v For client connections, set the value of this variable to the host name of the IBM MQ server to

which you want to connect
v For bindings mode, do not set this variable, or set it to null

854 IBM MQ: Programming

Operations on queue managers
This collection of topics describes how to connect to, and disconnect from, a queue manager using IBM
MQ classes for Java.

Setting up the IBM MQ environment for IBM MQ classes for Java:

For an application to connect to a queue manager in client mode, the application must specify the
channel name, host name, and port number.

Note: The information in this topic is relevant only if your application connects to a queue manager in
client mode. It is not relevant if it connects in bindings mode. See: “Connection modes for IBM MQ
classes for JMS” on page 930

You can specify the channel name, host name, and port number in one of two ways: either as fields in the
MQEnvironment class or as properties of the MQQueueManager object.

If you set fields in the MQEnvironment class, they apply to your whole application, except where they
are overridden by a properties hash table. To specify the channel name and host name in
MQEnvironment, use the following code:
MQEnvironment.hostname = "host.domain.com";
MQEnvironment.channel = "java.client.channel";

This is equivalent to setting an MQSERVER environment variable:
"java.client.channel/TCP/host.domain.com".

By default, the Java clients attempt to connect to an IBM MQ listener at port 1414. To specify a different
port, use the following code:
MQEnvironment.port = nnnn;

where nnnn is the required port number

If you pass properties to a queue manager object at its creation, they apply only to that queue manager.
Create entries in a Hashtable object with keys of hostname, channel, and, optionally, port, and with
appropriate values. To use the default port, 1414, you can omit the port entry. Create the
MQQueueManager object by using a constructor that accepts the properties hash table.

Identifying a connection to the queue manager by setting an application name

An application can set a name that identifies its connection to the queue manager. This application name
is shown by the DISPLAY CONN MQSC/PCF command (where the field is called APPLTAG) or in the IBM MQ
Explorer Application Connections display (where the field is called App name).

Application names are limited to 28 characters and longer names are truncated to fit. If an application
name is not specified, a default is provided. The default name is based on the invoking (main) class, but
if this information is not available, the text WebSphere MQ Client for Java is used.

If the name of the invoking class is used, it is adjusted to fit by removing leading package names, if
necessary. For example, if the invoking class is com.example.MainApp, the full name is used, but if the
invoking class is com.example.dictionaryAndThesaurus.multilingual.mainApp, the name
multilingual.mainApp is used, because it is the longest combination of class name and rightmost package
name that fits into the available length.

If the class name itself is more than 28 characters long, it is truncated to fit. For example,
com.example.mainApplicationForSecondTestCase becomes mainApplicationForSecondTest.

Developing object-oriented applications with IBM MQ 855

To set an application name in the MQEnvironment class, add the name to the MQEnvironment.properties
hash table, with a key of MQConstants.APPNAME_PROPERTY, by using the following code:
MQEnvironment.properties.put(MQConstants.APPNAME_PROPERTY, "my_application_name");

To set an application name in the properties hash table that is passed to the MQQueueManager
constructor, add the name to the properties hash table with a key of MQConstants.APPNAME_PROPERTY.

Overriding properties specified in an IBM MQ client configuration file

An IBM MQ client configuration file can also specify properties that are used to configure IBM MQ
classes for Java. However, properties specified in an IBM MQ MQI client configuration file apply only
when an application connects to a queue manager in client mode.

If required, you can override any attribute in an IBM MQ configuration file in any of the following ways.
The options are shown in order of precedence.
v Set a Java system property for the configuration property.
v Set the property in the MQEnvironment.properties map.
v On Java5 and later releases, set a system environment variable.

Only the following attributes in an IBM MQ client configuration file are relevant to IBM MQ classes for
Java. If you specify or override other attributes, it has no effect.

Stanza Attribute

ClientExitPath stanza of the client configuration file ExitsDefaultPath

ClientExitPath stanza of the client configuration file ExitsDefaultPath64

ClientExitPath stanza of the client configuration file JavaExitsClasspath

MessageBuffer stanza of the client configuration file MaximumSize

MessageBuffer stanza of the client configuration file PurgeTime

MessageBuffer stanza of the client configuration file UpdatePercentage

TCP stanza of the client configuration file ClntRcvBufSize

TCP stanza of the client configuration file ClntSndBufSize

TCP stanza of the client configuration file Connect_Timeout

TCP stanza of the client configuration file KeepAlive

Connecting to a queue manager in IBM MQ classes for Java:

Connect to a queue manager by creating a new instance of the MQQueueManager class. Disconnect from
a queue manager by calling the disconnect() method.

You are now ready to connect to a queue manager by creating a new instance of the MQQueueManager
class:
MQQueueManager queueManager = new MQQueueManager("qMgrName");

To disconnect from a queue manager, call the disconnect() method on the queue manager:
queueManager.disconnect();

If you call the disconnect method, all open queues and processes that you have accessed through that
queue manager are closed. However, it is good programming practice to close these resources explicitly
when you finish using them. To do this, use the close() method on the relevant objects.

856 IBM MQ: Programming

The commit() and backout() methods on a queue manager are equivalent to the MQCMIT and MQBACK
calls that are used with the procedural interface.

Using a client channel definition table with IBM MQ classes for Java:

An IBM MQ classes for Java client application can use client connection channel definitions stored in a
client channel definition table (CCDT).

As an alternative to creating a client connection channel definition by setting certain fields and
environment properties in the MQEnvironment class or passing them to an MQQueueManager in a
properties hash table, an IBM MQ classes for Java client application can use client connection channel
definitions that are stored in a client channel definition table. These definitions are created by IBM MQ
Script (MQSC) commands or IBM MQ Programmable Command Format (PCF) commands, or using the
MQ Explorer .

When the application creates an MQQueueManager object, the IBM MQ classes for Java client searches
the client channel definition table for a suitable client connection channel definition, and uses the channel
definition to start an MQI channel. For more information about client channel definition tables and how
to construct one, see Client channel definition table.

To use a client channel definition table, an application must first create a URL object. The URL object
encapsulates a uniform resource locator (URL) that identifies the name and location of the file containing
the client channel definition table and specifies how the file can be accessed.

For example, if the file ccdt1.tab contains a client channel definition table and is stored on the same
system on which the application is running, the application can create a URL object in the following way:
java.net.URL chanTab1 = new URL("file:///home/admdata/ccdt1.tab");

As another example, suppose the file ccdt2.tab contains a client channel definition table and is stored on
a system that is different from the one on which the application is running. If the file can be accessed
using the FTP protocol, the application can create a URL object in the following way:
java.net.URL chanTab2 = new URL("ftp://ftp.server/admdata/ccdt2.tab");

After the application has created a URL object, the application can create an MQQueueManager object
using one of the constructors that takes a URL object as a parameter. Here is an example:
MQQueueManager mars = new MQQueueManager("MARS", chanTab2);

This statement causes the IBM MQ classes for Java client to access the client channel definition table
identified by the URL object chanTab2, search the table for a suitable client connection channel definition,
and then use the channel definition to start an MQI channel to the queue manager called MARS.

Note the following points that apply if an application uses a client channel definition table:
v When the application creates an MQQueueManager object using a constructor that takes a URL object

as a parameter, no channel name must be set in the MQEnvironment class, either as a field or as an
environment property. If a channel name is set, the IBM MQ classes for Java client throws an
MQException. The field or environment property specifying the channel name is considered to be set if
its value is anything other than null, an empty string, or a string containing all blank characters.

v The queueManagerName parameter on the MQQueueManager constructor can have one of the following
values:
– The name of a queue manager
– An asterisk (*) followed by the name of a queue manager group
– An asterisk (*)
– Null, an empty string, or a string containing all blank characters

Developing object-oriented applications with IBM MQ 857

These are the same values that can be used for the QMgrName parameter on an MQCONN call issued by
a client application that is using Message Queue Interface (MQI). For more information about the
meaning of these values, see“The Message Queue Interface overview” on page 76.
If your application uses connection pooling, see“Controlling the default connection pool in IBM MQ
classes for Java” on page 879.

v When the IBM MQ classes for Java client finds a suitable client connection channel definition in the
client channel definition table, it uses only the information extracted from this channel definition to
start an MQI channel. Any channel related fields or environment properties that the application might
have set in the MQEnvironment class are ignored.
In particular, note the following points if you are using Secure Sockets Layer (SSL):
– An MQI channel uses SSL only if the channel definition extracted from the client channel definition

table specifies the name of a CipherSpec supported by the IBM MQ classes for Java client.
– A client channel definition table also contains information about the location of Lightweight

Directory Access Protocol (LDAP) servers that hold certificate revocation lists (CRLs). The IBM MQ
classes for Java client uses only this information to access LDAP servers that hold CRLs.

– A client channel definition table can also contain the location of an OCSP responder. IBM MQ
classes for Java cannot use the OCSP information in a client channel definition table file. However,
you can configure OCSP as described in the section Using Online Certificate Protocol

For more information about using SSL with a client channel definition table, see Specifying that an
MQI channel uses SSL.
Note also the following points if you are using channel exits:
– An MQI channel uses the channel exits and associated user data specified by the channel definition

extracted from the client channel definition table in preference to channel exits and data specified
using other methods.

– A channel definition extracted from a client channel definition table can specify channel exits that
are written in Java, C, or C++. For more information about how to write a channel exit in Java ,
see“Creating a channel exit in IBM MQ classes for Java” on page 872. For more information about
how to write a channel exit in other languages, see “Using channel exits not written in Java with
IBM MQ classes for Java” on page 876.

Specifying a range of ports for IBM MQ classes for Java client connections:

You can specify a port, or a range of ports, that an application can bind to in either of two ways.

When an IBM MQ classes for Java application attempts to connect to an IBM MQ queue manager in
client mode, a firewall might allow only those connections that originate from specified ports or range of
ports. In this situation, you can specify a port, or a range of ports, that the application can bind to. You
can specify the port(s) in the following ways:
v You can set the localAddressSetting field in the MQEnvironment class. Here is an example:

MQEnvironment.localAddressSetting = "192.0.2.0(2000,3000)";

v You can set the environment property CMQC.LOCAL_ADDRESS_PROPERTY. Here is an example:
(MQEnvironment.properties).put(CMQC.LOCAL_ADDRESS_PROPERTY,

"192.0.2.0(2000,3000)");

v When you can construct the MQQueueManager object, you can pass a properties hashtable containing
a LOCAL_ADDRESS_PROPERTY with the value "192.0.2.0(2000,3000)"

In each of these examples, when the application later connects to a queue manager, the application binds
to a local IP address and port number in the range 192.0.2.0(2000) to 192.0.2.0(3000).

In a system with more than one network interface, you can also use the localAddressSetting field, or the
environment property CMQC.LOCAL_ADDRESS_PROPERTY, to specify which network interface must be
used for a connection.

858 IBM MQ: Programming

Connection errors might occur if you restrict the range of ports. If an error occurs, an MQException is
thrown containing the IBM MQ reason code MQRC_Q_MGR_NOT_AVAILABLE and the following
message:
Socket connection attempt refused due to LOCAL_ADDRESS_PROPERTY restrictions

An error might occur if all the ports in the specified range are in use, or if the specified IP address, host
name, or port number is not valid (a negative port number, for example).

Accessing queues, topics, and processes in IBM MQ classes for Java
To access queues, topics, and processes, use methods of the MQQueueManager class. The MQOD (object
descriptor structure) is collapsed into the parameters of these methods.

Queues

To open a queue you can use the accessQueue method of the MQQueueManager class. For example, on a
queue manager called queueManager, use the following code:
MQQueue queue = queueManager.accessQueue("qName",CMQC.MQOO_OUTPUT);

The accessQueue method returns a new object of class MQQueue.

When you have finished using the queue, use the close() method to close it, as in the following example:
queue.close();

You can also create a queue by using the MQQueue constructor. The parameters are exactly the same as
for the accessQueue method, with the addition of a queue manager parameter. For example:
MQQueue queue = new MQQueue(queueManager,

"qName",
CMQC.MQOO_OUTPUT,
"qMgrName",
"dynamicQName",
"altUserID");

You can specify a number of options when you create queues. For details of these, see
Class.com.ibm.mq.MQQueue. Constructing a queue object in this way enables you to write your own
subclasses of MQQueue.

Topics

Similarly, you can open a topic using the accessTopic method of the MQQueueManager class. For
example, on a queue manager called queueManager, use the following code to create a subscriber and
publisher:
MQTopic subscriber =

queueManager.accessTopic("TOPICSTRING","TOPICNAME",
CMQC.MQTOPIC_OPEN_AS_SUBSCRIPTION, CMQC.MQSO_CREATE);

MQTopic publisher =
queueManager.accessTopic("TOPICSTRING","TOPICNAME",
CMQC.MQTOPIC_OPEN_AS_PUBLICATION, CMQC.MQOO_OUTPUT);

When you have finished using the topic, use the close() method to close it.

You can also create a topic by using the MQTopic constructor. The parameters are exactly the same as for
the accessTopic method, with the addition of a queue manager parameter. For example:
MQTopic subscriber = new

MQTopic(queueManager,"TOPICSTRING","TOPICNAME",
CMQC.MQTOPIC_OPEN_AS_SUBSCRIPTION, CMQC.MQSO_CREATE);

Developing object-oriented applications with IBM MQ 859

You can specify a number of options when you create topics. For details of these, see Class
com.ibm.mq.MQTopic. Constructing a topic object in this way enables you to write your own subclasses
of MQTopic.

A topic must be opened either for publication or for subscription. The MQQueueManager class has eight
accessTopic methods and the Topic class has eight constructors. In each case, four of these have a
destination parameter and four have a subscriptionName parameter (including two that have both).
These can only be used to open the topic for subscriptions. The two remaining methods have an openAs
parameter, and the topic can be opened for either publication or subscription depending on the value of
the openAs parameter.

To create a topic as a durable subscriber use either an accessTopic method of the MQQueueManager class
or an MQTopic constructor that accepts a subscription name and, in either case, set the
CMQC.MQSO_DURABLE option.

Processes

To access a process, use the accessProcess method of the MQQueueManager. For example, on a queue
manager called queueManager, use the following code to create an MQProcess object:
MQProcess process =
queueManager.accessProcess("PROCESSNAME",
CMQC.MQOO_FAIL_IF_QUIESCING);

To access a process, use the accessProcess method of the MQQueueManager.

The accessProcess method returns a new object of class MQProcess.

When you have finished using the process object, use the close() method to close it, as in the following
example:
process.close();

You can also create a process by using the MQProcess constructor. The parameters are exactly the same as
for the accessProcess method, with the addition of a queue manager parameter. For example:
MQProcess process =

new MQProcess(queueManager,"PROCESSNAME",
CMQC.MQOO_FAIL_IF_QUIESCING);

Constructing a process object in this way enables you to write your own subclasses of MQProcess.

Handling messages in IBM MQ classes for Java
Messages are represented by the MQMessage class. You put and get messages using methods of the
MQDestination class, which has subclasses of MQQueue and MQTopic.

Put messages onto queues or topics using the put() method of the MQDestination class. You get messages
from queues or topics using the get() method of the MQDestination class. Unlike the procedural interface,
where MQPUT and MQGET put and get arrays of bytes, the Java programming language puts and gets
instances of the MQMessage class. The MQMessage class encapsulates the data buffer that contains the
actual message data, together with all the MQMD (message descriptor) parameters and message
properties that describe that message.

To build a new message, create a new instance of the MQMessage class, and use the writeXXX methods
to put data into the message buffer.

When the new message instance is created, all the MQMD parameters are automatically set to their
default values, as defined in Initial values and language declarations for MQMD. The put() method of

860 IBM MQ: Programming

MQDestination also takes an instance of the MQPutMessageOptions class as a parameter. This class
represents the MQPMO structure. The following example creates a message and puts it onto a queue:
// Build a new message containing my age followed by my name
MQMessage myMessage = new MQMessage();
myMessage.writeInt(25);

String name = "Charlie Jordan";
myMessage.writeInt(name.length());
myMessage.writeBytes(name);

// Use the default put message options...
MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message
!queue.put(myMessage,pmo);

The get() method of MQDestination returns a new instance of MQMessage, which represents the message
just taken from the queue. It also takes an instance of the MQGetMessageOptions class as a parameter.
This class represents the MQGMO structure.

You do not need to specify a maximum message size, because the get() method automatically adjusts the
size of its internal buffer to fit the incoming message. Use the readXXX methods of the MQMessage class
to access the data in the returned message.

The following example shows how to get a message from a queue:
// Get a message from the queue
MQMessage theMessage = new MQMessage();
MQGetMessageOptions gmo = new MQGetMessageOptions();
queue.get(theMessage,gmo); // has default values

// Extract the message data
int age = theMessage.readInt();
int strLen = theMessage.readInt();
byte[] strData = new byte[strLen];
theMessage.readFully(strData,0,strLen);
String name = new String(strData,0);

You can alter the number format that the read and write methods use by setting the encoding member
variable.

You can alter the character set to use for reading and writing strings by setting the characterSet member
variable.

See “MQMessage class” on page 737 for more information.

Note: The writeUTF() method of MQMessage automatically encodes the length of the string as well as
the Unicode bytes it contains. When your message will be read by another Java program (using
readUTF()), this is the simplest way to send string information.

Developing object-oriented applications with IBM MQ 861

Improving the performance of nonpersistent messages in IBM MQ classes for Java:

To improve performance when browsing messages or consuming nonpersistent messages from a client
application, you can use read ahead. Client applications using MQGET or asynchronous consumption will
benefit from the performance improvements when browsing messages or consuming nonpersistent
messages.

For general information about the read ahead facility, see .

In IBM MQ classes for Java, you use the CMQC.MQSO_READ_AHEAD and
CMQC.MQSO_NO_READ_AHEAD properties of an MQQueue or MQTopic object to determine whether
message consumers and queue browsers are allowed to use read ahead on that object.

Putting messages asynchronously using IBM MQ classes for Java:

To put a message asynchronously, set MQPMO_ASYNC_RESPONSE.

You put messages onto queues or topics using the put() method of the MQDestination class. To put a
message asynchronously, that is, allowing the operation to complete without waiting for a response from
the queue manager, you can set MQPMO_ASYNC_RESPONSE in the options field of
MQPutMessageOptions. To determine the success or failure of asynchronous puts, use the
MQQueueManager.getAsyncStatus call.

Publish/subscribe in IBM MQ classes for Java
In IBM MQ classes for Java, the topic is represented by the MQTopic class, and you publish to it using
the MQTopic.put() methods.

For general information about IBM MQ publish/subscribe, see Publish/subscribe messaging.

Handling IBM MQ message headers with IBM MQ classes for Java
Java classes are provided representing different types of message header. Two helper classes are also
provided.

The MQHeader interface

Header objects are described by the MQHeader interface, which provides general-purpose methods for
accessing header fields and for reading and writing message content. Each header type has its own class
that implements the MQHeader interface and adds getter and setter methods for individual fields. For
example, the MQRFH2 header type is represented by the MQRFH2 class; the MQDLH header type by the
MQDLH class, and so on. The header classes perform any necessary data conversion automatically, and
can read or write data in any specified numeric encoding or character set (CCSID).

Important: The MQRFH2 headers classes treat the message as a random access file, which means that the
cursor must be positioned at the start of the message. Before using an internal message header class like
MQRFH, MQRFH2, MQCIH, MQDEAD, MQIIH or MQXMIT, make sure that you update the message’s
cursor position to the correct location before passing the message to the class.

Helper classes

Two helper classes, MQHeaderIterator and MQHeaderList, assist with reading and decoding (parsing) the
header content in messages:
v The MQHeaderIterator class works like a java.util.Iterator. For as long as there are more headers in the

message, the next() method returns true, and the nextHeader() or next() method returns the next
header object.

v The MQHeaderList works like a java.util.List. Like the MQHeaderIterator, it parses header content, but
it also allows you to search for particular headers, add new headers, remove existing headers, update

862 IBM MQ: Programming

header fields and then write the header content back to a message. Alternatively, you can create an
empty MQHeaderList, then populate it with header instances and write it to a message once or
repeatedly.

The MQHeaderIterator and MQHeaderList classes use the information in the MQHeaderRegistry to know
which IBM MQ header classes are associated with particular message types and formats. The
MQHeaderRegistry is configured with knowledge of all current IBM MQ formats and header types and
their implementation classes, and you can also register your own header types.

Support is provided for the following commonly used Websphere MQ headers
v MQRFH - Rules and formatting header
v MQRFH2 - Like MQRFH, used to pass messages to and from a message broker belonging to IBM

Integration Bus. Also used to contain message properties
v MQCIH - CICS Bridge
v MQDLH - Dead letter header
v MQIIH - IMS information header
v MQRMH - reference message header
v MQSAPH - SAP header
v MQWIH - Work information header
v MQXQH - Transmission Queue header
v MQDH - Distribution header
v MQEPH - Encapsulated PCF header

You can also define classes representing your own headers.

To use an MQHeaderIterator to get an RFH2 header, either set MQGMO_PROPERTIES_FORCE_MQRFH2
in the GetMessageOptions, or set the queue property PROPCTL to FORCE.

Printing all the headers in a message using IBM MQ classes for Java:

In this example, an instance of MQHeaderIterator parses the headers in an MQMessage that has been
received from a queue. The MQHeader objects returned from the nextHeader() method display their
structure and contents when their toString method is invoked.
import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQHeader;
import com.ibm.mq.headers.MQHeaderIterator;
...
MQMessage message = ... // Message received from a queue.
MQHeaderIterator it = new MQHeaderIterator (message);

while (it.hasNext ())
{
MQHeader header = it.nextHeader ();

System.out.println ("Header type " + header.type () + ": " + header);
}

Developing object-oriented applications with IBM MQ 863

Skipping over the headers in a message using IBM MQ classes for Java:

In this example, the skipHeaders() method of MQHeaderIterator positions the message read cursor
immediately after the last header.
import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQHeaderIterator;
...
MQMessage message = ... // Message received from a queue.
MQHeaderIterator it = new MQHeaderIterator (message);

it.skipHeaders ();

Finding the reason code in a dead-letter message using IBM MQ classes for Java:

In this example, the read method populates the MQDLH object by reading from the message. After the
read operation, the message read cursor is positioned immediately after the MQDLH header content.

Messages on the queue manager's dead-letter queue are prefixed with a dead-letter header (MQDLH). To
decide how to handle these messages - for example, to determine whether to retry or discard them - a
dead-letter handling application must look at the reason code contained in the MQDLH.
import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQDLH;
...
MQMessage message = ... // Message received from the dead-letter queue.
MQDLH dlh = new MQDLH ();

dlh.read (message);

System.out.println ("Reason: " + dlh.getReason ());

All header classes also provide a convenience constructor to initialize themselves directly from the
message in a single step. So the code in this example could be simplified as follows:
import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQDLH;
...
MQMessage message = ... // Message received from the dead-letter queue.
MQDLH dlh = new MQDLH (message);

System.out.println ("Reason: " + dlh.getReason ());

Reading and removing the MQDLH from a dead-letter message using IBM MQ classes for Java:

In this example, MQDLH is used to remove the header from a dead-letter message.

A dead-letter handling application will typically resubmit messages that have been rejected if their reason
code indicates a transient error. Before resubmitting the message, it must remove the MQDLH header.

This example performs the following steps (see the comments in the example code):
1. The MQHeaderList reads the entire message, and each header encountered in the message becomes

an item in the list.
2. Dead-letter messages contain an MQDLH as their first header, so this can be found in the first item of

the header list. The MQDLH has already been populated from the message when the MQHeaderList
is built, so there is no need to invoke its read method.

3. The reason code is extracted using the getReason() method provided by the MQDLH class.
4. The reason code has been inspected, and indicates that it is appropriate to resubmit the message. The

MQDLH is removed using the MQHeaderList remove() method.
5. The MQHeaderList writes its remaining content to a new message object. The new message now

contains everything in the original message except the MQDLH and can be written to a queue. The

864 IBM MQ: Programming

true argument to the constructor and to the write method indicates that the message body is to be
held within the MQHeaderList, and written out again.

6. The format field in the message descriptor of the new message now contains the value that was
previously in the MQDLH format field. The message data matches the numeric encoding and CCSID
set in the message descriptor.

import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQDLH;
import com.ibm.mq.headers.MQHeaderList;
...
MQMessage message = ... // Message received from the dead-letter queue.
MQHeaderList list = new MQHeaderList (message, true); // Step 1.
MQDLH dlh = (MQDLH) list.get (0); // Step 2.
int reason = dlh.getReason (); // Step 3.
...
list.remove (dlh); // Step 4.

MQMessage newMessage = new MQMessage ();

list.write (newMessage, true); // Step 5.
newMessage.format = list.getFormat (); // Step 6.

Printing the content of a message using IBM MQ classes for Java:

This example uses MQHeaderList to print out the content of a message, including its headers.

The output contains a view of all the header contents as well as the body of the message. The
MQHeaderList class decodes all the headers in one go, whereas the MQHeaderIterator steps through
them one at a time under application control. You might use this technique to provide a simple
debugging tool when writing Websphere MQ applications.
import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQHeaderList;
...
MQMessage message = ... // Message received from a queue.

System.out.println (new MQHeaderList (message, true));

This example also prints out the message descriptor fields, using the MQMD class. The copyFrom()
method of the com.ibm.mq.headers.MQMD class populates the header object from the message descriptor
fields of the MQMessage rather than by reading the message body.
import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQMD;
import com.ibm.mq.headers.MQHeaderList;
...
MQMessage message = ...
MQMD md = new MQMD ();
...
md.copyFrom (message);
System.out.println (md + "\n" + new MQHeaderList (message, true));

Developing object-oriented applications with IBM MQ 865

Finding a specific type of header in a message using IBM MQ classes for Java:

This example uses the indexOf(String) method of MQHeaderList to find an MQRFH2 header in a
message, if one is present.
import com.ibm.mq.MQMessage;
import com.ibm.mq.headers.MQHeaderList;
import com.ibm.mq.headers.MQRFH2;
...
MQMessage message = ...
MQHeaderList list = new MQHeaderList (message);
int index = list.indexOf ("MQRFH2");

if (index >= 0)
{
MQRFH2 rfh = (MQRFH2) list.get (index);

...
}

Analyzing an MQRFH2 header using IBM MQ classes for Java:

This example shows how to access a known field value in a named folder, using the MQRFH2 class.

The MQRFH2 class provides a number of ways to access not only the fields in the fixed part of the
structure, but also the XML-encoded folder contents that are carried within the NameValueData field.
This example shows how to access a known field value in a named folder - in this instance, the Rto field
in the jms folder, which represents the reply queue name in an MQ JMS message.
MQRFH2 rfh = ...

String value = rfh.getStringFieldValue ("jms", "Rto");

To discover the contents of an MQRFH2 (as opposed to requesting specific fields directly), you can use
the getFolders method to return a list of MQRFH2.Element, which represents the structure of a folder that
could contain fields and other folders. Setting a field or folder to null removes it from the MQRFH2.
When you manipulate the NameValueData folder contents in this way, the StrucLength field is
automatically updated accordingly.

Reading and writing byte streams other than MQMessage objects using IBM MQ classes for Java:

These examples use the header classes to parse and manipulate IBM MQ header content when the data
source is not an MQMessage object.

You can use the header classes to parse and manipulate IBM MQ header content even when the data
source is something other than an MQMessage object. The MQHeader interface implemented by every
header class provides the methods int read (java.io.DataInput message, int encoding, int
characterSet) and int write (java.io.DataOutput message, int encoding, int characterSet). The
com.ibm.mq.MQMessage class implements the java.io.DataInput and java.io.DataOutput interfaces. This
means that you can use the two MQHeader methods to read and write MQMessage content, overriding
the encoding and CCSID specified in the message descriptor. This is useful for messages that contain a
chain of headers in different encodings.

You can also obtain DataInput and DataOutput objects from other data streams, for example file or socket
streams, or byte arrays carried in JMS messages. The java.io.DataInputStream classes implement
DataInput and the java.io.DataOutputStream classes implement DataOutput. This example reads IBM MQ
header content from a byte array:
import java.io.*;
import com.ibm.mq.headers.*;
...

866 IBM MQ: Programming

byte [] bytes = ...
DataInput in = new DataInputStream (new ByteArrayInputStream (bytes));
MQHeaderIterator it = new MQHeaderIterator (in, CMQC.MQENC_NATIVE,

CMQC.MQCCSI_DEFAULT);

The line starting MQHeaderIterator could be replaced with
MQDLH dlh = new MQDLH (in, CMQC.MQENC_NATIVE, CMQC.MQCCSI_DEFAULT);
// or any other header type

This example writes to a byte array using a DataOutputStream:
MQHeader header = ... // Could be any header type
ByteArrayOutputStream out = new ByteArrayOutputStream ();

header.write (new DataOutputStream (out), CMQC.MQENC_NATIVE, CMQC.MQCCSI_DEFAULT);
byte [] bytes = out.toByteArray ();

When you work with streams in this way, be careful to use the correct values for the encoding and
characterSet arguments. When reading headers, specify the encoding and CCSID with which the byte
content was originally written. When writing headers, specify the encoding and CCSID that you want to
produce. The data conversion is performed automatically by the header classes.

Creating classes for new header types using IBM MQ classes for Java:

You can create Java classes for header types not supplied with IBM MQ classes for Java.

To add a Java class representing a new header type that you can use in the same way as any header class
supplied with IBM MQ classes for Java, you create a class that implements the MQHeader interface. The
simplest approach is to extend the com.ibm.mq.headers.impl.Header class. This example produces a
fully-functional class representing the MQTM header structure. You do not have to add individual getter
and setter methods for each field, but it is a useful convenience for users of the header class. The generic
getValue and setValue methods that take a string for the field name will work for all fields defined in the
header type. The inherited read, write and size methods will enable instances of the new header type to
be read and written and will calculate the header size correctly based upon its field definition. The type
definition is created just once, however many instances of this header class are created. To make the new
header definition available for decoding using the MQHeaderIterator or MQHeaderList classes, you
would register it using the MQHeaderRegistry. Note however that the MQTM header class is in fact
already provided in this package and registered in the default registry.
import com.ibm.mq.headers.impl.Header;
import com.ibm.mq.headers.impl.HeaderField;
import com.ibm.mq.headers.CMQC;

public class MQTM extends Header {
final static HeaderType TYPE = new HeaderType ("MQTM");
final static HeaderField StrucId = TYPE.addMQChar ("StrucId", CMQC.MQTM_STRUC_ID);
final static HeaderField Version = TYPE.addMQLong ("Version", CMQC.MQTM_VERSION_1);
final static HeaderField QName = TYPE.addMQChar ("QName", CMQC.MQ_Q_NAME_LENGTH);
final static HeaderField ProcessName = TYPE.addMQChar ("ProcessName",

CMQC.MQ_PROCESS_NAME_LENGTH);
final static HeaderField TriggerData = TYPE.addMQChar ("TriggerData",

CMQC.MQ_TRIGGER_DATA_LENGTH);
final static HeaderField ApplType = TYPE.addMQLong ("ApplType");
final static HeaderField ApplId = TYPE.addMQChar ("ApplId", 256);
final static HeaderField EnvData = TYPE.addMQChar ("EnvData", 128);
final static HeaderField UserData = TYPE.addMQChar ("UserData", 128);

protected MQTM (HeaderType type){
super (type);
}
public String getStrucId () {
return getStringValue (StrucId);
}

Developing object-oriented applications with IBM MQ 867

public int getVersion () {
return getIntValue (Version);

}
public String getQName () {
return getStringValue (QName);

}
public void setQName (String value) {
setStringValue (QName, value);

}
// ...Add convenience getters and setters for remaining fields in the same way.
}

Handling PCF messages with IBM MQ classes for Java
Java classes are provided to create and parse PCF-structured messages, and to facilitate sending PCF
requests and collecting PCF responses.

Classes PCFMessage & MQCFGR represent arrays of PCF parameter structures. They provide
convenience methods for adding and retrieving PCF parameters.

PCF parameter structures are represented by the classes MQCFH, MQCFIN, MQCFIN64, MQCFST,
MQCFBS, MQCFIL, MQCFIL64 MQCFSL, and MQCFGR. These share basic operational interfaces:
v Methods to read and write message content: read (), write (), and size ()
v Methods to manipulate parameters: getValue (), setValue (), getParameter () and others
v The enumerator method .nextParameter (), which parses PCF content in an MQMessage

The PCF filter parameter is used in inquire commands to provide a filter function. It in encapsulated in
the following classes:
v MQCFIF - integer filter
v MQCFSF - string filter
v MQCFBF - byte filter

Two agent classes, PCFAgent and PCFMessageAgent are provided to manage the connection to a Queue
Manager, the command server queue, and an associated response queue. PCFMessageAgent extends
PCFAgent and should normally be used in preference to it. The PCFMessageAgent class converts the
received MQMessages and passes them back to the caller as a PCFMessage array. PCFAgent returns an
array of MQMessages, which you have to parse before use.

Handling message properties in IBM MQ classes for Java
Function calls to process message handles have no equivalent in IBM MQ classes for Java. To set, return,
or delete message handle properties, use methods of the MQMessage class.

For general information about message properties, see “Property names” on page 14.

In IBM MQ classes for Java access to messages is through the MQMessage class. Message handles are
therefore not provided in the Java environment and there is no equivalent to the IBM MQ function calls
MQCRTMH, MQDLTMH, MQMHBUF, and MQBUFMH

To set message handle properties in the procedural interface, you use the call MQSETMP. In IBM MQ
classes for Java, use the appropriate method of the MQMessage class:
v setBooleanProperty
v setByteProperty
v setBytesProperty
v setShortProperty
v setIntProperty
v setInt2Property

868 IBM MQ: Programming

v setInt4Property
v setInt8Property
v setLongProperty
v setFloatProperty
v setDoubleProperty
v setStringProperty
v setObjectProperty

These are sometimes referred to collectively as the set*property methods.

To return the value of message handle properties in the procedural interface, you use the call MQINQMP.
In IBM MQ classes for Java, use the appropriate method of the MQMessage class:
v getBooleanProperty
v getByteProperty
v getBytesProperty
v getShortProperty
v getIntProperty
v getInt2Property
v getInt4Property
v getInt8Property
v getLongProperty
v getFloatProperty
v getDoubleProperty
v getStringProperty
v getObjectProperty

These are sometimes referred to collectively as the get*property methods.

To delete the value of message handle properties in the procedural interface, you use the call MQDLTMP.
In IBM MQ classes for Java, use the deleteProperty method of the MQMessage class.

Handling errors in IBM MQ classes for Java
Handle errors arising from IBM MQ classes for Java using Java try and catch blocks.

Methods in the Java interface do not return a completion code and reason code. Instead, they throw an
exception whenever the completion code and reason code resulting from an IBM MQ call are not both
zero. This simplifies the program logic so that you do not have to check the return codes after each call
to IBM MQ. You can decide at which points in your program you want to deal with the possibility of
failure. At these points, you can surround your code with try and catch blocks, as in the following
example:
try {

myQueue.put(messageA,putMessageOptionsA);
myQueue.put(messageB,putMessageOptionsB);

}
catch (MQException ex) {

// This block of code is only executed if one of
// the two put methods gave rise to a non-zero
// completion code or reason code.
System.out.println("An error occurred during the put operation:" +

"CC = " + ex.completionCode +
"RC = " + ex.reasonCode);

System.out.println("Cause exception:" + ex.getCause());
}

Developing object-oriented applications with IBM MQ 869

The IBM MQ call reason codes reported back in Java exceptions for z/OS are documented in Reason
codes for z/OS and Reason codes for all other platforms.

Exceptions that are thrown while an IBM MQ classes for Java application is running are also written to
the log. However, an application can call the MQException.logExclude() method to prevent exceptions
associated with a specific reason code from being logged. You might want to do this in situations where
you expect many exceptions associated with a specific reason code to be thrown, and you do not want
the log to be filled with these exceptions. For example, if your application attempts to get a message from
a queue each time it iterates around a loop and, for most of these attempts, you expect no suitable
message to be on the queue, you might want to prevent exceptions associated with the reason code
MQRC_NO_MSG_AVAILABLE from being logged. If an application has previously prevented exceptions
associated with a specific reason code from being logged, it can allow these exceptions to be logged again
by calling the method MQException.logInclude().

Sometimes the reason code does not convey all details associated with the error. For each exception that
is thrown, an application should check the linked exception. The linked exception itself might have
another linked exception, and so the linked exceptions form a chain leading back to the original
underlying problem. A linked exception is implemented by using the chained exception mechanism of the
java.lang.Throwable class, and an application obtains a linked exception by calling the
Throwable.getCause() method. From an exception that is an instance of MQException,
MQException.getCause() retrieves the underlying instance of com.ibm.mq.jmqi.JmqiException, and
getCause from this exception retrieves the underlying java.lang.Exception that caused the error.

Getting and setting attribute values in IBM MQ classes for Java
getXXX() and setXXX() methods are provided for many common attributes. Others can be accessed using
the generic inquire() and set() methods.

For many of the common attributes, the classes MQManagedObject, MQDestination, MQQueue,
MQTopic, MQProcess, and MQQueueManager contain getXXX() and setXXX() methods. These methods
allow you to get and set their attribute values. Note that for MQDestination, MQQueue, and MQTopic,
the methods work only if you specify the appropriate inquire and set flags when you open the object.

For less common attributes, the MQQueueManager, MQDestination, MQQueue, MQTopic,, and
MQProcess classes all inherit from a class called MQManagedObject. This class defines the inquire() and
set() interfaces.

When you create a new queue manager object by using the new operator, it is automatically opened for
inquire. When you use the accessProcess() method to access a process object, that object is automatically
opened for inquire. When you use the accessQueue() method to access a queue object, that object is not
automatically opened for either inquire or set operations. This is because adding these options
automatically can cause problems with some types of remote queues. To use the inquire, set, getXXX, and
setXXX methods on a queue, you must specify the appropriate inquire and set flags in the openOptions
parameter of the accessQueue() method. The same is true for destination and topic objects.

The inquire and set methods take three parameters:
v selectors array
v intAttrs array
v charAttrs array

You do not need the SelectorCount, IntAttrCount, and CharAttrLength parameters that are found in
MQINQ, because the length of an array in Java is always known. The following example shows how to
make an inquiry on a queue:
// inquire on a queue
final static int MQIA_DEF_PRIORITY = 6;
final static int MQCA_Q_DESC = 2013;
final static int MQ_Q_DESC_LENGTH = 64;

870 IBM MQ: Programming

int[] selectors = new int[2];
int[] intAttrs = new int[1];
byte[] charAttrs = new byte[MQ_Q_DESC_LENGTH]

selectors[0] = MQIA_DEF_PRIORITY;
selectors[1] = MQCA_Q_DESC;

queue.inquire(selectors,intAttrs,charAttrs);

System.out.println("Default Priority = " + intAttrs[0]);
System.out.println("Description : " + new String(charAttrs,0));

Multithreaded programs in Java
The Java runtime environment is inherently multithreaded. IBM MQ classes for Java allows a queue
manager object to be shared by multiple threads but ensures that all access to the target queue manager
is synchronized.

Multithreaded programs are hard to avoid in Java. Consider a simple program that connects to a queue
manager and opens a queue at startup. The program displays a single button on the screen. When a user
clicks that button, the program fetches a message from the queue.

The Java runtime environment is inherently multithreaded. Therefore, your application initialization
occurs in one thread, and the code that executes in response to the button press executes in a separate
thread (the user interface thread).

With the C based IBM MQ MQI client, this would cause a problem, because there are limitations to the
sharing of handles by multiple threads. IBM MQ classes for Java relaxes this constraint, allowing a queue
manager object (and its associated queue, topic and process objects) to be shared by multiple threads.

The implementation of IBM MQ classes for Java ensures that, for a particular connection
(MQQueueManager object instance), all access to the target IBM MQ queue manager is synchronized. A
thread that wants to issue a call to a queue manager is blocked until all other calls in progress for that
connection are complete. If you require simultaneous access to the same queue manager from multiple
threads within your program, create a new MQQueueManager object for each thread that requires
concurrent access. (This is equivalent to issuing a separate MQCONN call for each thread.)

Note: Instances of the class com.ibm.mq.MQGetMessageOptions must not be shared between threads which
are requesting messages concurrently. Instances of this class are updated with data during the
corresponding MQGET request, which can result in unexpected consequences when multiple threads are
operating concurrently on the same instance of the object.

Developing object-oriented applications with IBM MQ 871

Using channel exits in IBM MQ classes for Java
An overview of how to use channel exits in an application using the IBM MQ classes for Java.

The following topics describe how to write a channel exit in Java, how to assign it, and how to pass data
to it. They then describe how to use channel exits written in C and how to use a sequence of channel
exits.

Your application must have the correct security permission to load the channel exit class.

Creating a channel exit in IBM MQ classes for Java:

You can provide your own channel exits by defining a Java class that implements an appropriate
interface.

To implement an exit, you define a new Java class that implements the appropriate interface. Three exit
interfaces are defined in the com.ibm.mq.exits package:
v WMQSendExit
v WMQReceiveExit
v WMQSecurityExit

Note: Channel exits are supported for client connections only; they are not supported for bindings
connections. You cannot use a Java channel exit outside IBM MQ classes for Java, for example if you are
using a client application written in C.

Any SSL encryption defined for a connection is performed after send and security exits have been
invoked. Similarly, decryption is performed before receive and security exits are invoked.

The following sample defines a class that implements all three interfaces:
public class MyMQExits implements
WMQSendExit, WMQReceiveExit, WMQSecurityExit {

// Default constructor
public MyMQExits(){
}

// This method comes from the send exit interface
public ByteBuffer channelSendExit(

MQCXP channelExitParms,
MQCD channelDefinition,
ByteBuffer agentBuffer)

{
// Fill in the body of the send exit here

}
// This method comes from the receive exit interface

public ByteBuffer channelReceiveExit(
MQCXP channelExitParms,

MQCD channelDefinition,
ByteBuffer agentBuffer)

{
// Fill in the body of the receive exit here

}
// This method comes from the security exit interface

public ByteBuffer channelSecurityExit(
MQCXP channelExitParms,

MQCD channelDefinition,
ByteBuffer agentBuffer)

{
// Fill in the body of the security exit here

}
}

872 IBM MQ: Programming

Each exit is passed an MQCXP object and an MQCD object. These objects represent the MQCXP and
MQCD structures defined in the procedural interface.

Any exit class you write must have a constructor. This can be either the default constructor or one that
takes a string argument. If it takes a string then the user data will be passed into the exit class when it is
created. If the exit class contains both a default constructor and a single argument constructor, the single
argument constructor has priority.

For the send and security exits, your exit code must return the data that you want to send to the server.
For a receive exit, your exit code must return the modified data that you want IBM MQ to interpret.

The simplest possible exit body is:
{ return agentBuffer; }

Do not close the queue manager from within a channel exit.

Using existing channel exit classes

In versions of IBM MQ earlier than 7.0, you would implement these exits using the interfaces
MQSendExit, MQReceiveExit, and MQSecurityExit, as in the following example. This method remains
valid, but the new method is preferred for improved functionality and performance.
public class MyMQExits implements MQSendExit, MQReceiveExit, MQSecurityExit {

// Default constructor
public MyMQExits(){
}

// This method comes from the send exit
public byte[] sendExit(MQChannelExit channelExitParms,

MQChannelDefinition channelDefParms,
byte agentBuffer[])

{
// Fill in the body of the send exit here

}
// This method comes from the receive exit

public byte[] receiveExit(MQChannelExit channelExitParms,
MQChannelDefinition channelDefParms,
byte agentBuffer[])

{
// Fill in the body of the receive exit here

}
// This method comes from the security exit

public byte[] securityExit(MQChannelExit channelExitParms,
MQChannelDefinition channelDefParms,
byte agentBuffer[])

{
// Fill in the body of the security exit here

}
}

Developing object-oriented applications with IBM MQ 873

Assigning a channel exit in IBM MQ classes for Java:

You can assign a channel exit using IBM MQ classes for Java.

There is no direct equivalent to the IBM MQ channel in IBM MQ classes for Java. Channel exits are
assigned to an MQQueueManager. For example, having defined a class that implements the
WMQSecurityExit interface, an application can use the security exit in one of four ways:
v By assigning an instance of the class to the MQEnvironment.channelSecurityExit field before creating

an MQQueueManager object
v By setting the MQEnvironment.channelSecurityExit field to a string representing the security exit class

before creating an MQQueueManager object
v By creating a key/value pair in the properties hashtable passed to MQQueueManager with a key of

CMQC.SECURITY_EXIT_PROPERTY
v Using a client channel definition table (CCDT)

Any exit assigned by setting the MQEnvironment.channelSecurityExit field to a string, creating a
key/value pair in the properties hashtable, or using a CCDT, must be written with a default constructor.
An exit assigned as an instance of a class does not need a default constructor, depending on the
application.

An application can use a send or a receive exit in a similar way. For example, the following code
fragment shows you how to use the security, send, and receive exits that are implemented in the class
MyMQExits, which was defined previously, using MQEnvironment:
MyMQExits myexits = new MyMQExits();
MQEnvironment.channelSecurityExit = myexits;
MQEnvironment.channelSendExit = myexits;
MQEnvironment.channelReceiveExit = myexits;
:
MQQueueManager jupiter = new MQQueueManager("JUPITER");

If more than one method is used to assign a channel exit, the order of precedence is as follows:
1. If the URL of a CCDT is passed to the MQQueueManager, the contents of the CCDT determine the

channel exits to be used and any exit definitions in MQEnvironment or the properties hashtable are
ignored.

2. If no CCDT URL is passed, exit definitions from MQEnvironment and the hashtable are merged
v If the same exit type is defined in both MQEnvironment and the hashtable, the definition in the

hashtable is used.
v If equivalent old and new types of exit are specified (for example the sendExit field, which can only

be used for the type of exit used in versions of IBM MQ earlier than Version 7.0, and the
channelSendExit field, which can be used for any send exit), the new exit (channelSendExit) is used
rather than the old exit.

If you have declared a channel exit as a string, you must enable IBM MQ to locate the channel exit
program. You can do so in various ways, depending on the environment in which the application is
running and on how the channel exit programs are packaged.
v For an application that is running in an application server, you must store the files in the directory

shown in Table 105 on page 875 or packaged in JAR files referenced by exitClasspath.
v For an application that is not running in an application server, the following rules apply:

– If your channel exit classes are packaged in separate JAR files, these JAR files must be included in
the exitClasspath.

– If your channel exit classes are not packaged in JAR files, the class files can be stored in the
directory shown in Table 105 on page 875 or in any directory in the JVM system class path or
exitClasspath.

874 IBM MQ: Programming

The exitClasspath property can be specified in four ways. In order of priority, these ways are as follows:
1. The system property com.ibm.mq.exitClasspath (defined on the command line using the -D option)
2. The exitPath stanza of the mqclient.ini file
3. A hashtable entry with the key CMQC.EXIT_CLASSPATH_PROPERTY
4. The MQEnvironment variable exitClasspath

Separate multiple paths using the java.io.File.pathSeparator character.

Table 105. The directory for channel exit programs

Platform Directory

AIX , HP-UX, Linux , and Solaris /var/mqm/exits (32-bit channel exit programs) /var/mqm/exits64
(64-bit channel exit programs)

Windows install_data_dir\exits

Note: install_data_dir is the directory that you chose for the IBM MQ data files during installation. The
default directory is C:\ProgramData\IBM\MQ.

Passing data to channel exits in IBM MQ classes for Java:

You can pass data to channel exits and return data from channel exits to your application.

The agentBuffer parameter

For a send exit, the agentBuffer parameter contains the data that is about to be sent. For a receive exit or a
security exit, the agentBuffer parameter contains the data that has just been received. You do not need a
length parameter, because the expression agentBuffer.limit() indicates the length of the array.

For the send and security exits, your exit code must return the data that you want to send to the server.
For a receive exit, your exit code must return the modified data that you want IBM MQ to interpret.

The simplest possible exit body is:
{ return agentBuffer; }

Channel exits are called with a buffer that has a backing array. For best performance, the exit should
return a buffer with a backing array.

User data

If an application connects to a queue manager by setting channelSecurityExit, channelSendExit, or
channelReceiveExit, 32 bytes of user data can be passed to the appropriate channel exit class when it is
called, using the channelSecurityExitUserData, channelSendExitUserData, or channelReceiveExitUserData
fields. This user data is available to the channel exit class but is refreshed each time the exit is called. Any
changes made to the user data in the channel exit will therefore be lost. If you want to make persistent
changes to data in a channel exit, use the MQCXP exitUserArea. Data in this field is maintained between
invocations of the exit.

If the application sets securityExit, sendExit, or receiveExit, no user data can be passed to these channel
exit classes.

If an application uses a client channel definition table (CCDT) to connect to a queue manager, any user
data specified in a client connection channel definition is passed to channel exit classes when they are
called. For more information about using a client channel definition table, see “Using a client channel
definition table with IBM MQ classes for Java” on page 857.

Developing object-oriented applications with IBM MQ 875

Using channel exits not written in Java with IBM MQ classes for Java:

How to use channel exit programs written in C from a Java application.

In IBM WebSphere MQ Version 7.0, you can specify the name of a channel exit program written in C as a
String passed to the channelSecurityExit, channelSendExit, or channelReceiveExit fields in the
MQEnvironment object or properties Hashtable. However, you cannot use a channel exit written in Java
in an application written in another language.

Specify the exit program name in the format library(function) and ensure that the location of the exit
program is specified as described in Path to exits.

Using external exit classes

In versions of IBM MQ earlier than Version 7.0, three classes were provided to enable you to use channel
exits written in languages other than Java:
v MQExternalSecurityExit, which implements the MQSecurityExit interface
v MQExternalSendExit, which implements the MQSendExit interface
v MQExternalReceiveExit, which implements the MQReceiveExit interface

The use of these classes remains valid but the new method is preferred.

To use a security exit that is not written in Java, an application first had to create an
MQExternalSecurityExit object. The application specified, as parameters on the MQExternalSecurityExit
constructor, the name of the library containing the security exit, the name of the entry point for the
security exit, and the user data to be passed to the security exit when it was called. Channel exit
programs that are not written in Java were stored in the directory shown inTable 105 on page 875.

Using a sequence of channel send or receive exits in IBM MQ classes for Java:

An IBM MQ classes for Java application can use a sequence of channel send or receive exits that are run
in succession.

To use a sequence of send exits, an application can create either a List or a String containing the send
exits. If a List is used, each element of the List can be any of the following:
v An instance of a user defined class that implements the WMQSendExit interface
v An instance of a user defined class that implements the MQSendExit interface (for a send exit written

in Java)
v An instance of the MQExternalSendExit class (for a send exit not written in Java)
v An instance of the MQSendExitChain class
v An instance of the String class

A List cannot contain another List.

The application can use a sequence of receive exits in a similar manner.

If a String is used, it must consist of one or more comma-separated exit definitions, each of which can be
the name of a Java class, or a C program in the format library(function).

The application then assigns the List or String object to the MQEnvironment.channelSendExit field before
creating an MQQueueManager object.

The context of information passed to exits is solely within the domain of the exits. For example, if a Java
exit and a C exit are chained, the presence of the Java exit has no effect on the C exit.

876 IBM MQ: Programming

Using exit chain classes

In versions of IBM MQ earlier than Version 7.0, two classes were provided to allow sequences of exits:
v MQSendExitChain, which implements the MQSendExit interface
v MQReceiveExitChain, which implements the MQReceiveExit interface

The use of these classes remains valid but the new method is preferred. Using the IBM MQ Classes for
Java interfaces means that your application still has a dependency on com.ibm.mq.jar If the new set of
interfaces in the com.ibm.mq.exits package are used there is no dependency on com.ibm.mq.jar.

To use a sequence of send exits, an application created a list of objects, where each object was one of the
following:
v An instance of a user defined class that implements the MQSendExit interface (for a send exit written

in Java)
v An instance of the MQExternalSendExit class (for a send exit not written in Java)
v An instance of the MQSendExitChain class

The application created an MQSendExitChain object by passing this list of objects as a parameter on the
constructor. The application would then have assigned the MQSendExitChain object to the
MQEnvironment.sendExit field before creating an MQQueueManager object.

Channel compression in IBM MQ classes for Java
Compressing the data that flows on a channel can improve the performance of the channel and reduce
network traffic. IBM MQ classes for Java use the compression function built into IBM MQ.

Using function supplied with IBM MQ, you can compress the data that flows on message channels and
MQI channels and, on either type of channel, you can compress header data and message data
independently of each other. By default, no data is compressed on a channel. For a full description of
channel compression, including how it is implemented in IBM MQ, see Data compression (COMPMSG)
and Header compression (COMPHDR).

An IBM MQ classes for Java application specifies the techniques that can be used for compressing header
or message data on a client connection by creating a java.util.Collection object. Each compression
technique is an Integer object in the collection, and the order in which the application adds the
compression techniques to the collection is the order in which the compression techniques are negotiated
with the queue manager when the client connection starts. The application can then assign the collection
to the hdrCompList field, for header data, or the msgCompList field, for message data, in the
MQEnvironment class. When the application is ready, it can start the client connection by creating an
MQQueueManager object.

The following code fragments illustrate the approach described. The first code fragment shows you how
to implement header data compression:
Collection headerComp = new Vector();
headerComp.add(new Integer(CMQXC.MQCOMPRESS_SYSTEM));
:
MQEnvironment.hdrCompList = headerComp;
:
MQQueueManager qMgr = new MQQueueManager(QM);

The second code fragment shows you how to implement message data compression:
Collection msgComp = new Vector();
msgComp.add(new Integer(CMQXC.MQCOMPRESS_RLE));
msgComp.add(new Integer(CMQXC.MQCOMPRESS_ZLIBHIGH));
:
MQEnvironment.msgCompList = msgComp;
:
MQQueueManager qMgr = new MQQueueManager(QM);

Developing object-oriented applications with IBM MQ 877

In the second example, the compression techniques are negotiated in the order RLE, then ZLIBHIGH,
when the client connection starts. The compression technique that is selected cannot be changed during
the lifetime of the MQQueueManager object.

The compression techniques for header and message data that are supported by both the client and the
queue manager on a client connection are passed to a channel exit as collections in the hdrCompList and
msgCompList fields of an MQChannelDefinition object. The actual techniques that are currently being
used for compressing header and message data on a client connection are passed to a channel exit in the
CurHdrCompression and CurMsgCompression fields of an MQChannelExit object.

If compression is used on a client connection, the data is compressed before any channel send exits are
processed and extracted after any channel receive exits are processed. The data passed to send and
receive exits is therefore in a compressed state.

For more information about specifying compression techniques, and about which compression techniques
are available, see Class com.ibm.mq.MQEnvironment and Interface com.ibm.mq.MQC.

Sharing a TCP/IP connection in IBM MQ classes for Java
Multiple instances of an MQI channel can be made to share a single TCP/IP connection.

In IBM MQ classes for Java, you use the MQEnvironment.sharingConversations variable to control the
number of conversations that can share a single TCP/IP connection.

The SHARECNV attribute is a best effort approach to connection sharing. Therefore when a SHARECNV
value greater than 0 is used with the IBM MQ classes for Java it is not guaranteed that a new connection
request will always share an already established connection.

Connection pooling in IBM MQ classes for Java
IBM MQ classes for Java allows spare connections to be pooled for reuse.

IBM MQ classes for Java provides additional support for applications that deal with multiple connections
to IBM MQ queue managers. When a connection is no longer required, instead of destroying it, it can be
pooled and later reused. This can provide a substantial performance enhancement for applications and
middleware that connect serially to arbitrary queue managers.

IBM MQ provides a default connection pool. Applications can activate or deactivate this connection pool
by registering and deregistering tokens through the MQEnvironment class. If the pool is active when IBM
MQ classes for Java constructs an MQQueueManager object, it searches this default pool and reuses any
suitable connection. When an MQQueueManager.disconnect() call occurs, the underlying connection is
returned to the pool.

Alternatively, applications can construct an MQSimpleConnectionManager connection pool for a
particular use. Then, the application can either specify that pool during construction of an
MQQueueManager object, or pass that pool to MQEnvironment for use as the default connection pool.

To prevent connections from using too much resource, you can limit the total number of connections that
an MQSimpleConnectionManager object can handle, and you can limit the size of the connection pool.
Setting limits is useful if there are conflicting demands for connections within a JVM.

By default, the getMaxConnections() method returns the value zero, which means that there is no limit to
the number of connections that the MQSimpleConnectionManager object can handle. You can set a limit
by using the setMaxConnections() method. If you set a limit and the limit is reached, a request for a
further connection might cause an MQException to be thrown, with a reason code of
MQRC_MAX_CONNS_LIMIT_REACHED.

878 IBM MQ: Programming

Controlling the default connection pool in IBM MQ classes for Java:

This example shows how to use the default connection pool.

Consider the following example application, MQApp1:
import com.ibm.mq.*;
public class MQApp1
{

public static void main(String[] args) throws MQException
{

for (int i=0; i<args.length; i++) {
MQQueueManager qmgr=new MQQueueManager(args[i]);
:
: (do something with qmgr)
:
qmgr.disconnect();

}
}

}

MQApp1 takes a list of local queue managers from the command line, connects to each in turn, and
performs some operation. However, when the command line lists the same queue manager many times, it
is more efficient to connect only once, and to reuse that connection many times.

IBM MQ classes for Java provides a default connection pool that you can use to do this. To enable the
pool, use one of the MQEnvironment.addConnectionPoolToken() methods. To disable the pool, use
MQEnvironment.removeConnectionPoolToken().

The following example application, MQApp2, is functionally identical to MQApp1, but connects only
once to each queue manager.
import com.ibm.mq.*;
public class MQApp2
{

public static void main(String[] args) throws MQException
{

MQPoolToken token=MQEnvironment.addConnectionPoolToken();

for (int i=0; i<args.length; i++) {
MQQueueManager qmgr=new MQQueueManager(args[i]);
:
: (do something with qmgr)
:
qmgr.disconnect();

}

MQEnvironment.removeConnectionPoolToken(token);

}
}

The first bold line activates the default connection pool by registering an MQPoolToken object with
MQEnvironment.

The MQQueueManager constructor now searches this pool for an appropriate connection and only
creates a connection to the queue manager if it cannot find an existing one. The qmgr.disconnect() call
returns the connection to the pool for later reuse. These API calls are the same as the sample application
MQApp1.

Developing object-oriented applications with IBM MQ 879

The second highlighted line deactivates the default connection pool, which destroys any queue manager
connections stored in the pool. This is important because otherwise the application would terminate with
a number of live queue manager connections in the pool. This situation could cause errors that would
appear in the queue manager logs.

If an application uses a client channel definition table (CCDT) to connect to a queue manager, the
MQQueueManager constructor first searches the table for a suitable client connection channel definition.
If one is found, the constructor searches the default connection pool for a connection that can be used for
the channel. If the constructor cannot find a suitable connection in the pool, it then searches the client
channel definition table for the next suitable client connection channel definition, and proceeds as
described previously. If the constructor completes its search of the client channel definition table and fails
to find any suitable connection in the pool, the constructor starts a second search of the table. During this
search, the constructor tries to create a new connection for each suitable client connection channel
definition in turn, and uses the first connection that it manages to create.

The default connection pool stores a maximum of ten unused connections, and keeps unused connections
active for a maximum of five minutes. The application can alter this (for details, see “Supplying a
different connection pool in IBM MQ classes for Java” on page 881).

Instead of using MQEnvironment to supply an MQPoolToken, the application can construct its own:
MQPoolToken token=new MQPoolToken();
MQEnvironment.addConnectionPoolToken(token);

Some applications or middleware vendors provide subclasses of MQPoolToken in order to pass
information to a custom connection pool. They can be constructed and passed to
addConnectionPoolToken() in this way so that extra information can be passed to the connection pool.

The default connection pool and multiple components in IBM MQ classes for Java:

This example shows how to add or remove MQPoolTokens from a static set of registered MQPoolToken
objects.

MQEnvironment holds a static set of registered MQPoolToken objects. To add or remove MQPoolTokens
from this set, use the following methods:
v MQEnvironment.addConnectionPoolToken()
v MQEnvironment.removeConnectionPoolToken()

An application might consist of many components that exist independently and perform work using a
queue manager. In such an application, each component should add an MQPoolToken to the
MQEnvironment set for its lifetime.

For example, the example application MQApp3 creates ten threads and starts each one. Each thread
registers its own MQPoolToken, waits for a length of time, then connects to the queue manager. After the
thread disconnects, it removes its own MQPoolToken.

The default connection pool remains active while there is at least one token in the set of MQPoolTokens,
so it will remain active for the duration of this application. The application does not need to keep a
master object in overall control of the threads.
import com.ibm.mq.*;
public class MQApp3
{

public static void main(String[] args)
{

for (int i=0; i<10; i++) {
MQApp3_Thread thread=new MQApp3_Thread(i*60000);
thread.start();

}

880 IBM MQ: Programming

}
}

class MQApp3_Thread extends Thread
{

long time;

public MQApp3_Thread(long time)
{

this.time=time;
}

public synchronized void run()
{

MQPoolToken token=MQEnvironment.addConnectionPoolToken();
try {

wait(time);
MQQueueManager qmgr=new MQQueueManager("my.qmgr.1");
:
: (do something with qmgr)
:
qmgr.disconnect();

}
catch (MQException mqe) {System.err.println("Error occurred!");}
catch (InterruptedException ie) {}

MQEnvironment.removeConnectionPoolToken(token);
}

}

Supplying a different connection pool in IBM MQ classes for Java:

This example shows how to use the class com.ibm.mq.MQSimpleConnectionManager to supply a
different connection pool.

This class provides basic facilities for connection pooling, and applications can use this class to customize
the behavior of the pool.

Once it is instantiated, an MQSimpleConnectionManager can be specified on the MQQueueManager
constructor. The MQSimpleConnectionManager then manages the connection that underlies the
constructed MQQueueManager. If the MQSimpleConnectionManager contains a suitable pooled
connection, that connection is reused and returned to the MQSimpleConnectionManager after an
MQQueueManager.disconnect() call.

The following code fragment demonstrates this behavior:
MQSimpleConnectionManager myConnMan=new MQSimpleConnectionManager();
myConnMan.setActive(MQSimpleConnectionManager.MODE_ACTIVE);
MQQueueManager qmgr=new MQQueueManager("my.qmgr.1", myConnMan);
:
: (do something with qmgr)
:
qmgr.disconnect();

MQQueueManager qmgr2=new MQQueueManager("my.qmgr.1", myConnMan);
:
: (do something with qmgr2)
:
qmgr2.disconnect();
myConnMan.setActive(MQSimpleConnectionManager.MODE_INACTIVE);

The connection that is forged during the first MQQueueManager constructor is stored in myConnMan
after the qmgr.disconnect() call. The connection is then reused during the second call to the
MQQueueManager constructor.

Developing object-oriented applications with IBM MQ 881

The second line enables the MQSimpleConnectionManager. The last line disables
MQSimpleConnectionManager, destroying any connections held in the pool. An
MQSimpleConnectionManager is, by default, in MODE_AUTO, which is described later in this section.

An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys
connections on a least-recently-used basis. By default, a connection is destroyed if it has not been used for
five minutes, or if there are more than ten unused connections in the pool. You can alter these values by
calling MQSimpleConnectionManager.setTimeout().

You can also set up an MQSimpleConnectionManager for use as the default connection pool, to be used
when no Connection Manager is supplied on the MQQueueManager constructor.

The following application demonstrates this:
import com.ibm.mq.*;
public class MQApp4
{

public static void main(String []args)
{

MQSimpleConnectionManager myConnMan=new MQSimpleConnectionManager();
myConnMan.setActive(MQSimpleConnectionManager.MODE_AUTO);
myConnMan.setTimeout(3600000);
myConnMan.setMaxConnections(75);
myConnMan.setMaxUnusedConnections(50);
MQEnvironment.setDefaultConnectionManager(myConnMan);
MQApp3.main(args);

}
}

The bold lines create and configure an MQSimpleConnectionManager object. The configuration does the
following:
v Ends connections that are not used for an hour
v Limits the number of connections managed by myConnMan to 75
v Limits the number of unused connections in the pool to 50
v Sets MODE_AUTO, which is the default. This means that the pool is active only if it is the default

connection manager, and there is at least one token in the set of MQPoolTokens held by
MQEnvironment.

The new MQSimpleConnectionManager is then set as the default connection manager.

In the last line, the application calls MQApp3.main(). This runs a number of threads, where each thread
uses IBM MQ independently. These threads use myConnMan when they forge connections.

882 IBM MQ: Programming

JTA/JDBC coordination using IBM MQ classes for Java
IBM MQ classes for Java supports the MQQueueManager.begin() method, which allows IBM MQ to act
as a coordinator for a database which provides a JDBC type 2 or JDBC type 4 compliant driver.

This support is not available on all platforms. To check which platforms support JDBC coordination, see
http://www.ibm.com/software/integration/wmq/requirements/.

To use the XA-JTA support, you must use the special JTA switch library. The method for using this library
varies depending on whether you are using Windows or one of the other platforms.

Configuring JTA/JDBC coordination on Windows:

The XA library is supplied as a DLL with a name of the format jdbcxxx.dll.

The supplied jdbcora12.dll provides compatibility with Oracle 12C, for an IBM MQ

Windows server installation.

On Windows systems, the XA library is supplied as a complete DLL. The name of this DLL is
jdbcxxx.dll where xxx indicates the database for which the switch library has been compiled. This
library is in the java\lib\jdbc or java\lib64\jdbc directory of your IBM MQ classes for Java installation.
You must declare the XA library, also described as the switch load file, to the queue manager. Use the
MQ Explorer. Specify the details of the switch load file in the queue manager properties panel, under XA
resource manager. You must only give the name of the library. For example:

For a Db2 database set the SwitchFile field to: dbcdb2

For an Oracle database set the SwitchFile field to: jdbcora

Configuring JTA/JDBC coordination on platforms other than Windows:

Object files are supplied. Link the appropriate one using the supplied makefile, and declare it to the
queue manager using the configuration file.

For each database management system, IBM MQ provides two object files. You must link one object file
to create a 32-bit switch library, and link the other object file to create a 64-bit switch library. For Db2, the
name of each object file is jdbcdb2.o and, for Oracle, the name of each object file is jdbcora.o.

You must link each object file using the appropriate makefile supplied with IBM MQ. A switch library
requires other libraries, which might be stored in different locations on different systems. However, a
switch library cannot use the library path environment variable to locate these libraries because the
switch library is loaded by the queue manager, which runs in a setuid environment. The supplied
makefile therefore ensures that a switch library contains the fully qualified path names of these libraries.

To create a switch library, enter a make command with the following format. To create a 32-bit switch
library, enter the command in the /java/lib/jdbc directory of your IBM MQ installation. To create a 64-bit
switch library, enter the command in the /java/lib64/jdbc directory.
make DBMS

where DBMS is the database management system for which you are creating the switch library. The valid
values are db2 for Db2 and oracle for Oracle.

Here is an example of a make command:
make db2

Note the following points:

Developing object-oriented applications with IBM MQ 883

http://www.ibm.com/software/integration/wmq/requirements/

v To run 32-bit applications, you must create both a 32-bit and a 64-bit switch library for each database
management system that you are using. To run 64-bit applications, you need create only a 64-bit switch
library. For Db2, the name of each switch library is jdbcdb2 and, for Oracle, the name of each switch
library is jdbcora. The makefiles ensure that 32-bit and 64-bit switch libraries are stored in different
IBM MQ directories. A 32-bit switch library is stored in the /java/lib/jdbc directory, and a 64-bit
switch library is stored in the /java/lib64/jdbc directory.

v Because you can install Oracle anywhere on a system, the makefiles use the ORACLE_HOME
environment variable to locate where Oracle is installed.

After you have created the switch libraries for Db2, Oracle, or both, you must declare them to your
queue manager. If the queue manager configuration file (qm.ini) already contains XAResourceManager
stanzas for Db2 or Oracle databases, you must replace the SwitchFile entry in each stanza by one of the
following:

For a Db2 database
SwitchFile=jdbcdb2

For an Oracle database
SwitchFile=jdbcora

Do not specify the fully qualified path name of either the 32-bit or 64-bit switch library. Specify only the
name of the library.

If the queue manager configuration file does not already contain XAResourceManager stanzas for Db2 or
Oracle databases, or if you want to add additional XAResourceManager stanzas, see Administering for
information about how to construct an XAResourceManager stanza. However, each SwitchFile entry in a
new XAResourceManager stanza must be exactly as described previously for a Db2 or Oracle database.
You must also include the entry ThreadOfControl=PROCESS.

After you have updated the queue manager configuration file, and made sure that all appropriate
database environment variables have been set, you can restart the queue manager.

Using JTA/JDBC coordination:

Code your API calls as in the supplied example.

The basic sequence of API calls for a user application is:
qMgr = new MQQueueManager("QM1")
Connection con = qMgr.getJDBCConnection(xads);
qMgr.begin()

< Perform MQ and DB operations to be grouped in a unit of work >

qMgr.commit() or qMgr.backout();
con.close()
qMgr.disconnect()

xads in the getJDBCConnection call is a database-specific implementation of the XADataSource interface,
which defines the details of the database to connect to. See the documentation for your database to
determine how to create an appropriate XADataSource object to pass into getJDBCConnection.

You must also update your class path with the appropriate database-specific jar files for performing JDBC
work.

If you must connect to multiple databases, you must call getJDBCConnection several times to perform the
transaction across several different connections.

884 IBM MQ: Programming

There are two forms of the getJDBCConnection, reflecting the two forms of
XADataSource.getXAConnection:

public java.sql.Connection getJDBCConnection(javax.sql.XADataSource xads)
throws MQException, SQLException, Exception

public java.sql.Connection getJDBCConnection(XADataSource dataSource,
String userid, String password)

throws MQException, SQLException, Exception

These methods declare Exception in their throws clauses to avoid problems with the JVM verifier for
customers who are not using the JTA functions. The actual exception thrown is
javax.transaction.xa.XAException which requires the jta.jar file to be added to the class path for programs
that did not previously require it.

To use the JTA/JDBC support, you must include the following statement in your application:
MQEnvironment.properties.put(CMQC.THREAD_AFFINITY_PROPERTY, new Boolean(true));

Known problems and limitations with JTA/JDBC coordination:

Some of the problems and limitations of JTA/JDBC support depend on the database management system
in use, for example, tested JDBC drivers behave differently when the database is shut down while an
application is running. If the connection to the database that an application is using is broken, there are
steps that the application can perform to reestablish a new connection to the queue manager and the
database so that it can then use those new connections to perform the transactional work required.

Because this support makes calls to JDBC drivers, the implementation of those JDBC drivers can have a
significant effect on the system behavior. In particular, tested JDBC drivers behave differently when the
database is shut down while an application is running.

Important: Always avoid abruptly shutting down a database while there are applications that are
holding open connections to it.

Note: An IBM MQ classes for Java application must connect using bindings mode to make IBM MQ act
as a database coordinator.

Multiple XAResourceManager stanzas
The use of more than one XAResourceManager stanza in a queue manager configuration file,
qm.ini, is not supported. Any XAResourceManager stanza other than the first is ignored.

Db2

Sometimes Db2 returns a SQL0805N error. This problem can be resolved with the following CLP
command:
DB2 bind @db2cli.lst blocking all grant public

Refer to the Db2 documentation for more information.

The XAResourceManager stanza must be configured to use ThreadOfControl=PROCESS. For Db2
Version 8.1 and higher this does not match the default thread of control setting for Db2, so toc=p
must be specified in the XA Open String. An example XAResourceManager stanza for Db2 with
JTA/JDBC coordination is as follows:
XAResourceManager:

Name=jdbcdb2
SwitchFile=jdbcdb2
XAOpenString=uid=userid,db=dbalias,pwd=password,toc=p
ThreadOfControl=PROCESS

This does not prevent the Java applications that use JTA/JDBC coordination from being
multithreaded themselves.

Developing object-oriented applications with IBM MQ 885

Oracle Calling the JDBC Connection.close() method after MQQueueManager.disconnect() generates an
SQLException. Either call Connection.close() before MQQueueManager.disconnect(), or omit the
call to Connection.close().

Handling issues with database connections

When an IBM MQ classes for Java application uses the JTA/JDBC support that is provided by IBM MQ,
it typically performs the following steps:
1. Creates a new MQQueueManager object to represent a connection to the queue manager that will act

as the transaction manager.
2. Constructs an XADataSource object that contains details about how to connect to the database that

will be enlisted in the transaction.
3. Calls the method MQQueueManager.getJDBCConnection(XADataSource) passing in the XADataSource

that was created previously. This causes the IBM MQ classes for Java to establish a connection to the
database.

4. Calls the method MQQueueManager.begin() to start the XA transaction.
5. Performs the messaging and database work.
6. When all of the required work has been completed, calls the method MQQueueManager.commit().

This completes the XA transaction.
7. If a new XA transaction is required at this point, the application can repeat steps 4, 5 and 6.
8. When the application has finished, it should close the database connection that was created at step 3,

and then call the method MQQueueManager.disconnect() to disconnect from the queue manager.

The IBM MQ classes for Java maintain an internal list of all of the database connections that have been
created when an application calls MQQueueManager.getJDBCConnection(XADataSource). If a queue
manager needs to communicate with the database during the processing of the XA transaction, the
following processing takes place:
1. The queue manager calls into the IBM MQ classes for Java, passing in details of the XA call that needs

to be passed to the database.
2. The IBM MQ classes for Java then look up the appropriate connection in the list, and then use that

connection to flow the XA call to the database.

If the connection to the database is lost at any point during this processing, the application should:
1. Back out any existing work that was done under the transaction, by calling the method

MQQueueManager.backout().
2. Close the database connection. This should cause the IBM MQ classes for Java to remove details of

the broken database connection from its internal list.
3. Disconnect from the queue manager, by calling the method MQQueueManager.disconnect().
4. Establish a new connection to the queue manager, by constructing a new MQQueueManager object.
5. Create a new database connection, by calling the method

MQQueueManager.getJDBCConnection(XADataSource).
6. Perform the transactional work again.

This allows the application to reestablish a new connection to the queue manager and the database, and
then use those connections to perform the transactional work required.

886 IBM MQ: Programming

Secure Sockets Layer (SSL) support in IBM MQ classes for Java
IBM MQ classes for Java client applications support Secure Sockets Layer (SSL) encryption. You require a
JSSE provider to use SSL encryption.

IBM MQ classes for Java client applications using TRANSPORT(CLIENT) support Secure Sockets Layer
(SSL) encryption. SSL provides communication encryption, authentication, and message integrity. It is
typically used to secure communications between any two peers on the Internet or within an intranet.

IBM MQ classes for Java uses Java Secure Socket Extension (JSSE) to handle SSL encryption, and so
requires a JSSE provider. JSE v1.4 JVMs have a JSSE provider built in. Details of how to manage and store
certificates can vary from provider to provider. For information about this, refer to your JSSE provider's
documentation.

This section assumes that your JSSE provider is correctly installed and configured, and that suitable
certificates have been installed and made available to your JSSE provider.

If your IBM MQ classes for Java client application uses a client channel definition table (CCDT) to
connect to a queue manager, see “Using a client channel definition table with IBM MQ classes for Java”
on page 857.

Enabling SSL in IBM MQ classes for Java:

To enable SSL, you specify a CipherSuite. There are two ways of specifying a CipherSuite.

SSL is supported only for client connections. To enable SSL, you must specify the CipherSuite to use
when communicating with the queue manager, and this CipherSuite must match the CipherSpec set on
the target channel. Additionally, the named CipherSuite must be supported by your JSSE provider.
However, CipherSuites are distinct from CipherSpecs and so have different names. “SSL/TLS
CipherSpecs and CipherSuites in IBM MQ classes for Java” on page 892 contains a table mapping the
CipherSpecs supported by IBM MQ to their equivalent CipherSuites as known to JSSE.

To enable SSL, specify the CipherSuite using the sslCipherSuite static member variable of
MQEnvironment. The following example attaches to an SVRCONN channel named
SECURE.SVRCONN.CHANNEL, which has been set up to require SSL with a CipherSpec of
TLS_RSA_WITH_AES_128_CBC_SHA:
MQEnvironment.hostname = "your_hostname";
MQEnvironment.channel = "SECURE.SVRCONN.CHANNEL";
MQEnvironment.sslCipherSuite = "SSL_RSA_WITH_AES_128_CBC_SHA";
MQQueueManager qmgr = new MQQueueManager("your_Q_manager");

Although the channel has a CipherSpec of TLS_RSA_WITH_AES_128_CBC_SHA, the Java application
must specify a CipherSuite of SSL_RSA_WITH_AES_128_CBC_SHA. See “SSL/TLS CipherSpecs and
CipherSuites in IBM MQ classes for Java” on page 892 for a list of mappings between CipherSpecs and
CipherSuites.

An application can also specify a CipherSuite by setting the environment property
CMQC.SSL_CIPHER_SUITE_PROPERTY.

Alternatively, use the Client Channel Definition Table (CCDT). For more information, see “Using a client
channel definition table with IBM MQ classes for Java” on page 857

If you require a client connection to use a CipherSuite that is supported by the IBM Java JSSE FIPS
provider (IBMJSSEFIPS), an application can set the sslFipsRequired field in the MQEnvironment class to
true. Alternatively, the application can set the environment property
CMQC.SSL_FIPS_REQUIRED_PROPERTY. The default value is false, which means that a client
connection can use any CipherSuite that is supported by IBM MQ.

Developing object-oriented applications with IBM MQ 887

If an application uses more than one client connection, the value of the sslFipsRequired field that is used
when the application creates the first client connection determines the value that is used when the
application creates any subsequent client connection. Therefore when the application creates a subsequent
client connection, the value of the sslFipsRequired field is ignored. You must restart the application if you
want to use a different value for the sslFipsRequired field.

To connect successfully using SSL, the JSSE truststore must be set up with certificate authority root
certificates from which the certificate presented by the queue manager can be authenticated. Similarly, if
SSLClientAuth on the SVRCONN channel has been set to MQSSL_CLIENT_AUTH_REQUIRED, the JSSE
keystore must contain an identifying certificate that is trusted by the queue manager.
Related information:
Federal Information Processing Standards (FIPS) for UNIX, Linux and Windows

Using the distinguished name of the queue manager in IBM MQ classes for Java:

The queue manager identifies itself using an SSL certificate, which contains a distinguished name (DN).
An IBM MQ classes for Java client application can use this DN to ensure that it is communicating with
the correct queue manager.

A DN pattern is specified using the sslPeerName variable of MQEnvironment. For example, setting:
MQEnvironment.sslPeerName = "CN=QMGR.*, OU=IBM, OU=WEBSPHERE";

allows the connection to succeed only if the queue manager presents a certificate with a Common Name
beginning QMGR., and at least two Organizational Unit names, the first of which must be IBM and the
second WebSphere.

If sslPeerName is set, connections succeed only if it is set to a valid pattern and the queue manager
presents a matching certificate.

An application can also specify the distinguished name of the queue manager by setting the environment
property CMQC.SSL_PEER_NAME_PROPERTY. For more information about distinguished names, see
Distinguished names.

Using certificate revocation lists in IBM MQ classes for Java:

Specify the certificate revocation lists to use through the java.security.cert.CertStore class. IBM MQ classes
for Java then checks certificates against the specified CRL.

A certificate revocation list (CRL) is a set of certificates that have been revoked, either by the issuing
certificate authority or by the local organization. CRLs are typically hosted on LDAP servers. With Java 2
v1.4, a CRL server can be specified at connect-time and the certificate presented by the queue manager is
checked against the CRL before the connection is allowed. For more information about certificate
revocation lists and IBM MQ, see Working with Certificate Revocation Lists and Authority Revocation
Lists and Accessing CRLs and ARLs with IBM MQ classes for Java and IBM MQ classes for JMS.

Note: To use a CertStore successfully with a CRL hosted on an LDAP server, make sure that your Java
Software Development Kit (SDK) is compatible with the CRL. Some SDKs require that the CRL conforms
to RFC 2587, which defines a schema for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

The CRLs to use are specified through the java.security.cert.CertStore class. Refer to documentation on
this class for full details of how to obtain instances of CertStore. To create a CertStore based on an LDAP
server, first create an LDAPCertStoreParameters instance, initialized with the server and port settings to
use. For example:
import java.security.cert.*;
CertStoreParameters csp = new LDAPCertStoreParameters("crl_server", 389);

888 IBM MQ: Programming

Having created a CertStoreParameters instance, use the static constructor on CertStore to create a
CertStore of type LDAP:
CertStore cs = CertStore.getInstance("LDAP", csp);

Other CertStore types (for example, Collection) are also supported. Commonly there are several CRL
servers set up with identical CRL information to give redundancy. When you have a CertStore object for
each of these CRL servers, place them all in a suitable Collection. The following example shows the
CertStore objects placed in an ArrayList:
import java.util.ArrayList;
Collection crls = new ArrayList();
crls.add(cs);

This Collection can be set into the MQEnvironment static variable, sslCertStores, before connecting to
enable CRL checking:
MQEnvironment.sslCertStores = crls;

The certificate presented by the queue manager when a connection is being set up is validated as follows:
1. The first CertStore object in the Collection identified by sslCertStores is used to identify a CRL server.
2. An attempt is made to contact the CRL server.
3. If the attempt is successful, the server is searched for a match for the certificate.

a. If the certificate is found to be revoked, the search process is over and the connection request fails
with reason code MQRC_SSL_CERTIFICATE_REVOKED.

b. If the certificate is not found, the search process is over and the connection is allowed to proceed.
4. If the attempt to contact the server is unsuccessful, the next CertStore object is used to identify a CRL

server and the process repeats from step 2.
If this was the last CertStore in the Collection, or if the Collection contains no CertStore objects, the
search process failed, and the connection request fails with reason code
MQRC_SSL_CERT_STORE_ERROR.

The Collection object determines the order in which CertStores are used.

The Collection of CertStores can also be set using the CMQC.SSL_CERT_STORE_PROPERTY. As a
convenience, this property also allows a single CertStore to be specified without being a member of a
Collection.

If sslCertStores is set to null, no CRL checking is performed. This property is ignored if sslCipherSuite is
not set.

Renegotiating the secret key in IBM MQ classes for Java:

An IBM MQ classes for Java client application can control when the secret key that is used for encryption
on a client connection is renegotiated, in terms of the total number of bytes sent and received.

The application can do this in either of the following ways: If the application uses more than one of these
ways, the usual precedence rules apply.
v By setting the sslResetCount field in the MQEnvironment class.
v By setting the environment property MQC.SSL_RESET_COUNT_PROPERTY in a Hashtable object. The

application then assigns the hashtable to the properties field in the MQEnvironment class, or passes
the hashtable to an MQQueueManager object on its constructor.

The value of the sslResetCount field or environment property MQC.SSL_RESET_COUNT_PROPERTY
represents the total number of bytes sent and received by the IBM MQ classes for Java client code before
the secret key is renegotiated. The number of bytes sent is the number before encryption, and the number

Developing object-oriented applications with IBM MQ 889

of bytes received is the number after decryption. The number of bytes also includes control information
sent and received by the IBM MQ classes for Java client.

If the reset count is zero, which is the default value, the secret key is never renegotiated. The reset count
is ignored if no CipherSuite is specified.

Supplying a customized SSLSocketFactory in IBM MQ classes for Java:

If you use a customized JSSE Socket Factory, set the MQEnvironment.sslSocketFactory to the customized
factory object. Details vary between different JSSE implementations.

Different JSSE implementations can provide different features. For example, a specialized JSSE
implementation might allow configuration of a particular model of encryption hardware. Additionally,
some JSSE providers allow customization of keystores and truststores by program, or allow the choice of
identity certificate from the keystore to be altered. In JSSE, all these customizations are abstracted into a
factory class, javax.net.ssl.SSLSocketFactory.

See your JSSE documentation for details of how to create a customized SSLSocketFactory implementation.
The details vary from provider to provider, but a typical sequence of steps might be:
1. Create an SSLContext object using a static method on SSLContext
2. Initialize this SSLContext with appropriate KeyManager and TrustManager implementations (created

from their own factory classes)
3. Create an SSLSocketFactory from the SSLContext

When you have an SSLSocketFactory object, set the MQEnvironment.sslSocketFactory to the customized
factory object. For example:
javax.net.ssl.SSLSocketFactory sf = sslContext.getSocketFactory();
MQEnvironment.sslSocketFactory = sf;

IBM MQ classes for Java use this SSLSocketFactory to connect to the IBM MQ queue manager. This
property can also be set using the CMQC.SSL_SOCKET_FACTORY_PROPERTY. If sslSocketFactory is set
to null, the default SSLSocketFactory of the JVM is used. This property is ignored if sslCipherSuite is not
set.

When you use custom SSLSocketFactories, consider the effect of TCP/IP connection sharing. If connection
sharing is possible then a new socket is not requested of the SSLSocketFactory supplied, even if the
socket produced would be different in some way in the context of a subsequent connection request. For
example, if a different client certificate is to be presented on a subsequent connection, then connection
sharing must not be allowed.

890 IBM MQ: Programming

Making changes to the JSSE keystore or truststore in IBM MQ classes for Java:

If you change the JSSE keystore or truststore, you must perform certain actions for the changes to take
effect.

If you change the contents of the JSSE keystore or truststore, or change the location of the keystore or
truststore file, IBM MQ classes for Java applications that are running at the time do not automatically
pick up the changes. For the changes to take effect, the following actions must be performed:
v The applications must close all their connections, and destroy any unused connections in connection

pools.
v If your JSSE provider caches information from the keystore and truststore, this information must be

refreshed.

After these actions have been performed, the applications can then re-create their connections.

Depending on how you design your applications, and on the function provided by your JSSE provider, it
might be possible to perform these actions without stopping and restarting your applications. However,
stopping and restarting the applications might be the simplest solution.

Error handling when using SSL with IBM MQ classes for Java:

A number of reason codes can be issued by IBM MQ classes for Java when connecting to a queue
manager using SSL.

These are explained in the following list:

MQRC_SSL_NOT_ALLOWED
The sslCipherSuite property was set, but bindings connect was used. Only client connect supports
SSL.

MQRC_JSSE_ERROR
The JSSE provider reported an error that could not be handled by IBM MQ. This could be caused
by a configuration problem with JSSE, or because the certificate presented by the queue manager
could not be validated. The exception produced by JSSE can be retrieved using the getCause()
method on MQException.

MQRC_SSL_INITIALIZATION_ERROR
An MQCONN or MQCONNX call was issued with SSL configuration options specified, but an
error occurred during the initialization of the SSL environment.

MQRC_SSL_PEER_NAME_MISMATCH
The DN pattern specified in the sslPeerName property did not match the DN presented by the
queue manager.

MQRC_SSL_PEER_NAME_ERROR
The DN pattern specified in the sslPeerName property was not valid.

MQRC_UNSUPPORTED_CIPHER_SUITE
The CipherSuite named in sslCipherSuite was not recognized by the JSSE provider. A full list of
CipherSuites supported by the JSSE provider can be obtained by a program using the
SSLSocketFactory.getSupportedCipherSuites() method. A list of CipherSuites that can be used to
communicate with IBM MQ can be found in “SSL/TLS CipherSpecs and CipherSuites in IBM MQ
classes for Java” on page 892.

MQRC_SSL_CERTIFICATE_REVOKED
The certificate presented by the queue manager was found in a CRL specified with the
sslCertStores property. Update the queue manager to use trusted certificates.

MQRC_SSL_CERT_STORE_ERROR
None of the supplied CertStores could be searched for the certificate presented by the queue

Developing object-oriented applications with IBM MQ 891

manager. The MQException.getCause() method returns the error that occurred while searching
the first CertStore attempted. If the causal exception is NoSuchElementException,
ClassCastException, or NullPointerException, check that the Collection specified on the
sslCertStores property contains at least one valid CertStore object.

SSL/TLS CipherSpecs and CipherSuites in IBM MQ classes for Java:

The ability of IBM MQ classes for Java applications to establish connections to a queue manager, depends
on the CipherSpec specified at the server end of the MQI channel and the CipherSuite specified at the
client end.

The following table lists the CipherSpecs that are supported by IBM MQ and their equivalent
CipherSuites.

You should review the topic Deprecated CipherSpecs to see if any of the CipherSpecs, listed in the
following table, have been deprecated by IBM MQ and, if so, at which update the CipherSpec was
deprecated.

Important: The CipherSuites listed are those supported by the IBM Java Runtime Environment (JRE)
supplied with IBM MQ. From IBM MQ Version 8.0.0, Fix Pack 2, the CipherSuites that are listed include
those supported by the Oracle Java JRE. For more information about configuring your application to use
an Oracle Java JRE, see “Configuring your application to use IBM Java or Oracle Java CipherSuite
mappings” on page 894.

The table also indicates the protocol (SSL or a particular version of TLS) that is used for the
communication, and whether or not the CipherSuite conforms to the FIPS 140-2 standard.

Note: From IBM MQ Version 8.0.0, Fix Pack 2, the SSLv3 protocol and the use of some IBM MQ
CipherSpecs is deprecated. For more information, see Deprecated CipherSpecs.

Ciphersuites denoted as FIPS 140-2 compliant can be used if the application has not been configured to
enforce FIPS 140-2 compliance, but if FIPS 140-2 compliance has been configured for the application (see
the following notes on configuration) only those CipherSuites which are marked as FIPS 140-2 compatible
can be configured; attempting to use other CipherSuites results in an error.

Note: Each JRE can have multiple cryptographic security providers, each of which can contribute an
implementation of the same CipherSuite. However, not all security providers are FIPS 140-2 certified. If
FIPS 140-2 compliance is not enforced for an application then it is possible that an uncertified
implementation of the CipherSuite might be used. Uncertified implementations might not operate in
compliance with FIPS 140-2, even if the CipherSuite theoretically meets the minimum security level
required by the standard. See the following notes for more information about configuring FIPS 140-2
enforcement in IBM MQ Java applications.

For more information about FIPS 140-2 and Suite-B compliance for CipherSpecs and CipherSuites, see
Specifying CipherSpecs. You might also need to be aware of information that concerns US Federal
Information Processing Standards.

To use the full set of CipherSuites and to operate with certified FIPS 140-2 and/or Suite-B compliance, a
suitable JRE is required. IBM Java 7 Service Refresh 4 Fix Pack 2 or a higher level of IBM JRE provides
the appropriate support.

Note: To use some CipherSuites, the 'unrestricted' policy files need to be configured in the JRE. For more
details of how policy files are set up in an SDK or JRE, see the IBM SDK Policy files topic in the Security
Reference for IBM SDK, Java Technology Edition, Version 7.

892 IBM MQ: Programming

Table 106. CipherSpecs supported by IBM MQ and the equivalent CipherSuites

CipherSpec Equivalent CipherSuite (IBM JRE) Equivalent
CipherSuite
(Oracle
JRE)

Protocol FIPS
140-2
compatible

ECDHE_ECDSA_3DES_EDE_CBC_SHA256SSL_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHATLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHATLSv1.2 yes

ECDHE_ECDSA_AES_128_CBC_SHA256 SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256TLSv1.2 yes

ECDHE_ECDSA_AES_128_GCM_SHA256SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256TLSv1.2 yes

ECDHE_ECDSA_AES_256_CBC_SHA384 SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384TLSv1.2 yes

ECDHE_ECDSA_AES_256_GCM_SHA384SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384TLSv1.2 yes

ECDHE_ECDSA_NULL_SHA256 SSL_ECDHE_ECDSA_WITH_NULL_SHA TLS_ECDHE_ECDSA_WITH_NULL_SHATLSv1.2 no

ECDHE_ECDSA_RC4_128_SHA256 SSL_ECDHE_ECDSA_WITH_RC4_128_SHA TLS_ECDHE_ECDSA_WITH_RC4_128_SHATLSv1.2 no

ECDHE_RSA_3DES_EDE_CBC_SHA256 SSL_ECDHE_RSA_WITH_3DES_EDE_CBC_SHATLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHATLSv1.2 yes

ECDHE_RSA_AES_128_CBC_SHA256 SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256TLSv1.2 yes

ECDHE_RSA_AES_128_GCM_SHA256 SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256TLSv1.2 yes

ECDHE_RSA_AES_256_CBC_SHA384 SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA384TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384TLSv1.2 yes

ECDHE_RSA_AES_256_GCM_SHA384 SSL_ECDHE_RSA_WITH_AES_256_GCM_SHA384TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384TLSv1.2 yes

ECDHE_RSA_NULL_SHA256 SSL_ECDHE_RSA_WITH_NULL_SHA TLS_ECDHE_RSA_WITH_NULL_SHATLSv1.2 no

ECDHE_RSA_RC4_128_SHA256 SSL_ECDHE_RSA_WITH_RC4_128_SHA TLS_ECDHE_RSA_WITH_RC4_128_SHATLSv1.2 no

RC4_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC4_40_MD5 SSL_RSA_EXPORT_WITH_RC4_40_MD5SSLv3 no

FIPS_WITH_3DES_EDE_CBC_SHA SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA SSLv3 no 1

FIPS_WITH_DES_CBC_SHA SSL_RSA_FIPS_WITH_DES_CBC_SHA SSLv3 no 1

TLS_RSA_WITH_3DES_EDE_CBC_SHA
1

SSL_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHATLSv1 yes

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_128_CBC_SHATLSv1 yes

TLS_RSA_WITH_AES_128_CBC_SHA256 SSL_RSA_WITH_AES_128_CBC_SHA256 TLS_RSA_WITH_AES_128_CBC_SHA256TLSv1.2 yes

TLS_RSA_WITH_AES_128_GCM_SHA256SSL_RSA_WITH_AES_128_GCM_SHA256 TLS_RSA_WITH_AES_128_GCM_SHA256TLSv1.2 yes

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHATLSv1 yes

TLS_RSA_WITH_AES_256_CBC_SHA256 SSL_RSA_WITH_AES_256_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256TLSv1.2 yes

TLS_RSA_WITH_AES_256_GCM_SHA384SSL_RSA_WITH_AES_256_GCM_SHA384 TLS_RSA_WITH_AES_256_GCM_SHA384TLSv1.2 yes

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHATLSv1 no

NULL_MD5 SSL_RSA_WITH_NULL_MD5 SSL_RSA_WITH_NULL_MD5SSLv3 no

NULL_SHA SSL_RSA_WITH_NULL_SHA SSL_RSA_WITH_NULL_SHASSLv3 no

TLS_RSA_WITH_NULL_SHA256 SSL_RSA_WITH_NULL_SHA256 TLS_RSA_WITH_NULL_SHA256TLSv1.2 no

RC4_MD5_US SSL_RSA_WITH_RC4_128_MD5 SSL_RSA_WITH_RC4_128_MD5SSLv3 no

TLS_RSA_WITH_RC4_128_SHA256 SSL_RSA_WITH_RC4_128_SHA SSL_RSA_WITH_RC4_128_SHATLSv1.2 no

Note:

1. This CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be used
to transfer up to 32 GB of data before the connection is terminated with error AMQ9288. To avoid this
error, you need to either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

2. The names of these CipherSuites are historical and reflect the fact that they were previously
FIPS-compliant. They are no longer FIPS-compliant and use of these CipherSuites is deprecated.

Developing object-oriented applications with IBM MQ 893

3. The following CipherSuite is no longer supported:
v SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

Any attempt to use this CipherSuite and its corresponding IBM MQ CipherSpec RC2_MD5_EXPORT
will fail with an appropriate exception. Installations that use this CipherSuite/CipherSpec
combination should move to a supported combination.

Configuring your application to use IBM Java or Oracle Java CipherSuite mappings

From IBM MQ Version 8.0.0, Fix Pack 2, you can configure whether your application uses the default IBM
Java CipherSuite to IBM MQ CipherSpec mappings, or the Oracle CipherSuite to IBM MQ CipherSpec
mappings. Therefore, you can use TLS CipherSuites whether your application uses an IBM JRE or an
Oracle JRE. The Java System Property com.ibm.mq.cfg.useIBMCipherMappings controls which mappings
are used. The property can be one of the following values:

true Use the IBM Java CipherSuite to IBM MQ CipherSpec mappings.

This value is the default value.

false Use the Oracle CipherSuite to IBM MQ CipherSpec mappings.

For more information about using IBM MQ Java and TLS Ciphers, see the MQdev blog posts MQ Java,
TLS Ciphers, Non-IBM JREs & APARs IT06775, IV66840, IT09423, IT10837, and The relationship between
MQ CipherSpecs and Java Cipher Suites.

Configuring SSL Ciphersuites and FIPS-compliance in an IBM MQ classes for Java application

v An application that uses IBM MQ classes for Java can use either of two methods to set the SSL
CipherSuite for a connection:
– Set the sslCipherSuite field in the MQEnvironment class to the CipherSuite name.
– Set the property CMQC.SSL_CIPHER_SUITE_PROPERTY in the properties hashtable passed to the

MQQueueManager constructor to the CipherSuite name.
v An application that uses IBM MQ classes for Java can use either of two methods to enforce FIPS 140-2

compliance:
– Set the sslFipsRequired field to true in the MQEnvironment class.
– Set the property CMQC.SSL_FIPS_REQUIRED_PROPERTYin the properties hash table passed to the

MQQueueManager constructor to true.

Interoperability limitations

Certain CipherSuites might be compatible with more than one IBM MQ CipherSpec, depending on the
protocol in use; SSLv3 or a specific version of TLS. However, only the CipherSuite/CipherSpec
combination that uses the TLS version specified in Table 1 is supported. Attempting to use the
unsupported combinations of CipherSuites and CipherSpecs will fail with an appropriate exception.
Installations using any of these CipherSuite/CipherSpec combinations should move to a supported
combination.

The following table shows the CipherSuites to which this limitation applies.

894 IBM MQ: Programming

https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_Java_TLS_Ciphers_Non_IBM_JREs_APARs_IT06775_IV66840_IT09423_IT10837_HELP_ME_PLEASE
https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_Java_TLS_Ciphers_Non_IBM_JREs_APARs_IT06775_IV66840_IT09423_IT10837_HELP_ME_PLEASE
https://www.ibm.com/developerworks/community/blogs/messaging/entry/BiteSize_Blogging_MQ_Version_8_The_relationship_between_MQ_CipherSpecs_and_Java_Cipher_Suites
https://www.ibm.com/developerworks/community/blogs/messaging/entry/BiteSize_Blogging_MQ_Version_8_The_relationship_between_MQ_CipherSpecs_and_Java_Cipher_Suites

Table 107. CipherSuites and their supported and unsupported CipherSpecs

CipherSuite Supported TLS CipherSpec Unsupported SSL
CipherSpec

SSL_RSA_WITH_3DES_EDE_CBC_SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA 1 TRIPLE_DES_SHA_US

SSL_RSA_WITH_DES_CBC_SHA TLS_RSA_WITH_DES_CBC_SHA DES_SHA_EXPORT

SSL_RSA_WITH_RC4_128_SHA TLS_RSA_WITH_RC4_128_SHA256 RC4_SHA_US

Note:

1. This CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be used
to transfer up to 32 GB of data before the connection is terminated with error AMQ9288. To avoid this
error, you need to either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

Running IBM MQ classes for Java applications
If you write an application (a class that contains a main() method), using either the client or the bindings
mode, run your program using the Java interpreter.

Use the command:
java -Djava.library.path= library_path MyClass

where library_path is the path to the IBM MQ classes for Java libraries. for more information, see “IBM
MQ classes for Java libraries” on page 841.
Related information:
Tracing IBM MQ classes for Java applications
Tracing the IBM MQ Resource Adapter

IBM MQ classes for Java environment-dependent behavior
IBM MQ classes for Java allow you to create applications that can run against different versions of IBM
MQ. This collection of topics describes the behavior of the Java classes dependent on these different
versions.

IBM MQ classes for Java provides a core of classes, which provide consistent function and behavior in all
the environments. Features outside this core depend on the capability of the queue manager to which the
application is connected.

Except where noted here, the behavior exhibited is as described in the MQI application reference
appropriate to the queue manager.

Developing object-oriented applications with IBM MQ 895

Core classes in IBM MQ classes for Java
IBM MQ classes for Java contains a core set of classes, which can be used in all environments.

The following set of classes are considered core classes, and can be used in all environments with only
the minor variations listed in “Restrictions and variations for core classes of IBM MQ classes for Java” on
page 897.
v MQEnvironment
v MQException
v MQGetMessageOptions

Excluding:
– MatchOptions
– GroupStatus
– SegmentStatus
– Segmentation

v MQManagedObject
Excluding:
– inquire()
– set()

v MQMessage
Excluding:
– groupId
– messageFlags
– messageSequenceNumber
– offset
– originalLength

v MQPoolServices
v MQPoolServicesEvent
v MQPoolServicesEventListener
v MQPoolToken
v MQPutMessageOptions

Excluding:
– knownDestCount
– unknownDestCount
– invalidDestCount
– recordFields

v MQProcess
v MQQueue
v MQQueueManager

Excluding:
– begin()
– accessDistributionList()

v MQSimpleConnectionManager
v MQTopic
v MQC

Note:

896 IBM MQ: Programming

1. Some constants are not included in the core (see “Restrictions and variations for core classes of IBM
MQ classes for Java” for details); do not use them in completely portable programs.

2. Some platforms do not support all connection modes. On these platforms, you can use only the core
classes and options that relate to the supported modes.

Restrictions and variations for core classes of IBM MQ classes for Java
The core classes generally behave consistently across all environments, even if the equivalent MQI calls
normally have environment differences. The behavior is as if a Windows, UNIX or Linux IBM MQ queue
manager is used, except for the following minor restrictions and variations.

Restrictions for MQGMO_* values in IBM MQ classes for Java:

Certain MQGMO_* values are not supported by all queue managers.

Use of the following MQGMO_* values might result in an MQException being thrown from an
MQQueue.get():

MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_MARK_SKIP_BACKOUT
MQGMO_BROWSE_MSG_UNDER_CURSOR
MQGMO_LOCK
MQGMO_UNLOCK
MQGMO_LOGICAL_ORDER
MQGMO_COMPLETE_MESSAGE
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE
MQGMO_UNMARKED_BROWSE_MSG
MQGMO_MARK_BROWSE_HANDLE
MQGMO_MARK_BROWSE_CO_OP
MQGMO_UNMARK_BROWSE_HANDLE
MQGMO_UNMARK_BROWSE_CO_OP

Additionally, MQGMO_SET_SIGNAL is not supported when used from Java.

Restrictions for MQPMRF_* values in IBM MQ classes for Java:

These are used only when putting messages to a distribution list, and are supported only by queue
managers supporting distribution lists. For example, z/OS queue managers do not support distribution
lists.

Restrictions for MQPMO_* values in IBM MQ classes for Java:

Certain MQPMO_* values are not supported by all queue managers

Use of the following MQPMO_* values might result in an MQException being thrown from an
MQQueue.put() or an MQQueueManager.put():

MQPMO_LOGICAL_ORDER
MQPMO_NEW_CORREL_ID
MQPMO_NEW_MESSAGE_ID
MQPMO_RESOLVE_LOCAL_Q

Developing object-oriented applications with IBM MQ 897

Restrictions and variations for MQCNO_* values in IBM MQ classes for Java:

Certain MQCNO_* values are not supported.
v Automatic client reconnect is not supported by the IBM MQ classes for Java. Whatever value

MQCNO_RECONNECT_* you set, the connection continues to behave as if you set
MQCNO_RECONNECT_DISABLED.

v MQCNO_FASTPATH is ignored on queue managers that do not support MQCNO_FASTPATH. It is also ignored
by client connections.

Restrictions for MQRO_* values in IBM MQ classes for Java:

The following report options can be set.
MQRO_EXCEPTION_WITH_FULL_DATA
MQRO_EXPIRATION_WITH_FULL_DATA
MQRO_COA_WITH_FULL_DATA
MQRO_COD_WITH_FULL_DATA
MQRO_DISCARD_MSG
MQRO_PASS_DISCARD_AND_EXPIRY

For more information see Report.

Miscellaneous differences between IBM MQ classes for Java on z/OS and other platforms:

IBM MQ for z/OS behaves differently from IBM MQ on other platforms in some areas.

BackoutCount
A z/OS queue manager returns a maximum BackoutCount of 255, even if the message has been
backed out more than 255 times.

Default dynamic queue prefix
When connected to a z/OS queue manager using a bindings connection, the default dynamic
queue prefix is CSQ.*. Otherwise, the default dynamic queue prefix is AMQ.*.

MQQueueManager constructor
Client connect is not supported on z/OS. Attempting to connect with client options results in an
MQException with MQCC_FAILED and MQRC_ENVIRONMENT_ERROR.

The MQQueueManager constructor might also fail with MQRC_CHAR_CONVERSION_ERROR
(if it fails to initialize conversion between the IBM-1047 and ISO8859-1 code pages), or
MQRC_UCS2_CONVERSION_ERROR (if it fails to initialize conversion between the queue
manager's code page and Unicode). If your application fails with one of these reason codes,
ensure that the National Language Resources component of Language Environment is installed,
and ensure that the correct conversion tables are available.

Conversion tables for Unicode are installed as part of the z/OS C/C++ optional feature. See the
z/OS C/C++ Programming Guide, SC09-4765, for more information about enabling UCS-2
conversions.

898 IBM MQ: Programming

Features outside the core classes of IBM MQ classes for Java
IBM MQ classes for Java contain certain functions that are specifically designed to use API extensions
that are not supported by all queue managers. This collection of topics describes how they behave when
using a queue manager that does not support them.

Variations in the MQQueueManager constructor option:

Some of the MQQueueManager constructors include an optional integer argument. Some values of this
argument are not accepted on all platforms.

Where an MQQueueManager constructor include an optional integer argument, it maps onto the
MQCNO options field of the MQI, and is used to switch between normal and fast path connection. This
extended form of the constructor is accepted in all environments, if the only options used are
MQCNO_STANDARD_BINDING or MQCNO_FASTPATH_BINDING. Any other options cause the
constructor to fail with MQRC_OPTIONS_ERROR. The fast path option
CMQC.MQCNO_FASTPATH_BINDING is honored only with a bindings connection to a queue manager
that supports it. In other environments, it is ignored.

Restrictions on the MQQueueManager.begin() method:

This method can be used only against an IBM MQ queue manager on UNIX, Linux, or Windows systems
in bindings mode. Otherwise, it fails with MQRC_ENVIRONMENT_ERROR.

See “JTA/JDBC coordination using IBM MQ classes for Java” on page 883 for more details.

Variations in the MQGetMessageOptions fields:

Some queue managers do not support the Version 2 MQGMO structure, so you must set some fields to
their default values.

When using a queue manager that does not support the Version 2 MQGMO structure, leave the following
fields set to their default values:

GroupStatus
SegmentStatus
Segmentation

Also, the MatchOptions field supports only MQMO_MATCH_MSG_ID and
MQMO_MATCH_CORREL_ID. If you put unsupported values into these fields, the subsequent
MQDestination.get() fails with MQRC_GMO_ERROR. If the queue manager does not support the Version
2 MQGMO structure, these fields are not updated after a successful MQDestination.get().

Developing object-oriented applications with IBM MQ 899

Restrictions in distribution lists in IBM MQ classes for Java:

Not all queue managers allow you to open an MQDistributionList.

The following classes are used to create distribution lists:
MQDistributionList
MQDistributionListItem
MQMessageTracker

You can create and populate MQDistributionLists and MQDistributionListItems in any environment, but
not all queue managers allow you to open an MQDistributionList. In particular, z/OS queue managers do
not support distribution lists. Attempting to open an MQDistributionList when using such a queue
manager results in MQRC_OD_ERROR.

Variations in MQPutMessageOptions fields:

If a queue manager does not support distribution lists, certain MQPMO fields are treated differently.

Four fields in the MQPMO are rendered as the following member variables in the
MQPutMessageOptions class:

knownDestCount
unknownDestCount
invalidDestCount
recordFields

These fields are primarily intended for use with distribution lists. However, a queue manager that
supports distribution lists also fills in the DestCount fields after an MQPUT to a single queue. For
example, if the queue resolves to a local queue, knownDestCount is set to 1 and the other two count
fields are set to 0.

If the queue manager does not support distribution lists, these values are simulated as follows:
v If the put() succeeds, unknownDestCount is set to 1, and the others are set to 0.
v If the put() fails, invalidDestCount is set to 1, and the others are set to 0.

The recordFields variable is used with distribution lists. A value can be written into recordFields at any
time, regardless of the environment. It is ignored if the MQPutMessageOptions object is used on a
subsequent MQDestination.put() or MQQueueManager.put(), rather than MQDistributionList.put().

Restrictions in MQMD fields with IBM MQ classes for Java:

Certain MQMD fields concerned with message segmentation should be left at their default value when
using a queue manager that does not support segmentation.

The following MQMD fields are largely concerned with message segmentation:
GroupId
MsgSeqNumber
Offset
MsgFlags
OriginalLength

If an application sets any of these MQMD fields to values other than their defaults, and then does a put()
or get() on a queue manager that does not support these, the put() or get() raises an MQException with
MQRC_MD_ERROR. A successful put() or get() with such a queue manager always leaves the MQMD
fields set to their default values. Do not send a grouped or segmented message to a Java application that
runs against a queue manager that does not support message grouping and segmentation.

900 IBM MQ: Programming

If a Java application attempts to get() a message from a queue manager that does not support these
fields, and the physical message to be retrieved is part of a group of segmented messages (that is, it has
non-default values for the MQMD fields), it is retrieved without error. However, the MQMD fields in the
MQMessage are not updated, the MQMessage format property is set to MQFMT_MD_EXTENSION, and
the true message data is prefixed with an MQMDE structure that contains the values for the new fields.

Restrictions for IBM MQ classes for Java under CICS Transaction Server
In the CICS Transaction Server for z/OS environment, only the main (first) thread is allowed to issue
CICS or IBM MQ calls.

Note, that IBM MQ JMS classes are not supported for use in a CICS Java application.

It is therefore not possible to share MQQueueManager or MQQueue objects between threads in this
environment, or to create a new MQQueueManager on a child thread.

z/OS

“Miscellaneous differences between IBM MQ classes for Java on z/OS and other platforms” on

page 898 identifies some restrictions and variations that apply to the IBM MQ classes for Java when
running against a z/OS queue manager. Additionally, when running under CICS, the transaction control
methods on MQQueueManager are not supported. Instead of issuing MQQueueManager.commit() or
MQQueueManager.backout(), applications use the JCICS task synchronization methods, Task.commit()
and Task.rollback(). The Task class is supplied by JCICS in the com.ibm.cics.server package.

Developing object-oriented applications with IBM MQ 901

902 IBM MQ: Programming

Developing JMS and Java Platform, Enterprise Edition
applications

IBM MQ classes for Java Message Service is the JMS provider that is supplied with IBM MQ. The Java
Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) provides a standard way of
connecting applications running in a Java EE environment to an Enterprise Information System (EIS) such
as IBM MQ or Db2.

Using IBM MQ classes for JMS
IBM MQ classes for Java Message Service (IBM MQ classes for JMS) is the JMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for JMS provides two sets of extensions to the JMS API.

The JMS specification defines a set of interfaces that applications can use to perform messaging
operations. The latest version of the specification is JMS 2.0. The javax.jms package defines the JMS
interfaces, and a JMS provider implements these interfaces for a specific messaging product. IBM MQ
classes for JMS is a JMS provider that implements the JMS interfaces for IBM MQ.

The JMS specification expects ConnectionFactory and Destination objects to be administered objects. An
administrator creates and maintains administered objects in a central repository, and a JMS application
retrieves these objects using the Java Naming Directory Interface (JNDI). IBM MQ classes for JMS
supports the use of administered objects, and an administrator can use either the IBM MQ JMS
administration tool or MQ Explorer to create and maintain administered objects.

IBM MQ classes for JMS also provides two sets of extensions to the JMS API. The main focus of these
extensions concerns creating and configuring connection factories and destinations dynamically at run
time, but the extensions also provide function that is not directly related to messaging, such as function
for problem determination.

The IBM MQ JMS extensions
Previous releases of IBM MQ classes for JMS contain extensions that are implemented in objects
such as MQConnectionFactory, MQQueue, and MQTopic objects. These objects have properties
and methods that are specific to IBM MQ. The objects can be administered objects, or an
application can create the objects dynamically at run time. This release of IBM MQ classes for
JMS maintains these extensions, which are now known as the IBM MQ JMS extensions. You can
continue to use, without change, any applications that use these extensions.

The IBM JMS extensions
This release of IBM MQ classes for JMS provides a more generic set of extensions to the JMS API,
which are not specific to IBM MQ as the messaging system. These extensions are known as the
IBM JMS extensions and have the following broad objectives:
v To provide a greater level of consistency across IBM JMS providers
v To make it easier to write a bridge application between two IBM messaging systems
v To make it easier to port an application from one IBM JMS provider to another

The extensions provide function that is similar to that provided in IBM Message Service Client
for C/C++ and IBM Message Service Client for .NET.

From IBM MQ Version 8.0, the IBM MQ classes for JMS are built with Java 7.

The Java 7 runtime environment supports running earlier class file versions.

© Copyright IBM Corp. 2007, 2018 903

Related concepts:
“The JMS model” on page 950
The JMS model defines a set of interfaces that Java applications can use to perform messaging operations.
IBM MQ classes for JMS, as a JMS provider, defines how JMS objects are related to IBM MQ concepts.
The JMS specification expects certain JMS objects to be administered objects. The latest version, JMS 2.0
introduces a simplified API, while also retaining the classic API, from version 1.1.
“Using JMS 2.0 functionality” on page 1074
JMS 2.0 introduces several new areas of functionality to the IBM MQ classes for JMS.
Related information:
IBM MQ Java language interfaces

Why should I use IBM MQ classes for JMS?
Using IBM MQ classes for JMS has a number of advantages including being able to reuse any existing
JMS skills in your organization, and applications being more independent from the JMS provider and the
underlying IBM MQ configuration.

IBM MQ classes for JMS is one of two alternative APIs that Java applications can for use to access IBM
MQ resources. The other API is IBM MQ classes for Java. Although existing applications that use the IBM
MQ classes for Java continue to be fully supported, new applications should use the IBM MQ classes for
JMS (see “Choice of API” on page 905).

Summary of advantages of using IBM MQ classes for JMS

Using IBM MQ classes for JMS allows you to reuse existing JMS skills and provide application
independence.
v You can reuse JMS skills.

IBM MQ classes for JMS is a JMS provider that implements the JMS interfaces for IBM MQ as the
messaging system. If your organization is new to IBM MQ, but already has JMS application
development skills, you might find it easier to use the familiar JMS API to access IBM MQ resources
rather than one of the other APIs provided with IBM MQ.

v JMS is an integral part of Java Platform, Enterprise Edition (Java EE).
JMS is the natural API to use for messaging on the Java EE platform. Every application server that is
Java EE compliant must include a JMS provider. You can use JMS in application clients, servlets, Java
Server Pages (JSPs), enterprise Java beans (EJBs), and message driven beans (MDBs). Note in particular
that Java EE applications use MDBs to process messages asynchronously, and all messages are
delivered to MDBs as JMS messages.

v Connection factories and destinations can be stored as JMS administered objects in a central repository
rather than being hard-coded into an application.
An administrator can create and maintain JMS administered objects in a central repository, and IBM
MQ classes for JMS applications can retrieve these objects by using the Java Naming Directory
Interface (JNDI). JMS connection factories and destinations encapsulate IBM MQ-specific information
such as queue manager names, channel names, connection options, queue names, and topic names. If
connection factories and destinations are stored as administered objects, this information is not
hard-coded into an application. This arrangement therefore provides the application with a degree of
independence from the underlying IBM MQ configuration.

v JMS is an industry standard API that can provide application portability.
A JMS application can use JNDI to retrieve connection factories and destinations that are stored as
administered objects, and use only the interfaces that are defined in the javax.jms package to perform
messaging operations. The application is then entirely independent of any JMS provider, such as IBM
MQ classes for JMS, and can be ported from one JMS provider to another without any change to the
application. If JNDI is not available in a particular application environment, an IBM MQ classes for

904 IBM MQ: Programming

JMS application can use extensions to the JMS API to create and configure connection factories and
destinations dynamically at run time. The application is then completely self-contained, but is tied to
IBM MQ classes for JMS as the JMS provider.

v Bridge applications might be easier to write by using JMS.
A bridge application is an application that receives messages from one messaging system and sends
them to another messaging system. Writing a bridge application can be complicated by using
product-specific APIs and message formats. Instead, you can write a bridge application by using two
JMS providers, one for each messaging system. The application then uses only one API, the JMS API,
and processes only JMS messages.

Deployable environments

To provide integration with a Java EE application server, the Java EE standards require messaging
providers to supply a resource adapter. Following the Java EE Connector Architecture (JCA) specification,
IBM MQ provides a resource adapter that uses JMS to provide messaging functions within any certified
Java EE environment.

While it has been possible to use the IBM MQ classes for Java inside Java EE, this API is not engineered
or optimized for this purpose. See the IBM technote Using WebSphere MQ Java Interfaces in J2EE/JEE
Environments for details of IBM MQ classes for Java considerations within Java EE.

Outside of the Java EE environment, OSGi and JAR files are provided, making it easier for you to obtain
just the IBM MQ classes for JMS. These JAR files are now more readily deployable either stand-alone or
within software management frameworks such as Maven. For more information see the IBM technote
Obtaining the WebSphere MQ classes for JMS.

Choice of API

New applications should use the IBM MQ classes for JMS rather than IBM MQ classes for Java.

IBM MQ classes for JMS provide access to both the point-to-point and publish/subscribe messaging
features of IBM MQ. As well as sending JMS messages that provide support for the JMS standard
messaging model, applications can also send and receive messages without additional headers and so can
inter-operate with other IBM MQ applications, for example, C MQI applications. Full control of the
MQMD and MQ message payloads are available. Further IBM MQ features such as message streaming,
asynchronous put and report messages are also available. Using the supplied PCF helper classes, IBM
MQ PCF administration messages can be sent and received through the JMS API and can be used to
administer queue managers.

Features that have recently been added to IBM MQ, such as asynchronous consume and automatic
reconnection, are not available in the IBM MQ classes for Java, but are available in the IBM MQ classes
for JMS. Existing applications that use the IBM MQ classes for Java continue to be fully supported.

If you need access to IBM MQ features that are not available through the IBM MQ classes for JMS, you
can raise a Request for Enhancement (RFE). IBM can then advise whether the implementation is possible
in the IBM MQ classes for JMS implementation, or whether there is a best practice that can be followed.
For additional messaging features, as IBM is a contributor to the open standard, these features can be
raised as part of the JCP process.

Developing JMS and Java Platform, Enterprise Edition applications 905

http://www-01.ibm.com/support/docview.wss?uid=swg21266535
http://www-01.ibm.com/support/docview.wss?uid=swg21266535
http://www-01.ibm.com/support/docview.wss?uid=swg21683398

Related information:

IBM RFE Submission Process

JMS Java Specification Review Process

Using WebSphere MQ Java Interfaces in J2EE/JEE Environments

Obtaining the WebSphere MQ classes for JMS

Using JMS to send PCF messages
Tracing IBM MQ classes for JMS applications
Java and JMS troubleshooting

Prerequisites for IBM MQ classes for JMS
This topic tells you what you need to know before using IBM MQ classes for JMS. To develop and run
IBM MQ classes for JMS applications, you need certain software components as prerequisites.

For the latest information about the prerequisites for IBM MQ classes for JMS, see the IBM MQ System
Requirements web page and the product readme file.

To develop IBM MQ classes for JMS applications, you need a Java SE Software Development Kit (SDK).
Details of the JDKs supported with your operating system can be found on the IBM MQ System
requirements page. See IBM MQ Requirements.

To run IBM MQ classes for JMS applications, you need the following software components:
v An IBM MQ queue manager
v A Java Runtime Environment (JRE), for each system on which you run applications

v For IBM i, QShell, which is option 30 of the operating system

v z/OS For z/OS, UNIX and Linux System Services (USS)

If you require SSL connections to use cryptographic modules that are FIPS 140-2 certified, you need the
IBM Java JSSE FIPS provider (IBMJSSEFIPS). Every IBM Java SE SDK and JRE at Version 5 or later
contains IBMJSSEFIPS.

You can use Internet Protocol Version 6 (IPv6) addresses in your IBM MQ classes for JMS applications
provided IPv6 addresses are supported by your Java virtual machine (JVM) and the TCP/IP
implementation on your operating system. The IBM MQ JMS administration tool (see Configuring JMS
objects using the administration tool) also accepts IPv6 addresses.

The IBM MQ JMS administration tool and IBM MQ Explorer use the Java Naming and Directory
Interface (JNDI) to access a directory service, which stores administered objects. IBM MQ classes for JMS
applications can also use JNDI to retrieve administered objects from a directory service. A service
provider is code that provides access to a directory service by mapping JNDI calls to calls to the directory
service. A file system service provider in the files fscontext.jar and providerutil.jar is supplied with IBM
MQ classes for JMS. The file system service provider provides access to a directory service based on the
local file system.

If you intend to use a directory service based on an LDAP server, you must install and configure an
LDAP server, or have access to an existing LDAP server. In particular, you must configure the LDAP
server to store Java objects. For information about how to install and configure your LDAP server, see the
documentation that is supplied with the server.

906 IBM MQ: Programming

https://www.ibm.com/developerworks/rfe/execute?use_case=submitRfe
https://www.jcp.org/en/jsr/detail?id=368
http://www-01.ibm.com/support/docview.wss?uid=swg21266535
http://www-01.ibm.com/support/docview.wss?uid=swg21683398
https://www.ibm.com/developerworks/community/blogs/messaging/entry/using_pcf_with_mq_jms?lang=en
http://www.ibm.com/software/integration/wmq/requirements/index.html
http://www.ibm.com/software/integration/wmq/requirements/index.html
http://www.ibm.com/support/docview.wss?rs=171&uid=swg27006097
http://www.ibm.com/software/integration/wmq/requirements/index.html

Preparing JMS programs for the IBM MQ client for HP Integrity NonStop Server
This topic explains what you need to know before you develop and run JMS programs for the IBM MQ
client for HP Integrity NonStop Server.

The IBM MQ classes for JMS are installed as part of the IBM MQ client for HP Integrity NonStop Server
installation. For details of a summary of the contents of the installation, see File system.

Some aspects of client functionality are specific to the host operating system. For more information about
the supported features for the IBM MQ client for HP Integrity NonStop Server, see IBM MQ client for HP
Integrity NonStop Server supported environments and features.

Prerequisites

To build and run JMS applications, the HP Integrity NonStop Server for Java component must be installed
and available.

Setup

For information about setting up the environment to run and build applications in which you can use the
IBM MQ classes for JMS, see “Environment variables used by IBM MQ classes for JMS” on page 912.

For information about the steps required to configure a queue manager to accept connections from client
applications, see “Post installation setup for IBM MQ classes for JMS applications” on page 928.

For information about validating your IBM MQ classes for JMS environment, see “The point-to-point
installation verification test for IBM MQ classes for JMS” on page 932.

Writing applications

For more information about writing JMS applications, see “Writing IBM MQ classes for JMS applications”
on page 950.

For more information about using the IBM MQ JMS administration tool, see Configuring JMS objects
using the administration tool.

Samples

Sample applications are provided in the following subdirectory of the installation: opt/mqm/samp/jms.

For more information about the configuration steps required to run the samples, see “Preparing and
running the sample programs” on page 485.

Problem solving

For information about solving problems, see“Solving problems with IBM MQ classes for JMS” on page
942.

Developing JMS and Java Platform, Enterprise Edition applications 907

Installation and configuration of IBM MQ classes for JMS
This section describes the directories and files that are created when you install IBM MQ classes for JMS
and tells you how to configure IBM MQ classes for JMS after installation.
Related concepts:
“What is installed for IBM MQ classes for JMS” on page 909
A number of files and directories are created when you install IBM MQ classes for JMS. On Windows,
some configuration is performed during installation by automatically setting environment variables. On
other platforms, and in certain Windows environments, you must set environment variables before you
can run IBM MQ classes for JMS applications.
“Running IBM MQ classes for JMS applications under the Java security manager” on page 924
IBM MQ classes for JMS can run with the Java security manager enabled. To run applications successfully
with the security manager enabled, you must configure your Java virtual machine (JVM) with a suitable
policy configuration file.
“Using the IBM MQ resource adapter” on page 1099
The resource adapter allows applications that are running in an application server to access IBM MQ
resources. It supports inbound and outbound communication.
“Post installation setup for IBM MQ classes for JMS applications” on page 928
This topic tells you what authorities IBM MQ classes for JMS applications need in order to access the
resources of a queue manager. It also introduces connection modes and describes how to configure a
queue manager so that applications can connect in client mode.
“The point-to-point installation verification test for IBM MQ classes for JMS” on page 932
A point-to-point installation verification test (IVT) program is supplied with IBM MQ classes for JMS. The
program connects to a queue manager in either bindings or client mode, sends a message to the queue
called SYSTEM.DEFAULT.LOCAL.QUEUE, and then receives the message from the queue. The program
can create and configure all the objects that it requires dynamically at run time, or it can use JNDI to
retrieve administered objects from a directory service.
“The publish/subscribe installation verification test for IBM MQ classes for JMS” on page 936
A publish/subscribe installation verification test (IVT) program is supplied with IBM MQ classes for JMS.
The program connects to a queue manager in either bindings or client mode, subscribes to a topic,
publishes a message on the topic, and then receives the message that it has just published. The program
can create and configure all the objects that it requires dynamically at run time, or it can use JNDI to
retrieve administered objects from a directory service.
“The installation verification test program for the IBM MQ resource adapter” on page 1139
The IVT program is supplied as an EAR file. To use the program, you must deploy it and define some
objects as JCA resources.
“Configuring the resource adapter for outbound communication” on page 1125
To configure outbound communication, define the properties of a ConnectionFactory object and an
administered destination object.
“Support for OSGi” on page 941
OSGi provides a framework that supports the deployment of applications as bundles. Nine OSGi bundles
are supplied as part of the IBM MQ classes for JMS.
“Solving problems with IBM MQ classes for JMS” on page 942
You can investigate problems by running the installation verification programs, and by using the trace
and log facilities.
Related reference:
“Scripts provided with IBM MQ classes for JMS” on page 940
A number of scripts are provided to assist with common tasks that need to be performed when using
IBM MQ classes for JMS.
Related information:
Problem determination for the IBM MQ resource adapter

908 IBM MQ: Programming

What is installed for IBM MQ classes for JMS
A number of files and directories are created when you install IBM MQ classes for JMS. On Windows,
some configuration is performed during installation by automatically setting environment variables. On
other platforms, and in certain Windows environments, you must set environment variables before you
can run IBM MQ classes for JMS applications.

For most operating systems, the IBM MQ classes for JMS are installed as an optional component when
you install IBM MQ. For the IBM MQ client for HP Integrity NonStop Server, the IBM MQ classes for
JMS are installed by default. For more information about installing IBM MQ, see:
 Installing an IBM MQ server
 Installing an IBM MQ client

z/OS

Installing IBM MQ for z/OS

Important:

v Apart from the five relocatable JAR files described in this topic, copying the IBM MQ classes for JMS
JAR files or native libraries to other machines, or to a different location on a machine where the IBM
MQ classes for JMS have been installed, is not supported.

v In addition, including the com.ibm.mq.allclient.jar file, or the IBM MQ classes for JMS, within
application archives (such as enterprise application archives, or EAR files), is not supported.

You should therefore avoid bundling IBM MQ jar files in your applications (EAR files on WebSphere
Application Server), otherwise you might encounter unexpected issues associated with running
back-level, unpatched code.

Installation directories

Table 108 shows where the IBM MQ classes for JMS files are installed on each platform.

Table 108. IBM MQ classes for JMS installation directories

Platform Directory

AIX MQ_INSTALLATION_PATH/java

HP Integrity NonStop Server MQ_INSTALLATION_PATH/opt/mqm/java

HP-UX, Linux, and Solaris MQ_INSTALLATION_PATH/java

IBM i
/QIBM/ProdData/mqm/java

Windows MQ_INSTALLATION_PATH\java

z/OS z/OS MQ_INSTALLATION_PATH/mqm/V8R0M0/java

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

The installation directory includes the following content:
v The IBM MQ classes for JMS JAR files, which are in the MQ_INSTALLATION_PATH\java\lib directory.
v The IBM MQ native libraries, which are used by applications that use the Java Native Interface.

The 32-bit native libraries are installed into the MQ_INSTALLATION_PATH\java\lib directory and the
64-bit native libraries can be found in the MQ_INSTALLATION_PATH\java\lib64 directory.
For more information about the IBM MQ native libraries, see “Configuring the Java Native Interface
(JNI) libraries” on page 914.

v Additional scripts that are described in “Scripts provided with IBM MQ classes for JMS” on page 940.
These scripts are in the MQ_INSTALLATION_PATH\java\bin directory.

Developing JMS and Java Platform, Enterprise Edition applications 909

v The specifications of the IBM MQ classes for JMS API. The Javadoc tool has been used to generate the
HTML pages that contain the specifications of the API.
The HTML pages are in the MQ_INSTALLATION_PATH\java\doc\WMQJMSClasses directory:
– UNIX

Linux

Windows

On UNIX, Linux, and Windows systems, this subdirectory contains

the individual HTML pages.

– z/OS

On IBM i and z/OS, the HTML pages are in a file called

wmqjms_javadoc.jar.
v Support for OGSi. OSGi bundles are installed in the java\lib\OSGi directory and described in

“Support for OSGi” on page 941.
v The IBM MQ resource adapter, which can be deployed into any Java Platform, Enterprise Edition 7 (

Java EE 7) compliant application server.
The IBM MQ resource adapter is in the MQ_INSTALLATION_PATH\java\lib\jca directory; for more
information, see “Using the IBM MQ resource adapter” on page 1099

v Windows On Windows, symbols that can be used for debugging are installed in the
MQ_INSTALLATION_PATH\java\lib\symbols directory.

The installation directory also includes some files that belong to other IBM MQ components. These
directories are as follows:
v The IBM MQ transport for SOAP, which provides a JMS transport for SOAP, is installed into the

MQ_INSTALLATION_PATH\java\lib\soap directory. For further information on IBM MQ transport for
SOAP, see “IBM MQ transport for SOAP” on page 1271.

v On distributed platforms, the IBM MQ Bridge for HTTP is installed in the MQ_INSTALLATION_PATH\java\
lib\http directory. For further information on IBM MQ bridge for HTTP, see “IBM MQ bridge for
HTTP” on page 1337

The JSON4J.jar file and com.ibm.msg.client.mqlight package are not needed by the IBM

MQ classes for Java and IBM MQ classes for JMS. From Version 8.0.0, Fix Pack 9, the following changes
are therefore made to the com.ibm.mq.allclient.jar file :
v The reference to JSON4J.jar file is removed from the class path statement within the manifest file for

the com.ibm.mq.allclient.jar file.
v The package com.ibm.msg.client.mqlight is no longer included inside the com.ibm.mq.allclient.jar

file.

Sample applications

Some sample applications are supplied with IBM MQ classes for JMS. Table 109 shows where the sample
applications are installed on each platform.

Table 109. Samples directories

Platform Directory

AIX AIX MQ_INSTALLATION_PATH/samp/jms

HP Integrity NonStop Server MQ_INSTALLATION_PATH/opt/mqm/samp/jms

HP-UX Linux

Solaris HP-UX, Linux, and Solaris

MQ_INSTALLATION_PATH/samp/jms

IBM i
/QIBM/ProdData/mqm/java/samples/jms

Windows Windows MQ_INSTALLATION_PATH\tools\jms

z/OS z/OS MQ_INSTALLATION_PATH/mqm/V8R0M0/java/samples/jms

910 IBM MQ: Programming

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

After installation, you might need to perform some configuration tasks to compile and run applications.

“Environment variables used by IBM MQ classes for JMS” on page 912 describes the classpath that is
required to run simple IBM MQ classes for JMS applications. This topic also describes additional JAR files
that need to be referenced in special circumstances and the environment variables that you must set to
run the scripts that are provided with IBM MQ classes for JMS.

To control properties, such as tracing and logging of an application, you need to provide a configuration
properties file. The IBM MQ classes for JMS configuration properties file is described in “The IBM MQ
classes for JMS configuration file” on page 916.

Relocatable JAR files

Within an enterprise, the following files can be moved to systems that need to run IBM MQ classes for
JMS:
v -com.ibm.mq.allclient.jar
v -com.ibm.mq.traceControl.jar
v -jms.jar
v -fscontext.jar
v -providerutil.jar

The file com.ibm.mq.allclient.jar contains the IBM MQ classes for JMS, the IBM MQ classes for Java,
and the PCF and Headers Classes. If you move this file to a new location, make sure that you take steps
to keep this new location maintained with new IBM MQ Fix Packs. Also, make sure that the use of this
file is made known to IBM Support if you are getting an interim fix.

To determine the version of the file com.ibm.mq.allclient.jar, use the following command:
java -jar com.ibm.mq.allclient.jar

The following example shows some sample output from this command:
C:\Program Files\IBM\WebSphere MQ_1\java\lib>java -jar com.ibm.mq.allclient.jar
Name: Java Message Service Client
Version: 8.0.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/WebSphere MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: WebSphere MQ classes for Java Message Service
Version: 8.0.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/WebSphere MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: WebSphere MQ JMS Provider
Version: 8.0.0.0
Level: p000-L140428.1 mqjbnd=p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/WebSphere MQ_1/java/lib/com.ibm.mq.allclient.jar

Name: Common Services for Java Platform, Standard Edition
Version: 8.0.0.0
Level: p000-L140428.1
Build Type: Production
Location: file:/C:/Program Files/IBM/WebSphere MQ_1/java/lib/com.ibm.mq.allclient.jar

The file com.ibm.mq.traceControl.jar is used to dynamically control trace for IBM MQ classes for JMS
applications.

Developing JMS and Java Platform, Enterprise Edition applications 911

The fscontext.jar and providerutil.jar files are required if your application performs JNDI lookups using a
file system context.
Related information:
Problems in deploying the resource adapter

Environment variables used by IBM MQ classes for JMS:

Before you can compile and run IBM MQ classes for JMS applications, the setting for your CLASSPATH
environment variable must include the IBM MQ classes for JMS Java archive (JAR) file. Depending on
your requirements, you might need to add other JAR files to your class path. To run the scripts provided
with IBM MQ classes for JMS, other environment variables must be set.

Important: Setting the Java option -Xbootclasspath, to include the IBM MQ classes for JMS, is not
supported.

To compile and run IBM MQ classes for JMS applications, use the CLASSPATH setting for your platform
as shown in Table 110. The setting includes the samples directory, so that you can compile and run the
IBM MQ classes for JMS sample applications. Alternatively, you can specify the class path on the java
command instead of using the environment variable.

Table 110. CLASSPATH setting to compile and run IBM MQ classes for JMS applications, including the sample
applications

Platform CLASSPATH setting

AIX AIX CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mqjms.jar:
MQ_INSTALLATION_PATH/samp/jms/samples:

HP Integrity NonStop
Server

CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mqjms.jar:
MQ_INSTALLATION_PATH/samp/jms/samples:

HP-UX Linux

Solaris HP-UX,
Linux, and Solaris

CLASSPATH= MQ_INSTALLATION_PATH/java/lib/com.ibm.mqjms.jar:
MQ_INSTALLATION_PATH/samp/jms/samples:

IBM i
CLASSPATH=/QIBM/ProdData/mqm/java/lib/com.ibm.mqjms.jar:
/QIBM/ProdData/mqm/java/samples/jms/samples:

Windows Windows CLASSPATH= MQ_INSTALLATION_PATH\java\lib\com.ibm.mqjms.jar;
MQ_INSTALLATION_PATH\tools\jms\samples;

z/OS z/OS CLASSPATH= MQ_INSTALLATION_PATH/mqm/V8R0M0/java/lib/com.ibm.mqjms.jar:
MQ_INSTALLATION_PATH/mqm/V8R0M0/java/samples/jms/samples:

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

The manifest of the JAR file com.ibm.mqjms.jar contains references to most of the other JAR files required
by IBM MQ classes for JMS applications, and so you do not need to add these JAR files to your class
path. These JAR files include those required by applications that use the Java Naming and Directory
Interface (JNDI) to retrieve administered objects from a directory service and by applications that use the
Java Transaction API (JTA).

However, you must include additional JAR files in your class path in the following circumstances:
v If you are using channel exit classes that implement the channel exit interfaces defined in the

com.ibm.mq package, instead of those defined in the com.ibm.mq.exits package, you must add the IBM
MQ classes for Java JAR file, com.ibm.mq.jar, to your class path.

v If your application uses JNDI to retrieve administered objects from a directory service, you must also
add the following JAR files to your class path:
– fscontext.jar

912 IBM MQ: Programming

– providerutil.jar

And if your application uses the JTA, you must also add jta.jar to your class path.
Note that these additional JAR files are required only for compiling your applications, not for running
them.

The scripts provided with IBM MQ classes for JMS use the following environment variables:

MQ_JAVA_DATA_PATH
This environment variable specifies the directory for log and trace output.

MQ_JAVA_INSTALL_PATH
This environment variable specifies the directory where IBM MQ classes for JMS is installed.

MQ_JAVA_LIB_PATH
This environment variable specifies the directory where the IBM MQ classes for JMS libraries are
stored, as shown in Table 111 on page 914.

On Windows, after installing IBM MQ, run the command setmqenv otherwise the following error message
might appear when you are issuing a dspmqver command:
AMQ8351: IBM MQ Java environment has not been configured correctly.

On any other platform, you must set the environment variables yourself.

To set the environment variables if you are using a 32-bit JVM on UNIX, HP Integrity NonStop Server, or
Linux systems, you can use the script setjmsenv.

To set the environment variables if you are using a 64-bit JVM on a UNIX or Linux system, you can use
the script setjmsenv64. These scripts are in the MQ_INSTALLATION_PATH/java/bin directory, where
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

You can use the setjmsenv or setjmsenv64 script in a variety of ways: You can use it as a basis for setting
the required environment variables, as shown in the table, or add them to .profile using a text editor. If
you have a non-typical setup, edit the script contents as necessary. Alternatively, you can run the script in
every session from which JMS startup scripts are to be run. If you choose this option you need to run the
script in every shell window you start, during the JMS verification process by typing . ./setjmsenv or .
./setjmsenv64

On IBM i, you must set the environment variable QIBM_MULTI_THREADED to Y. You
can then run multithreaded applications in the same way that you run single threaded applications. See
Setting up IBM MQ with Java and JMS for more information.

Developing JMS and Java Platform, Enterprise Edition applications 913

Configuring the Java Native Interface (JNI) libraries:

IBM MQ classes for JMS applications, that either connect to a queue manager using the bindings
transport, or that connect to a queue manager using the client transport and use channel exit programs
written in languages other than Java, need to be run in an environment that allows access to the Java
Native Interface (JNI) libraries.

About this task

To set up this environment, you must configure the environment's library path so that the Java virtual
machine (JVM) can load the mqjbnd library before you start the IBM MQ classes for JMS application.

IBM MQ provides two Java Native Interface (JNI) libraries:

mqjbnd
This library is used by applications that connect to a queue manager using the bindings
transport. It provides the interface between the IBM MQ classes for JMS and the queue manager.
The mqjbnd library installed with IBM MQ Version 8.0 can be used to connect to any IBM MQ
Version 8.0 (or earlier) queue manager.

mqjexitstub02
The mqjexitstub02 library is loaded by the IBM MQ classes for JMS when an application connects
to a queue manager using the client transport and uses a channel exit program written in a
language other than Java.

On certain platforms, IBM MQ installs 32-bit and 64-bit versions of these JNI libraries. The location of the
libraries for each platform is shown in Table 1.

Table 111. The location of the IBM MQ classes for JMS libraries for each platform

Platform Directory containing the IBM MQ classes for JMS libraries

AIX AIX HP-UX HP-UX Linux

Linux Linux (POWER, x86-64 and zSeries s390x

platforms) Solaris Solaris (x86-64 and SPARC
platforms)

MQ_INSTALLATION_PATH/java/lib (32-bit libraries)
MQ_INSTALLATION_PATH/java/lib64 (64-bit libraries)

Linux

Linux (POWER, x86-64 and
zSeries s390x platforms)

MQ_INSTALLATION_PATH/java/lib (32 bit libraries)
MQ_INSTALLATION_PATH/java/lib64 (64 bit libraries)

Windows Windows MQ_INSTALLATION_PATH\java\lib (32-bit libraries)
MQ_INSTALLATION_PATH\java\lib64 (64-bit libraries)

z/OS z/OS MQ_INSTALLATION_PATH/mqm/V8R0M0/java/lib
(31-bit and 64-bit libraries)

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Note: z/OS On z/OS, you can use either a 31 bit or 64 bit Java virtual machine (JVM). You do not
have to specify which JNI libraries to use; IBM MQ classes for JMS can determine for itself which JNI
libraries to load.

Procedure

1. Configure the JVM's java.library.path property, which can be done in two ways:
v By specifying the JVM argument as shown in the following example:

-Djava.library.path=<path_to_library_directory>

914 IBM MQ: Programming

Linux For example, for a 64-bit JVM on Linux for a default location installation, specify:
-Djava.library.path=/opt/mqm/java/lib64

v By configuring the shell's environment such that the JVM will set up its own java.library.path.
This path varies by platform and by the location in which you installed IBM MQ. For example, for
a 64-bit JVM and a default IBM MQ installation location, you can use the following settings:

AIX

export LIBPATH=/usr/mqm/java/lib64:$LIBPATH

HP-UX Linux Solaris

export LD_LIBRARY_PATH=/opt/mqm/java/lib64:$LD_LIBRARY_PATH

Windows

set PATH=C:\Program Files\IBM\MQ\java\lib64;%PATH%

An example of the exception stack that you see when the environment has not been configured
correctly is as follows:
Caused by: com.ibm.mq.jmqi.local.LocalMQ$4: CC=2;RC=2495;
AMQ8598: Failed to load the WebSphere MQ native JNI library: ’mqjbnd’.

at com.ibm.mq.jmqi.local.LocalMQ.loadLib(LocalMQ.java:1268)
at com.ibm.mq.jmqi.local.LocalMQ$1.run(LocalMQ.java:309)
at java.security.AccessController.doPrivileged(AccessController.java:400)
at com.ibm.mq.jmqi.local.LocalMQ.initialise_inner(LocalMQ.java:259)
at com.ibm.mq.jmqi.local.LocalMQ.initialise(LocalMQ.java:221)
at com.ibm.mq.jmqi.local.LocalMQ.<init>(LocalMQ.java:1350)
at com.ibm.mq.jmqi.local.LocalServer.<init>(LocalServer.java:230)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:86)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:58)
at java.lang.reflect.Constructor.newInstance(Constructor.java:542)
at com.ibm.mq.jmqi.JmqiEnvironment.getInstance(JmqiEnvironment.java:706)
at com.ibm.mq.jmqi.JmqiEnvironment.getMQI(JmqiEnvironment.java:640)
at com.ibm.msg.client.wmq.factories.WMQConnectionFactory.createV7ProviderConnection(WMQConnectionFactory.java:8437)
... 7 more

Caused by: java.lang.UnsatisfiedLinkError: mqjbnd (Not found in java.library.path)
at java.lang.ClassLoader.loadLibraryWithPath(ClassLoader.java:1235)
at java.lang.ClassLoader.loadLibraryWithClassLoader(ClassLoader.java:1205)
at java.lang.System.loadLibrary(System.java:534)
at com.ibm.mq.jmqi.local.LocalMQ.loadLib(LocalMQ.java:1240)
... 20 more

2. After either the 32-bit or 64-bit environment has been set up, start the IBM MQ classes for JMS
application using the command:
java application-name

where application-name is the name of the IBM MQ classes for JMS application to be run.
An exception containing IBM MQ Reason Code 2495 (MQRC_MODULE_NOT_FOUND) is thrown by
the IBM MQ classes for JMS if:
v The IBM MQ classes for JMS application is run in a 32-bit Java runtime environment, and a 64-bit

environment has been set up for the IBM MQ classes for JMS, as the 32-bit Java runtime
environment is unable to load the 64-bit Java Native Library.

v The IBM MQ classes for JMS application is run in a 64-bit Java runtime environment, and a 32-bit
environment has been set up for the IBM MQ classes for JMS, as the 64-bit Java runtime
environment is unable to load the 32-bit Java Native Library.

Developing JMS and Java Platform, Enterprise Edition applications 915

The IBM MQ classes for JMS configuration file:

An IBM MQ classes for JMS configuration file specifies properties that are used to configure IBM MQ
classes for JMS.

Note: The properties defined in configuration file can also be set as JVM system properties. If a property
is set both in the configuration file and as a system property, the system property takes precedence.
Therefore, if required, you can override any property in the configuration file by specifying it as a system
property on the java command.

The format of an IBM MQ classes for JMS configuration file is that of a standard Java properties file. A
sample configuration file called jms.config is supplied in the bin subdirectory of the IBM MQ classes for
JMS installation directory. This file documents all the supported properties and their default values.

You can choose the name and location of a IBM MQ classes for JMS configuration file. When you start
your application, use a java command with the following format:
java -Dcom.ibm.msg.client.config.location= config_file_url application_name

In the command, config_file_url is a uniform resource locator (URL) that specifies the name and location
of the IBM MQ classes for JMS configuration file. URLs of the following types are supported: http, file,
ftp, and jar.

Here is an example of a java command:
java -Dcom.ibm.msg.client.config.location=file:/D:/mydir/myjms.config MyAppClass

This command identifies the IBM MQ classes for JMS configuration file as the file D:\mydir\mjms.config
on the local Windows system.

When an application starts, IBM MQ classes for JMS reads the contents of the configuration file and
stores the specified properties in an internal property store. If the java command does not identify a
configuration file, or if the configuration file cannot be found, IBM MQ classes for JMS uses the default
values for all the properties.

An IBM MQ classes for JMS configuration file can be used with any of the supported transports between
an application and a queue manager or broker.

Overriding properties specified in an IBM MQ MQI client configuration file

An IBM MQ MQI client configuration file can also specify properties that are used to configure IBM MQ
classes for JMS. However, properties specified in an IBM MQ MQI client configuration file apply only
when an application connects to a queue manager in client mode.

If required, you can override any attribute in a IBM MQ MQI client configuration file by specifying it as
a property in a IBM MQ classes for JMS configuration file. To override an attribute in a IBM MQ MQI
client configuration file, use an entry with the following format in the IBM MQ classes for JMS
configuration file:
com.ibm.mq.cfg. stanza. propName = propValue

The variables in the entry have the following meanings:

stanza
The name of the stanza in the IBM MQ MQI client configuration file that contains the attribute

propName
The name of the attribute as specified in the IBM MQ MQI client configuration file

916 IBM MQ: Programming

propValue
The value of the property that overrides the value of the attribute specified in the IBM MQ MQI
client configuration file

Alternatively, you can override an attribute in an IBM MQ MQI client configuration file by specifying the
property as a system property on the java command. Use the preceding format to specify the property as
a system property.

Only the following attributes in an IBM MQ MQI client configuration file are relevant to IBM MQ classes
for JMS. If you specify or override other attributes, it has no effect. Specifically, please note that the
ChannelDefinitionFile and ChannelDefinitionDirectory in the CHANNELS stanza of the client
configuration file are not used. See “Using a client channel definition table with IBM MQ classes for JMS”
on page 1060 for details of how to use the CCDT with the IBM MQ classes for JMS.

Table 112. Which stanza of the client configuration file contains which attribute.

Stanza Attribute

CHANNELS stanza of the client configuration file Put1DefaultAlwaysSync

CHANNELS stanza of the client configuration file DefRecon

CHANNELS stanza of the client configuration file ReconDelay

CHANNELS stanza of the client configuration file PasswordProtection

ClientExitPath stanza of the client configuration file ExitsDefaultPath

ClientExitPath stanza of the client configuration file ExitsDefaultPath64

ClientExitPath stanza of the client configuration file JavaExitsClasspath

JMQI stanza of the client configuration file useMQCSPauthentication

MessageBuffer stanza of the client configuration file MaximumSize

MessageBuffer stanza of the client configuration file PurgeTime

MessageBuffer stanza of the client configuration file UpdatePercentage

TCP stanza of the client configuration file ClntRcvBufSize

TCP stanza of the client configuration file ClntSndBufSize

TCP stanza of the client configuration file Connect_Timeout

TCP stanza of the client configuration file KeepAlive

For further details on the IBM MQ MQI client configuration see Configuring a client using a
configuration file

Java Standard Environment Trace stanza:

Use the Java Standard Environment Trace Settings stanza to configure the IBM MQ classes for JMS trace
facility.

com.ibm.msg.client.commonservices.trace.outputName = traceOutputName
traceOutputName is the directory and file name to which trace output is sent.

traceOutputName defaults to a file named mqjms_ PID.trc in the current working directory where PID
is the current process ID. If a process ID is unavailable, a random number is generated and prefixed
with the letter f. To include the process ID in a file name you specify, use the string %PID%.

If you specify an alternative directory, it must exist, and you must have write permission for this
directory. If you do not have write permission, the trace output is written to System.err.

com.ibm.msg.client.commonservices.trace.include = includeList
includeList is a list of packages and classes that are traced, or the special values ALL or NONE.

Developing JMS and Java Platform, Enterprise Edition applications 917

Separate package or class names with a semicolon, ;. includeList defaults to ALL, and traces all
packages and classes in IBM MQ classes for JMS.

Note: You can include a package but then exclude subpackages of that package. For example, if you
include package a.b and exclude package a.b.x, the trace includes everything in a.b.y and a.b.z,
but not a.b.x or a.b.x.1.

com.ibm.msg.client.commonservices.trace.exclude = excludeList
excludeList is a list of packages and classes that are not traced, or the special values ALL or NONE.

Separate package or class names with a semicolon, ;. excludeList defaults to NONE, and therefore
excludes no packages and classes in IBM MQ classes for JMS from being traced.

Note: You can exclude a package but then include subpackages of that package. For example, if you
exclude package a.b and include package a.b.x, the trace includes everything in a.b.x and a.b.x.1,
but not a.b.y or a.b.z.

Any package or class that is specified, at the same level, as both included and excluded is included.

com.ibm.msg.client.commonservices.trace.maxBytes = maxArrayBytes
maxArrayBytes is the maximum number of bytes that are traced from any byte arrays.

If maxArrayBytes is set to a positive integer, it limits the number of bytes in a byte-array that are
written out to the trace file. It truncates the byte array after writing maxArrayBytes out. Setting
maxArrayBytes reduces the size of the resulting trace file, and reduces the effect of tracing on the
performance of the application.

A value of 0 for this property means that none of the contents of any byte arrays are sent to the trace
file.

The default value is -1, which removes any limit on the number of bytes in a byte array that are sent
to the trace file.

com.ibm.msg.client.commonservices.trace.limit = maxTraceBytes
maxTraceBytes is the maximum number of bytes that are written to a trace output file.

maxTraceBytes works with traceCycles. If the number of bytes of trace written is near to the limit,
the file is closed, and a new trace output file is started.

A value of 0 means that a trace output file has zero length. The default value is -1, which means that
the amount of data to be written to a trace output file is unlimited.

com.ibm.msg.client.commonservices.trace.count = traceCycles
traceCycles is the number of trace output files to cycle through.

If the current trace output file reaches the limit specified by maxTraceBytes, the file is closed. Further
trace output is written to the next trace output file in sequence. Each trace output file is distinguished
by a numeric suffix appended to the file name. The current or most recent trace output file is
mqjms.trc.0, the next most recent trace output file is mqjms.trc.1. Older trace files follow the same
numbering pattern up to the limit.

The default value of traceCycles is 1. If traceCycles is 1, when the current trace output file reaches
its maximum size, the file is closed and deleted. A new trace output file with the same name is
started. Therefore, only one trace output file exists at a time.

com.ibm.msg.client.commonservices.trace.parameter = traceParameters
traceParameters controls whether method parameters and return values are included in the trace.

traceParameters defaults to TRUE. If traceParameters is set to FALSE, only method signatures are
traced.

com.ibm.msg.client.commonservices.trace.startup = startup
There is an initialization phase of IBM MQ classes for JMS during which resources are allocated. The
main trace facility is initialized during the resource allocation phase.

918 IBM MQ: Programming

If startup is set to TRUE, startup trace is used. Trace information is produced immediately and
includes the setup of all components, including the trace facility itself. Startup trace information can
be used to diagnose configuration problems. Startup trace information is always written to
System.err.

startup defaults to FALSE.

startup is checked before initialization is complete. For this reason, only specify the property on the
command line as a Java system property. Do not specify it in the IBM MQ classes for JMS
configuration file.

com.ibm.msg.client.commonservices.trace.compress = compressedTrace
Set compressedTrace to TRUE to compress trace output.

The default value of compressedTrace is FALSE.

If compressedTrace is set to TRUE, trace output is compressed. The default trace output file name has
the extension .trz. If compression is set to FALSE, the default value, the file has the extension .trc to
indicate it is uncompressed. However if the file name for the trace output has been specified in
traceOutputName that name is used instead; no suffix is applied to the file.

Compressed trace output is smaller than uncompressed. Because there is less I/O, it can be written
out faster than uncompressed trace. Compressed tracing has less effect on the performance of IBM
MQ classes for JMS than uncompressed tracing.

If maxTraceBytes and traceCycles are set, multiple compressed trace files are created in place of
multiple flat files.

If IBM MQ classes for JMS ends in an uncontrolled manner, a compressed trace file might not be
valid. For this reason, trace compression must only be used when IBM MQ classes for JMS closes
down in a controlled manner. Only use trace compression if the problems being investigated do not
cause the JVM itself to stop unexpectedly. Do not use trace compression when diagnosing problems
that can result in System.Halt() shutdowns or abnormal, uncontrolled JVM terminations.

com.ibm.msg.client.commonservices.trace.level = traceLevel
traceLevel specifies a filtering level for the trace. The defined trace levels are as follows:

TRACE_NONE 0

TRACE_EXCEPTION 1

TRACE_WARNING 3

TRACE_INFO 6

TRACE_ENTRYEXIT 8

TRACE_DATA 9

TRACE_ALL Integer.MAX_VALUE

Each trace level includes all lower levels. For example, if trace level is set at TRACE_INFO, then any
trace point with a defined level of TRACE_EXCEPTION, TRACE_WARNING, or TRACE_INFO is written to the
trace. All other trace points are excluded.

com.ibm.msg.client.commonservices.trace.standalone = standaloneTrace

standaloneTrace controls whether the IBM MQ JMS client tracing service is used in a WebSphere
Application Server environment.

If standaloneTrace is set to TRUE, the IBM MQ JMS client tracing properties are used to determine the
trace configuration.

If standaloneTrace is set to FALSE, and the IBM MQ JMS client is running in an WebSphere
Application Server container, the WebSphere Application Server trace service is used. The trace
information that is generated depends upon the trace settings of the application server.

The default value of standaloneTrace is FALSE.

Developing JMS and Java Platform, Enterprise Edition applications 919

Logging stanza:

Use the Logging stanza to configure the IBM MQ classes for JMS log facility.

The following properties can be included in the Logging stanza:

com.ibm.msg.client.commonservices.log.outputName = path
The name of the log file that is used by the IBM MQ classes for JMS log facility. The default value is
mqjms.log, which is written to the current working directory for the Java Runtime Environment that
the IBM MQ classes for JMS are running in.

The property can take one of the following values:
v a single path name
v a comma-separated list of path names (all data is logged to all files)

Each path name can be an absolute or relative path name or:

"stderr" or "System.err"
Represents the standard error stream.

"stdout" or "System.out"
Represents the standard output stream.

com.ibm.msg.client.commonservices.log.maxBytes
The maximum number of bytes that are logged from any call to log message data.

Positive integer
Data is written up to that value of bytes per log call.

0 No data is written.

-1 Unlimited data is written (default).

com.ibm.msg.client.commonservices.log.limit
The maximum number of bytes that are written to any 1 log file (default is 262144).

Positive integer
Data is written up to that value of bytes per log file.

0 No data is written.

-1 Unlimited data is written.

com.ibm.msg.client.commonservices.log.count
The number of log files to cycle through. As each file reaches
com.ibm.msg.client.commonservices.trace.limit trace will begin in the next file, the default is 3.

Positive integer
Number of files to cycle through.

0 A single file.

920 IBM MQ: Programming

Java SE Specifics stanza:

Use the Java SE Specifics stanza to configure properties that are used when the IBM MQ classes for JMS
are being used in a Java Standard Edition environment.

com.ibm.msg.client.commonservices.j2se.produceJavaCore = TRUE | FALSE
Determines whether a JavaCore file is written immediately after the IBM MQ classes for JMS has
generated an FDC file. If this is set to TRUE a JavaCore file is produced in the working directory of
the Java Runtime Environment in which the IBM MQ classes for JMS are running.

TRUE Generate JavaCore, subject to the Java Runtime Environment's ability to do so.

FALSE Do not generate JavaCore; this is the default value.

IBM MQ Properties stanza:

Use the IBM MQ Properties stanza to set properties that affect how the IBM MQ classes for JMS interact
with IBM MQ.

com.ibm.msg.client.wmq.compat.base.internal.MQQueue.smallMsgsBufferReductionThreshold
When an application that uses the IBM MQ classes for JMS is connecting to an IBM MQ queue
manager using IBM MQ messaging provider migration mode, the IBM MQ classes for JMS uses a
default buffer size of 4 KB when it is receives messages. If the message that the application is trying
to get is larger than 4 KB, the IBM MQ classes for JMS resizes the buffer to be large enough to
accommodate the message. The larger buffer size is then used when subsequent messages are
received.

This property controls when the buffer size is reduced back to 4 KB. By default, when ten consecutive
messages that are less than the larger buffer size are received, the buffer size is reduced back to 4 KB.
To reset the buffer size back to 4 KB every time a message is received, set the property to the value 0.

0

The buffer always resets to the default size.

10

This is the default value. The buffer will be resized after the tenth message.

com.ibm.msg.client.wmq.receiveConversionCCSID
When an application that is using the IBM MQ classes for JMS is connecting to an IBM MQ queue
manager using IBM MQ messaging provider normal mode, the receiveConversionCCSID property can
be set to override the default CCSID value in the MQMD structure that is used to receive messages
from the queue manager. By default, the MQMD contains a CCSID field set to 1208, but this can be
changed if, for example, the queue manager is unable to convert messages to this code page.

Valid values are any valid CCSID number or one of the following values:

-1 Use the platform default.

1208 This is the default value.

Developing JMS and Java Platform, Enterprise Edition applications 921

Client-mode specifics stanza:

Use the Client-mode specifics stanza to specify properties that are used when the IBM MQ classes for
JMS connect to a queue manager that is using the CLIENT transport.

com.ibm.mq.polling.RemoteRequestEntry
Specifies the polling interval that the IBM MQ classes for JMS uses to check for broken connections
when it is waiting for a response from a queue manager.

Positive integer
The number of milliseconds to wait before checking. The default value is 10000 or 10 seconds.
The minimum value is 3000, and lower values are treated in the same way as this minimum
value.

Properties used to configure JMS client behavior:

Use these properties to configure the behavior of the JMS client.

com.ibm.mq.jms.SupportMQExtensions TRUE | FALSE
The JMS 2.0 specification introduces changes to the way certain behaviors work. IBM MQ Version 8.0
includes the property com.ibm.mq.jms.SupportMQExtensions, which can be set to TRUE, to revert
these changed behaviors back to previous implementations. Reverting the changed behaviors might
be necessary some for JMS 2.0 applications, and also for some applications that use the JMS 1.1 API
but run against the IBM MQ Version 8.0 IBM MQ classes for JMS.

TRUE The following three areas of functionality are reverted by setting SupportMQExtensions to
TRUE:

Message priority
Messages can be assigned a priority, 0 - 9. Before JMS 2.0, messages could also use
the value -1, indicating that a queue's default priority is used. JMS 2.0 does not allow
a message priority of -1 to be set. Turning on SupportMQExtensions allows the value
of -1 to be used.

Client id
The JMS 2.0 specification requires that non-null client ids are checked for uniqueness
when they make a connection. Turning on SupportMQExtensions, means that this
requirement is disregarded, and that a client id can be reused.

NoLocal
The JMS 2.0 specification requires that when this constant is turned on, a consumer
cannot receive messages that are published by the same client id. Before JMS 2.0, this
attribute was set on a subscriber to prevent it receiving messages that are published
by its own connection. Turning on SupportMQExtensions reverts this behavior to its
previous implementation.

FALSE
The changes of behavior are retained.

com.ibm.msg.client.jms.ByteStreamReadOnlyAfterSend= TRUE | FALSE
From IBM MQ Version 8.0.0, Fix Pack 2, after an application has sent a Bytes or Stream message, IBM
MQ classes for JMS can set the state of the message that has just been sent to either read only, or
write only.

TRUE The objects are set to read only after being sent. Setting this value maintains compatibility
with the JMS 2.0 specification

FALSE
The objects are set to write only after being sent. This is the default value.

922 IBM MQ: Programming

Related concepts:
“SupportMQExtensions property” on page 1079
The JMS 2.0 specification introduces changes to the way certain behaviors work. IBM MQ Version 8.0
includes the property com.ibm.mq.jms.SupportMQExtensions, which can be set to TRUE, to revert these
changed behaviors back to previous implementations.

STEPLIB configuration for IBM MQ classes for JMS on z/OS:

On z/OS, the STEPLIB used at run time must contain the IBM MQ SCSQAUTH and SCSQANLE
libraries. Specify these libraries in the startup JCL or using the .profile file.

From UNIX and Linux System Services, you can add these using a line in your .profile as shown in the
folowing code snippet, replacing thlqual with the high-level data set qualifier that you chose when
installing IBM MQ:
export STEPLIB=thlqual.SCSQAUTH:thlqual.SCSQANLE:$STEPLIB

In other environments, you typically need to edit the startup JCL to include SCSQAUTH and SCSQANLE
on the STEPLIB concatenation:
STEPLIB DD DSN=thlqual.SCSQAUTH,DISP=SHR
DD DSN=thlqual.SCSQANLE,DISP=SHR

IBM MQ classes for JMS and software management tools:

Software management tools such as Apache Maven can be used with the IBM MQ classes for JMS.

Many large development organizations use these tools to centrally manage repositories of third-party
libraries.

The IBM MQ classes for JMS are composed of a number of JAR files. When you are developing Java
language applications by using this API, an installation of either an IBM MQ Server, IBM MQ Client, or
IBM MQ Client SupportPac is required on the machine where the application is being developed.

If you want to use such a tool and add the JAR files that make up the IBM MQ classes for JMS to a
centrally managed repository, the following points must be observed:
v A repository or container must be made available only to developers within your organization. Any

distribution outside of the organization is not permitted.
v The repository needs to contain a complete and consistent set of JAR files from a single IBM MQ

release or Fix Pack.
v You are responsible for updating the repository with any maintenance provided by IBM Support.

For IBM MQ Version 8.0, the following JAR files need to be installed into the repository:
v com.ibm.mq.allclient.jar.
v jms.jar is required if you are using the IBM MQ classes for JMS.
v fscontext.jar is required if you are using the IBM MQ classes for JMS and accessing JMS administered

objects that are stored in a file system JNDI context.
v providerutil.jar if you are using the IBM MQ classes for JMS and accessing JMS administered objects

that are stored in a file system JNDI context.

Developing JMS and Java Platform, Enterprise Edition applications 923

Running IBM MQ classes for JMS applications under the Java security manager
IBM MQ classes for JMS can run with the Java security manager enabled. To run applications successfully
with the security manager enabled, you must configure your Java virtual machine (JVM) with a suitable
policy configuration file.

The simplest way to do this is to change the policy configuration file supplied with your Java Runtime
Environment (JRE). On most systems, this file is in the directory lib/security/java.policy relative to your
JRE directory. You can edit the policy configuration file using your preferred editor or the policytool
program supplied with your JRE.

Important: If you use the Java Security Manager mechanism with your application, you
must grant the following permissions:
v FilePermission on any whitelist file that you use, with read permission for ENFORCEMENT mode,

write permission for DISCOVER mode.
v PropertyPermission (read) on the com.ibm.mq.jms.whitelist, com.ibm.mq.jms.whitelist.discover, and

com.ibm.mq.jms.whitelist.mode properties.

ClassName whitelisting is supported from IBM MQ Version 8.0.0, Fix Pack 6. For more information, see
“ClassName whitelisting in JMS ObjectMessage” on page 925.

Here is an example of a policy configuration file that allows IBM MQ classes for JMS to run successfully
under the default security manager. This file will need to be customized, to specify the locations of
certain files and directories: MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ
is installed, MQ_DATA_DIRECTORY represents the location of the MQ data directory, and QM_NAME is the name
of the Queue Manager for which access is being configured.
grant codeBase "file:MQ_INSTALLATION_PATH/java/lib/*" {

//We need access to these properties, mainly for tracing
permission java.util.PropertyPermission "user.name","read";
permission java.util.PropertyPermission "os.name","read";
permission java.util.PropertyPermission "user.dir","read";
permission java.util.PropertyPermission "line.separator","read";
permission java.util.PropertyPermission "path.separator","read";
permission java.util.PropertyPermission "file.separator","read";
permission java.util.PropertyPermission "com.ibm.msg.client.commonservices.log.*","read";
permission java.util.PropertyPermission "com.ibm.msg.client.commonservices.trace.*","read";
permission java.util.PropertyPermission "Diagnostics.Java.Errors.Destination.Filename","read";
permission java.util.PropertyPermission "com.ibm.mq.commonservices","read";
permission java.util.PropertyPermission "com.ibm.mq.cfg.*","read";

//Tracing - we need the ability to control java.util.logging
permission java.util.logging.LoggingPermission "control";
// And access to create the trace file and read the log file - assumed to be in the current directory
permission java.io.FilePermission "*","read,write";

// We’d like to set up an mBean to control trace
permission javax.management.MBeanServerPermission "createMBeanServer";
permission javax.management.MBeanPermission "*","*";

// We need to be able to read manifests etc from the jar files in the installation directory
permission java.io.FilePermission "MQ_INSTALLATION_PATH/java/lib/-","read";

//Required if mqclient.ini/mqs.ini configuration files are used
permission java.io.FilePermission "MQ_DATA_DIRECTORY/mqclient.ini","read";
permission java.io.FilePermission "MQ_DATA_DIRECTORY/mqs.ini","read";

//For the client transport type.
permission java.net.SocketPermission "*","connect,resolve";

//For the bindings transport type.
permission java.lang.RuntimePermission "loadLibrary.*";

//For applications that use CCDT tables (access to the CCDT AMQCLCHL.TAB)

924 IBM MQ: Programming

permission java.io.FilePermission "MQ_DATA_DIRECTORY/qmgrs/QM_NAME/@ipcc/AMQCLCHL.TAB","read";

//For applications that use User Exits
permission java.io.FilePermission "MQ_DATA_DIRECTORY/exits/*","read";
permission java.io.FilePermission "MQ_DATA_DIRECTORY/exits64/*","read";
permission java.lang.RuntimePermission "createClassLoader";

//Required for the z/OS platform
permission java.util.PropertyPermission "com.ibm.vm.bitmode","read";

// Used by the internal ConnectionFactory implementation
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

// Used for controlled class loading
permission java.lang.RuntimePermission "setContextClassLoader";

// Used to default the Application name in Client mode connections
permission java.util.PropertyPermission "sun.java.command","read";

// Used by the IBM JSSE classes
permission java.util.PropertyPermission "com.ibm.crypto.provider.AESNITrace","read";

//Required to determine if an IBM Java Runtime is running in FIPS mode,
//and to modify the property values status as required.
permission java.util.PropertyPermission "com.ibm.jsse2.usefipsprovider","read,write";
permission java.util.PropertyPermission "com.ibm.jsse2.JSSEFIPS","read,write";
//Required if an IBM FIPS provider is to be used for SSL communication.
permission java.security.SecurityPermission "insertProvider.IBMJCEFIPS";

// Required for non-IBM Java Runtimes that establish secure client
// transport mode connections using mutual TLS authentication
permission java.util.PropertyPermission "javax.net.ssl.keyStore","read";
permission java.util.PropertyPermission "javax.net.ssl.keyStorePassword","read";

};

In the example, the grant statement contains the permissions required by IBM MQ classes for JMS. To use
these grant statements in your policy configuration file, you might need to modify the path names
depending on where you have installed IBM MQ classes for JMS and where you store your applications.

The sample applications supplied with IBM MQ classes for JMS, and scripts to run them, do not enable
the security manager.

ClassName whitelisting in JMS ObjectMessage

In IBM MQ classes for JMS, support for whitelisting of classes in the implementation of the JMS
ObjectMessage interface provides a potential mitigation against some of the security risks that potentially
relate to the Java object serialization and deserialization mechanism.

The Java object serialization and deserialization mechanism has been identified as a potential security risk
because deserialization instantiates arbitrary Java objects, where there is the potential for maliciously sent
data to cause various problems. One notable application of serialization is in Java Message Service (JMS)
ObjectMessages that use serialization to encapsulate and transfer arbitrary objects.

Serialization whitelisting is a potential mitigation against some of the risks that serialization poses. By
explicitly specifying which classes can be encapsulated in, and extracted from, ObjectMessages,
whitelisting provides some protection against some serialization risks.

Developing JMS and Java Platform, Enterprise Edition applications 925

Whitelisting in IBM MQ classes for JMS

From IBM MQ Version 8.0.0, Fix Pack 6, IBM MQ classes for JMS supports whitelisting of classes in the
implementation of the JMS ObjectMessage interface. The whitelist defines which Java classes might be
serialized with ObjectMessage.setObject() and deserialized with ObjectMessage.getObject().

Attempts to serialize or deserialize an instance of a class not included in the whitelist with ObjectMessage
cause a javax.jms.MessageFormatException to be thrown, with a java.io.InvalidClassException as its
cause.

Producing the whitelist

Important: IBM MQ classes for JMS cannot be distributed with a whitelist. The choice of classes to be
transferred by using ObjectMessages is an application design choice and IBM MQ cannot pre-empt that.

For this reason, the whitelisting mechanism allows for two modes of operation:

DISCOVERY
In this mode, the mechanism produces a listing of fully qualified class names, reporting all
classes that have been observed to be serialized or deserialized in ObjectMessages.

ENFORCEMENT
In this mode, the mechanism enforces whitelisting, rejecting attempts to serialize or deserialize
classes that are not in the whitelist.

If you want to use this mechanism, you must initially run in DISCOVERY mode to gather the list of
currently serialized and deserialized classes, review the list and use it as a basis for your whitelist. It
might even be appropriate to use the list unchanged, but the list must be reviewed first before you
decide to do this.

Controlling the whitelisting mechanism

Three system properties are available to control the whitelisting mechanism:

com.ibm.mq.jms.whitelist
This property can be specified in either of the following ways:
v The path name of the file that contains the whitelist, in file URI format (that is, starting with

file:). In DISCOVERY mode, this file is written to by the whitelisting mechanism. The file
must not exist. If the file does exist, the mechanism throws an exception rather than overwrite
it. In ENFORCEMENT mode, this file is read by the whitelisting mechanism.

v A comma-separated of fully qualified class names that constitute the whitelist.

If this property is unset, the whitelist mechanism is inactive.

If you are using a Java Security Manager, you must ensure that the IBM MQ classes for JMS JAR
files have read and write access to this file.

com.ibm.mq.jms.whitelist.discover

v If this property is unset or set to false, the whitelist mechanism runs in ENFORCEMENT mode.
v If this property is set to true and the whitelist has been specified as a file URI, the whitelist

mechanism runs in DISCOVERY mode.
v If this property is set to true and the whitelist has been specified as a list of class names, the

whitelist mechanism throws a suitable exception.
v If this property is set to true and the whitelist has not been specified by using the

com.ibm.mq.jms.whitelist property, the whitelist mechanism is inactive.
v If this property is set to true and the whitelist file already exists, the whitelist mechanism

throws a java.io.InvalidClassException and entries are not added to the file.

926 IBM MQ: Programming

com.ibm.mq.jms.whitelist.mode
This string property can be specified in any of three ways:
v If this property is set to SERIALIZE, then ENFORCEMENT mode performs whitelist validation

only on the ObjectMessage.setObject() method.
v If this property is set to DESERIALIZE, then ENFORCEMENT mode performs whitelist

validation only on the ObjectMessage.getObject() method.
v If this property is unset, or set to any other value, then ENFORCEMENT mode performs

whitelist validation on both the ObjectMessage.getObject() and the ObjectMessage.setObject()
methods.

Format of the whitelist file

These are the main features of the format of the whitelist file:
v The whitelist file is in default platform file encoding with platform-appropriate line-endings.

Note: If a whitelist file is being used, then that file is always written and read using the default file
encoding for the JVM.

This is fine if the whitelist file is generated in any of the following ways:
– Generated by a standalone application running on z/OS and used by other standalone applications

that are also running on z/OS.
– Generated by an application running inside of WebSphere Application Server on any platform, and

used by another instance of WebSphere Application Server.
– Generated by a standalone application running on a distributed platform, and used by either other

standalone applications running on distributed platforms or applications running inside of
WebSphere Application Server on any platform.

However, as WebSphere Application Server uses ASCII, and a standalone JVM uses EBCDIC, there will
be file encoding issues if the whitelist file is generated in either of the following ways:
– Generated on z/OS, and then used by either standalone applications running on distributed

platforms or WebSphere Application Server.
– Generated by either WebSphere Application Server or a standalone application running on a

distributed platform, and then used by a standalone application on z/OS.
v Each non-empty line contains a fully qualified class name. Empty lines are ignored.
v Comments can be included - anything following a '#' character, to the end of the line, is ignored.
v There is a very basic wildcarding mechanism:

– '*' can be the last element of a class name.
– '*' matches a single element of a class name, that is, the class, but no part of the package.
So com.ibm.mq.* would match com.ibm.mq.MQMessage but not com.ibm.mq.jmqi.remote.api.RemoteFAP.
Wildcarding does not work for classes in the default package that is for classes without an explicit
package name, so a class name of "*" is rejected.

v Badly formatted whitelist files, for example, files that contain an entry such as com.ibm.mq.*.Message,
where the wildcard is not the last element, result in a java.lang.IllegalArgumentException being
thrown.

v An empty whitelist file has the effect of totally disabling the use of ObjectMessage.

Format of the whitelist as a comma-separated list

The same wildcarding mechanism is available for a whitelist as a comma-separated list.
v The '*' can be expanded by the operating system if specified on a command line or in a shell script or

batch file, so it might need special handling.

Developing JMS and Java Platform, Enterprise Edition applications 927

v The '#' comment character is only applicable when a file is specified. If the whitelist is specified as a
comma-separated list of class names, then assuming that the operating system or shell doesn't process
it, as it is the default comment character in many UNIX or Linux shells, it is treated as a normal
character.

When does whitelisting happen?

Whitelisting is initiated when the application first runs an ObjectMessage setMessage() or getMessage()
method.

The system properties are evaluated, the whitelist file is opened and in ENFORCEMENT mode, the list of
whitelisted classes are loaded when the mechanism is initialized. At this point, an entry is written in to
the IBM MQ JMS log file for the application.

When the mechanism is initialized, its parameters might not be changed. As the time of initialization is
not easily predicted as it depends on application behavior. The system property settings and the whitelist
file contents should therefore be regarded as fixed from the time that the application is started. Do not
change the properties or the contents of the whitelist file while the application is running, as the results
are not guaranteed.

Points to consider

The best approach to mitigating the risks intrinsic to the Java serialization mechanism would be to
explore alternative approaches to data transfer such as using JSON instead of ObjectMessage. Using IBM
MQ Advanced Message Security (AMS) mechanisms can add further security by ensuring that messages
come from trusted sources.

If you use the Java Security Manager mechanism with your application, you must grant the following
permissions:
v FilePermission on any whitelist file that you use, with read permission for ENFORCEMENT mode,

write permission for DISCOVER mode.
v PropertyPermission (read) on the com.ibm.mq.jms.whitelist, com.ibm.mq.jms.whitelist.discover, and

com.ibm.mq.jms.whitelist.mode properties.
Related concepts:
“Running IBM MQ classes for JMS applications under the Java security manager” on page 924
IBM MQ classes for JMS can run with the Java security manager enabled. To run applications successfully
with the security manager enabled, you must configure your Java virtual machine (JVM) with a suitable
policy configuration file.

Post installation setup for IBM MQ classes for JMS applications
This topic tells you what authorities IBM MQ classes for JMS applications need in order to access the
resources of a queue manager. It also introduces connection modes and describes how to configure a
queue manager so that applications can connect in client mode.

Remember to check the IBM MQ readme file. It might contain information that supersedes the
information in this topic.

928 IBM MQ: Programming

Objects used by JMS that require authorization for non-privileged users:

Non-privileged users need authorization granted to access the queues used by JMS. Every JMS
application needs authorization to the queue manager with which it works.

For details about access control in IBM MQ, see Setting up security.

IBM MQ classes for JMS applications need connect and inq authority to the queue manager. You can set
appropriate authorizations using the setmqaut control command, for example:
setmqaut -m QM1 -t qmgr -g jmsappsgroup +connect +inq

For the point-to-point domain, the following authorities are required:
v Queues that are used by MessageProducer objects need put authority.
v Queues that are used by MessageConsumer and QueueBrowser objects need get, inq, and browse

authorities.
v The QueueSession.createTemporaryQueue() method needs access to the model queue specified by the

TEMPMODEL property of the QueueConnectionFactory object. By default this model queue is
SYSTEM.TEMP.MODEL.QUEUE.

If any of these queues are alias queues, their target queues require inquire authority. If the target queue is
a cluster queue it also requires browse authority.

For the publish/subscribe domain, the following queues are used if the IBM MQ classes for JMS are
connecting to an IBM MQ queue manager in IBM MQ messaging provider migration mode:
v SYSTEM.JMS.ADMIN.QUEUE
v SYSTEM.JMS.REPORT.QUEUE
v SYSTEM.JMS.MODEL.QUEUE
v SYSTEM.JMS.PS.STATUS.QUEUE
v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE
v SYSTEM.JMS.D.SUBSCRIBER.QUEUE
v SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE
v SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE
v SYSTEM.BROKER.CONTROL.QUEUE

For further information on IBM MQ messaging provider migration mode, see When to use
PROVIDERVERSION

Additionally, if the IBM MQ classes for JMS are connecting to a queue manager in this mode, any
application that publishes messages needs access to the stream queue specified by the
TopicConnectionFactory or topic object. By default, this queue is SYSTEM.BROKER.DEFAULT.STREAM.

If you use ConnectionConsumer, IBM MQ Resource Adapter, or the WebSphere Application Server IBM
MQ messaging provider, additional authorization might be needed.

Queues to be read by the ConnectionConsumer must have get, inq, and browse authorities. The system
dead-letter queue, and any backout-requeue queue or report queue used by the ConnectionConsumer
must have put and passall authorities.

When an application uses IBM MQ messaging provider normal mode to perform publish/subscribe
messaging, the application makes use of the integrated publish/subscribe functionality provided by the
queue manager. See Publish/subscribe security for information on securing the topics and queues that are
used.

Developing JMS and Java Platform, Enterprise Edition applications 929

Connection modes for IBM MQ classes for JMS:

An IBM MQ classes for JMS application can connect to a queue manager in either client or bindings
mode. In client mode, IBM MQ classes for JMS connects to the queue manager over TCP/IP. In bindings
mode, IBM MQ classes for JMS connects directly to the queue manager using the Java Native Interface
(JNI).

An application running in WebSphere Application Server on z/OS can connect to a queue manager in
either bindings or client mode, but an application running in any other environment on z/OS can
connect to a queue manager only in bindings mode. An application running on any other platform can
connect to a queue manager in either bindings or client mode.

You can use the current or any earlier supported version of IBM MQ classes for JMS with a current queue
manager, and you can use a current or earlier supported version of queue manager with the current
version of IBM MQ classes for JMS. If you mix different versions, function is limited to the level of the
earlier version.

The following sections describe each of the connection modes in more detail.

Client mode

To connect to a queue manager in client mode, an IBM MQ classes for JMS application can run on the
same system on which the queue manager is running, or on a different system. In each case, IBM MQ
classes for JMS connects to the queue manager over TCP/IP.

Bindings mode

To connect to a queue manager in bindings mode, an IBM MQ classes for JMS application must run on
the same system on which the queue manager is running.

The IBM MQ classes for JMS connects directly to the queue manager using the Java Native Interface
(JNI). To use the bindings transport, the IBM MQ classes for JMS must be run in an environment that has
access to the IBM MQ Java Native Interface libraries; see “Configuring the Java Native Interface (JNI)
libraries” on page 914 for further information.

The IBM MQ classes for JMS support the following values for ConnectOption:
v MQCNO_FASTPATH_BINDING
v MQCNO_STANDARD_BINDING
v MQCNO_SHARED_BINDING
v MQCNO_ISOLATED_BINDING
v MQCNO_SERIALIZE_CONN_TAG_QSG
v MQCNO_RESTRICT_CONN_TAG_QSG
v MQCNO_SERIALIZE_CONN_TAG_Q_MGR
v MQCNO_RESTRICT_CONN_TAG_Q_MGR

To change the connection options used by the IBM MQ classes for JMS, modify the Connection Factory
property CONNOPT.

For further information on connection options, see “Connecting to a queue manager using the
MQCONNX call” on page 95

To use the bindings transport, the Java Runtime Environment being used must support the Coded
Character Set Identifier (CCSID) of the queue manager that the IBM MQ classes for JMS are connecting
to.

930 IBM MQ: Programming

Details on how to determine what CCSIDs are supported by a Java Runtime Environment can be found
in IBM MQ FDC with Probe id 21 generated when using the IBM MQ V7 classes for Java or IBM MQ V7
classes for JMS.

Configuring your queue manager so that IBM MQ classes for JMS applications can connect in client
mode:

To configure your queue manager so that IBM MQ classes for JMS applications can connect in client
mode, you must create a server connection channel definition and start a listener.

Creating a server connection channel definition

On all platforms, you can use the MQSC command DEFINE CHANNEL to create a server connection
channel definition. See the following example:
DEFINE CHANNEL(JAVA.CHANNEL) CHLTYPE(SVRCONN) TRPTYPE(TCP)

On IBM i, you can use the CL command CRTMQMCHL instead, as in the following
example:
CRTMQMCHL CHLNAME(JAVA.CHANNEL) CHLTYPE(*SVRCN)
TRPTYPE(*TCP)
MQMNAME(QMGRNAME)

In this command, QMGRNAME is the name of your queue manager.

Linux

Windows

On Linux and Windows, you can also create a server connection channel definition

using MQ Explorer.

z/OS

On z/OS you can use the operations and control panels to create a server connection channel

definition .

The name of the channel (JAVA.CHANNEL in the previous examples) must be the same as the channel
name specified by the CHANNEL property of the connection factory that your application uses to
connect to the queue manager. The default value of the CHANNEL property is SYSTEM.DEF.SVRCONN.

Starting a listener

You must start a listener for your queue manager if one is not already started.

On all distributed platforms, you can use the MQSC command START LISTENER to start

a listener after first creating a listener object by using the MQSC command DEFINE LISTENER, as shown
in the following example:
DEFINE LISTENER(LISTENER.TCP) TRPTYPE(TCP) PORT(1414)
START LISTENER(LISTENER.TCP)

z/OS On z/OS, you use only the START LISTENER command, as in the following example, but note
that the channel initiator address space must be started before you can start a listener:
START LISTENER TRPTYPE(TCP) PORT(1414)

On IBM i, you can also use the CL command STRMQMLSR to start a listener, as in the
following example:
STRMQMLSR PORT(1414) MQMNAME(QMGRNAME)

In this command, QMGRNAME is the name of your queue manager.

Developing JMS and Java Platform, Enterprise Edition applications 931

http://www.ibm.com/support/docview.wss?uid=swg21566441
http://www.ibm.com/support/docview.wss?uid=swg21566441

UNIX Linux Windows On UNIX, Linux, and Windows systems, you can also use the control
command runmqlsr to start a listener, as in the following example:
runmqlsr -t tcp -p 1414 -m QMgrName

In this command, QMgrName is the name of your queue manager.

Linux

Windows

Linux and Windows, you can also start a listener using MQ Explorer.

z/OS

On z/OS, you can also use the operations and control panels to start a listener.

The number of the port on which the listener is listening must be the same as the port number specified
by the PORT property of the connection factory that your application uses to connect to the queue
manager. The default value of the PORT property is 1414.

The point-to-point installation verification test for IBM MQ classes for JMS
A point-to-point installation verification test (IVT) program is supplied with IBM MQ classes for JMS. The
program connects to a queue manager in either bindings or client mode, sends a message to the queue
called SYSTEM.DEFAULT.LOCAL.QUEUE, and then receives the message from the queue. The program
can create and configure all the objects that it requires dynamically at run time, or it can use JNDI to
retrieve administered objects from a directory service.

Run the installation verification test without using JNDI first because the test is self contained and does
not require the use of a directory service. For a description of administered objects, see Configuring JMS
objects using the administration tool.

The point-to-point installation verification test without using JNDI

In this test, the IVT program creates and configures all the objects that it requires dynamically at run time
and does not use JNDI.

A script is provided to run the IVT program. The script is called IVTRun on UNIX and Linux systems
and IVTRun.bat on Windows, and is in the bin subdirectory of the IBM MQ classes for JMS installation
directory.

To run the test in bindings mode, enter the following command:
IVTRun -nojndi [-m qmgr] [-v providerVersion] [-t]

To run the test in client mode, first set up the queue manager as described in “Preparing and running the
sample programs” on page 485 noting that the channel to be used defaults to SYSTEM.DEF.SVRCONN
and the queue to be used is SYSTEM.DEFAULT.LOCAL.QUEUE, then enter the following command:
IVTRun -nojndi -client -m qmgr -host hostname [-port port] [-channel channel]
[-v providerVersion] [-ccsid ccsid] [-t]

No equivalent script is provided on z/OS systems, but you can run the IVT in bindings mode by
invoking the Java class directly, using the following command:
java com.ibm.mq.jms.MQJMSIVT -nojndi [-m qmgr] [-v providerVersion] [-t]

The classpath must contain com.ibm.mqjms.jar.

The parameters on the commands have the following meanings:

-m qmgr
The name of the queue manager to which the IVT program connects. If you run the test in
bindings mode and omit this parameter, the IVT program connects to the default queue manager.

932 IBM MQ: Programming

-host hostname
The host name or IP address of the system on which the queue manager is running.

-port port
The number of the port on which the listener of the queue manager is listening. The default value
is 1414.

-channel channel
The name of the MQI channel that the IVT program uses to connect to the queue manager. The
default value is SYSTEM.DEF.SVRCONN.

-v providerVersion
The release level of the queue manager to which the IVT program expects to connect.

This parameter is used to set the PROVIDERVERSION property of an
MQQueueConnectionFactory object and has the same valid values as those of the
PROVIDERVERSION property. For more information about this parameter therefore, including its
valid values, see JMS PROVIDERVERSION property and the description of the PROVIDERVERSION
property in Properties of IBM MQ classes for JMS objects.

The default value is unspecified.

-ccsid ccsid
The identifier (CCSID) of the coded character set, or code page, to be used by the connection. The
default value is 819.

-t Tracing is switched on. By default, tracing is switched off.

A successful test produces output similar to the following sample output:
5724-H72, 5655-R36, 5724-L26, 5655-L82 (c) Copyright IBM Corp. 2008. All Rights Reserved.
Websphere MQ classes for Java(tm) Message Service 7.0
Installation Verification Test

Creating a QueueConnectionFactory
Creating a Connection
Creating a Session
Creating a Queue
Creating a QueueSender
Creating a QueueReceiver
Creating a TextMessage
Sending the message to SYSTEM.DEFAULT.LOCAL.QUEUE
Reading the message back again

Got message
JMSMessage class: jms_text
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: ID:414d5120514d5f6d627720202020202001edb14620005e03
JMSTimestamp: 1187170264000
JMSCorrelationID: null
JMSDestination: queue:///SYSTEM.DEFAULT.LOCAL.QUEUE
JMSReplyTo: null
JMSRedelivered: false
JMSXUserID: mwhite
JMS_IBM_Encoding: 273
JMS_IBM_PutApplType: 28
JMSXAppID: IBM MQ Client for Java
JMSXDeliveryCount: 1
JMS_IBM_PutDate: 20070815
JMS_IBM_PutTime: 09310400

Developing JMS and Java Platform, Enterprise Edition applications 933

JMS_IBM_Format: MQSTR
JMS_IBM_MsgType: 8
A simple text message from the MQJMSIVT
Reply string equals original string
Closing QueueReceiver
Closing QueueSender
Closing Session
Closing Connection
IVT completed OK
IVT finished

The point-to-point installation verification test using JNDI

In this test, the IVT program uses JNDI to retrieve administered objects from a directory service.

Before you can run the test, you must configure a directory service that is based on a Lightweight
Directory Access Protocol (LDAP) server or the local file system. You must also configure the IBM MQ
JMS administration tool so that it can use the directory service to store administered objects. For more
information about these prerequisites, see “Prerequisites for IBM MQ classes for JMS” on page 906. For
information about how to configure the IBM MQ JMS administration tool, see Configuring the JMS
administration tool.

The IVT program must be able to use JNDI to retrieve an MQQueueConnectionFactory object and an
MQQueue object from the directory service. A script is provided to create these administered objects for
you. The script is called IVTSetup on UNIX and Linux systems and IVTSetup.bat on Windows, and is in
the bin subdirectory of the IBM MQ classes for JMS installation directory. To run the script, enter the
following command:
IVTSetup

The script invokes the IBM MQ JMS administration tool to create the administered objects.

The MQQueueConnectionFactory object is bound with the name ivtQCF and is created with the default
values for all its properties, which means that the IVT program runs in bindings mode and connects to
the default queue manager. If you want the IVT program to run in client mode, or connect to a queue
manager other than the default queue manager, you must use the IBM MQ JMS administration tool or
MQ Explorer to change the appropriate properties of the MQQueueConnectionFactory object. For
information about how to use the MQ Explorer JMS administration tool, see Configuring JMS objects
using the administration tool. For information about how to use MQ Explorer, see Introduction to MQ
Explorer or the help provided with MQ Explorer.

The MQQueue object is bound with the name ivtQ and is created with the default values for all its
properties, except for the QUEUE property, which has the value SYSTEM.DEFAULT.LOCAL.QUEUE.

When you have created the administered objects, you can run the IVT program. To run the test using
JNDI, enter the following command:
IVTRun -url "providerURL" [-icf initCtxFact] [-t]

The parameters on the command have the following meanings:

-url "providerURL"
The uniform resource locator (URL) of the directory service. The URL can have one of the
following formats:
v ldap://hostname/contextName , for a directory service based on an LDAP server
v file:/directoryPath , for a directory service based on the local file system

Note that you must enclose the URL in quotation marks (").

934 IBM MQ: Programming

-icf initCtxFact
The class name of the initial context factory, which must be one of the following values:
v com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an LDAP server. This is

the default value.
v com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local file

system.

-t Tracing is switched on. By default, tracing is switched off.

A successful test produces output similar to that for a successful test without using JNDI. The main
difference is that the output indicates that the test is using JNDI to retrieve an
MQQueueConnectionFactory object and an MQQueue object.

Although not strictly necessary, it is good practice to tidy up after the test by deleting the administered
objects created by the IVTSetup script. A script is provided for this purpose. The script is called IVTTidy
on UNIX and Linux systems and IVTTidy.bat on Windows, and is in the bin subdirectory of the IBM MQ
classes for JMS installation directory.

Problem determination for the point-to-point installation verification test

The installation verification test might fail for the following reasons:
v If the IVT program writes a message indicating that it cannot find a class, check that your class path is

set correctly, as described in “Environment variables used by IBM MQ classes for JMS” on page 912.
v The test might fail with the following message:

Failed to connect to queue manager ’ qmgr ’ with connection mode ’ connMode ’
and host name ’ hostname ’

and an associated reason code of 2059. The variables in the message have the following meanings:

qmgr The name of the queue manager to which the IVT program is trying to connect. This message
insert is blank if the IVT program is trying to connect to the default queue manager in
bindings mode.

connMode
The connection mode, which is either Bindings or Client.

hostname
The host name or IP address of the system on which the queue manager is running.

This message means that the queue manager to which the IVT program is trying to connect is not
available. Check that the queue manager is running and, if the IVT program is trying to connect to the
default queue manager, make sure that the queue manager is defined as the default queue manager for
your system.

v The test might fail with the following message:
Failed to open MQ queue ’SYSTEM.DEFAULT.LOCAL.QUEUE’

This message means that the queue SYSTEM.DEFAULT.LOCAL.QUEUE does not exist on the queue
manager to which the IVT program is connected. Alternatively, if the queue does exist, the IVT
program cannot open the queue because it is not enabled for putting and getting messages. Check that
the queue exists and that it is enabled for putting and getting messages.

v The test might fail with the following message:
Unable to bind to object

Developing JMS and Java Platform, Enterprise Edition applications 935

This message means that there is a connection to the LDAP server, but that the LDAP server is not
correctly configured. Either the LDAP server is not configured for storing Java objects, or the
permissions on the objects or the suffix are not correct. For more help in this situation, see the
documentation for your LDAP server.

v The test might fail with the following message:
The security authentication was not valid that was supplied for
QueueManager ’ qmgr ’ with connection mode ’Client’ and host name ’ hostname ’

This message means that the queue manager is not correctly set up to accept a client connection from
your system. See “Preparing and running the sample programs” on page 485 for details.

The publish/subscribe installation verification test for IBM MQ classes for JMS
A publish/subscribe installation verification test (IVT) program is supplied with IBM MQ classes for JMS.
The program connects to a queue manager in either bindings or client mode, subscribes to a topic,
publishes a message on the topic, and then receives the message that it has just published. The program
can create and configure all the objects that it requires dynamically at run time, or it can use JNDI to
retrieve administered objects from a directory service.

Run the installation verification test without using JNDI first because the test is self contained and does
not require the use of a directory service. For a description of administered objects, see Configuring JMS
objects using the administration tool.

The publish/subscribe installation verification test without using JNDI

In this test, the IVT program creates and configures all the objects that it requires dynamically at run time
and does not use JNDI.

A script is provided to run the IVT program. The script is called PSIVTRun on UNIX and Linux systems
and PSIVTRun.bat on Windows, and is in the bin subdirectory of the IBM MQ classes for JMS installation
directory.

To run the test in bindings mode, enter the following command:
PSIVTRun -nojndi [-m qmgr] [-bqm brokerQmgr] [-v providerVersion] [-t]

To run the test in client mode, first set up the queue manager as described in “Preparing and running the
sample programs” on page 485 noting that the channel to be used defaults to SYSTEM.DEF.SVRCONN,
then enter the following command:
PSIVTRun -nojndi -client -m qmgr -host hostname [-port port] [-channel channel]
[-bqm brokerQmgr] [-v providerVersion] [-ccsid ccsid] [-t]

The parameters on the commands have the following meanings:

-m qmgr
The name of the queue manager to which the IVT program connects. If you run the test in
bindings mode and omit this parameter, the IVT program connects to the default queue manager.

-host hostname
The host name or IP address of the system on which the queue manager is running.

-port port
The number of the port on which the listener of the queue manager is listening. The default value
is 1414.

-channel channel
The name of the MQI channel that the IVT program uses to connect to the queue manager. The
default value is SYSTEM.DEF.SVRCONN.

936 IBM MQ: Programming

-bqm brokerQmgr
The name of the queue manager on which the broker is running. The default value is the name of
the queue manager to which the IVT program connects.

This parameter is not relevant for queue manager version number v of 7, or greater.

-v providerVersion
The release level of the queue manager to which the IVT program expects to connect.

This parameter is used to set the PROVIDERVERSION property of an
MQTopicConnectionFactory object and has the same valid values as those of the
PROVIDERVERSION property. For more information about this parameter therefore, including its
valid values, see the description of the PROVIDERVERSION property in Properties of IBM MQ
classes for JMS objects.

The default value is unspecified.

-ccsid ccsid
The identifier (CCSID) of the coded character set, or code page, to be used by the connection. The
default value is 819.

-t Tracing is switched on. By default, tracing is switched off.

A successful test produces output similar to the following sample output:
5724-H72, 5655-R36, 5724-L26, 5655-L82 (c) Copyright IBM Corp. 2008. All Rights Reserved.
Websphere MQ classes for Java(tm) Message Service 7.0
Publish/Subscribe Installation Verification Test

Creating a TopicConnectionFactory
Creating a Connection
Creating a Session
Creating a Topic
Creating a TopicPublisher
Creating a TopicSubscriber
Creating a TextMessage
Adding text
Publishing the message to topic://MQJMS/PSIVT/Information
Waiting for a message to arrive [5 secs max]...

Got message:
JMSMessage class: jms_text
JMSType: null
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: ID:414d5120514d5f6d627720202020202001edb14620006706
JMSTimestamp: 1187182520203
JMSCorrelationID: ID:414d5120514d5f6d627720202020202001edb14620006704
JMSDestination: topic://MQJMS/PSIVT/Information
JMSReplyTo: null
JMSRedelivered: false
JMSXUserID: mwhite
JMS_IBM_Encoding: 273
JMS_IBM_PutApplType: 26
JMSXAppID: QM_mbw
JMSXDeliveryCount: 1
JMS_IBM_PutDate: 20070815
JMS_IBM_ConnectionID: 414D5143514D5F6D627720202020202001EDB14620006601
JMS_IBM_PutTime: 12552020
JMS_IBM_Format: MQSTR
JMS_IBM_MsgType: 8

Developing JMS and Java Platform, Enterprise Edition applications 937

A simple text message from the MQJMSPSIVT program
Reply string equals original string
Closing TopicSubscriber
Closing TopicPublisher
Closing Session
Closing Connection
PSIVT finished

The publish/subscribe installation verification test using JNDI

In this test, the IVT program uses JNDI to retrieve administered objects from a directory service.

Before you can run the test, you must configure a directory service that is based on a Lightweight
Directory Access Protocol (LDAP) server or the local file system. You must also configure the IBM MQ
JMS administration tool so that it can use the directory service to store administered objects. For more
information about these prerequisites, see “Prerequisites for IBM MQ classes for JMS” on page 906. For
information about how to configure the IBM MQ JMS administration tool, see Configuring the JMS
administration tool.

The IVT program must be able to use JNDI to retrieve an MQTopicConnectionFactory object and an
MQTopic object from the directory service. A script is provided to create these administered objects for
you. The script is called IVTSetup on UNIX and Linux systems and IVTSetup.bat on Windows, and is in
the bin subdirectory of the IBM MQ classes for JMS installation directory. To run the script, enter the
following command:
IVTSetup

The script invokes the IBM MQ JMS administration tool to create the administered objects.

The MQTopicConnectionFactory object is bound with the name ivtTCF and is created with the default
values for all its properties, which means that the IVT program runs in bindings mode, connects to the
default queue manager, and uses the embedded publish/subscribe function. If you want the IVT program
to run in client mode, connect to a queue manager other than the default queue manager, or use IBM
Integration Bus instead of the embedded publish/subscribe function, you must use the IBM MQ JMS
administration tool or IBM MQ Explorer to change the appropriate properties of the
MQTopicConnectionFactory object. For information about how to use the IBM MQ JMS administration
tool, see Configuring JMS objects using the administration tool. For information about how to use IBM
MQ Explorer, see the help provided with IBM MQ Explorer.

The MQTopic object is bound with the name ivtT and is created with the default values for all its
properties, except for the TOPIC property, which has the value MQJMS/PSIVT/Information.

When you have created the administered objects, you can run the IVT program. To run the test using
JNDI, enter the following command:
PSIVTRun -url "providerURL" [-icf initCtxFact] [-t]

The parameters on the command have the following meanings:

-url "providerURL"
The uniform resource locator (URL) of the directory service. The URL can have one of the
following formats:
v ldap://hostname/contextName , for a directory service based on an LDAP server
v file:/directoryPath , for a directory service based on the local file system

Note that you must enclose the URL in quotation marks (").

-icf initCtxFact
The class name of the initial context factory, which must be one of the following values:

938 IBM MQ: Programming

v com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an LDAP server. This is
the default value.

v com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local file
system.

-t Tracing is switched on. By default, tracing is switched off.

A successful test produces output similar to that for a successful test without using JNDI. The main
difference is that the output indicates that the test is using JNDI to retrieve an
MQTopicConnectionFactory object and an MQTopic object.

Although not strictly necessary, it is good practice to tidy up after the test by deleting the administered
objects created by the IVTSetup script. A script is provided for this purpose. The script is called IVTTidy
on UNIX and Linux systems and IVTTidy.bat on Windows, and is in the bin subdirectory of the IBM MQ
classes for JMS installation directory.

Problem determination for the publish/subscribe installation verification test

The installation verification test might fail for the following reasons:
v If the IVT program writes a message indicating that it cannot find a class, check that your class path is

set correctly, as described in “Environment variables used by IBM MQ classes for JMS” on page 912.
v The test might fail with the following message:

Failed to connect to queue manager ’ qmgr ’ with
connection mode ’ connMode ’ and host name ’ hostname ’

and an associated reason code of 2059. The variables in the message have the following meanings:

qmgr The name of the queue manager to which the IVT program is trying to connect. This message
insert is blank if the IVT program is trying to connect to the default queue manager in
bindings mode.

connMode
The connection mode, which is either Bindings or Client.

hostname
The host name or IP address of the system on which the queue manager is running.

This message means that the queue manager to which the IVT program is trying to connect is not
available. Check that the queue manager is running and, if the IVT program is trying to connect to the
default queue manager, make sure that the queue manager is defined as the default queue manager for
your system.

v The test might fail with the following message:
Unable to bind to object

This message means that there is a connection to the LDAP server, but that the LDAP server is not
correctly configured. Either the LDAP server is not configured for storing Java objects, or the
permissions on the objects or the suffix are not correct. For more help in this situation, see the
documentation for your LDAP server.

v Th test might fail with the following message:
The security authentication was not valid that was supplied for
QueueManager ’ qmgr ’ with connection mode ’Client’ and host name ’ hostname ’

This message means that the queue manager is not correct set up to accept a client connect from your
system. See “Preparing and running the sample programs” on page 485 for details.

Developing JMS and Java Platform, Enterprise Edition applications 939

Scripts provided with IBM MQ classes for JMS
A number of scripts are provided to assist with common tasks that need to be performed when using
IBM MQ classes for JMS.

Table 113 lists all the scripts and their uses. The scripts are in the bin subdirectory of the IBM MQ classes
for JMS installation directory.

Table 113. Scripts provided with IBM MQ classes for JMS

Utility Use

Cleanup 1 This script is maintained for compatibility with previous releases but
performs no function. Manual cleanup of subscription information is no
longer necessary

DefaultConfiguration Runs the default configuration application on platforms other than
Windows.

formatLog 1 This script is maintained for compatibility with previous releases but
performs no function. Log output is now produced in readable text.

IVTRun 1

IVTSetup 1

IVTTidy 1

Used in the point-to-point installation verification test, as described in “The
point-to-point installation verification test for IBM MQ classes for JMS” on
page 932.

JMSAdmin 1 Runs the IBM MQ JMS administration tool, as described in Starting the
administration tool.

JMSAdmin.config The configuration file for the IBM MQ JMS administration tool, as
described in Configuring the JMS administration tool.

PSIVTRun 1 Runs the publish/subscribe installation verification test program, as
described in “The publish/subscribe installation verification test for IBM
MQ classes for JMS” on page 936.

PSReportDump.class This class is maintained for compatibility with previous releases, but
performs no function.

setjmsenv Sets the environment variables for running an IBM MQ classes for JMS
application in a 32-bit Java virtual machine (JVM) on UNIX and Linux
systems, as described in “Environment variables used by IBM MQ classes
for JMS” on page 912.

setjmsenv64 Sets the environment variables for running an IBM MQ classes for JMS
application in a 64-bit JVM on UNIX and Linux systems, as described in
“Environment variables used by IBM MQ classes for JMS” on page 912.

Note:

1. On Windows, the file name has the extension .bat .

940 IBM MQ: Programming

Support for OSGi
OSGi provides a framework that supports the deployment of applications as bundles. Nine OSGi bundles
are supplied as part of the IBM MQ classes for JMS.

OSGi provides a general purpose, secure, and managed Java framework, which supports the deployment
of applications that come in the form of bundles. OSGi-compliant devices can download and install
bundles, and remove them when they are no longer required. The framework manages the installation
and update of bundles in a dynamic and scalable fashion.

The IBM MQ classes for JMS includes the following OSGi bundles.

com.ibm.msg.client.osgi.jms<version number>.jar
The common layer of code in the IBM MQ classes for JMS. For information about the layered
architecture of IBM MQ classes for JMS, see Layered architecture.

com.ibm.msg.client.osgi.jms.prereq_<version number>.jar
The prerequisite Java archive (JAR) files for the common layer.

com.ibm.msg.client.osgi.commonservices.j2se_<version number>.jar
Common services for Java Platform, Standard Edition (Java SE) applications.

com.ibm.msg.client.osgi.nls_<version number>.jar
Messages for the common layer.

com.ibm.msg.client.osgi.wmq_<version number>.jar
The IBM MQ messaging provider in IBM MQ classes for JMS. For information about the layered
architecture of IBM MQ classes for JMS, see Layered architecture.

com.ibm.msg.client.osgi.wmq.prereq_<version number>.jar
The prerequisite JAR files for the IBM MQ messaging provider.

com.ibm.msg.client.osgi.wmq.nls_<version number>.jar
Messages for the IBM MQ messaging provider.

com.ibm.mq.osgi.allclient_<version number>.jar
This JAR file allows applications to use both the IBM MQ classes for JMS and the IBM MQ
classes for Java, and also includes the code to handle PCF messages.

com.ibm.mq.osgi.allclientprereqs_<version number>.jar
This JAR file provides the prerequisites for com.ibm.mq.osgi.allclient_<version number>.jar.

where <version number> is the version number of IBM MQ that has been installed.

The bundles are installed into the java/lib/OSGi subdirectory of your IBM MQ installation, or the
java\lib\OSGi folder on Windows.

As of IBM MQ Version 8.0, use the bundles com.ibm.mq.osgi.allclient_8.0.0.0.jar, and
com.ibm.mq.osgi.allclientprereqs_8.0.0.0.jar for any new applications. Using these bundles removes the
restriction of not being able to run both IBM MQ classes for JMS and the IBM MQ classes for Java within
the same OSGi framework, all other restrictions still apply however. For versions of IBM MQ previous to
8, this restriction of using either IBM MQ classes for JMS or IBM MQ classes for Java applies.

The bundle com.ibm.mq.osgi.java <version number>.jar, which is also installed into the java/lib/OSGi
subdirectory of your IBM MQ installation, or the java\lib\OSGi folder on Windows, is part of the IBM
MQ classes for Java. This bundle must not be loaded into an OSGi runtime environment that has the IBM
MQ classes for JMS loaded.

The OSGi bundles for the IBM MQ classes for JMS have been written to the OSGi Release 4 specification.
They do not work in an OSGi Release 3 environment.

Developing JMS and Java Platform, Enterprise Edition applications 941

You must set your system path or library path correctly so that the OSGi runtime environment can find
any required DLL files or shared libraries.

If you use the OSGi bundles for the IBM MQ classes for JMS, temporary topics do not work. In addition,
channel exit classes written in Java are not supported because of an inherent problem in loading classes
in a multiple class loader environment such as OSGi. A user bundle can be aware of the IBM MQ classes
for JMS bundles, but the IBM MQ classes for JMS bundles are not aware of any user bundle. As a result,
the class loader used in an IBM MQ classes for JMS bundle cannot load a channel exit class that is in a
user bundle.

For more information about OSGi, see the OSGi Alliance website.

Solving problems with IBM MQ classes for JMS
You can investigate problems by running the installation verification programs, and by using the trace
and log facilities.

If a program does not complete successfully, run one of the installation verification programs, as
described in “The point-to-point installation verification test for IBM MQ classes for JMS” on page 932
and “The publish/subscribe installation verification test for IBM MQ classes for JMS” on page 936, and
follow the advice given in the diagnostic messages.
Related information:
Tracing IBM MQ classes for JMS applications
Tracing using MQJMS_TRACE_LEVEL

Logging and IBM MQ classes for JMS:

By default, log output is sent to the mqjms.log file. You can redirect it to a specific file or directory.

The IBM MQ classes for JMS log facility is provided to report serious problems, particularly problems
that might indicate configuration errors rather than programming errors. By default, log output is sent to
the mqjms.log file in the JVM working directory.

You can redirect log output to another file by setting the property
com.ibm.msg.client.commonservices.log.outputName. The value for this property can be:
v A single path name.
v A comma-separated list of path names (all data is logged to all files).

Each path name can be:
v Absolute or relative.
v stderr or System.err to represent the standard error stream.
v sttdout or System.out to represent the standard output stream.

If the value of the property identifies a directory, log output is written to mqjms.log in that directory. If
the value of the property identifies a specific file, log output is written to that file.

You can set this property in the IBM MQ classes for JMS configuration file or as a system property on the
java command. In the following example, the property is set as a system property and identifies a
specific file:
java -Djava.library.path= library_path
-Dcom.ibm.msg.client.commonservices.log.outputName=/mydir/mylog.txt
MyAppClass

In the command, library_path is the path to the directory containing the IBM MQ classes for JMS libraries
(see “Configuring the Java Native Interface (JNI) libraries” on page 914).

942 IBM MQ: Programming

http://www.osgi.org

You can disable log output by setting the property com.ibm.msg.client.commonservices.log.status to OFF.
The default value of this property is ON.

The values System.err and System.out can be set to send log output to the System.err and System.out
streams.

Obtaining the IBM MQ classes for JMS separately
The IBM MQ classes for JMS are available within a self-extracting JAR file that you can download from
Fix Central if you want to obtain just the IBM MQ classes for JMS JAR files, for deployment into a
software management tool, or to use with stand-alone client applications.

Before you begin

Before starting this task, make sure that you have a Java runtime environment (JRE) installed on your
machine and that the JRE has been added to the system path.

The Java installer that is used in this installation process does not require running as root or any specific
user. The only requirement is that the user it is run as has access write to the directory that you want the
files to go in.

About this task

Before IBM MQ Version 8.0, the IBM WebSphere MQ classes for Java or IBM WebSphere MQ classes for
JMS are not available as a separate download. For IBM WebSphere MQ Version 7.5 or earlier, if you are
developing and running Java language applications that use either the IBM WebSphere MQ classes for
Java or IBM WebSphere MQ classes for JMS, you need to install them either by performing a full server
installation or by installing one of the client SupportPacs onto the system where the application is being
developed and the system where the application will run. This installation installs many more files than
the IBM WebSphere MQ classes for Java and IBM WebSphere MQ classes for JMS files.

However, from IBM MQ Version 8.0, the following files are available within a self-extracting JAR file,
which minimizes the size of the download and installation, and the time that is required to perform the
installation:
v The IBM MQ classes for JMS
v The IBM MQ classes for Java
v The IBM MQ resource adapter
v The IBM MQ OSGi bundles

When you run the executable JAR file, it displays the IBM MQ license agreement, which must be
accepted. It asks for a directory in which to install the IBM MQ classes for Java, IBM MQ classes for JMS,
the resource adapter, and OSGi bundles. If the selected installation directory does not exist, it is created
and the program files are installed. However, if the directory exists, an error is reported and no files are
installed.

Procedure
1. Download the IBM MQ Java JAR file from Fix Central. To locate the latest version that is available for

download, enter the phrase "Java" in the Text Search box. The name of the file to be downloaded is
in the format V.R.M.F-WS-MQ-Install-Java-All.jar where V.R.M.F is the product version number, for
example 8.0.0.2.
If you cannot find the file, make sure that Product Selected is WebSphere MQ and Version is 8.0.

2. Start the installation from the directory to which you downloaded the file. To start the installation,
enter a command in the following format:
java -jar V.R.M.F-WS-MQ-Install-Java-All.jar

Developing JMS and Java Platform, Enterprise Edition applications 943

http://www.ibm.com/support/fixcentral/

where V.R.M.F is the product version number, for example 8.0.0.2, and V.R.M.F-WS-MQ-Install-
Java-All.jar is the name of the file that was downloaded from Fix Central. For example, to install
the IBM MQ classes for JMS for the Version 8.0.0, Fix Pack 2 release, you would use the following
command:
java -jar 8.0.0.2-WS-MQ-Install-Java-All.jar

Note: To carry out this installation, you must have a JRE installed on your machine and added to the
system path.
When you enter the command, the following information is displayed:
Before you can use, extract, or install IBM WebSphere MQ V8.0, you must accept
the terms of 1. IBM International License Agreement for Evaluation of
Programs 2. IBM International Program License Agreement and additional
license information. Please read the following license agreements carefully.

The license agreement is separately viewable using the
--viewLicenseAgreement option.

Press Enter to display the license terms now, or ’x’ to skip.

3. Review and accept the license terms:
a. To display the license, press Enter. Alternatively, pressing x skips the display of the license. After

the license is displayed, or immediately if you select x, the following message is displayed:
Additional license information is separately viewable using the
--viewLicenseInfo option.

Press Enter to display additional license information now, or ’x’ to skip.

b. To display the additional license terms, press Enter. Alternatively, pressing x skips the display of
the additional license terms. After the additional license terms are displayed, or immediately if
you select x, the following message is displayed:
By choosing the "I Agree" option below, you agree to the terms of the
license agreement and non-IBM terms, if applicable. If you do not
agree, select "I do not Agree".

Select [1] I Agree, or [2] I do not Agree:

c. To accept the license agreement and continue with selecting the installation directory, select 1.
Alternatively, selecting 2 ends the installation immediately. If you select 1, the following message
appears:
Enter directory for product files or leave blank to accept the default value.
The default target directory is H:\WMQ

Target directory for product files?

4. Specify the installation directory for the resource adapter:
v If you want to install the product files in the default location, press Enter without specifying a

value.
v If you want to install the product files in a different location from the default, specify the name of

the directory in which you want to install the product files, and then press Enter to start the
installation.

The directory name that you specify must not already exist, otherwise, when you start the installation,
an error is reported and no files are installed. Provided that it does not already exist, the selected
installation directory is created and the program files are installed in this directory. During the
installation, a new directory with the name wmq is created within the installation directory that you
selected. Three subdirectories, JavaEE, JavaSE, and OSGi, are created in the wmq directory with the
following contents:
.\JavaEE:
wmq.jmsra.ivt.ear
wmq.jmsra.rar

944 IBM MQ: Programming

.\JavaSE:
com.ibm.mq.allclient.jar
com.ibm.mq.traceControl.jar
fscontext.jar
jms.jar
providerutil.jar

.\OSGi:
com.ibm.mq.osgi.allclient_<V.R.M.F>.jar
com.ibm.mq.osgi.allclientprereqs_<V.R.M.F>.jar

Before IBM MQ Version 8.0.0, Fix Pack 9, the files that are installed in the JavaSE
directory include the JSON4J.jar file. However, this JAR file is not required, and is therefore removed
from the V.R.M.F-WS-MQ-Install-Java-All.jar file from Version 8.0.0, Fix Pack 9. Also, from Version
8.0.0, Fix Pack 9, there are two changes to the com.ibm.mq.allclient.jar file:
v The reference to JSON4J.jar file is removed from the class path statement within the manifest file

for the com.ibm.mq.allclient.jar file.
v The package com.ibm.msg.client.mqlight is no longer included inside the

com.ibm.mq.allclient.jar file.
When the installation is complete, a confirmation message is displayed as shown in the following
example:
Extracting files to H:\WMQ\wmq
Successfully extracted all product files.

Overview of IBM MQ classes for JMS object pooling
Since the introduction of IBM WebSphere MQ Version 7.0 there has been an increase in some stand-alone
applications using frameworks, or being deployed into cloud environments. An increase in server
consolidation of applications and queue managers has also seen a greater number of client connections
into QueueManagers. A form of connection pooling outside of Java EE helps to reduce overall load.

Within the Java EE programming model, there is a well defined life cycle of the various objects in use.
Message-driven beans (MDBs) are most constrained, whilst Servlets provide more freedom. Therefore, the
pooling options that are available within the Java EE servers suit the various programming models used.

With Java SE (or with another framework such as Spring) the programming models are extremely
flexible. Therefore a single pooling strategy does not suit all. You should consider if there is going to a
framework in place that could do any form of pooling, for example, Spring.

The pooling strategy to use depends on the environment in which your application is running:
“Using IBM MQ classes for JMS” on page 903
IBM MQ classes for Java Message Service (IBM MQ classes for JMS) is the JMS provider that is
supplied with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM
MQ classes for JMS provides two sets of extensions to the JMS API.

Object pooling in a Java EE environment
Java EE application servers provide connection pooling functionality that can be used by message-driven
bean applications, Enterprise Java Beans and Servlets.

For information about how this pooling works in WebSphere Application Server, see Configuring
connection pooling for JMS connections.

For more information, see:
v Use JMS connnection pools
v Advanced connnection pool properties
v Examples of using the connnection pool

Developing JMS and Java Platform, Enterprise Edition applications 945

http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_msg_connpoolcfg.html?cp=SSEQTP_8.5.5%2F1-3-11-0-5-9-4&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_msg_connpoolcfg.html?cp=SSEQTP_8.5.5%2F1-3-11-0-5-9-4&lang=en

v Free connnection pool maintenance threads
v Pool maintenance thread examples
v JMS connnections and IBM MQ

For other application servers, refer to the appropriate application server documentation
“Using IBM MQ classes for JMS” on page 903
IBM MQ classes for Java Message Service (IBM MQ classes for JMS) is the JMS provider that is
supplied with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM
MQ classes for JMS provides two sets of extensions to the JMS API.

Object pooling in a Java SE environment
With Java SE (or with another framework such as Spring) the programming models are extremely
flexible. Therefore a single pooling strategy does not suit all. You should consider if there is going to a
framework in place that could do any form of pooling, for example, Spring.

Otherwise, application logic could take this up. Ask yourself how complex is the application itself? It is
best to understand the application and what it demands from the connectivity to the messaging system.
Applications are often written as well within their own wrapper code around the basic JMS API.

Whilst this can be a very sensible approach, and can hide complexity, it is worth keeping in mind that it
can introduce problems. For example, a generic getMessage() method, that is frequently called, should
not just open and close consumers.

Points you should consider:
v How long will the application need access to IBM MQ? All the time, or just occasionally.
v How often will messages be sent? The less frequently, the more a single connection to IBM MQ could

be shared.
v A connection broken exception is usually a sign of needing to recreate a pooled connection. What

about:
– Security exceptions or host not available
– Queue full exceptions

v If a connection broken exception occurs, what should happen to the other free connections in the pool?
Should they be closed off and recreated?

v If SSL/TLS is being used, for example, how long do you want a single connection to remain open?
v How will a pooled connection identify itself such that a queue manager administrator can spot the

connection and track it back.

You should consider all JMS objects for pooling, and pool that object whenever it is possible to do so. The
objects include:
v JMS connections
v Session
v Contexts
v Producers and consumers of all different types

When using the client transport, JMS connections, sessions, and contexts, will use sockets when
communicating with the IBM MQ queue manager. By pooling these objects, the savings are on the
number of incoming IBM MQ connections (hConns) to the queue manager and a reduction in the number
of channel instances.

Using the bindings transport to the queue manager removes the networking layer entirely. However,
many applications use the client transport to provide a more highly available, and workload balanced,
configuration.

946 IBM MQ: Programming

JMS producers and consumers open destinations on the queue manager. If fewer numbers of queues or
topics are opened, and multiple parts of the application are using these objects, pooling these can be
useful.

From an IBM MQ perspective, this process saves a sequence of MQOPEN and MQCLOSE operations.

Connections, sessions, and contexts

These objects all encapsulate IBM MQ connection handles to the queue manager, and are generated from
a ConnectionFactory. You can add logic to an application to constrain the number of connections, and
other objects, created from a single connection factory to a specific number.

You can use a simple data structure in the application to contain the connections that are created. The
application code that needs to use one of these data structures can check-out an object to use.

Take the following factors into account:
v When should connections be removed from the pool? Generally, create an exception listener on the

connection. When that listener is called to process an exception, you should recreate the connection,
and any sessions created from that connection.

v If a CCDT is in use for workload balancing, the connections could go to different queue managers.
This might be applicable for the pooling requirements.

Remember, that the JMS specification states that it is a programming error for multiple threads to be
accessing a session or context at the same time. The IBM MQ JMS code does attempt to be rigorous in its
handling of threads. However, you should add logic to the application, to ensure that a session or context
object is only used by one thread at a time.

Producers and consumers

Each producer and consumer that is created opens a destination on the queue manager. If the same
destination is going to be used for a variety of tasks, it makes sense to keep the consumer or producer
objects open. Only close the object when all the work is done.

Although opening and closing a destination are short operations, if they are done frequently the time
taken can add up.

The scope of these objects is within the session or context they are created from, therefore, they need to
be held within that scope. Generally, applications are written such that this is quite straightforward to do.

Monitoring

How will the applications monitor their object pools? The answer to this is largely determined by the
complexity of the solution of pooling implemented.

If you consider a JavaEE pooling implementation, there are a large number of options, including the:
v Current size of the pools
v Time objects have spent in them
v Cleaning of the pools
v Refreshing of the connections

You should also consider how a single re-used session appears on the queue manager. There are
connection factory properties to identify the application (such as appName) that could be useful.

Developing JMS and Java Platform, Enterprise Edition applications 947

“Using IBM MQ classes for JMS” on page 903
IBM MQ classes for Java Message Service (IBM MQ classes for JMS) is the JMS provider that is
supplied with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM
MQ classes for JMS provides two sets of extensions to the JMS API.

Introduction to automatic client reconnection in Java EE environments
The IBM MQ Resource Adapter, which can be deployed into Java EE environments, and the WebSphere
Application Server messaging provider use the IBM MQ classes for JMS to communicate with IBM MQ
queue managers.

The options available to provide automatic client reconnection in a Java EE environment are:
v Activation specification
v WebSphere Application Server listener ports
v Enterprise JavaBeans and web-based applications
v Applications running inside client containers

For more information see Automatic client reconnection in Java EE environments
Scenarios: WebSphere Application Server with IBM MQ
Scenarios: WebSphere Application Server Liberty profile with IBM MQ

Character string conversions in IBM MQ classes for JMS
From IBM MQ Version 8.0, some of the default behavior regarding character string conversion in the IBM
MQ classes for JMS has changed.

Before IBM MQ Version 8.0, string conversions in IBM MQ classes for JMS was done by calling the
java.nio.charset.Charset.decode(ByteBuffer) and Charset.encode(CharBuffer) methods.

Using either of these methods results in a default replacement (REPLACE) of malformed or untranslatable
data.

This behavior can obscure errors in applications, and lead to unexpected characters, for example ?, in
translated data. From IBM MQ Version 8.0, to detect such issues earlier and more effectively, the IBM MQ
classes for JMS use CharsetEncoders and CharsetDecoders directly and configure the handling of
malformed and untranslatable data explicitly.

From IBM MQ Version 8.0, the default behavior is to REPORT such issues by throwing a suitable
MQException or JMSException.

Configuring

Translating from UTF-16 (the character representation used in Java) to a native character set, such as
UTF-8, is termed encoding, while translating in the opposite direction is termed decoding.

Currently, decoding takes the default behavior for CharsetDecoders, reporting errors by throwing an
exception.

One setting is used to specify a java.nio.charset.CodingErrorAction to control error handling on both
encoding and decoding. One other setting is used to control the replacement byte, or bytes, when
encoding. The default Java replacement String is used in decoding operations.

948 IBM MQ: Programming

IBM MQ Classes for JMS

From IBM MQ Version 8.0, two new properties are available. The appropriate constant definitions are in
com.ibm.msg.client.wmq.WMQConstants

JMS_IBM_UNMAPPABLE_ACTION
Sets or gets the CodingErrorAction to apply when a character cannot be mapped in an encoding
or decoding operation.

You should set this as CodingErrorAction.{REPLACE|REPORT|IGNORE}.toString() as follows:
public static final String JMS_IBM_UNMAPPABLE_ACTION = "JMS_IBM_Unmappable_Action";

JMS_IBM_UNMAPPABLE_REPLACEMENT
Sets or gets the replacement bytes to apply when a character cannot be mapped in an encoding
operation.

The default Java replacement String will be used in decoding operations.
public static final String JMS_IBM_UNMAPPABLE_REPLACEMENT = "JMS_IBM_Unmappable_Replacement";

The JMS_IBM_UNMAPPABLE_ACTION and JMS_IBM_UNMAPPABLE_REPLACEMENT properties can be set on
destinations or messages. A value set on a message overrides the value set on the destination to which
the message is being sent.

Note that JMS_IBM_UNMAPPABLE_REPLACEMENT must be set as a single byte.

Setting system defaults

From IBM MQ Version 8.0, the following two Java system properties are available to configure default
behavior regarding character string conversion. Note that destinations or messages override these
properties.

com.ibm.mq.cfg.jmqi.UnmappableCharacterAction
Specifies the action to be taken for untranslatable data on encoding and decoding. The value can
be REPORT, REPLACE, or IGNORE.

com.ibm.mq.cfg.jmqi.UnmappableCharacterReplacement
Sets or gets the replacement bytes to apply when a character cannot be mapped in an encoding
operation The default Java replacement string is used in decoding operations.

To avoid confusion between Java character and native byte representations, you should specify
com.ibm.mq.cfg.jmqi.UnmappableCharacterReplacement as a decimal number representing the
replacement byte in the native character set.

For example, the decimal value of ?, as a native byte, is 63 if the native character set is ASCII-based, such
as ISO-8859-1, while it is 111 if the native character set is EBCDIC.

Developing JMS and Java Platform, Enterprise Edition applications 949

Related concepts:
“Character string conversions in IBM MQ classes for Java” on page 836
From IBM MQ Version 8.0, some of the default behavior regarding character string conversion in the IBM
MQ classes for Java has changed.

Writing IBM MQ classes for JMS applications
After a brief introduction to the JMS model, this topic provides detailed guidance on how to write IBM
MQ classes for JMS applications.

The JMS model
The JMS model defines a set of interfaces that Java applications can use to perform messaging operations.
IBM MQ classes for JMS, as a JMS provider, defines how JMS objects are related to IBM MQ concepts.
The JMS specification expects certain JMS objects to be administered objects. The latest version, JMS 2.0
introduces a simplified API, while also retaining the classic API, from version 1.1.

The JMS specification and the javax.jms package define a set of interfaces that Java applications can use
to perform messaging operations.

Simplified API

JMS 2.0 introduces the simplified API, while also retaining the domain specific and domain independent
interfaces from JMS 1.1. The simplified API reduces the number of objects that are needed to send and
receive messages and consists of the following interfaces:

ConnectionFactory
A ConnectionFactory is an administered object that is used by a JMS client to create a Connection.
This interface is also used in the classic API.

JMSContext
This object combines the Connection and Session objects of the classic API. JMSContext objects
can be created from other JMSContext objects, with the underlying connection being duplicated.

JMSProducer
A JMSProducer is created by a JMSContext and is used to send messages to a queue or topic. The
JMSProducer object causes the creation of objects that are required to send the message.

JMSConsumer
A JMSConsumer is created by a JMSContext and is used to receive messages from a topic or a
queue.

The simplified API has a number of effects:
v The JMSContext object always automatically starts the underlying connection.
v JMSProducers and JMSConsumers can now work directly with message bodies, without having to get

the whole message object, by using the Message's getBody method.
v Message properties can be set on the JMSProducer object, using method chaining, before sending a

'body', a messages content. The JMSProducer will handle the creation of all objects that are needed to
send the message. Using JMS 2.0, properties can be set, and a message sent as follows:
context.createProducer().
setProperty("foo", "bar").
setTimeToLive(10000).
setDeliveryMode(NON_PERSISTENT).
setDisableMessageTimestamp(true).
send(dataQueue, body);

JMS 2.0 also introduces shared subscriptions where messages can be shared between multiple consumers.
All JMS 1.1 subscriptions are treated as unshared subscriptions.

950 IBM MQ: Programming

Classic API

The following list summarizes the main JMS interfaces of the classic API:

Destination
A destination is where an application sends messages, or it is a source from which an application
receives messages, or both.

ConnectionFactory
A ConnectionFactory object encapsulates a set of configuration properties for a connection. An
application uses a connection factory to create a connection.

Connection
A Connection object encapsulates an application's active connection to a messaging server. An
application uses a connection to create sessions.

Session
A session is a single threaded context for sending and receiving messages. An application uses a
session to create messages, message producers, and message consumers. A session is either
transacted or not transacted.

Message
A Message object encapsulates a message that an application sends or receives.

MessageProducer
An application uses a message producer to send messages to a destination.

MessageConsumer
An application uses a message consumer to receive messages sent to a destination.

Figure 107 shows these objects and their relationships.

A Destination, ConnectionFactory, or Connection object can be used concurrently by different threads of a
multithreaded application, but a Session, MessageProducer, or MessageConsumer object cannot be used

Creates

Creates

CreatesSends to Receives from

CreatesCreates

ConnectionFactory

Connection

Session

Message DestinationDestination

MessageConsumerMessageProducer

Figure 107. JMS objects and their relationships

Developing JMS and Java Platform, Enterprise Edition applications 951

concurrently by different threads. The simplest way of ensuring that a Session, MessageProducer, or
MessageConsumer object is not used concurrently is to create a separate Session object for each thread.

JMS support two styles of messaging:
v Point-to-point messaging
v Publish/subscribe messaging

These styles of messaging are also referred to as messaging domains, and you can combine both styles of
messaging in an application. In the point-to-point domain, a destination is a queue and, in the
publish/subscribe domain, a destination is a topic.

With versions of JMS before JMS 1.1, programming for the point-to-point domain uses one set of
interfaces and methods, and programming for the publish/subscribe domain uses another set. The two
sets are similar, but separate. As of JMS 1.1, you can use a common set of interfaces and methods that
support both messaging domains. The common interfaces provide a domain independent view of each
messaging domain. Table 114 lists the JMS domain independent interfaces and their corresponding
domain specific interfaces.

Table 114. The JMS domain independent and domain specific interfaces

Domain independent interfaces Domain specific interfaces for the
point-to-point domain

Domain specific interfaces for the
publish/subscribe domain

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver
QueueBrowser

TopicSubscriber

JMS 2.0 retains all the domain specific interfaces, and so existing applications can still use these
interfaces. For new applications, however, consider using the domain independent interfaces of 1.1 or the
simplified API of 2.0.

In IBM MQ classes for JMS, JMS objects are related to IBM MQ concepts in the following ways:
v A Connection object has properties that are derived from the properties of the connection factory that

was used to create the connection. These properties control how an application connects to a queue
manager. Examples of these properties are the name of the queue manager and, for an application that
connects to the queue manager in client mode, the host name or IP address of the system on which the
queue manager is running.

v A Session object encapsulates an IBM MQ connection handle, which therefore defines the transactional
scope of the session.

v A MessageProducer object and a MessageConsumer object each encapsulates an IBM MQ object
handle.

When using IBM MQ classes for JMS, all the normal rules of IBM MQ apply. Note, in particular, that an
application can send a message to a remote queue but it can receive a message only from a queue that is
owned by the queue manager to which the application is connected.

The JMS specification expects ConnectionFactory and Destination objects to be administered objects. An
administrator creates and maintains administered objects in a central repository, and a JMS application
retrieves these objects using the Java Naming and Directory Interface (JNDI).

952 IBM MQ: Programming

In IBM MQ classes for JMS, the implementation of the Destination interface is an abstract superclass of
Queue and Topic, and so an instance of Destination is either a Queue object or a Topic object. The
domain independent interfaces treat a queue or a topic as a destination. The messaging domain for a
MessageProducer or MessageConsumer object is determined by whether the destination is a queue or a
topic.

In IBM MQ classes for JMS therefore, objects of the following types can be administered objects:
v ConnectionFactory
v QueueConnectionFactory
v TopicConnectionFactory
v Queue
v Topic
v XAConnectionFactory
v XAQueueConnectionFactory
v XATopicConnectionFactory
Related concepts:
“Using JMS 2.0 functionality” on page 1074
JMS 2.0 introduces several new areas of functionality to the IBM MQ classes for JMS.
Related information:
IBM MQ Java language interfaces

JMS messages
JMS messages are composed of a header, properties, and a body. JMS defines five types of message body.

JMS messages are composed of the following parts:

Header
All messages support the same set of header fields. Header fields contain values that are used by
both clients and providers to identify and route messages.

Properties
Each message contains a built-in facility to support application-defined property values.
Properties provide an efficient mechanism to filter application-defined messages.

Body JMS defines five types of message body that cover the majority of messaging styles currently in
use:

Stream
A stream of Java primitive values. It is filled and read sequentially.

Map A set of name-value pairs, where names are strings and values are Java primitive types.
The entries can be accessed sequentially or randomly by name. The order of the entries is
undefined.

Text A message containing a java.lang.String.

Object
A message that contains a serializable Java object

Bytes A stream of uninterpreted bytes. This message type is for literally encoding a body to
match an existing message format.

The JMSCorrelationID header field is used to link one message with another. It typically links a reply
message with its requesting message. JMSCorrelationID can hold a provider-specific message ID, an
application-specific String, or a provider-native byte[] value.

Developing JMS and Java Platform, Enterprise Edition applications 953

Message selectors in JMS:

Messages can contain application-defined property values. An application can use message selectors to
have a JMS provider filter messages.

A message contains a built-in facility to support application-defined property values. In effect, this
provides a mechanism to add application-specific header fields to a message. Properties allow an
application, using message selectors, to have a JMS provider select or filter messages on its behalf, using
application-specific criteria. Application-defined properties must obey the following rules:
v Property names must obey the rules for a message selector identifier.
v Property values can be Boolean, byte, short, int, long, float, double, and String.
v The JMSX and JMS_ name prefixes are reserved.

Property values are set before sending a message. When a client receives a message, the message
properties are read-only. If a client attempts to set properties at this point, a
MessageNotWriteableException is thrown. If clearProperties is called, the properties can now be both read
from, and written to.

A property value might duplicate a value in a message body. JMS does not define a policy for what
might be made into a property. However, application developers must be aware that JMS providers
probably handle data in a message body more efficiently than data in message properties. For best
performance, applications must use message properties only when they need to customize a message
header. The primary reason for doing this is to support customized message selection.

A JMS message selector allows a client to specify the messages that it is interested in by using the
message header. Only messages with headers that match the selector are delivered.

Message selectors cannot refer to message body values.

A message selector matches a message when the selector evaluates to true when the message header field
and property values are substituted for their corresponding identifiers in the selector.

A message selector is a String, with syntax that is based on a subset of the SQL92 conditional expression
syntax. The order in which a message selector is evaluated is from left to right within a precedence level.
You can use parentheses to change this order. Predefined selector literals and operator names are written
here in uppercase; however, they are not case-sensitive.

Contents of a message selector

A message selector can contain:
v Literals

– A string literal is enclosed in quotation marks. A doubled quotation mark represents a quotation
mark. Examples are 'literal' and 'literal''s'. Like Java string literals, these use the Unicode character
encoding.

– An exact numeric literal is a numeric value without a decimal point, such as 57, -957, and +62.
Numbers in the range of Java long are supported.

– An approximate numeric literal is a numeric value in scientific notation, such as 7E3 or -57.9E2, or a
numeric value with a decimal, such as 7., -95.7, or +6.2. Numbers in the range of Java double are
supported.

– The Boolean literals TRUE and FALSE.
v Identifiers:

954 IBM MQ: Programming

– An identifier is an unlimited length sequence of Java letters and Java digits, the first of which must
be a Java letter. A letter is any character for which the method Character.isJavaLetter returns true.
This includes _ and $. A letter or digit is any character for which the method
Character.isJavaLetterOrDigit returns true.

– Identifiers cannot be the names NULL, TRUE, or FALSE.
– Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, or IS.
– Identifiers are either header field references or property references.
– Identifiers are case sensitive.
– Message header field references are restricted to:

- JMSDeliveryMode
- JMSPriority
- JMSMessageID
- JMSTimestamp
- JMSCorrelationID
- JMSType

JMSMessageID, JMSTimestamp, JMSCorrelationID, and JMSType values can be null, and if so, are
treated as a NULL value.

– Any name beginning with JMSX is a JMS-defined property name.
– Any name beginning with JMS_ is a provider-specific property name.
– Any name that does not begin with JMS is an application-specific property name. If there is a

reference to a property that does not exist in a message, its value is NULL. If it does exist, its value
is the corresponding property value.

v White space is the same as it is defined for Java: space, horizontal tab, form feed, and line terminator.
v Expressions:

– A selector is a conditional expression. A selector that evaluates to true matches; a selector that
evaluates to false or unknown does not match.

– Arithmetic expressions are composed of themselves, arithmetic operations, identifiers (with a value
that is treated as a numeric literal), and numeric literals.

– Conditional expressions are composed of themselves, comparison operations, and logical operations.
v Standard bracketing (), to set the order in which expressions are evaluated, is supported.
v Logical operators in precedence order: NOT, AND, OR.
v Comparison operators: =, >, >=, <, <=, <> (not equal).

– Only values of the same type can be compared. One exception is that it is valid to compare exact
numeric values and approximate numeric values. (The type conversion required is defined by the
rules of Java numeric promotion.) If there is an attempt to compare different types, the selector is
always false.

– String and Boolean comparison is restricted to = and <>. Two strings are equal only if they contain
the same sequence of characters.

v Arithmetic operators in precedence order:
– +, - unary.
– *, /, multiplication, and division.
– +, -, addition, and subtraction.
– Arithmetic operations on a NULL value are not supported. If they are attempted, the complete

selector is always false.
– Arithmetic operations must use Java numeric promotion.

v arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3 comparison operator:
– Age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19.

Developing JMS and Java Platform, Enterprise Edition applications 955

– Age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age> 19.
– If any of the expressions of a BETWEEN operation are NULL, the value of the operation is false. If

any of the expressions of a NOT BETWEEN operation are NULL, the value of the operation is true.
v identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator where identifier has a String

or NULL value.
– Country IN ('UK', 'US', 'France') is true for 'UK' and false for 'Peru'. It is equivalent to the expression

(Country = 'UK') OR (Country = 'US') OR (Country = 'France').
– Country NOT IN ('UK', 'US', 'France') is false for 'UK' and true for 'Peru'. It is equivalent to the

expression NOT ((Country = 'UK') OR (Country = 'US') OR (Country = 'France')).
– If the identifier of an IN or NOT IN operation is NULL, the value of the operation is unknown.

v identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison operator, where identifier
has a string value. pattern-value is a string literal, where _ stands for any single character and %
stands for any sequence of characters (including the empty sequence). All other characters stand for
themselves. The optional escape-character is a single character string literal, with a character that is
used to escape the special meaning of the _ and % in pattern-value.
– phone LIKE '12%3' is true for 123 and 12993 and false for 1234.
– word LIKE 'l_se' is true for "lose" and false for "loose".
– underscored LIKE '_%' ESCAPE '\' is true for "_foo" and false for "bar".
– phone NOT LIKE '12%3' is false for 123 and 12993 and true for 1234.
– If the identifier of a LIKE or NOT LIKE operation is NULL, the value of the operation is unknown.

v identifier IS NULL comparison operator tests for a null header field value, or a missing property value.
– prop_name IS NULL.

v identifier IS NOT NULL comparison operator tests for the existence of a non-null header field value or
a property value.
– prop_name IS NOT NULL.

Example of a message selector

The following message selector selects messages with a message type of car, color of blue, and weight
greater than 2500 lbs:
"JMSType = ’car’ AND color = ’blue’ AND weight > 2500"

NULL property values

As noted in the preceding list, property values can be NULL. The evaluation of selector expressions that
contain NULL values is defined by SQL 92 NULL semantics. The following list gives a brief description
of these semantics:
v SQL treats a NULL value as unknown.
v Comparison or arithmetic with an unknown value always yields an unknown value.
v The IS NULL operator converts an unknown value into a TRUE value.
v The IS NOT NULL operator converts an unknown value into a FALSE value.

Special behavior of JMSMessageID and JMSCorrelationID

When selecting a message from a queue based on JMSMessageID or JMSCorrelationID, the application
uses the selector optimization, implemented in IBM MQ Version 8.0, which basically converts the
corresponding fields in the message descriptors and uses the IBM MQ MatchOption, for example:
MQMO_MATCH_CORREL_ID, MQMO_MATCH_MSG_ID

The IBM MQ MatchOption has special behavior if the specified JMSMessageID or JMSCorrellationID is
NULL, when it ignores the matching value and selects any or all messages on the queue. Note that

956 IBM MQ: Programming

zeroes are considered as NULL values in IBM MQ. Therefore, for example, if an application is selecting a
message with JMSMessage:ID00, the matching is
ignored and it selects any message on a queue.

For more information about MatchOptions, see MatchOptions (MQLONG).

Restrictions

Although SQL supports fixed decimal comparison and arithmetic, JMS message selectors do not. This is
why exact numeric literals are restricted to those without a decimal. It is also why there are numerics
with a decimal as an alternative representation for an approximate numeric value.

SQL comments are not supported.

Mapping JMS messages onto IBM MQ messages:

IBM MQ messages are composed of a Message Descriptor, an optional MQRFH2 header, and a body. The
contents of a JMS message are partly mapped and partly copied to an IBM MQ message.

This topic describes how the JMS message structure that is described in the first part of this section is
mapped onto an IBM MQ message. It is of interest to programmers who want to transmit messages
between JMS and traditional IBM MQ applications. It is also of interest to people who want to
manipulate messages transmitted between two JMS applications, for example, in an IBM Integration Bus
implementation.

This section does not apply if an application uses a real-time connection to a broker. When an application
uses a real-time connection, all communication is performed directly over TCP/IP; no IBM MQ queues or
messages are involved.

IBM MQ messages are composed of three components:
v The IBM MQ Message Descriptor (MQMD)
v An IBM MQ MQRFH2 header
v The message body.

The MQRFH2 is optional, and its inclusion in an outgoing message is governed by the TARGCLIENT flag
in the JMS Destination class. You can set this flag using the IBM MQ JMS administration tool. Because the
MQRFH2 carries JMS-specific information, always include it in the message when the sender knows that
the receiving destination is a JMS application. Normally, omit the MQRFH2 when sending a message
directly to a non-JMS application. This is because such an application does not expect an MQRFH2 in its
IBM MQ message.

If an incoming message does not have an MQRFH2 header, the Queue or Topic object derived from the
JMSReplyTo header field of the message, by default, has this flag set so that a reply message sent to the
queue or topic also does not have an MQRFH2 header. You can switch off this behavior of including an
MQRFH2 header in a reply message only if the original message has an MQRFH2 header, by setting the
TARGCLIENTMATCHING property of the connection factory to NO.

Figure 108 on page 958 shows how the structure of a JMS message is transformed to an IBM MQ message
and back again:

Developing JMS and Java Platform, Enterprise Edition applications 957

The structures are transformed in two ways:

Mapping
Where the MQMD includes a field that is equivalent to the JMS field, the JMS field is mapped
onto the MQMD field. Additional MQMD fields are exposed as JMS properties, because a JMS
application might need to get or set these fields when communicating with a non-JMS
application.

Copying
Where there is no MQMD equivalent, a JMS header field or property is passed, possibly
transformed, as a field inside the MQRFH2.

The MQRFH2 header and JMS:

This collection of topics describes the MQRFH Version 2 header, which carries JMS-specific data that is
associated with the message content. The MQRFH2 Version 2 is an extensible header, and can also carry
additional information that is not directly associated with JMS. However, this section covers only its use
by JMS.

For a full description see MQRFH2 - Rules and formatting header 2.

There are two parts of the header, a fixed portion and a variable portion.

Fixed portion
The fixed portion is modeled on the standard IBM MQ header pattern and consists of the
following fields:

StrucId (MQCHAR4)
Structure identifier.

Must be MQRFH_STRUC_ID (value: “RFH ”) (initial value).

MQRFH_STRUC_ID_ARRAY (value: “R”, “F”, “H”, “ ”) is also defined.

Version (MQLONG)
Structure version number.

Must be MQRFH_VERSION_2 (value: 2) (initial value).

StrucLength (MQLONG)
Total length of MQRFH2, including the NameValueData fields.

The value set into StrucLength must be a multiple of 4 (the data in the NameValueData fields can
be padded with space characters to achieve this).

Mapping Mapping

Copying Copying

WebSphere MQ
Message

Other Data

RFH2

MQMD

DataJMS Message

JMS Application

Header

Data

Properties

JMS Application

JMS Message

Header

Data

Properties

Figure 108. How messages are transformed between JMS and IBM MQ using the MQRFH2 header

958 IBM MQ: Programming

Encoding (MQLONG)
Data encoding.

Encoding of any numeric data in the portion of the message following the MQRFH2 (the next
header, or the message data following this header).

CodedCharSetId (MQLONG)
Coded character set identifier.

Representation of any character data in the portion of the message following the MQRFH2 (the
next header, or the message data following this header).

Format (MQCHAR8)
Format name.

Format name for the portion of the message following the MQRFH2.

Flags (MQLONG)
Flags.

MQRFH_NO_FLAGS =0. No flags set.

NameValueCCSID (MQLONG)
The coded character set identifier (CCSID) for the NameValueData character strings contained in
this header. The NameValueData can be coded in a character set that differs from the other
character strings that are contained in the header (StrucID and Format).

If the NameValueCCSID is a 2 byte Unicode CCSID (1200, 13488, or 17584), the byte order of the
Unicode is the same as the byte ordering of the numeric fields in the MQRFH2. (For example,
Version, StrucLength, and NameValueCCSID itself.)

The NameValueCCSID takes values from the following table:

Table 115. Possible values for NameValueCCSID field

Value Meaning

1200 UCS2 open-ended
1208 UTF8
13488 UCS2 2.0 subset
17584 UCS2 2.1 subset (includes Euro symbol)

Variable portion
The variable portion follows the fixed portion. The variable portion contains a variable number of
MQRFH2 folders. Each folder contains a variable number of elements or properties. Folders
group related properties. The MQRFH2 headers created by JMS can contain any of the following
folders:

The <mcd> folder

mcd contains properties that describe the format of the message. For example, the message service
domain Msd property identifies a JMS message as being JMSTextMessage, JMSBytesMessage,
JMSStreamMessage, JMSMapMessage, JMSObjectMessage, or null.

The mcd folder is always present in a JMS message containing an MQRFH2.

It is always present in a message containing an MQRFH2 sent from IBM Integration Bus. It describes
the domain, format, type, and message set of a message.

Developing JMS and Java Platform, Enterprise Edition applications 959

Table 116. mcd property name, synonym, data type, and folder

Property
synonym Property name

Data
type Folder

mcd.Msd string <mcd><Msd>messageDomain</Msd></mcd>

mcd.Set string <mcd><Set>messageDomain</Set></mcd>

mcd.Type string <mcd><Type>messageDomain</Type></mcd>

mcd.Fmt string <mcd><Fmt>messageDomain</Fmt></mcd>

Do not add your own properties in the mcd folder.

The <jms> folder

jms contains JMS header fields, and JMSX properties that cannot be fully expressed in the MQMD.
The jms folder is always present in a JMS MQRFH2.

The <usr> folder

usr contains application-defined JMS properties associated with the message. The usr folder is
present only if an application has set an application-defined property.

The <mqext> folder

mqext contains the following types of property:
v Properties that are used only by WebSphere Application Server.
v Properties relating to delayed delivery of messages.

The folder is present if the application has either set at least one of the IBM defined properties or
used delivery delay.

Table 117. mqext property name, synonym, data type, and folder

Property synonym Property name Data type Folder

JMSArmCorrelator mqext.Arm string <mqext><Arm>armCorrelator</Arm></mqext>

JMSRMCorrelator mqext.Wrm string <mqext><Wrm>wrmCorrelator</Wrm></mqext>

JMSDeliveryTime mqext.Dlt i8 <mqext><Dlt>DeliveryTime</Dlt></mqext>

JMSDeliveryDelay mqext.Dly i8 <mqext><Dly>DeliveryTime</Dly></mqext>

Do not add your own properties in the mqext folder.

The <mqps> folder

mqps contains properties that are used only by IBM MQ publish/subscribe. The folder is present
only if the application has set at least one of the integrated publish/subscribe properties.

Table 118. mqps property name, synonym, data type, and folder

Property
synonym Property name Data type Folder

MQTopicString mqps.Top string <mqps><Top>topicString</Top></mqps>

MQSubUserData mqps.Sud string <mqps><Sud>subscriberUserData</Sud></mqps>

MQIsRetained mqps.Ret boolean <mqps><Ret>isRetained</Ret></mqps>

MQPubOptions mqps.Pub i8 <mqps><Pub>publicationOptions</Pub></mqps>

MQPubLevel mqps.Pbl i8 <mqps><Pbl>publicationLevel</Pbl></mqps>

MQPubTime mqpse.Pts string <mqps><Pts>publicationTime</Pts></mqps>

MQPubSeqNum mqpse.Seq i8 <mqps><Seq>publicationSequenceNumber</Seq></mqps>

960 IBM MQ: Programming

Table 118. mqps property name, synonym, data type, and folder (continued)

Property
synonym Property name Data type Folder

MQPubStrIntData mqpse.Sid string <mqps><Sid>publicationData</Sid></mqps>

MQPubFormat mqpse.Pfmt i8 <mqps><Pfmt>messageFormat</Pfmt></mqps>

Do not add your own properties in the mqps folder.

Table 119 shows a full list of property names.

Table 119. MQRFH2 folders and properties used by JMS

JMS field name Java type MQRFH2 folder
name

Property name Type/values

JMSDestination Destination jms Dst string

JMSExpiration long jms Exp i8

JMSPriority int jms Pri i4

JMSDeliveryMode int jms Dlv i4

JMSCorrelationID String jms Cid string

JMSReplyTo Destination jms Rto string

JMSTimestamp long jms Tms i8

JMSType String mcd Type, Set, Fmt string

JMSXGroupID String jms Gid string

JMSXGroupSeq int jms Seq i4

xxx (user defined) Any usr xxx any

mcd Msd jms_none
jms_text
jms_bytes
jms_map
jms_stream
jms_object

NameValueLength (MQLONG)
Length in bytes of the NameValueData string that immediately follows this length field (it does
not include its own length).

NameValueData (MQCHARn)
A single character string, whose length in bytes is given by the preceding NameValueLength
field. It contains a folder holding a sequence of properties. Each property is a name/type/value
triplet, contained within an XML element whose name is the folder name, as follows:
<foldername>
triplet1 triplet2 tripletn </foldername>

The closing </foldername> tag can be followed by spaces as padding characters. Each triplet is
encoded using an XML-like syntax:
<name dt=’datatype’>value</name>

The dt=’datatype’ element is optional and is omitted for many properties, because the data type
is predefined. If it is included, one or more space characters must be included before the dt= tag.

name is the name of the property; see Table 119.

datatype
must match, after folding, one of the data types listed in Table 120 on page 962.

Developing JMS and Java Platform, Enterprise Edition applications 961

value is a string representation of the value to be conveyed, using the definitions in Table 120.

A null value is encoded using the following syntax:
<name dt=’datatype’ xsi:nil=’true’></name>

Do not use xsi:nil=’false’.

Table 120. Property data types

Data type Definition

string Any sequence of characters excluding < and &

boolean The character 0 or 1 (0 = false, 1 = true)

bin.hex Hexadecimal digits representing octets

i1 A number, expressed using digits 0..9, with optional sign (no fractions or exponent). Must lie in
the range -128 to 127 inclusive

i2 A number, expressed using digits 0..9, with optional sign (no fractions or exponent). Must lie in
the range -32768 to 32767 inclusive

i4 A number, expressed using digits 0..9, with optional sign (no fractions or exponent). Must lie in
the range -2147483648 to 2147483647 inclusive

i8 A number, expressed using digits 0..9, with optional sign (no fractions or exponent). Must lie in
the range -9223372036854775808 to 92233720368547750807 inclusive

int A number, expressed using digits 0..9, with optional sign (no fractions or exponent). Must lie in
the same range as i8. This can be used in place of one of the i* types if the sender does not want
to associate a particular precision with the property

r4 Floating point number, magnitude <= 3.40282347E+38,>= 1.175E-37 expressed using digits 0..9,
optional sign, optional fractional digits, optional exponent

r8 Floating point number, magnitude <= 1.7976931348623E+308,>= 2.225E-307 expressed using digits
0..9, optional sign, optional fractional digits, optional exponent

A string value can contain spaces. You must use the following escape sequences in a string value:
v & for the & character
v < for the < character

You can use the following escape sequences, but they are not required:
v > for the > character
v ' for the ’ character
v " for the " character

962 IBM MQ: Programming

JMS fields and properties with corresponding MQMD fields:

These tables show the MQMD fields equivalent to JMS header fields, JMS properties, and JMS
provider-specific properties.

Table 121 lists the JMS header fields and Table 122 lists the JMS properties that are mapped directly to
MQMD fields. Table 123 lists the provider-specific properties and the MQMD fields that they are mapped
to.

Table 121. JMS header fields mapping to MQMD fields

JMS header field Java type MQMD field C type

JMSDeliveryMode int Persistence MQLONG

JMSExpiration long Expiry MQLONG

JMSPriority int Priority MQLONG

JMSMessageID String MsgID MQBYTE24

JMSTimestamp long PutDate
PutTime

MQCHAR8
MQCHAR8

JMSCorrelationID String CorrelId MQBYTE24

Table 122. JMS properties mapping to MQMD fields

JMS property Java type MQMD field C type

JMSXUserID String UserIdentifier MQCHAR12

JMSXAppID String PutApplName MQCHAR28

JMSXDeliveryCount int BackoutCount MQLONG

JMSXGroupID String GroupId MQBYTE24

JMSXGroupSeq int MsgSeqNumber MQLONG

Table 123. JMS provider-specific properties mapping to MQMD fields

JMS provider-specific property Java type MQMD field C type

JMS_IBM_Report_Exception int Report MQLONG

JMS_IBM_Report_Expiration int Report MQLONG

JMS_IBM_Report_COA int Report MQLONG

JMS_IBM_Report_COD int Report MQLONG

JMS_IBM_Report_PAN int Report MQLONG

JMS_IBM_Report_NAN int Report MQLONG

JMS_IBM_Report_Pass_Msg_ID int Report MQLONG

JMS_IBM_Report_Pass_Correl_ID int Report MQLONG

JMS_IBM_Report_Discard_Msg int Report MQLONG

JMS_IBM_MsgType int MsgType MQLONG

JMS_IBM_Feedback int Feedback MQLONG

JMS_IBM_Format String Format 1 MQCHAR8

JMS_IBM_PutApplType int PutApplType MQLONG

JMS_IBM_Encoding int Encoding MQLONG

JMS_IBM_Character_Set String CodedCharacterSetId 2 MQLONG

JMS_IBM_PutDate String PutDate MQCHAR8

Developing JMS and Java Platform, Enterprise Edition applications 963

Table 123. JMS provider-specific properties mapping to MQMD fields (continued)

JMS provider-specific property Java type MQMD field C type

JMS_IBM_PutTime String PutTime MQCHAR8

JMS_IBM_Last_Msg_In_Group boolean MsgFlags MQLONG

Note:

1. JMS_IBM_Format represents the format of the message body. This can be defined by the application
setting the JMS_IBM_Format property of the message (note that there is an 8 character limit), or can
default to the IBM MQ format of the message body appropriate to the JMS message type.
JMS_IBM_Format maps to the MQMD Format field only if the message contains no RFH or RFH2
sections. In a typical message, it maps to the Format field of the RFH2 immediately preceding the
message body.

2. JMS_IBM_Character_Set property value is a String value that contains the Java character set
equivalent for the numeric CodedCharacterSetId value. MQMD field CodedCharacterSetId is a
numeric value that contains the equivalent of the Java character set string specified by the
JMS_IBM_Character_Set property.

Mapping JMS fields onto IBM MQ fields (outgoing messages):

These tables show how JMS header and property fields are mapped into MQMD and MQRFH2 fields at
send() or publish() time.

Table 124 shows how the JMS header fields are mapped into MQMD/RFH2 fields at send() or publish()
time. Table 125 on page 965 shows how JMS properties are mapped into MQMD/RFH2 fields at send() or
publish() time. Table 126 on page 965 shows how JMS provider-specific properties are mapped to MQMD
fields at send() or publish() time,

For fields marked Set by Message Object, the value transmitted is the value held in the JMS message
immediately before the send() or publish() operation. The value in the JMS message is left unchanged by
the operation.

For fields marked Set by Send Method, a value is assigned when the send() or publish() is performed
(any value held in the JMS message is ignored). The value in the JMS message is updated to show the
value used.

Fields marked as Receive-only are not transmitted and are left unchanged in the message by send() or
publish().

Table 124. Outgoing message field mapping

JMS header field name MQMD field used for
transmission

Header Set by

JMSDestination MQRFH2 Send Method

JMSDeliveryMode Persistence MQRFH2 Send Method

JMSExpiration Expiry MQRFH2 Send Method

JMSPriority Priority MQRFH2 Send Method

JMSMessageID MsgID Send Method

JMSTimestamp PutDate/PutTime Send Method

JMSCorrelationID CorrelId MQRFH2 Message Object

JMSReplyTo ReplyToQ/ReplyToQMgr MQRFH2 Message Object

JMSType MQRFH2 Message Object

964 IBM MQ: Programming

Table 124. Outgoing message field mapping (continued)

JMS header field name MQMD field used for
transmission

Header Set by

JMSRedelivered Receive-only

Note:

1. MQMD field CodedCharacterSetId is a numeric value that contains the equivalent of the Java
character set string specified by the JMS_IBM_Character_Set property.

Table 125. Outgoing message JMS property mapping

JMS property name MQMD field used for
transmission

Header Set by

JMSXUserID UserIdentifier Send Method

JMSXAppID PutApplName Send Method

JMSXDeliveryCount Receive-only

JMSXGroupID GroupId MQRFH2 Message Object

JMSXGroupSeq MsgSeqNumber MQRFH2 Message Object

Table 126. Outgoing message JMS provider-specific property mapping

JMS provider-specific property name MQMD field used for
transmission

Header Set by

JMS_IBM_Report_Exception Report Message Object

JMS_IBM_Report_Expiration Report Message Object

JMS_IBM_Report_COA/COD Report Message Object

JMS_IBM_Report_NAN/PAN Report Message Object

JMS_IBM_Report_Pass_Msg_ID Report Message Object

JMS_IBM_Report_Pass_Correl_ID Report Message Object

JMS_IBM_Report_Discard_Msg Report Message Object

JMS_IBM_MsgType MsgType Message Object

JMS_IBM_Feedback Feedback Message Object

JMS_IBM_Format Format Message Object

JMS_IBM_PutApplType PutApplType Send Method

JMS_IBM_Encoding Encoding Message Object

JMS_IBM_Character_Set CodedCharacterSetId Message Object

JMS_IBM_PutDate PutDate Send Method

JMS_IBM_PutTime PutTime Send Method

JMS_IBM_Last_Msg_In_Group MsgFlags Message Object

Developing JMS and Java Platform, Enterprise Edition applications 965

Mapping JMS header fields at send() or publish():

These notes relate to the mapping of JMS fields at send() or publish().

JMSDestination to MQRFH2
This is stored as a string that serializes the salient characteristics of the destination object, so that
a receiving JMS can reconstitute an equivalent destination object. The MQRFH2 field is encoded
as URI (see “Uniform resource identifiers (URIs)” on page 1024 for details of the URI notation).

JMSReplyTo to MQMD.ReplyToQ, ReplyToQMgr, MQRFH2
The queue name is copied to the MQMD.ReplyToQ field, and the queue manager name is copied
to the ReplyToQMgr fields. The destination extension information (other useful details that are
kept in the destination object) is copied into the MQRFH2 field. The MQRFH2 field is encoded as
a URI (see “Uniform resource identifiers (URIs)” on page 1024 for details of the URI notation).

JMSDeliveryMode to MQMD.Persistence
The JMSDeliveryMode value is set by the send() or publish() Method or MessageProducer, unless
the Destination Object overrides it. The JMSDeliveryMode value is mapped to the
MQMD.Persistence field as follows:
v JMS value PERSISTENT is equivalent to MQPER_PERSISTENT
v JMS value NON_PERSISTENT is equivalent to MQPER_NOT_PERSISTENT

If the MQQueue persistence property is not set to WMQConstants.WMQ_PER_QDEF, the
delivery mode value is also encoded in the MQRFH2.

JMSExpiration to/from MQMD.Expiry, MQRFH2
JMSExpiration stores the time to expire (the sum of the current time and the time to live),
whereas MQMD stores the time to live. Also, JMSExpiration is in milliseconds, but
MQMD.Expiry is in tenths of a second.
v If the send() method sets an unlimited time to live, MQMD.Expiry is set to

MQEI_UNLIMITED, and no JMSExpiration is encoded in the MQRFH2.
v If the send() method sets a time to live that is less than 214748364.7 seconds (about 7 years),

the time to live is stored in MQMD.Expiry, and the expiration time (in milliseconds), is
encoded as an i8 value in the MQRFH2.

v If the send() method sets a time to live greater than 214748364.7 seconds, MQMD.Expiry is set
to MQEI_UNLIMITED. The true expiration time in milliseconds is encoded as an i8 value in
the MQRFH2.

JMSPriority to MQMD.Priority
Directly map JMSPriority value (0-9) onto MQMD priority value (0-9). If JMSPriority is set to a
non-default value, the priority level is also encoded in the MQRFH2.

JMSMessageID from MQMD.MessageID
All messages sent from JMS have unique message identifiers assigned by IBM MQ. The value
assigned is returned in the MQMD.MessageId field after the MQPUT call, and is passed back to
the application in the JMSMessageID field. The IBM MQ messageId is a 24-byte binary value,
whereas the JMSMessageID is a string. The JMSMessageID is composed of the binary messageId
value converted to a sequence of 48 hexadecimal characters, prefixed with the characters ID:. JMS
provides a hint that can be set to disable the production of message identifiers. This hint is
ignored, and a unique identifier is assigned in all cases. Any value that is set into the
JMSMessageID field before a send() is overwritten.

If you do require the ability to specify the MQMD.MessageID, you can do this with one of the
IBM MQ JMS extensions described in “Reading and writing the message descriptor from an IBM
MQ classes for JMS application” on page 1039.

JMSTimestamp to MQRFH2
During a send, the JMSTimestamp field is set according to the JVM's clock. This value is set into

966 IBM MQ: Programming

the MQRFH2. Any value that is set into the JMSTimestamp field before a send() is overwritten.
See also the JMS_IBM_PutDate and JMS_IBM_PutTime properties.

JMSType to MQRFH2
This string is set into the MQRFH2 mcd.Type field. If it is in URI format, it can also affect
mcd.Set and mcd.Fmt fields.

JMSCorrelationID to MQMD.CorrelId, MQRFH2
The JMSCorrelationID can hold one of the following:

A provider specific message ID
This is a message identifier from a message previously sent or received, and so should be
a string of 48 lowercase hexadecimal digits that are prefixed with ID: The prefix is
removed, the remaining characters are converted into binary, and then they are set into
the MQMD.CorrelId field. No CorrelId value is encoded in the MQRFH2.

A provider-native byte[] value
The value is copied into the MQMD.CorrelId field - padded with nulls, or truncated to 24
bytes if necessary. No CorrelId value is encoded in the MQRFH2.

An application-specific string
The value is copied into the MQRFH2. The first 24 bytes of the string, in UTF8 format,
are written into the MQMD.CorrelID.

Mapping JMS property fields:

These notes refer to the mapping of JMS property fields in IBM MQ messages.

JMSXUserID from MQMD UserIdentifier
JMSXUserID is set on return from send call.

JMSXAppID from MQMD PutApplName
JSMXAppID is set on return from send call.

JMSXGroupID to MQRFH2 (point-to-point)
For point-to-point messages, the JMSXGroupID is copied into the MQMD GroupID field. If the
JMSXGroupID starts with the prefix ID:, it is converted into binary. Otherwise, it is encoded as a
UTF8 string. The value is padded or truncated if necessary to a length of 24 bytes. The
MQMF_MSG_IN_GROUP flag is set.

JMSXGroupID to MQRFH2 (publish/subscribe)
For publish/subscribe messages, the JMSXGroupID is copied into the MQRFH2 as a string.

JMSXGroupSeq MQMD MsgSeqNumber (point-to-point)
For point-to-point messages, the JMSXGroupSeq is copied into the MQMD MsgSeqNumber field.
The MQMF_MSG_IN_GROUP flag is set.

JMSXGroupSeq MQMD MsgSeqNumber (publish/subscribe)
For publish/subscribe messages, the JMSXGroupSeq is copied into the MQRFH2 as an i4.

Developing JMS and Java Platform, Enterprise Edition applications 967

Mapping JMS provider-specific fields:

The following notes refer to the mapping of JMS provider-specific fields into IBM MQ messages.

JMS_IBM_Report_<name> to MQMD Report
A JMS application can set the MQMD Report options, using the following JMS_IBM_Report_XXX
properties. The single MQMD is mapped to several JMS_IBM_Report_XXX properties. The
application must set the value of these properties to the standard IBM MQ MQRO_ constants
(included in com.ibm.mq.MQC). So, for example, to request COD with full Data, the application
must set JMS_IBM_Report_COD to the value CMQC.MQRO_COD_WITH_FULL_DATA.

JMS_IBM_Report_Exception
MQRO_EXCEPTION or
MQRO_EXCEPTION_WITH_DATA or
MQRO_EXCEPTION_WITH_FULL_DATA

JMS_IBM_Report_Expiration
MQRO_EXPIRATION or
MQRO_EXPIRATION_WITH_DATA or
MQRO_EXPIRATION_WITH_FULL_DATA

JMS_IBM_Report_COA
MQRO_COA or
MQRO_COA_WITH_DATA or
MQRO_COA_WITH_FULL_DATA

JMS_IBM_Report_COD
MQRO_COD or
MQRO_COD_WITH_DATA or
MQRO_COD_WITH_FULL_DATA

JMS_IBM_Report_PAN
MQRO_PAN

JMS_IBM_Report_NAN
MQRO_NAN

JMS_IBM_Report_Pass_Msg_ID
MQRO_PASS_MSG_ID

JMS_IBM_Report_Pass_Correl_ID
MQRO_PASS_CORREL_ID

JMS_IBM_Report_Discard_Msg
MQRO_DISCARD_MSG

JMS_IBM_MsgType to MQMD MsgType
Value maps directly onto MQMD MsgType. If the application has not set an explicit value of
JMS_IBM_MsgType, a default value is used. This default value is determined as follows:
v If JMSReplyTo is set to an IBM MQ queue destination, MSGType is set to the value

MQMT_REQUEST
v If JMSReplyTo is not set, or is set to anything other than an IBM MQ queue destination,

MsgType is set to the value MQMT_DATAGRAM

JMS_IBM_Feedback to MQMD Feedback
Value maps directly onto MQMD Feedback.

JMS_IBM_Format to MQMD Format
Value maps directly onto MQMD Format.

JMS_IBM_Encoding to MQMD Encoding
If set, this property overrides the numeric encoding of the Destination Queue or Topic.

968 IBM MQ: Programming

JMS_IBM_Character_Set to MQMD CodedCharacterSetId
If set, this property overrides the coded character set property of the Destination Queue or Topic.

JMS_IBM_PutDate from MQMD PutDate
The value of this property is set, during send, directly from the PutDate field in the MQMD. Any
value that is set into the JMS_IBM_PutDate property before a send is overwritten. This field is a
String of eight characters, in the IBM MQ Date format of YYYYMMDD. This property can be
used with the JMS_IBM_PutTime property to determine the time the message was put according
to the queue manager.

JMS_IBM_PutTime from MQMD PutTime
The value of this property is set, during send, directly from the PutTime field in the MQMD. Any
value that is set into the JMS_IBM_PutTime property before a send is overwritten. This field is a
String of eight characters, in the IBM MQ Time format of HHMMSSTH. This property can be
used with the JMS_IBM_PutDate property to determine the time the message was put according
to the queue manager.

JMS_IBM_Last_Msg_In_Group to MQMD MsgFlags
For point-to-point messaging, this Boolean value maps to the MQMF_LAST_MSG_IN_GROUP
flag in the MQMD MsgFlags field. It is normally used with the JMSXGroupID and
JMSXGroupSeq properties to indicate to a legacy IBM MQ application that this message is the last
in a group. This property is ignored for publish/subscribe messaging.

Mapping IBM MQ fields onto JMS fields (incoming messages):

These tables show how JMS header and property fields are mapped into MQMD and MQRFH2 fields at
get() or receive() time.

Table 127 shows how JMS header fields are mapped onto MQMD/MQRFH2 fields at get() or receive()
time. Table 128 on page 970 shows how JMS property fields are mapped onto MQMD/MQRFH2 fields at
get() or receive() time. Table 129 on page 970 shows how JMS provider-specific properties are mapped.

Table 127. Incoming message JMS header field mapping

JMS header field name MQMD field retrieved from MQRFH2 field retrieved
from

JMSDestination jms.Dst or mqps.Top 1

JMSDeliveryMode Persistence 2 jms.Dlv 2

JMSExpiration jms.Exp

JMSPriority Priority

JMSMessageID MsgID

JMSTimestamp PutDate 2

PutTime 2
jms.Tms 2

JMSCorrelationID CorrelId 2 jms.Cid 2

JMSReplyTo ReplyToQ 2

ReplyToQMgr 2
jms.Rto 2

JMSType mcd.Type, mcd.Set,
mcd.Fmt

JMSRedelivered BackoutCount

Note:

1. If both jms.Dst and mqps.Top are set, the value in jms.Dst is used.
2. For properties that can have values retrieved from the MQRFH2 or the MQMD, if both are available,

the setting in the MQRFH2 is used.

Developing JMS and Java Platform, Enterprise Edition applications 969

3. JMS_IBM_Character_Set property value is a String value that contains the Java character set
equivalent for the numeric CodedCharacterSetId value.

Table 128. Incoming message property mapping

JMS property name MQMD field retrieved from MQRFH2 field retrieved
from

JMSXUserID UserIdentifier

JMSXAppID PutApplName

JMSXDeliveryCount BackoutCount

JMSXGroupID GroupId 1 jms.Gid 1

JMSXGroupSeq MsgSeqNumber 1 jms.Seq 1

Note:

1. For properties that can have values retrieved from the MQRFH2 or the MQMD, if both are available,
the setting in the MQRFH2 is used. The properties are set from the MQMD values only if the
MQMF_MSG_IN_GROUP or MQMF_LAST_MSG_IN_GROUP message flags are set.

Table 129. Incoming message provider-specific JMS property mapping

JMS property name MQMD field retrieved from MQRFH2 field retrieved
from

JMS_IBM_Report_Exception Report

JMS_IBM_Report_Expiration Report

JMS_IBM_Report_COA Report

JMS_IBM_Report_COD Report

JMS_IBM_Report_PAN Report

JMS_IBM_Report_NAN Report

JMS_IBM_Report_ Pass_Msg_ID Report

JMS_IBM_Report_Pass_Correl_ID Report

JMS_IBM_Report_Discard_Msg Report

JMS_IBM_MsgType MsgType

JMS_IBM_Feedback Feedback

JMS_IBM_Format Format

JMS_IBM_PutApplType PutApplType

JMS_IBM_Encoding 1 Encoding

JMS_IBM_Character_Set 1 CodedCharacterSetId

JMS_IBM_PutDate PutDate

JMS_IBM_PutTime PutTime

JMS_IBM_Last_Msg_In_Group MsgFlags

1. Only set if the incoming message is a Bytes Message.

970 IBM MQ: Programming

Exchanging messages between a JMS application and a traditional IBM MQ application:

This topic describes what happens when a JMS application exchanges messages with a traditional IBM
MQ application that cannot process the MQRFH2 header.

Figure 109 shows the mapping.

The administrator indicates that the JMS application is communicating with a traditional IBM MQ
application by setting the TARGCLIENT property of the destination to MQ. This indicates that no
MQRFH2 header is to be produced. If this is not done, the receiving application must be able to handle
the MQRFH2 header.

The mapping from JMS to MQMD targeted at a traditional IBM MQ application is the same as mapping
from JMS to MQMD targeted at a JMS application. If IBM MQ classes for JMS receives an IBM MQ
message with the MQMD Format field set to anything other than MQFMT_RFH2, data is being received
from a non-JMS application. If the format is MQFMT_STRING, the message is received as a JMS text
message. Otherwise, it is received as a JMS bytes message. Because there is no MQRFH2, only those JMS
properties that are transmitted in the MQMD can be restored.

If IBM MQ classes for JMS receives a message that does not have an MQRFH2 header, the TARGCLIENT
property of the Queue or Topic object derived from the JMSReplyTo header field of the message is set to
MQ by default. This means that a reply message sent to the queue or topic also does not have an
MQRFH2 header. You can switch off this behavior of including an MQRFH2 header in a reply message
only if the original message has an MQRFH2 header, by setting the TARGCLIENTMATCHING property
of the connection factory to NO.

Mapping Mapping

Mapping Mapping

Copying Copying

WebSphere MQ
Message

Traditional WebSphere MQ Application

Data

MQMD

JMS Message

JMS Application

Header

Data

Properties

JMS Application

JMS Message

Header

Data

Properties

Figure 109. How JMS messages are transformed to IBM MQ messages with no MQRFH2 header

Developing JMS and Java Platform, Enterprise Edition applications 971

The JMS message body:

This topic contains information about the encoding of the message body itself. The encoding depends on
the type of JMS message.

ObjectMessage
An ObjectMessage is an object serialized by the Java Runtime in the normal way.

TextMessage
A TextMessage is an encoded string. For an outgoing message, the string is encoded in the
character set given by the destination object. This defaults to UTF8 encoding (the UTF8 encoding
starts with the first character of the message; there is no length field at the start). It is, however,
possible to specify any other character set supported by IBM MQ classes for JMS. Such character
sets are used mainly when you send a message to a non-JMS application.

If the character set is a double-byte set (including UTF16), the destination object's integer
encoding specification determines the order of the bytes.

An incoming message is interpreted using the character set and encoding that are specified in the
message itself. These specifications are in the last IBM MQ header (or MQMD if there are no
headers). For JMS messages, the last header is usually the MQRFH2.

BytesMessage
A BytesMessage is, by default, a sequence of bytes as defined by the JMS 1.0.2 specification and
associated Java documentation.

For an outgoing message that was assembled by the application itself, the destination object's
encoding property can be used to override the encodings of integer and floating point fields
contained in the message. For example, you can request that floating point values are stored in
S/390 rather than IEEE format).

An incoming message is interpreted using the numeric encoding specified in the message itself.
This specification is in the last IBM MQ header (or MQMD if there are no headers). For JMS
messages, the last header is usually the MQRFH2.

If a BytesMessage is received, and is re-sent without modification, its body is transmitted byte for
byte, as it was received. The destination object's encoding property has no effect on the body. The
only string-like entity that can be sent explicitly in a BytesMessage is a UTF8 string. This is
encoded in Java UTF8 format, and starts with a 2-byte length field. The destination object's
character set property has no effect on the encoding of an outgoing BytesMessage. The character
set value in an incoming IBM MQ message has no effect on the interpretation of that message as
a JMS BytesMessage.

Non-Java applications are unlikely to recognize the Java UTF8 encoding. Therefore, for a JMS
application to send a BytesMessage that contains text data, the application itself must convert its
strings to byte arrays, and write these byte arrays into the BytesMessage.

MapMessage
A MapMessage is a string containing XML name/type/value triplets encoded as:
<map>

<elt name="elementname1" dt="datatype1">value1</elt>
<elt name="elementname2" dt="datatype2">value2</elt>
...

</map>

where datatype is one of the data types listed in Table 120 on page 962. The default data type is
string, and so the attribute dt=“string” is omitted for string elements.

The character set used to encode or interpret the XML string that forms the body of a map
message is determined according to the rules that apply to a text message.

972 IBM MQ: Programming

Versions of IBM MQ classes for JMS earlier than Version 5.3 encoded the body of a map message
in the following format:
<map>

<elementname1 dt="datatype1">value1</elementname1>
<elementname2 dt="datatype2">value2</elementname2>
...

</map>

Version 5.3 and later versions of IBM MQ classes for JMS can interpret either format, but versions
of IBM MQ classes for JMS earlier than Version 5.3 cannot interpret the current format.

If an application needs to send map messages to another application that is using a version of
IBM MQ classes for JMS earlier than Version 5.3, the sending application must call the connection
factory method setMapNameStyle(WMQConstants.WMQ_MAP_NAME_STYLE_COMPATIBLE) to specify that
the map messages are sent in the previous format. By default, all map messages are sent in the
current format.

StreamMessage
A StreamMessage is like a map message, but without element names:
<stream>

<elt dt="datatype1">value1</elt>
<elt dt="datatype2">value2</elt>
...

</stream>

where datatype is one of the data types listed in Table 120 on page 962. The default data type is
string, and so the attribute dt=“string” is omitted for string elements.

The character set used to encode or interpret the XML string that makes up the StreamMessage
body is determined following the rules that apply to a TextMessage.

The MQRFH2.format field is set as follows:

MQFMT_NONE
for ObjectMessage, BytesMessage, or messages with no body.

MQFMT_STRING
for TextMessage, StreamMessage, or MapMessage.

JMS message conversion:

Message data conversion in JMS is performed when sending and receiving messages. IBM MQ performs
most data conversion automatically. It converts text and numeric data when transferring a message
between JMS applications. Text is converted when exchanging a JMSTextMessage between a JMS
application and an IBM MQ application.

If you are planning to do more complex message exchanges, the following topics are of interest you.
Complex message exchanges include:
v Transferring non-text messages between an IBM MQ application and a JMS application.
v Exchanging text data in byte format.
v Converting the text in your application.

JMS message data

Data conversion is necessary to exchange text and numeric data between applications, even between two
JMS applications. The internal representation of text and numbers must be encoded so they can be
transferred in a message. Encoding forces a decision about how numbers and text are represented. IBM

Developing JMS and Java Platform, Enterprise Edition applications 973

MQ manages the encoding of text and numbers in JMS messages, except for JMSObjectMessage, see
“JMSObjectMessage” on page 980. It uses three message attributes. The three attributes are
CodedCharacterSetId, Encoding, and Format.

These three message attributes are normally stored in the JMS header, MQRFH2, fields of a JMS message. If
the message type is an MQ, rather than JMS type of message, the attributes are stored in the message
descriptor, MQMD. The attributes are used to convert the JMS message data. JMS message data is
transferred in the message data part of an IBM MQ message.

JMS message properties

JMS message properties, such as JMS_IBM_CHARACTER_SET, are exchanged in the MQRFH2 header part of a
JMS message, unless the message has been sent without an MQRFH2. Only JMSTextMessage and
JMSBytesMessage can be sent without an MQRFH2. If a JMS property is stored as an IBM MQ message
property in the message descriptor, MQMD, it is converted as part of the MQMD conversion. If a JMS property
is stored in the MQRFH2, it is stored in the character set specified by MQRFH2.NameValueCCSID. When a
message is sent or received, message properties are converted to and from their internal representation in
the JVM. The conversion is to and from the character set of the message descriptor or
MQRFH2.NameValueCCSID. Numeric data is converted to text.

JMS message conversion

The following topics contain examples and tasks that are useful if you plan to exchange more complex
messages that require conversion.

JMS message conversion approaches:

A number of data conversion approaches are open to JMS application designers. These approaches are
not exclusive; some applications are likely to use a combination of these approaches. If your application
is exchanging only text or is exchanging messages only with other JMS applications, you do not normally
consider data conversion. Data conversion is performed automatically for you, by IBM MQ.

You can ask a number of questions about how to approach message conversion:

Is it necessary to think about message conversion at all?
In some cases, such as JMS to JMS message transfers, and exchanging text messages with IBM
MQ programs, IBM MQ performs the necessary conversions for you, automatically. You might
want to control data conversion for performance reasons, or you might be exchanging complex
messages that have a predefined format. In cases such as these you must understand message
conversion, and read the following topics.

What kinds of conversion are there?
There are four main types of conversion, which are explained in the following sections:
1. “JMS client data conversion” on page 975
2. “Application data conversion” on page 975
3. “Queue manager data conversion” on page 976
4. “Message channel data conversion” on page 977

Where should conversion be performed?
The section, “Choosing an approach to message conversion: "receiver makes good"” on page 977,
describes the usual approach of “receiver makes good”. “Receiver makes good” also applies to
JMS data conversion.

974 IBM MQ: Programming

JMS client data conversion

JMS client4 data conversion is the conversion of Java primitives and objects into bytes in a JMS message
as it is sent to a destination, and conversion back again, when it is received. JMS client data conversion
uses the methods of the JMSMessage classes. The methods are listed by JMSMessage class type in
Table 130 on page 978.

Conversion to and from the internal JVM representation of numbers and text is performed for read, get,
set, and write methods. The conversion is performed when the message is sent, and when any of the read
or get methods is called on a message that has been received.

The code page and numeric encoding used to write or set the contents of a message are defined as
attributes of the destination. The destination code page and numeric encoding can be changed
administratively. An application can also override the destination code page and encoding by setting the
message properties that control writing or setting message content.

If you want to convert number encoding when a JMSBytesMessage message is sent to a destination that
is not defined as Native encoding, you must set the message property JMS_IBM_ENCODING before sending
the message. If you are following the “receiver makes good” pattern, or if you are exchanging messages
between JMS applications, the application does not need to set JMS_IBM_ENCODING. In most cases you can
leave the Encoding property as Native.

For JMSStreamMessage, JMSMapMessage, and JMSTextMessage messages, the character set identifier
properties of the destination are used. Encoding is ignored on sending as numbers are written out in text
format. The JMS client application program does not have to set JMS_IBM_CHARACTER_SET before sending
the message if the destination character set property to apply.

To get the data in a message an application calls the JMS message read or get methods. The methods
refer to the code page and encoding defined in the previous message header to create the Java primitives
and objects correctly.

JMS client data conversion meets the needs of most JMS applications that are exchanging messages
between one JMS client and another. You do not code any explicit data conversion. You do not use the
java.nio.charset.Charset class, which is typically used when writing text to a file. The writeString and
setString methods do the conversion for you.

For more details on JMS client data conversion, see “JMS client message conversion and encoding” on
page 986.

Application data conversion

A JMS client application can perform explicit character data conversion by using the
java.nio.charset.Charset class; see the examples in Figure 112 on page 980 and Figure 113 on page 980.
String data is converted into bytes, using the getBytes method, and sent as bytes. The bytes are converted
back into text by using a String constructor that takes a byte array and a Charset. Character data is
converted using the encode and decode Charset methods. Typically the message is sent or received as
JMSBytesMessage, because the message part of a JMSBytesMessage does not contain anything other than
the data written by the application5 . You can also send and receive bytes using JMSStreamMessage,
JMSMapMessage, or JMSObjectMessage.

4. “JMS Client” refers to the IBM MQ classes for JMS that implement the JMS interface, which runs either in client or bindings
mode.

5. One exception: Data written using writeUTF starts with a 2 byte length field

Developing JMS and Java Platform, Enterprise Edition applications 975

There are no Java methods to encode and decode bytes that contain numeric data represented in different
encoding formats. Numeric data is encoded and decoded automatically using the numeric JMSMessage
read and write methods. The read and write methods use the value of the JMS_IBM_ENCODING attribute of
the message data.

A typical use for application data conversion is if a JMS client sends or receives a formatted message
from a non-JMS application. A formatted message contains text, numeric, and bytes data organized by the
length of the data fields. Unless the non-JMS application has specified the message format as
“MQSTR ”, the message is constructed as a JMSBytesMessage. To receive formatted message data in a
JMSBytesMessage you must call a sequence of methods. The methods must be called in the same order
the fields were written into the message. If the fields are numeric, you must know the encoding and
length of the numeric data. If any of the fields contain byte or text data, you must know the length of
any byte data in the message. There are two ways to convert a formatted message into a Java object that
is easy to use.
1. Construct a Java class corresponding to the record, to encapsulate reading and writing the message.

Access to the data in the record is with get and set methods of the class.
2. Construct a Java class corresponding to the record by extending the com.ibm.mq.headers class. Access

to the data in the class is with type-specific accessors of the form, getStringValue(fieldname);

See “Exchanging a formatted record with a non-JMS application” on page 993.

Queue manager data conversion

In IBM MQ V7.0, code page conversion can be performed by the queue manager when a JMS client
program gets a message. The conversion is the same as the conversion performed for a C program. A C
program sets MQGMO_CONVERT as an MQGET GetMsgOpts parameter option; see Figure 111 on page 979. A
queue manager performs conversion for a JMS client program that is receiving a message, if the
WMQ_RECEIVE_CONVERSION destination property is set to WMQ_RECEIVE_CONVERSION_QMGR, The JMS client
program can also set the destination property; see Figure 110.

Before V7.0, conversions were always performed by the JMS client. JMS client data conversion is
restricted to converting sequences of numbers and text of type and length known to the JMS client. It
cannot convert data structures; see “Exchanging a formatted record with a non-JMS application” on page
993. In V7.0, until fix pack 7.0.1.5, if the conversion can be performed by the queue manager, it is always
performed by the queue manager. From 7.0.1.5 onwards, the default conversion behavior reverts to the
same as V6.0, and all conversions are performed by the JMS client. From 7.0.1.5, or 7.0.1.4 with APAR
IC72897, you can set a new destination option, WMQ_RECEIVE_CONVERSION, to control where conversion is
performed, and WMQ_RECEIVE_CCSID, to set the target code page; see Figure 110.

The main benefit of queue manager conversion comes when exchanging messages with non-JMS
applications. If the Format field in the message is defined, and the target character set, or encoding, is
different to the message, the queue manager performs data conversion for the target application, if the
application requests it. The queue manager converts message data formatted according to one of the

((MQDestination)destination).setIntProperty(
WMQConstants.WMQ_RECEIVE_CONVERSION,
WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);

Or,

((MQDestination)destination).setReceiveConversion
(WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);

Figure 110. Enable queue manager data conversion

976 IBM MQ: Programming

predefined IBM MQ message types, such as a CICS bridge header (MQCIH). If the Format field is
user-defined, the queue manager looks for a data conversion exit with the name provided in the Format
field.

Queue manager data conversion is used to best effect with the “receiver makes good” design pattern. A
sending JMS client does not need to perform conversion. A non-JMS receiving program relies on the
conversion exit to ensure that the message is delivered in the required code page and encoding. With a
sending JMS client, and non-JMS receiver, the example applies to IBM MQ pre- and post-V7.0. With IBM
MQ V7.0, the conversion exit can be called for a receiving JMS program as well.

You can create a data conversion exit, using the data conversion exit utility, crtmqcvx, to enable the queue
manager to convert your own record formatted data. You can build your own record format, use the
com.ibm.mq.headers to access it as a Java class, and use your own conversion exit to convert it. On z/OS
the utility is called CSQUCVX, and on IBM i, CVTMQMDTA. See “Exchanging a formatted record with a
non-JMS application” on page 993.

Message channel data conversion

IBM MQ Sender, Server, Cluster-receiver, and Cluster-sender channels have a message conversion option,
CONVERT. The contents of a message can optionally be converted when a message is sent. The conversion
takes place at the sending end of the channel. The cluster-receiver definition is used to auto-define the
corresponding cluster-sender channel.

Data conversion by message channels is typically used if it is not possible to use other forms of
conversion.

Choosing an approach to message conversion: “receiver makes good”

The usual approach in IBM MQ application design for code conversion is “receiver makes good”.
“Receiver makes good” reduces the number of message conversions. It also avoids the problem of
unexpected channel errors if message conversion fails on some intermediary queue manager during
message transfer. The “receiver makes good” rule is only broken if there is some reason why the receiver
cannot make good. The receiving platform might not have the right character set, for example.

“Receiver makes good” is also good general guidance for JMS client applications. But in specific cases,
conversion to the correct character set at source can be more efficient. Conversion from the JVM internal
representation must take place when a message containing text or numeric types is sent. Conversion to
the character set required by the receiver, if the receiver is not a JMS client, might remove the need for
the non-JMS recipient to perform conversion. If the recipient is a JMS client, it is going to convert again,
anyway, to decode the message data and create Java primitives and objects.

The difference between JMS client applications, and applications written in a language such as C, is that
Java must perform data conversion. A Java application must convert numbers and text from their internal
representation to an encoded format used in messages.

By setting destination, or message properties, you can set the character set and encoding used by IBM
MQ to encode numbers and text in messages. Normally, you would leave the character set as 1208 and
encoding as Native.

IBM MQ does not convert byte arrays. To encode strings and character arrays into byte arrays use the
java.nio.charset package. Charset specifies the character set used to convert a string or character array
into a byte array. You can also decode a byte array into a string or character array using a Charset. It is
not good practice to rely on java.nio.charset.Charset.defaultCodePage when encoding strings and
character arrays. The default Charset is typically windows-1252 on Windows, and UTF-8 on UNIX.
windows-1252 is a single-byte character set and UTF-8 is a multi-byte character set.

Developing JMS and Java Platform, Enterprise Edition applications 977

Generally leave the destination character set and encoding properties at their default values of UTF-8 and
Native when exchanging messages with other JMS applications. If you are exchanging messages
containing numbers or text with a JMS application, choose one of the JMSTextMessage,
JMSStreamMessage, JMSMapMessage, or JMSObjectMessage message types that fit your purpose. There
are no other conversion tasks to do.

If you are exchanging messages with non-JMS applications that use a record format, it is more
complicated. Unless the entire record contains text and can be transferred as a JMSTextMessage, you must
encode and decode text in the application. Set the destination message type to MQ, and use
JMSBytesMessage to avoid the IBM MQ classes for JMS adding additional header and tagging
information to the message data. Use JMSBytesMessage methods to write numbers and bytes, and the
Charset class convert text into byte arrays explicitly. A number of factors might influence your choice of
character set:
v Performance: Can you reduce the number of conversions by transforming text into a character set that

is used on the largest number of servers?
v Uniformity: Transfer all messages in the same character set.
v Richness: What character sets have all the code points that applications must use?
v Simplicity: Single-byte character sets are simpler to use than variable length and multibyte character

sets.

See “Exchanging a formatted record with a non-JMS application” on page 993. for examples of converting
messages exchanged with non-JMS applications.

Examples

Table of message types and conversion types

Table 130. Message types and conversion types

Conversion type

Message type Text Numeric Other None

JMSObjectMessage getObject
setObject

JMSTextMessage
getText

setText

JMSBytesMessage

readUTF
writeUTF

readDouble
readFloat
readInt
readLong
readShort
readUnsignedShort
writeDouble
writeFloat
writeInt
writeLong
writeShort

readBoolean
readObject
writeBoolean
writeObject

readByte
readUnsignedByte
readBytes
readChar
writeByte
writeBytes
writeChar

JMSStreamMessage

readString
writeString

readDouble
readFloat
readInt
readLong
readShort
writeDouble
writeFloat
writeInt
writeLong
writeShort

readBoolean
readObject
writeBoolean
writeObject

readByte
readBytes
readChar
writeByte
writeBytes
writeChar

978 IBM MQ: Programming

Table 130. Message types and conversion types (continued)

Conversion type

Message type Text Numeric Other None

JMSMapMessage

getString
setString

getDouble
getFloat
getInt
getLong
getShort
setDouble
setFloat
setInt
setLong
setShort

getBoolean
getObject
setBoolean
setObject

getByte
getBytes
readChar
setByte
setBytes
setChar

Calling data conversion from a C program

Sending and receiving text in a JMSBytesMessage

The code in Figure 112 on page 980 sends a string in a BytesMessage. For simplicity, the example sends a
single string, for which a JMSTextMessage is more appropriate. To receive a text string in bytes message
containing a mixture of types, you must know the length of the string in bytes, called TEXT_LENGTH in
Figure 113 on page 980. Even for a string with a fixed number of characters, the length of the byte
representation might be longer.

gmo.Options = MQGMO_WAIT /* wait for new messages */
| MQGMO_NO_SYNCPOINT /* no transaction */
| MQGMO_CONVERT; /* convert if necessary */

while (CompCode != MQCC_FAILED) {
buflen = sizeof(buffer) - 1; /* buffer size available for GET */
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;

MQGET(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

Figure 111. Code snippet from amqsget0.c

Developing JMS and Java Platform, Enterprise Edition applications 979

JMS message types and conversion:

The choice of message type affects your approach to message conversion. The interaction of message
conversion and message type is described for the JMS message types, JMSObjectMessage,
JMSTextMessage, JMSMapMessage, JMSStreamMessage, and JMSBytesMessage.

JMSObjectMessage

JMSObjectMessage contains one object, and any objects that it references, serialized into a byte stream by
the JVM. Text is serialized into UTF-8, and limited to strings or character arrays of no more than 65534
bytes. An advantage of JMSObjectMessage is that applications are not involved in any data conversion
issues as long as they use only the methods and attributes of the object. JMSObjectMessage provides data
conversion for complex objects without the application programmer considering how to encode an object
in a message. The disadvantage of using JMSObjectMessage is it can be exchanged only with other JMS
applications. By choosing one of the other JMS message types, it is possible to exchange JMS messages
with non-JMS applications.

“Sending and receiving a JMSObjectMessage” on page 983 shows a String object being exchanged in a
message.

A JMS client application can receive a JMSObjectMessage only in a message that has a JMS-style body.
The destination must specify a JMS style body.

JMSTextMessage

JMSTextMessage contains a single text string. When a text message is sent, the text Format is set to
“MQSTR ”, WMQConstants.MQFMT_STRING. The CodedCharacterSetId of the text is set to the coded
character set identifier defined for its destination. The text is encoded into the CodedCharacterSetId by
IBM MQ. The CodedCharacterSetId and Format fields are either set in the message descriptor, MQMD, or
into the JMS fields in an MQRFH2. If the message is defined as having an WMQ_MESSAGE_BODY_MQ message
body style, or the body style is unspecified, but the target destination is WMQ_TARGET_DEST_MQ, then the
message descriptor fields are set. Otherwise the message has a JMS RFH2 and the fields are set in the fixed
part of the MQRFH2.

An application can override the coded character set identifier defined for a destination. It must set the
message property JMS_IBM_CHARACTER_SET to a coded character set identifier; see the example in “Sending
and receiving a JMSTextmessage” on page 983.

BytesMessage bytes = session.createBytesMessage();
String codePage = CCSID.getCodepage(((MQDestination) destination)

.getIntProperty(WMQConstants.WMQ_CCSID));
bytes.writeBytes("In the destination code page".getBytes(codePage));
producer.send(bytes);

Figure 112. Sending a String in a JMSBytesMessage

BytesMessage message = (BytesMessage)consumer.receive();
int TEXT_LENGTH = new Long(message.getBodyLength())).intValue();
byte[] textBytes = new byte[TEXT_LENGTH];
message.readBytes(textBytes, TEXT_LENGTH);
String codePage = message.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET);
String textString = new String(textBytes, codePage);

Figure 113. Receiving a String from a JMSBytesMessage

980 IBM MQ: Programming

When the JMS client calls the consumer.receive method queue manager conversion is optional. Queue
manager conversion is enabled by setting the destination property WMQ_RECEIVE_CONVERSION to
WMQ_RECEIVE_CONVERSION_QMGR. The queue manager converts the text message from the
JMS_IBM_CHARACTER_SET specified for the message before transferring the message to the JMS client. The
character set of the converted message is 1208, UTF-8, unless the destination has a different
WMQ_RECEIVE_CCSID. The CodedCharacterSetId in the message that refers to the JMSTextMessage is
updated to the target character set ID. The text is decoded from the target character set into Unicode by
the getText method; see the example in “Sending and receiving a JMSTextmessage” on page 983.

A JMSTextMessage can be sent in an MQ-style message body, without a JMS MQRFH2 header. The value of
the destination attributes, WMQ_MESSAGE_BODY and WMQ_TARGET_DEST determine the message body style,
unless overridden by the application. The application can override the values set on the destination by
calling destination.setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_MQ) or
destination.setTargetClient(WMQConstants.WMQ_TARGET_DEST_MQ).

If you send a JMSTextMessage with an MQ style body by sending it to a destination with
WMQ_MESSAGE_BODY set to WMQ_MESSAGE_BODY_MQ, you cannot receive it as a JMSTextMessage from the same
destination. All messages received from a destination with WMQ_MESSAGE_BODY set to WMQ_MESSAGE_BODY_MQ
are received as a JMSBytesMessage. If you try to receive the message as a JMSTextMessage it causes an
exception, ClassCastException: com.ibm.jms.JMSBytesMessage cannot be cast to
javax.jms.TextMessage.

Note: Text in a JMSBytesMessage is not converted by the JMS client. The client can only receive the text
in the message as a byte array. If queue manager conversion is enabled, the text is converted by the
queue manager, but the JMS client must still receive it as a byte array in a JMSBytesMessage.

It is generally better to use the WMQ_TARGET_DEST property to control whether a JMSTextMessage is sent
with an MQ or JMS body style. You can then receive the message from a destination that has either
WMQ_TARGET_DEST set to WMQ_TARGET_DEST_MQ or WMQ_TARGET_DEST_JMS. WMQ_TARGET_DEST has no effect on the
receiver.

JMSMapMessage and JMSStreamMessage

These two JMS message types are similar. You can read and write primitive types to the messages using
methods based on the DataInputStream and DataOutputStream interfaces; see “Table of message types
and conversion types” on page 985. The details are described in “JMS client message conversion and
encoding” on page 986. Each primitive is tagged; see “The JMS message body” on page 972.

Numeric data is read and written to the message encoded as XML text. No reference is made to the
destination property, JMS_IBM_ENCODING. Text data is treated the same way as text in a JMSTextMessage. If
you were to look at the message contents created by the example in Figure 118 on page 984, all the
message data would be in EBCDIC as it was sent with a character set value of 37.

You can send multiple items in a JMSMapMessage or JMSStreamMessage.

You can retrieve the individual items of data by name from a JMSMapMessage, or by position from a
JMSStreamMessage. Each item is decoded when a get or read method is called using the
CodedCharacterSetId value stored in the message. If the method used to retrieve the item returns a
different type to the type that was sent, the type is converted. If the type cannot be converted, an
exception is thrown. See Class JMSStreamMessage for details. The example in “Sending data in a
JMSStreamMessage and JMSMapMessage” on page 983 illustrates type conversion, and getting the
JMSMapMessage contents out of sequence.

The MQRFH2.format field for the JMSMapMessage and JMSStreamMessage is set to “MQSTR ”. If the
destination property WMQ_RECEIVE_CONVERSION is set to WMQ_RECEIVE_CONVERSION_QMGR, the message data is
converted by the queue manager before being sent to the JMS client. The MQRFH2.CodedCharacterSetId of

Developing JMS and Java Platform, Enterprise Edition applications 981

the message is the WMQ_RECEIVE_CCSID of the destination. The MQRFH2.Encoding is Native. If
WMQ_RECEIVE_CONVERSION is WMQ_RECEIVE_CONVERSION_CLIENT_MSG the CodedCharacterSetId and Encoding
of the MQRFH2 is the value set by the sender.

A JMS client application can receive a JMSMapMessage or JMSStreamMessage only in a message that has
a JMS-style body, and from a destination that does not specify an MQ style body.

JMSBytesMessage

A JMSBytesMessage can contain multiple primitive types. You can read and write primitive types to the
messages using methods based on the DataInputStream and DataOutputStream interfaces; see “Table of
message types and conversion types” on page 985. The details are described in “JMS message types and
conversion” on page 980.

The encoding of numeric data in the message is controlled by the value of JMS_IBM_ENCODING that is set
before writing numeric data to the JMSBytesMessage. An application can override the default Native
encoding defined for JMSBytesMessage by setting the message property JMS_IBM_ENCODING.

Text data can be read and written in UTF-8 using the readUTF and writeUTF, or in Unicode using the
readChar and writeChar methods. There are no methods that use CodedCharacterSetId. Alternatively, the
JMS client can encode and decode text into bytes using the Charset class. It transfers the bytes between
the JVM and message without the IBM MQ classes for JMS performing any conversion; see “Sending and
receiving text in a JMSBytesMessage” on page 984.

A JMSBytesMessage sent to an MQ application is typically sent in an MQ-style message body, without a
JMS MQRFH2 header. If it is sent to a JMS application, the message body style is typically JMS. The value of
the destination attributes, WMQ_MESSAGE_BODY and WMQ_TARGET_DEST determine the message body style,
unless overridden by the application. The application can override the values set on the destination by
calling destination.setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_MQ) or
destination.setTargetClient(WMQConstants.WMQ_TARGET_DEST_MQ).

If you send a JMSBytesMessage with an MQ style body, you can receive the message from a destination
that defines either an MQ or a JMS message body style. If you send a JMSBytesMessage with a JMS style
body, then you must receive the message from a destination that defines a JMS message body style. If
you do not, the MQRFH2 is treated as part of the user message data, which might not be what you are
expecting.

Whether a message has an MQ or a JMS body style, the way it is received is not affected by setting
WMQ_TARGET_DEST.

The message might be transformed later, by the queue manager, if a Format is supplied for the message
data, and queue manager data conversion is enabled. Do not use the format field for anything other than
specifying the format of the message data, or leave it blank, MQConstants.MQFMT_NONE

You can send multiple items in a JMSBytesMessage. Each numeric item is converted when the message is
sent using the encoding defined for the message.

You can retrieve the individual items of data from JMSBytesMessage. Call read methods in the same
order as the write methods were called to create the message. Each numeric item is converted when the
message is called using the Encoding value stored in the message.

Unlike JMSMapMessage and JMSStreamMessage, JMSBytesMessage contains only data written by the
application. No additional data is stored in the message data, such as the XML tags used to define the
items in a JMSMapMessage and JMSStreamMessage. For this reason, use JMSBytesMessage to transfer
messages formatted for other applications.

982 IBM MQ: Programming

Converting between JMSBytesMessage and DataInputStream and DataOutputStream is useful in some
applications. Code based on the example, “Reading and writing messages using DataInputStream and
DataOutputStream” on page 984, is necessary to use the com.ibm.mq.header package with JMS.

Examples

Sending and receiving a JMSObjectMessage

Sending and receiving a JMSTextmessage

A text message cannot contain text in different character sets. The example shows text in different
character sets, sent in two different messages.

Sending data in a JMSStreamMessage and JMSMapMessage

ObjectMessage omo = session.createObjectMessage();
omo.setObject(new String("A string"));
producer.send(omo);
...
ObjectMessage omi = (ObjectMessage)consumer.receive();
System.out.println((String)omi.getObject());
...
A string

Figure 114. Sending and receiving a JMSObjectMessage

TextMessage tmo = session.createTextMessage();
tmo.setText("Sent in the character set defined for the destination");
producer.send(tmo);

Figure 115. Send text message in the character set defined by the destination

TextMessage tmo = session.createTextMessage();
tmo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 37);
tmo.setText("Sent in EBCDIC character set 37");
producer.send(tmo);

Figure 116. Send text message in ccsid 37

TextMessage tmi = (TextMessage)consumer.receive();
System.out.println(tmi.getText());
...
Sent in the character set defined for the destination

Figure 117. Receive text message

Developing JMS and Java Platform, Enterprise Edition applications 983

Sending and receiving text in a JMSBytesMessage

The code in Figure 119 sends a string in a BytesMessage. For simplicity, the example sends a single string,
for which a JMSTextMessage is more appropriate. To receive a text string in bytes message containing a
mixture of types, you must know the length of the string in bytes, called TEXT_LENGTH in Figure 120. Even
for a string with a fixed number of characters, the length of the byte representation might be longer.

Reading and writing messages using DataInputStream and DataOutputStream

The code in Figure 121 on page 985 creates a JMSBytesMessage using a DataOutputStream.

StreamMessage smo = session.createStreamMessage();
smo.writeString("256");
smo.writeInt(512);
smo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 37);
producer.send(smo);
...
MapMessage mmo = session.createMapMessage();
mmo.setString("First", "256");
mmo.setInt("Second", 512);
mmo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 37);
producer.send(mmo);
...
StreamMessage smi = (StreamMessage)consumer.receive();
System.out.println("Stream: First as float " + smi.readFloat() +

" Second as String " + smi.readString());
...
Stream: First as float: 256.0, Second as String: 512
...
MapMessage mmi = (MapMessage)consumer.receive();
System.out.println("Map: Second as String " + mmi.getString("Second") +

" First as double " + mmi.getDouble("First"));
...
Map: Second as String: 512, First as double: 256.0

Figure 118. Send data in JMSStreamMessage and JMSMapMessage

BytesMessage bytes = session.createBytesMessage();
String codePage = CCSID.getCodepage(((MQDestination) destination)

.getIntProperty(WMQConstants.WMQ_CCSID));
bytes.writeBytes("In the destination code page".getBytes(codePage));
producer.send(bytes);

Figure 119. Sending a String in a JMSBytesMessage

BytesMessage message = (BytesMessage)consumer.receive();
int TEXT_LENGTH = new Long(message.getBodyLength())).intValue();
byte[] textBytes = new byte[TEXT_LENGTH];
message.readBytes(textBytes, TEXT_LENGTH);
String codePage = message.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET);
String textString = new String(textBytes, codePage);

Figure 120. Receiving a String from a JMSBytesMessage

984 IBM MQ: Programming

The statement that sets the JMS_IBM_ENCODING property is commented out. The statement is valid, if
writing directly to a JMSBytesMessage, but has no effect when writing to DataOutputStream. Numbers
that are written to the DataOutputStream are encoded in Native encoding. Setting JMS_IBM_ENCODING has
no effect.

The code in Figure 122 receives a JMSBytesMessage using a DataInputStream.

The code page is printed out using the code page property of the input message data,
JMS_IBM_CHARACTER_SET. On input JMS_IBM_CHARACTER_SET is a Java code page and not a numeric coded
character set identifier.

Table of message types and conversion types

Table 131. Message types and conversion types

Conversion type

Message type Text Numeric Other None

JMSObjectMessage getObject
setObject

JMSTextMessage
getText

setText

ByteArrayOutputStream bout = new ByteArrayOutputStream();
DataOutputStream dout = new DataOutputStream(bout);
BytesMessage messageOut = prod.session.createBytesMessage();
// messageOut.setIntProperty(WMQConstants.JMS_IBM_ENCODING,
// ((MQDestination) (prod.destination)).getIntProperty
// (WMQConstants.WMQ_ENCODING));
int ccsidOut = (((MQDestination)prod.destination).getIntProperty(WMQConstants.WMQ_CCSID));
String codePageOut = CCSID.getCodepage(ccsidOut);
dout.writeInt(ccsidOut);
dout.write(codePageOut.getBytes(codePageOut));
messageOut.writeBytes(bout.toByteArray());
producer.send(messageOut);

Figure 121. Send a JMSBytesMessage using a DataOutputStream

static final int ccsidIn_SIZE = (Integer.SIZE)/8;
...
connection.start();
BytesMessage messageIn = (BytesMessage) consumer.receive();
int messageLength = new Long(messageIn.getBodyLength()).intValue();
byte [] bin = new byte[messageLength];
messageIn.readBytes(bin, messageLength);
DataInputStream din = new DataInputStream(new ByteArrayInputStream(bin));
int ccsidIn = din.readInt();
byte [] codePageByte = new byte[messageLength - ccsidIn_SIZE];
din.read(codePageByte, 0, codePageByte.length);
System.out.println("CCSID " + ccsidIn + " code page " + new String(codePageByte,

messageIn.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET)));

Figure 122. Receive a JMSBytesMessage using a DataInputStream

Developing JMS and Java Platform, Enterprise Edition applications 985

Table 131. Message types and conversion types (continued)

Conversion type

Message type Text Numeric Other None

JMSBytesMessage

readUTF
writeUTF

readDouble
readFloat
readInt
readLong
readShort
readUnsignedShort
writeDouble
writeFloat
writeInt
writeLong
writeShort

readBoolean
readObject
writeBoolean
writeObject

readByte
readUnsignedByte
readBytes
readChar
writeByte
writeBytes
writeChar

JMSStreamMessage

readString
writeString

readDouble
readFloat
readInt
readLong
readShort
writeDouble
writeFloat
writeInt
writeLong
writeShort

readBoolean
readObject
writeBoolean
writeObject

readByte
readBytes
readChar
writeByte
writeBytes
writeChar

JMSMapMessage

getString
setString

getDouble
getFloat
getInt
getLong
getShort
setDouble
setFloat
setInt
setLong
setShort

getBoolean
getObject
setBoolean
setObject

getByte
getBytes
readChar
setByte
setBytes
setChar

JMS client message conversion and encoding:

The methods you use to do JMS client message conversion and encoding are listed, with code examples
of each type of conversion.

Conversion and encoding occur when Java primitives or objects are read or written to and from JMS
messages. The conversion is called JMS client data conversion to distinguish it from queue manager data
conversion and application data conversion. The conversion takes place strictly when data is read from or
written to a JMS message. Text is converted to and from the internal 16 bit Unicode representation6 to the
character set used for text in messages. Numeric data is converted to and Java primitive numeric types to
the encoding defined for the message. Whether conversion is performed, and what type of conversion is
performed, depends on the JMS message type and the read or write operation.

Table 132 on page 987 categorizes the read and write methods for different JMS message types by the
type of conversion performed. The conversions types are described in the text following the table.

6. Some Unicode representation requires more than 16 bits. See a Java SE reference.

986 IBM MQ: Programming

Table 132. Message types and conversion types

Conversion type

Message type Text Numeric Other None

JMSObjectMessage getObject
setObject

JMSTextMessage
getText

setText

JMSBytesMessage

readUTF
writeUTF

readDouble
readFloat
readInt
readLong
readShort
readUnsignedShort
writeDouble
writeFloat
writeInt
writeLong
writeShort

readBoolean
readObject
writeBoolean
writeObject

readByte
readUnsignedByte
readBytes
readChar
writeByte
writeBytes
writeChar

JMSStreamMessage

readString
writeString

readDouble
readFloat
readInt
readLong
readShort
writeDouble
writeFloat
writeInt
writeLong
writeShort

readBoolean
readObject
writeBoolean
writeObject

readByte
readBytes
readChar
writeByte
writeBytes
writeChar

JMSMapMessage

getString
setString

getDouble
getFloat
getInt
getLong
getShort
setDouble
setFloat
setInt
setLong
setShort

getBoolean
getObject
setBoolean
setObject

getByte
getBytes
readChar
setByte
setBytes
setChar

Text

The default CodedCharacterSetId for a destination is 1208, UTF-8. By default, text is converted
from Unicode and sent as a UTF-8 text string. On receive, the text is converted from the coded
character set in the message received by the client, into Unicode.

The setText and writeString methods convert text from Unicode into the character set defined for
the destination. An application can override the destination character set by setting the message
property JMS_IBM_CHARACTER_SET. JMS_IBM_CHARACTER_SET, when sending a message must be a
numeric coded character set identifier7 .

The code snippets in “Sending and receiving a JMSTextmessage” on page 990 send two messages.
One is sent in the character set defined for the destination and the other in character set 37,
defined by the application.

7. When receiving a message JMS_IBM_CHARACTER_SET is a Java Charset code page name.

Developing JMS and Java Platform, Enterprise Edition applications 987

The getText and readString methods convert the text in the message from the character set
defined in the message into Unicode. The methods use the code page defined in the message
property, JMS_IBM_CHARACTER_SET. The code page is mapped from MQRFH2.CodedCharacterSetId
unless the message is an MQ-type message and has no MQRFH2. If the message is a MQ-type
message, with no MQRFH2, the code page is mapped from MQMD.CodedCharacterSetId.

The code snippet in Figure 127 on page 990 receives the message that was sent to the destination.
The text in the message is converted from code page IBM037 back into Unicode.

Note: A simple way to check that the text is converted to coded character set 37 is to use IBM
MQ Explorer. Browse the queue and show the properties of the message before it is retrieved.

Contrast the code snippet in Figure 126 on page 990 with the incorrect code snippet in Figure 123.
In the incorrect snippet the text string is converted twice, once by the application, and again by
IBM MQ.

The writeUTF method converts text from Unicode to 1208, UTF-8. The text string is prefaced with
a 2 byte length. The maximum length of the text string is 65534 bytes. The readUTF method reads
an item in a message written by the writeUTF method. It reads exactly the number of bytes
written by the writeUTF method.

Numeric

The default numeric encoding for a destination is Native. The Native encoding constant for Java
has the value 273, x’00000111’, which is the same for all platforms. On receive, the numbers in
the message are correctly transformed into numeric Java primitives. The transformation uses the
encoding defined in the message and the type returned by the read method.

The send method converts numbers that are added to a message by the set and write into the
numeric encoding defined for the destination. The destination encoding can be overridden for a
message by an application setting the message property, JMS_IBM_ENCODING ; for example:
message.setIntProperty(WMQConstants.JMS_IBM_ENCODING, WMQConstants.WMQ_ENCODING_INTEGER_REVERSED);

The get and read numeric methods convert numbers in the message from the numeric encoding
defined in the message. They convert the numbers to the type that is specified by the read or get
method; see The ENCODING property. The methods use the encoding defined in
JMS_IBM_ENCODING. The encoding is mapped from MQRFH2.Encoding unless the message is an
MQ-type message and has no MQRFH2. If the message is a MQ-type message, with no MQRFH2, then
the methods use the encoding defined in MQMD.Encoding.

The example in Figure 128 on page 990 shows an application encoding a number in the
destination format and sending it in a JMSStreamMessage. Compare the example in Figure 128 on
page 990 to the example in Figure 129 on page 991. The difference is that JMS_IBM_ENCODING must
be set in a JMSBytesMessage.

Note: A simple way to check that the number is encoded correctly is to use IBM MQ Explorer.
Browse the queue and show the properties of the message before it is consumed.

Other

The boolean methods encode true and false as x’01’ and x’00’ in a JMSByteMessage,
JMSStreamMessage, and JMSMapMessage.

TextMessage tmo = session.createTextMessage();
tmo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 37);
tmo.setText(new String("Sent in EBCDIC character set 37".getBytes(CCSID.getCodepage(37))));
producer.send(tmo);

Figure 123. Incorrect code page conversion

988 IBM MQ: Programming

The UTF methods encode and decode Unicode into UTF-8 text strings. The strings are limited to
less than 65536 characters, and are preceded by the 2 byte length field.

The Object methods wrap primitive types as objects. Numeric and text types are encoded or
converted as if the primitive types had been read or written using the numeric and text methods.

None

The readByte, readBytes, readUnsignedByte, writeByte, and writeBytes methods get or put single
bytes, or arrays of bytes, between the application and the message without conversion. The
readChar and writeChar methods get and put 2 byte Unicode characters between the application
and the message without conversion.

Using the readBytes and writeBytes methods, the application can perform its own code point
conversion, as in “Sending and receiving text in a JMSBytesMessage” on page 991.

IBM MQ does not perform any code page conversion in the client as the message is a
JMSBytesMessage, and because the readBytes and writeBytes methods are used. Nonetheless, if
the bytes represent text, make sure that code page used by the application matches the coded
character set of the destination. The message might be converted again by a queue manager
conversion exit. Another possibility is that the receiving JMS client program might follow the
convention of converting any byte arrays representing text in the message into strings or
characters using the JMS_IBM_CHARACTER_SET property in the message.

In this example the client uses the destination coded character set for its conversion:
bytes.writeBytes("In the destination code page".getBytes(
CCSID.getCodepage(((MQDestination) destination)
.getIntProperty(WMQConstants.WMQ_CCSID))));

Alternatively, the client might have chosen a code page and then set the corresponding coded
character set in the JMS_IBM_CHARACTER_SET property of the message. The IBM MQ classes for Java
use JMS_IBM_CHARACTER_SET to set the CodedCharacterSetId field in the JMS properties in the
MQRFH2, or in the message descriptor, MQMD:
String codePage = CCSID.getCodepage(37);
message.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, codePage);8

If a byte array is written into a JMSStringMessage or JMSMapMessage, IBM MQ classes for JMS
does not perform data conversion, as the bytes are typed as hexadecimal data not as text in the
JMSStringMessage and JMSMapMessage.

If the bytes represent characters in your application, you must take into account what code points
to read and write to the message. The code in Figure 124 follows the convention of using the
destination coded character set. If you create the string using the default character set for the
JVM, the byte contents depend on the platform. A JVM on Windows typically has a default
Charset of windows-1252, and UNIX, UTF-8. Interchange between Windows and UNIX does
require that you select an explicit code page for exchanging text as bytes.

Examples

8. SetStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET, codePage) currently accepts only numeric character set identifiers.

StreamMessage smo = producer.session.createStreamMessage();
smo.writeBytes("123".getBytes(CCSID.getCodepage(((MQDestination) destination)
.getIntProperty(WMQConstants.WMQ_CCSID))));

Figure 124. Writing bytes representing a string in a JMSStreamMessage using the destination character set

Developing JMS and Java Platform, Enterprise Edition applications 989

Sending and receiving a JMSTextmessage

A text message cannot contain text in different character sets. The example shows text in different
character sets, sent in two different messages.

Encoding examples

Examples showing a number being sent in the encoding defines for a destination. Notice that you must
set the JMS_IBM_ENCODING property of a JMSBytesMessage to the value specified for the destination.

TextMessage tmo = session.createTextMessage();
tmo.setText("Sent in the character set defined for the destination");
producer.send(tmo);

Figure 125. Send text message in the character set defined by the destination

TextMessage tmo = session.createTextMessage();
tmo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 37);
tmo.setText("Sent in EBCDIC character set 37");
producer.send(tmo);

Figure 126. Send text message in ccsid 37

TextMessage tmi = (TextMessage)consumer.receive();
System.out.println(tmi.getText());
...
Sent in the character set defined for the destination

Figure 127. Receive text message

StreamMessage smo = session.createStreamMessage();
smo.writeInt(256);
producer.send(smo);
...
StreamMessage smi = (StreamMessage)consumer.receive();
System.out.println(smi.readInt());
...
256

Figure 128. Sending a number using the destination encoding in a JMSStreamMessage

990 IBM MQ: Programming

Sending and receiving text in a JMSBytesMessage

The code in Figure 130 sends a string in a BytesMessage. For simplicity, the example sends a single string,
for which a JMSTextMessage is more appropriate. To receive a text string in bytes message containing a
mixture of types, you must know the length of the string in bytes, called TEXT_LENGTH in Figure 131. Even
for a string with a fixed number of characters, the length of the byte representation might be longer.

BytesMessage bmo = session.createBytesMessage();
bmo.writeInt(256);
int encoding = ((MQDestination) (destination)).getIntProperty

(WMQConstants.WMQ_ENCODING)
bmo.setIntProperty(WMQConstants.JMS_IBM_ENCODING, encoding);
producer.send(bmo);
...
BytesMessage bmi = (BytesMessage)consumer.receive();
System.out.println(bmi.readInt());
...
256

Figure 129. Sending a number using the destination encoding in a JMSBytesMessage

BytesMessage bytes = session.createBytesMessage();
String codePage = CCSID.getCodepage(((MQDestination) destination)

.getIntProperty(WMQConstants.WMQ_CCSID));
bytes.writeBytes("In the destination code page".getBytes(codePage));
producer.send(bytes);

Figure 130. Sending a String in a JMSBytesMessage

BytesMessage message = (BytesMessage)consumer.receive();
int TEXT_LENGTH = new Long(message.getBodyLength())).intValue();
byte[] textBytes = new byte[TEXT_LENGTH];
message.readBytes(textBytes, TEXT_LENGTH);
String codePage = message.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET);
String textString = new String(textBytes, codePage);

Figure 131. Receiving a String from a JMSBytesMessage

Developing JMS and Java Platform, Enterprise Edition applications 991

Queue manager data conversion:

Queue manager data conversion has always been available to non-JMS applications receiving messages
from JMS clients. Since V7.0, JMS clients receiving messages also use queue manager data conversion.
From 7.0.1.5, or 7.0.1.4 with APAR IC72897, queue manager data conversion is optional.

The queue manager can convert character and numeric data in message data using the values of
CodedCharacterSetId, Encoding, and Format set for the message data. For non-JMS applications the
conversion capability has always been available by setting the GetMessageOption, GMO_CONVERT. The queue
manager conversion capability has not been available to a JMS application receiving a message until V7.0.

You can use queue manager conversion, before V7.0, with a JMS client application that sends a message.
The JMS client builds a formatted record, sets the CodedCharacterSetId, Encoding, and Format attributes
corresponding to the data placed in the message. A non-JMS receiving application reads the message
using GMO_CONVERT, and causes a user-written data conversion exit to be called. The data conversion exit
is a shared library that has the name set in the Format field.

Since V7.0, the queue manager is able to convert messages that are sent to JMS clients. From 7.0.0.0 to
7.0.1.4 inclusive, queue manager conversion is always called for JMS clients. From 7.0.1.5, or from 7.0.1.4
with APAR IC72897 applied, queue manager conversion is controlled by setting the destination property,
WMQ_RECEIVE_CONVERSION, to WMQ_RECEIVE_CONVERSION_QMGR, or WMQ_RECEIVE_CONVERSION_CLIENT_MSG.
WMQ_RECEIVE_CONVERSION_CLIENT_MSG is the default setting, matching the behavior of IBM MQ V6.0, which
did not support queue manager data conversion for JMS clients. The application can change the
destination setting:

Queue manager data conversion for a JMS client takes place when the client calls a consumer.receive
method. Text data is transformed into UTF-8 (1208) by default. Subsequent read and get methods decode
text in the received data from UTF-8, creating Java text primitives in their internal Unicode encoding.
UTF-8 is not the only target character set from queue manager data conversion. You can choose a
different CCSID by setting the WMQ_RECEIVE_CCSID destination property.

An application can also change the destination setting, for example setting it to 437, DOS-US:

The reason for changing WMQ_RECEIVE_CCSID is specialized; the chosen CCSID makes no difference to the
text objects created in the JVM. However, some JVMs, on some platforms, might not be able to handle

((MQDestination)destination).setIntProperty(
WMQConstants.WMQ_RECEIVE_CONVERSION,
WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);

Or,

((MQDestination)destination).setReceiveConversion
(WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);

Figure 132. Enable queue manager data conversion

((MQDestination)destination).setIntProperty
(WMQConstants.WMQ_RECEIVE_CCSID, 437);

Or,

((MQDestination)destination).setReceiveCCSID(437);

Figure 133. Set target coded character set for queue manager conversion

992 IBM MQ: Programming

conversion from the CCSID of text in the message into Unicode. The option gives you a choice of CCSID
for any text delivered to the client in the message. Some JMS client platforms have had problems with
message text being delivered in UTF-8.

The JMS code is equivalent to the bold text in the C code in Figure 134,

Note:

Queue manager conversion is only performed on the message data that has a known IBM MQ format.
MQSTR, or MQCIH are examples of known formats that are predefined. A known format can also be
user-defined format, as long as you have supplied a data-conversion exit.

Messages constructed as JMSTextMessage, JMSMapMessage and JMSStreamMessage, have a MQSTR
format, and can be converted by the queue manager.
Related concepts:
“Invoking the data-conversion exit” on page 372
A data-conversion exit is a user-written exit that receives control during the processing of an MQGET
call.

Exchanging a formatted record with a non-JMS application:

Follow the steps suggested in this task to design and build a data conversion exit, and a JMS client
application that can exchange messages with a non-JMS application using JMSBytesMessage. The
exchange of a formatted message with a non-JMS application can take place with or without calling a
data conversion exit.

Before you begin

You might be able to design a simpler solution to exchanging messages with a non-JMS application using
a JMSTextMessage. Eliminate that possibility before following the steps in this task.

About this task

A JMS client is easier to write if it is not involved in the details of formatting JMS messages exchanged
with other JMS clients. As long as the message type is JMSTextMessage, JMSMapMessage,

gmo.Options = MQGMO_WAIT /* wait for new messages */
| MQGMO_NO_SYNCPOINT /* no transaction */
| MQGMO_CONVERT; /* convert if necessary */

while (CompCode != MQCC_FAILED) {
buflen = sizeof(buffer) - 1; /* buffer size available for GET */
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;

MQGET(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

Figure 134. Code snippet from amqsget0.c

Developing JMS and Java Platform, Enterprise Edition applications 993

JMSStreamMessage, or JMSObjectMessage, IBM MQ looks after the details of formatting the message.
IBM MQ deals with differences in code pages and numeric encoding on different platforms.

You can use these message types to exchange messages with non-JMS applications. To do so, you must
understand how these messages are constructed by IBM MQ classes for JMS. You might be able to
modify the non-JMS application to interpret the messages; see “Mapping JMS messages onto IBM MQ
messages” on page 957.

An advantage of using one of these message types is the JMS client programming does not depend on
the type of application that it is exchanging messages with. A disadvantage is that it might require a
modification to another program, and you might not be able to change the other program.

An alternative approach is to write a JMS client application that can deal with existing message formats.
Often existing messages are fixed format and contain a mixture of unformatted data, text, and numbers.
Use the steps in this task, and the example JMS client in “Writing classes to encapsulate a record layout
in a JMSBytesMessage” on page 996, as a starting point for building a JMS client that can exchange
formatted records with non-JMS applications.

Procedure

1. Define the record layout, or use one of the predefined IBM MQ header classes.
For handling predefined IBM MQ headers, see Handling IBM MQ message headers.
Figure 135 on page 995 is an example of a user defined, fixed-length record layout, which can be
processed by the data conversion utility.

2. Create the data conversion exit.
Follow the instructions in Writing a data-conversion exit program to write a data conversion exit.
To try out the example in “Writing classes to encapsulate a record layout in a JMSBytesMessage” on
page 996, name the data conversion exit MYRECORD.

3. Write Java classes to encapsulate the record layout, and sending and receiving record. Two approaches
you might take are:
v Write a class to that reads and writes the JMSBytesMessage that contains the record; see “Writing

classes to encapsulate a record layout in a JMSBytesMessage” on page 996.
v Write a class extending com.ibm.mq.header.Header to define the data structure of the record; see

Creating classes for new header types.
4. Decide what coded character set to exchange messages in.

See Choosing an approach to message conversion: receiver makes good.
5. Configure the destination to exchange MQ-type messages, without a JMS MQRFH2 header.

Both the sending and receiving destination must be configured to exchange MQ-type messages. You
can use the same destination for both sending and receiving.
The application can override the destination message body property:
((MQDestination)destination).setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_MQ);

The example in “Writing classes to encapsulate a record layout in a JMSBytesMessage” on page 996
overrides the destination message body property, ensuring an MQ-style message is sent.

6. Test the solution with JMS and non-JMS applications
Useful tools to test a data conversion exit are:
v The amqsgetc0.c sample program is useful to test receiving a message sent by a JMS client. See the

suggested modifications to use the example header, RECORD.h, in Figure 136 on page 996. With the
modifications, amqsgetc0.c receives a message sent by the example JMS client, TryMyRecord.java ;
see “Writing classes to encapsulate a record layout in a JMSBytesMessage” on page 996.

v The sample IBM MQ browse program, amqsbcg0.c, is useful to inspect the contents of the message
header, the JMS header, MQRFH2, and the message contents.

994 IBM MQ: Programming

v The SupportPac, ih03: WebSphere Message Broker V7-Message display, test & performance utilities,
contains a utility, rfhutil to display messages and headers.

If you try to receive messages using the modified amqsgetc0.c sample program, and get an error with
reason code 2080, check whether the message has an MQRFH2. The modifications assume that the
message has been sent to a destination that specifies no MQRFH2.

Examples

struct RECORD { MQCHAR StrucID[4];
MQLONG Version;

MQLONG StructLength;
MQLONG Encoding;
MQLONG CodeCharSetId;
MQCHAR Format[8];
MQLONG Flags;
MQCHAR RecordData[32];

};

Figure 135. RECORD.h

Developing JMS and Java Platform, Enterprise Edition applications 995

http://www.ibm.com/support/docview.wss?uid=swg24000637

Related information:
Utility for creating conversion-exit code

Writing classes to encapsulate a record layout in a JMSBytesMessage:

The purpose of this task is to explore, by example, how to combine data conversion and a fixed record
layout in a JMSBytesMessage. In the task, you create some Java classes to exchange an example record
structure in a JMSBytesMessage. You can modify the example to write classes to exchange other record
structures.

v Declare the RECORD.h data structure

struct tagRECORD {
MQCHAR4 StrucId;
MQLONG Version;
MQLONG StrucLength;
MQLONG Encoding;
MQLONG CCSID;
MQCHAR8 Format;
MQLONG Flags;
MQCHAR32 RecordData;

};
typedef struct tagRECORD RECORD;

typedef RECORD MQPOINTER PRECORD;
RECORD record;
PRECORD pRecord = &(record);

v Modify the MQGET call to use RECORD,

1. Before modification:

MQGET(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

2. After modification:

MQGET(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
sizeof(RECORD), /* buffer length */
pRecord, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

v Change the print statement,

1. From:

buffer[messlen] = ’\0’; /* add terminator */
printf("message <%s>\n", buffer);

2. To:

/* buffer[messlen] = ’\0’; add terminator */
printf("ccsid <%d>, flags <%d>, message <%32.32s>\n \0",

md.CodedCharSetId, record.Flags, record.RecordData);

Figure 136. Modify amqsget0.c

996 IBM MQ: Programming

A JMSBytesMessage is the best choice of JMS message type to exchange mixed data type records with
non-JMS programs. It has no additional data inserted into the message body by the JMS provider. It is
therefore the best choice of message type to use if a JMS client program interoperates with an existing
IBM MQ program. The main challenge in using a JMSBytesMessage comes with matching the encoding
and character set expected by the other program. A solution is to create a class that encapsulates the
record. A class that encapsulates reading and writing a JMSBytesMessage, for a specific record type,
makes it easier to send and receive fixed-format records in a JMS program. By capturing the generic
aspects of the interface in an abstract class, much of the solution can be reused for different record
formats. Different record formats can be implemented in classes that extend the abstract generic class.

An alternative approach is to extend the com.ibm.mq.headers.Header class. The Header class has
methods, such as addMQLONG, to build a record format in a more declarative way. A disadvantage of
using the Header class is getting and setting attributes uses a more complicated interpretative interface.
Both approaches result in much the same amount of application code.

A JMSBytesMessage can encapsulate only a single format, in addition to an MQRFH2, in one message,
unless each record uses the same format, coded character set, and encoding. The format, encoding, and
character set of a JMSBytesMessage are properties of all of the message following the MQRFH2. The
example is written on the assumption that a JMSBytesMessage contains only one user record.

Before you begin

1. Your skill level: you must be familiar with Java programming and JMS. No instructions are provided
about setting up the Java development environment. It is advantageous to have written a program to
exchange a JMSTextMessage, JMSStreamMessage, or JMSMapMessage. You can then see the
differences in exchanging a message using a JMSBytesMessage.

2. The example requires IBM WebSphere MQ Version 7.0.
3. The example was created using the Java perspective of the Eclipse workbench. It requires JRE 6.0 or

higher. You can use the Java perspective in IBM MQ Explorer to develop and run the Java classes.
Alternatively, use your own Java development environment.

4. Using IBM MQ Explorer makes setting up the test environment, and debugging, simpler than using
command-line utilities.

About this task

You are guided through creating two classes: RECORD and MyRecord. Together these two classes
encapsulate a fixed-format record. They have methods to get and set attributes. The get method reads the
record from a JMSBytesMessage and the put method writes a record to a JMSBytesMessage.

The purpose of the task is not to create a production quality class that you can reuse. You might choose
to use the examples in the task to get started on your own classes. The purpose of the task is to provide
you with guidance notes, primarily about using character sets, formats, and encoding, when using a
JMSBytesMessage. Each step in creating the classes is explained, and aspects of using JMSBytesMessage,
which are sometimes overlooked, are described.

The RECORD class is abstract and defines some common fields for a user record. The common fields are
modeled on the standard IBM MQ header layout of having an eye catcher, a version, and a length field.
The encoding, character set, and format fields, found in many IBM MQ headers, are omitted. Another
header cannot follow a user-defined format. The MyRecord class, which extends the RECORD class, does
so by literally extending the record with additional user fields. A JMSBytesMessage, created by the
classes, can be processed by the queue manager data conversion exit.

“Classes used to run example” on page 1003 includes a full listing of RECORD and MyRecord. It also
includes listings of the extra “scaffolding” classes to test the RECORD and MyRecord. The extra classes
are:

Developing JMS and Java Platform, Enterprise Edition applications 997

TryMyRecord
The main program to test RECORD and MyRecord.

EndPoint
An abstract class that encapsulates the JMS connection, destination, and session in a single class.
Its interface just meets the needs of testing the RECORD and MyRecord classes. It is not an
established design pattern for writing JMS applications.

Note: The Endpoint class includes this line of code after creating a destination:
((MQDestination)destination).setReceiveConversion

(WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);

In V7.0, from V7.0.1.5, it is necessary to turn on queue manager conversion. It is disabled by
default. In V7.0, up to V7.0.1.4 queue manager conversion is enabled by default, and this line of
code causes an error.

MyProducer and MyConsumer
Classes that extend EndPoint, and create a MessageConsumer and MessageProducer, connected
and ready to accept requests.

Together all the classes make up a complete application you can build and experiment with, to
understand how to use data conversion in a JMSBytesMessage.

Procedure

1. Create an abstract class to encapsulate the standard fields in an IBM MQ header, with a default
constructor. Later, you extend the class to tailor the header to your requirements.
public abstract class RECORD implements Serializable {

private static final long serialVersionUID = -1616617232750561712L;
protected final static int UTF8 = 1208;
protected final static int MQLONG_LENGTH = 4;
protected final static int RECORD_STRUCT_ID_LENGTH = 4;
protected final static int RECORD_VERSION_1 = 1;
protected final String RECORD_STRUCT_ID = "BLNK";
protected final String RECORD_TYPE = "BLANK ";
private String structID = RECORD_STRUCT_ID;
private int version = RECORD_VERSION_1;
private int structLength = RECORD_STRUCT_ID_LENGTH + MQLONG_LENGTH * 2;
private int headerEncoding = WMQConstants.WMQ_ENCODING_NATIVE;
private String headerCharset = "UTF-8";
private String headerFormat = RECORD_TYPE;

public RECORD() {
super();

}

Note:

a. The attributes, structID to nextFormat, are listed in the order they are laid out in a standard IBM
MQ message header.

b. The attributes, format, messageEncoding, and messageCharset, describe the header itself, and are
not part of the header.

c. You must decide whether to store the coded character set identifier or character set of the record.
Java uses character sets and IBM MQ messages use coded character set identifiers. The example
code uses character sets.

d. int is serialized to MQLONG by IBM MQ. MQLONG is 4 bytes.
2. Create the getters and setters for the private attributes.

a. Create or generate the getters:

998 IBM MQ: Programming

public String getHeaderFormat() { return headerFormat; }
public int getHeaderEncoding() { return headerEncoding; }
public String getMessageCharset() { return headerCharset; }
public int getMessageEncoding() { return headerEncoding; }
public String getStructID() { return structID; }
public int getStructLength() { return structLength; }
public int getVersion() { return version; }

b. Create or generate the setters:
public void setHeaderCharset(String charset) {

this.headerCharset = charset; }
public void setHeaderEncoding(int encoding) {

this.headerEncoding = encoding; }
public void setHeaderFormat(String headerFormat) {

this.headerFormat = headerFormat; }
public void setStructID(String structID) {

this.structID = structID; }
public void setStructLength(int structLength) {

this.structLength = structLength; }
public void setVersion(int version) {

this.version = version; }
}

3. Create a constructor to create a RECORD instance from a JMSBytesMessage.
public RECORD(BytesMessage message) throws JMSException, IOException,

MQDataException {
super();
setHeaderCharset(message.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET));
setHeaderEncoding(message.getIntProperty(WMQConstants.JMS_IBM_ENCODING));
byte[] structID = new byte[RECORD_STRUCT_ID_LENGTH];
message.readBytes(structID, RECORD_STRUCT_ID_LENGTH);
setStructID(new String(structID, getMessageCharset()));
setVersion(message.readInt());
setStructLength(message.readInt());

}

Note:

a. The messageCharset and messageEncoding, are captured from the message properties, as they
override the values set for the destination. format is not updated. The example does no error
checking. If the Record(BytesMessage) constructor is called, it is assumed that the
JMSBytesMessage is a RECORD type message. The line “setStructID(new String(structID,
getMessageCharset()))” sets the eye catcher.

b. The lines of code that complete the method deserialize fields in the message, in order, updating
the default values set in the RECORD instance.

4. Create a put method to write the header fields to a JMSBytesMessage.
protected BytesMessage put(MyProducer myProducer) throws IOException,

JMSException, UnsupportedEncodingException {
setHeaderEncoding(myProducer.getEncoding());
setHeaderCharset(myProducer.getCharset());
myProducer.setMQClient(true);
BytesMessage bytes = myProducer.session.createBytesMessage();
bytes.setStringProperty(WMQConstants.JMS_IBM_FORMAT, getHeaderFormat());
bytes.setIntProperty(WMQConstants.JMS_IBM_ENCODING, getHeaderEncoding());
bytes.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET,

myProducer.getCCSID());
bytes.writeBytes(String.format("%1$-" + RECORD_STRUCT_ID_LENGTH + "."

+ RECORD_STRUCT_ID_LENGTH + "s", getStructID())
.getBytes(getMessageCharset()), 0, RECORD_STRUCT_ID_LENGTH);

bytes.writeInt(getVersion());
bytes.writeInt(getStructLength());
return bytes;

}

Note:

Developing JMS and Java Platform, Enterprise Edition applications 999

a. MyProducer encapsulates the JMS Connection, Destination, Session, and MessageProducer in a
single class. MyConsumer, used later on, encapsulates the JMS Connection, Destination, Session,
and MessageConsumer in a single class.

b. For a JMSBytesMessage, if the encoding is other than Native, the encoding must be set in the
message. The destination encoding is copied to the message encoding attribute,
JMS_IBM_CHARACTER_SET, and saved as an attribute of the RECORD class.
1) “setMessageEncoding(myProducer.getEncoding());” calls “(((MQDestination)

destination).getIntProperty(WMQConstants.WMQ_ENCODING));” to get the destination
encoding.

2) “Bytes.setIntProperty(WMQConstants.JMS_IBM_ENCODING, getMessageEncoding());” sets the
message encoding.

c. The character set used to transform text into bytes is obtained from the destination, and saved as
an attribute of the RECORD class. It is not set in the message, because it is not used by the IBM
MQ classes for JMS when writing a JMSBytesMessage.
“messageCharset = myProducer.getCharset();” calls

public String getCharset() throws UnsupportedEncodingException,
JMSException {

return CCSID.getCodepage(getCCSID());
}

It gets the Java character set from a coded character set identifier.
“ CCSID.getCodepage(ccsid) ” is in the package com.ibm.mq.headers. The ccsid is obtained from
another method in MyProducer, which queries the destination:

public int getCCSID() throws JMSException {
return (((MQDestination) destination)

.getIntProperty(WMQConstants.WMQ_CCSID));
}

d. “myProducer.setMQClient(true);” overrides the destination setting for the client type, forcing it
to an IBM MQ MQI client. You might prefer to omit this line of code, as it obscures an
administrative configuration error.
“myProducer.setMQClient(true);” calls:
((MQDestination) destination).setTargetClient(WMQConstants.WMQ_TARGET_DEST_MQ); }
if (!getMQDest()) setMQBody();

The code has the side-effect of setting the IBM MQ body style to unspecified, if it must override
a setting of JMS.

Note:

The IBM MQ classes for JMS write the format, encoding, and character set identifier of the
message into the message descriptor, MQMD, or into the JMS header, MQRFH2. It depends on whether
the message has an IBM MQ style body. Do not set the MQMD fields manually.

A method exists to set the message descriptor properties manually. It uses the JMS_IBM_MQMD_*
properties. You must set the destination property, WMQ_MQMD_WRITE_ENABLED to set the
JMS_IBM_MQMD_* properties:
((MQDestination)destination).setMQMDWriteEnabled(true);

You must set the destination property, WMQ_MQMD_READ_ENABLED, to read the properties.

Use the JMS_IBM_MQMD_* only if you take full control over the whole message payload. Unlike the
JMS_IBM_* properties, the JMS_IBM_MQMD_* properties do not control how IBM MQ classes for JMS
construct a JMS message. It is possible to create message descriptor properties that conflict with
the properties of the JMS message.

1000 IBM MQ: Programming

e. The lines of code that completes the method serialize the attributes in class as fields in the
message.

The string attributes are padded with blanks. The strings are converted to bytes using the
character set defined for the record, and truncated to the length of the message fields.

5. Complete the class by adding the imports.
package com.ibm.mq.id;

import java.io.IOException;
import java.io.Serializable;
import java.io.UnsupportedEncodingException;
import javax.jms.BytesMessage;
import javax.jms.JMSException;
import com.ibm.mq.constants.MQConstants;
import com.ibm.mq.headers.MQDataException;
import com.ibm.msg.client.wmq.WMQConstants;

6. Create a class to extend the RECORD class to include additional fields. Include a default constructor.
public class MyRecord extends RECORD {

private static final long serialVersionUID = -370551723162299429L;
private final static int FLAGS = 1;
private final static String STRUCT_ID = "MYRD";
private final static int DATA_LENGTH = 32;
private final static String FORMAT = "MYRECORD";
private int flags = FLAGS;
private String recordData = "ABCDEFGHIJKLMNOPQRSTUVWXYZ012345";

public MyRecord() {
super();
super.setStructID(STRUCT_ID);
super.setHeaderFormat(FORMAT);
super.setStructLength(super.getStructLength() + MQLONG_LENGTH

+ DATA_LENGTH);
}

Note:

a. The RECORD subclass, MyRecord, customizes the eye catcher, format, and length of the header.
7. Create or generate the getters and setters.

a. Create the getters:
public int getFlags() { return flags; }

public String getRecordData() { return recordData; } .

b. Create the setters:
public void setFlags(int flags) {

this.flags = flags; }
public void setRecordData(String recordData) {

this.recordData = recordData; }
}

8. Create a constructor to create a MyRecord instance from a JMSBytesMessage.
public MyRecord(BytesMessage message) throws JMSException, IOException,

MQDataException {
super(message);
setFlags(message.readInt());
byte[] recordData = new byte[DATA_LENGTH];
message.readBytes(recordData, DATA_LENGTH);
setRecordData(new String(recordData, super.getMessageCharset()));

}

Note:

a. The fields that make up the standard message template are read first by the RECORD class.
b. The recordData text is converted to String using the character set property of the message.

Developing JMS and Java Platform, Enterprise Edition applications 1001

9. Create a static method to get a message from a consumer and create a new MyRecord instance.
public static MyRecord get(MyConsumer myConsumer) throws JMSException,

MQDataException, IOException {
BytesMessage message = (BytesMessage) myConsumer.receive();
return new MyRecord(message);

}

Note:

a. In the example, for brevity, the MyRecord(BytesMessage) constructor is called from the static get
method. Typically, you might separate receiving the message from creating a new MyRecord
instance.

10. Create a put method to append the customer fields to a JMSBytesMessage containing a message
header.

public BytesMessage put(MyProducer myProducer) throws JMSException,
IOException {

BytesMessage bytes = super.put(myProducer);
bytes.writeInt(getFlags());
bytes.writeBytes(String.format("%1$-" + DATA_LENGTH + "."

+ DATA_LENGTH + "s",getRecordData())
.getBytes(super.getMessageCharset()), 0, DATA_LENGTH);

myProducer.send(bytes);
return bytes;

}

Note:

a. The method calls in the code serialize the attributes in the MyRecord class as fields in the
message.
v The recordData String attribute is padded with blanks, converted to bytes using the character

set defined for the record, and truncated to the length of the RecordData fields.
11. Complete the class by adding the include statements.

package com.ibm.mq.id;
import java.io.IOException;
import javax.jms.BytesMessage;
import javax.jms.JMSException;
import com.ibm.mq.headers.MQDataException;

Results

Results:
v The results from running the TryMyRecord class:

– Sending message in coded character set 37, and using a queue manager conversion exit:
Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
In flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 273 CCSID UTF-8

– Sending message in coded character set 37, and not using a queue manager conversion exit:
Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
Out flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID 37 MQ true
In flags 1 text ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Encoding 546 CCSID IBM037

v The results from modifying the TryMyRecord class not to receive the message, and instead receiving it
using the modified amqsget0.c sample. The modified sample accepts a formatted record; see Figure 136
on page 996 in “Exchanging a formatted record with a non-JMS application” on page 993.
– Sending message in coded character set 37, and using a queue manager conversion exit:

Sample AMQSGET0 start
ccsid <850>, flags <1>, message <ABCDEFGHIJKLMNOPQRSTUVWXYZ012345>
no more messages
Sample AMQSGET0 end

1002 IBM MQ: Programming

– Sending message in coded character set 37, and not using a queue manager conversion exit:
Sample AMQSGET0 start
MQGET ended with reason code 2110
ccsid <37>, flags <1>, message <--+-+ãÃ++⌂?ÊëÈi⌂?Î⌂?+ÔÒõõµþÞÚ±=¾¶§>
no more messages
Sample AMQSGET0 end

To try out the example and experiment with different code pages and a data conversion exit. Create the
Java classes, configure IBM MQ, and run the main program, TryMyRecord ; see Figure 137 on page 1004.
1. Configure IBM MQ and JMS to run the example. The instructions are for running the example on

Windows.
a. Create a queue manager

crtmqm -sa -u SYSTEM.DEAD.LETTER.QUEUE QM1
strmqm QM1

b. Create a queue
echo DEFINE QL(’Q1’) REPLACE | runmqsc QM1

c. Create a JNDI directory
cd c:\
md JNDI-Directory

d. Switch to the JMS bin directory
The JMS Administration program must be run from here. The path is MQ_INSTALLATION_PATH\java\
bin.

e. Create the following JMS definitions in a file called JMSQM1Q1.txt
DEF CF(QM1) PROVIDERVERSION(7) QMANAGER(QM1)
DEF Q(Q1) CCSID(37) ENCODING(RRR) MSGBODY(MQ) QMANAGER(QM1) QUEUE(Q1) TARGCLIENT(MQ) VERSION(7)
END

f. Run the JMSAdmin program to create the JMS resources
JMSAdmin < JMSQM1Q1.txt

2. You can create, alter, and browse the definitions you have created using IBM MQ Explorer.
3. Run TryMyRecord.

Classes used to run example

The classes listed in figures Figure 137 on page 1004 to Figure 142 on page 1008 are also available in a
ZIP file; download jm25529_.zip or jm25529_.tar.gz.

Developing JMS and Java Platform, Enterprise Edition applications 1003

jm25529_.zip
jm25529_.tar.gz

package com.ibm.mq.id;
public class TryMyRecord {

public static void main(String[] args) throws Exception {
MyProducer producer = new MyProducer();
MyRecord outrec = new MyRecord();
System.out.println("Out flags " + outrec.getFlags() + " text "

+ outrec.getRecordData() + " Encoding "
+ producer.getEncoding() + " CCSID " + producer.getCCSID()
+ " MQ " + producer.getMQDest());

outrec.put(producer);
System.out.println("Out flags " + outrec.getFlags() + " text "

+ outrec.getRecordData() + " Encoding "
+ producer.getEncoding() + " CCSID " + producer.getCCSID()
+ " MQ " + producer.getMQDest());

MyRecord inrec = MyRecord.get(new MyConsumer());
System.out.println("In flags " + inrec.getFlags() + " text "

+ inrec.getRecordData() + " Encoding "
+ inrec.getMessageEncoding() + " CCSID "
+ inrec.getMessageCharset());

}
}

Figure 137. TryMyRecord

1004 IBM MQ: Programming

package com.ibm.mq.id;
import java.io.IOException;
import java.io.Serializable;
import java.io.UnsupportedEncodingException;
import javax.jms.BytesMessage;
import javax.jms.JMSException;
import com.ibm.mq.constants.MQConstants;
import com.ibm.mq.headers.MQDataException;
import com.ibm.msg.client.wmq.WMQConstants;
public abstract class RECORD implements Serializable {

private static final long serialVersionUID = -1616617232750561712L;
protected final static int UTF8 = 1208;
protected final static int MQLONG_LENGTH = 4;
protected final static int RECORD_STRUCT_ID_LENGTH = 4;
protected final static int RECORD_VERSION_1 = 1;
protected final String RECORD_STRUCT_ID = "BLNK";
protected final String RECORD_TYPE = "BLANK ";
private String structID = RECORD_STRUCT_ID;
private int version = RECORD_VERSION_1;
private int structLength = RECORD_STRUCT_ID_LENGTH + MQLONG_LENGTH * 2;
private int headerEncoding = WMQConstants.WMQ_ENCODING_NATIVE;
private String headerCharset = "UTF-8";
private String headerFormat = RECORD_TYPE;

public RECORD() {
super();

}
public RECORD(BytesMessage message) throws JMSException, IOException,

MQDataException {
super();
setHeaderCharset(message.getStringProperty(WMQConstants.JMS_IBM_CHARACTER_SET));
setHeaderEncoding(message.getIntProperty(WMQConstants.JMS_IBM_ENCODING));
byte[] structID = new byte[RECORD_STRUCT_ID_LENGTH];
message.readBytes(structID, RECORD_STRUCT_ID_LENGTH);
setStructID(new String(structID, getMessageCharset()));
setVersion(message.readInt());
setStructLength(message.readInt());

}
public String getHeaderFormat() { return headerFormat; }
public int getHeaderEncoding() { return headerEncoding; }
public String getMessageCharset() { return headerCharset; }
public int getMessageEncoding() { return headerEncoding; }
public String getStructID() { return structID; }
public int getStructLength() { return structLength; }
public int getVersion() { return version; }
protected BytesMessage put(MyProducer myProducer) throws IOException,

JMSException, UnsupportedEncodingException {
setHeaderEncoding(myProducer.getEncoding());
setHeaderCharset(myProducer.getCharset());
myProducer.setMQClient(true);
BytesMessage bytes = myProducer.session.createBytesMessage();
bytes.setStringProperty(WMQConstants.JMS_IBM_FORMAT, getHeaderFormat());
bytes.setIntProperty(WMQConstants.JMS_IBM_ENCODING, getHeaderEncoding());
bytes.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET,

myProducer.getCCSID());
bytes.writeBytes(String.format("%1$-" + RECORD_STRUCT_ID_LENGTH + "."

+ RECORD_STRUCT_ID_LENGTH + "s", getStructID())
.getBytes(getMessageCharset()), 0, RECORD_STRUCT_ID_LENGTH);

bytes.writeInt(getVersion());
bytes.writeInt(getStructLength());
return bytes;

}
public void setHeaderCharset(String charset) {

this.headerCharset = charset; }
public void setHeaderEncoding(int encoding) {

this.headerEncoding = encoding; }
public void setHeaderFormat(String headerFormat) {

this.headerFormat = headerFormat; }
public void setStructID(String structID) {

this.structID = structID; }
public void setStructLength(int structLength) {

this.structLength = structLength; }
public void setVersion(int version) {

this.version = version; }
}

Figure 138. RECORD

Developing JMS and Java Platform, Enterprise Edition applications 1005

package com.ibm.mq.id;
import java.io.IOException;
import javax.jms.BytesMessage;
import javax.jms.JMSException;
import com.ibm.mq.headers.MQDataException;
public class MyRecord extends RECORD {

private static final long serialVersionUID = -370551723162299429L;
private final static int FLAGS = 1;
private final static String STRUCT_ID = "MYRD";
private final static int DATA_LENGTH = 32;
private final static String FORMAT = "MYRECORD";
private int flags = FLAGS;
private String recordData = "ABCDEFGHIJKLMNOPQRSTUVWXYZ012345";

public MyRecord() {
super();
super.setStructID(STRUCT_ID);
super.setHeaderFormat(FORMAT);
super.setStructLength(super.getStructLength() + MQLONG_LENGTH

+ DATA_LENGTH);
}
public MyRecord(BytesMessage message) throws JMSException, IOException,

MQDataException {
super(message);
setFlags(message.readInt());
byte[] recordData = new byte[DATA_LENGTH];
message.readBytes(recordData, DATA_LENGTH);
setRecordData(new String(recordData, super.getMessageCharset()));

}
public static MyRecord get(MyConsumer myConsumer) throws JMSException,

MQDataException, IOException {
BytesMessage message = (BytesMessage) myConsumer.receive();
return new MyRecord(message);

}
public int getFlags() { return flags; }
public String getRecordData() { return recordData; } .

public BytesMessage put(MyProducer myProducer) throws JMSException,
IOException {

BytesMessage bytes = super.put(myProducer);
bytes.writeInt(getFlags());
bytes.writeBytes(String.format("%1$-" + DATA_LENGTH + "."

+ DATA_LENGTH + "s",getRecordData())
.getBytes(super.getMessageCharset()), 0, DATA_LENGTH);

myProducer.send(bytes);
return bytes;

}
public void setFlags(int flags) {

this.flags = flags; }
public void setRecordData(String recordData) {

this.recordData = recordData; }
}

Figure 139. MyRecord

1006 IBM MQ: Programming

package com.ibm.mq.id;
import java.io.UnsupportedEncodingException;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Session;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import com.ibm.mq.headers.CCSID;
import com.ibm.mq.jms.MQDestination;
import com.ibm.msg.client.wmq.WMQConstants;
public abstract class EndPoint {

public Context ctx;
public ConnectionFactory cf;
public Connection connection;
public Destination destination;
public Session session;
protected EndPoint() throws NamingException, JMSException {

System.setProperty("java.naming.provider.url", "file:/C:/JNDI-Directory");
System.setProperty("java.naming.factory.initial",

"com.sun.jndi.fscontext.RefFSContextFactory");
ctx = new InitialContext();
cf = (ConnectionFactory) ctx.lookup("QM1");
connection = cf.createConnection();
destination = (Destination) ctx.lookup("Q1");
((MQDestination)destination).setReceiveConversion

(WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); }

protected EndPoint(String cFactory, String dest) throws NamingException,
JMSException {

System.setProperty("java.naming.provider.url", "file:/C:/JNDI-Directory");
System.setProperty("java.naming.factory.initial",

"com.sun.jndi.fscontext.RefFSContextFactory");
ctx = new InitialContext();
cf = (ConnectionFactory) ctx.lookup(cFactory);
connection = cf.createConnection();
destination = (Destination) ctx.lookup(dest);
((MQDestination)destination).setReceiveConversion

(WMQConstants.WMQ_RECEIVE_CONVERSION_QMGR);
session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); }

public int getCCSID() throws JMSException {
return (((MQDestination) destination)

.getIntProperty(WMQConstants.WMQ_CCSID)); }
public String getCharset() throws UnsupportedEncodingException,

JMSException {
return CCSID.getCodepage(getCCSID()); }

public int getEncoding() throws JMSException {
return (((MQDestination) destination)

.getIntProperty(WMQConstants.WMQ_ENCODING)); }
public boolean getMQDest() throws JMSException {

if ((((MQDestination) destination).getMessageBodyStyle()
== WMQConstants.WMQ_MESSAGE_BODY_MQ)

|| ((((MQDestination) destination).getMessageBodyStyle()
== WMQConstants.WMQ_MESSAGE_BODY_UNSPECIFIED)

&& (((MQDestination) destination).getTargetClient()
== WMQConstants.WMQ_TARGET_DEST_MQ)))

return true;
else

return false; }
public void setCCSID(int ccsid) throws JMSException {

((MQDestination) destination).setIntProperty(WMQConstants.WMQ_CCSID,
ccsid); }

public void setEncoding(int encoding) throws JMSException {
((MQDestination) destination).setIntProperty(WMQConstants.WMQ_ENCODING,

encoding); }
public void setMQBody() throws JMSException {

((MQDestination) destination)
.setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_UNSPECIFIED); }

public void setMQBody(boolean mqbody) throws JMSException {
if (mqbody) ((MQDestination) destination)

.setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_MQ);
else ((MQDestination) destination)

.setMessageBodyStyle(WMQConstants.WMQ_MESSAGE_BODY_JMS); }
public void setMQClient(boolean mqclient) throws JMSException {

if (mqclient){
((MQDestination) destination).setTargetClient(WMQConstants.WMQ_TARGET_DEST_MQ);
if (!getMQDest()) setMQBody();

}
else

((MQDestination) destination).setTargetClient(WMQConstants.WMQ_TARGET_DEST_JMS); }
}

Figure 140. EndPoint
Developing JMS and Java Platform, Enterprise Edition applications 1007

Creating and configuring connection factories and destinations in an IBM MQ
classes for JMS application
An IBM MQ classes for JMS application can create connection factories and destinations by retrieving
them as administered objects from a Java Naming and Directory Interface (JNDI) namespace, by using
the IBM JMS extensions, or by using the IBM MQ JMS extensions. An application can also use the IBM
JMS extensions or IBM MQ JMS extensions to set the properties of connection factories and destinations.

Connection factories and destinations are starting points in the flow of logic of a JMS application. An
application uses a ConnectionFactory object to create a connection to a messaging server, and uses a
Queue or Topic object as a target to send messages to or a source from which to receive messages. An
application therefore needs to create at least one connection factory and one or more destinations. Having
created a connection factory or destination, the application might then need to configure the object by
setting one or more of its properties.

In summary, an application can create and configure connection factories and destinations in the
following ways:

Using JNDI to retrieve administered objects
An administrator can use the IBM MQ JMS administration tool or MQ Explorer to create and
configure connection factories and destinations as administered objects in a JNDI namespace. An
application can then retrieve the administered objects from the JNDI namespace. Having retrieved

package com.ibm.mq.id;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageProducer;
import javax.naming.NamingException;
public class MyProducer extends EndPoint {

public MessageProducer producer;
public MyProducer() throws NamingException, JMSException {

super();
producer = session.createProducer(destination); }

public MyProducer(String cFactory, String dest) throws NamingException,
JMSException {

super(cFactory, dest);
producer = session.createProducer(destination); }

public void send(Message message) throws JMSException {
producer.send(message); }

}

Figure 141. MyProducer

package com.ibm.mq.id;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.naming.NamingException;
public class MyConsumer extends EndPoint {

public MessageConsumer consumer;
public MyConsumer() throws NamingException, JMSException {

super();
consumer = session.createConsumer(destination);
connection.start(); }

public MyConsumer(String cFactory, String dest) throws NamingException,
JMSException {

super(cFactory, dest);
consumer = session.createConsumer(destination);
connection.start(); }

public Message receive() throws JMSException {
return consumer.receive(); }

}

Figure 142. MyConsumer

1008 IBM MQ: Programming

an administered object, the application can, if required, set or change one or more of its
properties by using either the IBM JMS extensions or the IBM MQ JMS extensions.

Using the IBM JMS extensions
An application can use the IBM JMS extensions to create connection factories and destinations
dynamically at run time. The application first creates a JmsFactoryFactory object, and then uses
methods of this object to create connection factories and destinations. Having created a
connection factory or destination, the application can use methods inherited from the
JmsPropertyContext interface to set its properties. Alternatively, the application can use a uniform
resource identifier (URI) to specify one or more properties of a destination when it creates the
destination.

Using the IBM MQ JMS extensions
An application can also use the IBM MQ JMS extensions to create connection factories and
destinations dynamically at run time. The application uses the supplied constructors to create
connection factories and destinations. Having created a connection factory or destination, the
application can use methods of the object to set its properties. Alternatively, the application can
use a URI to specify one or more properties of a destination when it creates the destination.

Related information:
Configuring JMS resources

Using JNDI to retrieve administered objects in a JMS application:

To retrieve administered objects from a Java Naming and Directory Interface (JNDI) namespace, a JMS
application must create an initial context and then use the lookup() method to retrieve the objects.

Before an application can retrieve administered objects from a JNDI namespace, an administrator must
first create the administered objects. The administrator can use the IBM MQ JMS administration tool or
MQ Explorer to create and maintain administered objects in a JNDI namespace. For more information, see
Configuring connection factories and destinations in a JNDI namespace.

An application server, typically provides its own repository for administered objects and its own tools for
creating and maintaining the objects.

To retrieve administered objects from a JNDI namespace, an application must first create an initial
context, as shown in the following example:
import javax.jms.*;
import javax.naming.*;
import javax.naming.directory.*;
.
.
.
String url = "ldap://server.company.com/o=company_us,c=us";
String icf = "com.sun.jndi.ldap.LdapCtxFactory";
.
java.util.Hashtable environment = new java.util.Hashtable();
environment.put(Context.PROVIDER_URL, url);
environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);
Context ctx = new InitialDirContext(environment);

In this code, the String variables url and icf have the following meanings:

url The uniform resource locator (URL) of the directory service. The URL can have one of the
following formats:
v ldap://hostname/contextName , for a directory service based on an LDAP server
v file:/directoryPath , for a directory service based on the local file system

icf The class name of the initial context factory, which can be one of the following values:
v com.sun.jndi.ldap.LdapCtxFactory, for a directory service based on an LDAP server

Developing JMS and Java Platform, Enterprise Edition applications 1009

v com.sun.jndi.fscontext.RefFSContextFactory, for a directory service based on the local file
system

Note that some combinations of a JNDI package and a Lightweight Directory Access Protocol (LDAP)
service provider can cause LDAP error 84 to occur. To resolve this problem, insert the following line of
code before the call to InitialDirContext():
environment.put(Context.REFERRAL, "throw");

After an initial context is obtained, the application can retrieve administered objects from the JNDI
namespace by using the lookup() method, as shown in the following example:
ConnectionFactory factory;
Queue queue;
Topic topic;
.
.
.
factory = (ConnectionFactory)ctx.lookup("cn=myCF");
queue = (Queue)ctx.lookup("cn=myQ");
topic = (Topic)ctx.lookup("cn=myT");

This code retrieves the following objects from an LDAP based namespace:
v A ConnectionFactory object bound with the name myCF
v A Queue object bound with the name myQ
v A Topic object bound with the name myT

For more information about using JNDI, see the JNDI documentation provided by Oracle Corporation.
Related information:
Configuring JMS objects using MQ Explorer
Configuring JMS objects using the administration tool
Configuring JMS resources in WebSphere Application Server

Using the IBM JMS extensions:

IBM MQ classes for JMS contains a set of extensions to the JMS API called the IBM JMS extensions. An
application can use these extensions to create connection factories and destinations dynamically at run
time, and to set the properties of IBM MQ classes for JMS objects. The extensions can be used with any
messaging provider.

The IBM JMS extensions are a set of interfaces and classes in the following packages:
v com.ibm.msg.client.jms
v com.ibm.msg.client.services

The packages can be found in com.ibm.mqjms.jar which is located in <MQ_Install_Dir>/java/lib.

These extensions provide the following function:
v A factory-based mechanism for creating connection factories and destinations dynamically at run time,

instead of retrieving them as administered objects from a Java Naming and Directory Interface (JNDI)
namespace

v A set of methods for setting the properties of IBM MQ classes for JMS objects
v A set of exception classes with methods for obtaining detailed information about a problem
v A set of methods for controlling tracing
v A set of methods for obtaining version information about IBM MQ classes for JMS

1010 IBM MQ: Programming

With regard to creating connection factories and destinations dynamically at run time, and setting and
getting their properties, the IBM JMS extensions provide an alternative set of interfaces to the IBM MQ
JMS extensions. However, whereas the IBM MQ JMS extensions are specific to the IBM MQ messaging
provider, the IBM JMS extensions are not specific to IBM MQ and can be used with any messaging
provider within the layered architecture described in Layered architecture.

The interface com.ibm.msg.client.wmq.WMQConstants contains the definitions of constants, which an
application can use when setting the properties of IBM MQ classes for JMS objects using the IBM JMS
extensions. The interface contains constants for the IBM MQ messaging provider and JMS constants that
are independent of any messaging provider.

The examples of code that follow assume that the following import statements have been run:
import com.ibm.msg.client.jms.*;
import com.ibm.msg.client.services.*;
import com.ibm.msg.client.wmq.WMQConstants;

Creating connection factories and destinations

Before an application can create connection factories and destinations using the IBM JMS extensions, it
must first create a JmsFactoryFactory object. To create a JmsFactoryFactory object, the application calls the
getInstance() method of the JmsFactoryFactory class, as shown in the following example:
JmsFactoryFactory ff = JmsFactoryFactory.getInstance(JmsConstants.WMQ_PROVIDER);

The parameter on the getInstance() call is a constant that identifies the IBM MQ messaging provider as
the chosen messaging provider. The application can then use the JmsFactoryFactory object to create
connection factories and destinations.

To create a connection factory, the application calls the createConnectionFactory() method of the
JmsFactoryFactory object, as shown in the following example:
JmsConnectionFactory factory = ff.createConnectionFactory();

This statement creates a JmsConnectionFactory object with the default values for all its properties, which
means that the application connects to the default queue manager in bindings mode. If you want an
application to connect in client mode, or connect to a queue manager other than the default queue
manager, the application must set the appropriate properties of the JmsConnectionFactory object before
creating the connection. For information about how to do this, see “Setting the properties of IBM MQ
classes for JMS objects” on page 1012.

The JmsFactoryFactory class also contains methods to create connection factories of the following types:
v JmsQueueConnectionFactory
v JmsTopicConnectionFactory
v JmsXAConnectionFactory
v JmsXAQueueConnectionFactory
v JmsXATopicConnectionFactory

To create a Queue object, the application calls the createQueue() method of the JmsFactoryFactory object,
as shown in the following example:
JmsQueue q1 = ff.createQueue("Q1");

This statement creates an JmsQueue object with the default values for all its properties. The object
represents an IBM MQ queue called Q1 that belongs to the local queue manager. This queue can be a
local queue, an alias queue, or a remote queue definition.

Developing JMS and Java Platform, Enterprise Edition applications 1011

The createQueue() method can also accept a queue uniform resource identifier (URI) as a parameter. A
queue URI is a string that specifies the name of an IBM MQ queue and, optionally, the name of the
queue manager that owns the queue, and one or more properties of the JmsQueue object. The following
statement contains an example of a queue URI:
JmsQueue q2 = ff.createQueue("queue://QM2/Q2?persistence=2&priority=5");

The JmsQueue object created by this statement represents an IBM MQ queue called Q2 that is owned by
queue manager QM2, and all messages sent to this destination are persistent and have a priority of 5. For
more information about queue URIs, see “Uniform resource identifiers (URIs)” on page 1024. For an
alternative way of setting the properties of a JmsQueue object, see “Setting the properties of IBM MQ
classes for JMS objects.”

To create a Topic object, an application can use the createTopic() method of the JmsFactoryFactory object,
as shown in the following example:
JmsTopic t1 = ff.createTopic("Sport/Football/Results");

This statement creates a JmsTopic object with the default values for all its properties. The object
represents a topic called Sport/Football/Results.

The createTopic() method can also accept a topic URI as a parameter. A topic URI is a string that specifies
the name of a topic and, optionally, one or more properties of the JmsTopic object. The following
statements contain an example of a topic URI:
String s1 = "topic://Sport/Tennis/Results?persistence=1&priority=0";
JmsTopic t2 = ff.createTopic(s1);

The JmsTopic object created by these statements represents a topic called Sport/Tennis/Results, and all
messages sent to this destination are nonpersistent and have a priority of 0. For more information about
topic URIs, see “Uniform resource identifiers (URIs)” on page 1024. For an alternative way of setting the
properties of a JmsTopic object, see “Setting the properties of IBM MQ classes for JMS objects.”

After an application has created a connection factory or destination, that object can be used only with the
selected messaging provider.

Setting the properties of IBM MQ classes for JMS objects

To set the properties of IBM MQ classes for JMS objects using the IBM JMS extensions, an application
uses the methods of the com.ibm.msg.client.JmsPropertyContext interface.

For each Java data type, the JmsPropertyContext interface contains a method to set the value of a
property with that data type, and a method to get the value of a property with that data type. For
example, an application calls the setIntProperty() method to set a property with an integer value, and
calls the getIntProperty() method to get a property with an integer value.

Instances of classes in the com.ibm.mq.jms package also inherit the methods of the JmsPropertyContext
interface. An application can therefore use these methods to set the properties of MQConnectionFactory,
MQQueue, and MQTopic objects.

When an application creates an IBM MQ classes for JMS object, any properties with default values are set
automatically. When an application sets a property, the new value replaces any previous value the
property had. After a property has been set, it cannot be deleted, but its value can be changed.

If an application attempts to set a property to a value that is not valid value for the property, IBM MQ
classes for JMS throws a JMSException exception. If an application attempts to get a property that has not
been set, the behavior is as described in the JMS specification. IBM MQ classes for JMS throws a
NumberFormatException exception for primitive data types and returns null for referenced data types.

1012 IBM MQ: Programming

In addition to the predefined properties of an IBM MQ classes for JMS object, an application can set its
own properties. These application defined properties are ignored by IBM MQ classes for JMS.

For more information about the properties of IBM MQ classes for JMS objects, see Properties of IBM MQ
classes for JMS objects.

The following code is an example of how to set properties using the IBM JMS extensions. The code sets
five properties of a connection factory.
factory.setIntProperty(WMQConstants.WMQ_CONNECTION_MODE,
WMQConstants.WMQ_CM_CLIENT);
factory.setStringProperty(WMQConstants.WMQ_QUEUE_MANAGER, "QM1");
factory.setStringProperty(WMQConstants.WMQ_HOST_NAME, "HOST1");
factory.setIntProperty(WMQConstants.WMQ_PORT, 1415);
factory.setStringProperty(WMQConstants.WMQ_CHANNEL, "QM1.SVR");
factory.setStringProperty(WMQConstants.WMQ_APPLICATIONNAME, "My Application");

The effect of setting these properties is that the application connects to queue manager QM1 in client
mode, using an MQI channel called QM1.SVR. The queue manager is running on a system with host
name HOST1, and the listener for the queue manager is listening in port number 1415. This connection
and other queue manager connections associated with sessions under it, have the application name "My
Application" associated with them.

Note: Queue managers running on z/OS platforms do not support setting application names, and this
setting is therefore ignored.

The JmsPropertyContext interface also contains the setObjectProperty() method, which an application can
use to set properties. The second parameter of the method is an object that encapsulates the value of the
property. For example, the following code creates an Integer object that encapsulates the integer 1415, and
then calls setObjectProperty() to set the PORT property of a connection factory to the value 1415:
Integer port = new Integer(1415);
factory.setObjectProperty(WMQConstants.WMQ_PORT, port);

This code is therefore equivalent to the following statement:
factory.setIntProperty(WMQConstants.WMQ_PORT, 1415);

Conversely, the getObjectProperty() method returns an object that encapsulates the value of a property.

Implicit conversion of a property value from one data type to another

When an application uses a method of the JmsPropertyContext interface to set or get the property of an
IBM MQ classes for JMS object, the value of the property can be implicitly converted from one data type
to another.

For example, the following statement sets the PRIORITY property of the JmsQueue object q1:
q1.setStringProperty(WMQConstants.WMQ_PRIORITY, "5");

The PRIORITY property has an integer value, and so the setStringProperty() call implicitly converts the
string “5” (the source value) to the integer 5 (the target value), which then becomes the value of the
PRIORITY property.

Conversely, the following statement gets the PRIORITY property of the JmsQueue object q1:
String s1 = q1.getStringProperty(WMQConstants.WMQ_PRIORITY);

The integer 5 (the source value), which is the value of the PRIORITY property, is implicitly converted to
the string “5” (the target value) by the getStringProperty() call.

Developing JMS and Java Platform, Enterprise Edition applications 1013

The conversions supported by IBM MQ classes for JMS are shown in Table 133.

Table 133. Supported conversions from one data type to another

Source data type Supported target data types

boolean String

byte int, long, short, String

char String

double String

float double, String

int long, String

long String

short int, long, String

String boolean, byte, double, float, int, long, short

The general rules governing the supported conversions are as follows:
v Numeric values can be converted from one data type to another provided no data is lost during the

conversion. For example, a value with data type int can be converted into a value with data type long,
but cannot be converted into a value with data type short.

v A value of any data type can be converted into a string.
v A string can be converted to a value of any other data type (except char) provided the string is in the

correct format for the conversion. If an application attempts to convert a string that is not in the correct
format, IBM MQ classes for JMS throws a NumberFormatException exception.

v If an application attempts a conversion that is not supported, IBM MQ classes for JMS throws a
MessageFormatException exception.

The specific rules for converting a value from one data type to another are as follows:
v When converting a boolean value to a string, the value true is converted to the string “true”, and the

value false is converted to the string “false”.
v When converting a string to a boolean value, the string “true” (not case-sensitive) is converted to true,

and the string “false” (not case-sensitive) is converted to false. Any other string is converted to false.
v When converting a string to a value with data type byte, int, long, or short, the string must have the

following format:
[blanks][sign] digits

The meanings of the components of the string are as follows:

blanks Optional leading blank characters.

sign An optional plus sign (+) or minus sign (-).

digits A contiguous sequence of digits (0-9). At least one digit must be present.
After the sequence of digits, the string can contain other characters that are not digits, but the
conversion stops as soon as the first of these characters is reached. The string is assumed to represent a
decimal integer.
If the string is not in the correct format, IBM MQ classes for JMS throws a NumberFormatException
exception.

v When converting a string to a value with data type double or float, the string must have the following
format:

[blanks][sign] digits [e_char [e_sign] e_digits]

The meanings of the components of the string are as follows:

1014 IBM MQ: Programming

blanks Optional leading blank characters.

sign An optional plus sign (+) or minus sign (-).

digits A contiguous sequence of digits (0-9). At least one digit must be present.

e_char An exponent character, which is either E or e.

e_sign An optional plus sign (+) or minus sign (-) for the exponent.

e_digits
A contiguous sequence of digits (0-9) for the exponent. At least one digit must be present if the
string contains an exponent character.

After the sequence of digits, or the optional characters representing an exponent, the string can contain
other characters that are not digits, but the conversion stops as soon as the first of these characters is
reached. The string is assumed to represent a decimal floating point number with an exponent that is a
power of 10.
If the string is not in the correct format, IBM MQ classes for JMS throws a NumberFormatException
exception.

v When converting a numeric value (including a value with data type byte) to a string, the value is
converted to the string representation of the value as a decimal number, not the string containing the
ASCII character for that value. For example, the integer 65 is converted to the string “65”, not the
string “A”.

Setting more than one property in a single call

The JmsPropertyContext interface also contains the setBatchProperties() method, which an application can
use to set more than one property in a single call. The parameter of the method is a Map object that
encapsulates a set of property name-value pairs.

For example, the following code uses the setBatchProperties() method to set the same five properties of a
connection factory as shown in “Setting the properties of IBM MQ classes for JMS objects” on page 1012.
The code creates an instance of the HashMap class, which implements the Map interface.
HashMap batchProperties = new HashMap();
batchProperties.put(WMQConstants.WMQ_CONNECTION_MODE,

new Integer(WMQConstants.WMQ_CM_CLIENT));
batchProperties.put(WMQConstants.WMQ_QUEUE_MANAGER, "QM1");
batchProperties.put(WMQConstants.WMQ_WMQ_HOST_NAME, "HOST1");
batchProperties.put(WMQConstants.WMQ_PORT, "1414");
batchProperties.put(WMQConstants.WMQ_CHANNEL, "QM1.SVR");
factory.setBatchProperties(batchProperties);

Note that the second parameter of the Map.put() method must be an object. Therefore a property value
with a primitive data type must be encapsulated within an object or represented by a string, as shown in
the example.

The setBatchProperties() method validates each property. If the setBatchProperties() method cannot set a
property because, for example, its value is not valid, none of the specified properties are set.

Property names and values

If an application uses the methods of the JmsPropertyContext interface to set and get the properties of
IBM MQ classes for JMS objects, the application can specify the names and values of properties in any of
the following ways. Each of the accompanying examples shows how to set the PRIORITY property of the
JmsQueue object q1 so that a message sent to the queue has the priority specified on the send() call.

Developing JMS and Java Platform, Enterprise Edition applications 1015

Using the property names and values that are defined as constants in the
com.ibm.msg.client.wmq.WMQConstants interface

The following statement is an example of how to specify the names and values of properties in
this way:
q1.setIntProperty(WMQConstants.WMQ_PRIORITY, WMQConstants.WMQ_PRI_APP);

Using the property names and values that can be used in queue and topic uniform resource identifiers
(URIs) The following statement is an example of how to specify the names and values of properties in

this way:
q1.setIntProperty("priority", -2);

Only the names and values of properties of destinations can be specified in this way.

Using the property names and values that are recognized by the IBM MQ JMS administration tool
The following statement is an example of how to specify the names and values of properties in
this way:
q1.setStringProperty("PRIORITY", "APP");

The short form of the property name is also acceptable, as shown in the following statement:
q1.setStringProperty("PRI", "APP");

When an application gets a property, the value returned depends on the way in which the application
specifies the name of the property. For example, if an application specifies the constant
WMQConstants.WMQ_PRIORITY as the property name, the value returned is the integer -2:
int n1 = getIntProperty(WMQConstants.WMQ_PRIORITY);

The same value is returned if the application specifies the string "priority" as the property name:
int n2 = getIntProperty("priority");

However, if the application specifies the string "PRIORITY" or "PRI" as the property name, the value
returned is the string "APP":
String s1 = getStringProperty("PRI");

Internally, IBM MQ classes for JMS stores property names and values as the literal values defined in the
com.ibm.msg.client.wmq.WMQConstants interface. This is the defined canonical format for property
names and values. As a general rule, if an application sets properties using one of the other two ways of
specifying property names and values, IBM MQ classes for JMS has to convert the names and values
from the specified input format into the canonical format. Similarly, if an application gets properties using
one of the other two ways of specifying property names and values, IBM MQ classes for JMS must
convert the names from the specified input format into the canonical format, and convert the values from
the canonical format into the required output format. Having to perform these conversions might have
implications for performance.

Property names and values returned by exceptions, in trace files, or in the IBM MQ classes for JMS log
are always in the canonical format.

Using the Map interface

The JmsPropertyContext interface extends the java.util.Map interface. An application can therefore use the
methods of the Map interface to access the properties of an IBM MQ classes for JMS object.

For example, the following code prints out the names and values of all the properties of a connection
factory. The code uses only the methods of the Map interface to get the names and values of the
properties.

1016 IBM MQ: Programming

// Get the names of all the properties
Set propNames = factory.keySet();

// Loop round all the property names and get the property values
Iterator iterator = propNames.iterator();
while (iterator.hasNext()){

String pName = (String)iterator.next();
System.out.println(pName+"="+factory.get(pName));

}

Using the methods of the Map interface does not bypass any property validations or conversions.

Using the IBM MQ JMS extensions:

IBM MQ classes for JMS contains a set of extensions to the JMS API called the IBM MQ JMS extensions.
An application can use these extensions to create connection factories and destinations dynamically at run
time, and to set the properties of connection factories and destinations.

IBM MQ classes for JMS contains a set of classes in the packages com.ibm.jms and com.ibm.mq.jms.
These classes implement the JMS interfaces and contain the IBM MQ JMS extensions. The examples of
code that follow assume that these packages have been imported by the following statements:
import com.ibm.jms.*;
import com.ibm.mq.jms.*;

An application can use the IBM MQ JMS extensions to perform the following functions:
v Create connection factories and destinations dynamically at run time, instead of retrieving them as

administered objects from a Java Naming and Directory Interface (JNDI) namespace
v Set the properties of connection factories and destinations

Creating connection factories

To create a connection factory, an application can use the MQConnectionFactory constructor, as shown in
the following example:
MQConnectionFactory factory = new MQConnectionFactory();

This statement creates an MQConnectionFactory object with the default values for all its properties,
which means that the application connects to the default queue manager in bindings mode. If you want
an application to connect in client mode, or connect to a queue manager other than the default queue
manager, the application must set the appropriate properties of the MQConnectionFactory object before
creating the connection. For information about how to do this, see “Setting the properties of connection
factories.”

An application can create connection factories of the following types in a similar way:
v MQQueueConnectionFactory
v MQTopicConnectionFactory
v MQXAConnectionFactory
v MQXAQueueConnectionFactory
v MQXATopicConnectionFactory

Setting the properties of connection factories

An application can set the properties of a connection factory by calling the appropriate methods of the
connection factory. The connection factory can either be an administered object or an object created
dynamically at run time.

Consider the following code, for example:

Developing JMS and Java Platform, Enterprise Edition applications 1017

MQConnectionFactory factory = new MQConnectionFactory();
.
factory.setTransportType(WMQConstants.WMQ_CM_CLIENT);
factory.setQueueManager("QM1");
factory.setHostName("HOST1");
factory.setPort(1415);
factory.setChannel("QM1.SVR");

This code creates an MQConnectionFactory object and then sets five properties of the object. The effect of
setting these properties is that the application connects to queue manager QM1 in client mode using an
MQI channel called QM1.SVR. The queue manager is running on a system with host name HOST1, and
the listener for the queue manager is listening in port number 1415.

For a real-time connection to a broker, an application can use the following code:
MQConnectionFactory factory = new MQConnectionFactory();
.
factory.setTransportType(WMQConstants.WMQ_CM_DIRECT);
factory.setHostName("HOST2");
factory.setPort(1507);

This code assumes that the broker is running on a system with host name HOST2 and listening on port
number 1507.

An application that uses a real-time connection to a broker can use only the publish/subscribe style of
messaging. It cannot use the point-to-point style of messaging.

Only certain combinations of properties of a connection factory are valid. For information about which
combinations are valid, see Dependencies between properties of IBM MQ classes for JMS objects.

For more information about the properties of a connection factory, and the methods used to set its
properties, see Properties of IBM MQ classes for JMS objects.

Creating destinations

To create a Queue object, an application can use the MQQueue constructor, as shown in the following
example:
MQQueue q1 = new MQQueue("Q1");

This statement creates an MQQueue object with the default values for all its properties. The object
represents an IBM MQ queue called Q1 that belongs to the local queue manager. This queue can be a
local queue, an alias queue, or a remote queue definition.

An alternative form of the MQQueue constructor has two parameters, as shown in the following
example:
MQQueue q2 = new MQQueue("QM2", "Q2");

The MQQueue object created by this statement represents an IBM MQ queue called Q2 that is owned by
queue manager QM2. The queue manager identified in this way can be the local queue manager or a
remote queue manager. If it is a remote queue manager, IBM MQ must be configured so that, when the
application sends a message to this destination, Websphere MQ can route the message from the local
queue manager to the remote queue manager.

The MQQueue constructor can also accept a queue uniform resource identifier (URI) as a single
parameter. A queue URI is a string that specifies the name of an IBM MQ queue and, optionally, the
name of the queue manager that owns the queue, and one or more properties of the MQQueue object.
The following statement contains an example of a queue URI:
MQQueue q3 = new MQQueue("queue://QM3/Q3?persistence=2&priority=5");

1018 IBM MQ: Programming

The MQQueue object created by this statement represents an IBM MQ queue called Q3 that is owned by
queue manager QM3, and all messages sent to this destination are persistent and have a priority of 5. For
more information about queue URIs, see “Uniform resource identifiers (URIs)” on page 1024. For an
alternative way of setting the properties of an MQQueue object, see “Setting the properties of
destinations.”

To create a Topic object, an application can use the MQTopic constructor, as shown in the following
example:
MQTopic t1 = new MQTopic("Sport/Football/Results");

This statement creates an MQTopic object with the default values for all its properties. The object
represents a topic called Sport/Football/Results.

The MQTopic constructor can also accept a topic URI as a parameter. A topic URI is a string that specifies
the name of a topic and, optionally, one or more properties of the MQTopic object. The following
statement contains an example of a topic URI:
MQTopic t2 = new MQTopic("topic://Sport/Tennis/Results?persistence=1&priority=0");

The MQTopic object created by this statement represents a topic called Sport/Tennis/Results, and all
messages sent to this destination are nonpersistent and have a priority of 0. For more information about
topic URIs, see “Uniform resource identifiers (URIs)” on page 1024. For an alternative way of setting the
properties of an MQTopic object, see “Setting the properties of destinations.”

Setting the properties of destinations

An application can set the properties of a destination by calling the appropriate methods of the
destination. The destination can either be an administered object or an object created dynamically at run
time.

Consider the following code, for example:
MQQueue q1 = new MQQueue("Q1");
.
q1.setPersistence(WMQConstants.WMQ_PER_PER);
q1.setPriority(5);

This code creates an MQQueue object and then sets two properties of the object. The effect of setting
these properties is that all messages sent to the destination are persistent and have a priority of 5.

An application can set the properties of MQTopic object in a similar way, as shown in the following
example:
MQTopic t1 = new MQTopic("Sport/Football/Results");
.
t1.setPersistence(WMQConstants.WMQ_PER_NON);
t1.setPriority(0);

This code creates an MQTopic object and then sets two properties of the object. The effect of setting these
properties is that all messages sent to the destination are nonpersistent and have a priority of 0.

For more information about the properties of a destination, and the methods used to set its properties,
see Properties of IBM MQ classes for JMS objects.

Developing JMS and Java Platform, Enterprise Edition applications 1019

Building a connection in a JMS application
To build a connection, a JMS application uses a ConnectionFactory object to create a Connection object
and then starts the connection.

To create a Connection object, an application uses the createConnection() method of a ConnectionFactory
object, as shown in the following example:
ConnectionFactory factory;
Connection connection;
.
.
.
connection = factory.createConnection();

When a JMS connection is created, the IBM MQ classes for JMS creates a connection handle (Hconn) and
starts a conversation with the queue manager.

The QueueConnectionFactory interface and the TopicConnectionFactory interface each inherits the
createConnection() method from the ConnectionFactory interface. You can therefore use the
createConnection() method to create a domain specific object, as shown in the following example:
QueueConnectionFactory qcf;
Connection connection;
.
.
.
connection = qcf.createConnection();

This fragment of code creates a QueueConnection object. An application can now perform a domain
independent operation on this object, or an operation that is applicable only to the point-to-point domain.
However, if the application attempts to perform an operation that is applicable only to the
publish/subscribe domain, an IllegalStateException exception is thrown with the following message:
JMSMQ1112: Operation for a domain specific object was not valid.

Operation createProducer() is not valid for type com.ibm.mq.jms.MQTopic

This is because the connection was created from a domain specific connection factory.

Note: Note that the application process ID is used as the default user identity to be passed to the queue
manager. If the application is running in client transport mode then this process ID must exist, with the
relevant authorizations, on the server. If you want a different identity to be used, then use the
createConnection(username, password) method.

The JMS specification states that a connection is created in the stopped state. Until a connection starts, a
message consumer that is associated with the connection cannot receive any messages. To start a
connection, an application uses the start() method of a Connection object, as shown in the following
example:
connection.start();

1020 IBM MQ: Programming

Creating a session in a JMS application
To create a session, a JMS application uses the createSession() method of a Connection object.

The createSession() method has two parameters:
1. A parameter that specifies whether the session is transacted or not transacted
2. A parameter that specifies the acknowledgment mode for the session

For example, the following code creates a session that is not transacted and has an acknowledgment
mode of AUTO_ACKNOWLEDGE:
Session session;
.
boolean transacted = false;
session = connection.createSession(transacted, Session.AUTO_ACKNOWLEDGE);

When a JMS session is created, the IBM MQ classes for JMS creates a connection handle (Hconn) and
starts a conversation with the queue manager.

A Session object, and any MessageProducer or MessageConsumer object created from it, cannot be used
concurrently by different threads of a multithreaded application. The simplest way of ensuring that these
objects are not used concurrently is to create a separate Session object for each thread.

Transacted sessions in JMS applications:

JMS applications can run local transactions by first creating a transacted session. An application can
commit or roll back a transaction.

JMS applications can run local transactions. A local transaction is a transaction that involves changes only
to the resources of the queue manager to which the application is connected. To run local transactions, an
application must first create a transacted session by calling the createSession() method of a Connection
object, specifying as a parameter that the session is transacted. Subsequently, all messages sent and
received within the session are grouped into a sequence of transactions. A transaction ends when the
application commits or rolls back the messages it has sent and received since the transaction began.

To commit a transaction, an application calls the commit() method of the Session object. When a
transaction is committed, all messages sent within the transaction become available for delivery to other
applications, and all messages received within the transaction are acknowledged so that the messaging
server does not attempt to deliver them to the application again. In the point-to-point domain, the
messaging server also removes the received messages from their queues.

To roll back a transaction, an application calls the rollback() method of the Session object. When a
transaction is rolled back, all messages sent within the transaction are discarded by the messaging server,
and all messages received within the transaction become available for delivery again. In the
point-to-point domain, the messages that were received are put back on their queues and become visible
to other applications again.

A new transaction starts automatically when an application creates a transacted session or calls the
commit() or rollback() method. Therefore, a transacted session always has an active transaction.

When an application closes a transacted session, an implicit rollback occurs. When an application closes a
connection, an implicit rollback occurs for all the connection's transacted sessions.

If an application ends without closing a connection, an implicit rollback also occurs for all the
connection's transacted sessions.

A transaction is wholly contained within a transacted session. A transaction cannot span sessions. This
means that it is not possible for an application to send and receive messages in two or more transacted

Developing JMS and Java Platform, Enterprise Edition applications 1021

sessions and then commit or roll back all these actions as a single transaction.

Acknowledgment modes of JMS sessions:

Every session that is not transacted has an acknowledgment mode that determines how messages
received by the application are acknowledged. Three acknowledgment modes are available, and the
choice of acknowledgment mode affects the design of the application.

If a session is not transacted, the way that messages received by the application are acknowledged is
determined by the acknowledgment mode of the session. The three acknowledgment modes are described
in the following paragraphs:

AUTO_ACKNOWLEDGE

The session automatically acknowledges each message received by the application.

If messages are delivered synchronously to the application, the session acknowledges receipt of a
message every time a Receive call completes successfully. If messages are delivered
asynchronously, the session acknowledges receipt of a message every time a call to the
onMessage() method of a message listener completes successfully.

If the application receives a message successfully, but a failure prevents acknowledgment from
occurring, the message becomes available for delivery again. The application must therefore be
able to handle a message that is re-delivered.

DUPS_OK_ACKNOWLEDGE

The session acknowledges the messages received by the application at times it selects.

Using this acknowledgment mode reduces the amount of work the session must do, but a failure
that prevents message acknowledgment might result in more than one message becoming
available for delivery again. The application must therefore be able to handle messages that are
re-delivered.

Restriction: In AUTO_ACKNOWLEDGE and DUPS_OK_ACKNOWLEDGE modes, JMS does not
support an application throwing an unhandled exception in a message listener. This means that
messages are always acknowledged when the message listener returns, regardless of whether it
was processed successfully (provided any failures are non-fatal and do not prevent the
application from continuing). If you require finer control of message acknowledgment, use the
CLIENT_ACKNOWLEDGE or transacted modes, which give the application full control of the
acknowledgment functions.

CLIENT_ACKNOWLEDGE

The application acknowledges the messages it receives by calling the Acknowledge method of the
Message class.

The application can acknowledge the receipt of each message individually, or it can receive a
batch of messages and call the Acknowledge method only for the last message it receives. When
the Acknowledge method is called all messages received since the last time the method was
called are acknowledged.

In conjunction with any of these acknowledgment modes, an application can stop and restart the delivery
of messages in a session by calling the Recover method of the Session class. Messages received but
previously unacknowledged are re-delivered. However, they might not be delivered in the same sequence
in which they were previously delivered. In the meantime, higher priority messages might have arrived,
and some of the original messages might have expired. In the point-to-point domain, some of the original
messages might have been consumed by another application.

An application can determine whether a message is being re-delivered by examining the contents of the
JMSRedelivered header field of the message. The application does this by calling the getJMSRedelivered()

1022 IBM MQ: Programming

method of the Message class.

Creating destinations in a JMS application
Instead of retrieving destinations as administered objects from a Java Naming and Directory Interface
(JNDI) namespace, a JMS application can use a session to create destinations dynamically at run time. An
application can use a uniform resource identifier (URI) to identify an IBM MQ queue or a topic and,
optionally, to specify one or more properties of a Queue or Topic object.

Using a session to create Queue objects

To create a Queue object, an application can use the createQueue() method of a Session object, as shown
in the following example:
Session session;
.
Queue q1 = session.createQueue("Q1");

This code creates a Queue object with the default values for all its properties. The object represents an
IBM MQ queue called Q1 that belongs to the local queue manager. This queue can be a local queue, an
alias queue, or a remote queue definition.

The createQueue() method also accepts a queue URI as a parameter. A queue URI is a string that specifies
the name of an IBM MQ queue and, optionally, the name of the queue manager that owns the queue and
one or more properties of the Queue object. The following statement contains an example of a queue URI:
Queue q2 = session.createQueue("queue://QM2/Q2?persistence=2&priority=5");

The Queue object created by this statement represents an IBM MQ queue called Q2 that is owned by a
queue manager called QM2, and all messages sent to this destination are persistent and have a priority of
5. The queue manager identified in this way can be the local queue manager or a remote queue manager.
If it is a remote queue manager, IBM MQ must be configured so that, when the application sends a
message to this destination, Websphere MQ can route the message from the local queue manager to
queue manager QM2. For more information about URIs, see “Uniform resource identifiers (URIs)” on
page 1024.

Note that the parameter on the createQueue() method contains provider specific information. Therefore,
using the createQueue() method to create a Queue object, instead of retrieving a Queue object as an
administered object from a JNDI namespace, might make your application less portable.

An application can create a TemporaryQueue object by using the createTemporaryQueue() method of a
Session object, as shown in the following example:
TemporaryQueue q3 = session.createTemporaryQueue();

Although a session is used to create a temporary queue, the scope of a temporary queue is the connection
that was used to create the session. Any of the connection's sessions can create message producers and
message consumers for the temporary queue. The temporary queue remains until the connection ends or
the application explicitly deletes the temporary queue by using the TemporaryQueue.delete() method,
whichever is the sooner.

When an application creates a temporary queue, IBM MQ classes for JMS creates a dynamic queue in the
queue manager to which the application is connected. The TEMPMODEL property of the connection
factory specifies the name of the model queue that is used to create the dynamic queue, and the
TEMPQPREFIX property of the connection factory specifies the prefix that is used to form the name of
the dynamic queue.

Developing JMS and Java Platform, Enterprise Edition applications 1023

Using a session to create Topic objects

To create a Topic object, an application can use the createTopic() method of a Session object, as shown in
the following example:
Session session;
.
Topic t1 = session.createTopic("Sport/Football/Results");

This code creates an Topic object with the default values for all its properties. The object represents a
topic called Sport/Football/Results.

The createTopic() method also accepts a topic URI as a parameter. A topic URI is a string that specifies
the name of a topic and, optionally, one or more properties of the Topic object. The following code
contains an example of a topic URI:
String uri = "topic://Sport/Tennis/Results?persistence=1&priority=0";
Topic t2 = session.createTopic(uri);

The Topic object created by this code represents a topic called Sport/Tennis/Results, and all messages
sent to this destination are nonpersistent and have a priority of 0. For more information about topic URIs,
see “Uniform resource identifiers (URIs).”

Note that the parameter on the createTopic() method contains provider specific information. Therefore,
using the createTopic() method to create a Topic object, instead of retrieving a Topic object as an
administered object from a JNDI namespace, might make your application less portable.

An application can create a TemporaryTopic object by using the createTemporaryTopic() method of a
Session object, as shown in the following example:
TemporaryTopic t3 = session.createTemporaryTopic();

Although a session is used to create a temporary topic, the scope of a temporary topic is the connection
that was used to create the session. Any of the connection's sessions can create message producers and
message consumers for the temporary topic. The temporary topic remains until the connection ends or
the application explicitly deletes the temporary topic by using the TemporaryTopic.delete() method,
whichever is the sooner.

When an application creates a temporary topic, IBM MQ classes for JMS creates a topic with a name that
commences with the characters TEMP/tempTopicPrefix, where tempTopicPrefix is the value of the
TEMPTOPICPREFIX property of the connection factory.

Uniform resource identifiers (URIs)

A queue URI is a string that specifies the name of an IBM MQ queue and, optionally, the name of the
queue manager that owns the queue and one or more properties of the Queue object created by the
application. A topic URI is a string that specifies the name of a topic and, optionally, one or more
properties of the Topic object created by the application.

A queue URI has the following format:
queue://[qMgrName]/qName [? propertyName1 = propertyValue1
& propertyName2 = propertyValue2
&...]

A topic URI has the following format:
topic://topicName [? propertyName1 = propertyValue1
& propertyName2 = propertyValue2
&...]

1024 IBM MQ: Programming

The variables in these formats have the following meanings:

qMgrName
The name of the queue manager that owns the queue identified by the URI.

The queue manager can the local queue manager or a remote queue manager. If it is a remote
queue manager, IBM MQ must be configured so that, when an application sends a message to the
queue, Websphere MQ can route the message from the local queue manager to the remote queue
manager.

If no name is specified, the local queue manager is assumed.

qName
The name of the IBM MQ queue.

The queue can be a local queue, an alias queue, or a remote queue definition.

For the rules for creating queue names, see Rules for naming IBM MQ objects.

topicName
The name of the topic.

For the rules for creating topic names, see Rules for naming IBM MQ objects. Avoid the use of
the wildcard characters +, #, *, and ? in topic names. Topic names containing these characters can
cause unexpected results when you subscribe to them. See Using topic strings.

propertyName1, propertyName2, ...
The names of the properties of the Queue or Topic object created by the application. Table 134
lists the valid property names that can be used in a URI.

If no properties are specified, the Queue or Topic object has the default values for all its
properties.

propertyValue1, propertyValue2, ...
The values of the properties of the Queue or Topic object created by the application. Table 134
lists the valid property values that can be used in a URI.

Brackets ([]) denotes an optional component, and the ellipsis (...) means that the list of property
name-value pairs, if present, can contain one or more name-value pairs.

Table 134 lists the valid property names and valid values that can be used in queue and topic URIs.
Although the IBM MQ JMS administration tool uses symbolic constants for the values of properties, URIs
cannot contain symbolic constants.

Table 134. Property names and valid values for use in queue and topic URIs

Property name Description Valid values

CCSID How the character data in the body of a
message is represented when IBM MQ
classes for JMS forwards the message to the
destination

v Any coded character set identifier
supported by IBM MQ.

encoding How the numeric data in the body of a
message is represented when IBM MQ
classes for JMS forwards the message to the
destination

v Any valid value for the Encoding field in
an IBM MQ message descriptor.

expiry The time to live for messages sent to the
destination

v -2 - As specified on the send() call or, if
not specified on the send() call, the default
time to live of the message producer.

v 0 - A message sent to the destination never
expires.

v A positive integer specifying the time to
live in milliseconds.

Developing JMS and Java Platform, Enterprise Edition applications 1025

Table 134. Property names and valid values for use in queue and topic URIs (continued)

Property name Description Valid values

multicast The multicast setting for a topic when using
a real-time connection to a broker

The following list contains the valid values.
Associated with each value is the
corresponding value of the MULTICAST
property as used in the IBM MQ JMS
administration tool. For a description of the
MULTICAST property and its valid values,
see Properties of IBM MQ classes for JMS
objects.
v -1 - ASCF
v 0 - DISABLED
v 3 - NOTR
v 5 - RELIABLE
v 7 - ENABLED

persistence The persistence of messages sent to the
destination

v -2 - As specified on the send() call or, if
not specified on the send() call, the default
persistence of the message producer.

v -1 - As specified by the DefPersistence
attribute of the IBM MQ queue or topic.

v 1 - Nonpersistent.
v 2 - Persistent.
v 3 - Equivalent to the value HIGH for the

PERSISTENCE property as used in the
IBM MQ JMS administration tool. For an
explanation of this value, see “JMS
persistent messages” on page 1047.

priority The priority of messages sent to the
destination

v -2 - As specified on the send() call or, if
not specified on the send() call, the default
priority of the message producer.

v -1 - As specified by the DefPriority
attribute of the IBM MQ queue or topic.

v An integer in the range 0-9 specifying the
priority of messages sent to the
destination.

targetClient Whether messages sent to the destination
contain an MQRFH2 header

v 0 - Messages contain an MQRFH2 header.
v 1 - Messages do not contain an MQRFH2

header.

For example, the following URI identifies an IBM MQ queue called Q1 that is owned by the local queue
manager. A Queue object created using this URI has the default values for all its properties.
queue:///Q1

The following URI identifies an IBM MQ queue called Q2 that is owned by a queue manager called QM2.
All messages sent to this destination have a priority of 6. The remaining properties of the Queue object
created using this URI have their default values.
queue://QM2/Q2?priority=6

The following URI identifies a topic called Sport/Athletics/Results. All messages sent to this destination
are nonpersistent and have a priority of 0. The remaining properties of the Topic object created using this
URI have their default values.
topic://Sport/Athletics/Results?persistence=1&priority=0

1026 IBM MQ: Programming

Sending messages in a JMS application
Before a JMS application can send messages to a destination, it must first create a MessageProducer object
for the destination. To send a message to the destination, the application creates a Message object and
then calls the send() method of the MessageProducer object.

An application uses a MessageProducer object to send messages. An application normally creates a
MessageProducer object for a specific destination, which can be a queue or a topic, so that all messages
sent using the message producer are sent to the same destination. Therefore, before an application can
create a MessageProducer object, it must first create a Queue or Topic object. For information about how
to create a Queue or Topic object, see the following topics:
v “Using JNDI to retrieve administered objects in a JMS application” on page 1009
v “Using the IBM JMS extensions” on page 1010
v “Using the IBM MQ JMS extensions” on page 1017
v “Creating destinations in a JMS application” on page 1023

To create a MessageProducer object, an application uses the createProducer() method of a Session object,
as shown in the following example:
MessageProducer producer = session.createProducer(destination);

The parameter destination is a Queue or Topic object that the application has created previously.

Before an application can send a message, it must create a Message object. The body of a message
contains the application data, and JMS defines five types of message body:
v Bytes
v Map
v Object
v Stream
v Text

Each type of message body has its own JMS interface, which is a sub-interface of the Message interface,
and a method in the Session interface for creating a message with that type of body. For example, the
interface for a text message is called TextMessage, and an application uses the createTextMessage()
method of a Session object to create a text message, as shown in the following statement:
TextMessage outMessage = session.createTextMessage(outString);

For more information about messages and message bodies, see “JMS messages” on page 953.

To send a message, an application uses the send() method of a MessageProducer object, as shown in the
following example:
producer.send(outMessage);

An application can use the send() method to send messages in either messaging domain. The nature of
the destination determines which messaging domain is used. However, TopicPublisher, the sub-interface
of MessageProducer that is specific to the publish/subscribe domain, also has a publish() method, which
can be used instead of the send() method. The two methods are functionally the same.

An application can create a MessageProducer object with no specified destination. In this case, the
application must specify the destination when calling the send() method.

If an application sends a message within a transaction, the message is not delivered to its destination
until the transaction is committed. This means that an application cannot send a message and receive a
reply to the message within the same transaction.

Developing JMS and Java Platform, Enterprise Edition applications 1027

A destination can be configured so that when an application sends messages to it, IBM MQ classes for
JMS forwards the message and returns control back to the application without determining whether the
queue manager has received the message safely. This is sometimes referred to as asynchronous put. For
more information, see “Putting messages asynchronously in IBM MQ classes for JMS” on page 1071.

Receiving messages in a JMS application
An application uses a message consumer to receive messages. A durable topic subscriber is a message
consumer that receives all messages sent to a destination, including those sent while the consumer is
inactive. An application can select which messages it wants to receive by using a message selector, and
can receive messages asynchronously by using a message listener.

An application uses a MessageConsumer object to receive messages. An application creates a
MessageConsumer object for a specific destination, which can be a queue or a topic, so that all messages
received using the message consumer are received from the same destination. Therefore, before an
application can create a MessageConsumer object, it must first create a Queue or Topic object. For
information about how to create a Queue or Topic object, see the following topics:
v “Using JNDI to retrieve administered objects in a JMS application” on page 1009
v “Using the IBM JMS extensions” on page 1010
v “Using the IBM MQ JMS extensions” on page 1017
v “Creating destinations in a JMS application” on page 1023

To create a MessageConsumer object, an application uses the createConsumer() method of a Session
object, as shown in the following example:
MessageConsumer consumer = session.createConsumer(destination);

The parameter destination is a Queue or Topic object that the application has created previously.

The application then uses the receive() method of the MessageConsumer object to receive a message from
the destination, as shown in the following example:
Message inMessage = consumer.receive(1000);

The parameter on the receive() call specifies how long in milliseconds the method waits for a suitable
message to arrive if no message is available immediately. If you omit this parameter, the call blocks
indefinitely until a suitable message arrives. If you do not want the application to wait for a message, use
the receiveNoWait() method instead.

The receive() method returns a message of a specific type. For example, when an application receives a
text message, the object returned by the receive() call is a TextMessage object.

However, the declared type of object returned by a receive() call is a Message object. Therefore, in order
to extract the data from the body of a message that has just been received, the application must cast from
the Message class to the more specific subclass, such as TextMessage. If the type of the message is not
known, the application can use the instanceof operator to determine the type. It is always good practice
for an application to determine the type of a message before casting so that errors can be handled
gracefully.

The following code uses the instanceof operator and shows how to extract the data from the body of a
text message:
if (inMessage instanceof TextMessage) {

String replyString = ((TextMessage) inMessage).getText();
.
.
.

1028 IBM MQ: Programming

} else {
// Print error message if Message was not a TextMessage.
System.out.println("Reply message was not a TextMessage");

}

If an application sends a message within a transaction, the message is not delivered to its destination
until the transaction is committed. This means that an application cannot send a message and receive a
reply to the message within the same transaction.

If a message consumer receives messages from a destination that is configured for read ahead, any
nonpersistent messages that are in the read ahead buffer when the application ends are discarded.

In the publish/subscribe domain, JMS identifies two types of message consumer, nondurable topic
subscriber and durable topic subscriber, which are described in the following two sections.

Nondurable topic subscribers

A nondurable topic subscriber receives only those messages that are published while the subscriber is
active. A nondurable subscription starts when an application creates a nondurable topic subscriber and
ends when the application closes the subscriber, or when the subscriber falls out of scope. As an
extension in IBM MQ classes for JMS, a nondurable topic subscriber also receives retained publications.

To create a nondurable topic subscriber, an application can use the domain independent createConsumer()
method, specifying a Topic object as the destination. Alternatively, an application can use the domain
specific createSubscriber() method, as shown in the following example:
TopicSubscriber subscriber = session.createSubscriber(topic);

The parameter topic is a Topic object that the application has created previously.

Durable topic subscribers

Restriction: An application cannot create durable topic subscribers when using a real-time connection to
a broker.

A durable topic subscriber receives all messages that are published during the life of a durable
subscription. These messages include all those that are published while the subscriber is not active. As an
extension in IBM MQ classes for JMS, a durable topic subscriber also receives retained publications.

To create a durable topic subscriber, an application uses the createDurableSubscriber() method of a
Session object, as shown in the following example:
TopicSubscriber subscriber = session.createDurableSubscriber(topic, "D_SUB_000001");

On the createDurableSubscriber() call, the first parameter is a Topic object that the application has created
previously, and the second parameter is a name that is used to identify the durable subscription.

The session used to create a durable topic subscriber must have an associated client identifier. The client
identifier associated with a session is the same as the client identifier for the connection that is used to
create the session. The client identifier can be specified by setting the CLIENTID property of the
ConnectionFactory object. Alternatively, an application can specify the client identifier by calling the
setClientID() method of the Connection object.

The name that is used to identify a durable subscription must be unique only within the client identifier,
and therefore the client identifier forms part of the full, unique identifier of a durable subscription. To
continue using a durable subscription that was created previously, an application must create a durable
topic subscriber using a session with the same client identifier as that associated with the durable
subscription, and using the same subscription name.

Developing JMS and Java Platform, Enterprise Edition applications 1029

A durable subscription starts when an application creates a durable topic subscriber using a client
identifier and subscription name for which no durable subscription currently exists. However, a durable
subscription does not end when the application closes the durable topic subscriber. To end a durable
subscription, an application must call the unsubscribe() method of a Session object that has the same
client identifier as that associated with the durable subscription. The parameter on the unsubscribe() call
is the subscription name, as shown in the following example:
session.unsubscribe("D_SUB_000001");

The scope of a durable subscription is a queue manager. If a durable subscription exists on one queue
manager, and an application connected to another queue manager creates a durable subscription with the
same client identifier and subscription name, the two durable subscriptions are completely independent.

Message selectors

An application can specify that only those messages that satisfy certain criteria are returned by successive
receive() calls. When creating a MessageConsumer object, the application can specify a Structured Query
Language (SQL) expression that determines which messages are retrieved. This SQL expression is called a
message selector. The message selector can contain the names of JMS message header fields and message
properties. For information about how to construct a message selector, see “Message selectors in JMS” on
page 954.

The following example shows how an application can select messages based on a user defined property
called myProp:
MessageConsumer consumer;
.
consumer = session.createConsumer(destination, "myProp = ’blue’");

The JMS specification does not allow an application to change the message selector of a message
consumer. After an application creates a message consumer with a message selector, the message selector
remains for the life of that consumer. If an application requires more than one message selector, the
application must create a message consumer for each message selector.

Note that, when an application is connected to a Version 7 queue manager, the MSGSELECTION
property of the connection factory has no effect. To optimize performance, all message selection is done
by the queue manager.

Suppressing local publications

An application can create a message consumer that ignores publications published on the consumer's
own connection. The application does this by setting the third parameter on a createConsumer() call to
true, as shown in the following example:
MessageConsumer consumer = session.createConsumer(topic, null, true);

On a createDurableSubscriber() call, the application does this by setting the fourth parameter to true, as
shown in the following example
String selector = "company = ’IBM’";
TopicSubscriber subscriber = session.createDurableSubscriber(topic, "D_SUB_000001",

selector, true);

Asynchronous delivery of messages

An application can receive messages asynchronously by registering a message listener with a message
consumer. The message listener has a method called onMessage, which is called asynchronously when a
suitable message is available and whose purpose is to process the message. The following code illustrates
the mechanism:

1030 IBM MQ: Programming

import javax.jms.*;

public class MyClass implements MessageListener
{

// The method that is called asynchronously when a suitable message is available
public void onMessage(Message message)
{

System.out.println("Message is "+message);

// The code to process the message
.
.
.

}
}
.
.
.
// Main program (possibly in another class)
.
// Creating the message listener
MyClass listener = new MyClass();

// Registering the message listener with a message consumer
consumer.setMessageListener(listener);

// The main program now continues with other processing

An application can use a session either for receiving messages synchronously using receive() calls, or for
receiving messages asynchronously using message listeners, but not for both. If an application needs to
receive messages synchronously and asynchronously, it must create separate sessions.

Once a session is set up to receive messages asynchronously, the following methods cannot be called on
that session or on objects created from that session:
v MessageConsumer.receive()
v MessageConsumer.receive(long)
v MessageConsumer.receiveNoWait()
v Session.acknowledge()
v MessageProducer.send(Destination, Message)
v MessageProducer.send(Destination, Message, int, int, long)
v MessageProducer.send(Message)
v MessageProducer.send(Message, int, int, long)
v MessageProducer.send(Destination, Message, CompletionListener)
v MessageProducer.send(Destination, Message, int, int, long, CompletionListener)
v MessageProducer.send(Message, CompletionListener)
v MessageProducer.send(Message, int, int, long, CompletionListener)
v Session.commit()
v Session.createBrowser(Queue)
v Session.createBrowser(Queue, String)
v Session.createBytesMessage()
v Session.createConsumer(Destination)
v Session.createConsumer(Destination, String, boolean)
v Session.createDurableSubscriber(Topic, String)
v Session.createDurableSubscriber(Topic, String, String, boolean)
v Session.createMapMessage()

Developing JMS and Java Platform, Enterprise Edition applications 1031

v Session.createMessage()
v Session.createObjectMessage()
v Session.createObjectMessage(Serializable)
v Session.createProducer(Destination)
v Session.createQueue(String)
v Session.createStreamMessage()
v Session.createTemporaryQueue()
v Session.createTemporaryTopic()
v Session.createTextMessage()
v Session.createTextMessage(String)
v Session.createTopic()
v Session.getAcknowledgeMode()
v Session.getMessageListener()
v Session.getTransacted()
v Session.rollback()
v Session.unsubscribe(String)

If any of these methods are called, a JMSException containing the message:
JMSCC0033: A synchronous method call is not permitted when a session is being used asynchronously:’method name’

is thrown.

Receiving poison messages

An application can receive a message that cannot be processed. There can be several reasons why the
message cannot be processed, for example the message might have an incorrect format. Such messages
are described as poison messages and require special handling to prevent the message being recursively
processed.

For details on how to handle poison messages, see “Handling poison messages in IBM MQ classes for
JMS” on page 1034.

Retrieval of subscription user data

If the messages that an IBM MQ classes for JMS application is consuming from a queue are put by an
administratively defined durable subscription, the application needs to access the user data information
that is associated with the subscription. This information is added to the message as a property.

From IBM MQ Version 8.0.0, Fix Pack 7, when a message is consumed from a queue that contains an
RFH2 header with the MQPS folder, the value that is associated with the Sud key, if it exists, is added as
a String property to the JMS Message object returned to the IBM MQ classes for JMS application. To
enable the retrieval of this property from the message, the constant
JMS_IBM_SUBSCRIPTION_USER_DATA in the JmsConstants interface can be used with the method
javax.jms.Message.getStringProperty(java.lang.String) to get the subscription user data.

In the following example, an administrative durable subscription is defined by using the MQSC
command DEFINE SUB:
DEFINE SUB(’MY.SUBCRIPTION’) TOPICSTR(’PUBLIC’) DEST(’MY.SUBSCRIPTION.Q’)
USERDATA(’Administrative durable subscription to put message to the queue MY.SUBSCRIPTION.Q’)

1032 IBM MQ: Programming

Copies of messages that are published to the topic string PUBLIC are put to the queue, MY.SUBSCRIPTION.Q.
The user data that is associated with the durable subscription is then added as a property to the message,
which is stored in the MQPS folder of the RFH2 header with the key Sud.

The IBM MQ classes for JMS application can call:
javax.jms.Message.getStringProperty(JmsConstants.JMS_IBM_SUBSCRIPTION_USER_DATA);

The following String is then returned:
Administrative durable subscription to put message to the queue MY.SUBSCRIPTION.Q

.
Related concepts:
“The MQRFH2 header and JMS” on page 958
This collection of topics describes the MQRFH Version 2 header, which carries JMS-specific data that is
associated with the message content. The MQRFH2 Version 2 is an extensible header, and can also carry
additional information that is not directly associated with JMS. However, this section covers only its use
by JMS.
Related information:
Defining an administrative subscription
DEFINE SUB
Interface JmsConstants

Closing down an IBM MQ classes for JMS application
It is important for an IBM MQ classes for JMS application to close certain JMS objects explicitly before
stopping. Finalizers might not be called, so do not rely on them to free resources. Do not allow an
application to terminate with compressed trace active.

Garbage collection alone cannot release all IBM MQ classes for JMS and IBM MQ resources in a timely
manner, especially if an application creates many short lived JMS objects at the session level or lower. It
is therefore important for an application to close a Connection, Session, MessageConsumer, or
MessageProducer object when it is no longer required.

If an application ends without closing a Connection, an implicit rollback occurs for all the connection's
transacted sessions. To ensure any changes made by the application are committed, close the Connection
explicitly before closing the application.

Do not use finalizers in an application to close JMS objects. Because finalizers might not be called,
resources might not be freed. When a Connection is closed it closes all the Sessions that were created
from it. Similarly, the MessageConsumers and MessageProducers created from a Session are closed when
the Session is closed. However, consider closing Sessions, MessageConsumers, and MessageProducers
explicitly to ensure resources are freed in a timely manner.

If trace compression is activated, System.Halt() shutdowns and abnormal, uncontrolled JVM terminations
are likely to result in a corrupt trace file. Where possible, turn off the trace facility when you have
collected the trace information you need. If you are tracing an application up to an abnormal end, use
uncompressed trace output.

Note: To disconnect from a queue manager, a JMS application invokes the close() method on the
connection object.

Developing JMS and Java Platform, Enterprise Edition applications 1033

Handling poison messages in IBM MQ classes for JMS
A poison message is one which cannot be processed by a receiving MDB application. If a poison message
is encountered, the JMS MessageConsumer and ConnectionConsumer objects can requeue it according to
two queue properties, BOQUEUE, and BOTHRESH.

Sometimes, a badly formatted message arrives on a queue. In this context, badly formatted means that
the receiving application cannot process the message correctly. Such a message can cause the receiving
application to fail and to back out this badly formatted message. The message can then be repeatedly
delivered to the input queue and repeatedly backed out by the application. These messages are known as
poison messages. The JMS MessageConsumer object detects poison messages and reroutes them to an
alternative destination.

The IBM MQ queue manager keeps a record of the number of times that each message has been backed
out. When this number reaches a configurable threshold value, the message consumer requeues the
message to a named backout queue. If this requeuing fails for any reason, the message is removed from
the input queue and either requeued to the dead-letter queue, or discarded. See “Removing messages
from the queue in ASF” on page 1082 for more details.

There is a difference between the way in which poison messages are requeued by MessageConsumers
and ConnectionConsumers. ConnectionConsumers are able to requeue poison messages without affecting
message delivery. The requeue process takes place outside of any unit of work associated with actual
message delivery to application code. This is possible because of the multi-threaded nature of
ConnectionConsumer operation.

MessageConsumers, however, are single threaded below the Session level, and any requeuing of poison
messages takes place within the current unit of work. This does not affect the operation of the
application, however when poison messages are requeued under a transacted or Client_acknowledge
Session, the requeue action itself is not committed until the current unit of work is committed by the
application code or, if appropriate, the application container code.

JMS ConnectionConsumer objects handle poison messages in the same way and using the same queue
properties. If multiple connection consumers are monitoring the same queue, it is possible that the poison
message may be delivered to an application more times than the threshold value before the requeue
occurs. This behavior is due to the way individual connection consumers monitor queues and requeue
poison messages.

The threshold value and the name of the back out queue are attributes of an IBM MQ queue. The names
of the attributes are BackoutThreshold and BackoutRequeueQName. The queue they apply to is as
follows:
v For point-to-point messaging, this is the underlying local queue. This is important when message

consumers and connection consumers use queue aliases.
v For publish/subscribe messaging in IBM MQ messaging provider normal mode, the Topic's managed

queue is created from the model queue.
v For publish/subscribe messaging in IBM MQ messaging provider migration mode, it is the CCSUB

queue defined on the TopicConnectionFactory object, or the CCDSUB queue defined on the Topic
object.

IBM MQ classes for JMS queries the BackoutThreshold and BackoutRequeueQName of the queue. You
must therefore grant inquire access on the queue to the user running the application. If the target queue
is a cluster queue, grant inquire, browse and get access.

To set the BackoutThreshold and BackoutRequeueQName attributes, issue the following MQSC
command:
ALTER QLOCAL(your.queue.name) BOTHRESH(threshold value) BOQUEUE(your.backout.queue.name)

1034 IBM MQ: Programming

If the BackoutThreshold attribute is set to a value other than zero, to avoid unexpected behavior set the
BackoutRequeueQName attribute to a valid queue name.

For publish/subscribe messaging, if your system creates a dynamic queue for each subscription, these
attribute values are obtained from the IBM MQ classes for JMS model queue,
SYSTEM.JMS.MODEL.QUEUE. To alter these settings, use:
ALTER QMODEL(SYSTEM.JMS.MODEL.QUEUE) BOTHRESH(threshold value) BOQUEUE(your.backout.queue.name)

If the backout threshold value is zero, poison message handling is disabled, and poison messages remain
on the input queue. Otherwise, when the backout count reaches the threshold value, the message is sent
to the named backout queue. If the backout count reaches the threshold value, but the message cannot go
to the backout queue, the message is sent to the dead-letter queue or it is discarded. This situation occurs
if the backout queue is not defined, or if the MessageConsumer object cannot send the message to the
backout queue. See “Removing messages from the queue in ASF” on page 1082 for further details.
Related concepts:
“Handling poison messages in ASF” on page 1083
Within the Application Server Facilities, poison message handling is handled slightly differently to
elsewhere in IBM MQ classes for JMS.

Logging errors in IBM MQ classes for JMS
Information about runtime problems that might require corrective action by the user is written to the IBM
MQ classes for JMS log.

For example, if an application attempts to set a property of a connection factory, but the name of the
property is not recognized, IBM MQ classes for JMS writes information about the problem to its log.

By default, the file containing the log is called mqjms.log and is in the current working directory.
However, you can change the name and location of the log file by setting the
com.ibm.msg.client.commonservices.log.outputName property in the IBM MQ classes for JMS
configuration file. For information about the IBM MQ classes for JMS configuration file, see “The IBM
MQ classes for JMS configuration file” on page 916, and for more detail about valid values for the
com.ibm.msg.client.commonservices.log.outputName property, see “Logging and IBM MQ classes for
JMS” on page 942.

Exceptions in IBM MQ classes for JMS
An IBM MQ classes for JMS application must be able to handle exceptions that are thrown by a JMS API
calls or delivered to an exception handler.

IBM MQ classes for JMS reports runtime problems by throwing exceptions. JMSException is the root class
for exceptions thrown by JMS methods, and catching JMSException exceptions provides a generic way of
handling all JMS related exceptions.

Every JMSException exception encapsulates the following information:
v A provider specific exception message, which an application obtains by calling the

Throwable.getMessage() method.
v A provider specific error code, which an application obtains by calling the

JMSException.getErrorCode() method.
v A linked exception. An exception thrown by a JMS API call is often the result of a lower level problem,

which is reported by another exception linked to this exception. An application obtains a linked
exception by calling the JMSException.getLinkedException() or the Throwable.getCause() method.

Most exceptions thrown by IBM MQ classes for JMS are instances of subclasses of JMSException. These
subclasses implement the com.ibm.msg.client.jms.JmsExceptionDetail interface, which provides the
following additional information:

Developing JMS and Java Platform, Enterprise Edition applications 1035

v An explanation of the exception message, which an application obtains by calling the
JmsExceptionDetail.getExplanation() method.

v A recommended user response to the exception, which an application obtains by calling the
JmsExceptionDetail.getUserAction() method.

v The keys for the message inserts in the exception message. An application obtains an iterator for all the
keys by calling the JmsExceptionDetail.getKeys() method.

v The message inserts in the exception message. For example, a message insert might be the name of the
queue that caused the exception, and it might be useful for an application to be able to access that
name. An application obtains the message insert corresponding to a specified key by calling the
JmsExceptionDetail.getValue() method.

All the methods in the JmsExceptionDetail interface might return null if no details are available.

For example, if an application tries to create a message producer for a IBM MQ queue that does not exist,
an exception is thrown with the following information:
Message : JMSWMQ2008: Failed to open MQ queue ’Q_test’.
Class : class com.ibm.msg.client.jms.DetailedInvalidDestinationException
Error Code : JMSWMQ2008
Explanation : JMS attempted to perform an MQOPEN, but WebSphere MQ reported an

error.
User Action : Use the linked exception to determine the cause of this error. Check

that the specified queue and queue manager are defined correctly.

The exception thrown, com.ibm.msg.client.jms.DetailedInvalidDestinationException, is a subclass of
javax.jms.InvalidDestinationException and implements the com.ibm.msg.client.jms.JmsExceptionDetail
interface.

Linked exceptions

A linked exception provides further information about a runtime problem. Therefore, for each
JMSException exception that is thrown, an application should check the linked exception. The linked
exception itself might have another linked exception, and so the linked exceptions form a chain leading
back to the original underlying problem. A linked exception is implemented by using the chained
exception mechanism of the java.lang.Throwable class, and an application obtains a linked exception by
calling the Throwable.getCause() method. For a JMSException exception, the getLinkedException()
method actually delegates to the Throwable.getCause() method.

For example, if an application specifies an incorrect port number when connecting to a queue manager,
the exceptions form the following chain:
com.ibm.msg.client.jms.DetailIllegalStateException

|
+--->com.ibm.mq.MQException

|
+--->com.ibm.mq.jmqi.JmqiException

|
+--->java.net.ConnectionException

Typically, each exception in a chain is thrown from a different layer in the code. For example, the
exceptions in the preceding chain are thrown by the following layers:
v The first exception, an instance of a subclass of JMSException, is thrown by the common layer in IBM

MQ classes for JMS.
v The next exception, an instance of com.ibm.mq.MQException, is thrown by the IBM MQ messaging

provider.
v The next exception, an instance of com.ibm.mq.jmqi.JmqiException, is thrown by the common Java

interface to the MQI.
v The final exception, an instance of java.net.ConnectionException, is thrown by the Java class library.

1036 IBM MQ: Programming

For more information about the layered architecture of IBM MQ classes for JMS, see Layered architecture.

Using code similar to the following code, an application can iterate through this chain to extract all the
appropriate information:
import com.ibm.msg.client.jms.JmsExceptionDetail;
import com.ibm.mq.MQException;
import com.ibm.mq.jmqi.JmqiException;
import javax.jms.JMSException;
.
.
.
catch (JMSException je) {

System.err.println("Caught JMSException");

// Check for linked exceptions in JMSException
Throwable t = je;
while (t != null) {

// Write out the message that is applicable to all exceptions
System.err.println("Exception Msg: " + t.getMessage());
// Write out the exception stack trace
t.printStackTrace(System.err);

// Add on specific information depending on the type of exception
if (t instanceof JMSException) {

JMSException je1 = (JMSException) t;
System.err.println("JMS Error code: " + je1.getErrorCode());

if (t instanceof JmsExceptionDetail){
JmsExceptionDetail jed = (JmsExceptionDetail)je1;
System.err.println("JMS Explanation: " + jed.getExplanation());
System.err.println("JMS Explanation: " + jed.getUserAction());

}
} else if (t instanceof MQException) {

MQException mqe = (MQException) t;
System.err.println("WMQ Completion code: " + mqe.getCompCode());
System.err.println("WMQ Reason code: " + mqe.getReason());

} else if (t instanceof JmqiException){
JmqiException jmqie = (JmqiException)t;
System.err.println("WMQ Log Message: " + jmqie.getWmqLogMessage());
System.err.println("WMQ Explanation: " + jmqie.getWmqMsgExplanation());
System.err.println("WMQ Msg Summary: " + jmqie.getWmqMsgSummary());
System.err.println("WMQ Msg User Response: "

+ jmqie.getWmqMsgUserResponse());
System.err.println("WMQ Msg Severity: " + jmqie.getWmqMsgSeverity());

}

// Get the next cause
t = t.getCause();

}
}

Note that an application should always check the type of each exception in a chain because the type of
exception can vary and exceptions of different types encapsulate different information.

Obtaining IBM MQ specific information about a problem

Instances of com.ibm.mq.MQException and com.ibm.mq.jmqi.JmqiException encapsulate IBM MQ specific
information about a problem.

An MQException exception encapsulates the following information:
v A completion code, which an application obtains by calling the getCompCode() method
v A reason code, which an application obtains by calling the getReason() method

Developing JMS and Java Platform, Enterprise Edition applications 1037

A JmqiException exception also encapsulates a completion code and a reason code. Additionally,
however, a JmqiException exception encapsulates the information in an AMQ nnnn or CSQ nnnn
message, if one is associated with the exception. By calling the appropriate methods of the exception, an
application can obtain the various components of this message, such as the severity, explanation, and user
response.

For examples of how to use of the methods mentioned in this section, see the sample code in “Linked
exceptions” on page 1036.

Upgrading from previous versions of IBM MQ classes for JMS

Compared to previous versions of IBM MQ classes for JMS, most error codes and exception messages
changed in Version 7.0. The reason for these changes is that from Version 7.0, IBM MQ classes for JMS
has a layered architecture and exceptions are thrown from different layers in the code.

For example, if an application tries to connect to a queue manager that does not exist, a previous version
of IBM MQ classes for JMS threw a JMSException exception with the following information:
MQJMS2005: Failed to create MQQueueManager for ’localhost:QM_test’.

This exception contained a linked MQException exception with the following information:
MQJE001: Completion Code 2, Reason 2058

By comparison in the same circumstances, Version 7.0 of IBM MQ classes for JMS throws a JMSException
exception with the following information:
Message : JMSWMQ0018: Failed to connect to queue manager ’QM_test’ with

connection mode ’Client’ and host name ’localhost’.
Class : class com.ibm.msg.client.jms.DetailedJMSException
Error Code : JMSWMQ0018
Explanation : null
User Action : Check the queue manager is started and if running in client mode,

check there is a listener running. Please see the linked exception
for more information.

This exception contains a linked MQException exception with the following information:
Message : JMSCMQ0001: WebSphere MQ call failed with compcode ’2’ (’MQCC_FAILED’)

reason ’2058’ (’MQRC_Q_MGR_NAME_ERROR’).
Class : class com.ibm.mq.MQException
Completion Code : 2
Reason Code : 2058

If your application parses or tests exception messages returned by the Throwable.getMessage() method,
or error codes returned by the JMSException.getErrorCode() method, and you are upgrading from a
release before Version 7.0, your application probably needs to be modified in order to use Version 7.0 or
later of IBM MQ classes for JMS.

Exception listeners

An application can register an exception listener with a Connection object. Subsequently, if a problem
occurs that makes the connection unusable, IBM MQ classes for JMS delivers an exception to the
exception listener by calling its onException() method. The application then has the opportunity to
reestablish the connection. IBM MQ classes for JMS can also deliver an exception to the exception listener
if a problem occurs while trying to deliver a message asynchronously.

From IBM MQ Version 8.0.0, Fix Pack 2, to maintain behavior for current JMS applications

that configure a JMS MessageListener and a JMS ExceptionListener, and to ensure that the IBM MQ
classes for JMS are consistent with the JMS specification, the default value for the ASYNC_EXCEPTIONS
JMS ConnectionFactory property is changed to ASYNC_EXCEPTIONS_CONNECTIONBROKEN for the

1038 IBM MQ: Programming

IBM MQ classes for JMS. As a result, by default, only exceptions corresponding to broken connection
error codes are delivered to an application's JMS ExceptionListener.

APAR IT14820, included from IBM MQ Version 8.0.0, Fix Pack 6, updates IBM MQ classes

for JMS so that:
v An ExceptionListener registered by an application is invoked for any connection broken exceptions,

regardless of whether the application is using synchronous or asynchronous message consumers.
v An ExceptionListener registered by an application is invoked if a TCP/IP socket used by a JMS Session

is broken.
v Non-connection broken exceptions (for example MQRC_GET_INHIBITED) that arise during message

delivery are delivered to an application's ExceptionListener when the application is using asynchronous
message consumers and the JMS ConnectionFactory used by the application has the
ASYNC_EXCEPTIONS property set to the value ASYNC_EXCEPTIONS_ALL.

Note: An ExceptionListener is only invoked once for a connection broken exception, even if two TCP/IP
connections (one used by a JMS Connection and one used by a JMS Session) are broken.

For any other type of problem, a JMSException exception is thrown by the current JMS API call.

If an application does not register an exception listener with a Connection object, any exceptions that
would have been delivered to the exception listener are written to the IBM MQ classes for JMS for JMS
log.
Related information:
Architecture and overview of features
ASYNCEXCEPTION

Accessing IBM MQ features from an IBM MQ classes for JMS application
IBM MQ classes for JMS provides facilities to exploit a number of features of IBM MQ.

Attention: These features are outside the JMS specification or, in certain cases, violate the JMS
specification. If you use them, your application is unlikely to be compatible with other JMS providers.
Those features which do not comply with the JMS specification are labeled with an Attention notice.

Reading and writing the message descriptor from an IBM MQ classes for JMS application:

You control the ability to access the message descriptor (MQMD) by setting properties on a Destination
and a Message.

Some IBM MQ applications require specific values to be set in the MQMD of messages sent to them. IBM
MQ classes for JMS provides message attributes that allow JMS applications to set MQMD fields and so
enable JMS applications to "drive" IBM MQ applications.

You must set the Destination object property WMQ_MQMD_WRITE_ENABLED to true for the setting of
MQMD properties to have any effect. You can then use the property setting methods of the message (for
example setStringProperty) to assign values to the MQMD fields. All MQMD fields are exposed except
StrucId and Version; BackoutCount can be read but not written to.

This example results in a message being put to a queue or topic with MQMD.UserIdentifier set to
"JoeBloggs".

// Create a ConnectionFactory, connection, session, producer, message
// ...

// Create a destination
// ...

Developing JMS and Java Platform, Enterprise Edition applications 1039

http://www-01.ibm.com/support/docview.wss?uid=swg1IT14820

// Enable MQMD write
dest.setBooleanProperty(WMQConstants.WMQ_MQMD_WRITE_ENABLED, true);

// Optionally, set a message context if applicable for this MD field
dest.setIntProperty(WMQConstants.WMQ_MQMD_MESSAGE_CONTEXT,

WMQConstants.WMQ_MDCTX_SET_IDENTITY_CONTEXT);

// On the message, set property to provide custom UserId
msg.setStringProperty("JMS_IBM_MQMD_UserIdentifier", "JoeBloggs");

// Send the message
// ...

It is necessary to set WMQ_MQMD_MESSAGE_CONTEXT before setting
JMS_IBM_MQMD_UserIdentifier. For more information about the use of
WMQ_MQMD_MESSAGE_CONTEXT, see “JMS message object properties” on page 1042.

Similarly, you can extract the contents of the MQMD fields by setting WMQ_MQMD_READ_ENABLED
to true before receiving a message and then using the get methods of the message, such as
getStringProperty. Any properties received are read-only.

This example results in the value field holding the value of the MQMD.ApplIdentityData field of a
message got from a queue or a topic.

// Create a ConnectionFactory, connection, session, consumer
// ...

// Create a destination
// ...

// Enable MQMD read
dest.setBooleanProperty(WMQConstants.WMQ_MQMD_READ_ENABLED, true);

// Receive a message
// ...

// Get MQMD field value using a property
String value = rcvMsg.getStringProperty("JMS_IBM_MQMD_ApplIdentityData");

JMS destination object properties:

Two properties of the Destination object control access to the MQMD from JMS, and a third controls
message context.

Table 135. Property names and descriptions

Property Short form Description

WMQ_MQMD_WRITE_ENABLED MDW Whether a JMS application can set the values of
MQMD fields

WMQ_MQMD_READ_ENABLED MDR Whether a JMS application can extract the values
of MQMD fields

WMQ_MQMD_MESSAGE_ CONTEXT MDCTX What level of message context is to be set by the
JMS application. The application must be
running with appropriate context authority for
this property to take effect

1040 IBM MQ: Programming

Table 136. Property names, values, and set methods

Property Valid values in administration tool
(defaults in bold)

Valid values
in programs

Set method

WMQ_MQMD_WRITE
_ENABLED

v NO

All JMS_IBM_MQMD* properties are
ignored and their values are not
copied into the underlying MQMD
structure.

v YES

JMS_IBM_MQMD* properties are
processed. Their values are copied
into the underlying MQMD
structure.

v False
v True

setMQMDWriteEnabled

WMQ_MQMD_READ
_ENABLED

v NO

When sending messages, the
JMS_IBM_MQMD* properties on a
sent message are not updated to
reflect the updated field values in the
MQMD.

When receiving messages, none of
the JMS_IBM_MQMD* properties are
available on a received message,
even if the sender had set some or all
of them.

v YES

When sending messages, all of the
JMS_IBM_MQMD* properties on a
sent message are updated to reflect
the updated field values in the
MQMD, including those that the
sender did not set explicitly.

When receiving messages, all of the
JMS_IBM_MQMD* properties are
available on a received message,
including those that the sender did
not set explicitly.

v False
v True

setMQMDReadEnabled

WMQ_MQMD
_MESSAGE_CONTEXT

v DEFAULT

The MQOPEN API call and the
MQPMO structure specify no explicit
message context options

v SET_IDENTITY_CONTEXT

The MQOPEN API call specifies the
message context option
MQOO_SET_IDENTITY_CONTEXT
and the MQPMO structure specifies
MQPMO_SET_IDENTITY_CONTEXT

v SET_ALL_CONTEXT

The MQOPEN API call specifies the
message context option
MQOO_SET_ALL_CONTEXT and
the MQPMO structure specifies
MQPMO_SET_ALL_CONTEXT

v
WMQ_MDCTX_DEFAULT

v
WMQ_MDCTX_SET_IDENTITY_CONTEXT

v
WMQ_MDCTX_SET_ALL_CONTEXT

setMQMDMessageContext

Developing JMS and Java Platform, Enterprise Edition applications 1041

JMS message object properties:

Message object properties prefixed JMS_IBM_MQMD allow you to set or read the corresponding MQMD
field.

Sending messages

All MQMD fields except StrucId and Version are represented. These properties refer only to the MQMD
fields; where a property occurs both in the MQMD and in the MQRFH2 header, the version in the
MQRFH2 is not set or extracted.

Any of these properties can be set, except JMS_IBM_MQMD_BackoutCount. Any value set for
JMS_IBM_MQMD_BackoutCount is ignored.

If a property has a maximum length and you supply a value that is too long, the value is truncated.

For certain properties, you must also set the WMQ_MQMD_MESSAGE_CONTEXT property on the
Destination object. The application must be running with appropriate context authority for this property
to take effect. If you do not set WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value, the
property value is ignored. If you set WMQ_MQMD_MESSAGE_CONTEXT to an appropriate value but
you do not have sufficient context authority for the queue manager, a JMSException is issued. Properties
requiring specific values of WMQ_MQMD_MESSAGE_CONTEXT are as follows.

The following properties require WMQ_MQMD_MESSAGE_CONTEXT to be set to
WMQ_MDCTX_SET_IDENTITY_CONTEXT or WMQ_MDCTX_SET_ALL_CONTEXT:
v JMS_IBM_MQMD_UserIdentifier
v JMS_IBM_MQMD_AccountingToken
v JMS_IBM_MQMD_ApplIdentityData

The following properties require WMQ_MQMD_MESSAGE_CONTEXT to be set to
WMQ_MDCTX_SET_ALL_CONTEXT :
v JMS_IBM_MQMD_PutApplType
v JMS_IBM_MQMD_PutApplName
v JMS_IBM_MQMD_PutDate
v JMS_IBM_MQMD_PutTime
v JMS_IBM_MQMD_ApplOriginData

Receiving messages

All these properties are available on a received message if WMQ_MQMD_READ_ENABLED property is
set to true, irrespective of the actual properties the producing application has set. An application cannot
modify the properties of a received message unless all properties are cleared first, according to the JMS
specification. The received message can be forwarded without modifying the properties.

Attention: If your application receives a message from a destination with
WMQ_MQMD_READ_ENABLED property set to true, and forwards it to a destination with
WMQ_MQMD_WRITE_ENABLED set to true, this results in all the MQMD field values of the received
message being copied into the forwarded message.

Table of properties

This table lists the properties of the Message object representing the MQMD fields. See the links for full
descriptions of the fields and their allowable values.

1042 IBM MQ: Programming

Table 137. Property names, descriptions, and types

Property Description Java Type Link to full description

JMS_IBM_MQMD_Report Options for report
messages

Integer Report

JMS_IBM_MQMD_MsgType Message type Integer MsgType

JMS_IBM_MQMD_Expiry Message lifetime Integer Expiry

JMS_IBM_MQMD_Feedback Feedback or reason code Integer Feedback

JMS_IBM_MQMD_Encoding Numeric encoding of
message data

Integer Encoding

JMS_IBM_MQMD_CodedCharSetId Character set identifier of
message data

Integer CodedCharSetId

JMS_IBM_MQMD_Format Format name of message
data

String Format

JMS_IBM_MQMD_Priority 1 Message priority Integer Priority

JMS_IBM_MQMD_Persistence Message persistence Integer Persistence

JMS_IBM_MQMD_MsgId 2 Message identifier Object (byte[]) 4 MsgId

JMS_IBM_MQMD_CorrelId 3 Correlation identifier Object (byte[]) 4 CorrelId

JMS_IBM_MQMD_BackoutCount Backout counter Integer BackoutCount

JMS_IBM_MQMD_ReplyToQ Name of reply queue String ReplyToQ

JMS_IBM_MQMD_ReplyToQMgr Name of reply queue
manager

String ReplyToQMgr

JMS_IBM_MQMD_UserIdentifier User identifier String UserIdentifier

JMS_IBM_MQMD_AccountingToken Accounting token Object (byte[]) 4 AccountingToken

JMS_IBM_MQMD_ApplIdentityData Application data relating
to identity

String ApplIdentityData

JMS_IBM_MQMD_PutApplType Type of application that
put the message

Integer PutApplType

JMS_IBM_MQMD_PutApplName Name of application that
put the message

String PutApplName

JMS_IBM_MQMD_PutDate Date when message was
put

String PutDate

JMS_IBM_MQMD_PutTime Time when message was
put

String PutTime

JMS_IBM_MQMD_ApplOriginData Application data relating
to origin

String ApplOriginData

JMS_IBM_MQMD_GroupId Group identifier Object (byte[]) 4 GroupId

JMS_IBM_MQMD_MsgSeqNumber Sequence number of
logical message within
group

Integer MsgSeqNumber

JMS_IBM_MQMD_Offset Offset of data in physical
message from start of
logical message

Integer Offset

JMS_IBM_MQMD_MsgFlags Message flags Integer MsgFlags

JMS_IBM_MQMD_OriginalLength Length of original
message

Integer OriginalLength

1. Attention: If you assign a value to JMS_IBM_MQMD_Priority that is not within the range 0-9, this
violates the JMS specification.

Developing JMS and Java Platform, Enterprise Edition applications 1043

2. Attention: The JMS specification states that the message ID must be set by the JMS provider and
that it must either be unique or null. If you assign a value to JMS_IBM_MQMD_MsgId, this value is
copied to the JMSMessageID. Thus it is not set by the JMS provider and might not be unique: this
violates the JMS specification.

3. Attention: If you assign a value to JMS_IBM_MQMD_CorrelId that starts with the string 'ID:', this
violates the JMS specification.

4. Attention: The use of byte array properties on a message violates the JMS specification.

Accessing IBM MQ Message data from an application using IBM MQ classes for JMS:

You can access the complete IBM MQ message data within an application using IBM MQ classes for JMS.
To access all the data, the message must be a JMSBytesMessage. The body of the JMSBytesMessage
includes any MQRFH2 header, any other IBM MQ headers, and the following message data.

Set the WMQ_MESSAGE_BODY property of the destination to WMQ_MESSAGE_BODY_MQ, to receive all the message
body data in the JMSBytesMessage.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_JMS or WMQ_MESSAGE_BODY_UNSPECIFIED, the message body
is returned without the JMS MQRFH2 header, and the properties of the JMSBytesMessage reflect the
properties set in the RFH2.

Some applications cannot use the functions described in this topic. If an application is connected to an
IBM MQ V6 queue manager, or if it has set PROVIDERVERSION to 6, the functions are not available.

Sending a message

When sending messages the destination property, WMQ_MESSAGE_BODY, takes precedence over
WMQ_TARGET_CLIENT.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_JMS, IBM MQ classes for JMS automatically generates an
MQRFH2 header based on the settings of the JMSMessage properties and header fields.

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_MQ, no additional header is added to the message body

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_UNSPECIFIED, IBM MQ classes for JMS sends an MQRFH2
header, unless WMQ_TARGET_CLIENT is set to WMQ_TARGET_DEST_MQ. On receive, setting WMQ_TARGET_CLIENT to
WMQ_TARGET_DEST_MQ results in any MQRFH2 being removed from the message body.

Note: JMSBytesMessage and JMSTextMessage do not require an MQRFH2, whereas JMSStreamMessage,
JMSMapMessage, and JMSObjectMessage do.

WMQ_MESSAGE_BODY_UNSPECIFIED is the default setting for WMQ_MESSAGE_BODY, and WMQ_TARGET_DEST_JMS is
the default setting for WMQ_TARGET_CLIENT.

If you send a JMSBytesMessage, you can override the default settings for the JMS message body when
the IBM MQ message is constructed. Use the following properties:
v JMS_IBM_Format or JMS_IBM_MQMD_Format: This property specifies the format of the IBM MQ header or

application payload that starts the JMS message body if there is no preceding Websphere MQ header.
v JMS_IBM_Character_Set or JMS_IBM_MQMD_CodedCharSetId: This property specifies the CCSID of the IBM

MQ header or application payload that starts the JMS message body if there is no preceding
Websphere MQ header.

v JMS_IBM_Encoding or JMS_IBM_MQMD_Encoding: This property specifies the encoding of the IBM MQ
header or application payload that starts the JMS message body if there is no preceding Websphere
MQ header.

1044 IBM MQ: Programming

If both types of property are specified, the JMS_IBM_MQMD_* properties override the corresponding
JMS_IBM_* properties, as long as the destination property WMQ_MQMD_WRITE_ENABLED is set to true.

The differences in effect between setting message properties using JMS_IBM_MQMD_* and JMS_IBM_* are
significant:
1. The JMS_IBM_MQMD_* properties are specific to the IBM MQ JMS provider.
2. The JMS_IBM_MQMD_* properties are only set in the MQMD. JMS_IBM_* properties are set in the MQMD only if

the message does not have an MQRFH2 JMS header. Otherwise they are set in the JMS RFH2 header.
3. The JMS_IBM_MQMD_* properties have no affect on the encoding of text and numbers written into a

JMSMessage.
A receiving application is likely to assume the values of MQMD.Encoding and MQMD.CodedCharSetId
correspond to the encoding and character set of numbers and text in the message body. If
JMS_IBM_MQMD_* properties are used, it is the responsibility of the sending application to make it so.
The encoding and character set of numbers and text in the message body are set by the JMS_IBM_*
properties.
The badly coded snippet in Figure 143 sends a message encoded in character set 1208, with
MQMD.CodedCharSetId set to 37.

Either of the snippets of code in Figure 144 results in a message being put to a queue or topic, with its
body containing the application payload without an automatically generated MQRFH2 header being added.

Receiving a message

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_JMS, the inbound JMS message type and body are
determined by the contents of the received Websphere MQ message. The message type and body are
determined by fields in the MQRFH2 header, or in the MQMD, if there is no MQRFH2.

a. Send wrongly encoded message

TextMessage tmo = session.createTextMessage();
((MQDestination) destination).setMessageBodyStyle

(WMQConstants.WMQ_MESSAGE_BODY_MQ);
((MQDestination)destination).setMQMDWriteEnabled(true);
tmo.setIntProperty(WMQConstants.JMS_IBM_MQMD_CODEDCHARSETID, 37);
tmo.setIntProperty(WMQConstants.JMS_IBM_CHARACTER_SET, 1208);
tmo.setText("String one");
producer.send(tmo);

b. Receiving the message, relying on the value of JMS_IBM_CHARACTER_SET set by the value of MQMD.CodedCharSetId:

TextMessage tmi = (TextMessage) cons.receive();
System.out.println("Message is \"" + tmi.getText() + "\"");

c. Resulting output:

Message is "éÈÊ’>...??>?"

Figure 143. Inconsistently coded MQMD and message data

1. Setting WMQ_MESSAGE_BODY_MQ:

((MQDestination) destination).setMessageBodyStyle
(WMQConstants.WMQ_MESSAGE_BODY_MQ);

2. Setting WMQ_TARGET_DEST_MQ:

((MQDestination) destination).setMessageBodyStyle
(WMQConstants.WMQ_MESSAGE_BODY_UNSPECIFIED);

((MQDestination) destination).
setTargetClient(WMQConstants.WMQ_TARGET_DEST_MQ);

Figure 144. Send a message with an MQ message body.

Developing JMS and Java Platform, Enterprise Edition applications 1045

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_MQ, the inbound JMS message type is JMSBytesMessage.
The JMS message body is the message data returned by the underlying MQGET API call. The length of
message body is the length returned by the MQGET call. The character set and encoding of the data in
the message body is determined by the CodedCharSetId and Encoding fields of the MQMD. The format of the
data in the message body is determined by the Format field of the MQMD

If WMQ_MESSAGE_BODY is set to WMQ_MESSAGE_BODY_UNSPECIFIED, the default value, IBM MQ classes for JMS
sets it to WMQ_MESSAGE_BODY_JMS.

When you receive a JMSBytesMessage, you can decode it by reference to the following properties:
v JMS_IBM_Format or JMS_IBM_MQMD_Format: This property specifies the format of the IBM MQ header or

application payload that starts the JMS message body if there is no preceding Websphere MQ header.
v JMS_IBM_Character_Set or JMS_IBM_MQMD_CodedCharSetId: This property specifies the CCSID of the IBM

MQ header or application payload that starts the JMS message body if there is no preceding
Websphere MQ header.

v JMS_IBM_Encoding or JMS_IBM_MQMD_Encoding: This property specifies the encoding of the IBM MQ
header or application payload that starts the JMS message body if there is no preceding Websphere
MQ header.

The following code snippet results in a received message that is a JMSBytesMessage. Irrespective of the
content of the received message and of the format field of the received MQMD, the message is a
JMSBytesMessage.

((MQDestination)destination).setMessageBodyStyle
(WMQConstants.WMQ_MESSAGE_BODY_MQ);

Destination property WMQ_MESSAGE_BODY:

WMQ_MESSAGE_BODY determines whether a JMS application processes the MQRFH2 of an IBM MQ
message as part of the message payload (that is, as part of the JMS message body).

Table 138. Property names and descriptions

Property Short form Description

WMQ_MESSAGE_BODY MBODY Whether a JMS application processes
the MQRFH2 of an IBM MQ message
as part of the message payload (that
is, as part of the JMS message body).

1046 IBM MQ: Programming

Table 139. Property names, values, and set methods

Property Valid values in administration
tool (defaults in bold)

Valid values in programs Set method

WMQ_MESSAGE
_BODY

v UNSPECIFIED

When sending, IBM MQ
classes for JMS does or does
not generate and include an
MQRFH2 header, depending
on the value of
WMQ_TARGET_CLIENT.

When receiving, acts as value
JMS.

v JMS

When sending, IBM MQ
classes for JMS automatically
generates an MQRFH2 header
and includes it in the IBM MQ
message.

When receiving, IBM MQ
classes for JMS set the JMS
message properties according
to values in the MQRFH2 (if
present); it does not present the
MQRFH2 as part of the JMS
message body.

v MQ

When sending, IBM MQ
classes for JMS does not
generate an MQRFH2.

When receiving, IBM MQ
classes for JMS presents the
MQRFH2 as part of the JMS
message body.

v WMQ_MESSAGE_
BODY_UNSPECIFIED

v WMQ_MESSAGE_BODY_JMS
v WMQ_MESSAGE_BODY_MQ

setMessageBodyStyle

JMS persistent messages:

IBM MQ classes for JMS applications can use the NonPersistentMessageClass queue attribute to provide
better performance for JMS persistent messages, at the expense of some reliability.

An IBM MQ queue has an attribute called NonPersistentMessageClass. The value of this attribute
determines whether nonpersistent messages on the queue are discarded when the queue manager
restarts.

You can set the attribute for a local queue by using the IBM MQ Script (MQSC) command, DEFINE
QLOCAL, with either of the following parameters:

NPMCLASS(NORMAL)
Nonpersistent messages on the queue are discarded when the queue manager restarts. This is the
default value.

NPMCLASS(HIGH)
Nonpersistent messages on the queue are not discarded when the queue manager restarts
following a quiesced or immediate shutdown. Nonpersistent messages might be discarded,
however, following a preemptive shutdown or a failure.

Developing JMS and Java Platform, Enterprise Edition applications 1047

This topic describes how IBM MQ classes for JMS applications can use this queue attribute to provide
better performance for JMS persistent messages.

The PERSISTENCE property of a Queue or Topic object can have the value HIGH. You can use the IBM
MQ JMS administration tool to set this value, or an application can call the Destination.setPersistence()
method passing the value WMQConstants.WMQ_PER_NPHIGH as a parameter.

If an application sends a JMS persistent message or a JMS nonpersistent message to a destination where
the PERSISTENCE property has the value HIGH, and the underlying IBM MQ queue is set to
NPMCLASS(HIGH), the message is put on the queue as an IBM MQ nonpersistent message. If the
PERSISTENCE property of the destination does not have the value HIGH, or if the underlying queue is
set to NPMCLASS(NORMAL), a JMS persistent message is put on the queue as an IBM MQ persistent
message, and a JMS nonpersistent message is put on the queue as an IBM MQ nonpersistent message.

If a JMS persistent message is put on a queue as an IBM MQ nonpersistent message, and you want to
ensure that the message is not discarded following a quiesced or immediate shutdown of a queue
manager, all queues through which the message might be routed must be set to NPMCLASS(HIGH). In
the publish/subscribe domain, these queues include subscriber queues. As an aid to enforcing this
configuration, IBM MQ classes for JMS throws an InvalidDestinationException if an application tries to
create a message consumer for a destination where the PERSISTENCE property has the value HIGH and
the underlying IBM MQ queue is set to NPMCLASS(NORMAL).

Setting the PERSISTENCE property of a destination to HIGH does not affect how a message is received
from that destination. A message sent as a JMS persistent message is received as a JMS persistent
message, and a message sent as a JMS nonpersistent message is received as a JMS nonpersistent message.

When an application sends the first message to a destination where the PERSISTENCE property has the
value HIGH, or when an application creates the first message consumer for a destination where the
PERSISTENCE property has the value HIGH, IBM MQ classes for JMS issues an MQINQ call to
determine whether NPMCLASS(HIGH) is set on the underlying IBM MQ queue. The application must
therefore have the authority to inquire on the queue. In addition, IBM MQ classes for JMS preserves the
result of the MQINQ call until the destination is deleted, and does not issue more MQINQ calls.
Therefore, if you change the NPMCLASS setting on the underlying queue while the application is still
using the destination, IBM MQ classes for JMS does not notice the new setting.

By allowing JMS persistent messages to be put on IBM MQ queues as IBM MQ nonpersistent messages,
you are gaining performance at the expense of some reliability. If you require maximum reliability for
JMS persistent messages, do not send the messages to a destination where the PERSISTENCE property
has the value HIGH.

The JMS Layer can use SYSTEM.JMS.TEMPQ.MODEL, instead of SYSTEM.DEFAULT.MODEL.QUEUE.
SYSTEM.JMS.TEMPQ.MODEL creates permanent dynamic queues that accept persistent messages,
because SYSTEM.DEFAULT.MODEL.QUEUE cannot accept persistent messages. If you wish to use
temporary queues to accept persistent messages, you must therefore use SYSTEM.JMS.TEMPQ.MODEL,
or change the model queue to an alternative queue of your choosing.

1048 IBM MQ: Programming

Using Secure Sockets Layer (SSL) with IBM MQ classes for JMS:

IBM MQ classes for JMS applications can use SSL encryption. To do this they require a JSSE provider.

IBM MQ classes for JMS connections using TRANSPORT(CLIENT) support Secure Sockets Layer (SSL)
encryption. SSL provides communication encryption, authentication, and message integrity. It is typically
used to secure communications between any two peers on the Internet or within an intranet.

IBM MQ classes for JMS uses Java Secure Socket Extension (JSSE) to handle SSL encryption, and therefore
requires a JSSE provider. JSE v1.4 JVMs have a JSSE provider built-in. Details of how to manage and store
certificates can vary from provider to provider. For information about this, see your JSSE provider's
documentation.

This section assumes that your JSSE provider is correctly installed and configured, and that suitable
certificates have been installed and made available to your JSSE provider. You can now use JMSAdmin to
set a number of administrative properties.

If your IBM MQ classes for JMS application uses a client channel definition table (CCDT) to connect to a
queue manager, see “Using a client channel definition table with IBM MQ classes for JMS” on page 1060.

SSLCIPHERSUITE object property:

Set SSLCIPHERSUITE to enable SSL encryption on a ConnectionFactory object.

To enable SSL encryption on a ConnectionFactory object, use JMSAdmin to set the SSLCIPHERSUITE
property to a CipherSuite supported by your JSSE provider. This must match the CipherSpec set on the
target channel. However, CipherSuites are distinct from CipherSpecs and therefore have different names.
“SSL/TLS CipherSpecs and CipherSuites in IBM MQ classes for JMS” on page 1053 contains a table
mapping the CipherSpecs supported by IBM MQ to their equivalent CipherSuites as known to JSSE. For
more information about CipherSpecs and CipherSuites with IBM MQ, see Security.

For example, to set up a ConnectionFactory object that can be used to create a connection over an SSL
enabled MQI channel with a CipherSpec of TLS_RSA_WITH_AES_128_CBC_SHA, issue the following
command to JMSAdmin:
ALTER CF(my.cf) SSLCIPHERSUITE(SSL_RSA_WITH_AES_128_CBC_SHA)

This can also be set from an application, using the setSSLCipherSuite() method on an
MQConnectionFactory object.

For convenience, if a CipherSpec is specified on the SSLCIPHERSUITE property, JMSAdmin attempts to
map the CipherSpec to an appropriate CipherSuite and issues a warning. This attempt to map is not
made if the property is specified by an application.

Alterantively, use the Client Channel Definition Table (CCDT). For more information, see “Using a client
channel definition table with IBM MQ classes for JMS” on page 1060.

Developing JMS and Java Platform, Enterprise Edition applications 1049

SSLFIPSREQUIRED object property:

If you require a connection to use a CipherSuite that is supported by the IBM Java JSSE FIPS provider
(IBMJSSEFIPS), set the SSLFIPSREQUIRED property of the connection factory to YES.

The default value of this property is NO, which means that a connection can use any CipherSuite that is
supported by IBM MQ.

If an application uses more than one connection, the value of SSLFIPSREQUIRED that is used when the
application creates the first connection determines the value that is used when the application creates any
subsequent connection. This means that the value of the SSLFIPSREQUIRED property of the connection
factory that is used to create a subsequent connection is ignored. You must restart the application if you
want to use a different value of SSLFIPSREQUIRED.

An application can set this property by calling the setSSLFipsRequired() method of a ConnectionFactory
object. The property is ignored if no CipherSuite is set.
Related information:
Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client
Federal Information Processing Standards (FIPS) for UNIX, Linux and Windows

SSLPEERNAME object property:

Use SSLPEERNAME to specify a distinguished name pattern, to ensure that your JMS application
connects to the correct queue manager.

A JMS application can ensure that it connects to the correct queue manager by specifying a distinguished
name (DN) pattern. The connection succeeds only if the queue manager presents a DN that matches the
pattern. For more details of the format of this pattern, see the related topics.

The DN is set using the SSLPEERNAME property of a ConnectionFactory object. For example, the
following JMSAdmin command sets a ConnectionFactory object to expect the queue manager to identify
itself with a Common Name beginning with the characters QMGR., and with at least two Organizational
Unit names, the first of which must be IBM and the second WEBSPHERE:
ALTER CF(my.cf) SSLPEERNAME(CN=QMGR.*, OU=IBM, OU=WEBSPHERE)

Checking is not case sensitive and semicolons can be used in place of commas. SSLPEERNAME can also
be set from an application using the setSSLPeerName() method on an MQConnectionFactory object. If
this property is not set, no checking is performed on the Distinguished Name supplied by the queue
manager. This property is ignored if no CipherSuite is set.

1050 IBM MQ: Programming

SSLCERTSTORES object property:

Use SSLCERTSTORES to specify a list of LDAP servers to use for certificate revocation list (CRL)
checking.

It is common to use a certificate revocation list (CRL) to identify certificates that are no longer trusted.
CRLs are typically hosted on LDAP servers. JMS allows an LDAP server to be specified for CRL checking
under Java 2 v1.4 or later. The following JMSAdmin example directs JMS to use a CRL hosted on an
LDAP server named crl1.ibm.com:
ALTER CF(my.cf) SSLCRL(ldap://crl1.ibm.com)

Note: To use a CertStore successfully with a CRL hosted on an LDAP server, make sure that your Java
Software Development Kit (SDK) is compatible with the CRL. Some SDKs require that the CRL conforms
to RFC 2587, which defines a schema for LDAP v2. Most LDAP v3 servers use RFC 2256 instead.

If your LDAP server is not running on the default port of 389, you can specify the port by appending a
colon (:) and the port number to the host name. If the certificate presented by the queue manager is
present in the CRL hosted on crl1.ibm.com, the connection is not completed. To avoid a single point of
failure, JMS allows multiple LDAP servers to be supplied by supplying a list of LDAP servers delimited
by the space character. Here is an example:
ALTER CF(my.cf) SSLCRL(ldap://crl1.ibm.com ldap://crl2.ibm.com)

When multiple LDAP servers are specified, JMS tries each one in turn until it finds a server with which it
can successfully verify the queue manager's certificate. Each server must contain identical information.

A string in this format can be supplied by an application on the MQConnectionFactory.setSSLCertStores()
method. Alternatively, the application can create one or more java.security.cert.CertStore objects, place
these in a suitable Collection object, and supply this Collection object to the setSSLCertStores() method. In
this way, the application can customize CRL checking. See your JSSE documentation for details on
constructing and using CertStore objects.

The certificate presented by the queue manager when a connection is being set up is validated as follows:
1. The first CertStore object in the Collection identified by sslCertStores is used to identify a CRL server.
2. An attempt is made to contact the CRL server.
3. If the attempt is successful, the server is searched for a match for the certificate.

a. If the certificate is found to be revoked, the search process is over and the connection request fails
with reason code MQRC_SSL_CERTIFICATE_REVOKED.

b. If the certificate is not found, the search process is over and the connection is allowed to proceed.
4. If the attempt to contact the server is unsuccessful, the next CertStore object is used to identify a CRL

server and the process repeats from step 2.
If this was the last CertStore in the Collection, or if the Collection contains no CertStore objects, the
search process has failed and the connection request fails with reason code
MQRC_SSL_CERT_STORE_ERROR.

The Collection object determines the order in which CertStores are used.

If your application uses setSSLCertStores() to set a Collection of CertStore objects, the
MQConnectionFactory can no longer be bound into a JNDI namespace. Attempting to do so causes an
exception. If the sslCertStores property is not set, no revocation checking is performed on the certificate
provided by the queue manager. This property is ignored if no CipherSuite is set.

Developing JMS and Java Platform, Enterprise Edition applications 1051

SSLRESETCOUNT object property:

This property represents the total number of bytes sent and received by a connection before the secret
key that is used for encryption is renegotiated.

The number of bytes sent is the number before encryption, and the number of bytes received is the
number after decryption. The number of bytes also includes control information sent and received by
IBM MQ classes for JMS.

For example, to configure a ConnectionFactory object that can be used to create a connection over an SSL
enabled MQI channel with a secret key that is renegotiated after 4 MB of data have flowed, issue the
following command to JMSAdmin:
ALTER CF(my.cf) SSLRESETCOUNT(4194304)

An application can set this property by calling the setSSLResetCount() method of a ConnectionFactory
object.

If the value of this property is zero, which is the default value, the secret key is never renegotiated. The
property is ignored if no CipherSuite is set.

SSLSocketFactory object property:

To customize other aspects of the SSL connection for an application, create an SSLSocketFactory and
configure JMS to use it.

You might want to customize other aspects of the SSL connection for an application. For example, you
might want to initialize cryptographic hardware or change the keystore and truststore in use. To do this,
the application must first create a javax.net.ssl.SSLSocketFactory object that is customized accordingly. See
your JSSE documentation for information about how to do this, because the customizable features vary
from provider to provider. After a suitable SSLSocketFactory object is obtained, use the
MQConnectionFactory.setSSLSocketFactory() method to configure JMS to use the customized
SSLSocketFactory object.

If your application uses the setSSLSocketFactory() method to set a customized SSLSocketFactory object,
the MQConnectionFactory object can no longer be bound into a JNDI namespace. Attempting to do so
causes an exception. If this property is not set, the default SSLSocketFactory object is used. See your JSSE
documentation for details of the behavior of the default SSLSocketFactory object. This property is ignored
if no CipherSuite is set.

Important: Do not assume that the use of the SSL properties ensures security when a ConnectionFactory
object is retrieved from a JNDI namespace that is not itself secure. Specifically, the standard LDAP
implementation of JNDI is not secure. An attacker can imitate the LDAP server, misleading a JMS
application into connecting to the wrong server without noticing. With suitable security arrangements in
place, other implementations of JNDI (such as the fscontext implementation) are secure.

1052 IBM MQ: Programming

Making changes to the JSSE keystore or truststore:

If you make changes to the keystore or truststore, you must take certain actions for the changes to be
picked up.

If you change the contents of the JSSE keystore or truststore, or change the location of the keystore or
truststore file, IBM MQ classes for JMS applications that are running at the time do not automatically
pick up the changes. For the changes to take effect, the following actions must be performed:
v The applications must close all their connections, and destroy any unused connections in connection

pools.
v If your JSSE provider caches information from the keystore and truststore, this information must be

refreshed.

After these actions have been performed, the applications can then re-create their connections.

Depending on how you design your applications, and on the function provided by your JSSE provider, it
might be possible to perform these actions without stopping and restarting your applications. However,
stopping and restarting the applications might be the simplest solution.

SSL/TLS CipherSpecs and CipherSuites in IBM MQ classes for JMS:

The ability of IBM MQ classes for JMS applications to establish connections to a queue manager, depends
on the CipherSpec specified at the server end of the MQI channel and the CipherSuite specified at the
client end.

The following table lists the CipherSpecs supported by IBM MQ and their equivalent CipherSuites.

You should review the topic Deprecated CipherSpecs to see if any of the CipherSpecs, listed in the
following table, have been deprecated by IBM MQ and, if so, at which update the CipherSpec was
deprecated.

Important: The CipherSuites listed are those supported by the IBM Java Runtime Environment (JRE)
supplied with IBM MQ. From IBM MQ Version 8.0.0, Fix Pack 2, the CipherSuites that are listed include
those supported by the Oracle Java JRE. For more information about configuring your application to use
an Oracle Java JRE, see Configuring your application to use IBM Java or Oracle Java CipherSuite
mappings.

The table also indicates the protocol (SSL or a particular version of TLS) that is used for the
communication, and whether or not the CipherSuite conforms to the FIPS 140-2 standard.

Note: From IBM MQ Version 8.0.0, Fix Pack 2, the SSLv3 protocol and the use of some IBM MQ
CipherSpecs is deprecated. For more information, see Deprecated CipherSpecs.

Ciphersuites denoted as FIPS 140-2 compliant can be used if the application has not been configured to
enforce FIPS 140-2 compliance, but if FIPS 140-2 compliance has been configured for the application (see
the following notes on configuration) only those CipherSuites which are marked as FIPS 140-2 compatible
can be configured; attempting to use other CipherSuites results in an error.

Note: Each JRE can have multiple cryptographic security providers, each of which can contribute an
implementation of the same CipherSuite. However, not all security providers are FIPS 140-2 certified. If
FIPS 140-2 compliance is not enforced for an application then it is possible that an uncertified
implementation of the CipherSuite might be used. Uncertified implementations might not operate in
compliance with FIPS 140-2, even if the CipherSuite theoretically meets the minimum security level
required by the standard. See the following notes for more information about configuring FIPS 140-2
enforcement in IBM MQ JMS applications.

Developing JMS and Java Platform, Enterprise Edition applications 1053

For more information about FIPS 140-2 and Suite-B compliance for CipherSpecs and CipherSuites, see
Specifying CipherSpecs. You might also need to be aware of information that concerns US Federal
Information Processing Standards.

To use the full set of CipherSuites and to operate with certified FIPS 140-2 and/or Suite-B compliance, a
suitable JRE is required. IBM Java 7 Service Refresh 4 Fix Pack 2 or a higher level of IBM JRE provides
the appropriate support.

Note: To use some CipherSuites, the 'unrestricted' policy files need to be configured in the JRE. For more
details of how policy files are set up in an SDK or JRE, see the IBM SDK Policy files topic in the Security
Reference for IBM SDK, Java Technology Edition, Version 7.

Table 140. CipherSpecs supported by IBM MQ and the equivalent CipherSuites

CipherSpec Equivalent CipherSuite (IBM JRE) Equivalent
CipherSuite
(Oracle
JRE)

Protocol FIPS
140-2
compatible

ECDHE_ECDSA_3DES_EDE_CBC_SHA256SSL_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHATLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHATLSv1.2 yes

ECDHE_ECDSA_AES_128_CBC_SHA256 SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256TLSv1.2 yes

ECDHE_ECDSA_AES_128_GCM_SHA256SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256TLSv1.2 yes

ECDHE_ECDSA_AES_256_CBC_SHA384 SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384TLSv1.2 yes

ECDHE_ECDSA_AES_256_GCM_SHA384SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384TLSv1.2 yes

ECDHE_ECDSA_NULL_SHA256 SSL_ECDHE_ECDSA_WITH_NULL_SHA TLS_ECDHE_ECDSA_WITH_NULL_SHATLSv1.2 no

ECDHE_ECDSA_RC4_128_SHA256 SSL_ECDHE_ECDSA_WITH_RC4_128_SHA TLS_ECDHE_ECDSA_WITH_RC4_128_SHATLSv1.2 no

ECDHE_RSA_3DES_EDE_CBC_SHA256 SSL_ECDHE_RSA_WITH_3DES_EDE_CBC_SHATLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHATLSv1.2 yes

ECDHE_RSA_AES_128_CBC_SHA256 SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256TLSv1.2 yes

ECDHE_RSA_AES_128_GCM_SHA256 SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256TLSv1.2 yes

ECDHE_RSA_AES_256_CBC_SHA384 SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA384TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384TLSv1.2 yes

ECDHE_RSA_AES_256_GCM_SHA384 SSL_ECDHE_RSA_WITH_AES_256_GCM_SHA384TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384TLSv1.2 yes

ECDHE_RSA_NULL_SHA256 SSL_ECDHE_RSA_WITH_NULL_SHA TLS_ECDHE_RSA_WITH_NULL_SHATLSv1.2 no

ECDHE_RSA_RC4_128_SHA256 SSL_ECDHE_RSA_WITH_RC4_128_SHA TLS_ECDHE_RSA_WITH_RC4_128_SHATLSv1.2 no

RC4_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC4_40_MD5 SSL_RSA_EXPORT_WITH_RC4_40_MD5SSLv3 no

FIPS_WITH_3DES_EDE_CBC_SHA SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA SSLv3 no 1

FIPS_WITH_DES_CBC_SHA SSL_RSA_FIPS_WITH_DES_CBC_SHA SSLv3 no 1

TLS_RSA_WITH_3DES_EDE_CBC_SHA
1

SSL_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHATLSv1 yes

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_128_CBC_SHATLSv1 yes

TLS_RSA_WITH_AES_128_CBC_SHA256 SSL_RSA_WITH_AES_128_CBC_SHA256 TLS_RSA_WITH_AES_128_CBC_SHA256TLSv1.2 yes

TLS_RSA_WITH_AES_128_GCM_SHA256SSL_RSA_WITH_AES_128_GCM_SHA256 TLS_RSA_WITH_AES_128_GCM_SHA256TLSv1.2 yes

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHATLSv1 yes

TLS_RSA_WITH_AES_256_CBC_SHA256 SSL_RSA_WITH_AES_256_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256TLSv1.2 yes

TLS_RSA_WITH_AES_256_GCM_SHA384SSL_RSA_WITH_AES_256_GCM_SHA384 TLS_RSA_WITH_AES_256_GCM_SHA384TLSv1.2 yes

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHATLSv1 no

NULL_MD5 SSL_RSA_WITH_NULL_MD5 SSL_RSA_WITH_NULL_MD5SSLv3 no

NULL_SHA SSL_RSA_WITH_NULL_SHA SSL_RSA_WITH_NULL_SHASSLv3 no

TLS_RSA_WITH_NULL_SHA256 SSL_RSA_WITH_NULL_SHA256 TLS_RSA_WITH_NULL_SHA256TLSv1.2 no

1054 IBM MQ: Programming

Table 140. CipherSpecs supported by IBM MQ and the equivalent CipherSuites (continued)

CipherSpec Equivalent CipherSuite (IBM JRE) Equivalent
CipherSuite
(Oracle
JRE)

Protocol FIPS
140-2
compatible

RC4_MD5_US SSL_RSA_WITH_RC4_128_MD5 SSL_RSA_WITH_RC4_128_MD5SSLv3 no

TLS_RSA_WITH_RC4_128_SHA256 SSL_RSA_WITH_RC4_128_SHA SSL_RSA_WITH_RC4_128_SHATLSv1.2 no

Note:

1. This CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be used
to transfer up to 32 GB of data before the connection is terminated with error AMQ9288. To avoid this
error, you need to either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

2. The names of these CipherSuites are historical and reflect the fact that they were previously
FIPS-compliant. They are no longer FIPS-compliant and use of these CipherSuites is deprecated.

3. The following CipherSuite is no longer supported:
v SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

Any attempt to use this CipherSuite and its corresponding IBM MQ CipherSpec RC2_MD5_EXPORT
will fail with an appropriate exception. Installations that use this CipherSuite/CipherSpec
combination should move to a supported combination.

Configuring your application to use IBM Java or Oracle Java CipherSuite mappings

From IBM MQ Version 8.0.0, Fix Pack 2, you can configure whether your application uses the default IBM
Java CipherSuite to IBM MQ CipherSpec mappings, or the Oracle CipherSuite to IBM MQ CipherSpec
mappings. Therefore, you can use TLS CipherSuites whether your application uses an IBM JRE or an
Oracle JRE. The Java System Property com.ibm.mq.cfg.useIBMCipherMappings controls which mappings
are used. The property can be one of the following values:

true Use the IBM Java CipherSuite to IBM MQ CipherSpec mappings.

This value is the default value.

false Use the Oracle CipherSuite to IBM MQ CipherSpec mappings.

For more information about using IBM MQ Java and TLS Ciphers, see the MQdev blog posts MQ Java,
TLS Ciphers, Non-IBM JREs & APARs IT06775, IV66840, IT09423, IT10837, and The relationship between
MQ CipherSpecs and Java Cipher Suites.

Configuring SSL Ciphersuites and FIPS-compliance in an IBM MQ classes for JMS application

v An application that uses IBM MQ classes for JMS can use either of two methods to set the SSL
CipherSuite for a connection:
– Call the setSSLCipherSuite method of a ConnectionFactory object.
– Use the IBM MQ JMS administration tool to set the SSLCIPHERSUITE property of a

ConnectionFactory object.
v An application that uses IBM MQ classes for JMS can use either of two methods to enforce FIPS 140-2

compliance:
– Call the setSSLFipsRequired method of a ConnectionFactory object.
– Use the IBM MQ JMS administration tool to set the SSLFIPSREQUIRED property of a

ConnectionFactory object.

Developing JMS and Java Platform, Enterprise Edition applications 1055

https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_Java_TLS_Ciphers_Non_IBM_JREs_APARs_IT06775_IV66840_IT09423_IT10837_HELP_ME_PLEASE
https://www.ibm.com/developerworks/community/blogs/messaging/entry/MQ_Java_TLS_Ciphers_Non_IBM_JREs_APARs_IT06775_IV66840_IT09423_IT10837_HELP_ME_PLEASE
https://www.ibm.com/developerworks/community/blogs/messaging/entry/BiteSize_Blogging_MQ_Version_8_The_relationship_between_MQ_CipherSpecs_and_Java_Cipher_Suites
https://www.ibm.com/developerworks/community/blogs/messaging/entry/BiteSize_Blogging_MQ_Version_8_The_relationship_between_MQ_CipherSpecs_and_Java_Cipher_Suites

Interoperability limitations

Certain CipherSuites might be compatible with more than one IBM MQ CipherSpec, depending on the
protocol in use; SSLv3 or a specific version of TLS. However, only the CipherSuite/CipherSpec
combination that uses the TLS version specified in Table 1 is supported. Attempting to use the
unsupported combinations of CipherSuites and CipherSpecs will fail with an appropriate exception.
Installations using any of these CipherSuite/CipherSpec combinations should move to a supported
combination.

The following table shows the CipherSuites to which this limitation applies.

Table 141. CipherSuites and their supported and unsupported CipherSpecs

CipherSuite Supported TLS CipherSpec Unsupported SSL
CipherSpec

SSL_RSA_WITH_3DES_EDE_CBC_SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA 1 TRIPLE_DES_SHA_US

SSL_RSA_WITH_DES_CBC_SHA TLS_RSA_WITH_DES_CBC_SHA DES_SHA_EXPORT

SSL_RSA_WITH_RC4_128_SHA TLS_RSA_WITH_RC4_128_SHA256 RC4_SHA_US

Note:

1. This CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA is deprecated. However, it can still be used
to transfer up to 32 GB of data before the connection is terminated with error AMQ9288. To avoid this
error, you need to either avoid using triple DES, or enable secret key reset when using this
CipherSpec.

Writing channel exits in Java for IBM MQ classes for JMS:

You create channel exits by defining Java classes that implement specified interfaces.

Three interfaces are defined in the com.ibm.mq.exits package:
v WMQSendExit, for a send exit
v WMQReceiveExit, for a receive exit
v WMQSecurityExit, for a security exit

The following sample code defines a class that implements all three interfaces:
public class MyMQExits implements
WMQSendExit, WMQReceiveExit, WMQSecurityExit {

// Default constructor
public MyMQExits(){
}

// This method implements the send exit interface
public ByteBuffer channelSendExit(

MQCXP channelExitParms,
MQCD channelDefinition,
ByteBuffer agentBuffer)

{
// Complete the body of the send exit here

}
// This method implements the receive exit interface

public ByteBuffer channelReceiveExit(
MQCXP channelExitParms,
MQCD channelDefinition,
ByteBuffer agentBuffer)

{
// Complete the body of the receive exit here

}
// This method implements the security exit interface

public ByteBuffer channelSecurityExit(

1056 IBM MQ: Programming

MQCXP channelExitParms,
MQCD channelDefinition,
ByteBuffer agentBuffer)

{
// Complete the body of the security exit here

}
}

Each exit receives as parameters an MQCXP object and an MQCD object. These objects represent the
MQCXP and MQCD structures defined in the procedural interface.

When a send exit is called, the agentBuffer parameter contains the data that is about to be sent to the
server queue manager. A length parameter is not required because the expression agentBuffer.limit()
provides the length of the data. The send exit returns as its value the data to be sent to the server queue
manager. However, if the send exit is not the last send exit in a sequence of send exits, the data returned
is passed instead to the next send exit in the sequence. A send exit can return a modified version of the
data that it receives in the agentBuffer parameter, or it can return the data unchanged. The simplest
possible exit body is therefore:
{ return agentBuffer; }

When a receive exit is called, the agentBuffer parameter contains the data that has been received from the
server queue manager. The receive exit returns as its value the data to be passed to the application by
IBM MQ classes for JMS. However, if the receive exit is not the last receive exit in a sequence of receive
exits, the data returned is passed instead to the next receive exit in the sequence.

When a security exit is called, the agentBuffer parameter contains the data that has been received in a
security flow from the security exit at the server end of the connection. The security exit returns as its
value the data to be sent in a security flow to the server security exit.

Channel exits are called with a buffer that has a backing array. For best performance, the exit should
return a buffer with a backing array.

Up to 32 characters of user data can be passed to a channel exit when it is called. The exit accesses the
user data by calling the getExitData() method of the MQCXP object. Although the exit can change the
user data by calling the setExitData() method, the user data is refreshed every time the exit is called. Any
changes made to the user data are therefore lost. However, the exit can pass data from one call to the
next by using the exit user area of the MQCXP object. The exit accesses the exit user area by reference by
calling the getExitUserArea() method.

Every exit class must have a constructor. The constructor can be either the default constructor, as shown
in the previous example, or a constructor with a string parameter. The constructor is called to create an
instance of the exit class for each exit defined in the class. Therefore, in the previous example, an instance
of the MyMQExits class is created for the send exit, another instance is created for the receive exit, and a
third instance is created for the security exit. When a constructor with a string parameter is called, the
parameter contains the same user data that is passed to the channel exit for which the instance is being
created. If an exit class has both a default constructor and a single parameter constructor, the single
parameter constructor takes precedence.

Do not close the connection from within a channel exit.

When data is sent to the server end of a connection, SSL encryption is performed after any channel exits
are called. Similarly, when data is received from the server end of a connection, SSL decryption is
performed before any channel exits are called.

In versions of IBM MQ classes for JMS earlier than Version 7.0, channel exits were implemented using the
interfaces MQSendExit, MQReceiveExit, and MQSecurityExit. You can still use these interfaces, but the
new interfaces are preferred for improved function and performance.

Developing JMS and Java Platform, Enterprise Edition applications 1057

Configuring IBM MQ classes for JMS to use channel exits:

An IBM MQ classes for JMS application can use channel security, send, and receive exits on the MQI
channel that starts when the application connects to a queue manager. The application can use exits
written in Java, C, or C++. The application can also use a sequence of send or receive exits that are run in
succession.

The following properties are used specify a send exit, or a sequence of send exits, used by a JMS
connection:
v The SENDEXIT property of an MQConnectionFactory object.
v The sendexit property on an activation specification used by the IBM MQ resource adapter for

inbound communication,
v The sendexit property on a ConnectionFactory object used by the IBM MQ resource adapter for

output communication.

The value of the property is a string that comprises one or more items separated by commas. Each item
identifies a send exit in one of the following ways:
v The name of a class that implements the WMQSendExit interface for a send exit written in Java.
v A string in the format libraryName (entryPointName) for a send exit written in C or C++.

In a similar way, the following properties specify the receive exit, or sequence of receive exits, used by a
connection:
v The RECEXIT property of an MQConnectionFactory object.
v The receiveexit property on an activation specification used by the IBM MQ resource adapter for

inbound communication,
v The receiveexit property on a ConnectionFactory object used by the IBM MQ resource adapter for

output communication.

The following properties specify the security exit used by a connection:
v The SECEXIT property of an MQConnectionFactory object.
v The securityexit property on an activation specification used by the IBM MQ resource adapter for

inbound communication,
v The securityexit property on a ConnectionFactory object used by the IBM MQ resource adapter for

output communication.

For MQConnectionFactories, you can set the SENDEXIT, RECEXIT and SECEXIT properties by using the IBM
MQ JMS administration tool or MQ Explorer. Alternatively, an application can set the properties by
calling the setSendExit(), setReceiveExit(), and setSecurityExit() methods.

Channel exits are loaded by their own class loader. To find a channel exit, the class loader searches the
following locations in the specified order.
1. The class path specified by the property com.ibm.mq.cfg.ClientExitPath.JavaExitsClasspath or by

the JavaExitsClassPath attribute in the Channels stanza of the IBM MQ client configuration file.
2. The class path specified by the Java system property com.ibm.mq.exitClasspath. Note that this

property is now deprecated.
3. The IBM MQ exits directory, as shown in Table 142 on page 1059. The class loader first searches the

directory for class files that are not packaged in Java archive (JAR) files. If the channel exit is not
found, the class loader then searches the JAR files in the directory.

1058 IBM MQ: Programming

Table 142. The IBM MQ exits directory

Platform Directory

UNIX Linux UNIX and Linux /var/mqm/exits (32-bit channel exits)/var/mqm/exits64 (64-bit channel exits)

Windows Windows install_data_dir\exits

where install_data_dir is the directory that you chose for the IBM MQ
data files during installation. The default directory is
C:\ProgramData\IBM\MQ.

Note: If a channel exit exists in more than one location, the IBM MQ classes for JMS loads the first
instance that it finds.

The parent of the class loader is the class loader that is used to load IBM MQ classes for JMS. It is
therefore possible for the parent class loader to load a channel exit if it cannot be found in any of the
preceding locations. However, when you are using the IBM MQ classes for JMS in an environment such
as a JEE application server, you are not likely to be able to influence the choice of the parent class loader
and so the class loader should be configured by setting the Java system property
com.ibm.mq.cfg.ClientExitPath.JavaExitsClasspath on the application server.

If your application is being run with the Java Security Manager enabled, then the policy configuration file
used by the Java runtime environment that the application is running in must have the permissions to
load a channel exit class. For information on how to do this, see Running IBM MQ classes for JMS
applications under the Java Security Manager.

The MQSendExit, MQReceiveExit, and MQSecurityExit interfaces supplied with versions of IBM
WebSphere MQ earlier than Version 7.0 are still supported. If you use channel exits that implement these
interfaces, com.ibm.mq.jar must be present in the class path.

For information about how to write channel exits in C, see “Channel-exit programs for messaging
channels” on page 349. You must store channel exit programs written in C or C++ in the directory shown
in Table 142.

If your application uses a client channel definition table (CCDT) to connect to a queue manager, see
“Using a client channel definition table with IBM MQ classes for JMS” on page 1060.

Specifying the user data to be passed to channel exits when using IBM MQ classes for JMS:

Up to 32 characters of user data can be passed to a channel exit when it is called.

The SENDEXITINIT property of an MQConnectionFactory object specifies the user data that is passed to
each send exit when it is called. The value of the property is a string that comprises one or more items of
user data separated by commas. The position of each item of user data within the string determines
which send exit, in a sequence of send exits, the user data is passed to. For example, the first item of user
data in the string is passed to the first send exit in a sequence of send exits.

You can set the SENDEXITINIT property by using the IBM MQ JMS administration tool or IBM MQ
Explorer. Alternatively, an application can set the property by calling the setSendExitInit() method.

In a similar way, the RECEXITINIT property of a ConnectionFactory object specifies the user data that is
passed to each receive exit, and the SECEXITINIT property specifies the user data passed to a security
exit. You can set these properties by using the IBM MQ JMS administration tool or IBM MQ Explorer.
Alternatively, an application can set the properties by calling the setReceiveExitInit() and
setSecurityExitInit() methods.

Developing JMS and Java Platform, Enterprise Edition applications 1059

Note the following rules when specifying user data that is passed to channel exits:
v If the number of items of user data in a string is more than the number of exits in a sequence, the

excess items of user data are ignored.
v If the number of items of user data in a string is less than the number of exits in a sequence, each

unspecified item of user data is set to an empty string. Two commas in succession within a string, or a
comma at the beginning of a string, also denotes an unspecified item of user data.

If an application uses a client channel definition table (CCDT) to connect to a queue manager, any user
data specified in a client connection channel definition is passed to channel exits when they are called.
For more information about using a client channel definition table, see “Using a client channel definition
table with IBM MQ classes for JMS.”

Using a client channel definition table with IBM MQ classes for JMS:

An IBM MQ classes for JMS application can use client connection channel definitions that are stored in a
client channel definition table (CCDT). You configure a ConnectionFactory object to use the CCDT. There
are some restrictions on its use.

As an alternative to creating a client connection channel definition by setting certain properties of a
ConnectionFactory object, an IBM MQ classes for JMS application can use client connection channel
definitions that are stored in a client channel definition table. These definitions are created by IBM MQ
Script (MQSC) commands or IBM MQ Programmable Command Format (PCF) commands. When the
application creates a Connection object, IBM MQ classes for JMS searches the client channel definition
table for a suitable client connection channel definition, and uses the channel definition to start an MQI
channel. For more information about client channel definition tables and how to construct one, see Client
channel definition table.

To use a client channel definition table, the CCDTURL property of a ConnectionFactory object must be set
to a URL object. IBM MQ classes for JMS do not read the information about the CCDT from the IBM MQ
MQI client configuration file, although some other values are used from there (see“The IBM MQ classes
for JMS configuration file” on page 916for which apply). The URL object encapsulates a uniform resource
locator (URL) that identifies the name and location of the file containing the client channel definition
table and specifies how the file can be accessed. You can set the CCDTURL property by using the IBM
MQ JMS administration tool, or an application can set the property by creating a URL object and calling
the setCCDTURL() method of the ConnectionFactory object.

For example, if the file ccdt1.tab contains a client channel definition table and is stored on the same
system on which the application is running, the application can set the CCDTURL property in the
following way:
java.net.URL chanTab1 = new URL("file:///home/admdata/ccdt1.tab");
factory.setCCDTURL(chanTab1);

As another example, suppose the file ccdt2.tab contains a client channel definition table and is stored on
a system that is different from the one on which the application is running. If the file can be accessed
using the FTP protocol, the application can set the CCDTURL property in the following way:
java.net.URL chanTab2 = new URL("ftp://ftp.server/admdata/ccdt2.tab");
factory.setCCDTURL(chanTab2);

In addition to setting the CCDTURL property of the ConnectionFactory object, the QMANAGER property
of the same object must be set to one of the following values:
v The name of a queue manager
v An asterisk (*) followed by the name of a queue manager group
v An asterisk (*)
v An empty string, or a string containing all blank characters

1060 IBM MQ: Programming

These are the same values that can be used for the QMgrName parameter on an MQCONN call issued by
a client application that is using Message Queue Interface (MQI). For more information about the
meaning of these values therefore, see MQCONN. You can set the QMANAGER property by using the
IBM MQ JMS administration tool or IBM MQ Explorer. Alternatively, an application can set the property
by calling the setQueueManager() method of the ConnectionFactory object.

If an application then creates a Connection object from the ConnectionFactory object, IBM MQ classes for
JMS accesses the client channel definition table identified by the CCDTURL property, uses the
QMANAGER property to search the table for a suitable client connection channel definition, and then
uses the channel definition to start an MQI channel to a queue manager.

Note that the CCDTURL and CHANNEL properties of a ConnectionFactory object cannot both be set
when the application calls the createConnection() method. If both properties are set, the method throws
an exception. The CCDTURL or CHANNEL property is considered to be set if its value is anything other
than null, an empty string, or a string containing all blank characters.

When IBM MQ classes for JMS finds a suitable client connection channel definition in the client channel
definition table, it uses only the information extracted from the table to start an MQI channel. Any
channel related properties of the ConnectionFactory object are ignored.

In particular, note the following points if you are using Secure Sockets Layer (SSL):
v An MQI channel uses SSL only if the channel definition extracted from the client channel definition

table specifies the name of a CipherSpec supported by IBM MQ classes for JMS.
v A client channel definition table also contains information about the location of Lightweight Directory

Access Protocol (LDAP) servers that hold certificate revocation lists (CRLs). IBM MQ classes for JMS
uses only this information to access LDAP servers that hold CRLs.

v A client channel definition table can also contain the location of an OCSP responder. IBM MQ classes
for JMS cannot use the OCSP information in a client channel definition table file. However, you can
configure OCSP as described in the section Online Certificate Status Protocol (OCSP) in Java and JMS
client applications.

For more information about using SSL with a client channel definition table, see Using the extended
transactional client with SSL channels.

Note also the following points if you are using channel exits:
v An MQI channel uses only the channel exits and associated user data specified by the channel

definition extracted from the client channel definition table.
v A channel definition extracted from a client channel definition table can specify channel exits that are

written in Java. This means, for example, that the SCYEXIT parameter on the DEFINE CHANNEL
command to create a client connection channel definition can specify the name of a class that
implements the WMQSecurityExit interface. Similarly, the SENDEXIT parameter can specify the name
of a class that implements the WMQSendExit interface, and the RCVEXIT parameter can specify the
name of a class that implements the WMQReceiveExit interface. For more information about how to
write a channel exit in Java, see“Writing channel exits in Java for IBM MQ classes for JMS” on page
1056.
The use of channel exits written in a language other than Java is also supported. For information about
how to specify the SCYEXIT, SENDEXIT, and RCVEXIT parameters on the DEFINE CHANNEL
command for channel exits written in another language, see DEFINE CHANNEL.

Developing JMS and Java Platform, Enterprise Edition applications 1061

Automatic JMS client reconnection:

Configure your JMS client to reconnect automatically following a network, queue manager, or server
failure.

Normally, if a stand-alone IBM MQ classes for JMS application is connected to a queue manager by using
the client transport, and the queue manager becomes unavailable for some reason (due to a network
outage, a queue manager failure, or the queue manager being stopped, for example), the IBM MQ classes
for JMS will throw a JMSException the next time the application tries to communicate with the queue
manager. The application must catch the JMSException and attempt to reconnect to the queue manager.
You can simplify the design of the application by enabling automatic client reconnection. When the queue
manager becomes unavailable, the IBM MQ classes for JMS attempts to reconnect to the queue manager
automatically on behalf of the application. This means that the application does not need to contain logic
to reconnect.

Automatic client reconnection is only available to stand-alone IBM MQ classes for JMS applications. The
use of automatic client reconnection within Java Platform, Enterprise Edition application servers is not
supported.

Automatic JMS client reconnection by using CONNECTIONNAMELIST:

If a stand-alone IBM MQ classes for JMS application uses a Connection Factory that has the
CONNECTIONNAMELIST property set, the application is eligible to use automatic client reconnection.

The behavior of the automatic client reconnection functionality that is provided by the IBM MQ classes
for JMS depends on the properties that follow:

The JMS Connection Factory property TRANSPORT (Short name TRAN)

TRANSPORT specifies how applications that use the Connection Factory connects to a queue
manager. This property must be set to the value CLIENT for automatic client reconnection to be
used. Automatic client reconnection is not available to applications that connect to a queue
manager that uses a Connection Factory that has the TRANSPORT property set to BIND,
DIRECT, or DIRECTHTTP.

The JMS Connection Factory property QMANAGER (Short name QMGR)

The QMANAGER property specifies the name of the queue manager that the Connection Factory
connects to.

The JMS Connection Factory property CONNECTIONNAMELIST (Short name CRHOSTS)

The CONNECTIONNAMELIST property is a comma-separated list, where each entry contains
information on the host name and port that are to be used to connect to the queue manager
specified by the QMANAGER property when you are using the CLIENT transport. The list has
the following format: hostname(port), hostname(port).

The JMS Connection Factory property CLIENTRECONNECTOPTIONS (Short name CROPT)

CLIENTRECONNECTOPTIONS controls whether the IBM MQ classes for JMS will attempt to
automatically connect to a queue manager on behalf of an application if a queue manager
becomes available.

The DefRecon attribute in the Channels stanza of the client configuration file

The DefRecon attribute provides an administrative option to enable all applications to
automatically reconnect, or to disable the automatic reconnection for applications that are written
to reconnect automatically.

Automatic client reconnection is only available when an application successfully connects to a queue
manager.

1062 IBM MQ: Programming

When an application connects to a queue manager that uses the CLIENT transport, the IBM MQ classes
for JMS use the value of the Connection Factory property CLIENTRECONNECTOPTIONS to determine
whether to use automatic client reconnection, if the queue manager that the application is connected to
becomes unavailable. Table 1 shows the possible values for the CLIENTRECONNECTOPTIONS property,
and the behavior of the IBM MQ classes for JMS for each of these values:

Table 143. Possible CLIENTRECCECTOPTIONS property values.

CLIENTRECONNECTOPTIONS Behavior of IBM MQ classes for JMS

ANY Use the value of the CONNECTIONNAMELIST property
to open a connection to a host name and port
combination, and connect to any queue manager. In
order to use this automatic client reconnection option,
the QMANAGER property must be set to either the
default value or "*".

ASDEF Use the value of DefRecon to determine whether
automatic client reconnection is available.

DISABLED Do not perform any automatic client reconnection and
return a JMSException to the application.

QMGR Use the value of the CONNECTIONNAMELIST property
to open a connection to a host name and port
combination, and connect to the queue manager specified
by the QMANAGER property.

When you perform automatic client reconnection, the IBM MQ classes for JMS uses the information in the
Connection Factory property CONNNECTIONNAMELIST to determine what system to reconnect to.

The IBM MQ classes for JMS initially tries to reconnect by using the host name and port that is specified
in the first entry in the CONNECTIONNAMELIST. If a connection is made, the IBM MQ classes for JMS
then tries to connect to the queue manager that has the name specified in the QMANAGER property. If a
connection to the queue manager can be established, the IBM MQ classes for JMS reopens all of the IBM
MQ objects that the application had open before automatic client reconnection and continue running as
before.

If a connection cannot be established to the required queue manager by using the first entry in the
CONNECTIONNAMELIST, the IBM MQ classes for JMS tries the second entry in the
CONNECTIONNAMELIST, and so on.

When the IBM MQ classes for JMS have tried all of the entries in the CONNECTIONNAMELIST, they
wait for a period of time before they try to reconnect again. To perform the new reconnection attempt,
the IBM MQ classes for JMS start with the first entry in the CONNECTIONNAMELIST. They then try
each entry in the CONNECTIONNAMELIST in turn until either a reconnection occurs or the end of the
CONNECTIONNAMELIST is reached, at which point the IBM MQ classes for JMS waits for a period of
time before they try again.

This process of automatic client reconnection continues until the IBM MQ classes for JMS successfully
reconnected to the queue manager specified by the QMANAGER property.

By default, the reconnection attempts happen at the following intervals:
v The first attempt is made after an initial delay of 1 second, plus a random element up to 250

milliseconds.
v The second attempt is made 2 seconds, plus a random interval of up to 500 milliseconds, after the first

attempt fails.
v The third attempt is made 4 seconds, plus a random interval of up to 1 second, after the second

attempt fails.

Developing JMS and Java Platform, Enterprise Edition applications 1063

v The fourth attempt is made 8 seconds, plus a random interval of up to 2 seconds, after the third
attempt fails.

v The fifth attempt is made 16 seconds, plus a random interval of up to 4 seconds, after the fourth
attempt fails.

v The sixth attempt, and all subsequent attempts are made 25 seconds, plus a random interval of up to 6
seconds and 250 milliseconds after the previous attempt fails.

The reconnection attempts are delayed by intervals that are partly fixed and partly random. This is to
prevent all of the IBM MQ classes for JMS applications that were connected to a queue manager that is
no longer available from reconnecting simultaneously.

If you need to increase the default values, to more accurately reflect the amount of time that is required
for a queue manager to recover, or a standby queue manager to become active, modify the ReconDelay
attribute in the Channel stanza of the client configuration file, for more information, see CHANNELS
stanza of the client configuration file.

Whether an IBM MQ classes for JMS application continues to work correctly after being reconnected
automatically depends on its design. Read the related topics to understand how to design applications
can use the automatic reconnection functionality.

Connecting to multi-instance queue managers using CONNECTIONNAMELIST:

Automatic client reconnection can be used by the IBM MQ classes for JMS applications that connect to a
multi-instance queue manager.

If the queue manager instance that an application is using becomes unavailable, the IBM MQ classes for
JMS can automatically try to connect to the standby instance on behalf of the application. The application
blocks while the automatic client reconnection is taking place, and resumes when the IBM MQ classes for
JMS establish a connection to the standby queue manager.

To enable automatic client reconnection for a multi-instance queue manager, set the following properties
on the Connection Factory that is used by the IBM MQ classes for JMS application:

CHANNEL
The name of a server connection channel defined on the queue manager.

QMANAGER

The name of the multi-instance queue manager.

CONNECTIONNAMELIST=host1(port1), host2(port2).

The first entry in the list must contain the host name and the port that is used to contact the
primary queue manager instance. The second entry should contain the hostname, and the port of
the system where the standby queue manager instance is located.

CLIENTRECONNECTOPTIONS=QMGR.

This ensures that the IBM MQ classes for JMS tries to reconnect to a queue manager that has the
same name as the queue manager that the application was previously connected to.

1064 IBM MQ: Programming

Automatic JMS client reconnection with CCDTs:

If a stand-alone IBM MQ classes for JMS application uses a Connection Factory that has the CCDTURL
property set, the application is eligible to use automatic client reconnection.

The behavior of the automatic client reconnection functionality that is provided by the IBM MQ classes
for JMS depends on the following properties:

The JMS Connection Factory property TRANSPORT (Short name TRAN)

TRANSPORT specifies how applications that use the Connection Factory connects to a queue
manager. This property must be set to the value CLIENT for automatic client reconnection to be
used. Automatic client reconnection is not available to applications that connect to a queue
manager by using a Connection Factory that has the TRANSPORT property set to BIND, DIRECT,
or DIRECTHTTP.

The JMS Connection Factory property QMANAGER (Short name QMGR)

The QMANAGER property specifies the name of the queue manager that the Connection Factory
connects to.

The JMS Connection Factory property CCDTURL (Short name CCDT)

The CCDTURL property points to the client channel definition table that the IBM MQ classes for
JMS uses when it connects to a queue manager.

The JMS Connection Factory property CLIENTRECONNECTOPTIONS (Short name CROPT)

CLIENTRECONNECTOPTIONS controls whether the IBM MQ classes for JMS attempts to
automatically connect to a queue manager on behalf of an application if a queue manager
becomes available.

The DefRecon attribute in the Channels stanza of the client configuration file

The DefRecon attribute provides an administrative option to enable all applications to
automatically reconnect, or to disable the automatic reconnection for applications that are written
to reconnect automatically.

Automatic client reconnection is only available when an application successfully connects to a queue
manager.

When an application connects to a queue manager by using the CLIENT transport, the IBM MQ classes
for JMS use the value of the Connection Factory property CLIENTRECONNECTOPTIONS to determine
whether to use automatic client reconnection, if the queue manager that the application is connected to
becomes unavailable. Table 1 shows the possible values for the CLIENTRECONNECTOPTIONS property,
and the behavior of the IBM MQ classes for JMS for each of these values:

Table 144. Possible CLIENTRECCECTOPTIONS property

CLIENTRECONNECTOPTIONS Behavior of IBM MQ classes for JMS

ANY Open the client channel definition table that is specified
by the CCDTURL property, pick an entry in the table,
and then use that entry to start a client connection
channel to a queue manager. To use this automatic client
reconnection option, the QMANAGER property must be
set to either:

v An asterisk (*)

v An asterisk (*) followed by the name of a queue
manager group

v An empty string, or a string that contains all blank
characters

Developing JMS and Java Platform, Enterprise Edition applications 1065

Table 144. Possible CLIENTRECCECTOPTIONS property (continued)

CLIENTRECONNECTOPTIONS Behavior of IBM MQ classes for JMS

ASDEF Use the value of DefRecon to determine whether
automatic client reconnection is available.

DISABLED Do not perform any automatic client reconnection and
return a JMSException to the application.

QMGR Open the client channel definition table that is specified
by the CCDTURL property, find the entries in the table
that match the queue manager name that is specified by
the QMANAGER property and then use those entries to
start a client connection channel to that queue manager.

When performing automatic client reconnection, the IBM MQ classes for JMS uses the client channel
definition table that is specified in the CCDTURL property to determine what system to reconnect to.

The IBM MQ classes for JMS initially parses the client channel definition table and finds a suitable entry
that matches the value of the QMANAGER property. When an entry is found, the IBM MQ classes for
JMS tries to reconnect to the required queue manager using that entry. If a connection to the queue
manager can be established, the IBM MQ classes for JMS reopens all of the IBM MQ objects that the
application had open before automatic client reconnection and continue running as before.

If a connection cannot be established to the required queue manager, the IBM MQ classes for JMS looks
for another suitable entry in the client channel definition table and tries to use that, and so on.

When the IBM MQ classes for JMS have tried all of the suitable entries in the client channel definition
table, they wait for a period of time before trying to reconnect again. To perform the new reconnection
attempt, the IBM MQ classes for JMS parses the client channel definition table again and tries the first
suitable entry. They will then try each suitable entry in the client channel definition table in turn until
either a reconnection occurs or the last suitable entry in the client channel definition table has been tried,
at which point the IBM MQ classes for JMS waits for a period of time before trying again.

This process of automatic client reconnection continues until the IBM MQ classes for JMS successfully
reconnects to the queue manager specified by the QMANAGER property.

By default, the reconnection attempts happen at the following intervals:
v The first attempt is made after an initial delay of 1 second, plus a random element up to 250

milliseconds.
v The second attempt is made 2 seconds, plus a random interval of up to 500 milliseconds, after the first

attempt fails.
v The third attempt is made 4 seconds, plus a random interval of up to 1 second, after the second

attempt fails.
v The fourth attempt is made 8 seconds, plus a random interval of up to 2 seconds, after the third

attempt fails.
v The fifth attempt is made 16 seconds, plus a random interval of up to 4 seconds, after the fourth

attempt fails.
v The sixth attempt, and all subsequent attempts are made 25 seconds, plus a random interval of up to 6

seconds and 250 milliseconds after the previous attempt fails.

The reconnection attempts are delayed by intervals that are partly fixed and partly random. This prevents
all of the IBM MQ classes for JMS applications, that were connected to a queue manager that is no longer
available, from reconnecting simultaneously.

1066 IBM MQ: Programming

If you need to increase the default values, to more accurately reflect the amount of time that is required
for a queue manager to recover, or a standby queue manager to become active, modify the ReconDelay
attribute in the Channel stanza of the client configuration file, for more information, see CHANNELS
stanza of the client configuration file.

Whether an IBM MQ classes for JMS application continues to work correctly after it has been reconnected
automatically depends on its design. Read the related topics to understand how to design applications
that can use the automatic reconnection functionality.

Connecting to multi-instance queue managers by using CCDTs:

Automatic client reconnection can be used by IBM MQ classes for JMS applications that connect to a
multi-instance queue manager.

If the queue manager instance that an application is using becomes unavailable, the IBM MQ classes for
JMS can automatically try to connect to the standby instance on behalf of the application. The application
blocks while the automatic client reconnection is taking place, and resumes when the IBM MQ classes for
JMS establishes a connection to the standby queue manager.

To enable automatic client reconnection for a multi-instance queue manager, set the following properties
on the Connection Factory that is used by the IBM MQ classes for JMS application:

QMANAGER=The name of the multi-instance queue manager.

CCDTURL=URI

The URI for a client channel definition table that contains two entries for the multi-instance
queue manager; one for the primary instance and one for the stand-by instance.

Using automatic client reconnection in Java Platform, Enterprise Edition environments:

Automatic client reconnection with activation specifications is not supported.

The IBM MQ resource adapter provides its own mechanism for reconnecting activation specifications if
the queue manager that the activation specification was connecting to becomes unavailable.

This mechanism is controlled by:
v The IBM MQ resource adapter property reconnectionRetryCount.
v The IBM MQ resource adapter property reconnectionRetryInterval.
v The activation specification property connectionNameList.

For more information on these properties, see“Configuration of the ResourceAdapter object” on page
1110.

The use of automatic client reconnection within a message-driven bean application's onMessage() method,
or any other application that is running within the Java Platform, Enterprise Edition environment is not
supported. The application needs to implement its own reconnection logic if the queue manager it was
connecting to becomes unavailable.

Developing JMS and Java Platform, Enterprise Edition applications 1067

Sharing a TCP/IP connection in IBM MQ classes for JMS:

Multiple instances of an MQI channel can be made to share a single TCP/IP connection.

Applications that are running inside the same Java runtime environment, and that use the IBM MQ
classes for JMS or the IBM MQ resource adapter to connect to a queue manager by using the CLIENT
transport, can be made to share the same channel instance.

There is a one-to-one relationship between channel instances and TCP/IP connections. One TCP/IP
connection is created for every channel instance.

If a channel is defined with the SHARECNV parameter set to a value greater than 1, then that number of
conversations can share a channel instance. To enable a connection factory or an activation specification
to use this function, set the SHARECONVALLOWED property to YES.

Every JMS connection and JMS session that is created by a JMS application creates its own conversation
with the queue manager.

When an activation specification starts up, the IBM MQ resource adapter starts a conversation with the
queue manager for the activation specification to use. Every server session in the server session pool that
is associated with the activation specification also starts a conversation with the queue manager.

The SHARECNV attribute is a best effort approach to connection sharing. Therefore, when a SHARECNV
value greater than 0 is used with the IBM MQ classes for JMS, it is not guaranteed that a new connection
request will always share an already established connection.

Calculating the number of channel instances

Use the following formulae to determine the maximum number of channel instances that are created by
an application:

Activation specifications

Number of channel instances = (< maxPoolDepth > + 1) / < SHARECNV >

Where < maxPoolDepth > is the value of the maxPoolDepth property and < SHARECNV > is the value
of SHARECNV property on the channel that is used by the activation specification.

Other JMS applications

Number of channel instances = (<JMS connections> + <JMS sessions>) / < SHARECNV >

Where <JMS connections> is the number of connections that are created by the application, where
<JMS sessions> is the number of JMS sessions that are created by the application, and < SHARECNV
> is the value of SHARECNV property on the channel that is used by the activation specification.

Examples

The following examples show how to use the formulae to calculate the number of channel instances that
are created on a queue manager by applications by using either the IBM MQ classes for JMS or the IBM
MQ resource adapter.

JMS application example
A JMS application connection connects to a queue manager by using the CLIENT transport, and
creates a JMS connection and three JMS sessions. The channel that the application is using to
connect to the queue manager has the SHARECNV property set to the value of 10. When the
application is running, there are four conversations between the application and the queue
manager and one channel instance. The four conversations all share the channel instance.

1068 IBM MQ: Programming

Activation specification example
An activation specification connects to a queue manager by using the CLIENT transport. The
activation specification is configured with the maxPoolDepth property set to 10. The channel that
the activation specification is configured to use has the SHARECNV property set to 10. When the
activation specification is running, and processing 10 messages concurrently, the number of
conversations between the activation specification and the queue manager is 11 (10 conversations
for the server sessions, and one for the activation specification). The number of channel instances
that are used by the activation specification is 2.

Activation specification example
An activation specification connects to a queue manager by using the CLIENT transport. The
activation specification is configured with the maxPoolDepth property set to 5. The channel that
the activation specification is configured to use has the SHARECNV property set to 0. When the
activation specification is running, and processing 5 messages concurrently, the number of
conversations between the activation specification and the queue manager is 6 (five conversations
for the server sessions, and one for the activation specification). The number of channel instances
that are used by the activation specification is 6, because the SHARECNV property on the channel is
set to 0, every conversation uses its own channel instance.

Specifying a range of ports for client connections in IBM MQ classes for JMS:

Use the LOCALADDRESS property to specify a range of ports that your application can bind to.

When an IBM MQ classes for JMS application attempts to connect to an IBM MQ queue manager in client
mode, a firewall might allow only those connections that originate from specified ports or a range of
ports. In this situation, you can use the LOCALADDRESS property of a ConnectionFactory,
QueueConnectionFactory, or TopicConnectionFactory object to specify a port, or a range of ports, that the
application can bind to.

You can set the LOCALADDRESS property by using the IBM MQ JMS administration tool, or by calling
the setLocalAddress() method in a JMS application. Here is an example of setting the property from
within an application:
mqConnectionFactory.setLocalAddress("192.0.2.0(2000,3000)");

When the application connects to a queue manager subsequently, the application binds to a local IP
address and port number in the range 192.0.2.0(2000) to 192.0.2.0(3000).

In a system with more than one network interface, you can also use the LOCALADDRESS property to
specify which network interface must be used for a connection.

For a real-time connection to a broker, the LOCALADDRESS property is relevant only when multicast is
used. In this case, you can use the property to specify which local network interface must be used for a
connection, but the value of the property must not contain a port number, or a range of port numbers.

Connection errors might occur if you restrict the range of ports. If an error occurs, a JMSException is
thrown with an embedded MQException that contains the IBM MQ reason code
MQRC_Q_MGR_NOT_AVAILABLE and the following message:
Socket connection attempt refused due to LOCAL_ADDRESS_PROPERTY restrictions

An error might occur if all the ports in the specified range are in use, or if the specified IP address, host
name, or port number is not valid (a negative port number, for example).

Because IBM MQ classes for JMS might create connections other than those required by an application,
always consider specifying a range of ports. In general, every session created by an application requires
one port and IBM MQ classes for JMS might require three or four additional ports. If a connection error
does occur, increase the range of ports.

Developing JMS and Java Platform, Enterprise Edition applications 1069

Connection pooling, which is used by default in IBM MQ classes for JMS, might have an effect on the
speed at which ports can be reused. As a result, a connection error might occur while ports are being
freed.

Channel compression in IBM MQ classes for JMS:

An IBM MQ classes for JMS application can use IBM MQ facilities to compress a message header or data.

Compressing the data that flows on an IBM MQ channel can improve the performance of the channel
and reduce network traffic. Using function supplied with IBM MQ, you can compress the data that flows
on message channels and MQI channels. On either type of channel, you can compress header data and
message data independently of each other. By default, no data is compressed on a channel.

An IBM MQ classes for JMS application specifies the techniques that can be used for compressing header
or message data on a connection by creating a java.util.Collection object. Each compression technique is
an Integer object in the collection, and the order in which the application adds the compression
techniques to the collection is the order in which the compression techniques are negotiated with the
queue manager when the application creates the connection. The application can then pass the collection
to a ConnectionFactory object by calling the setHdrCompList() method, for header data, or the
setMsgCompList() method, for message data. When the application is ready, it can create the connection.

The following code fragments illustrate the approach described. The first code fragment shows you how
to implement header data compression:
Collection headerComp = new Vector();
headerComp.add(new Integer(WMQConstants.WMQ_COMPHDR_SYSTEM));
.
.
.
((MQConnectionFactory) cf).setHdrCompList(headerComp);
.
.
.
connection = cf.createConnection();

The second code fragment shows you how to implement message data compression:
Collection msgComp = new Vector();
msgComp.add(new Integer(WMQConstants.WMQ_COMPMSG_RLE));
msgComp.add(new Integer(WMQConstants.WMQ_COMPMSG_ZLIB_HIGH));
.
.
.
((MQConnectionFactory) cf).setMsgCompList(msgComp);
.
.
.
connection = cf.createConnection();

In the second example, the compression techniques are negotiated in the order RLE, then ZLIB_HIGH,
when the connection is created. The compression technique that is selected cannot be changed during the
lifetime of the Connection object. To use compression on a connection, the setHdrCompList() and the
setMsgCompList() methods must be called before creating the Connection object.

1070 IBM MQ: Programming

Putting messages asynchronously in IBM MQ classes for JMS:

Normally, when an application sends messages to a destination, the application has to wait for the queue
manager to confirm that it has processed the request. You can improve messaging performance in some
circumstances by choosing instead to put messages asynchronously. When an application puts a message
asynchronously, the queue manager does not return the success or failure of each call, but you can
instead check for errors periodically.

Whether a destination returns control to the application, without determining whether the queue
manager has received the message safely, depends upon the following properties:
v The JMS Destination Property PUTASYNCALLOWED (short name - PAALD).

PUTASYNCALLOWED controls whether JMS applications can put messages asynchronously, if the
underlying queue or topic that the JMS Destination represents, allows this option.

v The IBM MQ queue or topic property DEFPRESP (Default put response type).
DEFPRESP specifies whether applications that put messages to the queue, or publish messages to the
topic, can make use of the asynchronous put functionality.

The following table shows the possible values for the PUTASYNCALLOWED and DEFPRESP properties,
and what values are required for the asynchronous put functionality to be enabled:

Table 145. PUTASYNCALLOWED and DEFPRESP properties determining if messages are put asynchronously.

JMS Destination property
PUTASYNCALLOWED =
NO

PUTASYNCALLOWED =
YES

PUTASYNCALLOWED =
AS_DEST or AS_Q_DEF
or AS_T_DEF

IBM MQ queue property

DEFPRESP=SYNC Asynchronous put
functionality not enabled

Asynchronous put
functionality enabled

Asynchronous put
functionality not enabled

DEFPRESP=ASYNC Asynchronous put
functionality not enabled

Asynchronous put
functionality enabled

Asynchronous put
functionality enabled

For messages sent in a transacted session, the application ultimately determines whether the queue
manager has received the messages safely when it calls commit().

If an application sends persistent messages within a transacted session, and one or more of the messages
are not received safely, the transaction fails to commit and produces an exception. However, if an
application sends nonpersistent messages within a transacted session, and one or more of the messages
are not received safely, the transaction commits successfully. The application does not receive any
feedback that the nonpersistent messages did not arrive safely.

For nonpersistent messages sent in a session that is not transacted, the SENDCHECKCOUNT property of
the ConnectionFactory object specifies how many messages are to be sent, before IBM MQ classes for JMS
checks that the queue manager has received the messages safely.

If a check discovers that one or more messages were not received safely, and the application has
registered an exception listener with the connection, IBM MQ classes for JMS calls the onException()
method of the exception listener to pass a JMS exception to the application.

The JMS exception has an error code of JMSWMQ0028 and this code displays the following message:
At least one asynchronous put message failed or gave a warning.

The JMS exception also has a linked exception that provides more details. The default value of the
SENDCHECKCOUNT property is zero, which means that no such checks are made.

Developing JMS and Java Platform, Enterprise Edition applications 1071

This optimization is of most benefit to an application that connects to a queue manager in client mode,
and needs to send a sequence of messages in rapid succession, but does not require immediate feedback
from the queue manager for each message sent. However, an application can still use this optimization
even if it connects to a queue manager in bindings mode, but the expected performance benefit is not as
great.

Using read ahead with IBM MQ classes for JMS:

The read ahead functionality that is provided by IBM MQ allows non-persistent messages that are
received outside of a transaction to be sent to the IBM MQ classes for JMS before an application requests
them. The IBM MQ classes for JMS store the messages in an internal buffer, and pass the messages to the
application when the application asks for them.

IBM MQ classes for JMS applications that use MessageConsumers or MessageListeners to receive messages
from a destination outside of a transaction can use the read ahead functionality. Using read ahead allows
applications that use these objects to benefit from improved performance when they receive messages.

Whether an application that uses MessageConsumers or MessageListeners can use read ahead depends
upon the following properties:
v The JMS Destination Property READAHEADALLOWED (short name - RAALD).

READAHEADALLOWED controls whether JMS applications can use read ahead when getting or
browsing non-persistent messages outside of a transaction, if the underlying queue or topic that the
JMS Destination represents, allows this option.

v The IBM MQ queue or topic property DEFREADA (Default read ahead). DEFREADA specifies whether
applications that are receiving or browsing non-persistent messages outside of a transaction can use
read ahead.

The following table shows the possible values for the READAHEADALLOWED and DEFREADA
properties, and what values are required for the read ahead functionality to be enabled:

Table 146. READAHEADALLOWED and DEFREADA properties determining if read ahead is used when receiving or
browsing non-persistent messages outside of a transaction.

IBM MQ destination
property

READAHEADALLOWED=
YES

READAHEADALLOWED=
NO

AS_DEST or AS_Q_DEF
or AS_T_DEF

IBM MQ queue property

DEFREADA = NO Read ahead functionality
enabled

Read ahead functionality
not enabled

Read ahead functionality
not enabled

DEFREADA = YES Read ahead functionality
enabled

Read ahead functionality
not enabled

Read ahead functionality
enabled

DEFREADA = DISABLED Read ahead functionality
not enabled

Read ahead functionality
not enabled

Read ahead functionality
not enabled

If the read ahead functionality is enabled, when a MessageConsumer or MessageListener is created by an
application, the IBM MQ classes for JMS create an internal buffer for the destination that the
MessageConsumer or MessageListener is monitoring. There is one internal buffer for each MessageConsumer
or MessageListener. The queue manager starts sending non-persistent messages to the IBM MQ classes
for JMS when the application calls one of the following methods:
v MessageConsumer.receive()

v MessageConsumer.receive(long timeout)

v MessageConsumer.receiveNoWait()

v Session.setMessageListener(MessageListener listener)

1072 IBM MQ: Programming

The IBM MQ classes for JMS automatically returns the first message back to the application, by the
method call that the application has made. The other non-persistent messages are stored by the IBM MQ
classes for JMS in the internal buffer that was created for the destination. When the application requests
the next message to process, the IBM MQ classes for JMS will return the next message in the internal
buffer.

The IBM MQ classes for JMS requests more non-persistent messages from the queue manager when the
internal buffer is empty.

The internal buffer that is used by the IBM MQ classes for JMS is deleted when an application closes a
MessageConsumer, or the JMS Session that a MessageListener is associated with.

For MessageConsumers, any unprocessed messages in the internal buffer is lost.

When using MessageListeners, what happens to the messages in the internal buffer depends upon the
JMS destination property READAHEADCLOSEPOLICY (short name - RACP). The default value of the
property is DELIVER_ALL, which means that the JMS session that was used to create the
MessageListener is not closed until all of the messages in the internal buffer are delivered to the
application. If the property is set to DELIVER_CURRENT, then the JMS session will be closed after the
current message has been processed by the application and all of the remaining messages in the internal
buffer are discarded.

Retained publications in IBM MQ classes for JMS:

An IBM MQ classes for JMS client can be configured to use retained publications.

A publisher can specify that a copy of a publication must be retained so that it can be sent to future
subscribers who register an interest in the topic. This is done in IBM MQ classes for JMS by setting the
integer property JMS_IBM_RETAIN to the value 1. Constants have been defined for these values in the
com.ibm.msg.client.jms.JmsConstants interface. For example, if you have created a message msg, to set it
as a retained publication use the following code:
// set as a retained publication
msg.setIntProperty(JmsConstants.JMS_IBM_RETAIN, JmsConstants.RETAIN_PUBLICATION);

You can now send the message as normal. JMS_IBM_RETAIN can also be queried in a received message.
It is therefore possible to query whether a received message is a retained publication.

XA support in IBM MQ classes for JMS
JMS supports XA-compliant transactions in bindings and client modes with a supported transaction
manager within a JEE container.

If you require XA functionality in an application server environment, you must configure your
application appropriately. Refer to your application server's own documentation for information about
how to configure applications to use distributed transactions.

An IBM MQ queue manager cannot act as a transaction manager for JMS.

Developing JMS and Java Platform, Enterprise Edition applications 1073

Using JMS 2.0 functionality
JMS 2.0 introduces several new areas of functionality to the IBM MQ classes for JMS.

When you are developing a JMS application for IBM MQ Version 8.0, you might need to consider their
impact on your queue manager.
Related information:
IBM MQ Java language interfaces

JMS 2.0 delivery delay:

With JMS 2.0, you can specify a delivery delay when sending a message. The queue manager does not
deliver the message until after the specified delivery delay has elapsed.

An application can specify a delivery delay in milliseconds, when it sends a message, by using either
MessageProducer.setDeliveryDelay(long deliveryDelay) or JMSProducer.setDeliveryDelay(long
deliveryDelay). This value is added to the time at which the message is sent and gives the earliest time
at which any other application can get that message.

In IBM MQ Version 8.0, delivery delay is implemented by using a single internal staging queue. Messages
that have a nonzero delivery delay are placed on this queue with a header that indicates the delivery
delay and information about the target queue. A component of the queue manager that is called the
delivery delay processor monitors the messages on the staging queue. When a message's delivery delay
completes, the message is taken off the staging queue and placed on the target queue.

Messaging clients

The IBM MQ implementation of delivery delay is only available for use when you are using the JMS
client. The following restrictions apply if you are using delivery delay with IBM MQ. These restrictions
apply equally to MessageProducers and JMSProducers, but JMSRuntimeExceptions are thrown in the case
of JMSProducers.
v Any attempt to call MessageProducer.setDeliveryDelay with a nonzero value when connected to an

IBM MQ queue manager earlier than Version 8.0, results in a JMSException with a
MQRC_FUNCTION_NOT_SUPPORTED message.

v Delivery delay is not supported for clustered destinations that have a DEFBIND value other than
MQBND_BIND_NOT_FIXED. If a MessageProducer has a nonzero delivery delay set and an attempt is
made to send to a destination that does not meet this requirement, then the call results in a
JMSException with an MQRC_OPTIONS_ERROR message.

v Any attempt to set a time to live value that is less than a previously specified nonzero delivery delay,
or vice versa, results in a JMSException with a MQRC_EXPIRY_ERROR message. This checking is done
on calling setTimeToLive or setDeliveryDelay or send methods, depending on the exact set of
operations chosen.

v Use of retained publications and delivery delay is not supported. Attempting to publish a message
with a delivery delay if that message has been marked as retained by using
msg.setIntProperty(JmsConstants.JMS_IBM_RETAIN, JmsConstants.RETAIN_PUBLICATION) results in a
JMSException with a MQRC_OPTIONS_ERROR message.

v Delivery delay and message grouping is not supported and any attempt to use this combination results
in a JMSException with a MQRC_OPTIONS_ERROR message.

Any failure to send a message with delivery delay results in the client throwing a JMSException with a
suitable error message, for example queue full. In some situations, the error message might apply to the
target destination, or the staging queue, or both.

1074 IBM MQ: Programming

Note: IBM MQ allows applications that put a message in a unit of work to get the same message again
even though the unit of work has not committed. This technique does not work with delivery delay as
the message is not placed on the staging queue until the unit of work is committed, and as a result will
not have been sent to the target destination.

Authorization

IBM MQ carries out authorization checks on the original target destination when the application sends a
message with a nonzero delivery delay. If the application is not authorized, then the send fails. When the
queue manager detects that a message's delivery delay is complete, it opens the target queue. No
authorization checks are carried out at this point.

SYSTEM.DDELAY.LOCAL.QUEUE

A new system queue, SYSTEM.DDELAY.LOCAL.QUEUE, is used to implement delivery delay.

v On distributed systems, SYSTEM.DDELAY.LOCAL.QUEUE exists by default. The system
queue must be altered so that its MAXMSGL and MAXDEPTH attributes are sufficient for the expected
load.

v z/OS On IBM MQ for z/OS, SYSTEM.DDELAY.LOCAL.QUEUE is used as a staging queue for
messages that are sent with delivery delay to both local and shared queues. On z/OS, the queue must
be created and must either be defined so that its MAXMSGL and MAXDEPTH attributes are sufficient
for the expected load.

When this queue is created, it must be secured so that as few users as possible have access to it. Access to
the queue must be for maintenance and monitoring purposes only.

When a message is sent by a JMS application with a nonzero delivery delay, it is put to this queue with a
new message id. The original message id is placed in the correlation id of the message. This correlation id
allows an application to retrieve a message from the staging queue when required, for example if a large
delivery delay was used by mistake.

z/OS

Considerations for z/OS

If your system is running on z/OS, there are additional considerations to take into account if you want to
use delivery delay.

If delivery delay is to be used, the system queue SYSTEM.DDELAY.LOCAL.QUEUE must be defined. It
must be defined with a storage class that is sufficient for its expected load, and with HARDENBO,
STGCLASS('DEFAULT'), INDXTYPE(NONE), and MSGDLVSQ(FIFO) specified. A sample definition of the
system queue is provided, commented out, in the CSQ4INSG JCL.

Delivery delay is not protected by OPMODE. If you use delivery delay with an IBM MQ Version 8.0
queue manager and then migrate back to an earlier release any messages on the
SYSTEM.DDELAY.LOCAL.QUEUE queues are marooned unless you manually deal with them.

Shared queues

Delivery delay is supported for sending messages to shared queues. However, there is only a single,
private staging queue that is used regardless of whether the target queue is shared or not. The queue
manager that owns that private queue must be running to send the delayed message to its target shared
queue when the delay completes.

Developing JMS and Java Platform, Enterprise Edition applications 1075

Note: If a non-persistent message is put with a delivery delay to a shared queue, and the queue manager
that owns the staging queue shuts down, the original message is lost. As a result non-persistent messages
sent with delivery delay to a shared queue are more likely to be lost than non-persistent messages sent
without delivery delay to a shared queue.

Target destination resolution

If the message is sent to a queue, resolution is driven twice; once by the JMS application and once by the
queue manager when it takes the message off the staging queue and sends it to the target queue.

Target subscriptions for publications are matched when the JMS application calls the send method.

If a message is sent with persistence or priority according to the queue definition, then the value is set on
the first resolution and not the second.

Expiry interval

Delivery delay preserves the behavior of the expiry property, MQMD.Expiry. For example, if a message
was put from a JMS application with an expiry interval of 20,000 ms and a delivery delay of 5,000 ms,
and got after an elapsed time of 10,000 ms, then the value of the MQMD.expiry field might be
approximately 50 tenths of a second. This value indicates that 15 seconds has elapsed from the time the
message was put, to the time when it was got.

If a message expires while on the staging queue and one of the MQRO_EXPIRATION_* options is set,
then the report generated is for the original message as sent by the application, the header used to
contain the delivery delay information is removed.

Stopping and starting the delivery delay processor

z/OS On z/OS, the delivery delay processor is integrated into the queue manager MSTR address
space. When the queue manager starts, the delivery delay processor also starts. If the staging queue is
available, it opens the queue and waits for messages to arrive on it to be processed. If the staging queue
has not been defined, or is disabled for gets, or another error occurs, the delivery delay processor shuts
down. If the staging queue is later defined, or altered to be get enabled, the delivery delay processor
restarts. If the delivery delay processor shuts down for any other reason, it can be restarted by altering
the PUT attribute of the staging queue from ENABLED to DISABLED and back to ENABLED again. Should you
need to stop the delivery delay processor for any reason, set the PUT attribute of the staging queue to
DISABLED.

On distributed systems, the delay processor starts with the queue manager, and is automatically restarted
in the event of a recoverable failure.

Failure to put to target queue

If a delayed message cannot be put to the target queue once its delay completes, the message is dealt
with as indicated in its report options: it is either discarded or sent to the dead letter queue. If this action
fails, then an attempt is made to put the message later. If the action is successful an exception report is
generated and sent to the specified queue, if the report is requested. If the report message could not be
sent, the report message is sent to the dead letter queue. If sending the report to the dead letter queue
fails and the message is persistent, all changes are discarded and the original message rolled back and
redelivered later. If the message is non-persistent the report message is discarded, but other changes are
committed. If a delayed publication cannot be delivered because a subscriber has unsubscribed, or in the
case of a non-durable subscriber, because it has disconnected, then the message is discarded silently.
Report messages are still generated as described earlier.

1076 IBM MQ: Programming

If a delayed publication cannot be delivered to a subscriber and is instead put to the dead letter queue,
and the put to the dead letter queue fails then the message is discarded.

To reduce the likelihood of the put to the target queue failing after the delivery delay has completed, the
queue manager performs some basic checks when the JMS client sends a message with a nonzero
delivery delay. These checks include whether the queue is put disabled, if the message is bigger than the
maximum message length allowed, and if the queue is full.

Publish/subscribe

Matching of a publication to available subscriptions occurs when the JMS application sends a message
with a nonzero delivery delay. A message for each matching subscriber is put to the
SYSTEM.DDELAY.LOCAL.QUEUE queue, where it is kept until the delivery delay completes. If one of
those subscribers is a proxy subscription for another queue manager, then the fan-out on that queue
manager occurs after the delivery delay is complete. This might result in subscribers on the other queue
manager receiving publications that were originally published before they subscribed. This is a deviation
from the JMS 2.0 specification.

Delivery delay with publish/subscribe is only supported if the target topic is configured with
(N)PMSGDLV = ALLAVAIL. An attempt to use any other values results in a
MQRC_PUBLICATION_FAILURE error. If the delivery delay processor fails while it is putting the
message to the target queue, the result is as described in the "Failure to put to target queue" section.

Report messages

All report options are supported and actioned by the delivery processor, other than the following options
that are ignored, but passed through on the message when it is sent to the target queue:
v MQRO_COA*
v MQRO_COD*
v MQRO_PAN/MQRO_NAN
v MQRO_ACTIVITY

Cloned and shared subscriptions:

In IBM MQ Version 8.0, there are two methods for giving multiple consumers access to the same
subscription. These two methods are by using cloned subscriptions, or by using shared subscriptions.

Cloned subscriptions

Cloned subscription is an IBM MQ extension. Cloned subscriptions enable multiple consumers in
different Java virtual machines (JVMs) concurrent access to the subscription. This behavior can be used
by setting the CLONESUPP property to Enabled on a connectionFactory object. By default CLONESUPP is
Disabled. Cloned subscriptions can be enabled only on durable subscriptions. If CLONESUPP is enabled,
each subsequent connection that is made by using this connectionFactory is cloned.

A durable subscription can be considered cloned if one or more consumers are created to receive
messages from that subscription, that is, they were created specifying the same subscription name. This
can be done only if the connection under which the consumers were created has CLONESUPP set to Enabled
on the MQConnectionFactory. When a message is published on the subscription's topic, a copy of that
message is sent to the subscription. The message is available to any of the consumers, but only one
receives it.

Note: Enabling cloned subscriptions extends the JMS specification.

Developing JMS and Java Platform, Enterprise Edition applications 1077

Shared subscriptions

The JMS 2.0 specification introduces shared subscriptions, which allows messages from a topic
subscription to be shared among multiple consumers. Each message from the subscription is delivered to
only one of the consumers on that subscription. Shared subscriptions are enabled by the relevant call to
the JMS 2.0 API.

The APIs can be called in either of the following ways:
v From a Java SE application (or Java EE Client Container).
v From a servlet or the implementation of an MDB.

The JMS 2.0 specification does not define any standard way of driving an MDB from a
sharedSubscription, so IBM MQ Version 8.0 provides the sharedSubscription activation specification
property for this purpose. For more information about this property, see “Configuring the resource
adapter for inbound communication” on page 1111 and “Examples of how to define the
sharedSubscription property” on page 1124.

If a shared subscription is enabled, then it cannot be unshared.

Shared subscriptions can be created as either durable or non-durable subscriptions. There is no
requirement to separately create any objects on the queue manager side beyond the normal JMS
configuration, any objects that are required are created dynamically.

Deciding between shared or cloned subscriptions

When you are determining whether to use shared or cloned subscriptions, consider the benefits of both.
Where possible use shared subscriptions as it is specification defined behavior, rather than an IBM®

extension.

The following table contains some of the issues to consider when you are deciding between shared and
cloned subscriptions:

Table 147. Considerations when you are choosing between shared subscriptions and cloned subscriptions

Shared Subscriptions Cloned Subscriptions

Shared subscriptions are a standard part of the JMS 2.0
specification.

Cloned subscriptions are an IBM MQ specific extension.

Shared subscriptions are created by using explicit API
method calls.

Cloned subscriptions are controlled administratively at
the ConnectionFactory level.

Shared subscriptions can be durable or nondurable. Cloned subscriptions can only be durable.

Shared subscriptions are explicitly created on an
individual subscription basis.

Cloned subscriptions are used for any durable
subscription under a connection for which the function is
enabled.

If a subscription is created as shared it cannot later be
changed to unshared, or vice versa.

A subscription can be changed from cloned to uncloned
each time it is reopened if the CLONESUPP property of the
owning connection has changed.

1078 IBM MQ: Programming

Related information:
Subscribers and subscriptions
Subscription durability
CLONESUPP

SupportMQExtensions property:

The JMS 2.0 specification introduces changes to the way certain behaviors work. IBM MQ Version 8.0
includes the property com.ibm.mq.jms.SupportMQExtensions, which can be set to TRUE, to revert these
changed behaviors back to previous implementations.

Three areas of functionality are reverted by setting SupportMQExtensions to True:

Message priority
Messages can be assigned a priority, 0 - 9. Before JMS 2.0, messages could also use the value -1,
indicating that a queue's default priority is used. JMS 2.0 does not allow a message priority of -1
to be set. Turning on SupportMQExtensions allows the value of -1 to be used.

Client id
The JMS 2.0 specification requires that non-null client ids are checked for uniqueness when they
make a connection. Turning on SupportMQExtensions, means that this requirement is
disregarded, and that a client id can be reused.

NoLocal
The JMS 2.0 specification requires that when this constant is turned on, a consumer cannot
receive messages that are published by the same client id. Before JMS 2.0, this attribute was set
on a subscriber to prevent it receiving messages that are published by its own connection.
Turning on SupportMQExtensions reverts this behavior to its previous implementation.

This property can be set either as a standard JVM System property on the java command or contained
within the IBM MQ classes for JMS configuration file.
Related concepts:
“The IBM MQ classes for JMS configuration file” on page 916
An IBM MQ classes for JMS configuration file specifies properties that are used to configure IBM MQ
classes for JMS.
Related reference:
“Properties used to configure JMS client behavior” on page 922
Use these properties to configure the behavior of the JMS client.

IBM MQ classes for JMS Application Server Facilities
This topic describes how IBM MQ classes for JMS implements the ConnectionConsumer class and
advanced functionality in the Session class. It also summarizes the function of a server session pool.

Important: This information is for reference only. An application must not be written to use this interface:
it is used within the IBM MQ resource adapter to connect to Java EE servers. For practical connection
information, see “Using the IBM MQ resource adapter” on page 1099.

IBM MQ classes for JMS supports the Application Server Facilities (ASF) that are specified in the Java
Message Service Specification (see Oracle Technology Network for Java Developers). This specification
identifies three roles within this programming model:
v The JMS provider supplies ConnectionConsumer and advanced Session functionality.
v The application server supplies ServerSessionPool and ServerSession functionality.
v The client application uses the functionality that the JMS provider and application server supply.

The information in this topic does not apply if an application uses a real-time connection to a broker.

Developing JMS and Java Platform, Enterprise Edition applications 1079

http://www.oracle.com/technetwork/java/index.html

The JMS ConnectionConsumer
The ConnectionConsumer interface provides a high-performance method to deliver messages
concurrently to a pool of threads.

The JMS specification enables an application server to integrate closely with a JMS implementation by
using the ConnectionConsumer interface. This feature provides concurrent processing of messages.
Typically, an application server creates a pool of threads, and the JMS implementation makes messages
available to these threads. A JMS-aware application server (such as WebSphere Application Server) can
use this feature to provide high-level messaging functionality, such as message driven beans.

Normal applications do not use the ConnectionConsumer, but expert JMS clients might use it. For such
clients, the ConnectionConsumer provides a high-performance method to deliver messages concurrently
to a pool of threads. When a message arrives on a queue or a topic, JMS selects a thread from the pool
and delivers a batch of messages to it. To do this, JMS runs an associated MessageListener's onMessage()
method.

You can achieve the same effect by constructing multiple Session and MessageConsumer objects, each
with a registered MessageListener. However, the ConnectionConsumer provides better performance, less
use of resources, and greater flexibility. In particular, fewer Session objects are required.

Planning an application with ASF

This section tells you how to plan an application including:
v “General principles for point-to-point messaging using ASF”
v “General principles for publish/subscribe messaging using ASF” on page 1081
v “Removing messages from the queue in ASF” on page 1082
v Handling poison messages in ASF. See “Handling poison messages in IBM MQ classes for JMS” on

page 1034.

General principles for point-to-point messaging using ASF:

Use this topic for general information about point-to-point messaging using ASF.

When an application creates a ConnectionConsumer from a QueueConnection object, it specifies a JMS
queue object and a selector string. The ConnectionConsumer then begins to provide messages to sessions
in the associated ServerSessionPool. Messages arrive on the queue, and if they match the selector, they
are delivered to sessions in the associated ServerSessionPool.

In IBM MQ terms, the queue object refers to either a QLOCAL or a QALIAS on the local queue manager.
If it is a QALIAS, that QALIAS must refer to a QLOCAL. The fully resolved IBM MQ QLOCAL is known
as the underlying QLOCAL. A ConnectionConsumer is said to be active if it is not closed and its parent
QueueConnection is started.

It is possible for multiple ConnectionConsumers, each with different selectors, to run against the same
underlying QLOCAL. To maintain performance, unwanted messages must not accumulate on the queue.
Unwanted messages are those for which no active ConnectionConsumer has a matching selector. You can
set the QueueConnectionFactory so that these unwanted messages are removed from the queue (for
details, see “Removing messages from the queue in ASF” on page 1082). You can set this behavior in one
of two ways:
v Use the JMS administration tool to set the QueueConnectionFactory to MRET(NO).
v In your program, use:

MQQueueConnectionFactory.setMessageRetention(WMQConstants.WMQ_MRET_NO)

If you do not change this setting, the default is to retain such unwanted messages on the queue.

1080 IBM MQ: Programming

When you set up the IBM MQ queue manager, consider the following points:
v The underlying QLOCAL must be enabled for shared input. To do this, use the following MQSC

command:
ALTER QLOCAL(your.qlocal.name) SHARE GET(ENABLED)

v Your queue manager must have an enabled dead-letter queue. If a ConnectionConsumer experiences a
problem when it puts a message on the dead-letter queue, message delivery from the underlying
QLOCAL stops. To define a dead-letter queue, use:
ALTER QMGR DEADQ(your.dead.letter.queue.name)

v The user that runs the ConnectionConsumer must have authority to perform MQOPEN with
MQOO_SAVE_ALL_CONTEXT and MQOO_PASS_ALL_CONTEXT. For details, see the IBM MQ
documentation for your specific platform.

v If unwanted messages are left on the queue, they degrade the system performance. Therefore, plan
your message selectors so that between them, the ConnectionConsumers will remove all messages from
the queue.

For details about MQSC commands, see MQSC commands.

General principles for publish/subscribe messaging using ASF:

ConnectionConsumers receive messages for a specified Topic. A ConnectionConsumer can be durable or
non-durable. You must specify which queue or queues the ConnectionConsumer uses.

When an application creates a ConnectionConsumer from a TopicConnection object, it specifies a Topic
object and a selector string. The ConnectionConsumer then begins to receive messages that match the
selector on that Topic , including any retained publications for the topic subscribed to.

Alternatively, an application can create a durable ConnectionConsumer that is associated with a specific
name. This ConnectionConsumer receives messages that have been published on the Topic since the
durable ConnectionConsumer was last active. It receives all such messages that match the selector on the
Topic. However, if the ConnectionConsumer is using read-ahead, it can lose nonpersistent messages that
are in the client buffer when it closes.

If IBM MQ classes for JMS is in IBM MQ messaging provider migration mode, a separate queue is used
for non-durable ConnectionConsumer subscriptions. The CCSUB configurable option on the
TopicConnectionFactory specifies the queue to use. Normally, the CCSUB specifies a single queue for use
by all ConnectionConsumers that use the same TopicConnectionFactory. However, it is possible to make
each ConnectionConsumer generate a temporary queue by specifying a queue name prefix followed by
an asterisk (*).

If IBM MQ classes for JMS is in IBM MQ messaging provider migration mode, the CCDSUB property of
the Topic specifies the queue to use for durable subscriptions. Again, this can be a queue that already
exists or a queue name prefix followed by an asterisk (*). If you specify a queue that already exists, all
durable ConnectionConsumers that subscribe to the Topic use this queue. If you specify a queue name
prefix followed by an asterisk (*), a queue is generated the first time that a durable ConnectionConsumer
is created with a particular name. This queue is reused later when a durable ConnectionConsumer is
created with the same name.

When you set up the IBM MQ queue manager, consider the following points:
v Your queue manager must have an enabled dead-letter queue. If a ConnectionConsumer experiences a

problem when it puts a message on the dead-letter queue, message delivery from the underlying
QLOCAL stops. To define a dead-letter queue, use:
ALTER QMGR DEADQ(your.dead.letter.queue.name)

v The user that runs the ConnectionConsumer must have authority to perform MQOPEN with
MQOO_SAVE_ALL_CONTEXT and MQOO_PASS_ALL_CONTEXT. For details, see the IBM MQ
documentation for your platform.

Developing JMS and Java Platform, Enterprise Edition applications 1081

v You can optimize performance for an individual ConnectionConsumer by creating a separate,
dedicated, queue for it. This is at the cost of extra resource usage.

Removing messages from the queue in ASF:

When an application uses ConnectionConsumers, JMS might need to remove messages from the queue in
a number of situations.

These situations are as follows:

Badly formatted message
A message might arrive that JMS cannot parse.

Poison message
A message might reach the backout threshold, but the ConnectionConsumer fails to requeue it on
the backout queue.

No interested ConnectionConsumer
For point-to-point messaging, when the QueueConnectionFactory is set so that it does not retain
unwanted messages, a message arrives that is unwanted by any of the ConnectionConsumers.

In these situations, the ConnectionConsumer attempts to remove the message from the queue. The
disposition options in the report field of the message's MQMD set the exact behavior. These options are:

MQRO_DEAD_LETTER_Q
The message is requeued to the queue manager's dead-letter queue. This is the default.

MQRO_DISCARD_MSG
The message is discarded.

The ConnectionConsumer also generates a report message, and this also depends on the report field of
the message's MQMD. This message is sent to the message's ReplyToQ on the ReplyToQmgr. If there is
an error while the report message is being sent, the message is sent to the dead-letter queue instead. The
exception report options in the report field of the message's MQMD set details of the report message.
These options are:

MQRO_EXCEPTION
A report message is generated that contains the MQMD of the original message. It does not
contain any message body data.

MQRO_EXCEPTION_WITH_DATA
A report message is generated that contains the MQMD, any MQ headers, and 100 bytes of body
data.

MQRO_EXCEPTION_WITH_FULL_DATA
A report message is generated that contains all data from the original message.

default
No report message is generated.

When report messages are generated, the following options are honored:
v MQRO_NEW_MSG_ID
v MQRO_PASS_MSG_ID
v MQRO_COPY_MSG_ID_TO_CORREL_ID
v MQRO_PASS_CORREL_ID

If a poison message cannot be requeued, perhaps because the dead-letter queue is full or authorization is
wrongly specified, what happens depends on the persistence of the message. If the message is
nonpersistent, the message is discarded and no report message is generated. If the message is persistent,

1082 IBM MQ: Programming

delivery of messages to all connection consumers listening on that destination stops. Such connection
consumers must be closed and the problem resolved before they can be re-created and message delivery
restarted.

It is important to define a dead-letter queue, and to check it regularly to ensure that no problems occur.
Particularly, ensure that the dead-letter queue does not reach its maximum depth, and that its maximum
message size is large enough for all messages.

When a message is requeued to the dead-letter queue, it is preceded by an IBM MQ dead-letter header
(MQDLH). See MQDLH - Dead-letter header for details about the format of the MQDLH. You can
identify messages that a ConnectionConsumer has placed on the dead-letter queue, or report messages
that a ConnectionConsumer has generated, by the following fields:
v PutApplType is MQAT_JAVA (0x1C)
v PutApplName is " MQ JMS ConnectionConsumer "

These fields are in the MQDLH of messages on the dead-letter queue, and the MQMD of report
messages. The feedback field of the MQMD, and the Reason field of the MQDLH, contain a code
describing the error. For details about these codes, see “Reason and feedback codes in ASF” on page 1084.
Other fields are as described in MQDLH - Dead-letter header.

Handling poison messages in ASF:

Within the Application Server Facilities, poison message handling is handled slightly differently to
elsewhere in IBM MQ classes for JMS.

For information about poison message handling in IBM MQ classes for JMS, see “Handling poison
messages in IBM MQ classes for JMS” on page 1034.

When you use Application Server Facilities (ASF), the ConnectionConsumer, rather than the
MessageConsumer, processes poison messages. The ConnectionConsumer requeues messages according to
the BackoutThreshold and BackoutRequeueQName properties of the queue.

When an application uses ConnectionConsumers, the circumstances in which a message is backed out
depend on the session that the application server provides:
v When the session is non-transacted, with AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE, a

message is backed out only after a system error, or if the application terminates unexpectedly.
v When the session is non-transacted with CLIENT_ACKNOWLEDGE, unacknowledged messages can

be backed out by the application server calling Session.recover().
Typically, the client implementation of MessageListener or the application server calls
Message.acknowledge(). Message.acknowledge() acknowledges all messages delivered on the session so
far.

v When the session is transacted, unacknowledged messages can be backed out by the application server
calling Session.rollback().

v If the application server supplies an XASession, messages are committed or backed out depending on a
distributed transaction. The application server takes responsibility for completing the transaction.

The embedded JMS provider in WebSphere Application Server, Version 5.0 and Version 5.1 handles
poison messages in a different way to that just described for IBM MQ classes for JMS. For information
about how the embedded JMS provider handles poison messages, see the relevant WebSphere
Application Server product documentation.

Developing JMS and Java Platform, Enterprise Edition applications 1083

Related concepts:
“Handling poison messages in IBM MQ classes for JMS” on page 1034
A poison message is one which cannot be processed by a receiving MDB application. If a poison message
is encountered, the JMS MessageConsumer and ConnectionConsumer objects can requeue it according to
two queue properties, BOQUEUE, and BOTHRESH.

Error handling

This section covers various aspects of error handling, including “Recovering from error conditions in the
ASF” and “Reason and feedback codes in ASF.”

Recovering from error conditions in the ASF:

If a ConnectionConsumer experiences a serious error, message delivery to all ConnectionConsumers with
an interest in the same QLOCAL stops. When this occurs, any ExceptionListener that is registered with
the affected Connection is notified. There are two ways in which an application can recover from these
error conditions.

Typically, a serious error of this nature occurs if the ConnectionConsumer cannot requeue a message to
the dead-letter queue, or it experiences an error when reading messages from the QLOCAL.

Because any ExceptionListener that is registered with the affected Connection is notified, you can use
them to identify the cause of the problem. In some cases, the system administrator must intervene to
resolve the problem.

Use one of the following techniques to recover from these error conditions:
v Call close() on all affected ConnectionConsumers. The application can create new

ConnectionConsumers only after all affected ConnectionConsumers are closed and any system
problems are resolved.

v Call stop() on all affected Connections. After all Connections are stopped and any system problems
are resolved, the application can start() its Connections successfully.

Reason and feedback codes in ASF:

Use reason and feedback codes to determine the cause of an error. Common reason codes generated by
the ConnectionConsumer are given here.

To determine the cause of an error, use the following information:
v The feedback code in any report messages
v The reason code in the MQDLH of any messages in the dead-letter queue

ConnectionConsumers generate the following reason codes.

MQRC_BACKOUT_THRESHOLD_REACHED (0x93A; 2362)

Cause The message has reached the Backout Threshold defined on the QLOCAL, but no
Backout Queue is defined.

On platforms where you cannot define the Backout Queue, the message has reached the
JMS-defined backout threshold of 20.

Action
If this is not wanted, define the Backout Queue for the relevant QLOCAL. Also look for
the cause of the multiple backouts.

MQRC_MSG_NOT_MATCHED (0x93B; 2363)

Cause In point-to-point messaging, there is a message that does not match any of the selectors

1084 IBM MQ: Programming

for the ConnectionConsumers monitoring the queue. To maintain performance, the
message is requeued to the dead-letter queue.

Action
To avoid this situation, ensure that ConnectionConsumers using the queue provide a set
of selectors that deal with all messages, or set the QueueConnectionFactory to retain
messages.

Alternatively, investigate the source of the message.

MQRC_JMS_FORMAT_ERROR (0x93C; 2364)

Cause JMS cannot interpret the message on the queue.

Action
Investigate the origin of the message. JMS normally delivers messages of an unexpected
format as a BytesMessage or TextMessage. Occasionally, this fails if the message is very
badly formatted.

Other codes that appear in these fields are caused by a failed attempt to requeue the message to a
Backout Queue. In this situation, the code describes the reason that the requeue failed. To diagnose the
cause of these errors, refer to API reason codes.

If the report message cannot be put on the ReplyToQ, it is put on the dead-letter queue. In this situation,
the feedback field of the MQMD is completed as described in this topic. The reason field in the MQDLH
explains why the report message could not be placed on the ReplyToQ.

The function of a server session pool in AFS
This topic summarizes the function of a server session pool.

Figure 145 on page 1086 summarizes the principles of ServerSessionPool and ServerSession functionality.

Developing JMS and Java Platform, Enterprise Edition applications 1085

1. The ConnectionConsumers get message references from the queue.
2. Each ConnectionConsumer selects specific message references.
3. The ConnectionConsumer buffer holds the selected message references.

Figure 145. ServerSessionPool and ServerSession functionality

1086 IBM MQ: Programming

4. The ConnectionConsumer requests one or more ServerSessions from the ServerSessionPool.
5. ServerSessions are allocated from the ServerSessionPool.
6. The ConnectionConsumer assigns message references to the ServerSessions and starts the

ServerSession threads running.
7. Each ServerSession retrieves its referenced messages from the queue. It passes them to the onMessage

method from the MessageListener that is associated with the JMS Session.
8. After it completes its processing, the ServerSession is returned to the pool.

An application server normally supplies ServerSessionPool and ServerSession functionality.

Using IBM MQ classes for JMS in a CICS OSGi JVM server
IBM MQ Version 8.0 adds support for using the IBM MQ classes for JMS in certain versions of the CICS
Open Services Gateway initiative (OSGi) Java Virtual Machine (JVM) server.

Attention: Check the system requirements for the CICS system that your enterprise uses. See Detailed
system requirements for CICS Transaction Server for detailed information.

This set of topics describe how to set up the IBM MQ classes for JMS in a JVM server environment, and
the API restrictions that apply when using the classic (JMS 1.1) and simplified (JMS 2.0) interfaces. See
“JMS API restrictions” on page 1090 for a list of the API-specific information.

Note: Similar restrictions apply to the legacy (JMS 1.0.2) domain-specific interfaces, but they are not
specifically described here.

General restrictions

The following restrictions apply when using IBM MQ classes for JMS in a CICS OSGi JVM server:
v Client mode connections are not supported.
v Connections are only supported to IBM WebSphere MQ Version 7.1 or IBM MQ Version 8.0 queue

managers. The PROVIDERVERSION attribute on the connection factory must be either unspecified, or a
value greater than, or equal to, seven.

v Use of any of the XA connection factories, for example com.ibm.mq.jms.MQXAConnectionFactory, is not
supported.

v Use of IBM MQ classes for JMS in a CICS OSGi JVM server is only supported in CICS 5.2 or later. If
you are using CICS 5.2, you should apply APAR PI32151.

Using the IBM MQ classes for JMS in a Liberty JVM server environment is not supported.
Related information:
Rules for selecting the IBM MQ messaging provider mode

Setting up the JVM server environment
How you set up your system to run IBM MQ classes for JMS in a CICS OSGi JVM server.

Procedure
1. Set up the CICS adapter as described in Setting up the CICS- IBM MQ adapter.
2. Add the IBM MQ classes for JMS to the JVM server as an OSGi middleware bundle. Do this, by

including the following lines in the JVM profile of the JVM server, where MQ_ROOT is the java/lib/
directory of the IBM MQ for z/OS Unix System Services installation; for example,
/usr/lpp/V8R0M0/java/lib.

OSGI_BUNDLES=<MQ_ROOT>/OSGiCurrent/com.ibm.mq.osgi.allclientprereqs.jar, \
<MQ_ROOT>/OSGiCurrent/com.ibm.mq.osgi.allclient.jar

3. Add the directory containing the IBM MQ classes for JMS native libraries to the LIBPATH_SUFFIX in the
JVM profile of the JVM server. For example:

Developing JMS and Java Platform, Enterprise Edition applications 1087

http://www-01.ibm.com/support/docview.wss?uid=swg27006382
http://www-01.ibm.com/support/docview.wss?uid=swg27006382
http://www-01.ibm.com/support/docview.wss?uid=swg1PI32151
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.wmq.adapter.doc/topics/zs11290_.html

LIBPATH_SUFFIX=<MQ_ROOT>

4. Stop and restart the JVM server.

What to do next

Set up the CICS Explorer Software Development Kit (SDK) environment. Do this by following the steps
described in Updating the target platform to add
<MQ_ROOT>/OSGiCurrent/com.ibm.mq.osgi.allclientprereqs.jar

and
<MQ_ROOT>/OSGiCurrent/com.ibm.mq.osgi.allclient.jar

to the CICS Explorer SDK.

This allows the IBM MQ classes for JMS to be used by Java applications developed in the CICS Explorer
SDK.

Creating and configuring connection factories and destinations
There are three possible approaches for instantiating the IBM MQ implementations of connection factories
and destinations.

See Creating and configuring connection factories for more information.

These approaches are valid in a Java Virtual Machine (JVM) server environment with the following
restrictions:
v If a queue manager, or queue sharing group, name is specified on a connection factory, the name is

ignored.
The queue manager, or queue sharing group, that is connected to from CICS is always the one
specified in the MQCONN resource defined in the CICS region associated with the JVM server.

v If using the Java Naming and Directory Interface (JNDI), the com.sun.jndi.ldap.LdapCtxFactory initial
context factory is not supported, as it does not work in an OSGi environment.

v If using JNDI, the initial context factory of the JNDI implementation used, and the IBM MQ object
factories, must be programmatically registered with OSGi. See “Registering the initial context factory
and IBM MQ object factories with OSGi” for further information.

Registering the initial context factory and IBM MQ object factories with OSGi

In order to use JNDI to locate IBM MQ connection factories and destinations, you need to register both
the initial context factory of the JNDI provider, and the object factories provided by IBM MQ as services
with the OSGi environment.

Typically, you do this in the start method of a bundle activator. A sample bundle activator that performs
this registration for the file system based JNDI repository, provided by fscontext.jar, follows:
import javax.naming.spi.*;
import org.osgi.framework.*;
import com.ibm.mq.jms.*;
import com.sun.jndi.fscontext.RefFSContextFactory;

public class SampleBundleActivator implements BundleActivator
{
@Override
public void start(BundleContext ctx) throws Exception
{
//Register the initial context factory implementation of the JNDI provider
ctx.registerService(new String[]{InitialContextFactory.class.getName(),
RefFSContextFactory.class.getName()}, new RefFSContextFactory(), null);

//Register the MQ object factories.
final String ofClassName = ObjectFactory.class.getName();

1088 IBM MQ: Programming

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.java.doc/topics/update_target.html

ctx.registerService(new String[]{ofClassName,
MQConnectionFactoryFactory.class.getName()}, new MQConnectionFactoryFactory(), null);

ctx.registerService(new String[]{ofClassName,
MQQueueConnectionFactoryFactory.class.getName()},
new MQQueueConnectionFactoryFactory(), null);

ctx.registerService(new String[]{ofClassName,
MQTopicConnectionFactoryFactory.class.getName()},
new MQTopicConnectionFactoryFactory(), null);

ctx.registerService(new String[]{ofClassName, MQQueueFactory.class.getName()},
new MQQueueFactory(), null);

ctx.registerService(new String[]{ofClassName, MQTopicFactory.class.getName()},
new MQTopicFactory(), null);
}

@Override
public void stop(BundleContext ctx) throws Exception
{
}
}

Transactional behavior
Messages sent and received by the IBM MQ classes for JMS in a JVM server environment are always
associated with the CICS unit of work (UOW) that is active on the current thread.

That UOW can only be completed by calling the commit or rollback methods on the
com.ibm.cics.server.Task object, or by the CICS task ending normally in which case the UOW is
implicitly committed.

As a result of this, the values of the transacted and acknowledgeMode arguments are ignored when calling
any of the Connection.createSession, or ConnectionFactory.createContext methods. Additionally the
following methods are not supported. Calling any of the following methods results in an
IllegalStateException in the session case:
v javax.jms.Session.commit()

v javax.jms.Session.recover()

v javax.jms.Session.rollback()

and an IllegalStateRuntimeSession in the JMS context case:
v javax.jms.JMSContext.commit()

v javax.jms.JMSContext.recover()

v javax.jms.JMSContext.rollback()

There is one exception to this behavior. If a session or JMS context is created using one of the following
mechanisms:
v Connection.createSession(false, Session.AUTO_ACKNOWLEDGE)

v Connection.createSession(Session.AUTO_ACKNOWLEDGE)

v ConnectionFactory.createContext(JMSContext.AUTO_ACKNOWLEDGE)

then the behavior of that session, or JMS context, is as follows:
v Any messages that are sent are transferred outside of the CICS UOW. That is, they will be available on

the target destination immediately, or when the provided delivery delay interval has completed.
v Any non-persistent messages will be received outside of the CICS UOW, unless the

SYNCPOINTALLGETS property has been specified on the connection factory that created the session
or JMS context.

v Persistent messages will always be received inside the CICS UOW.

Developing JMS and Java Platform, Enterprise Edition applications 1089

Connection authentication and authorization

The JMS specification allows a user name and password to be specified for authentication and
authorization when creating a connection or JMS context object.

This is not supported in a JVM server environment. Attempting to create a connection while specifying a
user name and password results in a JMSException being thrown. Attempting to create a JMS context,
while specifying a user name and password, results in a JMSRuntimeException being thrown.

Instead, existing mechanisms for authentication and authorization when connecting to IBM MQ from a
CICS environment must be used.

For more information, see Setting up security on z/OS. In particular, refer to User IDs for security
checking, which describes the user IDs that can be used.

JMS API restrictions
From a JMS specification perspective, the IBM MQ classes for JMS treat a JVM server as a Java EE
compliant application server, that always has a JTA transaction in progress.

For example, you can never call javax.jms.Session.commit() in CICS, because the JMS specification
states that you can not call it in a JEE EJB, or Web container, while a JTA transaction is in progress.

This results in the following restrictions to the JMS API, in addition to those described in “Transactional
behavior” on page 1089.

Classic API restrictions
v javax.jms.Connection.createConnectionConsumer(javax.jms.Destination, String,

javax.jms.ServerSessionPool, int) always throws a JMSException.
v javax.jms.Connection.createDurableConnectionConsumer(javax.jms.Topic, String, String,

javax.jms.ServerSessionPool, int) always throws a JMSException.
v All three variants of javax.jms.Connection.createSession always throws a JMSException if the

connection already has an existing session active.
v javax.jms.Connection.createSharedConnectionConsumer(javax.jms.Topic, String, String,

javax.jms.ServerSessionPool, int) always throws a JMSException.
v javax.jms.Connection.createSharedDurableConnectionConsumer(javax.jms.Topic, String, String,

javax.jms.ServerSessionPool, int) always throws a JMSException.
v javax.jms.Connection.setClientID() always throws a JMSException.
v javax.jms.Connection.setExceptionListener(javax.jms.ExceptionListener) always throws a

JMSException.
v javax.jms.Connection.stop() always throws a JMSException.
v javax.jms.MessageConsumer.setMessageListener(javax.jms.MessageListener) always throws a

JMSException.
v javax.jms.MessageConsumer.getMessageListener() always throws a JMSException.
v javax.jms.MessageProducer.send(javax.jms.Destination,

javax.jms.Message,javax.jms.CompletionListener) always throws a JMSException.
v javax.jms.MessageProducer.send(javax.jms.Destination, javax.jms.Message, int, int, long,

javax.jms.CompletionListener) always throws a JMSException.
v javax.jms.MessageProducer.send(javax.jms.Message, int, int, long,

javax.jms.CompletionListener) always throws a JMSException.
v javax.jms.MessageProducer.send(javax.jms.Message,javax.jms.CompletionListener) always throws a

JMSException.
v javax.jms.Session.run() always throws a JMSRuntimeException.

1090 IBM MQ: Programming

v javax.jms.Session.setMessageListener(javax.jms.MessageListener) always throws a JMSException.
v javax.jms.Session.getMessageListener() always throws a JMSException.

Simplified API restrictions
v javax.jms.JMSContext.createContext(int) always throws a JMSRuntimeException.
v javax.jms.JMSContext.setClientID(String) always throws a JMSRuntimeException.
v javax.jms.JMSContext.setExceptionListener(javax.jms.ExceptionListener) always throws a

JMSRuntimeException.
v javax.jms.JMSContext.stop() always throws a JMSRuntimeException.
v javax.jms.JMSProducer.setAsync(javax.jms.CompletionListener) always throws a

JMSRuntimeException.
v javax.jms.JMSConsumer.getMessageListener() always throws a JMSRuntimeException.
v javax.jms.JMSConsumer.setMessageListener(javax.jms.MessageListener) always throws a

JMSRuntimeException.

Using IBM MQ classes for JMS in IMS

IBM MQ Version 8.0.0, Fix Pack 4 adds support for using the IBM MQ classes for JMS in IMS versions 13
and later. You must apply APAR PI45236 to the queue manager for this function to work.

Attention: Check the system requirements for the IMS system that your enterprise uses. See Hardware
and software requirements for IMS for further information.

This set of topics describe how to set up the IBM MQ classes for JMS in an IMS environment, and the
API restrictions that apply when using the classic (JMS 1.1) and simplified (JMS 2.0) interfaces. See “JMS
API restrictions” on page 1096 for a list of the API-specific information.

Note: Similar restrictions apply to the legacy (JMS 1.0.2) domain-specific interfaces, but they are not
specifically described here.

Supported IMS dependent regions

The following dependent region types are supported:
v MPR
v BMP
v IFP
v JMP
v JBP

Unless specifically mentioned in the following topics, IBM MQ classes for JMS behaves the same in all
region types.

Supported Java Virtual Machines

IBM MQ classes for JMS requires Java SE 7.0 or later.

Other restrictions

The following restrictions apply when using IBM MQ classes for JMS in an IMS environment:
v Client mode connections are not supported.

Developing JMS and Java Platform, Enterprise Edition applications 1091

http://www-01.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.imsintro.doc.intro/intro_hwswrequirements.html
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.imsintro.doc.intro/intro_hwswrequirements.html

v Connections are only supported to IBM MQ Version 8 queue managers using the IBM MQ messaging
provider Normal, or Version 8 mode.
The PROVIDERVERSION attribute on the connection factory must be either unspecified, or a value greater
than, or equal to, seven.

v Use of any of the XA connection factories, for example com.ibm.mq.jms.MQXAConnectionFactory, is not
supported.

Related information:
Defining IBM MQ to IMS

Setting up the IMS adapter for use with IBM MQ classes for JMS

IBM MQ classes for JMS make use of the same IBM MQ-IMS adapter as used by other programming
languages. This adapter utilizes the IMS External Subsystem Attach Facility (ESAF).

Before you begin

Before completing the following procedure, you must configure the IMS adapter for the relevant queue
managers, and IMS control and dependent regions, as described in Setting up the IMS adapter.

Attention: You do not need to perform the step that describes building a dynamic stub, unless you need
the dynamic stub for other purposes.

Once you have configured the IMS adapter, carry out the following procedure.

Procedure
1. Update the LIBPATH variable in the member of your IMS PROCLIB that is referenced by the

ENVIRON parameter in your dependent region JCL (for example, DFSJVMEV) so that it includes the
IBM MQ classes for JMS native libraries. That is, the zFS directory that contains libmqjims.so. For
example, DFSJVMEV might look like the following, where the last line is the directory containing the
IBM MQ classes for JMS native libraries:

LIBPATH=>
/java/java71_31/J7.1/bin/j9vm:>
/java/java71_31/J7.1/bin:>
/ims13/dbdc/imsjava/classic/lib:>
/ims13/dbdc/imsjava/lib:>
/mqm/V8R0M0/java/lib

2. Add the IBM MQ classes for JMS to the class path of the JVM, used by your IMS dependent region,
by updating the java.class.path option. Do this by following the instructions in DFSJVMMS member
of the IMS PROCLIB data set.
For example, you can use the following, where the line in bold indicates the update:

-Djava.class.path=/ims13/dbdc/imsjava/imsutm.jar:/ims13/dbdc/imsjava/imsudb.jar:
/mqm/V8R0M0/java/lib/com.ibm.mq.allclient.jarLIBPATH_SUFFIX=<MQ_ROOT>

Note: While there are many different jar files available in the directory containing the IBM MQ classes
for JMS, you need only the com.ibm.mq.allclient.jar file.

3. Stop and restart the any IMS dependent regions that will be making use of the IBM MQ classes for
JMS.

What to do next

Create and configure connection factories and destinations.

1092 IBM MQ: Programming

http://www-01.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsjvmms_proclib.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsjvmms_proclib.htm

There are three possible approaches for instantiating the IBM MQ implementations of connection factories
and destinations. See “Creating and configuring connection factories and destinations in an IBM MQ
classes for JMS application” on page 1008for details.

Note that these three approaches are all valid in an IMS environment.
Related information:
Setting up the IMS adapter
Defining IBM MQ to IMS

Transactional behavior

Messages sent and received by the IBM MQ classes for JMS in an IMS environment are always associated
with the IMS unit of work (UOW) that is active on the current task.

That UOW can only be completed by calling the commit or rollback methods on an instance of the
com.ibm.ims.dli.tm.Transaction object, or by the IMS task ending normally in which case the UOW is
implicitly committed. If the IMS task ends abnormally, the UOW is rolled back.

As a result of this, the values of the transacted and acknowledgeMode arguments are ignored when calling
any of the Connection.createSession, or ConnectionFactory.createContext methods. Additionally the
following methods are not supported. Calling any of the following methods results in an
IllegalStateException in the session case:
v javax.jms.Session.commit()

v javax.jms.Session.recover()

v javax.jms.Session.rollback()

and an IllegalStateRuntimeSession in the JMS context case:
v javax.jms.JMSContext.commit()

v javax.jms.JMSContext.recover()

v javax.jms.JMSContext.rollback()

There is one exception to this behavior. If a session or JMS context is created using one of the following
mechanisms:
v Connection.createSession(false, Session.AUTO_ACKNOWLEDGE)

v Connection.createSession(Session.AUTO_ACKNOWLEDGE)

v ConnectionFactory.createContext(JMSContext.AUTO_ACKNOWLEDGE)

then the behavior of that session, or JMS context, is as follows:
v Any messages sent, are sent outside of the IMS UOW. That is, they will be available on the target

destination immediately, or when the provided delivery delay interval has completed.
v Any non-persistent messages will be received outside of the IMS UOW, unless the

SYNCPOINTALLGETS property has been specified on the connection factory that created the session
or JMS context.

v Persistent messages will always be received inside the IMS UOW.

This might be useful if, for example, you want to write an audit message to a queue even if the UOW
rolls back.

Developing JMS and Java Platform, Enterprise Edition applications 1093

Implications of IMS syncpoints

The IBM MQ classes for JMS build upon the existing IBM MQ adapter support which makes use of
ESAF. This means that the documented behavior applies, including all open handles being closed by the
IMS adapter when a syncpoint occurs.

See “Syncpoints in IMS applications” on page 38 for more information.

To illustrate this point, consider the following code running in a JMP environment. The second call to
mp.send() results in a JMSException as the messageQueue.getUnique(inputMessage) code results in all
open IBM MQ connection and object handles being closed.

Similar behavior is observed if the getUnique() call was replaced with Transaction.commit(), but not if
Transaction.rollback() was used.
//Create a connection to queue manager MQ21.
MQConnectionFactory cf = new MQConnectionFactory();
cf.setQueueManager("MQ21");

Connection c = cf.createConnection();
Session s = c.createSession();

//Send a message to MQ queue Q1.
Queue q = new MQQueue("Q1");
MessageProducer mp = s.createProducer(q);
TextMessage m = s.createTextMessage("Hello world!");
mp.send(m);

//Get a message from an IMS message queue. This results in a GU call
//which results in all MQ handles being closed.
Application a = ApplicationFactory.createApplication();
MessageQueue messageQueue = a.getMessageQueue();
IOMessage inputMessage = a.getIOMessage(MESSAGE_CLASS_NAME);
messageQueue.getUnique(inputMessage);

//This attempt to send another message will result in a JMSException containing a
//MQRC_HCONN_ERROR as the connection/handle has been closed.
mp.send(m);

The correct code to use in this scenario is as follows. In this case the connection to IBM MQ is closed
prior to calling getUnique(). The connection and session are then recreated in order to send another
message.
//Create a connection to queue manager MQ21.
MQConnectionFactory cf = new MQConnectionFactory();
cf.setQueueManager("MQ21");

Connection c = cf.createConnection();
Session s = c.createSession();

//Send a message to MQ queue Q1.
Queue q = new MQQueue("Q1");
MessageProducer mp = s.createProducer(q);
TextMessage m = s.createTextMessage("Hello world!");
mp.send(m);

//Close the connection to MQ, which closes all MQ object handles.
//The send of the message will be committed by the subsequent GU call.
c.close();
c = null;
s = null;
mp = null;

//Get a message from an IMS message queue. This results in a GU call.
Application a = ApplicationFactory.createApplication();
MessageQueue messageQueue = a.getMessageQueue();
IOMessage inputMessage = a.getIOMessage(MESSAGE_CLASS_NAME);
messageQueue.getUnique(inputMessage);

//Recreate the connection to MQ and send another message;

1094 IBM MQ: Programming

c = cf.createConnection();
s = c.createSession();
mp = s.createProducer(q);
m = s.createTextMessage("Hello world 2!");
mp.send(m);

Considerations when using the IMS adapter

You need to be aware of the following restrictions. You can have only one connection handle for each
queue manager. There are implications in the interaction with IBM MQ when using both JMS and native
code. There are limitations to connection authentication and authorization.

One connection handle for each queue manager

Only one connection handle at a time to a specific queue manager is allowed in IMS dependent regions.
Any subsequent attempts to connect to the same queue manager reuse the existing handle.

While this behavior should not cause any problems in an application that only uses the IBM MQ classes
for JMS, this behavior can cause problems in applications that interact with IBM MQ, when using both
the IBM MQ classes for JMS and the MQI in native code written in languages, such as COBOL or C.

Implications of interacting with IBM MQ when using both JMS and native code

Problems can occur when interleaving Java code and native code that both use IBM MQ functionality and
when the connection to IBM MQ is not closed before leaving either the native or Java code.

For example, in the following pseudo code, a connection handle to a queue manager is originally
established in Java code using the IBM MQ classes for JMS. The connection handle is reused in COBOL
code and invalidated by a call to MQDISC.

The next time the IBM MQ classes for JMS make use of the connection handle a JMSException with a
reason code of MQRC_HCONN_ERROR results.
COBOL code running in message processing region

Use the Java Native Interface (JNI) to call Java code
Create MQ connection and session - this creates an MQ connection handle
Send message to MQ queue
Store connection and session in static variable
Return to COBOL code

MQCONN - picks up MQ connection handle established in Java code
MQDISC - invalidates connection handle

Use the Java Native Interface (JNI) to call Java code
Get session from static variable
Create a message consumer - fails as connection handle invalidated

There are other similar usage patterns which can result in MQRC_HCONN_ERROR.

While it is possible to share IBM MQ connection handles between native and Java code (for example, the
previous example would work if there had not been an MQDISC call) in general, the best practice is to
close any connection handles before transitioning from Java to native code, or the other way round.

Connection authentication and authorization

The JMS specification allows a user name and password to be specified for authentication and
authorization when creating a connection or JMS context object.

Developing JMS and Java Platform, Enterprise Edition applications 1095

This is not supported in an IMS environment. Attempting to create a connection while specifying a user
name and password results in a JMS Exception being thrown. Attempting to create a JMS context, while
specifying a user name and password, results in a JMSRuntimeException being thrown.

Instead, existing mechanisms for authentication and authorization when connecting to IBM MQ from an
IMS environment must be used.

For more information, see Setting up security on z/OS. In particular, refer to User IDs for security
checking, which describes the user IDs that can be used.
Related information:
Setting up security on z/OS

JMS API restrictions

From a JMS specification perspective, the IBM MQ classes for JMS treat IMS as a Java EE compliant
application server, that always has a JTA transaction in progress.

For example, you can never call javax.jms.Session.commit() in IMS, because the JMS specification states
that you can not call it in a JEE EJB, or Web container, while a JTA transaction is in progress.

This results in the following restrictions to the JMS API, in addition to those described in “Transactional
behavior” on page 1093.

Classic API restrictions
v javax.jms.Connection.createConnectionConsumer(javax.jms.Destination, String,

javax.jms.ServerSessionPool, int) always throws a JMSException.
v javax.jms.Connection.createDurableConnectionConsumer(javax.jms.Topic, String, String,

javax.jms.ServerSessionPool, int) always throws a JMSException.
v All three variants of javax.jms.Connection.createSession always throws a JMSException if the

connection already has an existing session active.
v javax.jms.Connection.createSharedConnectionConsumer(javax.jms.Topic, String, String,

javax.jms.ServerSessionPool, int) always throws a JMSException.
v javax.jms.Connection.createSharedDurableConnectionConsumer(javax.jms.Topic, String, String,

javax.jms.ServerSessionPool, int) always throws a JMSException.
v javax.jms.Connection.setClientID() always throws a JMSException.
v javax.jms.Connection.setExceptionListener(javax.jms.ExceptionListener) always throws a

JMSException.
v javax.jms.Connection.stop() always throws a JMSException.
v javax.jms.MessageConsumer.setMessageListener(javax.jms.MessageListener) always throws a

JMSException.
v javax.jms.MessageConsumer.getMessageListener() always throws a JMSException.
v javax.jms.MessageProducer.send(javax.jms.Destination,

javax.jms.Message,javax.jms.CompletionListener) always throws a JMSException.
v javax.jms.MessageProducer.send(javax.jms.Destination, javax.jms.Message, int, int, long,

javax.jms.CompletionListener) always throws a JMSException.
v javax.jms.MessageProducer.send(javax.jms.Message, int, int, long,

javax.jms.CompletionListener) always throws a JMSException.
v javax.jms.MessageProducer.send(javax.jms.Message,javax.jms.CompletionListener) always throws a

JMSException.
v javax.jms.Session.run() always throws a JMSRuntimeException.

1096 IBM MQ: Programming

v javax.jms.Session.setMessageListener(javax.jms.MessageListener) always throws a JMSException.
v javax.jms.Session.getMessageListener() always throws a JMSException.

Simplified API restrictions
v javax.jms.JMSContext.createContext(int) always throws a JMSRuntimeException.
v javax.jms.JMSContext.setClientID(String) always throws a JMSRuntimeException.
v javax.jms.JMSContext.setExceptionListener(javax.jms.ExceptionListener) always throws a

JMSRuntimeException.
v javax.jms.JMSContext.stop() always throws a JMSRuntimeException.
v javax.jms.JMSProducer.setAsync(javax.jms.CompletionListener) always throws a

JMSRuntimeException.

Using the IBM MQ JMS administration tool
Use the administration tool to define the properties of eight types of IBM MQ classes for JMS object and
to store them within a JNDI namespace. Applications can then use JNDI to retrieve these administered
objects from the namespace.

This information has moved. See Configuring JMS objects using the administration tool.

Configuring the JMS Administration tool
The IBM MQ JMS Administration tool uses a configuration file to set the values of certain properties. A
sample file is supplied, which you can tailor to your system.

This information has moved. See Configuring the JMS administration tool.

Using an unlisted InitialContextFactory with the IBM MQ JMS administration tool:

Two InitialContextFactory values are supported. You can use other JNDI contexts by setting parameters in
the JMS administration configuration file.

This information has moved. See Configuring the JMS administration tool.

Configuring security for the JMS administration tool:

Use the SECURITY_AUTHENTICATION property to determine whether security credentials are passed
to the service provider.

This information has moved. See Configuring the JMS administration tool.

Invoking the IBM MQ classes for JMS administration tool
The administration tool has a command line interface. You can use this interactively, or use it to start a
batch process.

This information has moved. See Starting the administration tool.

Developing JMS and Java Platform, Enterprise Edition applications 1097

Administration commands in the IBM MQ JMS administration tool
The administration tool accepts commands consisting of an administration verb and its appropriate
parameters.

This information has moved. See Using administration commands.

Manipulating subcontexts with the IBM MQ JMS administration tool
Use the verbs CHANGE, DEFINE, DISPLAY and DELETE to manipulate directory namespace subcontexts.

This information has moved. See Configuring subcontexts.

Configuring JMS objects
You can use the IBM MQ administration tool to create eight types of object, configure their properties and
manipulate them by using verbs.

This information has moved. See Configuring JMS objects using the administration tool.

JMS object types:

The table shows the eight types of administered objects.

This information has moved. See Configuring JMS objects using the administration tool.

Verbs used with JMS objects:

You can use the verbs ALTER, DEFINE, DISPLAY, DELETE, COPY, and MOVE to manipulate administered objects
in the directory namespace.

This information has moved. See Configuring JMS objects.

Creating objects with the IBM MQ JMS administration tool:

Create objects and store them in a JNDI namespace using the DEFINE command,

This information has moved. See Creating JMS objects.

LDAP naming considerations for JMS objects:

To store your objects in an LDAP environment, you must give them names that comply with certain
conventions. The administration tool can help you obey naming conventions by adding a default prefix.

This information has moved. See Creating JMS objects.

1098 IBM MQ: Programming

Sample error conditions creating a JMS object:

A number of common error conditions can arise when you create an object.

This information has moved. See Sample error conditions creating a JMS object.

Configuring JMS objects using MQ Explorer
Use the MQ Explorer graphical user interface to create JMS objects from IBM MQ objects, and IBM MQ
objects from JMS objects, as well as for administering and monitoring other IBM MQ objects.

About this task

This information has moved. See Configuring JMS objects using MQ Explorer .

Using the IBM MQ resource adapter
The resource adapter allows applications that are running in an application server to access IBM MQ
resources. It supports inbound and outbound communication.

What the resource adapter contains

The Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) provides a standard way of
connecting applications that are running in a Java EE environment to an Enterprise Information System
(EIS) such as IBM MQ or Db2. The IBM MQ resource adapter implements the JCA 1.7 interfaces and
contains the IBM MQ classes for JMS. It allows JMS applications and message driven beans (MDBs),
running in an application server, to access the resources of an IBM MQ queue manager. The resource
adapter supports both the point-to-point domain and the publish/subscribe domain.

The IBM MQ resource adapter supports two types of communication between an application and a queue
manager:

Outbound communication
An application starts a connection to a queue manager, and then sends JMS messages to JMS
destinations and receives JMS messages from JMS destinations in a synchronous manner.

Inbound communication
A JMS message that arrives at a JMS destination is delivered to an MDB, which processes the
message asynchronously.

The resource adapter also contains the IBM MQ classes for Java. The classes are automatically available to
applications that are running in an application server that the resource adapter has been deployed into,
and allow applications that are running in that application server to use the IBM MQ classes for Java API
when they are accessing resources of an IBM MQ queue manager.

The use of the IBM MQ classes for Java within a Java EE environment is supported with restrictions. For
information about these restrictions, see “Running IBM MQ classes for Java applications within Java EE”
on page 834.

Which version of the resource adapter to use

The Java Platform, Enterprise Edition (Java EE) version of the application server that you are using
determines the version of the resource adapter that you must use:

Java EE 7
The IBM MQ Version 8.0 resource adapter supports JCA v1.7 and provides JMS 2.0 support. This
resource adapter needs to be deployed within a Java EE 7 and later application server (see “IBM
MQ resource adapter statement of support” on page 1101).

Developing JMS and Java Platform, Enterprise Edition applications 1099

You can install the Version 8.0 or later resource adapter on any application server that is certified
as compliant with the Java Platform, Enterprise Edition 7 specification. Using the Version 8.0
resource adapter, an application can connect to a IBM WebSphere MQ Version 7.0 or later queue
manager using either the BINDINGS or CLIENT transport, or to a IBM WebSphere MQ Version
6.0 queue manager using the CLIENT transport only.

Important: The IBM MQ Version 8.0 resource adapter can be deployed only into an application
server that supports JMS 2.0.

Java EE 5 and Java EE 6
The IBM WebSphere MQ Version 7.5 resource adapter supports Java EE Connector Architecture
(JCA) v1.5 and provides JMS 1.1 support. To provide full integration with WebSphere Application
Server Liberty, the IBM WebSphere MQ Version 7.5 resource adapter is updated to APAR IC92914
from Version 7.5.0, Fix Pack 2. This resource adapter retains full compatibility with other Java EE
5 and later application servers (see WebSphere MQ resource adapter v7.1 and later statement of
support).

Using the resource adapter with the WebSphere Application Server full profile

Since the IBM MQ Version 8.0 resource adapter can be deployed only into an application server that
supports JMS 2.0, do not install the Version 8.0 resource adapter into the application server if you are
using WebSphere Application Server Version 7.0, Version 8.0 or Version 8.5 (on any platform). This is
because WebSphere Application Server Version 7.0, Version 8.0 and Version 8.5 only support JMS 1.1. You
must therefore use the IBM WebSphere MQ Version 7.0 resource adapter. This is the version of the
resource adapter that comes with WebSphere Application Server Version 7.0, Version 8.0, and Version 8.5
and which can be used to connect to an IBM MQ Version 8.0 queue manager using either the BINDINGS
or CLIENT transport.

Using the resource adapter with the WebSphere Application Server Liberty profile

To connect to IBM MQ from the WebSphere Application Server Liberty Liberty profile, you must use the
IBM MQ resource adapter. Since the Liberty profile does not contain the IBM MQ resource adapter, you
must obtain it separately from Fix Central. The version of the resource adapter that you use depends on
the Java EE version of the application server.

For more information about how to download and install the resource adapter, see Obtaining the IBM
MQ Resource Adapter for the WebSphere Application Server Liberty Profile.
Related concepts:
“Using IBM MQ classes for JMS” on page 903
IBM MQ classes for Java Message Service (IBM MQ classes for JMS) is the JMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for JMS provides two sets of extensions to the JMS API.
“Using IBM MQ classes for Java” on page 832
IBM MQ classes for Java enable you to use IBM MQ in a Java environment. IBM MQ classes for Java
allow a Java application to connect to IBM MQ as an IBM MQ client, or connect directly to an IBM MQ
queue manager.
Related information:
Configuring the application server to use the latest resource adapter maintenance level
Problem determination for the IBM MQ resource adapter

Related information for WebSphere Application Server Version 8.5.5

Maintaining the IBM MQ resource adapter
Deploying JMS applications to the Liberty profile to use the IBM MQ messaging provider

1100 IBM MQ: Programming

http://www.ibm.com/support/docview.wss?uid=swg1IC92914
http://www.ibm.com/support/docview.wss?uid=swg27023129
http://www.ibm.com/support/docview.wss?uid=swg27023129
http://www-01.ibm.com/support/docview.wss?uid=swg21633761
http://www-01.ibm.com/support/docview.wss?uid=swg21633761

IBM MQ resource adapter statement of support
The resource adapter that comes with IBM MQ Version 8.0 implements the JMS 2.0 specification. It can be
deployed only into an application server that is Java Platform, Enterprise Edition 7 (Java EE 7) compliant
and therefore supports JMS 2.0.

Deployment within WebSphere Application Server Liberty

WebSphere Application Server Liberty Version 8.5.5, Fix Pack 6 and later can be configured to use either
an IBM MQ Version 8.0 or IBM WebSphere MQ Version 7.5 resource adapter. WebSphere Application
Server Liberty Version 8.5.5, Fix Pack 6 became a Java EE 7 certified application server so the IBM MQ
Version 8.0 resource adapter can be used.

WebSphere Application Server Liberty contains the wmqJmsClient-1.1 feature to allow working with JMS
1.1 resource adapters and the wmqJmsClient-2.0 feature to allow working with JMS 2.0 resource adapters.

Information on this configuration is in the Scenario Connecting WebSphere Application Server Liberty
profile to IBM MQ.

Deployment within WebSphere Application Server

The IBM MQ Version 8.0 resource adapter cannot be deployed in WebSphere Application Server.

WebSphere Application Server is supplied with a IBM WebSphere MQ resource adapter already installed.
This resource adapter can connect to Version 8.0 queue managers. For more information, see
“Connectivity to IBM MQ Version 8.0 queue managers.”

Using the resource adapter with other application servers

For all other Java EE 7 compliant application servers, problems that occur following the successful
completion of the IBM MQ resource adapter Installation Verification Test (IVT) can be reported to IBM for
the investigation of IBM MQ product trace and other IBM MQ diagnostic information. If the IBM MQ
resource adapter IVT cannot be run successfully, any problems that are encountered are likely to be
caused by incorrect deployment or incorrect resource definitions that are application server specific and
the problems must be investigated by using the application server documentation and/or the support
organization for that application server.

IBM has tested the resource adapter IVT on the following application servers:
v Glassfish V4
v Wildfly V8

Java Runtime

The Java Runtime (JRE) that is used to run the application server must be one that is supported with the
IBM MQ Version 8.0 Client. These JREs are listed in the System Requirements for IBM MQ Version 8.0.
(Select which operating system or component report you want to see then follow the Java link that is
listed under the Supported Software tab.)

Connectivity to IBM MQ Version 8.0 queue managers

The full range of JMS 2.0 functionality is available when connecting to a Version 8.0 queue manager by
using the Version 8.0 resource adapter that has been deployed into a Java EE 7 application server.

If you are using an application server that is not Java EE 7 compliant and does not support JMS 2.0 (for
WebSphere Application Server this is currently Version 7.0 to Version 8.5.5), you can still connect to IBM
MQ Version 8.0 queue managers by using an older version of the IBM WebSphere MQ resource adapter.

Developing JMS and Java Platform, Enterprise Edition applications 1101

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27041395

With this configuration it is not possible to make use of the new JMS 2.0 functionality provided by IBM
MQ Version 8.0, however existing JMS 1.1, and earlier, functionality is preserved.

Connectivity to IBM WebSphere MQ Version 7.5 or earlier queue managers

It is supported to deploy the IBM MQ Version 8.0 resource adapter into a Java EE 7 compliant application
server that supports JMS 2.0 and connect that resource adapter to a queue manager that is running IBM
WebSphere MQ Version 7.5 or earlier. The functionality that is available is limited by the capabilities of
the queue manager.

This is supported for both the BINDINGS and CLIENT transport. When using the BINDINGS transport,
ensure that the java.library.path is set to:
v MQ_INSTALLATION_PATH\java\lib if the application server is running with a 32-bit Java runtime

environment.
v MQ_INSTALLATION_PATH\java\lib64 if the application server is running with a 64-bit Java runtime

environment.

where MQ_INSTALLATION_PATH is the location where IBM WebSphere MQ has been installed. If there are
multiple IBM WebSphere MQ installations on the same system, MQ_INSTALLATION_PATH must be the
location where the latest version of IBM WebSphere MQ has been installed.

General issues

Session interleaving is not supported
Some application servers provide a capability called session interleaving, where the same JMS
session can be used in multiple transactions, although it is only enlisted in one at a time. The
IBM WebSphere MQ resource adapter does not support this capability, which can lead to the
following issues:
An attempt to put a message to a WebSphere MQ queue fails with reason code 2072 (MQRC_SYNCPOINT_NOT_AVAILABLE).

Calls to xa_close() fail with reason code -3 (XAER_PROTO), and an FDC with probe ID AT040010
is generated on the IBM WebSphere MQ queue manager being accessed from the application
server. For information on how to disable this capability, see your application server
documentation.

Java Transaction API (JTA) specification of how XA resources are recovered for XA transaction
recovery

Section 3.4.8 of the JTA specification does not define a specific mechanism by which XA resources
are recreated to perform XA transactional recovery. As such, it is up to each individual
transaction manager (and, therefore, the application server) how XA resources involved in an XA
transaction are recovered. It is possible that, for some application servers, the IBM WebSphere
MQ resource adapter does not implement the application server specific mechanisms that are
used to perform XA transactional recovery.

1102 IBM MQ: Programming

Limitations of the IBM MQ resource adapter
When you use the IBM MQ resource adapter, some features of IBM MQ are unavailable or limited.

The IBM MQ resource adapter has the following limitations:
v The IBM MQ resource adapter is supported on all IBM MQ platforms, except z/OS.
v The IBM MQ resource adapter does not support channel exit programs that are written in languages

other than Java.
v While an application server is running, the value of the sslFipsRequired property must be true for all

JCA resources or false for all JCA resources. This is a requirement even if the JCA resources are not
used concurrently. If the sslFipsRequired property has different values for different JCA resources, IBM
MQ issues the reason code MQRC_UNSUPPORTED_CIPHER_SUITE, even if an SSL connection is not
being used.

v You cannot specify more than one keystore for an application server. If connections are made to more
than one queue manager, all the connections must use the same keystore. This limitation does not
apply to WebSphere Application Server.

v If you use a client channel definition table (CCDT) with more than one suitable client connection
channel definition, in the event of a failure the resource adapter might select a different channel
definition and therefore a different queue manager from the CCDT, which would cause problems for
transaction recovery. The resource adapter does not take any action to prevent such a configuration
from being used, and it is your responsibility to avoid configurations that might cause problems for
transaction recovery.

v The connection retry functionality introduced in IBM WebSphere MQ Version 7.0.1 is not supported for
outbound connections when running in a JEE container (EJB/Servlet). Connection retry is not
supported at all for outbound JMS when the adapter is used in a JEE container context, regardless of
transaction configuration or for non-transacted use.

Related information:
Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client
Federal Information Processing Standards (FIPS) for UNIX, Linux and Windows

WebSphere Application Server and the IBM MQ resource adapter
The IBM MQ resource adapter is used by applications that perform JMS messaging with the IBM MQ
messaging provider in WebSphere Application Server.

Important: Do not use the IBM MQ resource adapter with WebSphere Application Server Version 6.
WebSphere Application Server Version 7 and later includes a version of the IBM MQ Version 7 resource
adapter.

If you want to use a JMS application to access the resources of an IBM MQ queue manager from within
WebSphere Application Server, use the IBM MQ messaging provider in WebSphere Application Server.
The IBM MQ messaging provider contains a version of the IBM MQ classes for JMS. For more
information, see Identifying which IBM WebSphere MQ client is shipped with WebSphere Application
Server.

Developing JMS and Java Platform, Enterprise Edition applications 1103

WebSphere Application Server Liberty and the IBM MQ resource
adapter
The IBM MQ resource adapter can be installed into WebSphere Application Server Liberty Version 8.5.5,
Fix Pack 2 or later, by using either the wmqJmsClient-1.1 or wmqJmsClient-2.0 feature, depending on
which version of the resource adapter you are installing. Alternatively you can, subject to some
restrictions, install the resource adapter by using generic Java Platform, Enterprise Edition Connector
Architecture (Java EE JCA) support.

General restrictions when installing the resource adapter into Liberty

The following restrictions apply to the resource adapter when using either the wmqJmsClient-1.1 or
wmqJmsClient-2.0 feature and also when using generic JCA support:
v The IBM MQ classes for Java are not supported in Liberty. They must not be used with either the IBM

MQ Liberty messaging feature or with the generic JCA support. For more information, see Using
WebSphere MQ Java Interfaces in J2EE/JEE Environments.

v The IBM MQ resource adapter has a transport type of BINDINGS_THEN_CLIENT. This transport type
is not supported within the IBM MQ Liberty messaging feature.

v The IBM MQ Advanced Message Security (IBM MQ AMS) feature is not included in the IBM MQ
Liberty messaging feature.

Restrictions when using the Liberty features

With Liberty Version 8.5.5, Fix Pack 2 to Version 8.5.5, Fix Pack 5 inclusive, only the wmqJmsClient-1.1
feature was available and only JMS 1.1 could be used. Liberty Version 8.5.5, Fix Pack 6 added the
wmqJmsClient-2.0 feature so JMS 2.0 could be used.

However, the feature that you must use depends on which version of the resource adapter you are using:
v The IBM WebSphere MQ 7.5.0.6 and later Version 7.5 resource adapters can be used with the

wmqJmsClient-1.1 feature only.
v The IBM MQ 8.0.0.3 and later Version 8.0 resource adapters can be used with wmqJmsClient-2.0 feature

only.

Restrictions when using generic JCA support

If you are using generic JCA support, the following restrictions apply:
v You must specify the level of JMS when using the generic JCA support:

– JMS 1.1 and JCA 1.6 must be used only with the IBM WebSphere MQ 7.5.0.6 and later Version 7.5
resource adapters.

– JMS 2.0 and JCA 1.7 must be used only with the IBM MQ 8.0.0.3 and later Version 8.0 resource
adapters.

v It is not possible to run the IBM MQ resource adapter on z/OS using generic JCA support. In order to
run the IBM MQ resource adapter on z/OS, it must be run with the wmqJmsClient-1.1 or
wmqJmsClient-2.0 feature.

v Tracing, and logging are not integrated within the Liberty trace system. Trace is written to a separate
file, and it must be enabled by setting the system property. This procedure is the same as configuring
the IBM MQ classes for JMS trace facility for a Java Standard Environment. For more information, see
“Java Standard Environment Trace stanza” on page 917.

v If you create a JMS unified domain connection from a domain-specific connection factory, a JMS

Exception MQJMS1026 is generated. APAR IT02539 fixes this issue.
v The location of the resource adapter is specified by using the following xml element:

<resourceAdapter id="mqJms" location="${server.config.dir}/wmq.jmsra.rar">
<classloader apiTypeVisibility="spec, ibm-api, api, third-party"/>

</resourceAdapter>

1104 IBM MQ: Programming

https://www-304.ibm.com/support/docview.wss?uid=swg21266535
https://www-304.ibm.com/support/docview.wss?uid=swg21266535
http://www-01.ibm.com/support/docview.wss?uid=swg1IT02539

Note: The value of the id tag can be anything EXCEPT for wmqJms. If you do use wmqJms as the id, then
Liberty is not able to properly load the resource adapter. This is because wmqJms is the id that is used
internally to refer to the specific feature for IBM MQ. It actually creates a NullPointerException.
The following examples show some snippets from a server.xml file:
<!-- Enable features -->

<featureManager>
<feature>servlet-3.1</feature>
<feature>jndi-1.0</feature>
<feature>jca-1.7</feature>
<feature>jms-2.0</feature>

</featureManager>

Tip: Note the use of the jca-1.7 and jms-2.0 features and the lack of the wmqJmsClient-2.0 feature.
<resourceAdapter id="mqJms" location="${server.config.dir}/wmq.jmsra.rar">
<classloader apiTypeVisibility="spec, ibm-api, api, third-party"/>

</resourceAdapter>

Tip: Note the use of mqJms for the id, which is preferred. Do not use wmqJms.
<application id="WMQHTTP" location="${server.config.dir}/apps/WMQHTTP.war"
name="WMQHTTP" type="war">

<classloader apiTypeVisibility="spec, ibm-api, api, third-party"
classProviderRef="mqJms"/>
</application>

Tip: Note the classloaderProviderRef back to the resource adapter through the id mqJms; this is to
permit IBM MQ specific classes to be loaded.

Installing the IBM MQ resource adapter
The IBM MQ resource adapter is supplied as a resource archive (RAR) file. Install the RAR file in your
application server. You might need to add directories to the system path.

About this task

The IBM MQ resource adapter is supplied as a resource archive (RAR) file called wmq.jmsra.rar. This file
is installed with IBM MQ classes for JMS in the directory shown in Table 148.

Table 148. The directory containing wmq.jmsra.rar for each platform

Platform Directory

AIX, HP-UX, Linux, and Solaris MQ_INSTALLATION_PATH/java/lib/jca

IBM i /QIBM/ProdData/mqm/java/lib/jca

Windows MQ_INSTALLATION_PATH\java\lib\jca

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed. The RAR file
contains IBM MQ classes for JMS and the IBM MQ implementation of the JCA interfaces.

Procedure
v Install the IBM MQ resource adapter RAR file in your application server, The way you install the RAR

file depends on the application server. See the documentation for your application server for
information about how to install a resource adapter RAR file.

v For bindings connections on UNIX and Linux systems, ensure that the directory containing the Java
Native Interface (JNI) libraries is in the system path. For the location of this directory, which also
contains the IBM MQ classes for JMS libraries, see “Configuring the Java Native Interface (JNI)
libraries” on page 914. On Windows, this directory is automatically added to the system path during
the installation of IBM MQ classes for JMS.
Transactions are supported in both client and bindings mode.

Developing JMS and Java Platform, Enterprise Edition applications 1105

Installing the resource adapter in Liberty
To connect to IBM MQ from WebSphere Application Server Liberty, or other Java EE application servers,
you must use the IBM MQ resource adapter. Since Liberty does not contain the IBM MQ resource
adapter, you must obtain it separately from Fix Central.

Before you begin

Before you start this task, make sure that you have a Java runtime environment (JRE) installed on your
machine and that the JRE has been added to the system path.

The Java installer that is used in this installation process does not require running as root or any specific
user. The only requirement is that the user it is run as has access write to the directory that you want the
files to go in.

About this task

The JAR file for the resource adapter that you can download from Fix Central is executable. When you
run this executable file, it displays the IBM MQ license agreement, which must be accepted. It asks for a
directory in which to install the IBM MQ resource adapter. The resource adapter RAR file and installation
verification test (IVT) program are then installed in that directory. You can either accept the default or
specify another directory, which might be the resource adapters directory of an application server, or any
other directory on your system. The directory is created as part of the installation if it does not exist.

The name of the file to be downloaded is in the format of <V.R.M.F>-WS-MQ-Java-InstallRA.jar, for
example 8.0.0.6-WS-MQ-Java-InstallRA.jar.

After you have downloaded and installed the resource adapter, you are ready to configure it in
WebSphere Application Server Liberty.

Procedure
1. Download the IBM MQ resource adapter from Fix Central:

a. Click Find Product then add the information for your IBM MQ installation to the following fields:
v In the Product Selector field, type MQ then select WebSphere MQ from the displayed list.
v In the Installed Version field, click the arrow then select the version number from the displayed

list, for example 8.0.0.6.
v In the Platform field, click the arrow and select your platform, for example, Windows 64-bit,

x86.

Click Continue.
b. Make sure that Browse for Fixes is selected and, under Additional Query options, clear Show

fixes that apply to this version, and select Show fixes that get me to this version, then click
Continue. Fix Central searches for the available fixes for your selected product, version and
platform, for example WebSphere, WebSphere MQ (8.0.0.6, Windows 64-bit, x86).

c. Find the resource adapter in the displayed list of available fixes. For example:
release level: 8.0.0.6-WS-MQ-Install-Java-All
8.0.0.6 MQ Resource Adapter for use with Application Servers

Then click the resource adapter file name and follow the download process.
2. Start the installation by entering the following command from the directory to which you

downloaded the file. The format of the command is as follows:
java -jar <V.R.M.F>-WS-MQ-Java-InstallRA.jar

1106 IBM MQ: Programming

http://www-933.ibm.com/support/fixcentral/

where <V.R.M.F>-WS-MQ-Java-InstallRA.jar is the name of the file that was downloaded from Fix
Central. For example, to install the IBM MQ resource adapter for the Version 8.0.0.6 release, you
would use the following command:
java -jar 8.0.0.6-WS-MQ-Java-InstallRA.jar

Note: To carry out this installation, you must have a JRE installed on your machine and added to the
system path.
When you enter the command, the following information is displayed:
Before you can use, extract, or install IBM WebSphere MQ V8.0, you must accept
the terms of 1. IBM International License Agreement for Evaluation of
Programs 2. IBM International Program License Agreement and additional
license information. Please read the following license agreements carefully.

The license agreement is separately viewable using the
--viewLicenseAgreement option.
Press Enter to display the license terms now, or ’x’ to skip.

3. Review and accept the license terms:
a. To display the license, press Enter. Alternatively, pressing x skips the display of the license. After

display of the license or immediately after selecting x, the following message appears to tell you
that you can choose to display additional license terms:
Additional license information is separately viewable using the
--viewLicenseInfo option.
Press Enter to display additional license information now, or ’x’ to skip.

b. To display the additional license terms, press Enter. Alternatively, pressing x skips the display of
the additional license terms. After display of the additional license terms or immediately after
selecting x, the following message is displayed asking you to accept the license agreement:
By choosing the "I Agree" option below, you agree to the terms of the
license agreement and non-IBM terms, if applicable. If you do not
agree, select "I do not Agree".

Select [1] I Agree, or [2] I do not Agree:

c. To accept the license agreement and continue with selecting the installation directory, select 1.
Alternatively, if you select 2 the installation terminates immediately. If you selected 1, the
following message appears, asking you to select a target installation directory:
Enter directory for product files or leave blank to accept the default value.
The default target directory is H:\Liberty\WMQ
Target directory for product files?

4. Specify the installation directory for the resource adapter:
v If you want to install the resource adapter in the default location, press Enter without specifying a

value.
v If you want to install the resource adapter in a different location from the default, specify the name

of the directory in which you want to install the resource adapter and then press Enter.

After the files have been installed in the selected location, a confirmation message is displayed as
shown in the following example:
Extracting files to H:\Liberty\WMQ\wmq
Successfully extracted all product files.

During the installation, a new directory with the name wmq is created within the selected installation
directory, and the following files are then installed in the wmq directory:
v The installation verification test program, wmq.jmsra.ivtt.
v The IBM MQ RAR file, earwmq.jmsra.rar.

5. Configure the resource adapter in WebSphere Application Server Liberty. The steps that you must take
to configure the resource adapter in Liberty are as follows. For more information, see the WebSphere
Application Server product documentation.

Developing JMS and Java Platform, Enterprise Edition applications 1107

http://www.ibm.com/support/knowledgecenter/SSAW57/mapfiles/product_welcome_wasnd.html
http://www.ibm.com/support/knowledgecenter/SSAW57/mapfiles/product_welcome_wasnd.html

a. Add the wmqJmsClient-2.0 feature to the server.xml file to allow working with the IBM MQ
resource adapter. The feature that you add (wmqJmsClient-1.1 or wmqJmsClient-2.0) depends on
which version of the resource adapter you have installed. The IBM MQ Version 8.0 resource
adapter must be deployed with the wmqJmsClient-2.0 feature. For more information, see “Which
version of the resource adapter to use” on page 1099.

b. Add a reference to the wmq.jmsra.rar file that you have installed.

Note: For Liberty versions up to Version 8.5.5, Fix Pack 1, if an EJB is deployed using solely the
configuration within the ejb-jar.xml, the version of WebSphere Application Server that the Liberty
Profile is using must have APAR PM89890 applied. This method of configuration is used for the
resource adapter's installation verification program (IVT), so this APAR is required in order for the
IVT to run.
An example configuration to support servlets and MDBs, with JNDI might look like this:
<featureManager>

<feature>wmqJmsClient-1.1</feature>
<feature>servlet-3.0</feature>
<feature>jmsMdb-3.1</feature>
<feature>jndi-1.0</feature>
</featureManager>

<variable name="wmqJmsClient.rar.location"
value="H:\Liberty\WMQ\wmq\wmq.jmsra.rar"/>

Configuring the IBM MQ resource adapter
To configure the IBM MQ resource adapter, you define various JCA resources and system properties. You
must also configure the resource adapter to run the installation verification test (IVT) program.

Before you begin

This task assumes that you are already familiar with JMS and IBM MQ classes for JMS. Many of the
properties used to configure the IBM MQ resource adapter are equivalent to properties of IBM MQ
classes for JMS objects and have the same function.

About this task

Every application server provides its own set of administration interfaces. Some application servers
provide graphical user interfaces to define JCA resources, but others require the administrator to write
XML deployment plans. It is therefore beyond the scope of this documentation to provide information
about how to configure the IBM MQ resource adapter for each application server.

The following steps therefore focus only on what you need to configure. Refer to documentation supplied
with your application server for information about how to configure a JCA resource adapter.

Procedure

Define JCA resources in the following categories:
v Define the properties of the ResourceAdapter object. These properties, which represent the global

properties of the resource adapter, such as the level of diagnostic tracing, are described in
“Configuration of the ResourceAdapter object” on page 1110.

v Define the properties of an ActivationSpec object. These properties determine how an MDB is activated
for inbound communication. For more information, see “Configuring the resource adapter for inbound
communication” on page 1111.

v Define the properties of a ConnectionFactory object. The application server uses these properties to
create a JMS ConnectionFactory object for outbound communication. For more information, see
“Configuring the resource adapter for outbound communication” on page 1125.

1108 IBM MQ: Programming

http://www.ibm.com/support/docview.wss?uid=swg1PM89890

v Define the properties of an administered destination object. The application server uses these properties
to create a JMS Queue object or JMS Topic object for outbound communication. For more information,
see “Configuring the resource adapter for outbound communication” on page 1125.

v Optional: Define a deployment plan for the resource adapter. The IBM MQ resource adapter RAR file
contains a file called META-INF/ra.xml, which contains a deployment descriptor for the resource
adapter. This deployment descriptor is defined by the XML schema at http://java.sun.com/xml/ns/
j2ee/connector_1_5.xsd and contains information about the resource adapter and the services that it
provides. An application server might also require a deployment plan for the resource adapter. This
deployment plan is specific to the application server.

Specify JVM system properties as required:
v If you are using Secure Sockets Layer (SSL), specify the locations of the keystore file and truststore file

as JVM system properties, as in the following example:
java ... -Djavax.net.ssl.keyStore= key_store_location

-Djavax.net.ssl.trustStore=trust_store_location
-Djavax.net.ssl.keyStorePassword=key_store_password

These properties cannot be properties of an ActivationSpec or ConnectionFactory object, and you
cannot specify more than one keystore for an application server. The properties apply to the whole
JVM, and might therefore affect the application server if other applications, running in the application
server, are using SSL connections. The application server might also reset these properties to different
values. For more information about using SSL with IBM MQ classes for JMS, see “Using Secure Sockets
Layer (SSL) with IBM MQ classes for JMS” on page 1049.

v Optional: If required, configure the resource adapter to log warning messages to your application
server's standard output log. The resource adapter logs, warning, and error messages use the same
mechanism as the IBM MQ classes for JMS. For more information, see “Logging and IBM MQ classes
for JMS” on page 942. This means that, by default, the messages will go to a file called mqjms.log. To
configure the resource adapter to additionally log warning messages to your application servers
standard output log, set the following JVM system property for your application server:
-Dcom.ibm.msg.client.commonservices.log.outputName=mqjms.log,stdout

For information on how to set a JVM system property, see your application server documentation.
Configure the resource adapter to run the installation verification test
v Configure the resource adapter to run the installation verification test (IVT) program supplied with the

IBM MQ resource adapter. For information about what you need to configure in order to run the IVT
program, see “The installation verification test program for the IBM MQ resource adapter” on page
1139.

Important: You must configure the resource adapter before you can run the program.

Developing JMS and Java Platform, Enterprise Edition applications 1109

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd

Configuration of the ResourceAdapter object
The ResourceAdapter object encapsulates the global properties of the IBM MQ resource adapter. Define
these properties using the facilities of your resource adapter.

The ResourceAdapter object has two sets of properties:
v Properties associated with diagnostic tracing
v Properties associated with the connection pool managed by the resource adapter

The way you define these properties depends on the administration interfaces provided by your
application server.

For more information about defining properties associated with diagnostic trace, see Tracing the IBM MQ
Resource Adapter

The resource adapter manages an internal connection pool of JMS connections that are used to deliver
messages to MDBs. Table 149 lists the properties of the ResourceAdapter object that are associated with
the connection pool.

Table 149. Properties of the ResourceAdapter object that are associated with the connection pool

Name of property Type Default value Description

maxConnections String 50 The maximum number of connections to an IBM
MQ queue manager and the maximum number
of MDBs deployed.

connectionConcurrency String 1 The maximum number of MDBs to share a JMS
connection. Sharing connections is not possible
and this property always has the value 1.

reconnectionRetryCount String 5 The maximum number of attempts made by the
resource adapter to reconnect to an IBM MQ
queue manager if a connection fails.

reconnectionRetryInterval String 300 000 The time, in milliseconds, that the resource
adapter waits before trying to reconnect to an
IBM MQ queue manager.

startupRetryCount String 0 The default number of times to try and connect a
MDB on startup, if the queue manager is not
running when the application server is started.

startupRetryInterval String 30 000 The default sleep time between startup
connection attempts (in milliseconds).

When an MDB is deployed in the application server, a new JMS connection is created and a conversation
started with the queue manager, provided the maximum number of connections specified by the
maxConnection property is not exceeded. The maximum number of MDBs therefore equals the maximum
number of connections. If the number of deployed MDBs reaches this maximum, any attempt to deploy
another MDB fails. If an MDB is stopped, its connection can be used by another MDB.

In general, if many MDBs are to be deployed, you must increase the value of the maxConnections
property.

The reconnectionRetryCount and reconnectionRetryInterval properties govern the behavior of the
resource adapter when connections to an IBM MQ queue manager fail, because of a network failure for
example. When a connection fails, the resource adapter suspends the delivery of messages to all MDBs
supplied by that connection for an interval specified by the reconnectionRetryInterval property. The
resource adapter then attempts to reconnect to the queue manager. If the attempt fails, the resource
adapter makes further attempts to reconnect at intervals specified by the reconnectionRetryInterval

1110 IBM MQ: Programming

property until the limit imposed by the reconnectionRetryCount property is reached. If all attempts fail,
delivery is stopped permanently until the MDBs are restarted manually.

In general, the ResourceAdapter object requires no administration. However, to enable diagnostic tracing
on UNIX and Linux systems for example, you can set the following properties:
traceEnabled: true
traceLevel: 10

These properties have no effect if the resource adapter has not been started, which is the case, for
example, when applications using IBM MQ resources are running only in the client container. In this
situation, you can set the properties for diagnostic tracing as Java Virtual Machine (JVM) system
properties. You can set the properties by using the -D flag on the java command, as in the following
example:
java ... -DtraceEnabled=true -DtraceLevel=6

You do not need to define all the properties of the ResourceAdapter object. Any properties left
unspecified take their default values. In a managed environment, it is better not to mix the two ways of
specifying properties. If you do mix them, the JVM system properties take precedence over the properties
of the ResourceAdapter object.

Configuring the resource adapter for inbound communication
To configure inbound communication, define the properties of one or more ActivationSpec objects.

The properties of an ActivationSpec object determine how a message drive bean (MDB) receives JMS
messages from an IBM MQ queue. The transactional behavior of the MDB is defined in its deployment
descriptor.

An ActivationSpec object has two sets of properties:
v Properties that are used to create a JMS connection to an IBM MQ queue manager
v Properties that are used to create a JMS connection consumer that delivers messages asynchronously as

they arrive on a specified queue

The way in which you define the properties of an ActivationSpec object depends on the administration
interfaces provided by your application server.

New ActivationSpec properties in JMS 2.0

The JMS 2.0 specification introduced two new ActivationSpec properties. The connectionFactoryLookup
and destinationLookup properties can be provided with a JNDI name of an administered object to be
used in preference to the other ActivationSpec properties.

For example, assume that a connection factory is defined in JNDI and the JNDI name of that object is
specified in the connectionFactoryLookup property for an activation specification. All the properties of
the connection factory that are defined in JNDI are used in preference to the properties in Table 150 on
page 1112.

If a destination is defined in JNDI and the JNDI name is set in the ActivationSpec’s destinationLookup
property then the values of that are used in preference to the values in Table 151 on page 1119. For more
information about how these two properties are used, see “ActivationSpec connectionFactoryLookup and
destinationLookup properties” on page 1122.

Developing JMS and Java Platform, Enterprise Edition applications 1111

Properties used to create a JMS connection to an IBM MQ queue manager

Table 150 lists the properties of an ActivationSpec object that are used to create a JMS connection to an
IBM MQ queue manager.

Table 150. Properties of an ActivationSpec object that are used to create a JMS connection

Name of property Type Valid values (default value in bold) Description

applicationName String v The invoking class name, if it is available,
adjusted to be no longer than 28 characters.
If it is not available, the string WebSphere MQ
Client for Java is used.

The name by which an
application is registered with
the queue manager. This
application name is shown
by the DISPLAY CONN
MQSC/PCF command (where
the field is called APPLTAG)
or in the MQ Explorer
Application Connections
display (where the field is
called App name).

brokerCCDurSubQueue 1 String v SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE
v A queue name

The name of the queue from
which a connection
consumer receives durable
subscription messages

brokerCCSubQueue 1 String v
SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE
v A queue name

The name of the queue from
which a connection
consumer receives
nondurable subscription
messages

brokerControlQueue 1 String v SYSTEM.BROKER.CONTROL.QUEUE
v A queue name

The name of the broker
control queue

brokerQueueManager 1 String v "" (empty string)
v A queue manager name

The name of the queue
manager on which the broker
is running

brokerSubQueue 1 String v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE
v A queue name

The name of the queue from
which a nondurable message
consumer receives messages

brokerVersion 1 String v unspecified - After the broker is migrated
from V6 to V7, set this property so that
RFH2 headers are no longer used. After
migration, this property is no longer
relevant.

v V1 - To use an IBM MQ publish/subscribe
broker.This value is the default value if
TRANSPORT is set to BIND or CLIENT.

v V2 - To use a broker of IBM Integration Bus
in native mode. This value is the default
value if TRANSPORT is set to DIRECT or
DIRECTHTTP.

The version of the broker
being used

ccdtURL String v null
v A uniform resource locator (URL)

A URL that identifies the
name and location of the file
containing the client channel
definition table (CCDT) and
specifies how the file can be
accessed

CCSID String v 819
v A coded character set identifier supported

by the Java virtual machine (JVM)

The coded character set
identifier for a connection

1112 IBM MQ: Programming

Table 150. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

channel String v SYSTEM.DEF.SVRCONN
v The name of an MQI channel

The name of the MQI
channel to use

cleanupInterval 1 int v 3 600 000
v A positive integer

The interval, in milliseconds,
between background runs of
the publish/subscribe
cleanup utility

cleanupLevel 1 String v SAFE
v NONE
v STRONG
v FORCE
v NONDUR

The cleanup level for a
broker-based subscription
store

clientID String v null
v A client identifier

The client identifier for a
connection

cloneSupport String v DISABLED - Only one instance of a
durable topic subscriber can run at a time.

v ENABLED - Two or more instances of the
same durable topic subscriber can run
simultaneously, but each instance must run
in a separate Java virtual machine (JVM).

Whether two or more
instances of the same durable
topic subscriber can run
simultaneously

connectionFactoryLookup
String v null

v The JNDI name for a ConnectionFactory
object

If this property is set, the
ActivationSpec looks up a
JMS ConnectionFactory
object with the specified
JNDI name in the JNDI
namespace of the application
server, and then uses the
properties of that object to
create a JMS connection to an
IBM MQ queue manager,
with one exception. The only
property of the
ActivationSpec that will be
used when creating the JMS
connection is the clientID.
For more information, see
“ActivationSpec
connectionFactoryLookup
and destinationLookup
properties” on page 1122.

Developing JMS and Java Platform, Enterprise Edition applications 1113

Table 150. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

connectionNameList String v localhost(1414)
v A string composed of items separated by

commas where each item takes the format:

HOSTNAME(PORT)

where HOSTNAME is either a DNS name
or an IP address.

A list of TCP/IP connection
names used for inbound
communications.

When specified,
connectionNameList
supersedes the hostname and
port properties.

This property is used to
reconnect to multi-instance
queue managers.

connectionNameList is
similar in form to
localAddress, but must not
be confused with it.
localAddress specifies the
characteristics of the local
communications, whereas
connectionNameList specifies
how to reach a remote queue
manager.

failIfQuiesce Boolean v true
v false

Whether calls to certain
methods fail if the queue
manager is in a quiescing
state

headerCompression String v NONE
v SYSTEM - RLE message header

compression is performed

A list of the techniques that
can be used for compressing
header data on a connection

hostName String v localhost
v A host name
v An IP address

The host name or IP address
of the system on which the
queue manager resides.

The hostname and port
properties are superseded by
the connectionNameList
property when it is specified.

localAddress String v null
v A string in the format:

[host_name][(low_port [, high_port])]

where host_name is a host name or IP
address, low_port and high_port are TCP port
numbers, and brackets denote an optional
component

For a connection to a queue
manager, this property
specifies either or both of the
following things:
v The local network interface

to be used
v The local port, or range of

local ports, to be used

localAddress is similar in
form to connectionNameList,
but must not be confused
with it. localAddress
specifies the characteristics of
the local communications,
whereas connectionNameList
specifies how to reach a
remote queue manager.

1114 IBM MQ: Programming

Table 150. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

messageCompression String v NONE
v A list of one or more of the following

values separated by blank characters:
RLE
ZLIBFAST
ZLIBHIGH

A list of the techniques that
can be used for compressing
message data on a
connection

messageRetention 1 Boolean v true - Unwanted messages remain on the
input queue

v false - Unwanted messages are dealt with
according to their disposition options

Whether the connection
consumer keeps unwanted
messages on the input queue

messageSelection 1 String v CLIENT
v BROKER

Determines whether message
selection is done by IBM MQ
classes for JMS or by the
broker. Message selection by
the broker is not supported
when brokerVersion has the
value 1.

password String v null
v A password

The default password to use
when creating a connection
to the queue manager

pollingInterval 1 int v 5000
v Any positive integer

If each message listener
within a session has no
suitable message on its
queue, this value is the
maximum interval, in
milliseconds, that elapses
before each message listener
tries again to get a message
from its queue. If it
frequently happens that no
suitable message is available
for any of the message
listeners in a session,
consider increasing the value
of this property. This
property is relevant only if
TRANSPORT has the value
BIND or CLIENT.

port int v 1414
v A TCP port number

The port on which the queue
manager listens.

The hostname and port
properties are superseded by
the connectionNameList
property when it is specified.

providerVersion string v unspecified
v A string in one of the following formats

– V.R.M.F
– V.R.M
– V.R
– V

where V, R, M, and F are integer values
greater than or equal to zero.

The version, release,
modification level and fix
pack of the queue manager
to which the MDB intends to
connect.

Developing JMS and Java Platform, Enterprise Edition applications 1115

Table 150. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

queueManager String v "" (empty string)
v A queue manager name

The name of the queue
manager to connect to

receiveExit3 String v null
v A string comprising one or more items

separated by commas, where each item is
the fully qualified name of a class that
implements the IBM MQ classes for Java
interface, MQReceiveExit

Identifies a channel receive
exit program, or a sequence
of receive exit programs to
be run in succession

receiveExitInit String v null
v A string comprising one or more items of

user data separated by commas

The user data that is passed
to channel receive exit
programs when they are
called

rescanInterval 1 int v 5000
v Any positive integer

When a message consumer
in the point-to-point domain
uses a message selector to
select which messages it
wants to receive, IBM MQ
classes for JMS searches the
IBM MQ queue for suitable
messages in the sequence
determined by the
MsgDeliverySequence
attribute of the queue. When
IBM MQ classes for JMS
finds a suitable message and
delivers it to the consumer,
IBM MQ classes for JMS
resumes the search for the
next suitable message from
its current position in the
queue. IBM MQ classes for
JMS continues to search the
queue in this way until it
reaches the end of the queue,
or until the interval of time
in milliseconds, as
determined by the value of
this property, has expired. In
each case, IBM MQ classes
for JMS returns to the
beginning of the queue to
continue its search, and a
new time interval
commences.

securityExit3 String v null
v The fully qualified name of a class that

implements the IBM MQ classes for Java
interface, MQSecurityExit

Identifies a channel security
exit program

securityExitInit String v null
v A string of user data

The user data that is passed
to a channel security exit
program when it is called

1116 IBM MQ: Programming

Table 150. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

sendExit3 String v null
v A string comprising one or more items

separated by commas, where each item is
the fully qualified name of a class that
implements the IBM MQ classes for Java
interface, MQSendExit

Identifies a channel send exit
program, or a sequence of
send exit programs to be run
in succession

sendExitInit String v null
v A string comprising one or more items of

user data separated by commas

The user data that is passed
to channel send exit
programs when they are
called

shareConvAllowed Boolean v NO - A client connection cannot share its
socket.

v YES - A client connection can share its
socket.

Whether a client connection
can share its socket with
other top-level JMS
connections from the same
process to the same queue
manager, if the channel
definitions match

sparseSubscriptions 1 Boolean v false - Subscriptions receive frequent
matching messages.

v true - Subscriptions receive infrequent
matching messages. This value requires that
the subscription queue can be opened for
browse.

Controls the message
retrieval policy of a
TopicSubscriber object

sslCertStores String v null
v A string of one or more LDAP URLs

separated by blanks. Each LDAP URL has
the format:

ldap://host_name [: port]

where host_name is a host name or IP
address, port is a TCP port number, and
brackets denote an optional component.

The Lightweight Directory
Access Protocol (LDAP)
servers that hold certificate
revocation lists (CRLs) for
use on an SSL connection

sslCipherSuite String v null
v The name of a CipherSuite

The CipherSuite to use for an
SSL connection

sslFipsRequired 2 Boolean v false
v true

Whether an SSL connection
must use a CipherSuite that
is supported by the IBM Java
JSSE FIPS provider
(IBMJSSEFIPS)

sslPeerName String v null
v A template for distinguished names

For an SSL connection, a
template that is used to
check the distinguished
name in the digital certificate
provided by the queue
manager

sslResetCount int v 0
v An integer in the range 0 - 999 999 999

The total number bytes sent
and received by an SSL
connection before the secret
keys used by SSL are
renegotiated

Developing JMS and Java Platform, Enterprise Edition applications 1117

Table 150. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

sslSocketFactory String A string representing the fully qualified class
name of a class providing an implementation
of the javax.net.ssl.SSLSocketFactory interface.
Optionally including an argument to be
passed to the constructor method, enclosed in
parentheses.

Any connections established
in the scope of the
administered object use
sockets obtained from this
implementation of the
SSLSocketFactory interface.

statusRefreshInterval 1 int v 60000
v Any positive integer

The interval, in milliseconds,
between refreshes of the long
running transaction that
detects when a subscriber
loses its connection to the
queue manager. This
property is relevant only if
subscriptionStore has the
value QUEUE.

subscriptionStore 1 String v BROKER
v MIGRATE
v QUEUE

Determines where IBM MQ
classes for JMS stores
persistent data about active
subscriptions

transportType String v CLIENT
v BINDINGS
v BINDINGS_THEN_CLIENT

Whether a connection to a
queue manager uses client
mode or bindings mode. If
the value
BINDINGS_THEN_CLIENT
is specified, the resource
adapter first tries to make a
connection in bindings mode.
If this connection fails, the
resource adapter then tries to
make a client mode
connection.

z/OS

If an activation

specification that is running
on a WebSphere Application
Server for z/OS system has
been configured to use the
BINDINGS_THEN_CLIENT
transport mode and a
previously established
connection is broken, then
any reconnection attempts by
the activation specification
first attempt to use the
BINDINGS transport mode.
If the BINDINGS transport
mode connection attempt is
unsuccessful, the activation
specification subsequently
attempts a CLIENT transport
mode connection.

username String v null
v A user name

The default user name to use
when creating a connection
to a queue manager

1118 IBM MQ: Programming

Table 150. Properties of an ActivationSpec object that are used to create a JMS connection (continued)

Name of property Type Valid values (default value in bold) Description

wildcardFormat String v CHAR- Recognizes character wildcards
only, as used in broker version 1

v TOPIC - Recognizes topic level wildcards
only, as used in broker version 2

Which version of wildcard
syntax is to be used

Notes:

1. This property can be used with Version 7.0 of IBM MQ classes for JMS. It does not affect an
application connected to a Version 7.0 queue manager unless the providerVersion property is set to a
version number less than 7.

2. For important information about using the sslFipsRequired property, see “Limitations of the IBM MQ
resource adapter” on page 1103.

3. For information on how to configure the resource adapter so that it can locate an exit, see
“Configuring IBM MQ classes for JMS to use channel exits” on page 1058.

Properties used to create a JMS connection consumer

Table 151 lists the properties of an ActivationSpec object that are used to create a JMS connection
consumer.

Table 151. Properties of an ActivationSpec object that are used to create a JMS connection consumer

Name of property Type
Valid values (default value in
bold) Description

destination String A destination name The destination from which to receive
messages. The useJNDI property
determines how the value of this
property is interpreted.

destinationLookup
String v null

v The JNDI name for a
Destination object

If this property is set, the ActivationSpec
looks up a JMS Destination object with
the specified JNDI name in the JNDI
namespace of the application server, and
then uses the properties of that object to
create a JMS connection consumer, in
preference to the other properties
specified on the ActivationSpec. For more
information, see “ActivationSpec
connectionFactoryLookup and
destinationLookup properties” on page
1122.

destinationType String v javax.jms.Queue
v javax.jms.Topic

The type of destination, a queue, or a
topic

maxMessages int v 1
v A positive integer

The maximum number of messages that
can be assigned to a server session at one
time. If the activation spec is delivering
messages to an MDB in an XA
transaction, a value of 1 is used
regardless of the setting of this property.

maxPoolDepth int v 10
v A positive integer

The maximum number of server sessions
in the server session pool used by the
connection consumer

messageSelector String v null
v An SQL92 message selector

expression

A message selector expression specifying
which messages are to be delivered

Developing JMS and Java Platform, Enterprise Edition applications 1119

Table 151. Properties of an ActivationSpec object that are used to create a JMS connection consumer (continued)

Name of property Type
Valid values (default value in
bold) Description

nonASFTimeout int v 0
v A positive integer

A positive value indicates that non-ASF
delivery is used. The value is the time, in
milliseconds, that a get request waits for
messages that might not have yet arrived
(a get with wait call). The default value,
0, indicates that ASF delivery is used.

This parameter is valid only when the
application is running on WebSphere
Application Server Version 7.0 or later.

nonASFRollbackEnabled Boolean v false - The message is
consumed even if the MDB
fails

v true - Failure within the MDB
causes the message to rollback
to the queue.

Whether message delivery is within an
IBM MQ syncpoint if the MDB is
non-transacted. Ignored if the MDB is
transacted or if nonASFTimeout is set to
0.

poolTimeout int v 300000
v A positive integer

The time, in milliseconds, that an unused
server session is held open in the server
session pool before being closed due to
inactivity

readAheadAllowed int v DESTINATION - Determine
whether read ahead is allowed
by referring to the queue or
topic definition.

v DISABLED - Read ahead is not
allowed.

v ENABLED - Read ahead is
allowed.

v QUEUE - Determine whether
read ahead is allowed by
referring to the queue
definition.

v TOPIC - Determine whether
read ahead is allowed by
referring to the topic definition.

Whether the MDB is allowed to use read
ahead to get nonpersistent messages
from the destination into an internal
buffer before receiving them

readAheadClosePolicy int v ALL - All messages in the
internal read ahead buffer are
delivered to the MDB before it
stops.

v CURRENT - Only the current
MDB invocation completes,
potentially leaving messages in
the internal read ahead buffer,
which are then discarded.

What happens to messages in the
internal read ahead buffer when the
MDB is stopped by the administrator.

receiveCCSID int v 0 - Use JVM
Charset.defaultCharset

v 1208 - UTF-8
v A supported coded character

set identifier

Destination property that sets the target
CCSID for queue manager message
conversion. The value is ignored unless
receiveConversion is set to QMGR

receiveConversion String v CLIENT_MSG
v QMGR

Destination property that determines
whether data conversion is going to be
performed by the queue manager.

1120 IBM MQ: Programming

Table 151. Properties of an ActivationSpec object that are used to create a JMS connection consumer (continued)

Name of property Type
Valid values (default value in
bold) Description

sharedSubscription Boolean v False - The MDB should not
open the subscription as a
shared subscription.

v True - The MDB should open
the subscription as a shared
subscription (with the rules
that JMS 2.0 implies, see the
JMS 2.0 specification at
Java.net).

Controls how an MDB is driven from a
shared subscription. For more
information about how to use this
property, see “Examples of how to define
the sharedSubscription property” on
page 1124.

startTimeout int v 10 000
v A positive integer

The time, in milliseconds, within which
delivery of a message to an MDB must
start after the work to deliver the
message has been scheduled. If this time
elapses, the message is rolled back onto
the queue.

subscriptionDurability String v NonDurable - A nondurable
subscription is used to deliver
messages to an MDB
subscribing to the topic.

v Durable - A durable
subscription is used to deliver
messages to an MDB
subscribing to the topic.

Whether a durable or nondurable
subscription is used to deliver messages
to an MDB subscribing to the topic

subscriptionName String v "" (empty string)
v A subscription name

The name of the durable subscription

useJNDI Boolean v false - The property called
destination is interpreted as the
name of an IBM MQ queue or
a topic.

v true - The property called
destination is interpreted as the
name of a javax.jms.Queue
object or javax.jms.Topic object
in the JNDI namespace of the
application server.

Determines how the value of the
property called destination is interpreted

Note: This property is
deprecated in IBM MQ Version 8.0.0, Fix
Pack 6 and later. The destinationLookup
property should be used instead.

The ActivationSpec properties called destination and destinationType must be defined explicitly. All the
other properties are optional.

Property conflicts and dependencies

An ActivationSpec object can have conflicting properties. For example, you can specify SSL properties for
a connection in bindings mode. In this case, the behavior is determined by the transport type and the
messaging domain, which is either point-to-point or publish/subscribe as determined by the
destinationType property. Any properties that are not applicable to the specified transport type or
messaging domain are ignored.

If you define a property that requires other properties to be defined, but you do not define these other
properties, the ActivationSpec object throws an InvalidPropertyException exception when its validate()
method is called during the deployment of an MDB. The exception is reported to the administrator of the
application server in a manner that depends on the application server. For example, if you set the
subscriptionDurability property to Durable, indicating that you want use durable subscriptions, you must
also define the subscriptionName property.

Developing JMS and Java Platform, Enterprise Edition applications 1121

https://java.net/projects/jms-spec/pages/Home

If the properties called ccdtURL and channel are both defined, an InvalidPropertyException exception is
thrown. However, if you define the ccdtURL property only, leaving the property called channel with its
default value of SYSTEM.DEF.SVRCONN, no exception is thrown, and the client channel definition table
identified by the ccdtURL property is used to start a JMS connection.

ActivationSpec connectionFactoryLookup and destinationLookup properties

These two properties can be used to specify the JNDI names of ConnectionFactory and Destination
objects that are used in preference to the properties of the ActivationSpec as defined in Table 150 on page
1112 and Table 151 on page 1119.

It is important to note the following points that describe how these properties work in detail.

connectionFactoryLookup
The ConnectionFactory that is looked up from JNDI is used as a source of the properties listed in
Table 150 on page 1112. The ConnectionFactory object is not used to actually create any JMS
connections, only the properties of the object are queried. These properties from the
ConnectionFactory override any properties that are defined on the ActivationSpec. There is a
single exception to this. If the ActivationSpec has the ClientID property set, then the value of this
property overrides the value specified in the ConnectionFactory. This is because a common
scenario is using a single ConnectionFactory with multiple ActivationSpecs. This simplifies
administration. However, the JMS 2.0 specification states that every JMS Connection created from
a ConnectionFactory should have a unique ClientID. Because of this, ActivationSpecs need to
have the ability to override any value set on the ConnectionFactory. If no ClientID is set on the
ActivationSpec, any value on the connection factory is used.

destinationLookup
A Destination and a UseJndi property are defined on the ActivationSpec. If the UseJndi flag is set
to true, then the text specified in the destination property is considered to be a JNDI name and a
destination object with that JNDI name is looked up from JNDI.

The destinationLookup property behaves in exactly the same way. If it has been set, then a
destination object with the JNDI name specified by the property is looked up from JNDI. This
property has precedence over the useJNDI property.

The useJNDI property is deprecated at IBM MQ Version 8.0 as the destinationLookup property is
the JMS 2.0 specification equivalent of performing the same function.

ActivationSpec properties with no equivalents in IBM MQ classes for JMS

Most of the properties of an ActivationSpec object are equivalent to properties of IBM MQ classes for JMS
objects or parameters of IBM MQ classes for JMS methods. However, three tuning properties, and one
usability property, have no equivalents in IBM MQ classes for JMS:

startTimeout
The time, in milliseconds, that the work manager of the application server waits for resources to
become available after the resource adapter schedules a Work object to deliver a message to an
MDB. If this time elapses before delivery of the message starts, the Work object times out, the
message is rolled back onto the queue, and the resource adapter can then attempt to deliver the
message again. A warning is written to diagnostic trace, if enabled, but does not otherwise affect
the process of delivering messages. You might expect this condition to occur only at times when
the application server is experiencing a very high load. If the condition occurs regularly, consider
increasing the value of this property to give the work manager longer to schedule message
delivery.

maxPoolDepth
The maximum number of server sessions in the server session pool used by a connection
consumer. When a server session is created, it starts a conversation with a queue manager. The

1122 IBM MQ: Programming

connection consumer uses a server session to deliver a message to an MDB. A larger pool depth
allows more messages to be delivered concurrently in high volume situations, but uses more
resources of the application server. If many MDBs are to be deployed, consider making the pool
depth smaller in order to maintain the load on the application server at a manageable level. Each
connection consumer uses its own server session pool, so that this property does not define the
total number of server sessions available to all connection consumers.

poolTimeout
The time, in milliseconds, that an unused server session is held open in the server session pool
before being closed due to inactivity. A transient increase in the message workload causes
additional server sessions to be created in order to distribute the load but, after the message
workload returns to normal, the additional server sessions remain in the pool and are not used.

Every time a server session is used, it is marked with a timestamp. Periodically a scavenger
thread checks that each server session has been used within the period specified by this property.
If a server session has not been used, it is closed and removed from the server session pool. A
server session might not be closed immediately after the specified period has elapsed, this
property represents the minimum period of inactivity before removal.

useJNDI
For a description of this property, see Table 151 on page 1119.

Deploying an MDB

To deploy an MDB, first define the properties of an ActivationSpec object, specifying the properties that
the MDB requires. The following example is a typical set of properties that you might define explicitly:
channel: SYSTEM.DEF.SVRCONN
destination: SYSTEM.DEFAULT.LOCAL.QUEUE
destinationType: javax.jms.Queue
hostName: 192.168.0.42
messageSelector: color=’red’
port: 1414
queueManager: ExampleQM
transportType: CLIENT

The application server uses the properties to create an ActivationSpec object, which is then associated
with an MDB. The properties of the ActivationSpec object determine how messages are delivered to the
MDB. Deployment of the MDB fails if the MDB requires distributed transactions but the resource adapter
does not support distributed transactions. For information about how to install the resource adapter so
that distributed transactions are supported, see “Installing the IBM MQ resource adapter” on page 1105.

If more than one MDB is receiving messages from the same destination, then a message sent in the
point-to-point domain is received by only one MDB, even if other MDBs are eligible to receive the
message. In particular, if two MDBs are using different message selectors, and an incoming message
matches both message selectors, only one of the MDBs receives the message. The MDB chosen to receive
a message is undefined, and you cannot rely on a specific MDB receiving the message. Messages sent in
the publish/subscribe domain are received by all eligible MDBs.

Inbound poison message handling in the Resource Adapter

In some circumstances, a message delivered to an MDB might be rolled back onto an IBM MQ queue.
This roll back can happen, for example, if a message is delivered within a unit of work that is then rolled
back. A message that is rolled back is delivered again, but a badly formatted message might repeatedly
cause an MDB to fail and therefore cannot be delivered. Such a message is called a poison message. You
can configure IBM MQ so that IBM MQ classes for JMS automatically transfers a poison message to
another queue for further investigation or discards the message.

Developing JMS and Java Platform, Enterprise Edition applications 1123

For details on how to handle poison messages, see “Handling poison messages in IBM MQ classes for
JMS” on page 1034.
Related information:
Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client
Federal Information Processing Standards (FIPS) for UNIX, Linux and Windows
Configuring JMS resources in WebSphere Application Server

Examples of how to define the sharedSubscription property:

You can define the sharedSubscription property of an activation specification within a WebSphere
Application Server Liberty server.xml file. Alternatively, you can define the property within a message
driven bean (MDB) using annotations.

Example: defining within a Liberty server.xml file

Within a WebSphere Application Server Liberty server.xml file, you define an activation specification as
shown in the following example. This example creates a durable shared subscription to a queue manager
on localhost/port 1490.
<jmsActivationSpec id="SubApp/SubscribingEJB/SubscribingMDB" authDataRef="JMSConnectionAlias">
<properties.wmqJms hostName="localhost" port="1490" maxPoolDepth="5" subscriptionName="MySubName"
subscriptionDurability="DURABLE" sharedSubscription="true"/>
</jmsActivationSpec>

Example: defining within an MDB

You can also define the sharedSubscription property within the MDB using annotations as shown in the
following example:
@ActioncationConfigProperty(propertyName ="sharedSubscription",
propertyValue = "true")

The following example shows a piece of MDB code that uses the annotations method:
/**
* Message-Driven Bean example using Annotations for configuration
*/
@MessageDriven(

activationConfig = {
@ActivationConfigProperty(

propertyName = "destinationType", propertyValue = "javax.jms.Topic"),
@ActivationConfigProperty(

propertyName = "sharedSubscription", propertyValue = "TRUE"),
@ActivationConfigProperty(

propertyName = "destination", propertyValue = "JNDI_TOPIC_NAME")
},
mappedName = "Stock/IBM")

public class SubscribingMDB implements MessageListener {

// Default constructor.
public SubscribingMDB() {
}

// @see MessageListener#onMessage(Message)
public void onMessage(Message message) {

// implement business logic here
}

}

1124 IBM MQ: Programming

Related concepts:
“Cloned and shared subscriptions” on page 1077
In IBM MQ Version 8.0, there are two methods for giving multiple consumers access to the same
subscription. These two methods are by using cloned subscriptions, or by using shared subscriptions.
Related information:
Subscribers and subscriptions
Subscription durability

Configuring the resource adapter for outbound communication
To configure outbound communication, define the properties of a ConnectionFactory object and an
administered destination object.

When using outbound communication, an application running in an application server starts a connection
to a queue manager, and then sends messages to its queues and receives messages from its queues in a
synchronous manner. For example, the following servlet method, doGet(), uses outbound communication:
protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

...

// Look up ConnectionFactory and Queue objects from the JNDI namespace

InitialContext ic = new InitialContext();
ConnectionFactory cf = (javax.jms.ConnectionFactory) ic.lookup("myCF");
Queue q = (javax.jms.Queue) ic.lookup("myQueue");

// Create and start a connection

Connection c = cf.createConnection();
c.start();

// Create a session and message producer

Session s = c.createSession(false, Session.AUTO_ACKNOWLEDGE);
MessageProducer pr = s.createProducer(q);

// Create and send a message

Message m = s.createTextMessage("Hello, World!");
pr.send(m);

// Create a message consumer and receive the message just sent

MessageConsumer co = s.createConsumer(q);
Message mr = co.receive(5000);

// Close the connection

c.close();
}

When the servlet receives an HTTP GET request, it retrieves a ConnectionFactory object and a Queue
object from the JNDI namespace, and uses the objects to send a message to an IBM MQ queue. The
servlet then receives the message that it has sent.

To configure outbound communication, define JCA resources in the following categories:
v The properties of a ConnectionFactory object, which the application server uses to create a JMS

ConnectionFactory object.
v The properties of an administered destination object, which the application server uses to create a JMS

Queue object or JMS Topic object.

Developing JMS and Java Platform, Enterprise Edition applications 1125

The way you define these properties depends on the administration interfaces provided by your
application server. ConnectionFactory, Queue, and Topic objects created by the application server are
bound into a JNDI namespace from where they can be retrieved by an application.

Typically, you define one ConnectionFactory object for each queue manager that applications might need
to connect to. You define one Queue object for each queue that applications might need to access in the
point-to-point domain. And you define one Topic object for each topic that applications might want to
publish or subscribe to. A ConnectionFactory object can be domain independent. Alternatively, it can be
domain-specific, a QueueConnectionFactory object for the point-to-point domain or a
TopicConnectionFactory object for the publish/subscribe domain.

Table 152 lists the properties of a ConnectionFactory object.

Table 152. Properties of a ConnectionFactory object

Name of property Type Valid values (default value in bold) Description

applicationName String v The invoking class name, if it is available,
adjusted to be no longer than 28 characters.
If it is not available, the string WebSphere MQ
Client for Java is used.

The name by which an
application is registered with the
queue manager. This application
name is shown by the DISPLAY
CONN MQSC/PCF command (where
the field is called APPLTAG) or in
the IBM MQ Explorer
Application Connections display
(where the field is called App
name).

brokerCCSubQueue 1 String v
SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE
v A queue name

The name of the queue from
which a connection consumer
receives nondurable subscription
messages.

brokerControlQueue 1 String v SYSTEM.BROKER.CONTROL.QUEUE
v A queue name

The name of the broker control
queue.

brokerPubQueue 1 String v SYSTEM.BROKER.DEFAULT.STREAM
v A queue name

The name of the queue where
published messages are sent (the
stream queue).

brokerQueueManager 1 String v "" (empty string)
v A queue manager name

The name of the queue manager
on which the broker is running.

brokerSubQueue 1 String v SYSTEM.JMS.ND.SUBSCRIBER.QUEUE
v A queue name

The name of the queue from
which a nondurable message
consumer receives messages.

See BROKERSUBQ property for
more information.

brokerVersion 1 String v unspecified - After the broker has been
migrated from V6 to V7, set this property so
that RFH2 headers are no longer used. After
migration this property is no longer
relevant.

v V1 - To use an IBM MQ Publish/Subscribe
broker. This value is the default value if
TRANSPORT is set to BIND or CLIENT.

v V2 - To use a broker of IBM Integration Bus
in native mode. This value is the default
value if TRANSPORT is set to DIRECT or
DIRECTHTTP.

The version of the broker being
used.

1126 IBM MQ: Programming

Table 152. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

ccdtURL String v null
v A uniform resource locator (URL)

A URL that identifies the name
and location of the file
containing the client channel
definition table (CCDT) and
specifies how the file can be
accessed.

CCSID String v 819
v A coded character set identifier supported

by the Java virtual machine (JVM)

The coded character set
identifier for a connection.

channel String v SYSTEM.DEF.SVRCONN
v The name of an MQI channel

The name of the MQI channel to
use.

cleanupInterval 1 int v 3 600 000
v A positive integer

The interval, in milliseconds,
between background runs of the
publish/subscribe cleanup
utility.

cleanupLevel 1 String v SAFE
v NONE
v STRONG
v FORCE
v NONDUR

The cleanup level for a
broker-based subscription store.

clientID String v null
v A client identifier

The client identifier for a
connection.

cloneSupport String v DISABLED - Only one instance of a
durable topic subscriber can run at a time.

v ENABLED - Two or more instances of the
same durable topic subscriber can run
simultaneously, but each instance must run
in a separate Java virtual machine (JVM).

Whether two or more instances
of the same durable topic
subscriber can run
simultaneously.

connectionNameList String v localhost(1414)
v A string composed of items separated by

commas where each item takes the format:

HOSTNAME(PORT)

where HOSTNAME is either a DNS name
or an IP address.

A list of TCP/IP connection
names used for outbound
communications.

connectionNameList supersedes
the hostname and port
properties.

This property is used to
reconnect to multi-instance
queue managers.

connectionNameList is similar in
form to localAddress, but must
not be confused with it.
localAddress specifies the
characteristics of the local
communications, whereas
connectionNameList specifies
how to reach a remote queue
manager.

failIfQuiesce Boolean v true
v false

Whether calls to certain methods
fail if the queue manager is in a
quiescing state.

Developing JMS and Java Platform, Enterprise Edition applications 1127

Table 152. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

headerCompression String v NONE
v SYSTEM - RLE message header

compression is performed.

A list of the techniques that can
be used for compressing header
data on a connection.

hostName String v localhost
v A host name
v An IP address

The host name or IP address of
the system on which the queue
manager resides.

The hostname and port
properties are superseded by the
connectionNameList property
when it is specified.

localAddress String v null
v A string in the format:

[host_name][(low_port [, high_port])]

where host_name is a host name or IP
address, low_port and high_port are TCP port
numbers, and brackets denote an optional
component

For a connection to a queue
manager, this property specifies
either or both of the following:
v The local network interface to

be used
v The local port, or range of

local ports, to be used

localAddress is similar in form
to connectionNameList, but must
not be confused with it.
localAddress specifies the
characteristics of the local
communications, whereas
connectionNameList specifies
how to reach a remote queue
manager.

messageCompression String v NONE
v A list of one or more of the following

values separated by blank characters:
RLE
ZLIBFAST
ZLIBHIGH

A list of the techniques that can
be used for compressing
message data on a connection.

messageSelection 1 String v CLIENT
v BROKER

Determines whether message
selection is done by IBM MQ
classes for JMS or by the broker.
Message selection by the broker
is not supported when
brokerVersion has the value 1.

password String v null
v A password

The default password to use
when creating a connection to
the queue manager.

1128 IBM MQ: Programming

Table 152. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

pollingInterval 1 int v 5000
v Any positive integer

If each message listener within a
session has no suitable message
on its queue, this value is the
maximum interval, in
milliseconds, that elapses before
each message listener tries again
to get a message from its queue.
If it frequently happens that no
suitable message is available for
any of the message listeners in a
session, consider increasing the
value of this property. This
property is relevant only if
TRANSPORT has the value
BIND or CLIENT.

port int v 1414
v A TCP port number

The port on which the queue
manager listens.

The hostname and port
properties are superseded by the
connectionNameList property
when it is specified.

providerVersion string v unspecified
v A string in one of the following formats

– V.R.M.F
– V.R.M
– V.R
– V

where V, R, M, and F are integer values
greater than or equal to zero.

The version, release,
modification level and fix pack
of the queue manager to which
the application intends to
connect.

pubAckInterval 1 int v 25
v A positive integer

The number of messages
published by a publisher before
IBM MQ classes for JMS
requests an acknowledgment
from the broker.

queueManager String v "" (empty string)
v A queue manager name

The name of the queue manager
to connect to.

receiveExit3 String v null
v A string comprising one or more items

separated by commas, where each item is
the fully qualified name of a class that
implements the IBM MQ classes for Java
interface, MQReceiveExit

Identifies a channel receive exit
program, or a sequence of
receive exit programs to be run
in succession.

receiveExitInit String v null
v A string comprising one or more items of

user data separated by commas

The user data that is passed to
channel receive exit programs
when they are called.

Developing JMS and Java Platform, Enterprise Edition applications 1129

Table 152. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

rescanInterval 1 int v 5000
v Any positive integer

When a message consumer in
the point-to-point domain uses a
message selector to select which
messages it wants to receive,
IBM MQ classes for JMS
searches the IBM MQ queue for
suitable messages in the
sequence determined by the
MsgDeliverySequence attribute

of the queue. When IBM MQ
classes for JMS finds a suitable
message and delivers it to the
consumer, IBM MQ classes for
JMS resumes the search for the
next suitable message from its
current position in the queue.
IBM MQ classes for JMS
continues to search the queue in
this way until it reaches the end
of the queue, or until the
interval of time in milliseconds,
as determined by the value of
this property, has expired. In
each case, IBM MQ classes for
JMS returns to the beginning of
the queue to continue its search,
and a new time interval
commences.

securityExit3 String v null
v The fully qualified name of a class that

implements the IBM MQ classes for Java
interface, MQSecurityExit

Identifies a channel security exit
program.

securityExitInit String v null
v A string of user data

The user data that is passed to a
channel security exit program
when it is called.

sendCheckCount int v 0
v Any positive integer

The number of send calls to
allow between checking for
asynchronous put errors, within
a single non-transacted JMS
session.

sendExit3 String v null
v A string comprising one or more items

separated by commas, where each item is
the fully qualified name of a class that
implements the IBM MQ classes for Java
interface, MQSendExit

Identifies a channel send exit
program, or a sequence of send
exit programs to be run in
succession.

sendExitInit String v null
v A string comprising one or more items of

user data separated by commas

The user data that is passed to
channel send exit programs
when they are called.

shareConvAllowed Boolean v NO - A client connection cannot share its
socket.

v YES - A client connection can share its
socket.

Whether a client connection can
share its socket with other
top-level JMS connections from
the same process to the same
queue manager, if the channel
definitions match.

1130 IBM MQ: Programming

Table 152. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

sparseSubscriptions 1 Boolean v false - Subscriptions receive frequent
matching messages.

v true - Subscriptions receive infrequent
matching messages. This value requires that
the subscription queue can be opened for
browse.

Controls the message retrieval
policy of a TopicSubscriber
object.

sslCertStores String v null
v A string of one or more LDAP URLs

separated by blanks. Each LDAP URL has
the format:

ldap://host_name [: port]

where host_name is a host name or IP
address, port is a TCP port number, and
brackets denote an optional component.

The Lightweight Directory
Access Protocol (LDAP) servers
that hold certificate revocation
lists (CRLs) for use on an SSL
connection.

sslCipherSuite String v null
v The name of a CipherSuite

The CipherSuite to use for an
SSL connection.

sslFipsRequired 2 Boolean v false
v true

Whether an SSL connection
must use a CipherSuite that is
supported by the IBM Java JSSE
FIPS provider (IBMJSSEFIPS).

sslPeerName String v null
v A template for distinguished names

For an SSL connection, a
template that is used to check
the distinguished name in the
digital certificate provided by
the queue manager.

sslResetCount int v 0
v An integer in the range 0 - 999 999 999

The total number bytes sent and
received by an SSL connection
before the secret keys used by
SSL are renegotiated.

sslSocketFactory String A string representing the fully qualified class
name of a class providing an implementation
of the javax.net.ssl.SSLSocketFactory interface,
optionally including an argument to be passed
to the constructor method, enclosed in
parentheses.

Any connections established in
the scope of the administered
destination object use sockets
obtained from this
implementation of the
SSLSocketFactory interface.

statusRefreshInterval 1 int v 60000
v Any positive integer

The interval, in milliseconds,
between refreshes of the long
running transaction that detects
when a subscriber loses its
connection to the queue
manager. This property is
relevant only if SUBSTORE has
the value QUEUE.

subscriptionStore 1 String v BROKER
v MIGRATE
v QUEUE

Determines where IBM MQ
classes for JMS stores persistent
data about active subscriptions.

Developing JMS and Java Platform, Enterprise Edition applications 1131

Table 152. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

targetClientMatching Boolean v true
v false

Whether a reply message, sent
to the queue identified by the
JMSReplyTo header field of an
incoming message, has an
MQRFH2 header only if the
incoming message has an
MQRFH2 header.

1132 IBM MQ: Programming

Table 152. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

temporaryModel String v SYSTEM.DEFAULT.MODEL.QUEUE
v SYSTEM.JMS.TEMPQ.MODEL
v Any string

The name of the model queue
from which JMS temporary
queues are created.
Use
SYSTEM.DEFAULT.MODEL.QUEUE
if both of the following are true:

v Your application uses a
temporary queue that will
accept non-persistent
messages.

v Only one application will
create a temporary queue on
the queue manager that the
ConnectionFactory points to
at a time. Note that
SYSTEM.DEFAULT.MODEL.QUEUE
can only be opened by one
application at a time.

Use
SYSTEM.JMS.TEMPQ.MODEL.
in the following situations:

v When your application uses a
temporary queue that will
accept persistent messages.

v If multiple applications can
connect to the queue manager
that the ConnectionFactory
points to and those
applications need to create
temporary queues at the same
time.

Define a new model queue with
the DEFPSIST attribute set to
YES, and the DEFSOPT attribute
set to SHARED in the following
situation:

v When your application uses a
temporary queue that will
accept non-persistent
messages, and multiple
applications will connect to
the queue manager that the
ConnectionFactory points to,
and those applications need
to create temporary queues at
the same time.

When the new model queue is
created, set the temporaryModel
property to the name of the new
model queue.

Developing JMS and Java Platform, Enterprise Edition applications 1133

Table 152. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

tempQPrefix String v "" (empty string)
v A prefix that can be used to form the name

of an IBM MQ dynamic queue. The rules
for forming the prefix are the same as the
rules for forming the contents of the
DynamicQName field in an IBM MQ object
descriptor, structure MQOD, but the last
non-blank character must be an asterisk (*).
If the value of the property is the empty
string, IBM MQ classes for JMS uses the
value AMQ.* when creating a dynamic
queue.

The prefix that is used to form
the name of an IBM MQ
dynamic queue.

tempTopicPrefix String Any non-null string consisting only of valid
characters for an IBM MQ topic string

When creating temporary topics,
JMS generates a topic string of
the form "TEMP/
TEMPTOPICPREFIX/unique_id",
or if this property is left with
the default value, just
"TEMP/unique_id". Specifying a
non-empty TEMPTOPICPREFIX
allows specific model queues to
be defined for creating the
managed queues for subscribers
to temporary topics created
under this connection.

transportType String v CLIENT
v BINDINGS
v BINDINGS_THEN_CLIENT

Whether a connection to a
queue manager uses client mode
or bindings mode. If the value
BINDINGS_THEN_CLIENT is
specified, the resource adapter
first tries to make a connection
in bindings mode. If this
connection attempt fails, the
resource adapter then tries to
make a client mode connection.

z/OS

If an activation

specification that is running on
a WebSphere Application Server
for z/OS system has been
configured to use the
BINDINGS_THEN_CLIENT
transport mode and a
previously established
connection is broken, then any
reconnection attempts by the
activation specification first
attempt to use the BINDINGS
transport mode. If the
BINDINGS transport mode
connection attempt is
unsuccessful, the activation
specification subsequently
attempts a CLIENT transport
mode connection.

1134 IBM MQ: Programming

Table 152. Properties of a ConnectionFactory object (continued)

Name of property Type Valid values (default value in bold) Description

username String v null
v A user name

The default user name to use
when creating a connection to a
queue manager.

wildcardFormat int v CHAR- Recognizes character wildcards
only, as used in broker version 1

v TOPIC - Recognizes topic level wildcards
only, as used in broker version 2

Which version of wildcard
syntax is to be used.

Notes:

1. This property can be used with Version 7.0 of IBM MQ classes for JMS but does not affect an
application connected to a Version 7.0 queue manager unless the providerVersion property is set to a
version number less than 7.

2. For important information about using the sslFipsRequired property, see “Limitations of the IBM MQ
resource adapter” on page 1103.

3. For information on how to configure the resource adapter so that it can locate an exit, see
“Configuring IBM MQ classes for JMS to use channel exits” on page 1058.

The following example shows a typical set of properties of a ConnectionFactory object:
channel: SYSTEM.DEF.SVRCONN
hostName: 192.168.0.42
port: 1414
queueManager: ExampleQM
transportType: CLIENT

Table 153 lists the properties that are common to a Queue object and a Topic object.

Table 153. Properties that are common to a Queue object and a Topic object

Name of property Type Valid values (default value in bold) Description

CCSID String v 1208
v A coded character set identifier supported

by the Java virtual machine (JVM)

The coded character set
identifier for the destination.

encoding String v NATIVE
v A string of three characters:

– The first character specifies the
representation of binary integers:
- N denotes normal encoding.
- R denotes reverse encoding.

– The second character specifies the
representation of packed decimal integers:
- N denotes normal encoding.
- R denotes reverse encoding.

– The third character specifies the
representation of floating point numbers:
- N denotes standard IEEE encoding.
- R denotes reverse IEEE encoding.
- 3 denotes zSeries encoding.

NATIVE is equivalent to the string NNN.

The representation of binary
integers, packed decimal
integers, and floating point
numbers for the destination.

Developing JMS and Java Platform, Enterprise Edition applications 1135

Table 153. Properties that are common to a Queue object and a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

expiry String v APP - The expiry time of a message is
determined by the message producer.

v UNLIM - A message never expires.
v 0 - A message never expires.
v A positive integer representing the expiry

time of a message in milliseconds.

The expiry time of a message
sent to the destination.

failIfQuiesce String v true
v false

Whether an attempt to access
the destination fails if the
queue manager is in a
quiescing state.

messageBodyStyle String v UNSPECIFIED
v JMS
v MQ

You can set the
messageBodyStyle property on
JMS queues and topics:
UNSPECIFIED(default)

v When sending, IBM MQ
classes for JMS generate and
include an MQRFH2 header,
depending on the value of
WMQ_TARGET_CLIENT.

v When receiving, IBM MQ
classes for JMS set the JMS
message properties
according to values in the
MQRFH2, if present.
MQRFH2 is not presented as
part of the JMS message
body.

JMS

v When sending, IBM MQ
classes for JMS automatically
generates an MQRFH2
header and includes the
header in the IBM MQ
message.

v When receiving, IBM MQ
classes for JMS set the JMS
message properties
according to values in the
MQRFH2, if present.
MQRFH2 is not presented as
part of the JMS message
body.

MQ

v When sending, IBM MQ
classes for JMS do not
generate an MQRFH2.

v When receiving, IBM MQ
classes for JMS present the
MQRFH2 as part of the JMS
message body.

1136 IBM MQ: Programming

Table 153. Properties that are common to a Queue object and a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

persistence String v APP - The persistence of a message is
determined by the message producer.

v QDEF - The persistence of a message is
determined by the DefPersistence attribute
of the IBM MQ queue.

v PERS - A message is persistent.
v NON - A message is nonpersistent.
v HIGH - The persistence of a message is

determined by the
NonPersistentMessageClass attribute of the
IBM MQ queue according to the explanation
in “JMS persistent messages” on page 1047.

The persistence of a message
sent to the destination.

priority String v APP - The priority of a message is
determined by the message producer.

v QDEF - The priority of a message is
determined by the DefPriority attribute of
the IBM MQ queue.

v An integer in the range 0, lowest priority, to
9, highest priority.

The priority of a message sent
to the destination.

putAsyncAllowed String v QUEUE - Determine whether asynchronous
puts are allowed by referring to the queue
definition.

v TOPIC - Determine whether asynchronous
puts are allowed by referring to the topic
definition.

v DESTINATION - Determine whether
asynchronous puts are allowed by referring
to the queue or topic definition.

v DISABLED - Asynchronous puts are not
allowed.

v ENABLED - Asynchronous puts are allowed.

Whether message producers
are allowed to use
asynchronous puts to send
messages to this destination.

readAheadAllowed int v DESTINATION - Determine whether read
ahead is allowed by referring to the queue
or topic definition.

v DISABLED - Read ahead is not allowed.
v ENABLED - Read ahead is allowed.
v QUEUE - Determine whether read ahead is

allowed by referring to the queue definition.
v TOPIC - Determine whether read ahead is

allowed by referring to the topic definition.

Whether message consumers
and queue browsers are
allowed to use read ahead to
get nonpersistent messages
from the destination into an
internal buffer before receiving
them.

receiveCCSID int v 0 - Use JVM Charset.defaultCharset
v 1208 - UTF-8
v A supported coded character set identifier

Destination property that sets
the target CCSID for queue
manager message conversion.
The value is ignored unless
receiveConversion is set to
QMGR

receiveConversion String v CLIENT_MSG
v QMGR

Destination property that
determines whether data
conversion is going to be
performed by the queue
manager.

Developing JMS and Java Platform, Enterprise Edition applications 1137

Table 153. Properties that are common to a Queue object and a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

targetClient String v JMS - The target of a message is a JMS
application.

v MQ - The target of a message is a non-JMS
IBM MQ application.

Whether the target of a
message sent to the destination
is a JMS application. A
message with a target that is a
JMS application contains an
MQRFH2 header.

Table 154 lists the properties that are specific to a Queue object.

Table 154. Properties that are specific to a Queue object

Name of property Type Valid values (default value in bold) Description

baseQueueManagerName String v "" (empty string)
v A queue manager name

The name of the queue manager that
owns the underlying IBM MQ queue.

baseQueueName String v "" (empty string)
v A queue name

The name of the underlying IBM MQ
queue.

Table 155 lists the properties that are specific to a Topic object.

Table 155. Properties that are specific to a Topic object

Name of property Type Valid values (default value in bold) Description

baseTopicName String v "" (empty string)
v A topic name

The name of the underlying
topic.

brokerCCDurSubQueue 1 String v
SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE
v A queue name

The name of the queue from
which a connection consumer
receives durable subscription
messages.

brokerDurSubQueue 1 String v SYSTEM.JMS.D.SUBSCRIBER.QUEUE
v A queue name

The name of the queue from
which a durable topic
subscriber receives messages.
See the BROKEDURRSUBQ
property in the IBM MQ
Explorer documentation for
more information.

brokerPubQueue 1 String v Not set
v A queue name

The name of the queue where
published messages are sent
(the stream queue). The value
of this property overrides the
value of the brokerPubQueue
property of the
ConnectionFactory object.
However, if you do not set the
value of this property, the
value of the brokerPubQueue
property of the
ConnectionFactory object is
used instead.

brokerPubQueueManager
1

String v "" (empty string)
v A queue manager name

The name of the queue
manager that owns the queue
where messages published on
the topic are sent.

1138 IBM MQ: Programming

Table 155. Properties that are specific to a Topic object (continued)

Name of property Type Valid values (default value in bold) Description

brokerVersion 1 String v Not set
v 1
v 2

The version of the broker being
used. The value of this
property overrides the value of
the brokerVersion property of
the ConnectionFactory object.
However, if you do not set the
value of this property, the
value of the brokerVersion
property of the
ConnectionFactory object is
used instead.

Note:

1. This property can be used with Version 7.0 of IBM MQ classes for JMS but does not affect an
application connected to a Version 7.0 queue manager unless the providerVersion property of the
ConnectionFactory object is set to a version number less than 7.

The following example shows a set of properties of a Queue object:
expiry: UNLIM
persistence: QDEF
baseQueueManagerName: ExampleQM
baseQueueName: SYSTEM.JMS.TEMPQ.MODEL

The following example shows a set of properties of a Topic object:
expiry: UNLIM
persistence: NON
baseTopicName: myTestTopic

Related information:
Specifying that only FIPS-certified CipherSpecs are used at run time on the MQI client
Federal Information Processing Standards (FIPS) for UNIX, Linux and Windows
Configuring JMS resources in WebSphere Application Server

The installation verification test program for the IBM MQ resource
adapter
The IVT program is supplied as an EAR file. To use the program, you must deploy it and define some
objects as JCA resources.

The installation verification test (IVT) program is supplied as an enterprise archive (EAR) file called
wmq.jmsra.ivt.ear. This file is installed with IBM MQ classes for JMS in the same directory as the IBM
MQ resource adapter RAR file, wmq.jmsra.rar. For information about where these files are installed, see
“Installing the IBM MQ resource adapter” on page 1105.

You must deploy the IVT program on your application server. The IVT program includes a servlet and an
MDB that tests that a message can be sent to, and received from, an IBM MQ queue. Optionally, you can
use the IVT program to verify that the IBM MQ resource adapter has been correctly configured to
support distributed transactions.

Before you can run the IVT program, you must define a ConnectionFactory object, a Queue object and
possibly an Activation Specification object as JCA resources, and ensure that your application server
creates JMS objects from these definitions and binds them into a JNDI namespace. You can choose the
properties of the objects, but the following set of properties is a simple example:

Developing JMS and Java Platform, Enterprise Edition applications 1139

ConnectionFactory object
channel: SYSTEM.DEF.SVRCONN
hostName: localhost
port: 1414
queueManager: ExampleQM
transportType: CLIENT

Queue object
baseQueueManagerName: ExampleQM
baseQueueName: TEST.QUEUE

By default, the IVT program expects a ConnectionFactory object to be bound in the JNDI namespace with
the name jms/ivt/IVTCF and a Queue object to be bound with the name jms/ivt/IVTQueue. You can use
different names, but if you do, you must enter the names of the objects on the initial page of the IVT
program and modify the EAR file appropriately.

After you have deployed the IVT program, and the application server has created the JMS objects and
bound them into the JNDI namespace, you can start the IVT program by entering a URL in the following
format into your Web browser:
http://app_server_host: port/WMQ_IVT/

where app_server_host is the IP address or host name of the system on which your application server is
running, and port is the number of the TCP port on which the application server is listening. Here is an
example:
http://localhost:9080/WMQ_IVT/

Figure 146 shows the initial page of the IVT program.

To run the test, click Run IVT. Figure 147 on page 1141 shows the page that is displayed if the IVT is
successful.

Figure 146. The initial page of the IVT program

1140 IBM MQ: Programming

If the IVT fails, a page like that shown in Figure 148 on page 1142 is displayed. To obtain further
information about the cause of the failure, click View Stack Trace.

Figure 147. Page showing the results of a successful IVT

Developing JMS and Java Platform, Enterprise Edition applications 1141

Installing and testing the resource adapter in GlassFish Server
This task describes the steps needed to install the IBM MQ resource adapter, and run the installation
verification test (IVT) application in GlassFish Server on a Windows operating system.

About this task

These instructions are for GlassFish Server version 4.

This task assumes that you have a running GlassFish Server application server, and that you are familiar
with standard administration tasks for it. This task also assumes that you have an IBM MQ installation
on your local system and that you are familiar with standard administration tasks.

Note: In order to complete the task steps described in this topic, you must have a functioning IBM MQ
installation, with the following objects configured:
v Create a queue manager called QM, that is started on port 1414, that uses channel

SYSTEM.DEF.SVRCONN, and that connects using Client transport. You also need to create a queue
called Q1.

Procedure
1. Start the GlassFish Server asadmin shell program.

a. Open the Windows command line and navigate to the < GlassFish >/bin directory, where <
GlassFish > is the directory where GlassFish Server version 4 is installed.

Figure 148. Page showing the results of an IVT that failed

1142 IBM MQ: Programming

b. Enter the command asadmin in the command line. The asadmin command will open a shell
program in the command line that enables you to create a new domain.

GlassFish Server version 4 is installed on your system.
2. Create, and then start a domain.

a. Use the create-domain command, specifying the port and domain name, to create a new domain.
Enter the following command into the command line:
create-domain --adminport < port > < domain name >

where < port > is the port number, and < domain name > is the name you want the domain to use.

Note: The create-domain command has many optional parameters associated with it. During this
task, we will be using only the --adminport parameter. For more information see the product
documentation for GlassFish Server version 4.
If the port you specified is in use, you will receive the message Port for < domain_name > < port
> is in use.

If the domain name you specified is in use, you receive a message telling you that your specified
name is already in use, as well as a list of all domain names that are currently unavailable.

b. When prompted to input a user name and password, enter the credentials to be used to log on to
the application server through a web browser. If the command completes successfully, a message
summarizing the domain creation is displayed on the command line, including the message
Command create-domain executed successfully.

You have successfully created a domain.
c. Start your domain by entering the following command into the command line:

start-domain < domain name >

where < domain name > is the domain name you previously specified.
3. Use a web browser to access GlassFish application server.

a. In the address bar of a web browser enter the following command:
localhost:< port >

where < port > is the port that you specified earlier when creating your domain. The GlassFish
Console is displayed.

b. When the GlassFish Console has loaded, and you are prompted for a user name and password,
enter the credentials that you specified in step 2b.

4. Upload the resource adapter to GlassFish Server 4.
a. On the tool bar Common Tasks select the Applications menu item to display the Applications

page.
b. Click the Deploy button, to open the Deploy Applications or Modules page.
c. Click the Browse button to and then navigate to the location of the wmq.jmsra.rar file. Select the

file and click OK.
5. Create a connection pool.

a. On the tool bar, under Resources, select the Connectors menu item.
b. Then select Connector Connection Pools menu item, to open the Connector Connection Pools

page.
c. Click the New button to open the New Connector Connection Pool (Step 1 of 2) page.
d. On New Connector Connection Pool (Step 1 of 2) page, input the pool name as

jms/ivt/IVTCF-Connection-Pool into the Pool Name field.
e. In the Resource Adapter field select wmq.jmsra.
f. In the Connection Definition field enter javax.jms.ConnectionFactory.

Developing JMS and Java Platform, Enterprise Edition applications 1143

g. Select Next, then select Finish.
6. Create the connector resources.

a. On the tool bar, under the Connectors menu, select the Connector Resource option, to open the
Connector Resources page.

b. Select New, to open the New Connector Resource page.
c. In the JNDI Name field, enter IVTCF.
d. In the Pool Name field, enter jms/ivt/IVTCF-Connection-Pool.
e. Leave all other fields empty.
f. For each of the following property/value pairs, press the Add Property button, and enter the

property name, and the value as shown in the following example:
v name: host; value: localhost
v name: port; value 1414
v name: channel; value: SYSTEM.DEF.SVRCONN
v name: queueManager; value: QM
v name: transportType; value: CLIENT

Note: Make sure that you use the correct values for your own configuration settings, which might
be different from the ones shown in this example.

g. In the tool bar, under Connectors, select the Admin Object Resources menu item, to open the
Admin Object Resources page.

h. In the Admin Object Resources page, click New to open the New Admin Object Resource page.
i. In the JNDI Name field enter IVTQueue.
j. In the Resource Adapter field enter wmq.jmsra.
k. In the Resource Type field enter javax.jms.Queue.
l. Leave the Class Name field as it is.
m. For each of the following property/value pairs, press the Add Property button, and enter the

property name, and the value as shown in the following example:
v name: name; value: IVTQueue
v name: baseQueueManagerName; value QM
v name: baseQueueName; value: Q1

Note: Make sure that you use the correct values for your own configuration settings, which might
be different from the ones shown in this example.

n. Click the OK button.
o. Select the Enabled checkbox, then click the Enable button.

7. Deploy the EAR file wmq.jmsra.ivt.ear into GlassFish Server.
a. Click the Applications option in the tool bar to display the Applications page.
b. Click Deploy to add the IVT application.
c. In the Location field navigate to, and select, the wmq.jmsra.ivt.ear.
d. In the Virtual Servers field, select server, and then click OK.

8. Launch the IVT program.
a. Click the Applications option in the tool bar to display the Applications page.
b. Click on the wmq.jmsra.ivt in the Deployed Applications table.
c. Click the Launch button, in the Modules and Components table.
d. Select the http: link.
e. Click Run IVT.

You have launched the IVT program, and if you are successful, the following output is displayed:

1144 IBM MQ: Programming

Figure 149. Successful IVT output

Developing JMS and Java Platform, Enterprise Edition applications 1145

Installing and testing the resource adapter in Wildfly

If you are installing the IBM MQ resource adapter in Wildfly V10, you must first make some
configuration file changes to add a subsystem definition for the IBM MQ resource adapter. You can then
deploy the resource adapter and test it by installing and running the installation verification test (IVT)
application.

About this task

Important: These instructions are for Wildfly V10.

This task assumes that you have a running WildFly application server, and that you are familiar with
standard administration tasks for it. This task also assumes that you have an IBM MQ installation and
that you are familiar with standard administration tasks.

Procedure
1. Create an IBM MQ queue manager called ExampleQM, and set it up as described in “Preparing and

running the sample programs” on page 485. When setting up the queue manager, note the following
points:
v The listener must be started on port 1414.
v The channel to be used is called SYSTEM.DEF.SVRCONN.
v The queue used by the IVT application is named TEST.QUEUE.
The model queue SYSTEM.DEFAULT.MODEL.QUEUE also needs to be granted DSP and PUT
authority so this application can create a temporary reply queue.

2. Edit the configuration file <WildFly_Home>/standalone/configuration/standalone-full.xml and add
the following subsystem:
<subsystem xmlns="urn:jboss:domain:resource-adapters:4.0">

<resource-adapters>
<resource-adapter id="wmq.jmsra">

<archive>
wmq.jmsra.rar

</archive>
<transaction-support>NoTransaction</transaction-support>
<connection-definitions>

<connection-definition class-name="com.ibm.mq.connector.outbound.ManagedConnectionFactoryImpl"
jndi-name="java:jboss/jms/ivt/IVTCF" enabled="true" use-java-context="true"
pool-name="IVTCF">

<config-property name="channel">SYSTEM.DEF.SVRCONN
</config-property>
<config-property

name="hostName">localhost
</config-property>
<config-property name="transportType">

CLIENT
</config-property>
<config-property name="queueManager">

ExampleQM
</config-property>
<config-property name="port">

1414
</config-property>

</connection-definition>
<connection-definition class-name="com.ibm.mq.connector.outbound.ManagedConnectionFactoryImpl"

jndi-name="java:jboss/jms/ivt/JMS2CF" enabled="true" use-java-context="true"
pool-name="JMS2CF">

<config-property name="channel">
SYSTEM.DEF.SVRCONN

</config-property>

1146 IBM MQ: Programming

<config-property name="hostName">
localhost

</config-property>
<config-property name="transportType">

CLIENT
</config-property>
<config-property name="queueManager">

ExampleQM
</config-property>
<config-property name="port">

1414
</config-property>

</connection-definition>
</connection-definitions>

<admin-objects>
<admin-object class-name="com.ibm.mq.connector.outbound.MQQueueProxy"

jndi-name="java:jboss/jms/ivt/IVTQueue" pool-name="IVTQueue">
<config-property name="baseQueueName">

TEST.QUEUE
</config-property>
</admin-object>

</admin-objects>
</resource-adapter>

</resource-adapters>
</subsystem>

3. Deploy the resource adapter to your server by copying the wmq.jmsra.rar file into the directory
<WildFly_Home>/standalone/deployments.

4. Deploy the IVT application by coping the wmq.jmsra.ivt.ear file into the directory
<WildFly_Home>/standalone/deployments.

5. Start the application server, by bringing up a command prompt, navigating to the directory
<WildFly_Home>/bin and running the command:
standalone.bat -c standalone-full.xml

6. Run the IVT application. For more information, see “The installation verification test program for the
IBM MQ resource adapter” on page 1139. For Wildfly, the default URL is http://localhost:8080/
WMQ_IVT/.

Using the IBM MQ Headers package
The IBM MQ Headers package provides a set of helper interfaces and classes that you can use to
manipulate the IBM MQ headers of a message. Typically, you use the IBM MQ Headers package because
you want to perform administrative services by using the command server (by using Programmable
Command Format (PCF) messages).

About this task

The IBM MQ Headers package is located in the com.ibm.mq.headers and com.ibm.mq.pcf packages. You
can use this facility for both of the two alternative APIs that IBM MQ provides for use in Java
applications:
v IBM MQ classes for Java (also referred to as IBM MQ Base Java).
v IBM MQ classes for Java Message Service (IBM MQ classes for JMS, also referred to as IBM MQ JMS).

IBM MQ Base Java applications typically manipulate MQMessage objects, and the Headers support
classes can directly interact with these objects, since they natively understand the IBM MQ Base Java
interfaces.

Developing JMS and Java Platform, Enterprise Edition applications 1147

In IBM MQ JMS, the payload for a message is typically a String or a byte array object, which can be
manipulated with DataInput and DataOutput streams. The IBM MQ Headers package can be used to
interact with these data streams and is suitable for manipulating any MQ messages that are sent and
received by IBM MQ JMS applications.

Therefore, although the IBM MQ Headers package contains references to the IBM MQ Base Java package,
it is also intended for use within IBM MQ JMS applications and is suitable for use within Java Platform,
Enterprise Edition (Java EE) environments.

A typical way in which you might use the IBM MQ Headers package is to manipulate administration
messages in Programmable Command Format (PCF), for example for any of the following reasons:
v To access details about an IBM MQ resource.
v To monitor the depth of a queue.
v To inhibit access to a queue.

By using PCF messages with the IBM MQ JMS API, this kind of administration of application-centric
resources can be performed from within Java EE applications without having to resort to using the IBM
MQ Base Java API.

Procedure
v To use the IBM MQ Headers package to manipulate message headers for IBM MQ classes for Java, see

“Using with IBM MQ classes for Java.”
v To use the IBM MQ Headers package to manipulate message headers for IBM MQ classes for JMS, see

“Using with IBM MQ classes for JMS” on page 1149.

Using with IBM MQ classes for Java
IBM MQ classes for Java applications typically manipulate MQMessage objects, and the Headers support
classes can directly interact with these objects, since they natively understand the IBM MQ classes for
Java interfaces.

About this task

IBM MQ provides some sample applications that demonstrate how to use the IBM MQ Headers package
with the IBM MQ Base Java API (IBM MQ classes for Java).

The samples show two things:
v How to create a PCF message to perform an administrative action and parse the response message.
v How to send this PCF message using the IBM MQ classes for Java.

Depending on which platform you are using, these samples are installed under the pcf directory in the
samples or tools directory of your IBM MQ installation (see “Installation directories for IBM MQ classes
for Java” on page 839).

Procedure
1. Create a PCF message to perform an administrative action and parse the response message.
2. Send this PCF message using the IBM MQ classes for Java.

1148 IBM MQ: Programming

Related concepts:
“Handling IBM MQ message headers with IBM MQ classes for Java” on page 862
Java classes are provided representing different types of message header. Two helper classes are also
provided.
“Handling PCF messages with IBM MQ classes for Java” on page 868
Java classes are provided to create and parse PCF-structured messages, and to facilitate sending PCF
requests and collecting PCF responses.

Using with IBM MQ classes for JMS
To use the IBM MQ Headers with the IBM MQ classes for JMS, you carry out the same essential steps as
for IBM MQ classes for Java. The PCF message can be created and the response parsed in exactly the
same way by using the IBM MQ Headers package and the same sample code as for IBM MQ classes for
Java.

About this task

To send a PCF message using the IBM MQ API, the message payload must be written into a JMS Bytes
Message, and sent using the standard JMS APIs. The only consideration is that the message must not
contain a JMS RFH2 or any other headers with specific values in the MQMD.

To send a PCF message, complete the following steps. The way in which the PCF message is created, and
information is extracted from the response message is the same as for IBM MQ classes for Java (see
“Using with IBM MQ classes for Java” on page 1148).

Procedure
1. Create a JMS Queue Destination that represents the SYSTEM.ADMIN.COMMAND.QUEUE. IBM MQ

JMS applications send the PCF messages to the SYSTEM.ADMIN.COMMAND.QUEUE, and need
access to a JMS Destination object that represents this queue. The Destination must have the following
properties set:
WMQ_MQMD_WRITE_ENABLED = YES
WMQ_MESSAGE_BODY = MQ

If you are using WebSphere Application Server, you must define these properties as custom properties
on the Destination.
To create the destination programmatically from within an application, use the following code:
Queue q1 = session.createQueue("SYSTEM.ADMIN.COMMAND.QUEUE");
((MQQueue) q1).setIntProperty(WMQConstants.WMQ_MESSAGE_BODY,

WMQConstants.WMQ_MESSAGE_BODY_MQ);
((MQQueue) q1).setMQMDWriteEnabled(true);

2. Convert a PCF message into a JMS Bytes message containing the correct MQMD values. A JMS Bytes
message needs to be created, and the PCF Message written to it. A response queue needs to be
created, but this needs to have no specific settings.
The following sample code snippet shows how to create a JMS Bytes Message and write a
com.ibm.mq.headers,pcf.PCFMessage object into it. The PCFMessage object (pcfCmd) has previously
been built using the IBM MQ Headers package. (Note the package to load the PCFMessage is
com.ibm.mq.headers.pcf.PCFMessage).
// create the JMS Bytes Message

final BytesMessage msg = session.createBytesMessage();

// Create the wrapping streams to put the bytes into the message payload
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutput dataOutput = new DataOutputStream(baos);

// Set the JMSReplyTo so the answer comes back
msg.setJMSReplyTo(new MQQueue("adminResp"));

Developing JMS and Java Platform, Enterprise Edition applications 1149

// write the pcf into the stream
pcfCmd.write(dataOutput);
baos.flush();
msg.writeBytes(baos.toByteArray());

// we have taken control of the MD, so need to set all
// flags in the MD that we require - main one is the format
msg.setJMSPriority(4);
msg.setIntProperty(WMQConstants.JMS_IBM_MQMD_PERSISTENCE,

CMQC.MQPER_NOT_PERSISTENT);
msg.setIntProperty(WMQConstants.JMS_IBM_MQMD_EXPIRY, 300);
msg.setIntProperty(WMQConstants.JMS_IBM_MQMD_REPORT,

CMQC.MQRO_PASS_CORREL_ID);
msg.setStringProperty(WMQConstants.JMS_IBM_MQMD_FORMAT, "MQADMIN");

// and send the message
sender.send(msg);

3. Send the message, and receive the response using the standard JMS APIs.
4. Convert the response message into a PCF message for processing. To retrieve the response message

and process it as a PCF message, use the following code:
// Get the message back

BytesMessage msg = (BytesMessage) consumer.receive();

// get the size of the bytes message & read into an array
int bodySize = (int) msg.getBodyLength();
byte[] data = new byte[bodySize];
msg.readBytes(data);

// Read into Stream and DataInput Stream
ByteArrayInputStream bais = new ByteArrayInputStream(data);
DataInput dataInput = new DataInputStream(bais);

// Pass to PCF Message to process
PCFMessage response = new PCFMessage(dataInput);

Related concepts:
“JMS messages” on page 953
JMS messages are composed of a header, properties, and a body. JMS defines five types of message body.

1150 IBM MQ: Programming

Developing applications for IBM MQ Telemetry

Telemetry applications integrate sense and control devices with other sources of information available on
the internet and in enterprises.

Develop applications for IBM MQ Telemetry using design patterns, worked examples, sample programs,
programming concepts, and reference information.
Related information:
IBM MQ Telemetry
Telemetry use cases
Installing IBM MQ Telemetry
Administering IBM MQ Telemetry
IBM MQ Telemetry Reference
IBM MQ Telemetry troubleshooting

IBM MQ Telemetry Transport sample programs
Sample scripts are provided that work with a sample IBM MQ Telemetry Transport (MQTT) v3 client
application. Download the client application, then use the scripts to subscribe to a topic and publish a
message.

About this task

The MQTT v3 sample Java application, and the associated Java client library, are no longer included in
IBM MQ Telemetry. They are now part of the free download IBM Messaging Telemetry Clients
SupportPac.

For information about downloading and installing this pack, and running the sample application, see
Verifying the installation of IBM MQ Telemetry using the command line.

MQTTV3Sample program
Reference information about sample syntax and parameters for the MQTTV3Sample program.

Purpose

The MQTTV3Sample program can be used to publish a message and subscribe to a topic.

MQTT V3Sample syntax

►► MQTTV3Sample
-h

-q false

-q true

-a publish

-a subscribe

-t SYSTEM.BASE.TOPIC

-t topic
►

►
-m default text

-m message text

-s 2

-s 0
-s 1

-b localhost

-b host name
-b IP address

-p 1883

-p port
►◄

Parameters

-h Print this help text and quit

© Copyright IBM Corp. 2007, 2018 1151

-q Set quiet mode, instead of using the default mode of false.

-a Set publish or subscribe, instead of assuming the default action of publishing.

-t Publish or subscribe to topic, instead of publishing or subscribing to the default topic

-m Publish message text instead of sending the default publication text, "Hello from an MQTT v3
application".

-s Set QoS instead of using the default QoS, 2.

-b Connect to this host name or IP address instead of connecting to the default host name, localhost.

-p Use this port instead of using the default, 1883.

Run the MQTTV3Sample program

To subscribe to a topic on Windows, use the command:
runMQTTV3Sample -a subscribe

To publish a message on Windows, use the command:
runMQTTV3Sample

For further information about running the sample scripts provided, see “IBM MQ Telemetry Transport
sample programs” on page 1151.

Creating your first IBM MQ Telemetry Transport publisher application
using Java
The steps to create an MQTT client application are described in tutorial fashion. Each line of code is
explained. At the end of the task, you will have created an MQTT publisher. You can browse the
publications using IBM MQ Explorer.

Before you begin

Install the IBM MQ Telemetry feature on a server that has IBM WebSphere MQ Version 7.1 or later
installed.

The client application uses the com.ibm.mq.micro.client.mqttv3 package in the IBM MQ Telemetry
Software Development Toolkit (SDK). The SDK is part of the IBM MQ Telemetry installation. The client
connects to the IBM MQ Telemetry feature to exchange messages with IBM MQ.

You must also install the telemetry updates for MQ Explorer Version 7.1 to administer IBM MQ
Telemetry. The updates are part of the IBM MQ Telemetry installation.

An MQTT client, running on Java SE, requires Version 6.0 of Java SE, or later. IBM Java SE v6.0 is part of
the IBM WebSphere MQ Version 7.1 installation. It is located at WebSphere MQ installation
directory\java\jre

About this task

The example is a publish application, PubSync. PubSync publishes Hello World on the topic MQTT
Examples, and waits for confirmation that the publication has been delivered to the queue manager.

By setting up a durable subscription to MQTT Examples you can check that the application works.

The procedure uses Eclipse to develop, build, and run the client. You can download Eclipse from the
Eclipse project website at www.eclipse.org.

1152 IBM MQ: Programming

http://www.eclipse.org

To create the application, you can create the Java files, and compile and run them by using the command
line.

In a new directory, create the directory path .\com\ibm\mq\id. Create two Java files, Example.java and
PubSync.java. Copy the code from “Example code” on page 1156 into the Java files.

Compile the Java code using the following command:
javac -cp jar_dir\com.mq.micro.client.mqttv3.jar

com.ibm.mq.id.PubSync.java com.ibm.mq.id.Example.java

Run PubSync using the following command:
java -cp jar_dir\com.mq.micro.client.mqttv3.jar com.ibm.mq.id.PubSync

Procedure
1. Create a Java project in Eclipse.

a. File > New > Java project and type a project name. Click Next.
Check the JRE is at the correct or later version. Java SE must be at 6.0 or later.

b. On the Java Settings page, click Libraries > Add Library... Select MQTT v3 Client Library >
Next

If the MQTT v3 Client Library is not on the list, the MQTT Java Client SDK is not installed. The
current version of the SDK is available in the free download IBM Messaging Telemetry Clients
SupportPac. Download and install this client pack.

c. Select the Standard or MIDP client library. Click Finish > Finish.
d. On the Java Settings page, click Libraries > Add External Jars...

e. Browse to the directory where you have installed the IBM MQ Telemetry SDK folder to. Locate
the SDK\clients\java folder and select the all the .jar files > > Open > Finish.

2. Install the MQTT client Javadoc.
With the MQTT client Javadoc installed, the Java editor provides assistance with the MQTT v3
classes.
a. In your Java project, open Package Explorer > Referenced Libraries. Right click

com.ibm.micro.client.mqttv3.jar > Properties.
b. In the Properties navigator click Javadoc Location.
c. In the Javadoc Location page click Javadoc URL > Browse... and find the WMQ Installation

directory\mqxr\SDK\clients\java\doc\javadoc folder > OK.
d. Click Validate... > OK

You are prompted to open a browser to view the documentation.
3. Create the class, PubSync, using the Java Class wizard.

a. Right-click the Java project you have created > New > Class.
b. Type the package name, com.ibm.mq.id
c. Type the class name, PubSync
d. Check the method stub box, public static void main(String [] args)

4. Create a file, Example.java in the package com.ibm.mq.id. Copy the code in Figure 152 on page 1158
into the file.
All the parameters used in the examples are set as properties. You can override the values by
changing the defaults in Example.java, or by supplying the properties as options on the Java
command line using the -D parameter:

Developing applications for IBM MQ Telemetry 1153

http://www.ibm.com/support/docview.wss?uid=swg24041562

►► ▼

▼

-D property name = string

" string "

►◄

The client identifier used in this example, and the “Creating an asynchronous publisher for IBM MQ
Telemetry Transport using Java” on page 1158 examples, is a user name suffixed by a random string.

5. Follow the steps to create the code, or copy the code from Figure 151 on page 1157.
The steps that follow explain the code in Pubsync.java.

6. Create a try-catch block.
try { ...
} catch (Exception e) {
e.printStackTrace();
}

The MQTT client throws MqttException, MqttPersistenceException or MqttSecurityException.
MqttPersistenceException and MqttSecurityException are subclasses of MqttException.
Use the MqttException.getReasonCode method to find out the reason for the exception. If a
MqttPersistenceException or MqttSecurityException is thrown, use the getCause method to return
the underlying throwable exception.

7. Create a new MqttClient instance.
MqttClient client = new MqttClient(Example.TCPAddress, Example.clientId);

Provide the client with a server address, which is used later to connect to IBM MQ. Set the client
identifier to name the client.
v Optionally, you can provide an implementation of the MqttClientPersistence interface to replace

the default implementation. The default MqttPersistence implementation stores QoS 1 and 2
messages awaiting delivery as files; see “Message persistence in MQTT clients” on page 1210.

v The default IBM MQ TCP/IP port for MQTT is 1883. For SSL, it is 8883. In the example, the
default address is set to tcp://localhost:1883.

v Typically, it is important to be able to identify a specific physical client using the client identifier.
The client identifier must be unique across all clients connect to a server; see “Client identifier” on
page 1208. Using the same client identifier as a previous instance indicates the present instance is
an instance of the same client. If you duplicate a client identifier in two running clients, an
exception is thrown in both clients, and one client terminates.

v The length of the client identifier is limited to 23 bytes. An exception is thrown, if the length is
exceeded. The client identifier must contain only characters permitted in a queue manager name;
for example, no hyphens or spaces.

v Until you call the MqttClient.connect method, no message processing takes place.

Use the client object to publish and subscribe topics and recover information about publications that
have not been delivered yet.

8. Create a topic to publish on.
MqttTopic topic = client.getTopic(Example.topicString);

A topic string is limited to 64 K bytes, which exceeds the maximum length of an IBM MQ topic
string. Otherwise, a topic string follows the same rules as IBM MQ topic strings; see Topic strings.
The example sets the topic string MQTT Examples.

9. Create a publication message.
MqttMessage message = new MqttMessage(Example.publication.getBytes());

The string “Hello World” is converted to a byte array and used to create an MqttMessage.

1154 IBM MQ: Programming

v An MQTT message payload is always a byte array. The getBytes method converts a string object
to UTF-8. The MqttMessage has a convenience toString method to return the message payload as a
string. It is equivalent to new string(message.getPayload)

v A publication message is sent to the queue manager with an RFH2 header, and the message data is
sent as a jms-bytes message.

v The message object has quality of service and retained attributes. The quality of service (QoS)
determines how reliably the message is transferred between the MQTT client and the queue
manager; see “Qualities of service provided by an MQTT client” on page 1213. The retained
attribute controls if a publication is stored by the queue manager for future subscribers. If a
publication is not retained, it is sent only to current subscribers; see “Retained publications and
MQTT clients” on page 1214. The default MqttMessage settings are, “Messages are delivered at
least once, and are not retained.”

10. Connect to the server.
client.connect();

The example connects to the server using the default connection options. Once you connect, you can
start publishing. The default connection options are:
v A small "keep-alive" message is sent every 15 seconds to prevent the TCP/IP connection from

being closed.
v The session is started without checking for the completion of previous publications.
v The interval between trying to send a message again is 15 seconds.
v No last will and testament message is created for the connection.
v The standard SocketFactory is used to create the connection.

Change the connection options by creating a ConnectionOptions object and passing it as an
additional parameter to client.connect.

11. Publish.
MqttDeliveryToken token = topic.publish(message);

The example sends the "Hello World" publication on the topic "MQTT Examples" to the queue
manager.
v When the publish method returns, the message is safely transferred to the MQTT client, but not

yet transferred to the server. If the message has QoS 1 or 2, then the message is stored locally, in
case the client fails before delivery is completed.

v publish returns a delivery token, which is used to check whether an acknowledgment has been
received from the server yet.

12. Wait for acknowledgment from the server.
token.waitForCompletion(Example.timeout);

The PubSync example waits for an acknowledgment from the server, which confirms the message
has been delivered.
v Without the timeout, the client would wait indefinitely. The task, “Creating an asynchronous

publisher for IBM MQ Telemetry Transport using Java” on page 1158 shows how to receive
acknowledgments without waiting by using a callback object.

13. Disconnect the client from the server.
client.disconnect();

The client disconnects from the server and waits for any MqttCallback methods that are running to
finish. It then waits for up to 30 seconds to finish any remaining work. You can specify a quiesce
timeout as an additional parameter.

14. Save changes to PubSync.java and Example.Java
Eclipse automatically compiles the Java. You are now ready to see the results by running the
program.

Developing applications for IBM MQ Telemetry 1155

Results

To see the publications using IBM MQ, create a topic, a queue, and a durable subscription, all called
“MQTTExampleTopic” using the script in Figure 150. Run the client to publish on the MQTT Examples topic,
and then run the sample program amqsbcg to browse the publications on the MQTTExamples queue.
1. Start a queue manager, and start its telemetry (MQXR) service running. Make sure the TCP/IP

address and port configured for the telemetry channel match the values you use in the MQTT
application.

2. Configure a durable subscription by creating the mqttexamples.txt command script, and running it
using runmqsc:

To run the script on Windows, type the command:
runmqsc queue manager name < mqttExampleTopic.txt

3. Run the client as a Java application from within Eclipse, or by running Java in a command window:
java -cp jar_dir\com.mq.micro.client.mqttv3.jar
com.ibm.mq.id. classname.class

Note: The command window must be open in the directory containing the path, com\ibm\mq\id.
4. Either browse the results using IBM MQ Explorer, or run the command:

amqsbcg MQTTExampleQueue queue manager name

Example code

PubSync.java is a full listing of the code described in Procedure. Modify the Example class in Figure 152
on page 1158 to override the default parameters used in PubSync.java.

DEFINE TOPIC(’MQTTExampleTopic’) TOPICSTR(’MQTT Example’) REPLACE
DEFINE QLOCAL(’MQTTExampleQueue’) REPLACE
DEFINE SUB(’MQTTExampleSub’) DEST(’MQTTExampleQueue’) TOPICOBJ(’MQTTExampleTopic’) REPLACE

Figure 150. mqttExampleTopic.txt

1156 IBM MQ: Programming

package com.ibm.mq.id;
import com.ibm.micro.client.mqttv3.*;
public class PubSync {

public static void main(String[] args) {
try {

MqttClient client = new MqttClient(Example.TCPAddress, Example.clientId);
MqttTopic topic = client.getTopic(Example.topicString);
MqttMessage message = new MqttMessage(Example.publication.getBytes());
message.setQos(Example.QoS);
client.connect();
System.out.println("Waiting for up to " + Example.sleepTimeout / 1000

+ " seconds for publication of \"" + message.toString()
+ "\" with QoS = " + message.getQos());

System.out.println("On topic \"" + topic.getName()
+ "\" for client instance: \"" + client.getClientId()
+ "\" on address " + client.getServerURI() + "\"");

MqttDeliveryToken token = topic.publish(message);
token.waitForCompletion(Example.sleepTimeout);
System.out.println("Delivery token \"" + token.hashCode()

+ "\" has been received: " + token.isComplete());
client.disconnect();

} catch (Exception e) {
e.printStackTrace();

}
}

}

Figure 151. PubSync.java

Developing applications for IBM MQ Telemetry 1157

Creating an asynchronous publisher for IBM MQ Telemetry Transport
using Java
In this task, you follow a tutorial to modify your first publisher application. The modifications enable the
application to send publications without waiting for delivery acknowledgments. The delivery
acknowledgments are received by a callback class that you create.

Before you begin

Install the IBM MQ Telemetry feature on a server that has IBM WebSphere MQ Version 7.1 or later
installed.

package com.ibm.mq.id;
import java.util.Properties;
import java.util.UUID;
public final class Example {

public static final String TCPAddress =
System.getProperty("TCPAddress", "tcp://localhost:1883");

public static final String SSLAddress =
System.getProperty("SSLAddress", "ssl://localhost:8883");

public static final String username =
System.getProperty("username", System.getProperty("user.name"));

public static final char [] password =
System.getProperty("password", "Password").toCharArray();

public static String clientId =
String.format("%-23.23s", username + "_" +

System.getProperty("clientId",
(UUID.randomUUID().toString())).trim()).replace(’-’, ’_’);

public static final String topicString =
System.getProperty("topicString", "MQTTExample");

public static final String publication =
System.getProperty("publication", "Hello World " +

String.format("%tc", System.currentTimeMillis()));
public static final int quiesceTimeout =

Integer.parseInt(System.getProperty("timeout", "10000"));
public static final int sleepTimeout =

Integer.parseInt(System.getProperty("timeout", "10000"));
public static final boolean cleanSession =

Boolean.parseBoolean(System.getProperty("cleanSession", "false"));
public static final int QoS =

Integer.parseInt(System.getProperty("QoS", "1"));
public static final boolean retained =

Boolean.parseBoolean(System.getProperty("retained", "false"));
public static final Properties getSSLSettings() {

final Properties properties = new Properties();
properties.setProperty("com.ibm.ssl.keyStore",

"C:\\IBM\\MQ\\Data\\ClientKeyStore.jks");
properties.setProperty("com.ibm.ssl.keyStoreType",

"JKS");
properties.setProperty("com.ibm.ssl.keyStorePassword",

"password");
properties.setProperty("com.ibm.ssl.trustStore",

"C:\\IBM\\MQ\\Data\\ClientTrustStore.jks");
properties.setProperty("com.ibm.ssl.trustStoreType",

"JKS");
properties.setProperty("com.ibm.ssl.trustStorePassword",

"password");
return properties;

}
}

Figure 152. Example.java

1158 IBM MQ: Programming

The client application uses the com.ibm.mq.micro.client.mqttv3 package in the IBM MQ Telemetry
Software Development Toolkit (SDK). The SDK is part of the IBM MQ Telemetry installation. The client
connects to the IBM MQ Telemetry feature to exchange messages with IBM MQ.

You must also install the telemetry updates for MQ Explorer Version 7.1 to administer IBM MQ
Telemetry. The updates are part of the IBM MQ Telemetry installation.

An MQTT client, running on Java SE, requires Version 6.0 of Java SE, or later. IBM Java SE v6.0 is part of
the IBM WebSphere MQ Version 7.1 installation. It is located at WebSphere MQ installation
directory\java\jre

About this task

The example is a publish application, PubAsync. PubAsync publishes Hello World on the topic MQTT
Examples, without waiting for confirmation that the publication has been delivered to the queue manager.
The delivery acknowledgments are received in a callback class, CallBack.

By setting up a durable subscription to MQTT Examples you can check that the application works.

The procedure uses Eclipse to develop, build, and run the client. You can download Eclipse from the
Eclipse project website at www.eclipse.org.

The steps in Procedure modify the PubSync.java application in “Creating your first IBM MQ Telemetry
Transport publisher application using Java” on page 1152.

Alternatively, you can copy the code, “Example code” on page 1161, into a new directory
.\com\ibm\mq\id. Create three Java files, Example.java, CallBack.java, and PubAsync.java. Compile the
examples using the command,
javac -cp jar_dir\com.mq.micro.client.mqttv3.jar

com.ibm.mq.id.PubAsync.java com.ibm.mq.id.CallBack.java com.ibm.mq.id.Example.java

Run PubAsync using the following command:
java -cp jar_dir\com.mq.micro.client.mqttv3.jar

com.ibm.mq.id.PubAsync.class

Procedure
1. In the com.ibm.mq.id package, create a file, CallBack.java. Copy the code in Figure 155 on page 1162

into the file.
Callback.java implements the MqttCallBack interface. In the example, an additional constructor
initializes the callback with some instance data.

2. In the com.ibm.mq.id package, right click PubSync.java and copy it. Paste it in the same package,
renaming it to PubAsync.

3. Just before the client.connect(); line of code, instantiate the CallBack class, passing the client
identifier.
CallBack callback = new CallBack(Example.clientId);
client.setCallback(callback);

v The CallBack class implements MqttCallBack. One callback instance is required, per client identifier.
In this example, the constructor passes the client identifier to save as instance data. It is used in the
callback to identify which instance of the callback has been started.

v You must implement three methods in the callback class:

public void messageArrived(MqttTopic topic, MqttMessage message)
Receives a publication that has been subscribed to.

Developing applications for IBM MQ Telemetry 1159

http://www.eclipse.org

public void connectionLost(Throwable cause)
Called when the connection is lost.

public void deliveryComplete(MqttDeliveryToken token))
Called when a delivery token is received for a QoS 1 or 2 message that has been published.

v The callback is activated by MqttClient.connect.
4. Disconnect the client

a. Remove the statement containing the token.waitForCompletion expression. The main thread
continues without waiting for the publication to be delivered.

b. Test whether the client is already disconnected. The MQTT client disconnects following an error
returned to the lostConnection method in MqttCallback, or the client application might disconnect.
Test to see if there is an open connection.

c. Use the constant, Example.quiesceTimeout, to set the maximum time to quiesce the client.
if (client.isConnected())

client.disconnect(Example.quiesceTimeout);

The client finishes when a combination of the following three conditions is true:
a. The callback has been called for all messages that have been published in this session, or if the

session was restarted, in previous sessions.
b. Messages are in-flight and the quiesce interval has expired. By default the quiesce interval is 30

seconds. You can change the quiesce timeout by passing the number of milliseconds to wait as a
parameter of client.disconnect.

c. client.disconnect was called after some messages were published and queued by the client but
before the messages were sent. Queued messages are not yet in-flight. If the session is restartable,
the messages are resent when the session restarts.

Results

To see the publications using IBM MQ, create a topic, a queue, and a durable subscription, all called
“MQTTExampleTopic” using the script in Figure 153. Run the client to publish on the MQTT Examples topic,
and then run the sample program amqsbcg to browse the publications on the MQTTExamples queue.
1. Start a queue manager, and start its telemetry (MQXR) service running. Make sure the TCP/IP

address and port configured for the telemetry channel match the values you use in the MQTT
application.

2. Configure a durable subscription by creating the mqttexamples.txt command script, and running it
using runmqsc:

To run the script on Windows, type the command:
runmqsc queue manager name < mqttExampleTopic.txt

3. Run the client as a Java application from within Eclipse, or by running Java in a command window:
java -cp jar_dir\com.mq.micro.client.mqttv3.jar
com.ibm.mq.id. classname.class

Note: The command window must be open in the directory containing the path, com\ibm\mq\id.
4. Either browse the results using IBM MQ Explorer, or run the command:

amqsbcg MQTTExampleQueue queue manager name

DEFINE TOPIC(’MQTTExampleTopic’) TOPICSTR(’MQTT Example’) REPLACE
DEFINE QLOCAL(’MQTTExampleQueue’) REPLACE
DEFINE SUB(’MQTTExampleSub’) DEST(’MQTTExampleQueue’) TOPICOBJ(’MQTTExampleTopic’) REPLACE

Figure 153. mqttExampleTopic.txt

1160 IBM MQ: Programming

Example code

package com.ibm.mq.id;
import com.ibm.micro.client.mqttv3.*;
public class PubAsync {

public static void main(String[] args) {
try {

MqttClient client = new MqttClient(Example.TCPAddress, Example.clientId);
MqttTopic topic = client.getTopic(Example.topicString);
MqttMessage message = new MqttMessage(Example.publication.getBytes());
CallBack callback = new CallBack(Example.clientId);
client.setCallback(callback);
client.connect();
System.out.println("Publishing \"" + message.toString()

+ "\" on topic \"" + topic.getName() + "\" with QoS = "
+ message.getQos());

System.out.println("For client instance \"" + client.getClientId()
+ "\" on address " + client.getServerURI() + "\"");

MqttDeliveryToken token = topic.publish(message);
System.out.println("With delivery token \"" + token.hashCode()

+ " delivered: " + token.isComplete());
if (client.isConnected())

client.disconnect(Example.quiesceTimeout);
System.out.println("Disconnected: delivery token \"" + token.hashCode()

+ "\" received: " + token.isComplete());
} catch (Exception e) {

e.printStackTrace();
}

}
}

Figure 154. PubAsync.java

Developing applications for IBM MQ Telemetry 1161

package com.ibm.mq.id;
import com.ibm.micro.client.mqttv3.*;
public class CallBack implements MqttCallback {

private String instanceData = "";
public CallBack(String instance) {

instanceData = instance;
}
public void messageArrived(MqttTopic topic, MqttMessage message) {

try {
System.out.println("Message arrived: \"" + message.toString()

+ "\" on topic \"" + topic.toString() + "\" for instance \""
+ instanceData + "\"");

} catch (Exception e) {
e.printStackTrace();

}
}
public void connectionLost(Throwable cause) {

System.out.println("Connection lost on instance \"" + instanceData
+ "\" with cause \"" + cause.getMessage() + "\" Reason code "
+ ((MqttException)cause).getReasonCode() + "\" Cause \""
+ ((MqttException)cause).getCause() + "\"");

cause.printStackTrace();
}
public void deliveryComplete(MqttDeliveryToken token) {

try {
System.out.println("Delivery token \"" + token.hashCode()

+ "\" received by instance \"" + instanceData + "\"");
} catch (Exception e) {

e.printStackTrace();
}

}
}

Figure 155. CallBack.java

1162 IBM MQ: Programming

Creating a recoverable asynchronous publisher for IBM MQ Telemetry
Transport using Java
In this task, you follow a tutorial to modify your asynchronous publisher application. The modifications
enable the application to complete delivery of publications that were not acknowledged the last time the
client ran.

Before you begin

Install the IBM MQ Telemetry feature on a server that has IBM WebSphere MQ Version 7.1 or later
installed.

package com.ibm.mq.id;
import java.util.Properties;
import java.util.UUID;
public final class Example {

public static final String TCPAddress =
System.getProperty("TCPAddress", "tcp://localhost:1883");

public static final String SSLAddress =
System.getProperty("SSLAddress", "ssl://localhost:8883");

public static final String username =
System.getProperty("username", System.getProperty("user.name"));

public static final char [] password =
System.getProperty("password", "Password").toCharArray();

public static String clientId =
String.format("%-23.23s", username + "_" +

System.getProperty("clientId",
(UUID.randomUUID().toString())).trim()).replace(’-’, ’_’);

public static final String topicString =
System.getProperty("topicString", "MQTTExample");

public static final String publication =
System.getProperty("publication", "Hello World " +

String.format("%tc", System.currentTimeMillis()));
public static final int quiesceTimeout =

Integer.parseInt(System.getProperty("timeout", "10000"));
public static final int sleepTimeout =

Integer.parseInt(System.getProperty("timeout", "10000"));
public static final boolean cleanSession =

Boolean.parseBoolean(System.getProperty("cleanSession", "false"));
public static final int QoS =

Integer.parseInt(System.getProperty("QoS", "1"));
public static final boolean retained =

Boolean.parseBoolean(System.getProperty("retained", "false"));
public static final Properties getSSLSettings() {

final Properties properties = new Properties();
properties.setProperty("com.ibm.ssl.keyStore",

"C:\\IBM\\MQ\\Data\\ClientKeyStore.jks");
properties.setProperty("com.ibm.ssl.keyStoreType",

"JKS");
properties.setProperty("com.ibm.ssl.keyStorePassword",

"password");
properties.setProperty("com.ibm.ssl.trustStore",

"C:\\IBM\\MQ\\Data\\ClientTrustStore.jks");
properties.setProperty("com.ibm.ssl.trustStoreType",

"JKS");
properties.setProperty("com.ibm.ssl.trustStorePassword",

"password");
return properties;

}
}

Figure 156. Example.java

Developing applications for IBM MQ Telemetry 1163

The client application uses the com.ibm.mq.micro.client.mqttv3 package in the IBM MQ Telemetry
Software Development Toolkit (SDK). The SDK is part of the IBM MQ Telemetry installation. The client
connects to the IBM MQ Telemetry feature to exchange messages with IBM MQ.

You must also install the telemetry updates for MQ Explorer Version 7.1 to administer IBM MQ
Telemetry. The updates are part of the IBM MQ Telemetry installation.

An MQTT client, running on Java SE, requires Version 6.0 of Java SE, or later. IBM Java SE v6.0 is part of
the IBM WebSphere MQ Version 7.1 installation. It is located at WebSphere MQ installation
directory\java\jre

About this task

The example is a publish application, PubAsyncRestartable. PubAsyncRestartable publishes Hello World
on the topic MQTT Examples, without waiting for confirmation that the publication has been delivered to
the queue manager. The delivery acknowledgments are received in a callback class, CallBack. Any
delivery tokens for publications that were not completed in a previous instance can be examined. They
are also processed by the callback class.

By setting up a durable subscription to MQTT Examples you can check that the application works.

The procedure uses Eclipse to develop, build, and run the client. You can download Eclipse from the
Eclipse project website at www.eclipse.org.

The steps in Procedure modify the PubAsync.java application in “Creating an asynchronous publisher for
IBM MQ Telemetry Transport using Java” on page 1158.

Alternatively, you can copy the code, “Example code” on page 1167, into a new directory
.\com\ibm\mq\id. Create three Java files, Example.java, CallBack.java, and PubAsyncRestartable.java.
Compile the examples using the command,
javac -cp jar_dir\com.mq.micro.client.mqttv3.jar

com.ibm.mq.id.PubAsyncRestartable.java com.ibm.mq.id.CallBack.java com.ibm.mq.id.Example.java

Run PubAsyncRestartable using the command,
java -cp jar_dir\com.mq.micro.client.mqttv3.jar

com.ibm.mq.id.PubAsyncRestartable.class

Procedure
1. In the com.ibm.mq.id package, right click PubAsync.java and copy it. Paste it in the same package,

renaming it to PubAsyncRestartable.
2. Create a reusable client identifier.

The applications in “Creating your first IBM MQ Telemetry Transport publisher application using
Java” on page 1152 and “Creating an asynchronous publisher for IBM MQ Telemetry Transport using
Java” on page 1158 used a new client identifier for each client connection. For a restartable publisher
or subscriber, you must use the same client identifier each time the client is connected, but different
clients must use different identifiers; see “Client identifier” on page 1208. The reusable client identifier
is built from the user name and the name of the class. It is limited to 23 bytes long. It must only have
characters that are valid in queue manager object names. The code removes any hyphens that might
have been inserted.

Example.clientId = String.format(
"%-23.23s",
(System.getProperty("user.name") + "_" + (System.getProperty(
"clientId", "PubAsyncRestartable."))).trim()).replace(’-’, ’_’);

Figure 157. Reusable client identifier

1164 IBM MQ: Programming

http://www.eclipse.org

3. The QoS of the message is set to 2 rather than the default, 1, to avoid duplicate messages.
message.setQos(Example.QoS);

You need to either change the value of Example.QoS to 2, or pass the QoS property as an argument
using the -DQoS=2 option on the Java command line.

4. Create an MqttConnectOptions object, and set its cleanSession attribute to false.
a. Create an MqttConnectOptions object.

MqttConnectOptions conOptions = new MqttConnectOptions();

conOptions is an option parameter on the MqttClient constructor.
b. Set the clearSession attribute.

conOptions.setCleanSession(Example.cleanSession);

By default, the parameter Example.cleanSession is set to true, matching the default setting of
MqttConnectionOptions.cleanSession.

When PubAsyncRestartable restarts, it can start with a "clean session", and clear any pending delivery
tokens for messages of QoS 1 or 2.
Set Example.cleanSession to false to keep all the pending delivery tokens. The tokens are processed
by the MqttCallBack class when the client is connected again.

5. If the session is being restarted, then retrieve any pending delivery tokens, and print their contents.
if (!conOptions.isCleanSession()) {

MqttDeliveryToken tokens[] = client.getPendingDeliveryTokens();
System.out.println("Starting a previous session for instance \""

+ client.getClientId() + "\" with " + tokens.length
+ " delivery tokens pending");

for (int i = 0; i < tokens.length; i++) {
System.out.println("Message \"" + tokens[i].getMessage().toString()

+ "\" with QoS=" + tokens[i].getMessage().getQos()
+ " recovered by instance \"" + client.getClientId()
+ "\" and assigned delivery token \"" + tokens[i].hashCode()
+ "\"");

}
} else

System.out.println("Starting a clean session for instance "
+ client.getClientId());

6. Pass the conOptions parameter to the MqttClient constructor.
client.connect(conOptions);

7. On disconnecting, set a maximum disconnect interval.
client.disconnect(Example.timeout);

To be able to show pending delivery tokens being processed, a previous instance must finish without
completing delivery. To run the example with the possibility of not acknowledging publications before
PubAsyncRestartable finishes, set Example.timeout to 0.

Results

To see the publications using IBM MQ, create a topic, a queue, and a durable subscription, all called
“MQTTExampleTopic” using the script in Figure 158 on page 1166. Run the client to publish on the MQTT
Examples topic, and then run the sample program amqsbcg to browse the publications on the
MQTTExamples queue.
1. Start a queue manager, and start its telemetry (MQXR) service running. Make sure the TCP/IP

address and port configured for the telemetry channel match the values you use in the MQTT
application.

2. Configure a durable subscription by creating the mqttexamples.txt command script, and running it
using runmqsc:

Developing applications for IBM MQ Telemetry 1165

To run the script on Windows, type the command:
runmqsc queue manager name < mqttExampleTopic.txt

3. Run the client as a Java application from within Eclipse, or by running Java in a command window:
java -cp jar_dir\com.mq.micro.client.mqttv3.jar
com.ibm.mq.id. classname.class

Note: The command window must be open in the directory containing the path, com\ibm\mq\id.
4. Either browse the results using IBM MQ Explorer, or run the command:

amqsbcg MQTTExampleQueue queue manager name

DEFINE TOPIC(’MQTTExampleTopic’) TOPICSTR(’MQTT Example’) REPLACE
DEFINE QLOCAL(’MQTTExampleQueue’) REPLACE
DEFINE SUB(’MQTTExampleSub’) DEST(’MQTTExampleQueue’) TOPICOBJ(’MQTTExampleTopic’) REPLACE

Figure 158. mqttExampleTopic.txt

1166 IBM MQ: Programming

Example code

package com.ibm.mq.id;
import com.ibm.micro.client.mqttv3.MqttClient;
import com.ibm.micro.client.mqttv3.MqttConnectOptions;
import com.ibm.micro.client.mqttv3.MqttDeliveryToken;
import com.ibm.micro.client.mqttv3.MqttMessage;
import com.ibm.micro.client.mqttv3.MqttTopic;
public class PubAsyncRestartable {

public static void main(String[] args) {
Example.clientId = String.format(

"%-23.23s",
(System.getProperty("user.name") + "_" + (System.getProperty(

"clientId", "PubAsyncRestartable."))).trim()).replace(’-’, ’_’);
try {

MqttClient client = new MqttClient(Example.TCPAddress, Example.clientId);
MqttTopic topic = client.getTopic(Example.topicString);
MqttMessage message = new MqttMessage(Example.publication.getBytes());
message.setQos(Example.QoS);
CallBack callback = new CallBack(Example.clientId);
client.setCallback(callback);
MqttConnectOptions conOptions = new MqttConnectOptions();
conOptions.setCleanSession(Example.cleanSession);
if (!conOptions.isCleanSession()) {

MqttDeliveryToken tokens[] = client.getPendingDeliveryTokens();
System.out.println("Starting a previous session for instance \""

+ client.getClientId() + "\" with " + tokens.length
+ " delivery tokens pending");

for (int i = 0; i < tokens.length; i++) {
System.out.println("Message \"" + tokens[i].getMessage().toString()

+ "\" with QoS=" + tokens[i].getMessage().getQos()
+ " recovered by instance \"" + client.getClientId()
+ "\" and assigned delivery token \"" + tokens[i].hashCode()
+ "\"");

}
} else

System.out.println("Starting a clean session for instance \""
+ client.getClientId() + "\"");

client.connect(conOptions);
System.out.println("Publishing \"" + message.toString()

+ "\" on topic \"" + topic.getName() + "\" with QoS = "
+ message.getQos());

System.out.println("For client instance \"" + client.getClientId()
+ "\" on address " + client.getServerURI() + "\"");

MqttDeliveryToken token = topic.publish(message);
System.out.println("With delivery token \"" + token.hashCode()

+ " delivered: " + token.isComplete());
if (client.isConnected())

client.disconnect(Example.quiesceTimeout);
System.out.println("Disconnected: delivery token \"" + token.hashCode()

+ "\" has been received: " + token.isComplete());
} catch (Exception e) {

e.printStackTrace();
}

}
}

Figure 159. PubAsyncRestartable.java

Developing applications for IBM MQ Telemetry 1167

package com.ibm.mq.id;
import com.ibm.micro.client.mqttv3.*;
public class CallBack implements MqttCallback {

private String instanceData = "";
public CallBack(String instance) {

instanceData = instance;
}
public void messageArrived(MqttTopic topic, MqttMessage message) {

try {
System.out.println("Message arrived: \"" + message.toString()

+ "\" on topic \"" + topic.toString() + "\" for instance \""
+ instanceData + "\"");

} catch (Exception e) {
e.printStackTrace();

}
}
public void connectionLost(Throwable cause) {

System.out.println("Connection lost on instance \"" + instanceData
+ "\" with cause \"" + cause.getMessage() + "\" Reason code "
+ ((MqttException)cause).getReasonCode() + "\" Cause \""
+ ((MqttException)cause).getCause() + "\"");

cause.printStackTrace();
}
public void deliveryComplete(MqttDeliveryToken token) {

try {
System.out.println("Delivery token \"" + token.hashCode()

+ "\" received by instance \"" + instanceData + "\"");
} catch (Exception e) {

e.printStackTrace();
}

}
}

Figure 160. CallBack.java

1168 IBM MQ: Programming

Creating a subscriber for IBM MQ Telemetry Transport using Java
In this task, you follow a tutorial to create a subscriber application. The subscriber creates a subscription
to a topic and receives publications for the subscription.

Before you begin

Install the IBM MQ Telemetry feature on a server that has IBM WebSphere MQ Version 7.1 or later
installed.

package com.ibm.mq.id;
import java.util.Properties;
import java.util.UUID;
public final class Example {

public static final String TCPAddress =
System.getProperty("TCPAddress", "tcp://localhost:1883");

public static final String SSLAddress =
System.getProperty("SSLAddress", "ssl://localhost:8883");

public static final String username =
System.getProperty("username", System.getProperty("user.name"));

public static final char [] password =
System.getProperty("password", "Password").toCharArray();

public static String clientId =
String.format("%-23.23s", username + "_" +

System.getProperty("clientId",
(UUID.randomUUID().toString())).trim()).replace(’-’, ’_’);

public static final String topicString =
System.getProperty("topicString", "MQTTExample");

public static final String publication =
System.getProperty("publication", "Hello World " +

String.format("%tc", System.currentTimeMillis()));
public static final int quiesceTimeout =

Integer.parseInt(System.getProperty("timeout", "10000"));
public static final int sleepTimeout =

Integer.parseInt(System.getProperty("timeout", "10000"));
public static final boolean cleanSession =

Boolean.parseBoolean(System.getProperty("cleanSession", "false"));
public static final int QoS =

Integer.parseInt(System.getProperty("QoS", "1"));
public static final boolean retained =

Boolean.parseBoolean(System.getProperty("retained", "false"));
public static final Properties getSSLSettings() {

final Properties properties = new Properties();
properties.setProperty("com.ibm.ssl.keyStore",

"C:\\IBM\\MQ\\Data\\ClientKeyStore.jks");
properties.setProperty("com.ibm.ssl.keyStoreType",

"JKS");
properties.setProperty("com.ibm.ssl.keyStorePassword",

"password");
properties.setProperty("com.ibm.ssl.trustStore",

"C:\\IBM\\MQ\\Data\\ClientTrustStore.jks");
properties.setProperty("com.ibm.ssl.trustStoreType",

"JKS");
properties.setProperty("com.ibm.ssl.trustStorePassword",

"password");
return properties;

}
}

Figure 161. Example.java

Developing applications for IBM MQ Telemetry 1169

The client application uses the com.ibm.mq.micro.client.mqttv3 package in the IBM MQ Telemetry
Software Development Toolkit (SDK). The SDK is part of the IBM MQ Telemetry installation. The client
connects to the IBM MQ Telemetry feature to exchange messages with IBM MQ.

You must also install the telemetry updates for MQ Explorer Version 7.1 to administer IBM MQ
Telemetry. The updates are part of the IBM MQ Telemetry installation.

An MQTT client, running on Java SE, requires Version 6.0 of Java SE, or later. IBM Java SE v6.0 is part of
the IBM WebSphere MQ Version 7.1 installation. It is located at WebSphere MQ installation
directory\java\jre

About this task

The example is a subscriber application, Subscribe. Subscribe creates a subscription topic, MQTT Examples,
and waits for publications on the subscription for 30 seconds.

A subscriber can create subscription and wait for publications. It can also receive publications sent to a
subscription created previously, for the same client identifier. The MqttConnectionOptions.cleanSession
Boolean attribute controls whether publications sent previously are received or not; see “Subscriptions”
on page 1215.

You can use the publish example programs to create publications, or use IBM MQ explorer to create a test
publication on the MQTT Examples topic.

The procedure uses Eclipse to develop, build, and run the client. You can download Eclipse from the
Eclipse project website at www.eclipse.org.

The instructions in Procedure assume that you have already created the com.ibm.mq.id package in one of
the earlier tasks, and copied in the Example.java and Callback.java classes.

Procedure
1. Create the class, Subscribe in the package com.ibm.mq.id.
2. Create a reusable client identifier.

The applications in “Creating your first IBM MQ Telemetry Transport publisher application using
Java” on page 1152 and “Creating an asynchronous publisher for IBM MQ Telemetry Transport using
Java” on page 1158 used a new client identifier for each client connection. For a restartable publisher
or subscriber, you must use the same client identifier each time the client is connected, but different
clients must use different identifiers; see “Client identifier” on page 1208. The reusable client identifier
is built from the user name and the name of the class. It is limited to 23 bytes long. It must only have
characters that are valid in queue manager object names. The code removes any hyphens that might
have been inserted.

3. Create a try-catch block.
try { ...
} catch (Exception e) {
e.printStackTrace();
}

The MQTT client throws MqttException, MqttPersistenceException or MqttSecurityException.
MqttPersistenceException and MqttSecurityException are subclasses of MqttException.

Example.clientId = String.format(
"%-23.23s",
(System.getProperty("user.name") + "_" + (System.getProperty(

"clientId", "Subscribe."))).trim()).replace(’-’, ’_’);

Figure 162. Reusable client identifier

1170 IBM MQ: Programming

http://www.eclipse.org

Use the MqttException.getReasonCode method to find out the reason for the exception. If a
MqttPersistenceException or MqttSecurityException is thrown, use the getCause method to return the
underlying throwable exception.

4. Create a new MqttClient instance.
MqttClient client = new MqttClient(Example.TCPAddress, Example.clientId);

Provide the client with a server address, which is used later to connect to IBM MQ. Set the client
identifier to name the client.
v Optionally, you can provide an implementation of the MqttClientPersistence interface to replace the

default implementation. The default MqttPersistence implementation stores QoS 1 and 2 messages
awaiting delivery as files; see “Message persistence in MQTT clients” on page 1210.

v The default IBM MQ TCP/IP port for MQTT is 1883. For SSL, it is 8883. In the example, the default
address is set to tcp://localhost:1883.

v Typically, it is important to be able to identify a specific physical client using the client identifier.
The client identifier must be unique across all clients connect to a server; see “Client identifier” on
page 1208. Using the same client identifier as a previous instance indicates the present instance is
an instance of the same client. If you duplicate a client identifier in two running clients, an
exception is thrown in both clients, and one client terminates.

v The length of the client identifier is limited to 23 bytes. An exception is thrown, if the length is
exceeded. The client identifier must contain only characters permitted in a queue manager name;
for example, no hyphens or spaces.

v Until you call the MqttClient.connect method, no message processing takes place.

Use the client object to publish and subscribe topics and recover information about publications that
have not been delivered yet.

5. Just before the client.connect(); line of code, instantiate the CallBack class, passing the client
identifier.
CallBack callback = new CallBack(Example.clientId);
client.setCallback(callback);

v The CallBack class implements MqttCallBack. One callback instance is required, per client identifier.
In this example, the constructor passes the client identifier to save as instance data. It is used in the
callback to identify which instance of the callback has been started.

v You must implement three methods in the callback class:

public void messageArrived(MqttTopic topic, MqttMessage message)
Receives a publication that has been subscribed to.

public void connectionLost(Throwable cause)
Called when the connection is lost.

public void deliveryComplete(MqttDeliveryToken token))
Called when a delivery token is received for a QoS 1 or 2 message that has been published.

v The callback is activated by MqttClient.connect.
6. Create an MqttConnectOptions object, and set its cleanSession attribute.

a. Create an MqttConnectOptions object.
MqttConnectOptions conOptions = new MqttConnectOptions();

conOptions is an option parameter on the MqttClient constructor.
b. Set the clearSession attribute.

conOptions.setCleanSession(Example.cleanSession);

By default, the parameter Example.cleanSession is set to true, matching the default setting of
MqttConnectionOptions.cleanSession.

If you use the default MqttConnectOptions, or set MqttConnectOptions.cleanSession to true before
connecting the client, any old subscriptions for the client are removed when the client connects. Any
new subscriptions the client makes during the session are removed when it disconnects.

Developing applications for IBM MQ Telemetry 1171

If you set MqttConnectOptions.cleanSession to false before connecting, any subscriptions the client
creates are added to all the subscriptions that existed for the client before it connected. All the
subscriptions remain active when the client disconnects.
Another way of understanding the way the cleanSession attribute affects subscriptions is to think of
it as a modal attribute. In its default mode, cleanSession=true, the client creates subscriptions and
receives publications only within the scope of the session. In the alternative mode,
cleanSession=false, subscriptions are durable. The client can connect and disconnect and its
subscriptions remain active. When the client reconnects, it receives any undelivered publications.
While it is connected, it can modify the set of subscriptions that are active on its behalf.
You must set the cleanSession mode before connecting; the mode lasts for the whole session. To
change its setting, you must disconnect and reconnect the client. If you change modes from using
cleanSession=false to cleanSession=true, all previous subscriptions for the client, and any
publications that have not been received, are discarded.

7. Pass the conOptions parameter to the MqttClient constructor.
client.connect(conOptions);

8. Create a subscription.
client.subscribe(Example.topicString, Example.QoS);

The example uses a MqttClient.subscribe method which passes one topic filter with a QoS option.
MqttClient.subscribe method has four signatures, and you can pass arrays of subscription filters as
well a single filter.
The example uses topic string used by the publish examples as a topic filter, so it receives any
publications they create.
Each time you run the example, subscribe.java, it creates a subscription. If you do not change
Example.topicString, it recreates the same subscription again. If a subscription is recreated it does not
result in two identical subscriptions. A client does not receive duplicate copies of publications which
match an identical subscription.
Subscriptions are described in “Subscriptions” on page 1215, and filters in “Topic strings and topic
filters in MQTT clients” on page 1216.

9. Wait for some publications to arrive and then disconnect the client.
Thread.sleep(Example.sleepTimeout);
client.disconnect();

Publications are received by the implementation of the MqttCallback.messageArrived method.
The subscribe application has not published any messages and so it does not wait for any delivery
tokens. client.disconnect takes place without any delay.

1172 IBM MQ: Programming

Example code

package com.ibm.mq.id;
import com.ibm.micro.client.mqttv3.MqttClient;
import com.ibm.micro.client.mqttv3.MqttConnectOptions;
public class Subscribe {

public static void main(String[] args) {
Example.clientId = String.format(

"%-23.23s",
(System.getProperty("user.name") + "_" + System.getProperty("clientId",

"Subscribe."))).trim();
try {

MqttClient client = new MqttClient(Example.TCPAddress, Example.clientId);
CallBack callback = new CallBack(Example.clientId);
client.setCallback(callback);
MqttConnectOptions conOptions = new MqttConnectOptions();
conOptions.setCleanSession(Example.cleanSession);
client.connect(conOptions);
System.out.println("Subscribing to topic \"" + Example.topicString

+ "\" for client instance \"" + client.getClientId()
+ "\" using QoS " + Example.QoS + ". Clean session is "
+ Example.cleanSession);

client.subscribe(Example.topicString, Example.QoS);
System.out.println("Going to sleep for " + Example.sleepTimeout / 1000

+ " seconds");
Thread.sleep(Example.sleepTimeout);
client.disconnect();
System.out.println("Finished");

} catch (Exception e) {
e.printStackTrace();

}
}

}

Figure 163. Subscribe.java

Developing applications for IBM MQ Telemetry 1173

package com.ibm.mq.id;
import com.ibm.micro.client.mqttv3.*;
public class CallBack implements MqttCallback {

private String instanceData = "";
public CallBack(String instance) {

instanceData = instance;
}
public void messageArrived(MqttTopic topic, MqttMessage message) {

try {
System.out.println("Message arrived: \"" + message.toString()

+ "\" on topic \"" + topic.toString() + "\" for instance \""
+ instanceData + "\"");

} catch (Exception e) {
e.printStackTrace();

}
}
public void connectionLost(Throwable cause) {

System.out.println("Connection lost on instance \"" + instanceData
+ "\" with cause \"" + cause.getMessage() + "\" Reason code "
+ ((MqttException)cause).getReasonCode() + "\" Cause \""
+ ((MqttException)cause).getCause() + "\"");

cause.printStackTrace();
}
public void deliveryComplete(MqttDeliveryToken token) {

try {
System.out.println("Delivery token \"" + token.hashCode()

+ "\" received by instance \"" + instanceData + "\"");
} catch (Exception e) {

e.printStackTrace();
}

}
}

Figure 164. CallBack.java

1174 IBM MQ: Programming

Authenticating an MQTT Java client using JAAS
Learn how to authenticate a client using JAAS. Modify the sample program JAASLoginModule.java and
the example Java program PubSync.java. Configure a telemetry channel to require JAAS authentication,
and run the modified publisher, checking its username and password using JAAS.

Before you begin

You are assumed to have installed the MQTT v3 client jar files, Javadoc, Eclipse, configured telemetry
channels and coded and run PubSync.java before performing this task. You have an Eclipse workspace
that includes a running version of PubSync.java.

package com.ibm.mq.id;
import java.util.Properties;
import java.util.UUID;
public final class Example {

public static final String TCPAddress =
System.getProperty("TCPAddress", "tcp://localhost:1883");

public static final String SSLAddress =
System.getProperty("SSLAddress", "ssl://localhost:8883");

public static final String username =
System.getProperty("username", System.getProperty("user.name"));

public static final char [] password =
System.getProperty("password", "Password").toCharArray();

public static String clientId =
String.format("%-23.23s", username + "_" +

System.getProperty("clientId",
(UUID.randomUUID().toString())).trim()).replace(’-’, ’_’);

public static final String topicString =
System.getProperty("topicString", "MQTTExample");

public static final String publication =
System.getProperty("publication", "Hello World " +

String.format("%tc", System.currentTimeMillis()));
public static final int quiesceTimeout =

Integer.parseInt(System.getProperty("timeout", "10000"));
public static final int sleepTimeout =

Integer.parseInt(System.getProperty("timeout", "10000"));
public static final boolean cleanSession =

Boolean.parseBoolean(System.getProperty("cleanSession", "false"));
public static final int QoS =

Integer.parseInt(System.getProperty("QoS", "1"));
public static final boolean retained =

Boolean.parseBoolean(System.getProperty("retained", "false"));
public static final Properties getSSLSettings() {

final Properties properties = new Properties();
properties.setProperty("com.ibm.ssl.keyStore",

"C:\\IBM\\MQ\\Data\\ClientKeyStore.jks");
properties.setProperty("com.ibm.ssl.keyStoreType",

"JKS");
properties.setProperty("com.ibm.ssl.keyStorePassword",

"password");
properties.setProperty("com.ibm.ssl.trustStore",

"C:\\IBM\\MQ\\Data\\ClientTrustStore.jks");
properties.setProperty("com.ibm.ssl.trustStoreType",

"JKS");
properties.setProperty("com.ibm.ssl.trustStorePassword",

"password");
return properties;

}
}

Figure 165. Example.java

Developing applications for IBM MQ Telemetry 1175

The task is written for Windows. Change the directory paths for Linux.

About this task

The task is based on modifying the sample JAASLoginModule class in WMQ Installation
directory\mqxr\samples\JAASLoginModule.java to create MyLogin.java. In the task you also modify the
example code, PubSync.java in “Creating your first IBM MQ Telemetry Transport publisher application
using Java” on page 1152 to set a username and password. As a test, MyLogin.java randomly accepts or
rejects username and password.

The steps in the task are written as a programming exercise. You must adapt the procedure to perform
real authentication in a production environment.

In a typical explanation of how to program JAAS authentication, it is assumed that the login module is
authenticating the context that loaded JAAS. When the telemetry (MQXR) service calls JAAS, the context
that loaded JAAS is the telemetry (MQXR) service. There is no point in authenticating the telemetry
(MQXR) service context; it is always mqm. Instead, the telemetry (MQXR) service sets up the client
username and password to be available to the login module class. The username and password are passed
to the login module using two callbacks.
javax.security.auth.callback.Callback[] callbacks =

new javax.security.auth.callback.Callback[2];
callbacks[0] =

new javax.security.auth.callback.NameCallback("NameCallback");
callbacks[1] =

new javax.security.auth.callback.PasswordCallback("PasswordCallback", false);
callbackHandler.handle(callbacks);
String username =

((javax.security.auth.callback.NameCallback) callbacks[0]).getName();
char[] password =

((javax.security.auth.callback.PasswordCallback) callbacks[1]).getPassword();

The username and password of the client are the only information about the client that is available to the
login module.

Procedure
1. Create two packages, samples and security.jaas in the same Java project as PubSync.java.

The samples package is used only for reference. Make the code changes in the security.jaas
package.

2. Import JAASLoginModule.java and JAASPrincipal.java into both packages.
If necessary, refactor the package statements in the Java source to eliminate compilation errors.

3. Refactor the class name, JAASLoginModule, in the security.jaas package to MyLogin
4. In MyLogin.java, replace some of the code in the login method to show the module working.

a. Replace the code:
// Accept everything.
if (true)

loggedIn = true;
else

throw new javax.security.auth.login.FailedLoginException("Login failed");

b. With the code:
// login half the users randomly
PrintWriter pw = new PrintWriter(new FileWriter(System.getProperty("user.dir")

+ "\\MyLogin.log", true));
pw.println("Called JAASLogin.login at "

+ System.getProperty("publication", "Hello World "
+ String.format("%tc", System.currentTimeMillis())));

if (Math.random() < 0.5)
loggedIn = true;

1176 IBM MQ: Programming

pw.println("Username: \"" + username + "\", Password: \""
+ String.valueOf(password) + "\" loggedIn: " + loggedIn);

pw.close();
if (!loggedIn)

throw new javax.security.auth.login.FailedLoginException("Login failed");
principal= new JAASPrincipal(username);

The complete source for MyLogin.java is in Figure 168 on page 1179. The source for
JAASPrincipal.java, with the package name refactored to security.jaas is in Figure 169 on page
1180.

5. Set the class path in service.env to point to the directory containing the path to
security/jaas/MyLogin.class and security/jaas/JAASPrincipal.class.
CLASSPATH=C:\WMQTelemetryApps\MQTTSecureExamples\bin

See Telemetry channel JAAS configuration for information about using service.env to pass a class
path to an IBM MQ service.

6. Add a login module stanza to jaas.config.
MyLoginExample {

security.jaas.MyLogin required debug=true;
};

See Telemetry channel JAAS configuration for information about using jaas.config define a JAAS
login module.

7. Add a telemetry channel using the New telemetry channel wizard in IBM MQ Explorer, configuring
the channel to require JAAS authentication. Refer it to the MyLoginExample stanza.
For example, adapt the information you type into the wizard from this stanza in the
mqxr_win.properties file. If you are working in Linux the file is called mqxr_unix.properties. Do
not edit the telemetry properties file directly; use the wizard.
com.ibm.mq.MQXR.channel/JAASMCAUser: \
com.ibm.mq.MQXR.Port=1884;\
com.ibm.mq.MQXR.JAASConfig=MyLoginExample;\
com.ibm.mq.MQXR.UserName=Admin;\
com.ibm.mq.MQXR.StartWithMQXRService=true

Note: If you modify any of the telemetry channel parameters, or modify the security.jaas.Mylogin
class, you must stop and restart the telemetry (MQXR) service. Only when you restart the service do
the changes to take effect.

8. Make a copy of PubSync.java in the com.ibm.mq.id package, and name the copy PubSyncJAAS.java.
See “Creating your first IBM MQ Telemetry Transport publisher application using Java” on page
1152 for the steps to create PubSync.java in the com.ibm.mq.id package.

9. Set the MqttConnectOptions.username and MqttConnectOptions.password in PubSyncJAAS.java
program, and pass MqttConnectOptions as a parameter of MqttClient.connect.
MqttConnectOptions conOptions = new MqttConnectOptions();
conOptions.setUserName(Example.username);
conOptions.setPassword(Example.password);
client.connect(conOptions);

See the italicized code in PubSyncJAAS.Java using the constants set in Example.java.
10. Set Example.TCPAddress to the socket address of the telemetry channel you have configured to use

the JAAS configuration, MyLoginExample. For example, use 1884 as the port number.
11. Run PubSyncJAAS a number of times to see the client logging in, and being accepted or rejected.

An exception is thrown each time the login attempt is rejected.

Results

Figure 166 on page 1178 shows the results of running PubSyncJAAS.Java twice. The log records are
shown in Figure 167 on page 1178.

Developing applications for IBM MQ Telemetry 1177

The log file MyLogin.log is stored in WMQ Data directory ; for example, C:\IBM\MQ\Data\MyLogin.log:

Examples

The italicized code in Figure 168 on page 1179 is the modification to the sample JAASLoginModule.java.

Waiting for up to 10 seconds for publication of "Hello World Fri Jun 04 08:31:05 BST 2010" with QoS = 1
On topic "MQTT Example" for client instance: "Admin_61c57a18_4bf7_40d" on address tcp://localhost:1884"
With username "Admin" and password "Password"
Client exception caught
Client is not connected (32104)
at com.ibm.micro.client.mqttv3.internal.ExceptionHelper.createMqttException(ExceptionHelper.java:33)
at com.ibm.micro.client.mqttv3.internal.ClientComms.internalSend(ClientComms.java:88)
at com.ibm.micro.client.mqttv3.internal.ClientComms.sendNoWait(ClientComms.java:105)
at com.ibm.micro.client.mqttv3.MqttTopic.publish(MqttTopic.java:68)
at com.ibm.mq.id.PubSync.main(PubSync.java:24)

Waiting for up to 10 seconds for publication of "Hello World Fri Jun 04 08:31:40 BST 2010" with QoS = 1
On topic "MQTT Example" for client instance: "Admin_1d1599a0_50f5_4ea" on address tcp://localhost:1884"
With username "Admin" and password "Password"
Delivery token "1731749688" has been received: true

Figure 166. Console output from PubSyncJAAS.java

Called JAASLogin.login at Hello World Fri Jun 04 08:31:05 BST 2010
Username: "Admin", Password: "Password" loggedIn: false
Called JAASLogin.login at Hello World Fri Jun 04 08:31:40 BST 2010
Username: "Admin", Password: "Password" loggedIn: true

Figure 167. MyLogin.log

1178 IBM MQ: Programming

package security.jaas;
import java.io.FileWriter;
import java.io.PrintWriter;

public class JAASLogin implements javax.security.auth.spi.LoginModule {
private javax.security.auth.Subject subject;
private javax.security.auth.callback.CallbackHandler callbackHandler;
JAASPrincipal principal;
boolean loggedIn = false;
public void initialize(javax.security.auth.Subject subject,

javax.security.auth.callback.CallbackHandler callbackHandler,
java.util.Map<String, ?> sharedState, java.util.Map<String, ?> options) {

this.subject = subject;
this.callbackHandler = callbackHandler;

}
public boolean login() throws javax.security.auth.login.LoginException {

try {
javax.security.auth.callback.Callback[] callbacks = new javax.security.auth.callback.Callback[2];
callbacks[0] = new javax.security.auth.callback.NameCallback(

"NameCallback");
callbacks[1] = new javax.security.auth.callback.PasswordCallback(

"PasswordCallback", false);

callbackHandler.handle(callbacks);
String username = ((javax.security.auth.callback.NameCallback) callbacks[0])

.getName();
char[] password = ((javax.security.auth.callback.PasswordCallback) callbacks[1])

.getPassword();
// login half the users randomly
PrintWriter pw = new PrintWriter(new FileWriter(System

.getProperty("user.dir")
+ "\\mylogin.log", true));

pw.println("Called JAASLogin.login at "
+ System.getProperty("publication", "Hello World "

+ String.format("%tc", System.currentTimeMillis())));
if (Math.random() < 0.5)

loggedIn = true;
pw.println("Username: \"" + username + "\", Password: \""

+ String.valueOf(password) + "\" loggedIn: " + loggedIn);
pw.close();
if (!loggedIn)

throw new javax.security.auth.login.FailedLoginException("Login failed");
principal = new JAASPrincipal(username);

} catch (java.io.IOException exception) {
throw new javax.security.auth.login.LoginException(exception.toString());

} catch (javax.security.auth.callback.UnsupportedCallbackException exception) {
throw new javax.security.auth.login.LoginException(exception.toString());

}
return loggedIn;

}
public boolean abort() throws javax.security.auth.login.LoginException {

logout();
return true;

}
public boolean commit() throws javax.security.auth.login.LoginException {

if (loggedIn) {
if (!subject.getPrincipals().contains(principal))

subject.getPrincipals().add(principal);
}
return true;

}
public boolean logout() throws javax.security.auth.login.LoginException {

subject.getPrincipals().remove(principal);
principal = null;
loggedIn = false;
return true;

}
}

Figure 168. MyLogin.java

Developing applications for IBM MQ Telemetry 1179

Figure 169 is the sample code JAASLoginPrincipal.java, copied into the package security.jaas. The
purpose of JAASLoginPrincipal is to implement the java.security.Principal interface to keep a record of
the users that have been successfully logged in by MyLogin.

The code in PubSync.java that is modified to add a username and password is italicized in Figure 170 on
page 1181.

package security.jaas;
public class JAASPrincipal implements java.security.Principal,

java.io.Serializable {
private static final long serialVersionUID = 1L;
String name;
public JAASPrincipal(String name) {

this.name = name;
}
public String getName() {

return name;
}
public String toString() {

return (name);
}
public boolean equals(Object object) {

if (object != null && object instanceof JAASPrincipal
&& name.equals(((JAASPrincipal) object).getName()))

return true;
else

return false;
}
public int hashCode() {

return name.hashCode();
}

}

Figure 169. JAASLoginPrincipal.java

1180 IBM MQ: Programming

Modify the constants in Example.java to match your configuration. Ignore the SSL settings for this
example.

package com.ibm.mq.id;
import com.ibm.micro.client.mqttv3.*;
public class PubSyncSSL {

public static void main(String[] args) {
try {

MqttClient client = new MqttClient(Example.SSLAddress, Example.clientId);
MqttTopic topic = client.getTopic(Example.topicString);
MqttMessage message = new MqttMessage(Example.publication.getBytes());
message.setQos(Example.QoS);
MqttConnectOptions conOptions = new MqttConnectOptions();
conOptions.setUserName(Example.username);
conOptions.setPassword(Example.password);
client.connect(conOptions);
System.out.println("Waiting for up to " + Example.sleepTimeout / 1000

+ " seconds for publication of \"" + message.toString()
+ "\" with QoS = " + message.getQos());

System.out.println("On topic \"" + topic.getName() + "\" for client instance: \""
+ client.getClientId() + "\" on address " + client.getServerURI() + "\"");

System.out.println("With username \"" + conOptions.getUserName()
+ "\" and password \"" + String.valueOf(conOptions.getPassword()) + "\"");

MqttDeliveryToken token = topic.publish(message);
token.waitForCompletion(Example.sleepTimeout);
System.out.println("Delivery token \"" + token.hashCode()

+ "\" has been received: " + token.isComplete());
client.disconnect();

} catch (Exception e) {
System.out.println("Client exception caught");
e.printStackTrace();

}
}

}

Figure 170. PubSyncJAAS.Java

Developing applications for IBM MQ Telemetry 1181

Authenticating an SSL telemetry connection using self-signed
certificates
Use self-signed certificates generated using Keytool to authenticate an SSL connection. You have the
option of authenticating the telemetry channel, or the telemetry channel and the clients that attach to it.
Messages flowing on the connection are encrypted.

Before you begin

Do the task, “Creating your first IBM MQ Telemetry Transport publisher application using Java” on page
1152 before you start, to get PubSync.java working with an unsecured TCP/IP connection. In this task,

package com.ibm.mq.id;
import java.util.Properties;
import java.util.UUID;
public final class Example {

public static final String TCPAddress =
System.getProperty("TCPAddress", "tcp://localhost:1883");

public static final String SSLAddress =
System.getProperty("SSLAddress", "ssl://localhost:8883");

public static final String username =
System.getProperty("username", System.getProperty("user.name"));

public static final char [] password =
System.getProperty("password", "Password").toCharArray();

public static String clientId =
String.format("%-23.23s", username + "_" +

System.getProperty("clientId",
(UUID.randomUUID().toString())).trim()).replace(’-’, ’_’);

public static final String topicString =
System.getProperty("topicString", "MQTTExample");

public static final String publication =
System.getProperty("publication", "Hello World " +

String.format("%tc", System.currentTimeMillis()));
public static final int quiesceTimeout =

Integer.parseInt(System.getProperty("timeout", "10000"));
public static final int sleepTimeout =

Integer.parseInt(System.getProperty("timeout", "10000"));
public static final boolean cleanSession =

Boolean.parseBoolean(System.getProperty("cleanSession", "false"));
public static final int QoS =

Integer.parseInt(System.getProperty("QoS", "1"));
public static final boolean retained =

Boolean.parseBoolean(System.getProperty("retained", "false"));
public static final Properties getSSLSettings() {

final Properties properties = new Properties();
properties.setProperty("com.ibm.ssl.keyStore",

"C:\\IBM\\MQ\\Data\\ClientKeyStore.jks");
properties.setProperty("com.ibm.ssl.keyStoreType",

"JKS");
properties.setProperty("com.ibm.ssl.keyStorePassword",

"password");
properties.setProperty("com.ibm.ssl.trustStore",

"C:\\IBM\\MQ\\Data\\ClientTrustStore.jks");
properties.setProperty("com.ibm.ssl.trustStoreType",

"JKS");
properties.setProperty("com.ibm.ssl.trustStorePassword",

"password");
return properties;

}
}

Figure 171. Example.java

1182 IBM MQ: Programming

you modify PubSync.java to work with an SSL connection.

About this task

The steps in the task are written as a programming exercise. You must adapt the procedure to perform
real authentication in a production environment.

The task is written for Windows. Change the directory paths for Linux.

Procedure
1. Do the task, “Modifying PubSync.java to use SSL,” to modify PubSync.java to use SSL.
2. Configure the telemetry channel, and create the keystores to use SSL.

Authenticate just the telemetry channel, or the channel and clients that connect to it:
v Do the task, “Authenticating the telemetry channel” on page 1184, to connect with SSL,

authenticating the telemetry channel.
v Do the task, “Authenticating the telemetry channel and clients” on page 1185, to connect with SSL,

authenticating the telemetry channel and clients that connect to it.
3. Stop and restart the telemetry (MQXR) service to pick up changes to telemetry channel configurations.
4. Run the client program to see if the configuration works.

Modifying PubSync.java to use SSL
Modify the first publisher program example to connect to a telemetry channel using SSL. Set the SSL
properties used by the modified program.

Before you begin

You are assumed to have installed the MQTT v3 client jar files, Javadoc, Eclipse, configured telemetry
channels and coded and run PubSync.java before performing this task. You have an Eclipse workspace
that includes a running version of PubSync.java.

About this task

The task uses the publisher client, PubSync.java, you created in “Creating your first IBM MQ Telemetry
Transport publisher application using Java” on page 1152 as a base. Only small modifications are
necessary to use SSL; see Figure 172 on page 1184 and Figure 173 on page 1184.

Procedure
1. Make a copy of PubSync.java in the com.ibm.mq.id package, and name the copy PubSyncSSL.java.

See “Creating your first IBM MQ Telemetry Transport publisher application using Java” on page 1152
for the steps to create PubSync.java in the com.ibm.mq.id package.

2. Set Example.SSLAddress to the socket address of the telemetry channel you have configured to use for
the SSL configuration.

3. Change the socket address parameter of the client constructor to use Example.SSLAddress.
MqttClient client = new MqttClient(Example.SSLAddress, Example.clientId);

4. Set the MqttConnectOptions.SSLProperties in PubSyncSSL.java, and pass MqttConnectOptions as a
parameter of MqttClient.connect.
MqttConnectOptions conOptions = new MqttConnectOptions();
conOptions.setSSLProperties(Example.getSSLSettings());
client.connect(conOptions);

See the italicized code PubSyncSSL.Java using the constants set in Example.java .

Developing applications for IBM MQ Telemetry 1183

Examples

The modifications to PubSync.java to add SSL are shown in Figure 172 in italics.

The modifications to Example.java are shown in Figure 173.

Authenticating the telemetry channel
Clients authenticate the telemetry channel to encrypt the contents of the messages flowing on the
channel, and to ensure a client connects to the correct telemetry channel. The server does not authenticate
the client.

package com.ibm.mq.id;
import com.ibm.micro.client.mqttv3.*;
public class PubSyncSSL {

public static void main(String[] args) {
try {

MqttClient client = new MqttClient(Example.SSLAddress, Example.clientId);
MqttTopic topic = client.getTopic(Example.topicString);
MqttMessage message = new MqttMessage(Example.publication.getBytes());
message.setQos(Example.QoS);
MqttConnectOptions conOptions = new MqttConnectOptions();
conOptions.setSSLProperties(Example.getSSLSettings());
client.connect(conOptions);
System.out.println("Waiting for up to " + Example.sleepTimeout / 1000

+ " seconds for publication of \"" + message.toString()
+ "\" with QoS = " + message.getQos());

System.out.println("On topic \"" + topic.getName() + "\" for client instance: \""
+ client.getClientId() + "\" on address " + client.getServerURI() + "\"");

System.out.println("SSL Properties" + conOptions.getSSLProperties());
MqttDeliveryToken token = topic.publish(message);
token.waitForCompletion(Example.sleepTimeout);
System.out.println("Delivery token \"" + token.hashCode()

+ "\" has been received: " + token.isComplete());
client.disconnect();

} catch (Exception e) {
System.out.println("Client exception caught");
e.printStackTrace();

}
}

}

Figure 172. PubSyncSSL.Java

public static final String SSLAddress =
System.getProperty("SSLAddress", "ssl://localhost:8883");

public static final Properties getSSLSettings() {
final Properties properties = new Properties();
properties.setProperty("com.ibm.ssl.keyStore", "C:\\Certificates\\SSClientKey.jks");
properties.setProperty("com.ibm.ssl.keyStoreType", "JKS");
properties.setProperty("com.ibm.ssl.keyStorePassword", "password");
properties.setProperty("com.ibm.ssl.trustStore", "C:\\Certificates\\SSClientTrust.jks");
properties.setProperty("com.ibm.ssl.trustStoreType", "JKS");
properties.setProperty("com.ibm.ssl.trustStorePassword", "password");
return properties;

Figure 173. Modifications to Example.java

1184 IBM MQ: Programming

About this task

You can use a number of different keystore editors to create and manage self-signed certificates. The task
uses the command line keytool command, which is part of the JRE. You can use the GUI tool iKeyman,
which is shipped with IBM MQ to browse keystores and generate keys. Launch iKeyman using the
command strmqikm.

Procedure
1. Create a telemetry channel, SSLSSOptClients that requires an SSL connection using the New telemetry

channel wizard. The channel accepts anonymous clients.
Adapt your channel configuration from the following configuration stanza. Do not edit the telemetry
properties file directly; use the wizard.
com.ibm.mq.MQXR.channel/SSLSSOptClients: \
com.ibm.mq.MQXR.Port=8883;\
com.ibm.mq.MQXR.Backlog=4096;\
com.ibm.mq.MQXR.KeyFileName=C:\\Certificates\\SSServerOptKey.jks;\
com.ibm.mq.MQXR.PassPhrase=password;\
com.ibm.mq.MQXR.ClientAuth=OPTIONAL;\
com.ibm.mq.MQXR.UserName=Admin;\
com.ibm.mq.MQXR.StartWithMQXRService=true

2. Generate the keys for client to authenticate the telemetry channel.
a. Generate a self-signed key-pair for the telemetry channel in a new keystore, SSServerOptKey.jks:

Keytool -genkey -noprompt -alias SSServerPrivate
-dname "CN=mqttserver.ibm.com, OU=ID, O=IBM, L=Hursley, S=Hants, C=GB"
-keystore SSServerOptKey.jks -storepass password -keypass password

b. Export its public certificate as an ASCII file, using the -rfc option:
Keytool -export -noprompt -alias SSServerPrivate -file SSServerPublic.cer

-keystore SSServerOptKey.jks -storepass password -rfc

If you are running the task on windows, double-click SSServerPublic.cer to inspect its contents.
c. Import the public certificate into a new client truststore, SSClientTrust.jks:

Keytool -import -noprompt -alias SSServerPublic -file SSServerPublic.cer
-keystore SSClientTrust.jks -storepass password

d. Create an empty client keystore, SSClientKey.jks.
Keytool does not have a command to create an empty keystore. You have two choices:
1) Run strmqikm, and create a keystore, SSClientKey.jks, but do not add any keys.
2) Perform step 3a in “Authenticating the telemetry channel and clients,” but do not use the keys

yet.

Authenticating the telemetry channel and clients
Clients authenticate the telemetry channel and the telemetry channel authenticates clients attaching to it.
Messages flowing on the channel are encrypted.

About this task

You can use a number of different keystore editors to create and manage self-signed certificates. The task
uses the command line keytool command, which is part of the JRE. You can use the GUI tool iKeyman,
which is shipped with IBM MQ to browse keystores and generate keys. Launch iKeyman using the
command strmqikm.

The telemetry channel is configured with a different keystore to the task, “Authenticating the telemetry
channel” on page 1184. You can use the same keystore, and omit step 2 on page 1186 to add keys to the
keystore.

Developing applications for IBM MQ Telemetry 1185

Procedure
1. Create a telemetry channel, SSLSSReqClients that requires an SSL connection using the New telemetry

channel wizard. The channel accepts only authenticated clients.
Adapt your channel configuration from the following configuration stanza:
com.ibm.mq.MQXR.channel/SSLSSReqClients: \
com.ibm.mq.MQXR.Port=8884;\
com.ibm.mq.MQXR.Backlog=4096;\
com.ibm.mq.MQXR.KeyFileName=C:\\Certificates\\SSServerReqKey.jks;\
com.ibm.mq.MQXR.PassPhrase=password;\
com.ibm.mq.MQXR.ClientAuth=REQUIRED;\
com.ibm.mq.MQXR.UserName=Admin;\
com.ibm.mq.MQXR.StartWithMQXRService=true

2. Generate the keys for client to authenticate the telemetry channel.
a. Generate a self-signed key-pair for the telemetry channel in a new keystore, SSServerReqKey.jks:

Keytool -genkey -noprompt -alias SSServerPrivate
-dname "CN=mqttserver.ibm.com, OU=ID, O=IBM, L=Hursley, S=Hants, C=GB"
-keystore SSServerReqKey.jks -storepass password -keypass password

b. Export its public certificate as an ASCII file, using the -rfc option:
Keytool -export -noprompt -alias SSServerPrivate -file SSServerPublic.cer

-keystore SSServerReqKey.jks -storepass password -rfc

If you are running the task on windows, double-click SSServerPublic.cer to inspect its contents.
c. Import the public certificate into a new client truststore, SSClientTrust.jks:

Keytool -import -noprompt -alias SSServerPublic -file SSServerPublic.cer
-keystore SSClientTrust.jks -storepass password

3. Generate the keys for the telemetry channel to authenticate a client.
a. Generate a self-signed key-pair for the client in a new keystore, SSClientKey.jks:

Keytool -genkey -noprompt -alias SSClientPrivate
-dname "CN=mqttclient.ibm.com, OU=ID, O=IBM, L=Hursley, S=Hants, C=GB"
-keystore SSClientKey.jks -storepass password -keypass password

b. Export its public certificate as an ASCII file, using the -rfc option:
Keytool -export -noprompt -alias SSClientPrivate -file SSClientPublic.cer

-keystore SSClientKey.jks -storepass password -rfc

If you are running the task on windows, double-click SSClientPublic.cer to inspect its contents.
c. Import the public certificate into the server keystore, SSServerReqKey.jks:

Keytool -import -noprompt -alias SSClientPublic -file SSClientPublic.cer
-keystore SSServerReqKey.jks -storepass password

Telemetry channels use the same store for both private keys and trusted certificates.

Authenticating an SSL telemetry connection using a certificate chain
Use signed certificates obtained from a certificate authority, or from implementing your own certification
procedure, to authenticate an SSL connection. You have the option of authenticating the telemetry
channel, or the telemetry channel and the clients that attach to it. Messages flowing on the connection are
encrypted.

Before you begin

Do the task, “Authenticating an SSL telemetry connection using self-signed certificates” on page 1182
before you start, to get PubSyncSSL.Java working with a secured TCP/IP connection using self-signed
certificates.

1186 IBM MQ: Programming

About this task

In this task, modify the tasks “Authenticating the telemetry channel” on page 1184, and “Authenticating
the telemetry channel and clients” on page 1185 in “Authenticating an SSL telemetry connection using
self-signed certificates” on page 1182, to work with keys certified by a certificate chain.

You can either obtain the certificates for this task from a certificate authority, or you can use a websites
such as http://www.openca.org/ to obtain certificates. Commercial certificate authorities generally
provide trial certificates for a short period at no charge. This task was tested using commercially obtained
certificates.

Another option is to build your own certification process, and run it on your own computers, using tools
from websites such as http://www.openssl.org/.

The JRE cacerts truststores are not used in this task. You can use the JRE cacerts truststore at the client
in the task, “Authenticating the telemetry channel,” instead of using the specified truststore. The
certificate chain might be signed by a well known certificate authority that already has its root certificate
in the cacerts store at the client. In this case, do not specify a truststore at the client. Make sure, if there
are multiple JREs installed at the client that you manage the correct cacerts store.

Procedure
1. If you have not already done so, do the task, “Modifying PubSync.java to use SSL” on page 1183, to

modify PubSync.java to use SSL.
2. Configure the telemetry channel, and create the keystores to use SSL.

Authenticate just the telemetry channel, or the channel and clients that connect to it:
v Do the task, “Authenticating the telemetry channel,” to connect with SSL, authenticating the

telemetry channel.
v Do the task, “Authenticating the telemetry channel and clients” on page 1189, to connect with SSL,

authenticating the telemetry channel and clients that connect to it.
3. Stop and restart the telemetry (MQXR) service to pick up changes to telemetry channel configurations.
4. Run the client program to see if the configuration works.

Authenticating the telemetry channel
Clients authenticate the telemetry channel to encrypt the contents of the messages flowing on the
channel, and to ensure that a client connects to the correct telemetry channel. The server does not
authenticate the client.

About this task

You can use a number of different keystore editors to create and manage certificates. The task uses the
command line keytool command, which is part of the JRE. You can use the GUI tool iKeyman, which is
shipped with IBM MQ to browse keystores and generate keys. Launch iKeyman using the command
strmqikm.

Procedure
1. Create a telemetry channel, SSLCAOptClients that requires an SSL connection using the New telemetry

channel wizard. The channel accepts anonymous clients.
Adapt your channel configuration from the following configuration stanza. Do not edit the telemetry
properties file directly; use the wizard.
com.ibm.mq.MQXR.channel/SSLCAOptClients: \
com.ibm.mq.MQXR.Port=8885;\
com.ibm.mq.MQXR.Backlog=4096;\
com.ibm.mq.MQXR.KeyFileName=C:\\Certificates\\CAServerOptKey.jks;\

Developing applications for IBM MQ Telemetry 1187

http://www.openca.org/
http://www.openssl.org/

com.ibm.mq.MQXR.PassPhrase=password;\
com.ibm.mq.MQXR.ClientAuth=OPTIONAL;\
com.ibm.mq.MQXR.UserName=Admin;\
com.ibm.mq.MQXR.StartWithMQXRService=true

2. Generate a CA-signed key for client to authenticate the telemetry channel.
a. Generate a self-signed key-pair for the telemetry channel in a new keystore, SSServerOptKey.jks:

Keytool -genkey -noprompt -alias CAServerPrivate -keyalg RSA
-dname "CN=mqttserverOpt.ibm.com, OU=ID, O=IBM, L=Hursley, S=Hants, C=GB"
-keystore CAServerOptKey.jks -storepass password -keypass password

The key algorithm is set to RSA because some certificate authorities require it. The common name
of the certificate must be unique, some certificate authorities do not issue keys with identical
common names.

b. Create a certificate signing request (CSR) as an ASCII file
Keytool -certreq -noprompt -alias CAServer -file CAServerOptKey.csr

-dname "CN=mqttserverReq.ibm.com, OU=ID, O=IBM, L=Hursley, S=Hants, C=GB"
-keystore CAServerOptKey.jks -storepass password -keypass password

c. Run the certificate authority software, or logon to their website. Paste in the contents of
CAServerOptKey.csr when asked for the CSR file.

d. The certificate authority returns one or two certificates, and a signed response file as ASCII files.
Paste the contents into two or three files:

Root certificate
Paste into CARoot.cer

Intermediate certificate
Paste into CAInter.cer

Server signed response file
Paste into CAServerOpt.rsp

The JRE certificates store are not used in this task. If you received one root certificate, and a signed
response from the CA, use the root certificate and the signed response in the following steps. If
you received a root and an intermediate certificate, use the intermediate certificate and the signed
response.

e. Receive the signed server response into the server keystore from which you issued the certificate
request.
Receiving the response modifies the self-signed certificate so that it is signed by the CA. If you
look at the certificate in the keystore before and after receiving the response, the signer changes. If
it does not, an error is reported by the key management tool. Before using the certificate, inspect
it, and verify that the signer is now the CA.
Keytool -import -noprompt -alias CAServer -file CAServerOpt.rsp

-keystore CAServerOptKey.jks -storepass password

In some key management software, such as iKeyman, you receive, rather than import, response
files.

f. Import the CA certificate into the client truststore.
Import either the intermediate certificate if you received two certificates from the CA, or the root
certificate, if you received only one certificate. Either:
keytool -import -alias CAInter -file CAInter.cer

-keystore CAClientTrust.jks -storepass password

Or:
keytool -import -alias CARoot -file CARoot.cer

-keystore CAClientTrust.jks -storepass password

1188 IBM MQ: Programming

Authenticating the telemetry channel and clients
Clients authenticate the telemetry channel, and the telemetry channel authenticates clients attaching to it.
Messages flowing on the channel are encrypted.

About this task

You can use a number of different keystore editors to create and manage certificates. The task uses the
command line keytool command, which is part of the JRE. You can use the GUI tool iKeyman, which is
shipped with IBM MQ to browse keystores and generate keys. Launch iKeyman using the command
strmqikm.

The telemetry channel is configured with a different keystore to the one in the task, “Authenticating the
telemetry channel” on page 1187. You can use the same keystore, and omit step 2 to add keys to the
keystore.

Procedure
1. Create a telemetry channel, SSLCAReqClients that requires an SSL connection using the New telemetry

channel wizard. The channel accepts only authenticated clients.
Adapt your channel configuration from the following configuration stanza. Do not edit the telemetry
properties file directly; use the wizard.
com.ibm.mq.MQXR.channel/SSLCAReqClients: \
com.ibm.mq.MQXR.Port=8886;\
com.ibm.mq.MQXR.Backlog=4096;\
com.ibm.mq.MQXR.KeyFileName=C:\\Certificates\\CAServerReqKey.jks;\
com.ibm.mq.MQXR.PassPhrase=password;\
com.ibm.mq.MQXR.ClientAuth=REQUIRED;\
com.ibm.mq.MQXR.UserName=Admin;\
com.ibm.mq.MQXR.StartWithMQXRService=true

2. Generate a CA-signed key for client to authenticate the telemetry channel.
a. Generate a self-signed key-pair for the telemetry channel in a new keystore, CAServerReqKey.jks:

Keytool -genkey -noprompt -alias CAServerPrivate -keyalg RSA
-dname "CN=mqttserverReq.ibm.com, OU=ID, O=IBM, L=Hursley, S=Hants, C=GB"
-keystore CAServerReqKey.jks -storepass password -keypass password

The key algorithm is set to RSA because some certificate authorities require it. The common name
of the certificate must be unique, some certificate authorities do not issue keys with identical
common names.

b. Create a certificate signing request (CSR) as an ASCII file
Keytool -certreq -noprompt -alias CAServer -file CAServerReqKey.csr

-dname "CN=mqttserverReq.ibm.com, OU=ID, O=IBM, L=Hursley, S=Hants, C=GB"
-keystore CAServerReqKey.jks -storepass password -keypass password

c. Run the certificate authority software, or logon to their website. Paste in the contents of
CAServerReqKey.csr when asked for the CSR file.

d. The certificate authority returns one or two certificates, and a signed response file as ASCII files.
Paste the contents into two or three files:

Root certificate
Paste into CARoot.cer

Intermediate certificate
Paste into CAInter.cer

Server signed response file
Paste into CAServerReq.rsp

Developing applications for IBM MQ Telemetry 1189

The JRE certificates store is not used in this task. If you received one root certificate, and a signed
response from the CA, use the root certificate and the signed response in the following steps. If
you received a root and an intermediate certificate, use the intermediate certificate and the signed
response.

e. Receive the signed server response into the server keystore from which you issued the certificate
request.
Receiving the response modifies the self-signed certificate so that it is signed by the CA. If you
look at the certificate in the keystore before and after receiving the response, the signer changes. If
it does not, and error is reported by the key management tool. Before using the certificate, inspect
it, and verify that the signer is now the CA.
Keytool -import -noprompt -alias CAServer -file CAServerReq.rsp

-keystore CAServerReqKey.jks -storepass password

In some key management software, such as iKeyman, you receive, rather than import, response
files.

f. Import the CA certificate into the client truststore.
Import either the intermediate certificate if you received two certificates from the CA, or the root
certificate, if you received only one certificate. Either:
keytool -import -alias CAInter -file CAInter.cer

-keystore CAClientTrust.jks -storepass password

Or:
keytool -import -alias CARoot -file CARoot.cer

-keystore CAClientTrust.jks -storepass password

3. Generate a CA-signed key for the telemetry channel to authenticate clients.
a. Generate a self-signed key-pair for the clients in a new keystore, CAClientKey.jks:

Keytool -genkey -noprompt -alias CAClientPrivate -keyalg RSA
-dname "CN=mqttserverReq.ibm.com, OU=ID, O=IBM, L=Hursley, S=Hants, C=GB"
-keystore CAClientKey.jks -storepass password -keypass password

The key algorithm is set to RSA because some certificate authorities require it. The common name
of the certificate must be unique, some certificate authorities do not issue keys with identical
common names.

b. Create a certificate signing request (CSR) as an ASCII file
Keytool -certreq -noprompt -alias CAClient -file CAClientKey.csr

-dname "CN=mqttserverReq.ibm.com, OU=ID, O=IBM, L=Hursley, S=Hants, C=GB"
-keystore CAClientKey.jks -storepass password -keypass password

c. Run the certificate authority software, or logon to their website. Paste in the contents of
CAClientKey.csr when asked for the CSR file.

d. The certificate authority returns one or two certificates, and a signed response file as ASCII files.
Paste the contents into two or three files:

Root certificate
Paste into CARoot.cer

Intermediate certificate
Paste into CAInter.cer

Client signed response file
Paste into CAClient.rsp

The JRE certificates store are not used in this task. If you received one root certificate, and a signed
response from the CA, use the root certificate and the signed response in the following steps. If
you received a root and an intermediate certificate, use the intermediate certificate and the signed
response.

e. Receive the signed client response into the client keystore from which you issued the certificate
request.

1190 IBM MQ: Programming

Receiving the response modifies the self-signed certificate so that it is signed by the CA. If you
look at the certificate in the keystore before and after receiving the response, the signer changes. If
it does not, and error is reported by the key management tool. Before using the certificate, inspect
it, and verify that the signer is now the CA.
Keytool -import -noprompt -alias CAClient -file CAClient.rsp

-keystore CAClientKey.jks -storepass password

In some key management software, such as iKeyman, you receive, rather than import, response
files.

f. Import the CA certificate into the server keystore.
Import either the intermediate certificate if you received two certificates from the CA, or the root
certificate, if you received only one certificate. Either:
keytool -import -alias CAInter -file CAInter.cer

-keystore CAServerReqKey.jks -storepass password

Or:
keytool -import -alias CARoot -file CARoot.cer

-keystore CAServerReqKey.jks -storepass password

Creating your first IBM MQ Telemetry Transport publisher application
using C
The steps to create an MQTT client publisher application are described in tutorial fashion. Each line of C
code is explained. At the end of the task, you will have created an MQTT publisher.

Before you begin

The client application developed uses the client MQTT v3 C client libraries. See “Creating your first IBM
MQ Telemetry Transport publisher application using Java” on page 1152 for an example of a client
communicating with IBM MQ Telemetry.

About this task

The example is a publish application, pubsync.c. The program pubsync.c publishes a message with the
payload Hello World! to the topic MQTT Example, and waits for confirmation that the publication has been
delivered to the daemon.

For simplicity, return codes from some functions used are not tested for correct completion. In production
code, return codes can be checked to make sure that the program behaves as expected. Appropriate
action must be taken if an unexpected error occurs.

By setting up a subscriber to MQTT Example you can check that the application works.

Use your selected C development environment to develop, build, and run the client. If you prefer, you
can copy the code directly from the examples.

Procedure
1. Create a new, empty source file, pubsync.c
2. Create a file, settings.h. Copy the code in Figure 2 into the file.

All the parameters used in the program are defined in settings.h. You can override the values by
changing the values in the file.

3. The steps that follow explain the code. Follow the steps or copy the code from Figure 1 into
pubsync.c.

Developing applications for IBM MQ Telemetry 1191

4. Add the header file include statements for the required standard libraries and the MQTTClient.h and
settings.h files.
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "MQTTClient.h"
#include "settings.h"

5. Start the definition of the main() function.
int main(int argc, char* argv[])
{

6. Define the local variables used in the program.
MQTTClient client;
MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
MQTTClient_message pubmsg;
MQTTClient_deliveryToken token;
int rc;

Note: Connection options are required by the MQTTClient_connect function.
MQTTClient_connectOptions_initializer contains the default options.

7. Create a client.
MQTTClient_create(&client, ADDRESS, CLIENTID, MQTTCLIENT_PERSISTENCE_NONE, NULL);

v &client is a pointer to a handle for the newly created client. When this function returns with a 0
return code, it contains a handle to the new client. The example assumes success. Test the error
code for correct completion in production code.

v ADDRESS is the URI of the MQTT port that the daemon monitors for incoming client connection
requests.

v CLIENTID is the name used to identify the client to the daemon. Each active client must have a
unique name. If you duplicate a client identifier in two running clients, an exception is thrown in
both clients, and one client terminates. The name is used by the daemon to recognize a client that
is reconnecting following a disconnection. See “Client identifier” on page 1208.

v MQTTCLIENT_PERSISTENCE_NONE specifies that client state is held in memory and is lost if a system
failure occurs. MQTTCLIENT_PERSISTENCE_DEFAULT specifies file system-based persistence, providing
some protection against failures. For more specialized applications, you can use
MQTTCLIENT_PERSISTENCE_USER, which provides an interface for you to implement your own
persistence mechanism. For more details, see the API documentation for MQTTClientPersistence.h.
Whether persistence is required is an application design question. For more details, see “Message
persistence in MQTT clients” on page 1210.

v The default daemon TCP/IP port for MQTT is 1883. In the example, the default address is set to
tcp://localhost:1883.

v Until you call the MQTTClient_connect function, no message processing takes place.
8. Connect the client to the daemon.

if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS) {
printf("Failed to connect, return code %d\n", rc);
exit(-1);

}

v The MQTTClient_connect function is called, passing the client handle and a pointer to the
connection options as arguments.

v The return code from the MQTTClient_connect call is tested to make sure the connect request is
successful.

v If the MQTTClient_connect fails, the program ends with an error code of -1.
v After the application connects, you can start publishing and subscribing.
v A small "keep-alive" message is sent every 20 seconds to prevent the TCP/IP connection from

being closed. This option is set by conn_opts.keepAliveInterval.

1192 IBM MQ: Programming

v The session is started without checking for the completion of inflight messages remaining from a
previous connection because conn_opts.cleansession is set to true. For more details, see “Clean
sessions” on page 1207.

v No last will and testament message is created for the connection. For more details, see “Last will
and testament publication” on page 1210.

9. Populate the MQTTClient_message structure with the data to define the message payload and its
attributes.
pubmsg.payload = PAYLOAD;
pubmsg.payloadlen = strlen(PAYLOAD);
pubmsg.qos = QOS;
pubmsg.retained = 0;

v PAYLOAD is our message content.
v The example uses a string payload but MQTT payloads are byte arrays. The string length is

required to specify the payload size.
v The example publishes a QoS=1 message, so set the value accordingly
v The retained attribute is set to false (0) as the message is not to be retained by the daemon. For

more details, see “Retained publications and MQTT clients” on page 1214.
10. Publish the message.

MQTTClient_publishMessage(client, TOPIC, &pubmsg, &token);

v The publish function specifies the client, the topic, and the payload to be sent to the daemon.
v TOPIC is defined in settings.h as MQTT Example.
v The function is also passed a pointer to an MQTTClient_deliveryToken. This pointer is populated

with a token representing the message when the function returns.
v The message is now safely transferred to the MQTT client, but not yet transferred to the daemon.

If the message has QoS=1 or 2, then the message is stored locally, in case the client fails before
delivery is completed.

v This function returns an error code that you can test for correct completion in production code.
11. Wait for acknowledgment from the server.

rc = MQTTClient_waitForCompletion(client, token, TIMEOUT);

v The pubsync.c example waits for an acknowledgment from the server, which confirms the message
has been delivered.

v The client and token arguments identify the specific message the program is waiting to be
completed.

v TIMEOUT limits how long the program waits for the message to complete delivery. The task,
Creating an asynchronous publisher for IBM MQ Telemetry Transport using C shows how to
receive acknowledgments without waiting by using callback functions.

v This function returns an error code that can be tested for correct completion in production code.
12. Disconnect the client from the daemon.

MQTTClient_disconnect(client, 10000);

v The client disconnects from the server and waits for any callback functions (not used in this
example) for inflight messages to complete.

v The second argument specifies a quiesce timeout in milliseconds. The example waits for up to 10
seconds to finish any other work it must do before disconnecting.

v This function returns an error code that must be tested for correct completion in production code.
13. Free up memory used by the client and end the program.

MQTTClient_destroy(&client);
}

Developing applications for IBM MQ Telemetry 1193

Results

To see the publications sent by this client, create a subscriber to the MQTT Example topic. For more details,
see Creating a subscriber for IBM MQ Telemetry Transport using C

Example

Figure 1 is a full listing of the code described in Procedure. The settings.h file in Figure 2 allows you to
change the default parameters used in pubsync.c.

#include "stdio.h"
#include "stdlib.h"
#include "MQTTClient.h"
#include "settings.h"

int pubsync_main(int argc, char* argv[]) {
MQTTClient client;
MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
MQTTClient_message pubmsg;
MQTTClient_deliveryToken token;
int rc;

MQTTClient_create(&client, ADDRESS, CLIENTID, MQTTCLIENT_PERSISTENCE_NONE, NULL);
if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS) {

printf("Failed to connect, return code %d\n", rc);
exit(-1);

}
pubmsg.payload = PAYLOAD;
pubmsg.payloadlen = strlen(PAYLOAD);
pubmsg.qos = QOS;
pubmsg.retained = 0;
MQTTClient_publishMessage(client, TOPIC, &pubmsg, &token);
printf("Waiting for up to %d seconds for publication of %s\n"

"on topic %s for client with ClientID: %s\n",
TIMEOUT/1000, PAYLOAD, TOPIC, CLIENTID);

rc = MQTTClient_waitForCompletion(client, token, TIMEOUT);
printf("Message with delivery token %d delivered\n", token);
MQTTClient_disconnect(client, 10000);
MQTTClient_destroy(&client);

}

Figure 174. pubsync.c

#define ADDRESS "tcp://localhost:1883"
#define CLIENTID "ExampleClientPub"
#define TOPIC "MQTT Example"
#define PAYLOAD "Hello World!"
#define QOS 1
#define TIMEOUT 10000L

Figure 175. settings.h

1194 IBM MQ: Programming

Creating an asynchronous publisher for IBM MQ Telemetry Transport
using C
The steps to create an MQTT client asynchronous publisher application are described in tutorial fashion.
Each line of C code is explained. At the end of the task, you will have created an MQTT asynchronous
publisher.

In this task, you follow a tutorial to modify your first publisher application. The modifications enable the
application to send publications without waiting for delivery acknowledgments. The delivery
acknowledgments are received by a callback function that you create.

Before you begin

The client application developed uses the client MQTT v3 C client libraries. See “Creating your first IBM
MQ Telemetry Transport publisher application using Java” on page 1152 for an example of a client
communicating with IBM MQ Telemetry.

About this task

The example is a publish application, pubasync.c. The program pubasync.c publishes a message with the
payload Hello World! to the topic MQTT Example, without waiting for confirmation that the publication
has been delivered to the daemon. The delivery acknowledgments are received in a callback function,
MQTTClient_deliveryComplete.

For simplicity, return codes from some functions used are not tested for correct completion. In production
code, return codes can be checked to make sure that the program behaves as expected. Appropriate
action must be taken if an unexpected error occurs.

By setting up a subscriber to MQTT Example you can check that the application works.

Use your selected C development environment to develop, build, and run the client.

The steps in Procedure modify the pubsync.c application from “Creating your first IBM MQ Telemetry
Transport publisher application using C” on page 1191. If you prefer, you can copy the code directly from
the examples.

Procedure
1. Create a new, empty source file, callback.h.
2. Copy the code in Figure 2 into the file.
v callback.h declares the three callback methods needed for asynchronous client operation.
v A variable, deliveredtoken, is also declared. This is accessed by the main program and the callback

on different threads of execution. It is therefore declared as volatile. When using callbacks, take
care to ensure that relevant variables are accessed in a threadsafe way.

3. Create a new, empty source file, callback.c.
4. Copy the code in Figure 3 into the file.
v callback.c implements the three callback methods used by the client for asynchronous operation,

delivered, msgarrvd, and connlost.
5. Add an include statement for callback.h after the other includes in pubasync.c.

#include "callback.h"

6. Copy the contents of pubsync.c into a new file, pubasync.c.
7. Just before the MQTTClient_connect function call in pubasync.c, set the callback methods for the

client.
MQTTClient_setCallbacks(client, NULL, connlost, msgarrvd, delivered);

Developing applications for IBM MQ Telemetry 1195

v You must specify three callback functions. These functions are implemented in callback.c.
v MQTTClient_messageArrived is called when a message is sent to the client due to a matching

subscription. This must return true when the received message has been successfully received by
the client application. Returning false indicates to the client that your application had a problem
receiving the message.

v MQTTClient_connectionLost is called when the client loses its connection to the server.
v MQTTClient_deliveryComplete is called when a QoS1 or QoS2 message has arrived and been

acknowledged by the server. It is not called for QoS0 messages. In the example, this function saves
the token from the delivered message in deliveredtoken to indicate that a message has arrived.

v MQTTClient_setCallbacks must be called while the client is disconnected from the server.
v The second argument allows you to pass contextual information to the callback functions. This is

not used in the example, so is set to NULL.
8. Immediately before the call to MQTTClient_publishMessage, clear deliveredtoken.

MQTTClient_deliveryComplete to sets deliveredtoken when a token is received.
deliveredtoken = 0;

9. Remove the MQTTClient_waitForCompletion call and the printf statement following it and replace
with a loop waiting for a match of the original token and the token received in the callback.
while(deliveredtoken != token);

This is an example and does not cope with a number of situations that must be accommodated in
production code design. These situations include:
v In case delivery is not completed, a timeout can be implemented
v Multiple messages can be inflight. The sample program only allows one delivery token to be

checked at a time.
10. Disconnect the client from the daemon.

MQTTClient_disconnect(client, 10000);

v The client disconnects from the server and waits for any callback functions for inflight messages to
complete.

v The second argument specifies a quiesce timeout in milliseconds. The example waits for up to 10
seconds to finish any other work it must do before disconnecting.

v This function returns an error code that must be tested for correct completion in production code.
11. Free up memory used by the client and end the program.

MQTTClient_destroy(&client);
}

Results

To see the publication sent by this client, create a subscriber to the MQTT Example topic. For more details,
see Creating a subscriber for IBM MQ Telemetry Transport

Example

pubasync.c, callbacks.c and callbacks.h are full listings of the code described in Procedure.

1196 IBM MQ: Programming

#include "stdio.h"
#include "stdlib.h"
#include "MQTTClient.h"
#include "settings.h"
#include "callback.h"

int main(int argc, char* argv[]) {
MQTTClient client;
MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
MQTTClient_message pubmsg;
MQTTClient_deliveryToken token;
int rc;

MQTTClient_create(&client, ADDRESS, CLIENTID, MQTTCLIENT_PERSISTENCE_NONE, NULL);
MQTTClient_setCallbacks(client, NULL, connlost, msgarrvd, delivered);
if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS) {

printf("Failed to connect, return code %d\n", rc);
exit(-1);

}
pubmsg.payload = PAYLOAD;
pubmsg.payloadlen = strlen(PAYLOAD);
pubmsg.qos = QOS;
pubmsg.retained = 0;
deliveredtoken = 0;
MQTTClient_publishMessage(client, TOPIC, &pubmsg, &token);
printf("Waiting for publication of %s\n"

"on topic %s for client with ClientID: %s\n", PAYLOAD, TOPIC, CLIENTID);
while(deliveredtoken != token);
MQTTClient_disconnect(client, 10000);
MQTTClient_destroy(&client);

}

Figure 176. pubasync.c

MQTTClient_deliveryComplete delivered;
MQTTClient_messageArrived msgarrvd;
MQTTClient_connectionLost connlost;

extern volatile MQTTClient_deliveryToken deliveredtoken;

Figure 177. callback.h

Developing applications for IBM MQ Telemetry 1197

#include "MQTTClient.h"

volatile MQTTClient_deliveryToken deliveredtoken;

void delivered(void *context, MQTTClient_deliveryToken dt)
{

printf("Message with token value %d delivery confirmed\n", dt);
deliveredtoken = dt;

}

int msgarrvd(void *context, char *topicName, int topicLen, MQTTClient_message *message)
{

int i;
char* payloadptr;

printf("Message arrived\n");
printf(" topic: %s\n", topicName);
printf(" message: ");

payloadptr = message->payload;
for(i=0; i<message->payloadlen; i++) {

putchar(*payloadptr++);
}
putchar(’\n’);
MQTTClient_freeMessage(&message);
free(topicName);
return 1;

}

void connlost(void *context, char *cause)
{

printf("\nConnection lost\n");
printf(" cause: %s\n", cause);

}

Figure 178. callback.c

#define ADDRESS "tcp://localhost:1883"
#define CLIENTID "ExampleClientPub"
#define TOPIC "MQTT Example"
#define PAYLOAD "Hello World!"
#define QOS 1
#define TIMEOUT 10000L

Figure 179. settings.h

1198 IBM MQ: Programming

Creating a subscriber for IBM MQ Telemetry Transport using C
The steps to create an MQTT client subscriber application are described in tutorial fashion. Each line of C
code is explained. At the end of the task, you will have created an MQTT subscriber.

Before you begin

The client application developed uses the client MQTT v3 C client libraries. See “Creating your first IBM
MQ Telemetry Transport publisher application using Java” on page 1152 for an example of a client
communicating with IBM MQ Telemetry.

About this task

The example is a subscriber application, subscribe.c. The program subscribe.c subscribes to the topic
MQTT Example and waits for publications that match the subscription until the user ends the program.

A subscriber creates a subscription to a topic and waits for messages that match the subscription topic.
Messages published while the client is disconnected, and that match a subscription created previously by
the client, can be received when the client reconnects. The IBM MQ telemetry (MQXR) service recognizes
a client that has previously been connected by the client identifier. For more information, see “Client
identifier” on page 1208. The MQTTClient_connectOptions.cleansession boolean attribute controls
whether publications sent previously are received or not. For more details, see “Clean sessions” on page
1207.

For simplicity, return codes from some functions used are not tested for correct completion. In production
code, return codes can be checked to ensure that the program behaves as expected. Appropriate action
can be taken if an unexpected error occurs.

You can use IBM MQ explorer to create test publications on the MQTT Example topic if you want to
connect the client to an IBM MQ Telemetry channel.

The instructions in Procedure assume that you have already created callback.c, callback.h, and
settings.h files in one of the earlier tasks.

Use your selected C development environment to develop, build, and run the client. If you prefer, you
can copy the code directly from the examples.

Procedure
1. Create a copy of settings.h for this example, and change the CLIENTID define statement to the

following:
#define CLIENTID "ExampleClientSub"

v If two clients with the same ID attempt to connect to a single server, one of them is forcibly
disconnected. Typically, the new attempt to connect is successful and the older connection is
disconnected.

v Changing the ClientID allows you to use the previously developed publishing examples to send
messages to this subscriber.

2. Create a new, empty source file, subscribe.c.
3. The steps that follow explain the code. Follow the steps or copy the code from Figure 180 on page

1203 into the file subscribe.c.
4. Add the header file include statements for the required standard libraries and the MQTTClient.h and

settings.h files.
#include "stdio.h"
#include "stdlib.h"
#include "MQTTClient.h"
#include "settings.h"

Developing applications for IBM MQ Telemetry 1199

5. Start the definition of the main() function.
int main(int argc, char* argv[]) {

6. Define the local variables used in the program.
MQTTClient client;
MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
MQTTClient_deliveryToken token;
int rc;

Connection options are required by the MQTTClient_connect function.
MQTTClient_connectOptions_initializer contains the default options.

7. Create a client.
MQTTClient_create(&client, ADDRESS, CLIENTID, MQTTCLIENT_PERSISTENCE_NONE, NULL);

v &client is a pointer to a handle for the newly created client. When this function returns with a 0
return code, the pointer contains a handle to the new client. The example assumes success. The
error code can be tested for correct completion in production code.

v ADDRESS is the URI of the MQTT port that the daemon monitors for incoming client connection
requests.

v CLIENTID is the name used to identify the client to the daemon. Each active client must have a
unique name. If you duplicate a client identifier in two running clients, an exception is thrown in
both clients, and one client terminates. The name is used by the daemon to recognize a client is
reconnecting following a disconnection, see “Client identifier” on page 1208.

v MQTTCLIENT_PERSISTENCE_NONE specifies that client state is held in memory and is lost if a system
failure occurs. MQTTCLIENT_PERSISTENCE#_DEFAULT specifies file system-based persistence, providing
some protection against failures. For more specialized applications, you can use
MQTTCLIENT_PERSISTENCE_USER, which provides an interface for you to implement your own
persistence mechanism. Whether persistence is required is an application design question. For
more details, see “Message persistence in MQTT clients” on page 1210.

v The default daemon TCP/IP port for MQTT is 1883. In the example, the default address is set to
tcp://localhost:1883.

v Until you call the MQTTClient_connect function, no message processing takes place.
8. Connect the client to the daemon

if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS) {
printf("Failed to connect, return code %d\n", rc);
exit(-1);

}

v The MQTTClient_connect function is called, passing the client handle and a pointer to the
connection options as arguments.

v The return code from the MQTTClient_connect call is tested to make sure the connect request is
successful.

v If the connect call fails, the program ends with an error code of -1.
v After the application connects, it can start publishing and subscribing.
v A small "keep-alive" message is sent every 20 seconds to prevent the TCP/IP connection from

being closed. This option is set by conn_opts.keepAliveInterval.
v The session is started without checking for the completion of inflight messages remaining from a

previous connection because conn_opts.cleansession is set to true. For more details, see “Clean
sessions” on page 1207.

v No last will and testament message is created for the connection. For more detail, see “Last will
and testament publication” on page 1210.

9. Subscribe to the topic.
MQTTClient_subscribe(client, TOPIC, QOS);

1200 IBM MQ: Programming

v Use the MQTTClient_subscribe function to subscribe the client application to the selected topic.
The topic name can include wildcard characters. For more details, see “Topic strings and topic
filters in MQTT clients” on page 1216.

v The QoS setting determines the maximum quality of service that is applied to messages sent to
this subscriber. The server sends messages at the lower value of this setting and the QoS setting
for the original message.

v This function returns an error code that can be tested for correct completion in production code.
10. Wait in a loop until the user enters a 'Q' character from the keyboard.

do {
ch = getchar();
} while(ch!=’Q’ && ch != ’q’);

The program now waits for messages to arrive. In this example, all message handling takes place in
the callback function MQTTClient_messageArrived. For more details, see “Receiving messages.”

11. Disconnect the client from the daemon.
MQTTClient_disconnect(client, 10000);

v The client disconnects from the server and waits for any callback functions (not used in this
example) for inflight messages to complete.

v The second argument specifies a quiesce timeout in milliseconds. The example waits for up to 10
seconds to finish any other work it must perform before disconnecting.

v This function returns an error code that can be tested for correct completion in production code.
12. Free up memory used by the client and end the program.

MQTTClient_destroy(&client);
}

Receiving messages
About this task

When messages arrive from the server, the MQTTClient_messageArrived function is started. The steps that
follow explain the code.

Procedure
1. Start the definition of the callback function. This definition must match the

MQTTClient_messageArrived function template.
int msgarrvd(void *context, char *topicName, int topicLen, MQTTClient_message *message) {

v context provides access to the context passed to the client library when the
MQTTClient_setCallbacks function was called. This function is not used in the example.

v topicName is a pointer to the topic the received message is published to. If you have subscribed
using wildcard characters, this parameter identifies the specific topic used for the message.

v topicLen is the length of the topic string. This option is provided for users who must embed NULL
characters in topic strings.

v message is a pointer to the MQTTClient_message structure containing the message payload and
attributes.

2. Define the local variables used.
int i;
char* payloadptr;

These variables are used in the example to print out the payload by iterating over it.
3. Print out a message, displaying the topic and the payload of the message

printf("Message arrived\n");
printf(" topic: %s\n",topicName);
printf(" message: ");
payloadptr = message->payload;

Developing applications for IBM MQ Telemetry 1201

for(i=0; i<message->payloadlen; i++){
putchar(*payloadptr++);
}

putchar(’\n’);

v The example assumes that the received payload is a sequence of printable characters.
v An MQTT payload is an array of bytes. The application is responsible for interpreting their

meaning.
4. Free the memory used to store the message.

MQTTClient_freeMessage(&message);
MQTTClient_free(topicName);

v In the example, all message handling takes place in the callback function.
v Ensure that the callback functions are short, and return control to its calling thread as soon as

possible.
v The message pointer is passed for handling in the main part of the program.
v The main program must free the memory used by the message when processing is complete.

MQTTClient_freeMessage() is a convenience function that returns the two memory blocks used to
hold the MQTTClient_message structure and the message payload back to the system. The memory
allocated to the topicName must be freed separately as shown.

5. Return a true value when the callback has successfully handled the message
return 1;

}

v Returning a true value indicates that the client library can treat the message as successfully
delivered.

v If the callback function cannot properly process the message, a false value is returned. For example,
if the callback is putting messages onto a queue for the main program to process and the queue is
full, returning false would be appropriate.

v For QoS1 and QoS2 messages, returning a false value indicates that the message was not delivered
and further attempts to deliver it are made.

1202 IBM MQ: Programming

Example code

#include "stdio.h"
#include "stdlib.h"
#include "MQTTClient.h"
#include "settings.h"
#include "callback.h"

int main(int argc, char* argv[]) {
MQTTClient client;
MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
int rc;
int ch;

MQTTClient_create(&client, ADDRESS, CLIENTID, MQTTCLIENT_PERSISTENCE_NONE, NULL);

MQTTClient_setCallbacks(client, NULL, connlost, msgarrvd, delivered);

if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS) {
printf("Failed to connect, return code %d\n", rc);
exit(-1);
}

printf("Subscribing to topic %s\nfor client %s using QoS%d\n\n"
"Press Q<Enter> to quit\n\n", TOPIC, CLIENTID, QOS);

MQTTClient_subscribe(client, TOPIC, QOS);
do {

ch = getchar();
} while(ch!=’Q’ && ch != ’q’);

MQTTClient_disconnect(client, 10000);
MQTTClient_destroy(&client);

}

Figure 180. subscriber.c

Developing applications for IBM MQ Telemetry 1203

MQTT client programming concepts
The concepts described in this section help you to understand the Java, JavaScript and C client libraries
for version 3.1 of the MQTT protocol. The concepts complement the API documentation accompanying
the client libraries.

com.ibm.micro.client.mqttv3 contains the classes that provide the public methods for the client libraries
for the MQTT Version 3.1 protocol. A version of the com.ibm.micro.client.mqttv3 package, and the
accompanying packages that implement the protocol for Java SE and ME, is provided with the
installation of IBM MQ Telemetry. To get the most recent version of the MQTT client libraries (Java,
JavaScript and to view or download the API documentation, see MQTT client programming reference.

To develop and run an MQTT client you need to copy or install these packages on the client device. You
do not need to install a separate client runtime.

The licensing conditions for clients are associated with the server that you are connecting the clients to.

The MQTT client libraries are reference implementations of version 3.1 of the MQTT protocol. You can
implement your own clients in different languages suitable for different device platforms. See IBM MQ
Telemetry Transport format and protocol.

#include "MQTTClient.h"

volatile MQTTClient_deliveryToken deliveredtoken;

void delivered(void *context, MQTTClient_deliveryToken dt) {
printf("Message with token value %d delivery confirmed\n", dt);
deliveredtoken = dt;

}

int msgarrvd(void *context, char *topicName, int topicLen, MQTTClient_message *message) {
int i;
char* payloadptr;

printf("Message arrived\n");
printf(" topic: %s\n", topicName);
printf(" message: ");

payloadptr = message->payload;
for(i=0; i<message->payloadlen; i++) {

putchar(*payloadptr++);
}

putchar(’\n’);
MQTTClient_freeMessage(&message);
MQTTClient_free(topicName);
return 1;

}
void connlost(void *context, char *cause) {

printf("\nConnection lost\n");
printf(" cause: %s\n", cause);

}

Figure 181. callback.h

#define ADDRESS "tcp://localhost:1883"
#define CLIENTID "ExampleClientSub"
#define TOPIC "MQTT Example"
#define PAYLOAD "Hello World!"
#define QOS 1
#define TIMEOUT 10000L

Figure 182. settings.h

1204 IBM MQ: Programming

http://www.ibm.com/support/knowledgecenter/SS9D84_1.0.0/com.ibm.mm.tc.doc/tc00200_.htm

The API documentation makes no assumptions about which MQTT server the client is connected to. The
behavior of the client might differ slightly when connected to different servers. The descriptions that
follow describe the behavior of the client when connected to the IBM MQ telemetry service.

Callbacks and synchronization in MQTT client applications
The MQTT client programming model uses threads extensively. The threads decouple an MQTT client
application, as much as they can, from delays in transmitting messages to and from the server.
Publications, delivery tokens, and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.

Callbacks

The MqttCallback interface has three callback methods; see an example implementation in Callback.java.

connectionLost(java.lang.Throwable cause)

connectionLost is called when a communications error leads to the connection dropping. It is
also called if the server drops the connection as a result of an error on the server after the
connection has been established. Server errors are logged to the queue manager error log. The
server drops the connection to the client, and the client calls MqttCallback.connectionLost.
The only remote errors thrown as exceptions on the same thread as the client application are
exceptions from MqttClient.connect. Errors detected by the server after the connection is
established are reported back to the MqttCallback.connectionLost callback method as
throwables.
Typical server errors that result in connectionLost are authorization errors. For example, the
telemetry server tries to publish on a topic on behalf of a client that is not authorized to
publish on the topic. Anything that results in a MQCC_FAIL condition code being returned to
the telemetry server can result in the connection being dropped.

deliveryComplete(MqttDeliveryToken token)

deliveryComplete is called by the MQTT client to pass a delivery token back to the client
application; see “Delivery tokens” on page 1209. Using the delivery token, the callback can
access the published message with the method token.getMessage.
When the application callback returns control to the MQTT client after being called by the
deliveryComplete method, delivery is completed. Until delivery is completed, messages with
QoS 1 or 2 are retained by the persistence class.
The call to deliveryComplete is a point of synchronization between the application and the
persistence class. The deliveryComplete method is never called twice for the same message.
When the application callback returns from deliveryComplete to the MQTT client, the client
calls MqttClientPersistence.remove for messages with QoS 1 or 2. MqttClientPersistence.remove
deletes the locally stored copy of the published message.
From a transaction processing perspective, the call to deliveryComplete is a single phase
transaction that commits the delivery. If processing fails during the callback, on restart of the
client MqttClientPersistence.remove is called again to delete the local copy of the published
message. The callback is not called again. If you are using the callback to store a log of
delivered messages, you cannot synchronize the log with the MQTT client. If you want to
store a log reliably, then update the log in the MqttClientPersistence class.
The delivery token and message are referenced by the main application thread and the MQTT
client. The MQTT client dereferences the MqttMessage object when delivery is completed, and
the delivery token object when the client disconnects. The MqttMessage object can be garbage
collected after delivery is completed if the client application dereferences it. The delivery
token can be garbage collected after the session is disconnected.
You can get MqttDeliveryToken and MqttMessage attributes after a message has been
published. If you attempt to set any MqttMessage attributes after the message has been
published the result is undefined.

Developing applications for IBM MQ Telemetry 1205

The MQTT client continues to process delivery acknowledgments if the client reconnects to
the previous session with the same ClientIdentifier ; see “Clean sessions” on page 1207. The
MQTT client application must set MqttClient.CleanSession to false for the previous session,
and set it to false in the new session. The MQTT client creates new delivery tokens and
message objects in the new session for pending deliveries. It recovers the objects using the
MqttClientPersistence class. If the application client still has references to the old delivery
tokens and messages, dereference them. The application callback is called in the new session
for any deliveries initiated in the previous session and completed in this session.
The application callback is called after the application client connects, when a pending
delivery is completed. Before the application client connects, it can retrieve pending deliveries
using the MqttClient.getPendingDeliveryTokens method.
Notice that the client application originally created the message object that is published, and
its payload byte array. The MQTT client references these objects. The message object returned
by the delivery token in the method token.getMessage is not necessarily the same message
object created by the client. If a new MQTT client instance recreates the delivery token, the
MqttClientPersistence class recreates the MqttMessage object. For consistency
token.getMessage returns null if token.isCompleted is true, regardless of whether the
message object was created by the application client or the MqttClientPersistence class.

messageArrived(MqttTopic topic, MqttMessage message)

messageArrived is called when a publication arrives for the client that matched a
subscription topic. topic is the publication topic, not the subscription filter. The two can be
different if the filter contains wildcards.
If the topic matches multiple subscriptions created by the client, the client receives multiple
copies of the publication. If a client publishes to a topic that it also subscribes to, it receives a
copy of its own publication.
If a message is sent with a QoS of 1 or 2, the message is stored by the MqttClientPersistence
class before the MQTT client calls messageArrived. messageArrived behaves like
deliveryComplete: it is only called once for a publication, and the local copy of the publication
is removed by MqttClientPersistence.remove when messageArrived returns to the MQTT
client. The MQTT client drops its references to the topic and message when messageArrived
returns to the MQTT client. The topic and message objects are garbage collected, if the
application client has not held onto a reference to the objects.

Callbacks, threading, and client application synchronization

The MQTT client calls a callback method on a separate thread to the main application thread. The client
application does not create a thread for the callback, it is created by the MQTT client.

The MQTT client synchronizes callback methods. Only one instance of the callback method runs at a
time. The synchronization makes it easy to update an object that tallies which publications have been
delivered. One instance of the MqttCallback.deliveryComplete runs at a time, and so it is safe to update
the tally without further synchronization. It is also the case that only one publication arrives at a time.
Your code in the messageArrived method can update an object without synchronizing it. If you are
referring to the tally, or the object that is being updated, in another thread, synchronize the tally or object.

The delivery token provides a synchronization mechanism between the main application thread and
delivery of a publication. The method token.waitForCompletion waits until delivery of a specific
publication is completed, or until an optional timeout expires. You might use token.waitForCompletion in
a couple of simple ways to process one publication at a time:
1. To pause the application client until delivery of the publication is completed; see Figure 151 on page

1157.

1206 IBM MQ: Programming

2. To synchronize with the MqttCallback.deliveryComplete method. Only when
MqttCallback.deliveryComplete returns to the MQTT Client does token.waitForCompletion resume.
Using this mechanism you can synchronize running code in MqttCallback.deliveryComplete before
code runs in the main application thread.

What if you wanted to publish without waiting for each publication to be delivered, but want
confirmation when all the publications have been delivered? If you publish on a single thread, the last
publication to be sent is also the last to be delivered.

Synchronization of requests sent to the server

Table 156 describes the methods in the MQTT Java client that send a request to the server. Unless the
application client sets an indefinite timeout, the client never waits indefinitely for the server. If the client
hangs, it is either an application programming problem, or a defect in the MQTT client.

Table 156. Synchronization behavior of methods that result in requests to the server

Method Synchronization Timeout interval

MqttClient.Connect
Waits for a connection to be
established with the server.

Defaults to 30 seconds, or as set by
a parameter, then throws an
exception.

MqttClient.Disconnect
Waits for the MQTT client to finish
any work it must do, and for the
TCP/IP session to disconnect.

MqttClient.Subscribe Waits for completion of the
Subscribe or UnSubscribe method.MqttClient.UnSubscribe

MqttClient.Publish
Returns immediately to the
application thread after passing the
request to the MQTT client.

None.

MqttDeliveryToken.waitForCompletion
Waits for the delivery token to be
returned.

Indefinite, or as set as a parameter.

Clean sessions
The MQTT client, and the telemetry (MQXR) service maintain session state information. The state
information is used to ensure “at least once” and “exactly once” delivery, and “exactly once” receipt of
publications. Session state also includes subscriptions created by an MQTT client. You can choose to run
an MQTT client with or without maintaining state information between sessions. Change the clean
session mode by setting MqttConnectOptions.cleanSession before connecting.

When you connect an MQTT client application using the MqttClient.connect method, the client identifies
the connection using the client identifier and the address of the server. The server checks whether session
information has been saved from a previous connection to the server. If a previous session still exists, and
cleanSession=true, then the previous session information at the client and server is cleared. If
cleanSession=false the previous session is resumed. If no previous session exists, a new session is
started.

Note: The IBM MQ Administrator can forcibly close an open session and delete all the session
information. If the client reopens the session with cleanSession=false, a new session is started.

Publications

If you use the default MqttConnectOptions, or set MqttConnectOptions.cleanSession to true before
connecting the client, all pending publication deliveries for the client are removed when the client
connects.

Developing applications for IBM MQ Telemetry 1207

The clean session setting has no effect on publications sent with QoS=0. For QoS=1 and QoS=2, using
cleanSession=true might result in losing a publication.

Subscriptions

If you use the default MqttConnectOptions, or set MqttConnectOptions.cleanSession to true before
connecting the client, any old subscriptions for the client are removed when the client connects. Any new
subscriptions the client makes during the session are removed when it disconnects.

If you set MqttConnectOptions.cleanSession to false before connecting, any subscriptions the client
creates are added to all the subscriptions that existed for the client before it connected. All the
subscriptions remain active when the client disconnects.

Another way of understanding the way the cleanSession attribute affects subscriptions is to think of it as
a modal attribute. In its default mode, cleanSession=true, the client creates subscriptions and receives
publications only within the scope of the session. In the alternative mode, cleanSession=false,
subscriptions are durable. The client can connect and disconnect and its subscriptions remain active.
When the client reconnects, it receives any undelivered publications. While it is connected, it can modify
the set of subscriptions that are active on its behalf.

You must set the cleanSession mode before connecting; the mode lasts for the whole session. To change
its setting, you must disconnect and reconnect the client. If you change modes from using
cleanSession=false to cleanSession=true, all previous subscriptions for the client, and any publications
that have not been received, are discarded.

Client identifier
The client identifier is a 23 byte string that identifies an MQTT client. Each identifier must be unique to
only one connected client at a time. The identifier must contain only characters valid in a queue manager
name. Within these constraints, you are able to use any identification string. It is important to have a
procedure for allocating client identifiers, and a means of configuring a client with its chosen identifier.

The client identifier is used in the administration of an MQTT system. With potentially hundreds of
thousands of clients to administer, you need to be able to identify a particular client rapidly. Suppose for
example, a device has malfunctioned, and you are notified, perhaps by a customer ringing a help desk.
How does the customer identify the device, and how do you correlate that identification with the server
that is typically connected to the client? Do you have to consult a database that maps each device to a
client identifier and to a server? Does the name of the device identify which server it is attached to?
When you browse through MQTT client connections, each connection is labeled with the client identifier.
Do you need to look up a table to map a client identifier to a physical device?

Does the client identifier identify a particular device, a user, or an application running at the client? If a
customer replaces a faulty device with a new one, does the new device have the same identifier as the
old device? Do you allocate a new identifier? If you change a physical device, but keep the same
identifier, outstanding publications and active subscriptions are automatically transferred to the new
device.

How do you ensure that client identifiers are unique? As well as a system for generating unique
identifiers, you must have a reliable process for setting the identifier on the client. Perhaps the client
device is a "black-box", with no user interface. Do you manufacture the device with a client identifier -
such as using its MAC address? Or do you have a software installation and configuration process that
configures the device before it is activated?

You might create a client identifier from the 48 bit device MAC address, to keep the identifier short and
unique. If transmission size is not a critical issue, you might use the remaining 17 bytes to make the
address easier to administer.

1208 IBM MQ: Programming

Delivery tokens
When a client publishes on a topic a new delivery token is created. Use the delivery token to monitor the
delivery of a publication, or to block the client application until delivery is complete.

The token is an MqttDeliveryToken object. It is created by calling the MqttTopic.publish() method and is
retained by the MQTT client until the client session is disconnected and the delivery is completed.

The normal use of the token is to check whether delivery is complete. Block the client application until
delivery is complete by using the returned token to call token.waitForCompletion. Alternatively, provide
a MqttCallBack handler. When the MQTT client has received all the acknowledgments it expects as part
of delivering the publication, it calls MqttCallBack.deliveryComplete passing the delivery token as a
parameter.

Until delivery is complete, you can inspect the publication using the returned delivery token by calling
token.getMessage.

Completed deliveries

The completion of deliveries is asynchronous and depends on the quality of service associated with the
publication.

At most once

QoS=0

Delivery is complete immediately on return from MqttTopic.publish.
MqttCallback.deliveryComplete is called immediately.

At least once

QoS=1

Delivery is complete when an acknowledgment to the publication has been received from the
queue manager. MqttCallback.deliveryComplete is called when the acknowledgment is
received. The message might be delivered more than once before
MqttCallback.deliveryComplete is called, if communications are slow or unreliable.

Exactly once

QoS=2

Delivery is complete when the client receives a completion message that the publication has
been published to subscribers. MqttCallback.deliveryComplete is called as soon as the
publication message is received. It does not wait for the completion message.

In rare circumstances, your client application might not return to the MQTT client from
MqttCallback.deliveryComplete normally. You know that delivery has completed, because the
MqttCallback.deliveryComplete was called. If the client restarts the same session,
MqttCallback.deliveryComplete does not get called again.

Incomplete deliveries

If the delivery is not complete after the client session is disconnected you can connect the client again
and complete the delivery. You can only complete the delivery of a message if the message was published
in a session with the MqttConnectionOptions attribute set to false.

Create the client using the same client identifier and server address, and then connect, setting the
cleanSession MqttConnectionOptions attribute to false again. If you set cleanSession to true, pending
delivery tokens are thrown away.

Developing applications for IBM MQ Telemetry 1209

You can check if there are any pending deliveries by calling MqttClient.getPendingDeliveryTokens. You
can call MqttClient.getPendingDeliveryTokens before connecting the client.

Last will and testament publication
If an MQTT client connection unexpectedly ends, you can configure IBM MQ Telemetry to send a "last
will and testament" publication. Predefine the content of the publication, and the topic to send it to. The
"last will and testament" is a connection property. Create it before connecting the client.

Create a topic for the last will and testament. You might create a topic such as MQTTManagement/
Connections/server URI/client identifer/Lost.

Set up a "last will and testament" using the MqttConnectionOptions.setWill(MqttTopic lastWillTopic,
byte [] lastWillPayload, int lastWillQos, boolean lastWillRetained) method.

Consider creating a time stamp in the lastWillPayload message. Include other client information that
assists in identifying the client and the circumstances of the connection. Pass the MqttConnectionOptions
object to the MqttClient constructor.

Set lastWillQos to 1 or 2, to make the message persistent in IBM MQ, and to guarantee delivery. To
retain the last lost connection information, set the lastWillRetained to true.

The "last will and testament" publication is sent to subscribers if the connection ends unexpectedly. It is
sent if the connection ends without the client calling the MqttClient.disconnect method.

To monitor connections, complement the "last will and testament" publication with other publications to
record connections and programmed disconnections.

Message persistence in MQTT clients
Publication messages are made persistent if they are sent with a quality of service of “at least once”, or
“exactly once”. You can implement your own persistence mechanism on the client, or use the default
persistence mechanism that is provided with the client. Persistence works in both directions, for
publications sent to or from the client.

In MQTT, message persistence has two aspects; how the message is transferred, and whether it is queued
in IBM MessageSight and IBM MQ as a persistent message.
1. The MQTT client couples message persistence with quality of service. Depending on what quality of

service you choose for a message, the message is made persistent. Message persistence is necessary to
implement the required quality of service.

If you specify “at most once”, QoS=0, the client discards the message as soon as it is published. If
there is any failure in the upstream processing of the message, the message is not sent again. Even
if the client remains active the message is not sent again. The behavior of QoS=0 messages is the
same as IBM MQ fast nonpersistent messages.
If a message is published by a client with QoS of 1 or 2, it is made persistent. The message is
stored locally, and only discarded from the client when it is no longer needed to guarantee “at
least once”, QoS=1, or “exactly once”, QoS=2, delivery.

2. If a message is marked as QoS 1 or 2, it is queued in IBM MessageSight and IBM MQ as a persistent
message. If it is marked as QoS=0, then it is queued in IBM MessageSight and IBM MQ as a
nonpersistent message. In IBM MQ nonpersistent messages are transferred between queue managers
“exactly once”, unless the message channel has the NPMSPEED attribute set to FAST.

A persistent publication is stored on the client until it is received by a client application. For QoS=2, the
publication is discarded from the client when the application callback returns control. For QoS=1 the

1210 IBM MQ: Programming

application might receive the publication again, if a failure occurs. For QoS=0, the callback receives the
publication no more than once. It might not receive the publication if there is a failure, or if the client is
disconnected at the time of publication.

When you subscribe to a topic, you can reduce the QoS with which the subscriber receives messages to
match its persistence capabilities. Publications that are created at a higher QoS are sent with the highest
QoS that the subscriber requested.

Storing messages

The implementation of data storage on small devices varies a great deal. The model of temporarily saving
persistent messages in storage that is managed by the MQTT client might be too slow, or demand too
much storage. In mobile devices, the mobile operating system might provide a storage service that is
ideal for MQTT messages.

To provide flexibility in meeting the constraints of small devices, the MQTT client has two persistence
interfaces. The interfaces define the operations that are involved in storing persistent messages. The
interfaces are described in the API documentation for the MQTT client for Java. For links to client API
documentation for the MQTT client libraries, see MQTT client programming reference. You can
implement the interfaces to suit a device. The MQTT client that runs on Java SE has a default
implementation of the interfaces that store persistent messages in the file system. It uses the java.io
package. The client also has a default implementation for Java ME, MqttDefaultMIDPPersistence.

Persistence classes

MqttClientPersistence
Pass an instance of your implementation of MqttClientPersistence to the MQTT client as a
parameter of the MqttClient constructor. If you omit the MqttClientPersistence parameter from
the MqttClient constructor, the MQTT client stores persistent messages using the class
MqttDefaultFilePersistence or MqttDefaultMIDPPersistence.

MqttPersistable
MqttClientPersistence gets and puts MqttPersistable objects using a storage key. You must
provide an implementation of MqttPersistable as well as the implementation of
MqttClientPersistence if you are not using the MqttDefaultFilePersistence or
MqttDefaultMIDPPersistence.

MqttDefaultFilePersistence

The MQTT client provides the MqttDefaultFilePersistence class. If you instantiate
MqttDefaultFilePersistence in your client application, you can provide the directory to store
persistent messages as a parameter of the MqttDefaultFilePersistence constructor.

Alternatively, the MQTT client can instantiate MqttDefaultFilePersistence and place files in a
default directory. The name of the directory is client identifier -tcp hostname portnumber .
“\”, “\\”, “/”, “:” and “ ” are removed from the directory name string.

The path to the directory is the value of the system property rcp.data. If rcp.data is not set, the
path is the value of the system property usr.data.

rcp.data is a property associated with installation of an OSGi or Eclipse Rich Client Platform
(RCP).

usr.data is the directory in which the Java command that started the application was launched.

MqttDefaultMIDPPersistence
MqttDefaultMIDPPersistence has a default constructor and no parameters. It uses the
javax.microedition.rms.RecordStore package to store messages.

Developing applications for IBM MQ Telemetry 1211

http://www.ibm.com/support/knowledgecenter/SS9D84_1.0.0/com.ibm.mm.tc.doc/tc00200_.htm

Publications
Publications are instances of MqttMessage that are associated with a topic string. MQTT client can create
publications to send to IBM MQ, and subscribe to topics on IBM MQ MQ to receive publications.

An MqttMessage has a byte array as its payload. Aim to keep messages as small as possible. The
maximum length of message permitted by the MQTT protocol is 250 MB.

Typically, an MQTT client program uses java.lang.String or java.lang.StringBuffer to manipulate message
contents. For convenience, the MqttMessage class has a toString method to convert its payload to a string.
To create the byte array payload from a java.lang.String or java.lang.StringBuffer, use the getBytes
method.

The getBytes method converts a string to the default character set for the platform. The default character
set is generally UTF-8. MQTT publications that contain only text are usually encoded in UTF-8. Use the
method getBytes("UTF8") to override the default character set.

In IBM MQ, an MQTT publication is received as a jms-bytes message. The message includes an MQRFH2
folder containing an <mqtt>, and an <mqps> folder. The <mqtt> folder contains the clientId and qos, but
this content might change in the future.

An MqttMessage has three additional attributes: quality of service, whether it is retained, and whether it
is a duplicate. The duplicate flag is only set if the quality of service is "at least once" or "exactly once". If
the message was sent previously, and not acknowledged quickly enough by the MQTT client, the
message is sent again, with the duplicate attribute set to true.

Publishing

To create a publication in an MQTT client application, create an MqttMessage. Set its payload, quality of
service and whether it is retained, and call the MqttTopic.publish(MqttMessage message) method;
MqttDeliveryToken is returned and the completion of the publication is asynchronous.

Alternatively, the MQTT client can create a temporary message object for you from the parameters on the
MqttTopic.publish(byte [] payload, int qos, boolean retained) method when it creates a publication.

If the publication has an "at least once" or an "exactly once" quality of service, QoS=1 or QoS=2, the MQTT
client calls the MqttClientPersistence interface. It calls MqttClientPersistence to store the message before
returning a delivery token to the application.

The application can choose to block until the message is delivered to the server, using the
MqttDeliveryToken.waitForCompletion method. Alternatively, the application can continue without
blocking. If you want to check if publications are delivered, without blocking, register an instance of a
callback class that implements MqttCallback with the MQTT client. The MQTT client calls the
MqttCallback.deliveryComplete method as soon as the publication has been delivered. Depending on the
quality of service, the delivery might be almost immediate for QoS=0, or it might take some time for
QoS=2.

Use the MqttDeliveryToken.isComplete method to poll if delivery is complete. While the value of
MqttDeliveryToken.isComplete is false, you can call MqttDeliveryToken.getMessage to get the message
contents. If the result of calling MqttDeliveryToken.isComplete is true, the message has been discarded
and calling MqttDeliveryToken.getMessage would throw a null pointer exception. There is no built-in
synchronization between MqttDeliveryToken.getMessage and MqttDeliveryToken.isComplete.

If the client disconnects before receiving all the pending delivery tokens, a new instance of the client can
query pending delivery tokens before connecting. Until the client connects, no new deliveries are
completed, and it is safe to call MqttDeliveryToken.getMessage. Use the MqttDeliveryToken.getMessage

1212 IBM MQ: Programming

method to find out which publications have not been delivered. Pending delivery tokens are discarded if
you connect with MqttConnectOptions.cleanSession set to its default value, true.

Subscribing

A queue manager or IBM MessageSight is responsible for creating publications to send to an MQTT
subscriber. The queue manager checks if the topic filter in a subscription created by an MQTT client
matches the topic string in a publication. The match can either be an exact match, or the match can
include wildcards. Before the publication is forwarded to the subscriber by the queue manager, the queue
manager checks the topic attributes associated with the publication. It follows the search procedure
described in Subscribing using a topic string that contains wildcard characters to identify if an
administrative topic object grants the user authority to subscribe.

When the MQTT client receives a publication with "at least once" quality of service, it calls the
MqttCallback.messageArrived method to process the publication. If the quality of service of the
publication is "exactly once", QoS=2, the MQTT client calls the MqttClientPersistence interface to store the
message when it is received. It then calls MqttCallback.messageArrived.

Qualities of service provided by an MQTT client
An MQTT client provides three qualities of service for delivering publications to IBM MQ and to the
MQTT client: "at most once", "at least once" and "exactly once". When an MQTT client sends a request to
IBM MQ to create a subscription, the request is sent with the "at least once" quality of service.

The quality of service of a publication is an attribute of MqttMessage. It is set by the method
MqttMessage.setQos.

The method MqttClient.subscribe can reduce the quality of service applied to publications sent to a client
on a topic. The quality of service of a publication forwarded to a subscriber might be different to the
quality of service of the publication. The lower of the two values is used to forward a publication.

At most once
QoS=0

The message is delivered at most once, or it is not delivered at all. Its delivery across the
network is not acknowledged.
The message is not stored. The message might be lost if the client is disconnected, or if the
server fails.

 QoS=0 is the fastest mode of transfer. It is sometimes called "fire and forget".
The MQTT protocol does not require servers to forward publications at QoS=0 to a client. If the
client is disconnected at the time the server receives the publication, the publication might be
discarded, depending on the server. The telemetry (MQXR) service does not discard messages
sent with QoS=0. They are stored as nonpersistent messages, and are only discarded if the
queue manager stops.

At least once
QoS=1

QoS=1 is the default mode of transfer.
The message is always delivered at least once. If the sender does not receive an
acknowledgment, the message is sent again with the DUP flag set until an acknowledgment is
received. As a result receiver can be sent the same message multiple times, and might process
it multiple times.
The message must be stored locally at the sender and the receiver until it is processed.

Developing applications for IBM MQ Telemetry 1213

The message is deleted from the receiver after it has processed the message. If the receiver is a
broker, the message is published to its subscribers. If the receiver is a client, the message is
delivered to the subscriber application. After the message is deleted, the receiver sends an
acknowledgment to the sender.
The message is deleted from the sender after it has received an acknowledgment from the
receiver.

Exactly once
QoS=2

The message is always delivered exactly once.
The message must be stored locally at the sender and the receiver until it is processed.

 QoS=2 is the safest, but slowest mode of transfer. It takes at least two pairs of transmissions
between the sender and receiver before the message is deleted from the sender. The message
can be processed at the receiver after the first transmission.
In the first pair of transmissions, the sender transmits the message and gets acknowledgment
from the receiver that it has stored the message. If the sender does not receive an
acknowledgment, the message is sent again with the DUP flag set until an acknowledgment is
received.
In the second pair of transmissions, the sender tells the receiver that it can complete
processing the message, “PUBREL”. If the sender does not receive an acknowledgment of the
“PUBREL” message, the “PUBREL” message is sent again until an acknowledgment is received.
The sender deletes the message it saved when it receives the acknowledgment to the “PUBREL”
message
The receiver can process the message in the first or second phases, provided that it does not
reprocess the message. If the receiver is a broker, it publishes the message to subscribers. If the
receiver is a client, it delivers the message to the subscriber application. The receiver sends a
completion message back to the sender that it has finished processing the message.

Retained publications and MQTT clients
If you create a subscription to a topic that has a retained publication, the most recent retained publication
on the topic is immediately forwarded to you.

Use the MqttMessage.setRetained method to specify whether a publication on a topic is retained, or not.

To delete a retained publication in IBM MQ, run the CLEAR TOPICSTR CLEAR TOPICSTR MQSC
command.

If you create a publication with a null payload, the empty publication is forwarded to subscribers. Other
MQTT brokers might not forward an empty publication to subscribers.

If you publish a non-retained publication to a topic that has a retained publication, the retained
publication is not affected. Current subscribers receive the new publication. New subscribers receive the
retained publication first, then receive any new publications.

When you create or update a retained publication, send the publication with a QoS or 1 or 2. If you send
it with a QoS of 0, IBM MQ creates a nonpersistent retained publication. The publication is not retained if
the queue manager stops.

Use retained publications to record the latest value of a measurement. New subscribers to the retained
topic immediately receive the most recent value of the measurement. If no new measurements are taken
since the subscriber last subscribed to the publication topic, and if the subscriber subscribes again, the
subscriber receives the most recent retained publication on the topic again.

1214 IBM MQ: Programming

Subscriptions
Create subscriptions to register an interest in publication topics using a topic filter. A client can create
multiple subscriptions, or a subscription containing a topic filter that uses wildcards, to register an
interest in multiple topics. Publications on topics matching the filters are sent to the client. Subscriptions
can remain active while a client is disconnected. The publications are sent to the client when it
reconnects.

Create subscriptions using the MqttClient.subscribe methods, passing one or more topic filters and
quality of service parameters. The quality of service parameter sets the maximum quality of service that
the subscriber is prepared to use to receive a message. Messages sent to this client cannot be delivered
with a higher quality of service. The quality of service is set to the lower of the original value when the
message was published and the level specified for the subscription. The default quality of service for
receiving messages is QoS=1, at least once.

The subscription request itself is sent with QoS=1.

Publications are received by a subscriber when the MQTT client calls the MqttCallback.messageArrived
method. The messageArrived method also passes the topic string with which the message was published
to the subscriber.

You can remove a subscription, or a set or subscriptions, using the MqttClient.unsubscribe methods.

An IBM MQ command can remove a subscription. List subscriptions using MQ Explorer, or by using
runmqsc or PCF commands. All MQTT client subscriptions are named. They are given a name of the
form: ClientIdentifier:Topic name

If you use the default MqttConnectOptions, or set MqttConnectOptions.cleanSession to true before
connecting the client, any old subscriptions for the client are removed when the client connects. Any new
subscriptions the client makes during the session are removed when it disconnects.

If you set MqttConnectOptions.cleanSession to false before connecting, any subscriptions the client
creates are added to all the subscriptions that existed for the client before it connected. All the
subscriptions remain active when the client disconnects.

Another way of understanding the way the cleanSession attribute affects subscriptions is to think of it as
a modal attribute. In its default mode, cleanSession=true, the client creates subscriptions and receives
publications only within the scope of the session. In the alternative mode, cleanSession=false,
subscriptions are durable. The client can connect and disconnect and its subscriptions remain active.
When the client reconnects, it receives any undelivered publications. While it is connected, it can modify
the set of subscriptions that are active on its behalf.

You must set the cleanSession mode before connecting; the mode lasts for the whole session. To change
its setting, you must disconnect and reconnect the client. If you change modes from using
cleanSession=false to cleanSession=true, all previous subscriptions for the client, and any publications
that have not been received, are discarded.

Publications that match active subscriptions are sent to the client as soon as they are published. If the
client is disconnected, they are sent to the client if it reconnects to the same server with the same client
identifier and MqttConnectOptions.cleanSession set to false.

Subscriptions for a particular client are identified by the client identifier. You can reconnect the client
from a different client device to the same server, and continue with the same subscriptions and receive
undelivered publications.

Developing applications for IBM MQ Telemetry 1215

Topic strings and topic filters in MQTT clients
Topic strings and topic filters are used to publish and to subscribe. The syntax of topic strings and filters
in MQTT clients is largely the same as topic strings in IBM MQ.

Topics strings are used to send publications to subscribers. Create a topic string using the method,
MqttClient.getTopic(java.lang.String topicString).

Topic filters are used to subscribe to topics and receive publications. Topic filters can contain wildcards.
With wildcards, you can subscribe to multiple topics. Create a topic filter by using a subscription method;
for example, MqttClient.subscribe(java.lang.String topicFilter).

Topic strings

The syntax of an IBM MQ topic string is described in Topic Strings. The syntax of MQTT topic strings is
described in the MqttClient class in the API documentation for the MQTT client for Java. For links to
client API documentation for the MQTT client libraries, see MQTT client programming reference.

The syntax of each type of topic string is almost identical. There are four minor differences:
1. Topic strings sent to IBM MQ by MQTT clients must follow the convention for queue manager names.

In particular, topic strings cannot contain hyphens.
2. The maximum lengths differ. IBM MQ topic strings are limited to 10,240 characters. An MQTT client

can create topic strings of up to 65535 bytes.
3. A topic string created by an MQTT client cannot contain a null character.
4. In IBM Integration Bus, a null topic level, ’...//...’ is invalid. Null topic levels are supported by

IBM MQ.

Unlike IBM MQ publish/subscribe, the mqttv3 protocol does not have a concept of an administrative
topic object. You cannot construct a topic string from a topic object and a topic string. However, a topic
string is mapped to an administrative topic in IBM MQ. The access control associated with the
administrative topic determines whether a publication is published to the topic, or discarded. The
attributes that are applied to a publication when it is forwarded to subscribers, are influenced by the
attributes of the administrative topic.

Topic filters

The syntax of an IBM MQ topic filter is described in Topic-based wildcard scheme. The syntax of the
topic filters you can construct with an MQTT client are described in the MqttClient class in the API
documentation for the MQTT client for Java. For links to client API documentation for the MQTT client
libraries, see MQTT client programming reference.

1216 IBM MQ: Programming

http://www.ibm.com/support/knowledgecenter/SS9D84_1.0.0/com.ibm.mm.tc.doc/tc00200_.htm
http://www.ibm.com/support/knowledgecenter/SS9D84_1.0.0/com.ibm.mm.tc.doc/tc00200_.htm

C client programming concepts
Differences between the C and Java client for version 3.1 of the IBM MQ Telemetry Transport are
described in this topic. The topic complements the client concepts and the C reference information.

The topic is organized in the same way as “MQTT client programming concepts” on page 1204. Each
heading corresponds to a topic in WebSphere(r) IBM MQ Telemetry Transport client programming concepts.
The sections describe differences between the C client and the Java client. Small differences in the
signatures between the Java methods and the C functions are not described.

The C client is most often used to implement a lightweight adapter between a telemetry device and the
MQTT daemon for devices. The daemon is commonly used as a network concentrator between very
lightweight telemetry devices and the telemetry (MQXR) service.

Note: The daemon for devices is no longer available. For an alternative solution, see the eclipse.org
“Mosquitto” project (https://eclipse.org/mosquitto).

The MQTT daemon for devices is also a C client, and differences in its behavior from the telemetry
(MQXR) service are described. The daemon does not provide an implementation of JAAS or SSL for
clients connecting to it.

mqttclient.dll and mqttclient.lib are the 32-bit Windows libraries that contain client functions for the
C implementation of the IBM MQ Telemetry Transport version 3.1 protocol. The 32-bit Linux libraries are
libmqttclient.so and libmqttclient.a. Two header files contain the function and other declarations
needed by client applications: MQTTClient.h and MQTTClientPersistence.h. These files are provided with
the installation of IBM MQ Telemetry.

To develop and run an IBM MQ Telemetry Transport client you need to copy these files onto the client
device. Unlike IBM MQ clients, you do not need to install a separate client runtime.

Consult the licensing conditions associated with the IBM MQ Telemetry feature that govern connecting
IBM MQ Telemetry Transport clients to IBM MQ and the MQTT daemon for devices.

The C client is a reference implementation of version 3.1 of the IBM MQ Telemetry Transport. You can
implement your own clients in different languages suitable for different device platforms. Refer to IBM
MQ Telemetry Transport format and protocol for details.

The MQTT client identifier

“Client identifier” on page 1208 The client identifier is a 23 byte string that identifies an MQTT client. Each
identifier must be unique to only one connected client at a time. The
identifier must contain only characters valid in a queue manager name.
Within these constraints, you are able to use any identification string. It is
important to have a procedure for allocating client identifiers, and a means
of configuring a client with its chosen identifier.

v No differences.

Publications

Developing applications for IBM MQ Telemetry 1217

https://eclipse.org/mosquitto

“Publications” on page 1212 Publications are instances of MqttMessage that are associated with a topic
string. MQTT

v The callback function is not called for publications with the "fire and forget", QoS=0, quality of service.

Delivery tokens

“Delivery tokens” on page 1209 When a client publishes on a topic a new delivery token is created. Use the
delivery token to monitor the delivery of a publication, or to block the client
application until delivery is complete.

v A delivery token is an int. It has a typedef of MQTTClient_deliveryToken
v The callback function is not called for publications with the "fire and forget", QoS=0, quality of service.

Retained publications

“Retained publications and MQTT
clients” on page 1214

If you create a subscription to a topic that has a retained publication, the
most recent retained publication on the topic is immediately forwarded to
you.

v Retained messages are only saved in the daemon if persistence is configured.
For IBM MQ, the quality of service affects whether a retained message is saved permanently. If a
client is attached to the telemetry service, retained messages with "fire and forget", QoS=0 quality of
service are discarded, if the queue manager shuts down.

Subscriptions

“Subscriptions” on page 1215 Create subscriptions to register an interest in publication topics using a topic
filter. A client can create multiple subscriptions, or a subscription containing
a topic filter that uses wildcards, to register an interest in multiple topics.
Publications on topics matching the filters are sent to the client.
Subscriptions can remain active while a client is disconnected. The
publications are sent to the client when it reconnects.

v Durable subscriptions are only saved in the MQTT daemon for devices if persistence is configured.
v Publications can be received synchronously. Call the MQTTClient_receive function.

Callbacks and synchronization

“Callbacks and synchronization in
MQTT client applications” on page
1205

The MQTT client programming model uses threads extensively. The threads
decouple an MQTT client application, as much as they can, from delays in
transmitting messages to and from the server. Publications, delivery tokens,
and connection lost events are delivered to the methods in a callback class
that implements MqttCallback.

v The operation of synchronization in the C client is modal. Calling MQTTClient_setCallback puts the
client into asynchronous mode.

v In synchronous mode, the application client must voluntarily yield control so the MQTT client can
process acknowledgements and issue MQTT pings to keep the network alive. Yield control by calling
MQTTClient_receive or MQTTClient_yield.

Topic strings and filters

1218 IBM MQ: Programming

“Topic strings and topic filters in
MQTT clients” on page 1216

Topic strings and topic filters are used to publish and to subscribe. The
syntax of topic strings and filters in MQTT clients is largely the same as
topic strings in IBM MQ.

v The MQTT daemon for devices handles the multi-level wildcard # differently from IBM MQ v7. /#
must be the last two characters in the filter string for # to behave as a wildcard. In IBM MQ v7,
../#/.. is a valid use of the multilevel wildcard. The MQTT daemon for devices treats the multi-level
wildcard the same as IBM MQ Broker v6.

Quality of service

“Qualities of service provided by an
MQTT client” on page 1213

An MQTT client provides three qualities of service for delivering
publications to IBM MQ and to the MQTT client: "at most once", "at least
once" and "exactly once". When an MQTT client sends a request to IBM MQ
to create a subscription, the request is sent with the "at least once" quality of
service.

v No differences.

Message persistence

“Message persistence in MQTT
clients” on page 1210

Publication messages are made persistent if they are sent with a quality of
service of “at least once”, or “exactly once”. You can implement your own
persistence mechanism on the client, or use the default persistence
mechanism that is provided with the client. Persistence works in both
directions, for publications sent to or from the client.

v Because of language binding differences, set the message persistence mechanism in the C client as
follows. Call the MQTT C client with one of the three options set as the fourth parameter to
MQTTClient_create:

MQTTCLIENT_PERSISTENCE_DEFAULT
A file based persistence, the details of which are specific to the client platform.

MQTTCLIENT_PERSISTENCE_NONE
Data is only held in memory and lost when the client stops. The MQTT daemon for devices
supports only this option.

MQTTCLIENT_PERSISTENCE_USER
You can develop functions to implement your own persistence mechanism. Pass a structure,
MQTTClient_persistence containing pointers to your functions on the MQTTClient_create call.
Read the MQTT C client reference information for details.

Clean sessions

“Clean sessions” on page 1207 The MQTT client, and the telemetry (MQXR) service maintain session state
information. The state information is used to ensure “at least once” and
“exactly once” delivery, and “exactly once” receipt of publications. Session
state also includes subscriptions created by an MQTT client. You can choose
to run an MQTT client with or without maintaining state information
between sessions. Change the clean session mode by setting
MqttConnectOptions.cleanSession before connecting.

v No differences.

Last will and testament

Developing applications for IBM MQ Telemetry 1219

“Last will and testament publication”
on page 1210

If an MQTT client connection unexpectedly ends, you can configure IBM
MQ Telemetry to send a "last will and testament" publication. Predefine the
content of the publication, and the topic to send it to. The "last will and
testament" is a connection property. Create it before connecting the client.

v No differences.
Related information:
MQTT daemon for devices

1220 IBM MQ: Programming

Developing MQ Light applications

IBM MQ Light is a product and messaging API, aimed at making it quick and easy for developers to
make their applications more responsive and scalable.

The IBM MQ support for MQ Light APIs allows an IBM MQ administrator to define a new type of
channel: an AMQP channel. When the AMQP channel is started it defines a port number, which accepts
connections from MQ Light applications.

The MQ Light API is based on the Oasis AMQP 1.0 protocol. There are messaging APIs for Node.js and
Java that are supported for development and production, and early access program messaging APIs for
Ruby and Python.

An application that is developed to use the MQ Light API can be connected to either an MQ Light
runtime, an IBM MQ queue manager with an AMQP channel, or an instance of an MQ Light service in
IBM Cloud (formerly Bluemix®).

Developing applications

MQ Light aims to make it easier to prototype and develop business applications rapidly.

When an application is ready to deploy, it requires all of the monitoring, reliability, and security
capabilities of other enterprise applications. It can also exchange data with other enterprise applications.
You can deploy MQ Light applications to an IBM MQ queue manager.

When you have installed and connected an AMQP client, you can exchange messages with IBM MQ
applications. For example, if you use the MQ Light Node.js client to send a JavaScript string message, the
IBM MQ application receives an MQ message, where the format field of the MQMD is set to MQSTR.

For information about securing MQ Light applications, see MQ Light security.

Managing the AMQP channel

The AMQP channel can be managed in the same way as other MQ channels. You can use MQSC
commands, PCF command messages, or MQ Explorer to define, start, stop, and manage the channels. In
Creating and using AMQP channels, example commands are provided to define and start connecting
clients to a queue manager.

When an AMQP channel is started, you can be test it by connecting an MQ Light application, by using
any of the following methods:
v Using the IBM MQ Light client for Node.js and Java.
v Using the IBM MQ Light early access program client for Ruby and Python.
v Using another AMQP Version 1.0 client. For example, Apache Qpid Proton.

Trying out MQ Light

The MQ Light client downloads all include several samples, which demonstrate the different messaging
features:
v Send sample

© Copyright IBM Corp. 2007, 2018 1221

https://developer.ibm.com/messaging/docs/mq-light-api/product-overview/security/

v Receive sample
v UI Workout sample

Downloading a client

IBM MQ does not ship MQ Light clients but you can download and install the following MQ Light
clients:

Node.js
Install MQ Light Node.js API to your working directory using npm: npm install mqlight@1.0

Java Download the mqlight-distribution package for the required version from Maven Central and
extract the contents. You can find the available versions of the mqlight-distribution packages on
Maven Central.

Ruby Install MQ Light Ruby API to your working directory using gem: gem install mqlight --pre

Python
Install MQ Light Python API to your working directory using pip: pip install mqlight --pre

For more information, see Obtaining an MQ Light client.

You can also download other open-source AMQP clients based on Apache Qpid libraries, For more
information, see https://qpid.apache.org/index.html

Finding out more about MQ Light

You can find out more information about MQ Light and also connect with developers and other users at
the DevWorks community website, which includes blog articles and a forum.

AMQP and IBM MQ application interaction

If you are developing a system that incorporates AMQP applications, you need to understand how
AMQP and IBM MQ applications can interact.

You need to understand how AMQP message formats relate to IBM MQ message formats, including how
AMQP properties and AMQP application properties are mapped to IBM MQ MD fields and IBM MQ
message properties. The following topics describe the AMQP message format, and how it maps onto IBM
MQ message format.

1222 IBM MQ: Programming

https://repo1.maven.org/maven2/com/ibm/mqlight/mqlight-distribution/
https://developer.ibm.com/messaging/mq-light/docs/#client
https://qpid.apache.org/index.html
https://developer.ibm.com/messaging/mq-light/
https://developer.ibm.com/messaging/category/mq-light/
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=00a6a6d0-9601-44cb-a2a2-b0b26811790a

AMQP messages

AMQP messages are composed of a header, delivery annotations, message annotations, properties,
application properties, body, and footer.

AMQP messages are composed of the following parts:

Header
The optional header contains five fixed attributes of the message:
v durable - specifies durability requirements
v priority - relative message priority
v ttl - time to live in milliseconds
v first-acquirer - if this is true, the message has not been acquired by any other link
v delivery-count - the number of previous, unsuccessful delivery attempts.

Delivery-annotations
Optional. Specifies non-standard header attributes of the message for different intended
audiences. Delivery annotations convey information from the sending peer to the receiving peer.

Message-annotations
Optional. Specifies non-standard header attributes of the message for different intended
audiences. The message-annotations section is used for properties of the message which are
aimed at the infrastructure and should be propagated across every delivery step.

Properties
Optional. This part is equivalent the MQ message descriptor. It contains the following fixed
fields:
v message-id - application message identifier
v user-id - id of creating user
v to - address of node that the message is destined for
v subject - the subject of the message
v reply-to - the node that the send replies to
v correlation-id - application correlation identifier
v content-type - MIME content type
v content-encoding - MIME content type. Used as a modifier to the content-type.
v absolute-expiry-time - the time when this message is considered expired
v creation-time - the time when this message was created
v group-id - the group that this message belongs to
v group-sequence - the sequence number of this message within its group
v reply-to-group-id - the group that the reply message belongs to

Applications-properties
Equivalent to MQ message properties.

Body Equivalent to the MQ user payload.

Footer Optional. The footer is used for details about the message or delivery that can only be calculated
or evaluated after the whole bare message has been constructed or seen (for example, message
hashes, HMACs, signatures and encryption details).

The AMQP message format is illustrated in the following figure:

Developing MQ Light applications 1223

The properties, application-properties, and application-data part are known as the “bare message”. This is
the message as sent by the sender, and is immutable. The receiver sees the entire message, including the
header, footer, delivery-annotations and message-annotations.

For a full description of the AMQP 1.0 message format, see http://docs.oasis-open.org/amqp/core/v1.0/
amqp-core-complete-v1.0.pdf.

Mapping IBM MQ fields onto AMQP fields (outgoing messages)

When an IBM MQ message is published and IBM MQ sends it to an AMQP consumer, it will propagate
some of the attributes of the IBM MQ message into equivalent AMQP message attributes.

header

A header is only included if one of the five fields in the header contains a non-default value. Only the
fields with a non-default value are included in the header. The five header fields are initially derived
from the equivalent mq_amqp.Hdr property, if it is set, and then modified as shown in the following table:

Table 157. Header field mappings

Field Default value Value

durable false True if MQMD.Persistence is set to MQPER_PERSISTENT,
false otherwise.

priority 4 From mq_amqp.Hdr.Pri, if set, or otherwise from
MQMD.Priority, if set. If neither set, set to 4.

ttl n/a MQMD.Expiry in milliseconds. If the value of
MQMD.Expiry is MQEI_UNLIMITED, then set to the
maximum value for the AMQP ttl field

first-acquirer false From mq_amqp.Hdr.Fac, if set, or false otherwise.

delivery-count 0 From mq_amqp.Hdr.Dct, if set, or 0 otherwise.

delivery-annotation

Set as necessary by the AMQP channel.

message-annotation

Not included.

properties

The properties will come unmodified from the equivalent mq_amqp.Prp properties if these are set. If the
message was not originally an AMQP message (that is, PutApplType is not MQAT_AMQP), then a
properties section is generated as described in the following table:

1224 IBM MQ: Programming

http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf

Table 158. Properties field mappings

Name Value

message-id The MQMD.MsgId is set as binary.

user-id The UTF-8 form of the MQMD.UserIdentifier is set as binary in network byte-order.

to The queue that the message was got from, or, for a publication, the topic string.

subject Not set.

reply-to The MQMD.ReplyToQ if non-blank, otherwise not set.

correlation-id The MQMD.CorrelId is set as binary if non-blank, otherwise not set.

content-type Not set.

content-encoding Not set.

absolute-expiry-time Not set.

creation-time The MQMD.PutDate and MQMD.PutTime fields are used to generate a timestamp.

group-id Not set.

group-sequence Not set.

reply-to-group-id Not set.

application-properties

All IBM MQ properties in the “usr” group are added as the application-properties.

body

The AMQP channel performs a get with convert, to convert the IBM MQ payload into UTF-8.

If the IBM MQ payload does not contain an AMQP message, then the IBM MQ payload is set in the body
as a single string data section for Format MQFMT_STRING (provided conversion to UTF-8 was
successful), or as a single binary data section otherwise.

If an AMQP format message is included, then this is set as the body. Any IBM MQ headers (not including
the messages properties which are returned in a message handle) that precede the AMQP message are
prepended as a binary value if the body is an AMQP Sequence. Otherwise the IBM MQ headers are
discarded.

footer

No footer is included.

Developing MQ Light applications 1225

Related information:
MQMD - Message descriptor

Mapping AMQP fields onto IBM MQ fields (incoming messages)

When the AMQP channel receives a message and puts it to IBM MQ, it propagates some of the attributes
of the AMQP message into equivalent IBM MQ message attributes.

The following restrictions apply when mapping an incoming AMQP message:
v If the message-id or correlation-id field in the properties part is a uuid or a ulong, then the message is

rejected.
v Any message-annotations cause the message to be rejected.
v delivery-annotations and footer sections are allowed, but are not propagated into the IBM MQ

message.

The following sub-sections show the IBM MQ expression of an AMQP message.

message descriptor

Table 159. Message descriptor for AMQP message

Field Value

StrucId MQMD_STRUC_ID

Version MQMD_VERSION_1

Report MQRO_NONE

MsgType MQMT_DATAGRAM

Expiry Value taken from the ttl field in the AMQP message header

Feedback MQFB_NONE

Encoding MQENC_NORMAL

CodedCharSetId 1208 (UTF-8)

Format See Payload

Priority Value taken from the priority field in the AMQP message header. If set, limited to
a maximum of 9. If not set, takes the default value of 4.

Persistence If the durable field in the AMQP message header is set true, set to
MQPER_PERSISTENT. Otherwise, set to MQPER_NOT_PERSISTENT.

MagId The queue manager allocates a unique 24-byte MsgId.

Correlld Value taken from the correlation-id field in the AMQP properties, if set. Set to a
24-byte binary value. Otherwise, set to MQCI_NONE/.

BackoutCount 0

ReplyToQ ""

ReplyToQMgr ""

UserIdentifier Set to the identifier of the authenticated user that connected to the AMQP channel

AccountingToken MQACT_NONE

ApplIdentityData Hexadecimal string. Set to the last 8 bytes of the MQ connection identifier of the
AMQP channel.

PutApplType MQAT_AMQP

PutApplName

1226 IBM MQ: Programming

Table 159. Message descriptor for AMQP message (continued)

Field Value

PutDate Value taken from the creation-time field of the AMQP properties, if set. Otherwise
set to the current date.

PutTime Value taken from the creation-time field of the AMQP properties, if set. Otherwise
set to the current time.

ApplOriginData ""

message properties

There are two reasons for setting message properties:
v To allow parts of the AMQP message to flow through the queue manager without affecting the

payload of the message.
v To allow selection of the application-properties.

The following table shows the properties that are set from the AMQP message:

Table 160.

Property name MQRFH2 name Type Description

AMQPListener mq_amqp.Lis MQTYPE_STRING An identifying string for the AMQP
channel. It is used to generate the
message, so that interested parties can
tell which version put the message (for
example, the service team when
diagnosing problems). The value is not
validated by the queue manager, and
must not be documented externally.

AMQPVersion mq_amqp.Ver MQTYPE_STRING The version of the AMQP message. If
not present, "1.0" is assumed. The value
is not validated by the queue manager.

AMQPClient mq_amqp.Cli MQTYPE_STRING An identifying string for the API. It is
used to send the AMQP message to the
channel, so that interested parties can
tell which version put the message (for
example, the service team when
diagnosing problems). The value is not
validated by the queue manager and
must not be documented externally.

AMQPDurable mq_amqp.Hdr.Dur MQTYPE_BOOLEAN The value of the durable field in the
AMQP message header, if set.

AMQPPriority mq_amqp.Hdr.Pri MQTYPE_INT32 The value of the priority field in the
AMQP message header, if set.

AMQPTtl mq_amqp.Hdr.Ttl MQTYPE_INT64 The value of the ttl field in the AMQP
message header, if set.

AMQPFirstAcquirer mq_amqp.Hdr.Fac MQTYPE_BOOLEAN The value of the first-acquirer field in
the AMQP message header, if set.

AMQPDeliveryCount mq_amqp.Hdr.Dct MQTYPE_INT64 The value of the delivery-count field in
the AMQP message header, if set.

AMQPMsgId mq_amqp.Prp.Mid MQTYPE_STRING The value of the message-id field in the
AMQP properties, if set as a string.

MQTYPE_BYTE_STRING The value of the message-id field in the
AMQP properties, if set as a byte string.

Developing MQ Light applications 1227

Table 160. (continued)

Property name MQRFH2 name Type Description

AMQPUserId mq_amqp.Prp.Uid MQTYPE_BYTE_STRING The value of the user-id field in the
AMQP properties, if set.

AMQPTo mq_amqp.Prp.To MQTYPE_STRING The value of the to field in the AMQP
properties, if set.

AMQPSubject mq_amqp.Prp.Sub MQTYPE_STRING The value of the subject field in the
AMQP properties, if set.

AMQPReplyTo mq_amqp.Prp.Rto MQTYPE_STRING The value of the reply-to field in the
AMQP properties, if set.

AMQPCorrelationId mq_amqp.Prp.Cid MQTYPE_STRING The value of the correlation-id field in
the AMQP properties, if set as a string..

MQTYPE_BYTE_STRING The value of the correlation-id field in
the AMQP properties, if set as a byte
string.

AMQPContentType mq_amqp.Prp.Cnt MQTYPE_STRING The value of the content-type field in
the AMQP properties, if set.

AMQPContentEncoding mq_amqp.Prp.Cne MQTYPE_STRING The value of the content-encoding field
in the AMQP properties, if set.

AMQPAbsoluteExpiryTimemq_amqp.Prp.Aet MQTYPE_STRING The value of the absolute-expiry-time
field in the AMQP properties, if set.

AMQPCreationTime mq_amqp.Prp.Crt MQTYPE_STRING The value of the creation-time field in
the AMQP properties, if set.

AMQPGroupId mq_amqp.Prp.Gid MQTYPE_STRING The value of the group-id field in the
AMQP properties, if set.

AMQPGroupSequence mq_amqp.Prp.Gsq MQTYPE_INT64 The value of the group-sequence field
in the AMQP properties, if set.

AMQPReplyToGroupId mq_amqp.Prp.Rtg MQTYPE_STRING The value of the reply-to-group-id field
in the AMQP properties, if set.

Each of the application-properties from the AMQP message is set as an IBM MQ message property. The
application-properties section must be reconstituted identically byte-for-byte, and so the following
restrictions apply:
v If an application property is rejected by the MQSETMP validation code, the message to be rejected. For

example:
– The property name is limited in length to MQ_MAX_PROPERTY_NAME_LENGTH.
– The property name must follow the rules defined by the Java Language Specification for Java

Identifiers.
– The property name must not begin "JMS" or "usr.JMS" except for the documented JMS properties

that can be set.
– The property name must not be a SQL keyword.

v An application property containing Unicode character U+002E (".") causes the message to be rejected.
The property must be expressible in the "usr" group of properties used by JMS.

v Only null, boolean, byte, short, int, long, float, double, binary and string properties are supported. An
application property with any other type will cause the message to be rejected.

payload
v For an AMQP body with a single binary data section, the binary data (excluding the AMQP bits) is put

as the IBM MQ payload, with a Format of MQFMT_NONE.

1228 IBM MQ: Programming

v For an AMQP body with a single string data section, the string data (excluding the AMQP bits) is put
as the IBM MQ payload, with a Format of MQFMT_STRING.

v Otherwise, the AMQP body forms the payload as-is, with a Format of MQFMT_AMQP.

Developing MQ Light applications 1229

1230 IBM MQ: Programming

Developing Microsoft Windows Communication Foundation
(WCF) applications with IBM MQ

The Microsoft Windows Communication Foundation (WCF) custom channel for IBM MQ sends and
receives messages between WCF clients and services.
Related concepts:
“Introduction to the use of IBM MQ custom channel for WCF with .NET 3”
Overview of the information available for programmers using the IBM MQ custom channel for Windows
Communication Foundation (WCF) with .NET 3.
“Using IBM MQ custom channels for WCF” on page 1236
Overview of the information available for programmers using IBM MQ custom channels for Windows
Communication Foundation (WCF).
“Using the WCF samples” on page 1256
The Windows Communication Foundation (WCF) samples provide some simple examples of how the
IBM MQ custom channel can be used.
“Problem determination on the WCF custom channel for IBM MQ” on page 1262
You can use IBM MQ trace to collect detailed information about what various parts of the IBM MQ code
is doing. When using Windows Communication Foundation (WCF), a separate trace output is generated
for the WCF custom channel trace integrated with the Microsoft WCF infrastructure trace.

Introduction to the use of IBM MQ custom channel for WCF with .NET
3
Overview of the information available for programmers using the IBM MQ custom channel for Windows
Communication Foundation (WCF) with .NET 3.

What is the IBM MQ custom channel for WCF?
The custom channel for IBM MQ is a transport channel using the Microsoft Windows Communication
Foundation (WCF) unified programming model.

The Microsoft Windows Communication Foundation framework, introduced in Microsoft.NET 3, enables
.NET applications and services to be developed independently from the transport and protocols used to
connect them, enabling alternative transports or configurations to be used according to the environment
that the service or application is deployed in.

Connections are managed at run time by WCF by building a channel stack containing the required
combination of:
v Protocol elements: An optional set of elements where none, one, or more can be added to support

protocols such as the WS-* standards.
v Message encoder: A mandatory element in the stack controlling the serializing of the message into its

wire format.
v Transport channel: A mandatory element in the stack responsible for transporting the serialized

message to its endpoint.

The custom channel for IBM MQ is a transport channel, and as such must be paired with a message
encoder and optional protocols as required by the application using a WCF custom binding. In this way,
applications which have been developed to use WCF can use the custom channel for IBM MQ to send
and receive data in the same way as they use the built-in transports provided by Microsoft, enabling
simple integration with the asynchronous, scalable, and reliable messaging functions of IBM MQ. For a
full list of supported functions, see: “WCF Custom channel features and capabilities” on page 1237.

© Copyright IBM Corp. 2007, 2018 1231

When and why do I use the IBM MQ custom channel for WCF?
You can use the IBM MQ custom channel to send and receive messages between WCF clients and
services in the same way as the built-in transports provided by Microsoft, enabling applications to access
the features of IBM MQ within the WCF unified programming model.

Typical usage pattern scenarios for the IBM MQ custom channel for WCF are:
v As an interface to web services hosted over IBM MQ (SOAP over JMS).
v As a non-SOAP interface for transmission of native IBM MQ messages.

Messages carried using the SOAP over JMS format
A typical usage pattern scenario of the IBM MQ custom channel for WCF is as an interface to web
services hosted over IBM MQ (SOAP/JMS).

Messages are carried using the SOAP over JMS message format of IBM MQ, enabling WCF clients and
services to also call or be called by other WebSphere Application Server applications or hosting
environments which are compatible with this format, including web services and clients running in ,
CICS, Axis v1 (Java), and .asmx (.NET), as shown in the following diagram:

For details on SOAP over JMS, see: “IBM MQ transport for SOAP” on page 1271

An example of a typical scenario from the diagram would be:
1. A web Service hosted within WebSphere Application Server and exposed over IBM MQ using the

support for SOAP over JMS within WebSphere Application Server.
2. The WSDL document describing the service can then be used by the WCF tool to generate a client

proxy and configuration which would then create an appropriate WCF channel stack, including the
custom channel.

3. The client application can then use the proxy to start the web service in the same way as any other
web service.

The channel would typically be used with a WCF text/SOAP message encoder, but the channel can be
paired with other WCF message encoders if required. Using alternative encoders can also provide limited
integration with native IBM MQ applications which do not support SOAP over JMS, but this is not the
primary role of the channel.

The key benefits of using the custom channel in a WCF environment are:

1232 IBM MQ: Programming

v Asynchronous invocation: Supporting fire and forget client operations where the client is decoupled
from the availability of the service and features, such as rerouting of responses and multi-hop.

v Reliable scaling characteristics: Queue based messaging allows capacity to be predictably added to a
system.

v Quality of service: Messages are tangible and traceable, and can be easily managed and administered.

Messages carried using the Non-SOAP/Non-JMS message (Pure MQMessage)
format
When you use the IBM MQ custom channel for WCF as a non-SOAP interface for the transmission of
native IBM MQ messages, the messages are carried by using the Non-SOAP/Non-JMS message (Pure
MQMessage) format of IBM MQ.

WCF users are able to start the service, or in other words, service users are able to send a message to an
IBM MQ queue by using MQMessages. Applications can get and set the MQMD fields and payload.
When the message is available in IBM MQ MQ queues, this message can be processed by any WCF
service or non-WCF applications such as C or Java applications that are running on Windows, UNIX or
z/OS.

Software requirements and installation instructions for the IBM MQ
custom channel for WCF
This topic outlines the software requirements and installation information for the IBM MQ custom
channel for WCF.

The IBM MQ custom channel for WCF can only connect to IBM MQ V7 or higher queue managers.

Software requirements for the WCF custom channel for IBM MQ

This information lists the software requirements for the WCF custom channel for IBM MQ.

Runtime environment
v Microsoft.NET Framework v3.5 or higher must be installed on the host machine.
v Java and .NET Messaging and Web Services is installed by default as part of the IBM MQ Version 8.0

installer. Installs the .NET assemblies needed for the custom channel into the Global Assembly Cache.

Note: If the Microsoft.NET Framework v3.5 or higher is not installed before installing IBM MQ V8.0,
then the IBM MQ product installation continues without error, but the IBM MQ custom channel is
unavailable. If the .NET Framework is installed after installing IBM MQ V8.0, then the IBM MQ custom
channel must be activated by running the WMQInstallDir\bin\amqiRegisterdotNet.cmd script, where
WMQInstallDir is the directory where IBM MQ V8.0 is installed. This script installs the required
assemblies in the Global Assembly Cache (GAC). A set of amqi*.log files recording the actions taken are
created in the %TEMP% directory. It is not necessary to rerun the amqiRegisterdotNet.cmd script if .NET is
upgraded to v3.5 or higher from an earlier version, for example, from .NET v2.0.

Development environment
v Microsoft Visual Studio 2008 or Windows Software Development Kit for .NET 3.5 or later.
v Microsoft.NET Framework V3.5 or higher must be installed on the host machine in order to build the

sample solution files.

Note: If the Microsoft.NET Framework v3.5 or higher is not installed before installing IBM MQ V8.0,
then the IBM MQ product installation continues without error, but the IBM MQ custom channel is
unavailable. If the .NET Framework is installed after installing IBM MQ V8.0, then the IBM MQ custom
channel must be activated by running the WMQInstallDir\bin\amqiRegisterdotNet.cmd script, where
WMQInstallDir is the directory where IBM MQ V8.0 is installed. This script installs the required
assemblies in the Global Assembly Cache (GAC). A set of amqi*.log files recording the actions taken are

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1233

created in the %TEMP% directory. It is not necessary to rerun the amqiRegisterdotNet.cmd script if .NET is
upgraded to v3.5 or higher from an earlier version, for example, from .NET v2.0.

IBM MQ custom channel for WCF: What's installed?
The custom channel for IBM MQ is a transport channel using the Microsoft Windows Communication
Foundation (WCF) unified programming model. The custom channel is installed by default as part of the
IBM MQ Version 8.0 installation.

IBM MQ custom channel for WCF

The IBM MQ custom channel for WCF is installed by default as part of the IBM MQ Version 8.0
installation. The custom channel and its dependencies are contained within the Java and .NET Messaging
and Web Services component, which is installed by default. When upgrading to IBM MQ Version 8.0
from an earlier version, the update installs the IBM MQ custom channel for WCF by default if the Java
and .NET Messaging and Web Services component was previously installed in an earlier installation.

The .NET Messaging and Web Services component contains the IBM.XMS.WCF.dll file, and the
IBM.WMQ.WCF.dll file, and these files are the main custom channel assembly, which contains the WCF
interface classes. These files are installed in the Global Assembly Cache (GAC) and are also available in
the following directory: MQ_INSTALLATION_PATH \bin where MQ_INSTALLATION_PATH is the directory in
which IBM MQ Version 8.0 is installed.

The following table summarizes the key classes that are required for using the custom channel.

Table 161. Key classes required for using the custom channel

SOAP/JMS interface (Existing)
Non-SOAP/Non-JMS interface (New in IBM
MQ Version 8.0)

Custom Channel
Assembly

IBM.XMS.WCF.dll IBM.WMQ.WCF.dll

Transport Binding Name IBM.XMS.WCF.SoapJmsIbmTransportBindingElementIBM.WMQ.WCF.WmqIbmTransportBindingElement

Transport Binding
Importer

IBM.XMS.WCF.SoapJmsIbmTransportBindingElementImporterIBM.WMQ.WCF.WmqIbmTransportBindingElementImporter

Transport Binding
Config

IBM.XMS.WCF.SoapJmsIbmTransportBindingElementConfigIBM.WMQ.WCF.WmqIbmTransportBindingElementConfig

Samples(Oneway) SimpleOneWay_Client,
SimpleOneWay_Service

MQMessaging_OneWay_Client,MQMessaging_OneWay_Service

Samples(RequestReply) SimpleRequestReply_Client,
SimpleRequestReply_Service

MQMessaging_RequestReply_Client,MQMessaging_RequestReply_Service

IBM.WMQ.WCF.dll supports both SOAP/JMS and Non-SOAP/Non-JMS interfaces. New applications
developed are recommended to use the IBM.WMQ.WCF assembly as it supports both interfaces.

IBM MQ custom channel samples

The samples provide some simple examples of how the IBM MQ custom channel for WCF can be used.
The samples and their associated files are located in the MQ_INSTALLATION_PATH \tools\dotnet\samples\
cs\wcf directory, where MQ_INSTALLATION_PATH is the installation directory for IBM MQ. For more
information on the IBM MQ custom channel samples, see “Using the WCF samples” on page 1256.

svcutil.exe.config

The svcutil.exe.config is an example of the configuration settings required to enable the Microsoft WCF
svcutil client proxy generation tool to recognize the custom channel. The svcutil.exe.config file is

1234 IBM MQ: Programming

located in the MQ_INSTALLATION_PATH \tools\wcf\docs\examples\ directory, where MQ_INSTALLATION_PATH
is the installation directory for IBM MQ. For more information on using the svcutil.exe.config, see
“Generating a WCF client proxy and application configuration files using the svcutil tool with metadata
from a running service” on page 1253.

WCF architecture
The IBM MQ custom channel for WCF is integrated on top of the IBM Message Service Client for .NET
(XMS .NET) API.

SOAP/JMS interface

The WCF architecture is as shown in the following diagram:

For IBM WebSphere MQ Version 7.0.1 and later, all the required components are installed by default with
the product installation.

The three connections are:
v Managed client connections
v Unmanaged server connections
v Unmanaged client connections

For more information about these connections, see “WCF Connection options” on page 1243.

Figure 183. WCF architecture for the SOAP/JMS interface

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1235

Non-SOAP/Non-JMS interface

The IBM MQ custom channel for WCF supports both the SOAP/JMS interface (available from IBM
WebSphere MQ Version 7.0.1) and the Non-SOAP/Non-JMS interface.

The WCF architecture is as shown in the following diagram:

Using IBM MQ custom channels for WCF
Overview of the information available for programmers using IBM MQ custom channels for Windows
Communication Foundation (WCF).

The Microsoft Windows Communication Foundation underpins the web services and messaging support
in the Microsoft.NET Framework 3. IBM WebSphere MQ Version 7.0 or later can be used as a custom
channel within WCF in the .NET Framework 3 in the same manner as the built-in channels offered by
Microsoft.

Messages transported across the custom channel are formatted according to the SOAP over JMS
implementation of IBM WebSphere MQ Version 7.0 or later. Applications can then communicate with
services hosted by WCF or by the WebSphere SOAP over JMS service infrastructure. For more
information about SOAP over JMS, see “IBM MQ transport for SOAP” on page 1271.

WebSphere MQ Custom Channel for WCF

XMS.NET-SOAP/JMS

Common.NET Interface to the MQI

C-MQI

WebSphere MQ Queue Manager

jms:// uri

wmq:// uri

Managed

Unmanaged

Figure 184. WCF architecture for the Non-SOAP/Non-JMS interface

1236 IBM MQ: Programming

WCF Custom channel features and capabilities
Use the following topics for information regarding WCF custom channel features and capabilities.

WCF custom channel shapes
Overview of the custom channel shapes that IBM MQ can be used as within the Microsoft Windows
Communication Foundation (WCF) custom channels.

The IBM MQ custom channel for WCF supports two channel shapes:
v One-way
v Request-reply

WCF automatically selects the channel shape according to the service contract being hosted.

Contracts that include methods that only use the IsOneWay parameter are serviced by the one-way
channel shape, for example:
[OperationContract(IsOneWay = true)]
void printString(String text);

Contracts that include either a mixture of one-way and request-reply methods, or all request-reply
methods, are serviced by the request-reply channel shape. For example:

[OperationContract]
int subtract(int a, int b);

[OperationContract(IsOneWay = true)]
void printString(string text);

Note: When mixing one-way and request-reply methods in the same contract, you must ensure that the
behavior is as intended, especially when working within a mixed environment because one-way methods
wait until they receive a null reply from the service.

One-way channel

The IBM MQ one-way custom channel for WCF is used, for example, to send messages from a WCF
client using a one-way channel shape. The channel can send messages in one direction only, for example;
from a client queue manager to a queue on a WCF service.

Request-reply channel

The IBM MQ request-reply custom channel for WCF is used, for example, to send messages in two
directions asynchronously; The same client instance must be used for asynchronous messaging. The
channel can send messages in one direction, for example; from a client queue manager to a queue on a
WCF service, and then send a reply message from the WCF to a queue on the client queue manager.

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1237

WCF URI parameter names and values
URI parameter names and values for the SOAP/JMS interface and Non-SOAP/Non JMS interface.

SOAP/JMS interface

connectionFactory
The connectionFactory parameter is required. For the syntax of this parameter, see URI syntax
and parameters for Web service deployment.

initialContextFactory
The initialContextFactory parameter is required and must be set to "com.ibm.mq.jms.Nojndi" for
compatibility with WebSphere Application Server and other products (see “Deploying a service to
WebSphere Application Server to use WebSphere Transport for SOAP” on page 1326).

Non-SOAP/Non JMS interface

The URI format is as for the MA93 specifications. See SupportPac - MA93 for further details of the IBM
MQ IRI specifications.

IBM MQ URI syntax
wmq-iri = "wmq:" ["//" connection-name] "/" wmq-dest ["?" parm *("&" parm)]
connection-name = tcp-connection-name / other-connection-name
tcp-connection-name = ihost [":" port]
other-connection-name = 1*(iunreserved / pct-encoded)
wmq-dest = queue-dest / topic-dest
queue-dest = "msg/queue/" wmq-queue ["@" wmq-qmgr]
wmq-queue = wmq-name
wmq-qmgr = wmq-name
wmq-name = 1*48(wmq-char)
topic-dest = "msg/topic/" wmq-topic
wmq-topic = segment *("/" segment)

IBM MQ IRI example
The following example IRI tells a service requester that it can use a IBM MQ TCP client-binding
connection to a machine called example.com on port 1414 and put persistent request messages to
a queue called SampleQ on queue manager QM1. The IRI specifies that the service provider will
put replies to a queue called SampleReplyQ.
1)wmq://example.com:1414/msg/queue/SampleQ@QM1?
ReplyTo=SampleReplyQ&persistence=MQPER_NOT_PERSISTENT
2)wmq://localhost:1414/msg/queue/Q1?
connectQueueManager=QM1&replyTo=Q2&connectionmode=managed

For SSL enabled connections
To make Secured (SSL/TLS) connections using the WCF Client/Service, set following properties
with appropriate values in the URI. All the properties that are prefixed with "*" are mandatory to
make a secured connection.
v sslKeyRepository: *SYSTEM or *USER
v * sslCipherSpec: a valid CipherSpec, for example TLS_RSA_WITH_AES_128_CBC_SHA256.
v sslCertRevocationCheck: true or false.
v sslKeyResetCount: a value greater than 32kb.
v sslPeerName: the distinguished name of the server certificate

For example:
"wmq://localhost:1414/msg/queue/SampleQ?
connectQueueManager=QM1&sslkeyrepository=*SYSTEM&sslcipherspec=
TLS_RSA_WITH_AES_128_CBC_SHA&sslcertrevocationcheck=true&"sslpe
ername=" + "" + "CN=ibmwebspheremqqmm&sslkeyresetcount=45000"

1238 IBM MQ: Programming

WCF custom channel assured delivery
Assured Delivery guarantees that a service request or reply is actioned and not lost.

A request message is received and any reply message is sent under a local transaction sync point, which
can be rolled back in the case of runtime failure. Examples of these failures are: An unhandled exception
thrown by the service, failure to dispatch the message to the service, or failure to deliver the reply
message.

AssuredDelivery is the assured delivery attribute which can be specified on a service contract to
guarantee that any request messages received by a service, and any reply message sent from a service, is
not lost in the event of a runtime failure.

To ensure that messages are also preserved in the event of system failure or power outage, messages
must be sent as persistent. To use persistent messages the client application must have this option
specified on its endpoint URI. For further information about setting URI properties, see: URI syntax and
parameters for Web service deployment.

Distributed transactions are not supported, and the scope of the transaction does not extend beyond the
request and reply message processing performed by IBM MQ. Any work performed within the service
might get rerun as a result of a failure which causes the message to be received again. The following
diagram shows the scope of the transaction:

Assured delivery is enabled by applying the AssuredDelivery attribute to the service class as shown in
the following example:
[AssuredDelivery]
class TestCalculatorService : IWMQSampleCalculatorContract
{

public int add(int a, int b)
{

int ans = a + b;
return ans;

}
}

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1239

When using the AssuredDelivery attribute, you must be aware of the following points:
v When a channel determines that a failure is likely to recur if a message was rolled-back and received

again, the message is treated as a poison message and is not returned to the request queue for
reprocessing. For example: If the received message is not correctly formatted or cannot be dispatched
to a service. Unhandled exceptions thrown from a service operation are always resent until the
message has been redelivered the maximum number of times specified by the backout threshold
property of the request queue. For more information, see: “WCF custom channel poison messages” on
page 1241

v The channel performs the reading, processing, and replying of each request message as an atomic
operation using a single thread of execution to enforce transactional integrity. To enable service
operations to run concurrently, the channel enables WCF to create multiple instances of the channel.
The number of channel instances available for processing requests is controlled by the binding property
MaxConcurrentCalls. For more information, see: “WCF binding configuration options” on page 1249

v The assured delivery function uses both the IOperationInvoker and the IErrorHandler WCF
extensibility points. If these extensibility points are used externally by an application, the application
must ensure that any previously registered extensibility points are called. Failure to do so for
IErrorHandler can result in errors going unreported. Failure to do so for IOperationInvoker can cause
WCF to stop responding.

WCF custom channel security
The IBM MQ custom channel for WCF supports the use of SSL only for unmanaged client connections to
the queue manager.

SSL can be specified in one of two ways:
v Specify SSL directly on the SOAP over JMS URI. For a full description of the SSL options, see SSL and

the IBM MQ transport for SOAP
v Specify SSL using an entry in the client channel definition table (CCDT). For more information about

CCDTs, see Client channel definition table

WCF client channel definition tables (CCDT)
The IBM MQ custom channel for WCF supports the use of client channel definition tables (CCDT) to
configure the connection information for client connections.

CCDTs are controlled through these two environment variables:
v MQCHLLIB specifies the directory where the table is located.
v MQCHLTAB specifies the file name of the table.

You cannot specify the channel definition table directly in the SOAP over JMS URI. If these environment
variables are defined, then they take priority over any client connection details specified in the URI.

For more information about client channel definition tables, see: Client channel definition table.

1240 IBM MQ: Programming

Related information:
Client channel definition table

WCF custom channel poison messages
When a service fails to process a request message, or fails to deliver a reply message to a reply queue,
then the message is treated as a poison message.

Poison request messages

If a request message cannot be processed, then it is treated as a poison message. This action prevents the
service from receiving the same unprocessable message again. For an unprocessable request message to
be treated as a poison message, one of the following situations must be true:
v The messages backout count exceeded the backout threshold specified on the request queue, which

only occurs if assured delivery was specified for the service. For more information about assured
delivery, see: “WCF custom channel assured delivery” on page 1239

v The message was not formatted correctly and could not be interpreted as a SOAP over JMS message.

Poison reply messages

If a service fails to deliver a reply message to the reply queue, then the reply message is treated as a
poison message. For reply messages, this action enables the reply messages to be retrieved later to aid
problem determination.

Poison message handling

The action taken for a poison message depends on the queue manager configuration and the values set in
the report options of the message. For SOAP over JMS, the following report options are set on request
messages by default and are not configurable:
v MQRO_EXCEPTION_WITH_FULL_DATA
v MQRO_EXPIRATION_WITH_FULL_DATA
v MQRO_DISCARD_MSG

For SOAP over JMS, the following report option is set on reply messages by default and is not
configurable:
v MQRO_DEAD_LETTER_Q

If messages come from a non-WCF source, then refer to the documentation for that source.

The following diagram shows the possible actions and the steps taken if a poison message handling fails:

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1241

IBM MQ message capabilities for WCF applications
Non-SOAP/Non-JMS (that is, IBM MQ) message capabilities for WCF applications.

1242 IBM MQ: Programming

For the Non-SOAP/Non-JMS interface, the IBM MQ message capabilities for WCF applications are as
follows:
v WCF applications can send and receive the base IBM MQ messages which can be processed by any

IBM MQ application.
v WCF applications have full control to update the MQMD and payload.
v The WCF client can send IBM MQ messages that can be consumed by any IBM MQ clients, for

example C, Java, JMS, and .NET clients.

The WCF for Non-SOAP/Non-JMS interface must use the following classes for setting the message
payload and MQMD for the message:
v WmqStringMessage for a payload of type String
v WmqBytesMessage for a payload of type Bytes
v WmqXmlMessage for a payload of type XML

To set the payload of the message, use the Data property for the WmqStringMessage, WmqBytesMessage
or WmqXmlMessage class, depending on the payload type. For example, use the following code to set a
payload of type String:
WmqStringMessage strMsg = new WmqStringMessage();
//Setting the Message PayLoad
strMsg.Data = "Hello World";
//MQMD property
strMsg.Format = WmqMessageFormat.MQFMT_STRING;

WCF Connection options
There are three modes of connecting an IBM MQ custom channel for WCF to a queue manager. Consider
which type of connection best suits your requirements.

For more information about connection options, see: “Connection differences” on page 656

For more information about WCF architecture, see: “WCF architecture” on page 1235

Unmanaged client connection

A connection made in this mode connects as an IBM MQ client to an IBM MQ server running either on
the local machine or on a remote machine.

To use the IBM MQ custom channel for WCF as an IBM MQ client, you can install it, with the IBM MQ
MQI client, either on the IBM MQ server, or on a separate machine.

Unmanaged server connection

When used in server bindings mode, the IBM MQ custom channel for WCF uses the queue manager API,
rather than communicating through a network. Using bindings connections provides better performance
for IBM MQ applications than using network connections.

To use the bindings connection, you must install the IBM MQ custom channel for WCF on the IBM MQ
server.

Managed client connection

A connection made in this mode connects as an IBM MQ client to an IBM MQ server running either on
the local machine or on a remote machine.

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1243

The IBM MQ custom channel classes for .NET 3 connecting in this mode remain in .NET managed code
and make no calls to native services. For more information about managed code, see Microsoft
documentation.

There are a number of limitations to using the managed client. For more information about these
limitations, see “Managed client connections” on page 657.

Creating and configuring the IBM MQ custom channel for WCF
The IBM MQ V7 custom channels for WCF work in the same manner as transport WCF channels offered
by Microsoft. The IBM MQ custom channel for WCF can be created in one of two ways.

About this task

The IBM MQ custom channel integrates with WCF as a WCF transport channel, and as such must be
paired with a message encoder and optional protocol channels, so it can create a complete channel stack
that can be used by an application. Two elements are required for a complete channel stack to be created
successfully:
1. A binding definition: Specifies which elements are required to build the applications channel stack,

including transport channel, message encoder, and any protocols, plus any general configuration
settings. For the custom channel, the binding definition must be created in the form of a WCF custom
binding.

2. An endpoint definition: Links the service contract with the binding definition, and also provides the
actual connection URI which describes where the application can connect. For the custom channel, the
URI is in the form of a SOAP over JMS URI.

These definitions can be created in one of two different ways:
v Administratively; The definitions are created by providing the details in an application configuration

file (for example: app.config).
v Programmatically; The definitions are created directly from the application code.

The decision over which method to use to create the definitions must be based on the requirements of the
application as follows:
v The Administrative method for configuration provides the flexibility to alter the details of the service

and client post-deployment without rebuilding the application.
v The Programmatic method for configuration provides greater protection from configuration errors, and

the ability to dynamically generate a configuration at run time.

Creating a WCF custom channel administratively by supplying binding and
endpoint information in an application configuration file
The IBM MQ custom channel for WCF is a transport level WCF channel. An endpoint and binding must
be defined to use the custom channel, and these definitions can be done by supplying the binding and
endpoint information in an application configuration file.

To configure and use the IBM MQ custom channel for WCF, which is a transport level WCF channel, a
binding and an endpoint definition must be defined. The binding holds the configuration information for
the channel, and the endpoint definition holds the connection details. These definitions can be created in
two ways:
v Programmatically directly from the application code, as described here: “Creating a WCF custom

channel by suppling binding and endpoint information programmatically” on page 1246
v Administratively, by providing the details in an application configuration file, as described in the

following procedure.

1244 IBM MQ: Programming

The client or service application configuration file is commonly named yourappname.exe.config where
yourappname is the name of your application. The application configuration file is most easily modified by
using the Microsoft service configuration editor tool called SvcConfigEditor.exe in the following way:
v Start the SvcConfigEditor.exe configuration editor tool. The default installation location for the tool is:

Drive:\Program Files\Microsoft SDKs\Windows\v6.0\Bin\SvcConfigEditor.exe where Drive: is the
name of the installation drive.

Step 1: Add a binding element extension to enable WCF to locate the custom channel
1. Right-click Advanced > Extension > binding element to open the menu, and select New

2. Complete the fields as shown in this table:

Table 162. New binding element fields

Field Value

Name IBM.XMS.WCF.SoapJmsIbmTransportChannel

Type Navigate to IBM.XMS.WCF.dll in the Global Assembly
Cache (GAC) and select
IBM.XMS.WCFSoapJmsIbmTransportBindingElementConfig

Step 2: Create a custom binding definition which pairs the custom channel with a WCF
message encoder
1. Right-click Bindings to open the menu, and select New Binding Configuration

2. Complete the fields as shown in this table:

Table 163. New binding configuration fields

Field Value

Name CustomBinding_WMQ

BindingElement 1 textMessageEncoding (MessageVersion: Soap11)

BindingElement 2 IBM.XMS.WCF.SoapJmsIbmTransportChannel

Step 3: Specify the binding properties
1. Select the IBM.XMS.WCF.SoapJmsIbmTransportChannel transport binding from the binding you created

in: “Step 2: Create a custom binding definition which pairs the custom channel with a WCF message
encoder”

2. Make any required changes to the default values of the properties as described in: “WCF binding
configuration options” on page 1249

Step 4: Create an endpoint definition

Create an endpoint definition which references the custom binding you created in: “Step 2: Create a
custom binding definition which pairs the custom channel with a WCF message encoder” and provides
the connection details of the service. The way this information is specified is dependent on whether the
definition is for a client application or a service application.

For a client application, add an endpoint definition to the client section as follows:
1. Right-click Client > Endpoints to open the menu, and select New Client Endpoint

2. Complete the fields as shown in this table:

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1245

Table 164. New client endpoint fields

Field Value

Name Endpoint_WMQ

Address The SOAP/JMS URI describing the WMQ connection details
required to access the service. For further details see: “IBM
MQ custom channel for WCF endpoint URI address
format” on page 1248

Binding customBinding

BindingConfiguration CustomBinding_WMQ

Contract The name of your service contract interface

For a service application, add a service definition to the services section as follows:
1. Right-click Services to open the menu, and select New Service, then select the service class to be

hosted.
2. Add an endpoint definition to the Endpoints section for your new service, and complete the fields as

shown in this table:

Table 165. New service endpoint fields

Field Value

Name Endpoint_WMQ

Address The SOAP/JMS URI describing the WMQ connection details
required to access the service. For further details see: “IBM
MQ custom channel for WCF endpoint URI address
format” on page 1248

Binding customBinding

BindingConfiguration CustomBinding_WMQ

Contract The name of your service implementation class

Creating a WCF custom channel by suppling binding and endpoint information
programmatically
The IBM MQ custom channel for WCF is a transport level WCF channel. An endpoint and binding must
be defined to use the custom channel, and these definitions can be done programmatically directly from
the application code.

To configure and use the IBM MQ custom channel for WCF, which is a transport level WCF channel, a
binding and an endpoint definition must be defined. The binding holds the configuration information for
the channel, and the endpoint definition holds the connection details. For more information see “Using
the WCF samples” on page 1256.

These definitions can be created in two ways:
v Administratively, by providing the details in an application configuration file, as described in “Creating

a WCF custom channel administratively by supplying binding and endpoint information in an
application configuration file” on page 1244.

v Programmatically directly from the application code, as described in the following subtopics.

1246 IBM MQ: Programming

Defining binding and endpoint information programmatically: SOAP/JMS interface:

For the SOAP/JMS interface, you can define an endpoint and binding programmatically directly from the
application code.

About this task

To supply binding and endpoint information programmatically, add the required code to your application
by completing the following steps.

Procedure

1. Create an instance of the transport binding element of the channel by adding the following code to
your application:
SoapJmsIbmTransportBindingElement transportBindingElement = new SoapJmsIbmTransportBindingElement();

2. Set any required binding properties, for example, by adding the following code to your application to
set the ClientConnectionMode:
transportBindingElement.ClientConnectionMode = XmsWCFBindingProperty.AS_URI;

3. Create a custom binding that pairs the transport channel with a message encoder by adding the
following code to your application:
Binding binding = new CustomBinding(new TextMessageEncodingBindingElement(), transportBindingElement);

4. Create the SOAP/JMS URI. The SOAP/JMS URI that describes the IBM MQ connection details
required to access the service, must be provided as the endpoint address. The address that you
specify depends on whether the channel is being used for a service application or a client application.
v For client applications, the SOAP/JMS URI must be created as an EndpointAddress as follows:

EndpointAddress address = new EndpointAddress("jms:/queue?destination=SampleQ@QM1&connectionFactory
=connectQueueManager(QM1)&initialContextFactory=com.ibm.mq.jms.Nojndi");

v For service applications, the SOAP/JMS URI must be created as a URI as follows:
Uri address = new Uri("jms:/queue?destination=SampleQ@QM1&connectionFactory=
connectQueueManager(QM1)&initialContextFactory=com.ibm.mq.jms.Nojndi");

For more information about endpoint addresses, see “IBM MQ custom channel for WCF endpoint
URI address format” on page 1248.

Defining binding and endpoint information programmatically: Non-SOAP/Non-JMS interface:

For the Non-SOAP/Non-JMS interface, you can define an endpoint and binding programmatically
directly from the application code.

About this task

To supply binding and endpoint information programmatically, add the required code to your application
by completing the following steps.

Procedure

1. Create a WmqBinding by adding the following code to your application:
WmqBinding binding = new WmqBinding();

This code creates a binding that pairs the WmqMsgEncodingElement and
WmqIbmTransportBindingElement required for the Non-SOAP/Non-JMS interface.

2. Provide the wmq:// URI that describes the IBM MQ connection details required to access the service.
The way in which you provide the wmq:// URI depends on whether the channel is being used for a
service application or a client application.
v For client applications, the wmq:// URI must be created as an EndpointAddress as follows:

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1247

EndpointAddress address = new EndpointAddress
("wmq://localhost:1414/msg/queue/Q1?connectQueueManager=QM1&replyTo=Q2");

v For service applications, the wmq:// URI must be created as a URI as follows:
Uri sampleAddress = new Uri(
"wmq://localhost:1414/msg/queue/Q1?connectQueueManager=QM1&replyTo=Q2");

IBM MQ custom channel for WCF endpoint URI address format
A web service is specified using a Universal Resource Identifier (URI) that provides location and
connection details. The URI format depends on whether you are using the SOAP/JMS interface or the
Non-SOAP/Non-JMS interface.

SOAP/JMS interface

The URI format that is supported in the IBM MQ transport for SOAP permits a comprehensive degree of
control over SOAP/ IBM MQ -specific parameters and options when accessing target services. This
format is compatible with WebSphere Application Server and with CICS, facilitating the integration of
IBM MQ with both those products.

The URI syntax is as follows:
jms:/queue? name = value & name = value...

where name is a parameter name and value is an appropriate value, and the name = value element can be
repeated any number of times with the second and subsequent occurrences being preceded by an
ampersand (&).

For further information about setting URI properties, see URI syntax and parameters for Web service
deployment

Parameter names are case-sensitive, as are names of IBM MQ objects. If any parameter is specified more
than once, the final occurrence of the parameter takes effect meaning client applications can override
parameter values by appending to the URI. If any additional unrecognized parameters are included, they
are ignored.

If you store a URI in an XML string, you must represent the ampersand character as "&". Similarly, if
a URI is coded in a script, take care to escape characters such as & which would otherwise be interpreted
by the shell.

This is an example of a simple URI for an Axis service:
jms:/queue?destination=myQ&connectionFactory=()
&initialContextFactory=com.ibm.mq.jms.Nojndi

Here is an example of a simple URI for a .NET service:
jms:/queue?destination=myQ&connectionFactory=()&targetService=MyService.asmx
&initialContextFactory=com.ibm.mq.jms.Nojndi

Only the required parameters are supplied (targetService is required for .NET services only), and
connectionFactory is given no options.

In this Axis example, connectionFactory contains a number of options:
jms:/queue?destination=myQ@myRQM&connectionFactory=connectQueueManager(myconnQM)
binding(client)clientChannel(myChannel)clientConnection(myConnection)
&initialContextFactory=com.ibm.mq.jms.Nojndi

In this Axis example, the sslPeerName option of connectionFactory has also been specified. The value of
sslPeerName itself contains name value pairs and significant embedded blanks:

1248 IBM MQ: Programming

jms:/queue?destination=myQ@myRQM&connectionFactory=connectQueueManager(myconnQM)
binding(client)clientChannel(myChannel)clientConnection(myConnection)
sslPeerName(CN=MQ Test 1,O=IBM,S=Hampshire,C=GB)
&initialContextFactory=com.ibm.mq.jms.Nojndi

NON-SOAP/Non-JMS interface

The URI format for the NON-SOAP/Non-JMS interface permits a comprehensive degree of control over
IBM MQ -specific parameters and options when accessing target services.

The URI syntax is as follows:
wmq://example.com:1415/msg/queue/INS.QUOTE.REQUEST@MOTOR.INS ?ReplyTo=msg/queue/INS.QUOTE.REPLY@BRANCH452&persistence=MQPER_NOT_PERSISTENT

This IRI tells a service requester that it can use an IBM MQ TCP client-binding connection to a machine
called example.com on port 1415 and put persistent request messages to a queue called
INS.QUOTE.REQUEST on queue manager MOTOR.INS. The IRI specifies that the service provider puts
replies to a queue called INS.QUOTE.REPLY on queue manager BRANCH452. The URI format is as
specified for SupportPac MA93. See SupportPac MA93: IBM MQ - Service Definition for more details
about the IBM MQ IRI specifications.

WCF binding configuration options
There are two ways of applying configuration options to the custom channels binding information. You
either set the properties administratively, or set them programmatically.

The binding configuration options can be set in one of two different ways:
1. Administratively: The binding property settings must be specified in the transport section of the

custom binding definition in the applications configuration file, for example: app.config.
2. Programmatically: The application code must be modified to specify the property during initialization

of the custom binding.

Setting the binding properties administratively

The binding property settings can be specified in the application configuration file, for example:
app.config. The configuration file is generated by svcutil, as shown in the following examples.

SOAP/JMS interface
<customBinding>
...

<IBM.XMS.WCF.SoapJmsIbmTransportChannel maxBufferPoolSize="524288"
maxMessageSize="4000000" clientConnectionMode="0" maxConcurrentCalls="16"/>

...
</customBinding>

Non-SOAP/Non-JMS interface
<customBinding>

<IBM.WMQ.WCF.WmqMsgEncodingElement/>
<IBM.WMQ.WCF.WmqIbmTransportChannel maxBufferPoolSize="524288"
maxMessageSize="65536" clientConnectionMode="managedclient"/>

</customBinding>

Setting the binding properties programmatically

To add a WCF binding property to specify the client connection mode, you must modify the service code
to specify the property during initialization of the custom binding.

Use the following example to specify unmanaged client connection mode:
SoapJmsIbmTransportBindingElement
transportBindingElement = new SoapJmsIbmTransportBindingElement();
transportBindingElement.ClientConnectionMode = XmsWCFBindingProperty.CLIENT_UNMANAGED;

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1249

http://www.ibm.com/support/docview.wss?rs=802&uid=swg24017518&loc=en_US&cs=utf-8?=en

Binding sampleBinding = new CustomBinding(new TextMessageEncodingBindingElement(),
transportBindingElement);

WCF binding properties

Table 166. Values of binding properties when setting administratively or programmatically

Property name

Client or
Service
application

Administrative
value Programmatic value Description

maxBufferPoolSize Both 0 to 64 bit
signed
integer

0 to 64 bit signed integer Specifies the maximum size of the
memory that can be used to store
WCF message buffers for an
instance of the channel.

maxMessageSize Both 1 to 32 bit
signed
integer

1 to 32 bit signed integer Specifies the maximum memory
that can be used for an individual
WCF message.

clientConnectionMode Both 0 (Default
value)

1

AS_URI (Default value)

CLIENT_UNMANAGED

Specifies the client connection
mode of the transport channel.

0 means that the client connection
mode is as specified in the URI.
Only used if the client connection
is used. Specifies that the client
connection mode is as specified in
the URI. 0 is the default value if
no client connection mode is set.

1 means that the client connection
mode is an unmanaged client.
Only used if the client connection
is used.

MaxConcurrentCalls Client The range is
0 - 2 147 483
647

16 is the
default value

The range is 0 - 2 147 483
647

16 is the default value

This property defines the
maximum number of concurrent
operations that can take place on
an individual client proxy at any
one time. If more operations are
started, they are queued until an
in-progress operation either
completes or times out. This
setting can be used to control the
maximum threads and resources
which can be consumed by an
individual proxy.

0 removes this limit, enabling all
operations to be attempted
concurrently.

1250 IBM MQ: Programming

Table 166. Values of binding properties when setting administratively or programmatically (continued)

Property name

Client or
Service
application

Administrative
value Programmatic value Description

MaxConcurrentCalls Service The range is
1 - 2 147 483
647

16 is the
default value

The range is 1 - 2 147 483
647

16 is the default value

This property is only used if the
assured delivery feature is enabled
(For more information about
assured delivery, see “WCF
custom channel assured delivery”
on page 1239). It specifies the
maximum number of concurrent
operations that can be in progress
at the same time for the given
endpoint.

Care is needed when changing this
setting. Each concurrent operation
requires additional resources, in
particular a new instance of the
custom channel and the associated
threads from the thread pool to
action the requests. Over-allocating
can be counter productive and
affect performance severely.
Appropriate configuration of the
thread pool must be made to
support this property.

Building and hosting services for WCF
Overview of Microsoft Windows Communication Foundation (WCF) services explaining how to create
and configure WCF services.

The IBM MQ custom channel for WCF and the WCF services which use it, can be hosted by the
following methods:
v Self-hosting
v Windows Service

The IBM MQ custom channel for WCF cannot be hosted in Windows Process Activation Service.

The following topics provide some simple self-hosting examples to demonstrate the steps involved. The
Microsoft WCF online documentation, which contains further information and the latest details, can be
found on the Microsoft MSDN website at http://msdn.microsoft.com.

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1251

http://msdn.microsoft.com/

Building WCF service applications using method 1: Self-hosting administratively
using an application configuration file
Having created an application configuration file, open an instance of the service and add the specified
code to your application.

Before you begin

Create or edit an application configuration file for the service, as described in: “Creating a WCF custom
channel administratively by supplying binding and endpoint information in an application configuration
file” on page 1244

About this task
1. Instantiate and open an instance of the service in the service host. The service type must be the same

as the service type specified in the service configuration file.
2. Add the following code to your application:

ServiceHost service = new ServiceHost(typeof(MyService));
service.Open();
...
service.Close();

Building WCF service applications using method 2: Self-hosting programmatically
directly from the application
Add the binding properties, create the service host with an instance of the required service class and
open the service.

Before you begin
1. Add a reference to the custom channel IBM.XMS.WCF.dll file to the project. The IBM.XMS.WCF.dll is in

the WMQInstallDir\bin where WMQInstallDir is the directory that IBM MQ is installed in.
2. Add a using statement to the IBM.XMS.WCF namespace, for example: using IBM.XMS.WCF
3. Create an instance of the channels binding element and endpoint as described in: “Creating a WCF

custom channel by suppling binding and endpoint information programmatically” on page 1246

About this task

If changes to the binding properties of the channel are required, then complete the following steps:
1. Add the binding properties to transportBindingElement as shown in the following example:

SoapJmsIbmTransportBindingElement transportBindingElement = new SoapJmsIbmTransportBindingElement();
Binding binding = new CustomBinding(new TextMessageEncodingBindingElement(), transportBindingElement);
Uri address = new Uri("jms:/queue?destination=SampleQ@QM1&connectionFactory=

connectQueueManager(QM1)&initialContextFactory=com.ibm.mq.jms.Nojndi");

2. Create the service host with an instance of the required service class:
ServiceHost service = new ServiceHost(typeof(MyService));

3. Open the service:
service.AddServiceEndpoint(typeof(IMyServiceContract), binding, address);
service.Open();
...
service.Close();

1252 IBM MQ: Programming

Exposing metadata using an HTTP endpoint
Instructions for exposing the metadata of a service which is configured to use the IBM MQ custom
channel for WCF.

About this task

If the services metadata must be exposed (so that tools such as svcutil can access it directly from the
running service rather than from an offline WSDL file for example) it must be done by exposing the
services metadata with an HTTP endpoint. The following steps can be used to add this additional
endpoint.
1. Add the base address of where the metadata must be exposed to the ServiceHost, for example:

ServiceHost service = new ServiceHost(typeof(TestService),
new Uri("http://localhost:8000/MyService"));

2. Add the following code to the ServiceHost before the service is opened:
ServiceMetadataBehavior metadataBehavior = new ServiceMetadataBehavior();

metadataBehavior.HttpGetEnabled = true;
service.Description.Behaviors.Add(metadataBehavior);
service.AddServiceEndpoint(typeof(IMetadataExchange),

MetadataExchangeBindings.CreateMexHttpBinding(), "mex");

Results

The metadata is now available at the following address: http://localhost:8000/MyService

Building client applications for WCF
Overview of generating and building Microsoft Windows Communication Foundation (WCF) client
applications.

A client application can be created for a WCF service; client applications are typically generated by using
the Microsoft ServiceModel Metadata Utility Tool (Svcutil.exe) to create the required configuration and
proxy files which can be used directly by the application.

Generating a WCF client proxy and application configuration files using the svcutil
tool with metadata from a running service
Instructions for using the Microsoft svcutil.exe tool to generate a client for a service which is configured
to use the IBM MQ custom channel for WCF.

Before you begin

There are three prerequisites for using the svcutil tool to create to required configuration and proxy files
which can be used directly by the application:
v The WCF service must be running before the svcutil tool is started.
v The WCF service must expose its metadata using an HTTP port in addition to the IBM MQ custom

channel endpoint references to generate a client directly from a running service.
v The custom channel must be registered in the configuration data for svcutil.

About this task

The following steps explain how to generate a client for a service which is configured to use the IBM MQ
custom channel, but also exposes its metadata at run time via a separate HTTP port:
1. Start the WCF service (The service must be running before the svcutil tool is started).
2. Add the details from the svcutil.exe config file from the root of the installation, into the active

svcutil configuration file, typically C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin\
svcutil.exe.config so svcutil recognizes the IBM MQ custom channel.

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1253

3. Run svcutil from a command prompt, for example:
svcutil /language:C# /r: <installlocation>\bin\IBM.XMS.WCF.dll
/config:app.config http://localhost:8000/IBM.XMS.WCF/samples

4. Copy the generated app.config and YourService.cs files to the Microsoft Visual studio client project.

What to do next

If the services metadata cannot be directly retrieved, svcutil can be used to generate the client files from
wsdl instead. For more information see: “Generating a WCF client proxy and application configuration
files using the svcutil tool with WSDL”

Generating a WCF client proxy and application configuration files using the svcutil
tool with WSDL
Instructions for generating WCF clients from WSDL if the metadata of the service is unavailable.

If the metadata of the service cannot be directly retrieved to generate a client from the metadata from a
running service, then, svcutil can be used to generate the client files from WSDL instead. The following
modifications must be made to the WSDL to specify that the IBM MQ custom channel is to be used:
1. Add the following namespace definitions and policy information:

<wsdl:definitions
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

<wsp:Policy wsu:Id="CustomBinding_IWMQSampleContract_policy">
<wsp:ExtactlyOne>
<wsp:All>
<xms:xms xmlns:xms="http://sample.schemas.ibm.com/policy/xms" />

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>

...

</wsdl:definitions>

2. Modify the bindings section to refer to the new policy section and remove any transport definition
from the underlying binding element:
<wsdl:definitions ...>

<wsdl:binding ...>
<wsp:PolicyReference URI="#CustomerBinding_IWMQSampleContract_policy" />
<[soap]:binding ... transport="" />
...

</wsdl:binding>
</wsdl:definitions>

3. Run svcutil from a command prompt, for example:
svcutil /language:C# /r: MQ_INSTALLATION_PATH\bin\IBM.XMS.WCF.dll
/config:app.config MQ_INSTALLATION_PATH\src\samples\WMQAxis\default\service
\soap.server.stockQuoteAxis_Wmq.wsdl

Where MQ_INSTALLATION_PATH is the installation directory of IBM MQ.

1254 IBM MQ: Programming

Building WCF client applications using a client proxy with an application
configuration file

Before you begin

Create or edit an application configuration file for the client, as described in: “Creating a WCF custom
channel administratively by supplying binding and endpoint information in an application configuration
file” on page 1244

About this task

Instantiate and open an instance of the client proxy. The parameter passed to the generated proxy must
be the same as the endpoint name specified in the client configuration file, for example Endpoint_WMQ:
MyClientProxy myClient = new MyClientProxy("Endpoint_WMQ");

try {
myClient.myMethod("HelloWorld!");
myClient.Close();

}
catch (TimeoutException e) {

Console.Out.WriteLine(e);
myClient.Abort();

}
catch (CommunicationException e) {

Console.Out.WriteLine(e);
myClient.Abort();

}
catch (Exception e) {

Console.Out.WriteLine(e);
myClient.Abort();

}

Building WCF client applications using a client proxy with programmatic
configuration

Before you begin
1. Add a reference to the custom channel IBM.XMS.WCF.dll file to the project. The IBM.XMS.WCF.dll is in

the WMQInstallDir\bin directory where WMQInstallDir is the directory that IBM MQ is installed in.
2. Add a using statement to the IBM.XMS.WCF namespace, for example: using IBM.XMS.WCF
3. Create an instance of th' binding element and endpoint of the channel as described in: “Creating a

WCF custom channel by suppling binding and endpoint information programmatically” on page 1246

About this task

If changes to the binding properties of the channel are required, complete the following steps.
1. Add the binding properties to transportBindingElement as shown in the following figure:

SoapJmsIbmTransportBindingElement transportBindingElement = new SoapJmsIbmTransportBindingElement();
Binding binding = new CustomBinding(new TextMessageEncodingBindingElement(), transportBindingElement);
EndpointAddress address =

new EndpointAddress("jms:/queue?destination=SampleQ@QM1&connectionFactory=
connectQueueManager(QM1)&initialContextFactory=com.ibm.mq.jms.Nojndi");

2. Create the client proxy as shown in the following figure, where binding and endpoint address are the
binding and endpoint address configured in step 1 and passed in:
MyClientProxy myClient = new MyClientProxy(binding, endpoint address);

try {
myClient.myMethod("HelloWorld!");
myClient.Close();

}
catch (TimeoutException e) {

Console.Out.WriteLine(e);

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1255

myClient.Abort();
}
catch (CommunicationException e) {

Console.Out.WriteLine(e);
myClient.Abort();

}
catch (Exception e) {

Console.Out.WriteLine(e);
myClient.Abort();

}

Using the WCF samples
The Windows Communication Foundation (WCF) samples provide some simple examples of how the
IBM MQ custom channel can be used.

To build the sample projects, either the Microsoft.NET 3.5 SDK, or Microsoft Visual Studio 2008 is
needed.

Simple one-way client and server WCF sample
This sample demonstrates the IBM MQ custom channel being used to start a Windows Communication
foundation (WCF) service from a WCF client using a one-way channel shape.

About this task

The service implements a single method which outputs a string to the console. The client has been
generated by using the svcutil tool to retrieve the service metadata from a separately exposed HTTP
endpoint as described in “Generating a WCF client proxy and application configuration files using the
svcutil tool with metadata from a running service” on page 1253

The sample has been configured with specific resource names as described in the following procedure. If
you must change the resource names, then you must also change the corresponding value on the client
application in the MQ_INSTALLATION_PATH \tools\dotnet\samples\cs\wcf\samples\WCF\oneway\client\
app.config file, and on the service application in the MQ_INSTALLATION_PATH \tools\dotnet\samples\cs\
wcf\samples\WCF\oneway\service\TestServices.cs file, where MQ_INSTALLATION_PATH is the installation
directory for IBM MQ. For more information about formatting the JMS endpoint URI, see IBM MQ
Transport for SOAP in the IBM MQ product documentation. If you need to modify the sample solution
and source, then you need an IDE, for example, Microsoft Visual Studio 8 or higher.

Procedure
1. Create a queue manager called QM1

2. Create a queue destination called SampleQ

3. Start the service so the listener is waiting for messages: Run the MQ_INSTALLATION_PATH
\tools\dotnet\samples\cs\wcf\samples\WCF\oneway\service\bin\Release\TestService.exe file,
where MQ_INSTALLATION_PATH is the installation directory for IBM MQ.

4. Run the client once: Run the MQ_INSTALLATION_PATH \tools\dotnet\samples\cs\wcf\samples\WCF\
oneway\client\bin\Release\TestClient.exe file, where MQ_INSTALLATION_PATH is the installation
directory for IBM MQ. The client application loops five times sending five messages to SampleQ

Results

The service application gets the messages from SampleQ and displays Hello World on the screen five
times.

1256 IBM MQ: Programming

What to do next

Simple request-reply client and server WCF sample
This sample demonstrates the IBM MQ custom channel being used to start a Windows Communication
foundation (WCF) service from a WCF client using a request-reply channel shape.

About this task

This service provides some simple calculator methods to add and subtract two numbers, and then return
the result. The client has been generated by using the svcutil tool to retrieve the service metadata from a
separately exposed HTTP endpoint as described in “Generating a WCF client proxy and application
configuration files using the svcutil tool with metadata from a running service” on page 1253

The sample has been configured with specific resource names as in the following procedure described. If
you need to change the resource names, then you also need to change the corresponding value on the
client application in the MQ_INSTALLATION_PATH \Tools\wcf\samples\WCF\requestreply\client\app.config
file, and on the service application in the MQ_INSTALLATION_PATH \Tools\wcf\samples\WCF\requestreply\
service\RequestReplyService.cs file, where MQ_INSTALLATION_PATH is the installation directory for IBM
MQ. For more information about formatting the JMS endpoint URI, see IBM MQ Transport for SOAP in
the IBM MQ product documentation. If you need to modify the sample solution and source, then you
need an IDE, for example, Microsoft Visual Studio 8 or higher.

Procedure
1. Create a queue manager called QM1

2. Create a queue destination called SampleQ

3. Create a queue destination called SampleReplyQ

4. Start the service so the listener is waiting for messages: Run the MQ_INSTALLATION_PATH
\Tools\wcf\samples\WCF\requestreply\service\bin\Release\SimpleRequestReply_Service.exe file,
where MQ_INSTALLATION_PATH is the installation directory for IBM MQ.

5. Run the client once: Run the MQ_INSTALLATION_PATH \Tools\wcf\samples\WCF\requestreply\client\
bin\Release\SimpleRequestReply_Client.exe file, where MQ_INSTALLATION_PATH is the installation
directory for IBM MQ.

Results

When the client has been run, the following process is started and repeats four times so a total of five
messages are sent each way:
1. The client puts a request message on SampleQ and waits for a response.
2. The service gets the request message from SampleQ.
3. The service adds and subtracts some values using the contents of the message.
4. The service then puts the results into a message on SampleReplyQ, and waits for the client to put a

new message.
5. The client gets the message from SampleReplyQ and displays the results on the screen.

What to do next

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1257

WCF client to a .NET service hosted by IBM MQ sample
Sample client applications and sample service proxy applications are supplied for both .NET and Java.
The samples are based on a Stock Quote service that takes a request for a stock quote and then provides
the stock quote.

Before you begin

The sample requires that the .NET SOAP over JMS service hosting environment is correctly installed and
configured in IBM MQ and is accessible from a local queue manager. For information about installing
and configuring the environment, see: “Installing IBM MQ Web transport for SOAP” on page 1282

When the .NET SOAP over JMS service hosting environment is correctly installed and configured in IBM
MQ and is accessible from a local queue manager, additional configuration steps must be completed.
1. Set the WMQSOAP_HOME environment variable to the IBM MQ installation directory, for example:

C:\Program Files\IBM\WebSphere MQ

2. Ensure that the Java compiler javac is available and on the PATH.
3. Copy the file axis.jar from the prereqs/axis directory of the WebSphere installation CD to the IBM

MQ production directory, for example: C:\Program Files\IBM\WebSphere MQ\java\lib\soap
4. Add to the PATH: MQ_INSTALLATION_PATH\Java\lib where MQ_INSTALLATION_PATH represents the

directory where IBM MQ is installed, for example: C:\Program Files\IBM\WebSphere MQ
5. Ensure that the location of .NET is specified correctly in MQ_INSTALLATION_PATH\bin\amqwcallWSDL.cmd

where MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed, for example:
C:\Program Files\IBM\WebSphere MQ. The location of .NET can be specified for example: set
msfwdir=%ProgramFiles%\Microsoft Visual Studio .NET 2003\SDK\v1.1\Bin

When the previous steps are complete, test and run the service:
1. Navigate to your SOAP over JMS working directory.
2. Enter one of the following commands to run the verification test and leave the service listener

running:
v For .NET: MQ_INSTALLATION_PATH\Tools\soap\samples\runivt dotnet hold where

MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.
v For AXIS: MQ_INSTALLATION_PATH\Tools\soap\samples\runivt Dotnet2AxisClient hold where

MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.

The hold argument keeps the listeners running after the test completes.

If errors are reported during this configuration, you can remove all the changes so that the procedure
may be restarted in the following way:
1. Delete the generated SOAP over JMS directory.
2. Delete the queue manager.

About this task

This sample demonstrates a connection from a WCF client to the .NET SOAP over JMS sample service
provided in IBM MQ using a one-way channel shape. The service implements a simple StockQuote
example, which outputs a text string to the console.

The client has been generated by using WSDL to generate client files as described in “Generating a WCF
client proxy and application configuration files using the svcutil tool with WSDL” on page 1254

The sample has been configured with specific resource names as described in the following procedure. If
you need to change the resource names, then you must also change the corresponding value on the client
application in the MQ_INSTALLATION_PATH \tools\wcf\samples\WMQNET\default\client\app.config file,

1258 IBM MQ: Programming

and on the service application in the MQ_INSTALLATION_PATH \tools\wcf\samples\WMQNET\default\
service\WmqDefaultSample_StockQuoteDotNet.wsdl file, where MQ_INSTALLATION_PATH represents the
installation directory for IBM MQ. For more information about formatting the JMS endpoint URI, see IBM
MQ Transport for SOAP in the IBM MQ product documentation.

Procedure

Run the client once: Run the MQ_INSTALLATION_PATH \tools\wcf\samples\WMQNET\default\client\bin\
Release\TestClient.exe file, where MQ_INSTALLATION_PATH represents the installation directory for IBM
MQ. The client application loops five times sending five messages to the sample queue.

Results

The service application gets the messages from the sample queue and displays Hello World five times on
the screen.

WCF client to an Axis Java service hosted by IBM MQ sample
Sample client applications and sample service proxy applications are supplied for both Java and .NET.
The samples are based on a Stock Quote service that takes a request for a stock quote and then provides
the stock quote.

Before you begin

This sample requires that the .NET SOAP over JMS service hosting environment is correctly installed and
configured in IBM MQ and is accessible from a local queue manager. For information about installing
and configuring the environment, see: “Installing IBM MQ Web transport for SOAP” on page 1282

When the .NET SOAP over JMS service hosting environment is correctly installed and configured in IBM
MQ and is accessible from a local queue manager, additional configuration steps must be completed.
1. Set the WMQSOAP_HOME environment variable to the IBM MQ installation directory, for example:

C:\Program Files\IBM\WebSphere MQ

2. Ensure that the Java compiler javac is available and on the PATH.
3. Copy the file axis.jar from the prereqs/axis directory of the WebSphere installation CD to the IBM

MQ installation directory.
4. Add to the PATH: MQ_INSTALLATION_PATH\Java\lib where MQ_INSTALLATION_PATH represents the

directory where IBM MQ is installed, for example: C:\Program Files\IBM\WebSphere MQ
5. Ensure that the location of .NET is specified correctly in MQ_INSTALLATION_PATH\bin\amqwcallWSDL.cmd

where MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed, for example:
C:\Program Files\IBM\WebSphere MQ. The location of .NET can be specified for example: set
msfwdir=%ProgramFiles%\Microsoft Visual Studio .NET 2003\SDK\v1.1\Bin

When the previous steps are complete, test and run the service:
1. Navigate to your SOAP over JMS working directory.
2. Enter one of the following commands to run the verification test and leave the service listener

running:
v For .NET: MQ_INSTALLATION_PATH\Tools\soap\samples\runivt dotnet hold where

MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.
v For AXIS: MQ_INSTALLATION_PATH\Tools\soap\samples\runivt Dotnet2AxisClient hold where

MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.

The hold argument keeps the listeners running after the test completes.

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1259

If errors are reported during this configuration, you can remove all the changes so that the procedure is
restarted in the following way:
1. Delete the generated SOAP over JMS directory.
2. Delete the queue manager.

About this task

The sample demonstrates a connection from a WCF client to the Axis Java SOAP over JMS sample service
provided in IBM MQ using a one-way channel shape. The service implements a simple StockQuote
example, which outputs a text string to a file which is saved in the current directory.

The client has been generated by using WSDL to generate client files as described in “Generating a WCF
client proxy and application configuration files using the svcutil tool with WSDL” on page 1254

The sample has been configured with specific resource names as described in this paragraph. If you need
to change the resource names, then you must also change the corresponding value on the client
application in the MQ_INSTALLATION_PATH \tools\wcf\samples\WMQAxis\default\client\app.config file,
and on the service application in the MQ_INSTALLATION_PATH \tools\wcf\samples\WMQAxis\default\
service\WmqDefaultSample_StockQuoteDotNet.wsdl file, where MQ_INSTALLATION_PATH represents the
installation directory for IBM MQ.

Procedure

Run the client once: Run the MQ_INSTALLATION_PATH \tools\wcf\samples\WMQAxis\default\client\bin\
Release\TestClient.exe file, where MQ_INSTALLATION_PATH represents the installation directory for IBM
MQ. The client application loops five times sending five messages to the sample queue.

Results

The service application gets the messages from the sample queue and adds Hello World five times to a
file in the current directory.
Related reference:
“Handling different SOAP response element names” on page 1269
WCF expects the name of a returned value to be in a specific format by default, but a service might not
return an element with its name in the expected format.

WCF client to Java service hosted by WebSphere Application Server
sample
Sample client applications and sample service proxy applications are supplied for WebSphere Application
Server Version 6. A request-response service is also provided.

Before you begin

This sample requires that the following IBM MQ configuration is used:

Table 167. IBM MQ required configuration

Object Required name

Queue manager QM1

Local queue HelloWorld

Local queue HelloWorldReply

1260 IBM MQ: Programming

This sample also requires that a WebSphere Application Server Version 6 hosting environment is correctly
installed and configured. WebSphere Application Server Version 6 uses a bindings mode connection to
connect to IBM MQ by default. Therefore WebSphere Application Server Version 6 must be installed on
the same machine as the queue manager.

After the WAS environment is configured, the following additional configuration steps must be
completed:
1. Create the following JNDI objects in the WebSphere Application Server JNDI repository:

a. A JMS queue destination called HelloWorld
v Set the JNDI name to jms/HelloWorld
v Set the queue name to HelloWorld

b. A JMS queue connection factory called HelloWorldQCF
v Set the JNDI name to jms/HelloWorldQCF
v Set the queue manager name to QM1

c. A JMS queue connection factory called WebServicesReplyQCF
v Set the JNDI name to jms/WebServicesReplyQCF
v Set the queue manager name to QM1

2. Create a Message Listener Port called HelloWorldPort in WebSphere Application Server with the
following configuration:
v Set the connection factory JNDI name to jms/HelloWorldQCF
v Set the destination JNDI name to jms/HelloWorld

3. Install the web service HelloWorldEJBEAR.ear application to your WebSphere Application Server as
follows:
a. Click Applications > New Application > New Enterprise Application.
b. Navigate to MQ_INSTALLATION_PATH\tools\wcf\samples\WAS\HelloWorldsEJBEAR.ear where

MQ_INSTALLATION_PATH is the installation directory of IBM MQ.
c. Do not change any of the default option in the wizard, and restart the application server after the

application has been installed.

When the WAS configuration is complete, test the service by running it once:
1. Navigate to your Soap over JMS working directory.
2. Enter this command to run the sample: MQ_INSTALLATION_PATH \tools\wcf\samples\WAS\

TestClient.exe where MQ_INSTALLATION_PATH is the installation directory of IBM MQ.

About this task

The sample demonstrates a connection from a WCF client to the WebSphere Application Server SOAP
over JMS sample service provided in the WCF samples included in IBM MQ, using a request-response
channel shape. Messages flow between WCF and the WebSphere Application Server using IBM MQ
queues. The service implements the HelloWorld(...) method, which takes a string and returns a greeting
to the client.

The client has been generated by using the svcutil tool to retrieve the service metadata from a separately
exposed HTTP endpoint as described in “Generating a WCF client proxy and application configuration
files using the svcutil tool with metadata from a running service” on page 1253

The sample has been configured with specific resource names as described in the following procedure. If
you need to change the resource names, then you must also change the corresponding value on the client
application in the MQ_INSTALLATION_PATH \tools\wcf\samples\WAS\default\client\app.config file, and
on the service application in the MQ_INSTALLATION_PATH \tools\wcf\samples\WAS\HelloWorldsEJBEAR.ear

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1261

where MQ_INSTALLATION_PATH is the installation directory of IBM MQ. For more information about
formatting the JMS endpoint URI, see URI syntax and parameters for Web service deployment.

The service and client are based upon the service and client outlined in the developerWorks® article
Building a JMS Web service using SOAP over JMS and WebSphere Studio. For more information about
developing SOAP over JMS web services that are compatible with the IBM MQ WCF custom channel, see
http://www.ibm.com/developerworks/websphere/library/techarticles/0402_du/0402_du.html.

Procedure

Run the client once: Run the MQ_INSTALLATION_PATH \tools\wcf\samples\WAS\default\client\bin\
Release\TestClient.exe file, where MQ_INSTALLATION_PATH is the installation directory for IBM MQ. The
client application starts both of the service methods at the same time, sending two messages to the
sample queue.

Results

The service application gets the messages from the sample queue and provides a response to the
HelloWorld(...) method call which the client application outputs to the console.

Problem determination on the WCF custom channel for IBM MQ
You can use IBM MQ trace to collect detailed information about what various parts of the IBM MQ code
is doing. When using Windows Communication Foundation (WCF), a separate trace output is generated
for the WCF custom channel trace integrated with the Microsoft WCF infrastructure trace.

Fully enabling trace for the WCF custom channel produces two output files:
1. The WCF custom channel trace integrated with the Microsoft WCF infrastructure trace.
2. The WCF custom channel trace integrated with XMS .NET.

By having two trace outputs, problems can be tracked at each interface using the appropriate tools, for
example:
v WCF problem determination using suitable Microsoft tooling.
v IBM MQ MQI client issues using the XMS trace format.

To simplify trace enablement, the .NET 3 TraceSource and XMS .NET trace stack are both controlled using
a single interface as described in: “WCF trace configuration and trace file names: SOAP/JMS interface”
on page 1264.

1262 IBM MQ: Programming

http://www.ibm.com/developerworks/websphere/library/techarticles/0402_du/0402_du.html

WCF custom channel exception hierarchy
The exceptions types thrown by the custom channel are consistent with WCF and are typically a
TimeoutException or CommunicationException (or a subclass of CommunicationException). Further
details of the error condition, where available, are provided using linked or inner exceptions.

SOAP/JMS interface

The following exceptions are typical examples, and each layer in the architecture of the channel
contributes an additional linked exception, for example CommunicationsException has a linked
XMSException, which has a linked MQException:
1. System.serviceModel.CommunicationsExceptions
2. IBM.XMS.XMSException
3. IBM.WMQ.MQException

Key information is captured and provided in the data collection of the highest CommunicationException
in the hierarchy. This capture and provision of data prevents the need for the applications to link to each
layer in the architecture of the channel in order to interrogate the linked exceptions, and any additional
information they might contain. The following key names are defined:
v IBM.XMS.WCF.ErrorCode: The error message code of the current custom channel exception.
v IBM.XMS.ErrorCode: The error message of the first XMS exception in the stack.
v IBM.WMQ.ReasonCode: The underlying IBM MQ reason code.
v IBM.WMQ.CompletionCode: The underlying IBM MQ completion code.

Non-SOAP/Non-JMS interface

The following exceptions are typical examples, and each layer in the architecture of the channel
contributes an additional linked exception, for example CommunicationsException has a linked
MQException:
1. System.ServiceModel.CommunicationsExceptions
2. IBM.WMQ.MQException

Key information is captured and provided in the data collection of the highest CommunicationException
in the hierarchy. This capture and provision of data prevents the need for the applications to link to each
layer in the architecture of the channel in order to interrogate the linked exceptions, and any additional
information they might contain. The following key names are defined:
v IBM.WMQ.WCF.ErrorCode: The error message code of the current custom channel exception.
v IBM.WMQ.ReasonCode: The underlying IBM MQ reason code.
v IBM.WMQ.CompletionCode: The underlying IBM MQ completion code.

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1263

WCF trace configuration
There are two options for configuring WCF trace. You can either configure trace programmatically or
through an environment variable.

WCF trace configuration and trace file names: SOAP/JMS interface
When trace is fully enabled, it produces two output files, one for diagnosing WCF problems, and one
detailed file for internal trace diagnostic material. To simplify trace enablement, both the .NET 3
TraceSource and XMS .NET trace stacks use a single interface.

Two different trace methods are available for the WCF custom channel. The two trace methods are
activated independently or together. Each method produces its own trace file, so when both trace
methods have been activated, two trace output files are generated.

To keep the configuration and enablement as simple as possible, the same interface is used to control
both trace methods. The app.config file must be edited to include the relevant trace configuration as
described in the following section. Users can then add their own equivalent sections to combine the
output with trace from their own application.

WCF custom channel tracing is not enabled by default. You must first create a trace listener, then set the
required trace level for the selected trace source in the app.config file.

Configuring WCF custom channel with WCF infrastructure trace

Add the following section of code to the <system.diagnostics><sources> section in the app.config file:
<source name="IBM.XMS.WCF" switchValue="Verbose,ActivityTracing">
<listeners>
<remove name="Default"/>
<add name="NewListener"/>

</listeners>
</source>

The preceding piece of code makes the channel trace using the .NET 3 TraceSource. All invocations of the
configuration files associated with the executable files are controlled by this piece of code.

Configuring WCF custom channel with XMS .NET trace

Configuring the XMS .NET trace requires that you add a section of code to the
<system.diagnostics><sources> section in the app.config file. However, the piece of code is added to the
extensible <source> element shown in the Configuring WCF custom channel with WCF infrastructure
trace section. So although the WCF infrastructure trace code must be present for the XMS .NET trace to
work, the WCF infrastructure trace can be disabled if it is not required, as described in the Enabling WCF
trace section.
<source name="IBM.XMS.WCF" switchValue="Verbose, ActivityTracing"
xmsTraceSpecification="*=all=enabled" xmsTraceFilePath="path"
xmsTraceFileSize="2000000" xmsTraceFileNumber="4" xmsTraceFormat="advanced">
<listeners>
<remove name="Default"/>
<add name="NewListener"/>

</listeners>
</source>

WCF trace configuration variables

1264 IBM MQ: Programming

Table 168. WCF trace configuration variables

Variable Description

name Specify the name as: IBM.XMS.WCF

switchValue The switchValue controls the trace level. When
switchValue is set to Off, the WCF infrastructure
TraceSource is not generated. Any other value, such as
Verbose, generates TraceSource. For detailed trace level
information from Microsoft, consult your WCF
documentation or go to the Microsoft WCF Tracing web
page: http://msdn.microsoft.com/en-us/library/
ms733025(vs.85).aspx

xmsTraceSpecification= ComponentName = type = state ComponentName is the name of the class that you want to
trace. You can use a * wildcard character in this name.
For example:

*=all=enabled

specifies that you want to trace all classes, and

IBM.XMS.impl.*=all=enabled

specifies that you require API trace only.

type can be any of the following trace types:

v all

v debug

v event

v EntryExit

state can be either enabled or disabled.

xmsTraceFilePath="filename" If you do not specify an xmsTraceFilePath, or if the
xmsTraceFilePath is present but contains an empty string,
then the trace file is placed in the current directory. To
store the trace file in a named directory, specify the
directory name in the xmsTraceFilePath, for example:

xmsTraceFilePath="c:\somepath"

xmsTraceFileSize="size" The maximum allowed size of the trace file. When a file
reaches this size, it is archived and renamed. The default
maximum is 20 KB, which is specified as:

xmsTraceFileSize="20000000".

xmsTraceFileNumber="number" The number of trace files that are to be retained. The
default is 4 (one active file and three archive files). The
minimum number allowed is two.

xmsTraceFormat="format" There are two levels of xmsTraceFormat: basic and
advanced. The default trace format is basic if you do not
specify an xmsTraceFormat, or if the xmsTraceFormat is
present but contains an empty string. Trace files are
produced in this format if you specify:

xmsTraceFormat="basic"

If you require trace that is compatible with trace analyzer
tools, you must specify:

traceFormat="advanced"

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1265

http://msdn.microsoft.com/en-us/library/ms733025(vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms733025(vs.85).aspx

Enabling WCF trace

There are four combinations for enabling and disabling the two different trace methods. The four
combinations require editing the values of the sections of coded described in the preceding sections.

There is also an environment variable that can be set; for more information see“Enabling WCF trace with
the WCF_TRACE_ON environment variable.”

This table and the values shown are dependent on the pieces of code demonstrated earlier have already
been added to the app.config file.

Table 169. WCF trace enablement combinations.

Trace type Value changed Example

XMS trace enabled.
WCF TraceSource
enabled

The switchValue is not set to Off <source name="IBM.XMS.WCF" switchValue=" Verbose, ActivityTracing"
xmsTraceSpecification="*=all=enabled" xmsTraceFilePath="path"
xmsTraceFileSize="2000000" xmsTraceFileNumber="4"
xmsTraceFormat="advanced">
<listeners>
<remove name="Default"/>
<add name="NewListener"/>
</listeners>
</source>

XMS trace enabled.
WCF TraceSource
disabled

The switchValue is set to Off
and an xmsTraceSpecification
has been given

<source name="IBM.XMS.WCF" switchValue="Off, ActivityTracing"
xmsTraceSpecification="*=all=enabled" xmsTraceFilePath="path"
xmsTraceFileSize="2000000" xmsTraceFileNumber="4"
xmsTraceFormat="advanced">
<listeners>
<remove name="Default"/>
<add name="NewListener"/>
</listeners>
</source>

XMS trace
disabled. WCF
TraceSource
enabled

There are two ways to achieve
this result:

v The switchValue variable is
not set to Off and an
xmsTraceSpecification has
not been added

v The switchValue variable is
not set to Off and the
xmsTraceSpecification has
been set to disabled

<source name="IBM.XMS.WCF" switchValue="Verbose, ActivityTracing"
xmsTraceSpecification="*=all=disabled"
xmsTraceFilePath="path" xmsTraceFileSize="2000000"
xmsTraceFileNumber="4" xmsTraceFormat="advanced">
<listeners>
<remove name="Default"/>
<add name="NewListener"/>
</listeners>
</source>

XMS trace
disabled. WCF
TraceSource
disabled

There are three ways to achieve
this result:

v No <source> element in the
app.config file

v The switchValue variable is
set to Off and an
xmsTraceSpecification has
not been added

v The switchValue variable is
set to Off and the
xmsTraceSpecification has
been set to disabled

<source name="IBM.XMS.WCF" switchValue="Off, ActivityTracing"
xmsTraceSpecification="*=all=disabled"
xmsTraceFilePath="path" xmsTraceFileSize="2000000"
xmsTraceFileNumber="4" xmsTraceFormat="advanced">
<listeners>
<remove name="Default"/>
<add name="NewListener"/>
</listeners>
</source>

Enabling WCF trace with the WCF_TRACE_ON environment variable

As well as the preceding methods described to enable WCF trace, the XMS .NET trace can also be
enabled using the WCF_TRACE_ON environment variable.

Setting the WCF_TRACE_ON environment variable to any non-null value is the equivalent of setting the
xmstraceSpecification to *=all=enabled, for example: " set WCF_TRACE_ON=true "

1266 IBM MQ: Programming

However, if the xmstraceSpecification is explicitly set in the app.config file, then the WCF_TRACE_ON
environment variable is overridden.

WCF trace output files and file names

XMS trace files are traditionally named using the base name and process ID format of: xms_trace_
pid.log, where pid is the process ID.

As XMS trace files can still be produced in parallel with WCF custom channel trace files, the WCF
custom channel trace integrated with XMS .NET trace output files have the following format to avoid
confusion: wcf xms_trace_ pid.log, where pid is the process ID.

The trace output file is created in the current working directory by default, but this destination can be
redefined if necessary.

WCF trace configuration: Non_SOAP/Non-JMS interface
For the Non_SOAP/Non-JMS interface, you can either configure trace through an environment variable
or programmatically.

There are two ways of enabling trace for the Non-SOAP/Non-JMS interface:
v By setting WMQ_TRACE_ON as the environment variable.
v By adding the following section of code to the <system.diagnostics><sources> section in the

app.config file
<source name="IBM.WMQ.WCF" switchValue="Verbose, ActivityTracing"
xmsTraceSpecification="*=all=enabled"
xmsTraceFileSize="2000000" xmsTraceFileNumber="4"
xmsTraceFormat="advanced">
</source>

WCF XMS First Failure Support Technology (FFST)
You can collect detailed information about what various parts of the IBM MQ code is doing by using IBM
MQ trace. XMS FFST has its own configuration and output files for the WCF custom channel.

XMS FFST trace files are traditionally named using the base name and process ID format of: xmsffdc pid
_ date.txt, where pid is the process ID and date is the time and date.

As XMS FFST trace files can still be produced in parallel with WCF custom channel XMS FFST files, the
WCF custom channel XMS FFST output files have the following format to avoid confusion: wcf ffdc pid
_ date.txt, where pid is the process ID and date is the time and date.

This trace output file is created in the current working directory by default, but this destination can be
redefined if necessary.

The WCF custom channel with XMS .NET trace header is similar to the following example:

************* Start Display XMS WCF Environment *************
Product Name :- value
WCF Version :- value
Level :- value
************* End Display XMS WCF Environment *************

The FFST trace files are formatted in the standard way, without any formatting that is specific to the
custom channel.

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1267

WCF version information
WCF version information aids with problem determination and is included in the assembly metadata of
the custom channel.

The IBM MQ custom channel for WCF version metadata can be retrieved in one of three ways:
v Using the IBM MQ utility dspmqver. For information about how to use dspmqver, see: dspmqver
v Using the Windows Explorer properties dialog: In the Windows Explorer, right-click IBM.XMS.WCF.dll

> Properties > Version.
v From the header information of any of the channels FFST or trace files. For more information about the

FFST header information, see: “WCF XMS First Failure Support Technology (FFST)” on page 1267

WCF hints and tips
The following hints and tips are in no significant order, and might be added to when new versions of the
documentation are released. They are subjects that might save you time if they are relevant to the work
that you are doing.

Externalizing exceptions from the WCF service host
For services hosted using the WCF service host; any unhandled exceptions thrown by the service, WCF
internals, or channel stack are not externalized by default. To be informed of these exceptions, an error
handler must be registered.

The following code provides an example of defining the error handler service behavior which can be
applied as an attribute of a service:
using System.ServiceModel.Dispatcher;
using System.Collections.ObjectModel;
....

public class ErrorHandlerBehaviorAttribute : Attribute, IServiceBehavior, IErrorHandler
{

//
// IServiceBehavior Interface
//
public void AddBindingParameters(ServiceDescription serviceDescription,

ServiceHostBase serviceHostBase, Collection<ServiceEndpoint> endpoints,
BindingParameterCollection bindingParameters)

{
}
public void ApplyDispatchBehavior(ServiceDescription serviceDescription,

ServiceHostBase serviceHostBase)
{

foreach (ChannelDispatcher channelDispatcher in serviceHostBase.ChannelDispatchers) {
channelDispatcher.ErrorHandlers.Add(this);

}
}
public void Validate(ServiceDescription serviceDescription, ServiceHostBase serviceHostBase)
{
}

//
// IErrorHandler Interface
//
public bool HandleError(Exception e)
{

// Process the exception in the required way, in this case just outputting to the console
Console.Out.WriteLine(e);

// Always return false to allow any other error handlers to run
return false;

}

1268 IBM MQ: Programming

public void ProvideFault(Exception error, MessageVersion version, ref Message fault)
{
}

}

Handling different SOAP response element names
WCF expects the name of a returned value to be in a specific format by default, but a service might not
return an element with its name in the expected format.

WCF has the convention of expecting the returned value to be named in the following format: methodName
Result where methodName is the name of the service operation. For example, for a service called
getQuote, WCF expects the response to be called: getQuoteResult .

However, the service can return an element with a name that does not conform to this format.

When running the scvutil tool to generate a proxy client, if the WSDL specifies a different name, then the
proxy interface adds parameters to instruct WCF with the name to look for. For example:
[System.ServiceModel.OperationContractAttribute(Action = "", ReplyAction = "*")]
[System.ServiceModel.XmlSerializerFormatAttribute(Style = System.ServiceModel.OperationFormatStyle.Rpc,

Use = System.ServiceModel.OperationFormatUse.Encoded)]
[return: System.ServiceModel.MessageParameterAttribute(Name = "getQuoteReturn")]
float getQuote(string in0);

If you create your own interface (for example, by adding a request-reply method to an existing proxy
interface), then you must ensure that you add the same parameters to the interface if the service returns a
different name. If you do not do so, then the most common issue is that a call to the service method
always returns a null value; if an object is returned, then the method returns null, but if a numeric value
such as an integer is returned, then the method returns 0.

Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ 1269

1270 IBM MQ: Programming

Developing web services with IBM MQ

You can develop IBM MQ applications for Web services using the IBM MQ transport for SOAP or the
IBM MQ bridge for HTTP.

The IBM MQ transport for SOAP provides a JMS transport for SOAP. The IBM MQ transport for SOAP is
also integrated into other environments such as Microsoft Windows Communication Foundation,
WebSphere Application Server, and CICS Transaction Server.

For more information about the IBM MQ transport for SOAP, see “IBM MQ transport for SOAP.”

With IBM MQ bridge for HTTP, client applications can exchange messages with IBM MQ without the
need to install an IBM MQ MQI client. You can call IBM MQ from any platform or language with HTTP
capabilities.

For more information about the IBM MQ bridge for HTTP, see “IBM MQ bridge for HTTP” on page 1337.
Related concepts:
“Application development concepts” on page 1
You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.
“Developing applications” on page 1
You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM MQ support applications written in procedural languages, and object oriented
languages and frameworks.
“Designing IBM MQ applications” on page 51
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.
“Sample IBM MQ procedural programs” on page 473
This set of sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.
“Writing a procedural application for queuing” on page 76
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.
“Writing client procedural applications” on page 293
What you need to know to write client applications on IBM MQ using a procedural language.
“Writing publish/subscribe applications” on page 174
Start writing publish/subscribe IBM MQ applications.
“Building a procedural application” on page 389
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.
“Handling procedural program errors” on page 443
This information explains errors associated with your applications MQI calls either when it makes a call,
or when its message is delivered to its final destination.

IBM MQ transport for SOAP
The IBM MQ transport for SOAP provides a JMS transport for SOAP. The IBM MQ transport for SOAP is
also integrated into other environments such as Microsoft Windows Communication Foundation,
WebSphere Application Server, and CICS Transaction Server.

© Copyright IBM Corp. 2007, 2018 1271

Introduction to IBM MQ transport for SOAP
The IBM MQ transport for SOAP provides a JMS transport for SOAP. The IBM MQ SOAP sender and
listener provide a means to call Web services.

The IBM MQ SOAP listener supports services hosted by .NET Framework 1, .NET Framework 2, and
Axis 1.4. The IBM MQ SOAP sender supports web services clients running on .NET Framework 1, .NET
Framework 2, Axis 1.4 and Axis2. Clients can be either an IBM MQ server or client application. The IBM
MQ transport for SOAP is also integrated into other environments such as Microsoft Windows
Communication Foundation, WebSphere Application Server, and CICS Transaction Server.

The integration into Microsoft Windows Communication Foundation is part of the IBM MQ support for
.NET Framework 3.

The IBM MQ transport for SOAP is a set of protocols and tools to transport SOAP messages by using
JMS over IBM MQ. It is packaged in different ways for different application environments as shown in
Table 170.

Table 170. IBM MQ transport for SOAP application environments

Integrated with additional IBM MQ
components

Integrated into a framework

Provided as part of IBM MQ
installation

.NET Framework 1

.NET Framework 2
Axis 1.4

Windows Communication Foundation
(.NET Framework 3)
Axis2 (Client only)

Provided in another software
package

WebSphere Application Server
CICS Transaction Server 4.1
WebSphere ESB
WebSphere Process Server for
Multiplatforms

Integration of the IBM MQ transport for SOAP into an application framework simplifies the development
and deployment of web services to IBM MQ.

With additional IBM MQ SOAP components, you can interact directly with the IBM MQ SOAP
components to develop and deploy services. Use the IBM MQ SOAP tools to configure and deploy the
web services and the web service clients to IBM MQ.

In the integrated environments, development and deployment is simpler. You use the same tools for
development and deployment as you would to develop and deploy a SOAP HTTP web service. You must
still configure the IBM MQ queues, channels, and queue managers that you require using IBM MQ tools.

You can mix and match IBM MQ SOAP clients and servers from any of these environments.

Benefits

The IBM MQ transport for SOAP offers existing IBM MQ users the following principal benefits:

Using your IBM MQ network to connect existing web services.

The services might be ones you have written, or services that are provided as interfaces to other
packaged software applications you have deployed.

The benefit comes from using your existing IBM MQ network to connect web services. The IBM
MQ transport has the advantage of being a managed and reliable queued messaging service.

Writing new applications, or converting existing applications, to use SOAP rather than IBM MQ
interfaces.

1272 IBM MQ: Programming

Typically, applications require a specific IBM MQ adapter to be developed to integrate with
another application. Adapters have two parts: the connector piece, that puts and gets messages to
and from the transport, and the adapter piece that converts data to and from application-specific
formats. Integrating each pair of applications is a new challenge.

The benefit of SOAP comes from standardizing on SOAP for defining application interfaces, and
then having a choice of transports. You do not need to write application-specific adapters, and
you can choose whether to use IBM MQ or HTTP as the connector. Which transport you choose
depends on what qualities of service and connectivity you require.

For existing SOAP over HTTP users, the benefit of IBM MQ transport for SOAP comes from using a
managed and reliable asynchronous transport. The benefits are twofold:

A truly asynchronous programming model for availability and performance.
By using an asynchronous client interface, the client and service applications do not have to be
available at the same time. Requests sent by the client will be stored until the service is available
to process them.

A ready built managed network that is designed to be reliable and available.

By choosing IBM MQ as a transport, you are getting the advantage of using a managed network
that provides reliable messaging.

In contrast, transports such as HTTP and FTP over TCP/IP are unmanaged. An unmanaged
network is ideal for unpredictable connections: there are fewer management tasks.

Summary

IBM MQ transport for SOAP provides the following components:
v The SOAP/JMS transport binding is used in WSDL documents to bind a SOAP service to a JMS

transport. The IBM MQ implementation of the SOAP/JMS binding uses a URI that takes either of two
forms:

IBM MQ transport for SOAP
jms:/queue? &Name=Value&Name=Value...

IBM MQ wire format for W3C candidate recommendation
jms:queue: qName ?connectionFactory=connectQueueManager (qMgrName)&Name=Value&Name=Value...

v The mapping of a SOAP message onto an IBM MQ message.
v Two IBM MQ SOAP listeners to receive SOAP requests, one for Java and one for .NET Framework 1 or

.NET Framework 2. The listeners use .NET or Axis 1.4 to process the SOAP request.
v Two IBM MQ SOAP senders to create IBM MQ SOAP requests. web services clients register with a

sender to process jms: SOAP requests.
v Integration with Windows Communication Foundation (WCF), sometimes known as .NET 3, to send

and receive IBM MQ Transport for SOAP messages.
v Integration of the client with Axis2, sometimes known as JAX-WS, to send IBM MQ Transport for

SOAP or W3C SOAP JMS messages.
v The command amqwdeployWMQService, which creates development and run time components and scripts

to deploy a web service by using the IBM MQ transport for SOAP.
v Sample Java and .NET client and service code.
v A script to set the class path, and other utility scripts.

In the integrated environments the sender and listener are integrated into each environment, as are
extensions to the development and deployment tools.

Developing web services with IBM MQ 1273

Integration of SOAP and IBM MQ
The IBM MQ transport for SOAP extends SOAP, and Web services tools and run time, with IBM MQ as
an alternative transport to HTTP for SOAP. You do not need to modify existing Web services to use IBM
MQ transport for SOAP as a transport. The transport uses a custom URI format for SOAP/JMS. The W3C
URI format for SOAP/JMS is supported in a limited way by Axis2 clients.

An additional line of code has to be added to clients in the .NET Framework 1, .NET Framework 2, and
Axis 1.4 environments. No additional code is required in Axis 2 and Windows Communication
Foundation (WCF) clients. The IBM MQ SOAP listener runs services in the .NET Framework 1, .NET
Framework 2, and Axis 1.4 environments. The IBM MQ transport for SOAP is integrated into some other
application server environments, including WCF, CICS, and WebSphere Application Server.

What is SOAP?

SOAP9 describes the standardized format of the messages and interaction protocols that applications use
to exchange requests, replies, and datagrams. SOAP is independent of the transport used to transfer the
messages, and of the application environment that sends and receives the messages. The W3C defines
SOAP Version 1.2 succinctly:

SOAP Version 1.2 provides the definition of the XML-based information which can be used for exchanging
structured and typed information between peers in a decentralized, distributed environment.10 .

To use SOAP it must be bound to a transport, such as HTTP, e-mail, or IBM MQ.

A SOAP protocol binding framework is the set of rules for carrying a SOAP message on top of another
protocol, such as HTTP. SOAP Version 1.2 Part 2: Adjuncts (Second Edition) describes the SOAP HTTP
binding.

The W3C candidate recommendation, 4 June 2009, SOAP over Java Message Service 1.0, describes the
recommendation for the SOAP JMS binding. As JMS is an API specification, and not a transport protocol,
the JMS SOAP recommendation does not describe the wire-format of SOAP JMS messages. It describes
the SOAP interaction protocols and the JMS API binding. Consequently, when using the JMS SOAP
recommendation you must still use the same JMS implementation for the SOAP client and the SOAP
server. It does enable a SOAP JMS application to be run on any implementation of JMS. A JMS
implementation can be plugged into a J2EE application server, if both the server and the JMS
implementation comply with the JCA specification. IBM MQ JMS complies with the JCA specification and
can be plugged into a compliant application server.

IBM MQ transport for SOAP binding is like the proposed W3C standard, but it is not the same. Its usage
is described in the topic MQRFH2 SOAP settings. Unlike the W3C candidate recommendation, the SOAP
binding is not formally specified. Effectively, it is the HTTP binding, and the service address takes the
form, jms:/queue?name=value&name=value..., rather than http://authority/path?query#fragment. jms: is
not an officially registered IANA URI scheme.

What is a Web service?

SOAP enables programs written in different languages, running on different platforms, to communicate
using various transport protocols. SOAP is the protocol specification. A Web service is an application that
provides a service through a SOAP interface that can be accessed using internet protocols.

An important goal of SOAP is to provide services that clients can use easily. Once you have designed a
client to use a service, you can program the call to invoke the service without reference to external

9. Historically, the acronym stood for Simple Object Access Protocol.

10. W3C: SOAP Version 1.2 Part 0

1274 IBM MQ: Programming

http://www.w3.org/tr/2007/rec-soap12-part2-20070427/
http://www.w3.org/tr/2009/cr-soapjms-20090604/
http://www.w3.org/tr/2003/rec-soap12-part0-20030624/

documentation. Service interfaces are described in XML, in a WSDL document. The query,
http://authority/path?wsdl, returns the WSDL description of a SOAP service.

Tip: When you deploy a Web service to use IBM MQ, also deploy the service to HTTP so that the
standard WSDL query works.

Developing Web services

Web services have a client and a service part. The service is written first, either starting from the interface
description in WSDL, or by following the rules for writing the service class. Web service toolkits have
utilities to generate WSDL from the interface definition of a class; for example java2wsdl or disco. They
also have tools to generate or class skeletons from WSDL interface descriptions; for example wsdl2java,
wsimport, or wsdl. The former is known as bottom up development, and the latter top down.

The amqwdeployWMQService command in IBM MQ transport for SOAP uses these tools to generate WSDL,
client stubs, and client proxies.

Web services are typically written using an integrated development environment targeted at a particular
application server environment:

Eclipse IDE for Java EE Developers
Creates Web services for Axis 2. Supports JAX-RPC and JAX-WS

Rational® Application Developer V7.5
Creates Web services for WebSphere Application Server V7 and previous versions, and also for
Axis. Supports JAX-RPC and JAX-WS.

WebSphere Integration Developer V6.2
Creates Web services for WebSphere Process Server and WebSphere ESB. Supports JAX-RPC and
JAX-WS.

Visual Studio 2008 (Version 9)
Creates Web services for .NET Framework 3.5 and earlier (Windows Communication
Foundation)

Visual Studio 2005 (Version 8)
Creates Web services for .NET Framework 2 and earlier

You can use any of these tools in combination with IBM MQ transport for SOAP. Once you have
developed a service to use with HTTP, use the amqwdeployWMQService tool to deploy the services to use
IBM MQ as a transport. You can write a new client using the output from the tool, or modify your
existing clients to use the IBM MQ transport for SOAP.

If IBM MQ transport for SOAP is integrated into the application environment, then you do not need use
the amqwdeployWMQService tool or modify the client code. The client SOAP layer directs client requests
that have a URI with the prefix jms: to the IBM MQ transport for SOAP. The server SOAP layer calls
IBM MQ transport for SOAP to wait for jms: SOAP requests, and returns responses to IBM MQ transport
for SOAP.

Typically, .NET services have been developed bottom up using Web service annotations in code, and Java
services top down, using WSDL interface definitions. The difference in approaches is narrowing, as Java
Standard Edition Version 6 supports JAX-WS 2.0, and uses annotations to qualify the definition of service
interfaces. It is now as easy to develop Java services bottom up as top down. Which approach you choose
is a matter of development method.

The Web services client is written after the service, using the WSDL service definition and generated
client stubs and proxies. In some applications, the service definition is not known when the client is
written. The client retrieves the service WSDL and creates service requests dynamically. More commonly

Developing web services with IBM MQ 1275

the service definition is known, but the address to which the service is deployed, is not. The Web service
toolkit generates interfaces for the client to use to make service requests. The client provides the service
address when it is required. In the third case, the WSDL contains all the information a client needs. The
WSDL contains both the interface and address of the service. The code generated by the Web service
toolkit has all the information needed by the client to make requests of a service.

You can use any of these three styles with IBM MQ transport for SOAP.

Web service application environments

Web service toolkits require a mapping from the WSDL definition of a service to the streams of bytes that
are transferred in SOAP requests and responses. The byte stream is defined by the SOAP specification,
and is contained in the SOAP envelope. The SOAP envelope is shown in Figure 185.

Mapping from the SOAP envelope to the language binding and back is part standardized, and part
proprietary. The mapping is fundamental to the .NET architecture, and is provided as part of the
Common Language Runtime (CLR). The mapping is standardized in Java by JAX specifications. Because
the Java mappings are standardized, Java Web service clients and services are portable between different
Java-based application environments. JAX-RPC (sometimes called JAX-WS 1.0) is the mapping most in
use today. It is supported by Axis 1.4. JAX-WS (sometimes called JAX-WS 2.0) is a greatly improved
standard and is likely to replace JAX-RPC rapidly. JAX-WS is supported by Axis 2.0. IBM MQ 7.0.1 does
not support JAX-WS and Axis 2.

IBM MQ transport for SOAP does not alter the contents of the SOAP envelope, and the contents do not
affect the transport. The language bindings do affect the IBM MQ transport for SOAP. IBM MQ 7.0.1
supports .NET Framework 1, .NET Framework 2, and Axis 1.4 using the code and utilities shipped with
IBM MQ transport for SOAP. Support for the WebSphere transport for SOAP in .NET Framework 3 and
3.5 is implemented using the IBM MQ custom channel for Windows Communication Foundation.

Other SOAP development and run time environments might ship support for IBM MQ transport for
SOAP, and support different languages. For example, Web services running on CICS supports languages
such as COBOL and PL/1.

Note: The mapping used makes no difference to the interoperability of Web services. You can mix and
match clients and services written using .NET, JAX-RPC, and JAX-WS mappings.

What is IBM MQ transport for SOAP?

IBM MQ transport for SOAP is a SOAP binding and a Web services toolkit. Together, they enable
applications to exchange SOAP messages using IBM MQ rather than HTTP. Figure 186 on page 1277
shows IBM MQ as an alternative to HTTP as a SOAP transport.

<?xml version=’1.0’?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header> <!-- optional -->

<!-- headers... -->

</soap:Header>
<soap:Body>
<!-- payload or fault message -->

</soap:Body>
</soap:Envelope>

Figure 185. SOAP envelope

1276 IBM MQ: Programming

SOAP over HTTP is shown as (1) in the diagram. The client SOAP layer converts a request into a SOAP
message and the HTTP component sends over TCP/IP. The HTTP server component listens for HTTP
requests, typically on the TCP/IP port 80. If the request is for a SOAP service, the HTTP server
component calls the SOAP layer to convert the SOAP request into method call. It then returns the
response.

SOAP over IBM MQ is shown as (2). The client application registers the IBM MQ SOAP sender
component as a handler for the jms: protocol with the SOAP layer. The SOAP layer passes SOAP
messages addressed to jms: to the IBM MQ SOAP sender. The sender uses the URI in the message to
place the message on the request queue with the required qualities of service. The corresponding IBM
MQ SOAP listener waits for messages on its request queue and calls the SOAP layer to process requests
and return responses.

The SOAP sender and listener are normal IBM MQ programs. They can be connected to the same queue
manager, as in Figure 187 on page 1278, or connected to different queue managers; see Figure 188 on page
1279. The client can be connected by a client connection.

Client

application

Target

service

SOAP

layer

SOAP/WMQ

Sender

SOAP/WMQ

Listener
WMQ

SOAP

layer

HTTP
1

2

HTTP

server

Figure 186. Overview of IBM MQ transport for SOAP

Developing web services with IBM MQ 1277

Client

application

Target

service

SOAP

layer

SOAP/WMQ

Sender

SOAP/WMQ

Listener
WMQ

SOAP

layer

Request
queue

Dead letter
queue

QM2

WebSphere MQ

Response
queue

Figure 187. Queues used by SOAP/IBM MQ (single queue manager)

1278 IBM MQ: Programming

W3C candidate recommendation for binding SOAP to JMS.

The W3C candidate recommendation defines the SOAP over JMS binding; SOAP over Java Message
Service 1.0. Also useful for its examples is URI Scheme for Java(tm) Message Service 1.011.

Some application frameworks, such as WebSphere Application Server v7, have support for the W3C
candidate recommendation. Send SOAP requests formatted with a URI compatible with the W3C
candidate recommendation using the Axis2 client; see W3C SOAP over JMS URI for the IBM MQ Axis 2
client. The Axis2 client sends a SOAP request formatted with either a W3C or an IBM MQ transport for
SOAP based on URI in the SOAP request.

Axis2 client support for the W3C recommendation is introduced in the 7.0.1.3 fixpack. Support for other
clients, and for the SOAP listeners provided by IBM MQ is not provided.

11. Look for URI Scheme for JMS, in the W3C specification references, for the latest draft.

Client

application

Target

service

SOAP

layer

SOAP/WMQ

Sender

SOAP/WMQ

Listener
WMQ

SOAP

layer

Transmission
queue

Request
queue

Dead letter
queue

Dead letter
queue

QM1 QM2

WebSphere MQ

Response
queue

Transmission
queue

Figure 188. Queues used by SOAP/IBM MQ (separate queue managers)

Developing web services with IBM MQ 1279

http://www.w3.org/tr/soapjms/
http://www.w3.org/tr/soapjms/
http://tools.ietf.org/id/draft-merrick-jms-uri-05.txt

Implementation of WebSphere transport for SOAP on .NET Framework 1, .NET 2
and Axis 1.4
You might want to write your own IBM MQ SOAP sender and listener. Use the implementation of IBM
MQ transport for SOAP on .NET Framework 1, .NET Framework 2, and Axis 1.4 as a guide.
1. A client program uses the appropriate Web services framework in the same way as it would for the

HTTP transport. It must also register the jms: prefix. The prefix is registered using either the
com.ibm.mq.soap.Register.extension() Java method or the IBM.WMQSOAP.Register.Extension() CLR
method.

2. The Axis 1.4 or .NET Framework 1 or 2 framework marshals the call into a SOAP request message
exactly as for SOAP/HTTP.

3. An IBM MQ service is identified by a URI prefixed with jms:. When the framework identifies the
jms: URI, it calls the IBM MQ transport sender code; com.ibm.mq.soap.transport.jms.WMQSender (for
Axis 1.4) or IBM.WMQSOAP.MQWebRequest (for .NET1 and 2). If the framework encounters a URI
with an http: prefix, it calls the standard SOAP over HTTP sender.

4. The SOAP message is transported by the IBM MQ SOAP sender using the request queue. The
SimpleJavaListener (for Java) or amqwSOAPNETListener (for .NET) receives the request message.
The IBM MQ SOAP listeners are stand-alone processes and are multithreaded with a customizable
number of threads.

5. The IBM MQ SOAP listener reads the incoming SOAP request, and passes it to the appropriate Web
service infrastructure.

6. The Web service infrastructure parses the SOAP request message and invokes the service. The
procedure is the same as for a message that arrived on an HTTP transport.

7. The infrastructure formats the response into a SOAP response message and returns it to the IBM MQ
SOAP listener.

8. The listener places the message on the response queue, and the message is transferred to the IBM MQ
SOAP sender. The sender passes it to the client Web service infrastructure.

9. The client infrastructure parses the response SOAP message and hands the result back to the client
application.

Each application context is served by a separate IBM MQ request queue.

The application context is controlled in Axis 1.4 by ensuring that the IBM MQ SOAP listener and service
execute in the appropriate directory. Axis 1.4 sets the correct CLASSPATH for the directory.

Application context is controlled in .NET by the IBM MQ SOAP listener executing the service in a context
created by a call to ApplicationHost.CreateApplicationHost. The call specifies the target execution
directory. Each service then operates in the directory in which it was deployed.

amqwdeployWMQService generates the request and response queues. It also generates the infrastructure
necessary for handling the queues and deploying services to Axis 1.4.

1280 IBM MQ: Programming

IBM MQ transport for SOAP and Web services reliable messaging
Web services reliable messaging is a protocol for reliably exchanging Web service requests and responses
over an unreliable connection. It is best-suited to solve problems of short-lived connection disruption.

IBM MQ for SOAP takes advantage of using an IBM MQ managed and reliable network for passing
SOAP messages. Transports such as HTTP and FTP are unmanaged. Unmanaged networks are ideal for
unpredictable connections, where the difficulties and costs of managing connections outweigh the benefits
of not loosing requests and responses.

To overcome the problem of losing files when connections break in unmanaged networks, services like
managed FTP build a management layer on top of FTP. The management layer takes over the burden of
checking that files have transferred successfully from users, and retransmits missing files if necessary. To
use managed FTP, you must have the management software installed at both ends of the connection.

Web services reliable messaging (WSRM) takes a different approach to solving the problem of unreliable
connections. Its goal is to transfer Web service requests and responses reliably, without both ends of the
connection having to use the same software. Any software, by implementing the Web services reliable
messaging protocol, can exchange messages reliably with other software.

When a connection fails, a sender and receiver must preserve the context of the WSRM message transfer,
using a generated URI as a key. The sender and receiver keep attempting to establish a new connection. If
a new connection is successfully established, the transfer completes. The WSRM specification does not
specify how context is preserved, or when a new connection is attempted.

You might decide that only short-lived outages are of interest. For longer outages, you might be prepared
to discard transfers that could not be restarted after a time. Similarly, you might be prepared to discard
transfers if either the client or service fails. Leaving the user responsible for assuring transfers, places
fewer demands on managing the coordination of client and service.

If network outages are long-lived, over 30 minutes or so, or if the client or server fails, there is an
increased likelihood that some connections are never re-established. You can no longer rely on WSRM
restoring message transfer automatically in an unmanaged way. You have to consider managing the failed
WSRM connections, which implies developing software to manage the network of clients and services.

Using WSRM to overcome short outages might significantly reduce dealing with lost messages on a
mobile network. If you do not have to assure message delivery, the benefits of reducing message loss
might justify the additional cost of developing a WSRM implementation.

SOAP over JMS provides assured message delivery and deals with longer duration outages of the client,
the server, and the network. If you are seeking a more reliable quality of service for SOAP than HTTP,
which solution do you choose: IBM MQ transport for SOAP or WSRM? The answer depends on many
factors. Some of the factors to consider are listed:
1. Whether the unreliability is due to connection failure.
2. How long-loved connection failures are.
3. If you can manage both the client and server side of the connection.
4. If the user or an administrator is ultimately responsible for the delivery of messages.

Developing web services with IBM MQ 1281

Installing and verifying IBM MQ Web services
Use the instructions in these topics to install and verify the IBM MQ transport for SOAP.

Installing IBM MQ Web transport for SOAP
Use these instructions to install the IBM MQ Web transport for SOAP. The installation creates tools to run
Web service clients or services using IBM MQ as the SOAP transport. The tools are used in the .NET
Framework 1, .NET 2, Axis 1.4, or Axis2 SOAP environments.

Before you begin

Check the prerequisite products at IBM MQ System Requirements. The installation process does not
check for the presence and availability of the prerequisite software. You must verify that the prerequisites
are installed.

IBM MQ provides a copy of the Axis 1.4 run time. Use this version with IBM MQ rather than any other
you might have installed. IBM does not provide technical support for Apache Axis. Contact the Apache
Software Foundation if you have technical problems with it.

To run Web services in the .NET Framework 3 SOAP environment, IBM MQ uses Windows
Communication Foundation. The IBM MQ custom channel for Windows Communication Foundation
runs Web service clients and services using IBM MQ as a transport for SOAP messages.

About this task

You can install the IBM MQ Web transport for SOAP as either an IBM MQ MQI client or Server
application. If you have already installed IBM MQ as a client or a server on your computer, check that
you have installed the components listed.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

Carry out the following installation steps.

Procedure
1. Select the Java and .Net Messaging and Web services component for installation.
2. On Solaris and HP-UX, select the Java Runtime environment component for installation.
3. Select the Development toolkit for installation.
4. Install and verify IBM MQ as described in the Quick Beginning for your platform.
5. Copy the Apache Axis 1.4 run time, axis.jar from the prereqs/axis directory on the IBM MQ

installation media. Copy it to the installation directory described in Table 171 on page 1283, Table 172
on page 1283, or Table 173 on page 1283.

Windows
Copy D:\PreReqs\axis\axis.jar MQ_INSTALLATION_PATH\java\lib\soap

AIX
cp -f PreReqs/axis/axis.jar MQ_INSTALLATION_PATH/java/lib/soap/axis.jar
chown mqm:mqm MQ_INSTALLATION_PATH/java/lib/soap/axis.jar
chmod 444 MQ_INSTALLATION_PATH/java/lib/soap/axis.jar

HP-UX, Solaris, and Linux (all platforms) installation directories
cp -f PreReqs/axis/axis.jar MQ_INSTALLATION_PATH/java/lib/soap/axis.jar
chown mqm:mqm MQ_INSTALLATION_PATH/java/lib/soap/axis.jar
chmod 444 MQ_INSTALLATION_PATH/java/lib/soap/axis.jar

6. On Windows 2003, run Aspnet_regiis.exe to update the script maps to point to the version of the
Common Language Run time your are using. Look for the Aspnet_regiis.exe utility in
%SystemRoot%Microsoft.NET/Framework/version-number .

1282 IBM MQ: Programming

http://www.ibm.com/software/integration/wmq/requirements/

7. Set the environment variable, WMQSOAP_HOME, to point to the IBM MQ installation directory.

Results

Table 171. Windows installation directories

Location Contents

MQ_INSTALLATION_PATH \programs\bin Binary, command, DLL, and executable files

MQ_INSTALLATION_PATH \programs\java\lib .jar files

MQ_INSTALLATION_PATH \programs\java\lib\soap SOAP .jar files

MQ_INSTALLATION_PATH \programs\soap\samples Samples and IVT

Table 172. AIX installation directories

Location Contents

MQ_INSTALLATION_PATH/bin Shell scripts

MQ_INSTALLATION_PATH/java/lib .jar files

MQ_INSTALLATION_PATH/java/lib/soap axis.jar and other JAX-RPC .jar files

MQ_INSTALLATION_PATH/samp/soap Samples and IVT

Table 173. HP-UX, Solaris, and Linux (all platforms) installation directories

Location Contents

MQ_INSTALLATION_PATH/bin Shell scripts

MQ_INSTALLATION_PATH/java/lib .jar files

MQ_INSTALLATION_PATH/java/lib/soap axis.jar and other JAX-RPC .jar files

MQ_INSTALLATION_PATH/samp/soap Samples and IVT

What to do next
1. For .NET only, you must register the IBM MQ transport for SOAP files with the Global Assembly

Cache. If .NET is already installed when you install IBM MQ, registration is performed automatically
at installation. If you install .NET after IBM MQ, the registration is performed automatically when the
IVT is first run.
You can run amqiregisterdotnet.cmd to perform registration of the .NET assemblies. You can also run
amqiregisterdotnet.cmd to force reregistration at any stage. Once made, this registration survives
system restarts and subsequent reregistration is not normally necessary.

2. Run the Installation Verification Test, as described in “Verifying the IBM MQ transport for SOAP” on
page 1284.

3. If you intend to develop Axis2 client, you must download Axis2 1.4.1 from Apache; see “Developing a
JAX-WS client for WebSphere transport for SOAP using Eclipse” on page 1301.

Developing web services with IBM MQ 1283

Verifying the IBM MQ transport for SOAP
Verify the IBM MQ transport for SOAP using the runivt command. The command runs a number of
demonstration applications and ensures that the environment is correctly set up after installation. Note
that the web services part of the transport for SOAP is deprecated, and, if you are a new user, you
should not use this.

Before you begin

Before you run the runivt command, ensure that you have the following runtime environments:
v To run on Axis only: you must have a Java SDK (within SOE) available on your system. You must also

include the location of the java.exe and javac.exe commands in the systems PATH environment
variable.

v To run a test on .NET only (supported only on Windows): you must have both a Java SDK and the
.NET compilers and tools on your system. To do so, access either a Visual Studio command prompt or
the Microsoft Windows SDK command prompt, then add the location of the java.exe and javac.exe
files to the PATH environment variable.

v To run all available the tests: for Windows platforms, the environment must be configured as described
in the .NET test run. On UNIX and Linux platforms, the environment must be configured as described
in the Axis only test run.

About this task

Instead of running the verification test on both .NET and Axis, you might want to run the test only on
Axis, or only on .NET.

If you experience problems with the tests and want to start again:
1. Stop the queue manager WMQSOAP.DEMO.QM using the immediate option.
2. Stop the listener that has been started in a different window.
3. Delete the queue manager.
4. Delete the temporary samples directory you created and start again.

On UNIX and Linux platforms, you must run the command using an X Windows system session.

The runivt command changes the contents of the soap/samples directory. To keep the installation image
unchanged, copy the samples directory to a temporary location, and run the verification test from the
temporary location.

You can run the installation verification as many times as you like.

Carry out the following steps to verify the installation of IBM MQ transport for SOAP on .NET
Framework 1, .NET Framework 2, and Axis 1.4:

Procedure
1. Copy the ./tools/soap/samples directory tree to a temporary location.
2. Start a command window with the temporary directory as the current directory.
3. Use the runivt command to start the installation test. The runivt script compiles a test class, the

sample client, and services before deploying and running them. For the test class, the sample client,
and services to run, complete the installation steps outlined in Installing WebSphere(r) MQ Web
transport for SOAP and ensure that the command prompt used to run the runivt command has the
required runtime environment set. Use any of the following methods to run the runivt command:
v Run a test on Axis only: runivt Axis.
v Run a test on .NET only (supported only on Windows): runivt DotNet.
v Run all available the tests: runivt.

1284 IBM MQ: Programming

For more information about the runivt command syntax and parameters, see runivt: IBM MQ
transport for SOAP installation verification test. The tests that you can run are listed in the file
ivttests.txt on Windows and ivttests_unix.txt on UNIX and Linux platforms.

Related information:
runivt: IBM MQ transport for SOAP installation verification test

Developing Web services for IBM MQ transport for SOAP
Use your normal Web service development environment to develop services for use with the IBM MQ
transport for SOAP.

Before you begin
1. If you are planning to use the command-line tools supplied with IBM MQ transport for SOAP:

a. Create a deployment directory for the service.
b. Start a command window in the directory.
c. For .NET, csc.exe and wsdl.exe must be in the path, and be from the same version of .NET

Framework.
d. For Java,

1) Run the amqwsetcp command to set up the classpath.
2) An IBM JRE and a JDK at the same version level must be in the current path. The version level

must be at least 5.0.
3) Customize the classpath to include the locations of any additional .jar libraries, and

directories containing .java packages, including for the service you are developing. Put the
current directory “.” in the classpath.

4) Create a directory, relative to the current directory of the command window, corresponding to
the package name of the service you are developing.

2. Alternatively, use workbench tools that support Web services development. The example development
tasks use Microsoft Visual Studio 2008, Eclipse IDE for Java EE Developers and WebSphere
Application Server Community Edition.

About this task

Existing Web services need no modification to work with WebSphere transport for SOAP. The tools
supplied with IBM MQ transport for SOAP deploy a Web service, and run it using an IBM MQ SOAP
listener. The tools also generate WSDL, .NET client stubs, and .java proxy classes to develop IBM MQ
transport for SOAP clients.

Follow these steps to create a service, and prepare it for deployment and the generation of clients. Follow
the steps in the related tasks to create a service using Eclipse or Microsoft Visual Studio 2008.

Procedure
1. Develop the service using your normal development environment.
2. Test the service using an HTTP Web services client
3. Follow these steps to prepare the deployment directory:
v For Java

a. Copy the .java file defining the service interface into the deployment directory.
b. Copy any .class files for the service into the directory corresponding to the package name.
c. Check that the classpath can locate all the classes that are required: compile the service .java

file using javac.
v For .NET

a. Copy the .asmx file defining the service into the deployment directory, and

Developing web services with IBM MQ 1285

b. If you are using the code-behind model, copy any .dll files into a deployment directory\bin
directory.

Developing a .NET 1 or 2 service for IBM MQ transport for SOAP using Microsoft
Visual Studio 2008
Develop the SampleStockQuote Web service for .NET 1 or .NET 2 using Microsoft Visual Studio 2008

About this task

Create the StockQuote service with a code-behind implementation using Visual Studio 2008.

Procedure
1. Create a template for the service, and check that it runs on HTTP.

a. Start Visual Studio 2008 > File > New > Project.... Select C# Project Type, ,NET Framework 2, and
ASP.NET Web Service Application. Type the Name: and Solution Name: StockQuoteDotNet > OK

b. Right click Service1.asmx in the Solution Explorer > Rename > StockQuote.asmx.
c. Change the code fragment public class Service1 to public class StockQuote.
d. Right click StockQuote.asmx in the Solution Explorer > Open with... > XML Editor. Change

Class=“StockQuoteDotNet.Service1” to Class=“StockQuoteDotNet.StockQuote”
e. Change the code fragment [WebService(Namespace = "http://tempuri.org/")] to

[WebService(Namespace = "http://stock.samples/")].
f. Remove the line of code [ToolboxItem(false)].
g. Check everything is correct so far: Debug > Start Debugging (F5). Verify the output in Explorer.

2. Add the methods from the sample SQDNNonInline.asmx.cs, and test the service on HTTP.
a. Open MQ_INSTALLATION_PATH \tools\soap\samples\dotnet\SQDNNonInline.asmx.cs and replace the

HelloWorld method with the four Quote methods; see Figure 189 on page 1287.
MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.

b. Build > Rebuild the solution > Right click one of the Thread in error > Resolve > Using
System.Threading.

c. Press F5 to start debugging. The service is not conformant to WS-I Basic Profile v1.1. You have the
choice of either changing the WebMethod annotation from [SoapRpcMethod] to
[SoapDocumentMethod], or removing the annotation [WebServiceBinding(ConformsTo =
WsiProfiles.BasicProfile1_1)].

d. Press F5 to verify the implementation using HTTP.
3. Generate WSDL, clients, and run the service using IBM MQ transport for SOAP.

a. Open a command window in the project directory tree, where the StockQuote.asmx is stored.
b. (Optional) Use amqwdeployWMQService to generate artifacts. The queue manager must be

started:
amqswdeployWMQService -f StockQuote.asmx
-u "jms:/queue?initialContextFactory=com.ibm.mq.jms.Nojndi
&connectionFactory=()
&destination=REQUESTDOTNET@QM1
&targetService=StockQuote.asmx"
StockQuote.asmx StockQuote.wsdl

All artifacts are created in the ./generated directory tree.
c. (Optional) Generate just the WSDL for calling the service using IBM MQ transport for SOAP.

amqswsdl -u "jms:/queue?initialContextFactory=com.ibm.mq.jms.Nojndi
&connectionFactory=()
&destination=REQUESTDOTNET@QM1
&targetService=StockQuote.asmx"
StockQuote.asmx StockQuote.wsdl

1286 IBM MQ: Programming

a. Run the .NET listener. Either use .\generated\server\startWMQNListener.cmd or type the
command:
amqSOAPNETListener -u "jms:/queue?initialContextFactory=com.ibm.mq.jms.Nojndi
&connectionFactory=()
&destination=REQUESTDOTNET@QM1
&targetService=StockQuote.asmx"

4. Test the service using a client generated from the WSDL, or using the clients generated by
amqwdeployWMQService.

Sample code

The sample .NET Web service, StockQuoteDotNet, is installed in MQ_INSTALLATION_PATH
\tools\soap\samples\dotnet. MQ_INSTALLATION_PATH is the directory where IBM MQ is installed. The Web
service binding of the published samples differ slightly from the binding used in the task. The task uses
the defaults used in Visual Studio 2008.

There are two examples of .NET Framework 1 and .NET Framework 2 Web services.
StockQuoteDotNet.asmx, is an inline service. SQDNNoninline.asmx, is a code-behind Web service
implemented by SQDNNoninline.asmx.cs.

StockQuoteDotNet has four methods:
1. float getQuote(String symbol)

2. void getQuoteOneWay(String symbol).
3. int asyncQuote(int delay)

4. float getQuoteDOC(String symbol)

<%@ WebService Language="C#" Class="StockQuoteDotNet" %>
using System;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Web.Services.Description;
using System.Threading;
[WebService (Namespace="http://stock.samples")]
public class StockQuoteDotNet {

[WebMethod] [SoapRpcMethod(OneWay=true)]
public void getQuoteOneWay(String symbol) {

if (symbol.ToUpper().Equals("DELAY")) Thread.Sleep(5000);
System.Console.WriteLine("getQuoteOneWay was invoked.");

}
[WebMethod] [SoapRpcMethod]
public float getQuote(String symbol) {

if (symbol.ToUpper().Equals("DELAY")) Thread.Sleep(10000);
return 88.88F;

}
[WebMethod] [SoapRpcMethod]
public int asyncQuote(int delay) {

Thread.Sleep(delay);
return delay;

}
[WebMethod]
public float getQuoteDOC(String symbol) {

return 77.77F;
}

}

Figure 189. Inline service: StockQuoteDotNet.asmx

Developing web services with IBM MQ 1287

<%@ WebService Language="C#" Codebehind="SQDNNonInline.asmx.cs" Class="SQDNNonInline" %>

Figure 190. Code-behind: Design SQDNNonInline.asmx

using System;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Web.Services.Description;
using System.Threading;

[WebService(Namespace = "http://stock.samples")]
public class SQDNNonInline : System.Web.Services.Protocols.SoapHttpClientProtocol
{

[WebMethod]
[SoapRpcMethod(OneWay = true)]
public void getNonInlineQuoteOneWay(String symbol)
{

if (symbol.ToUpper().Equals("DELAY")) Thread.Sleep(5000);
System.Console.WriteLine("getNonInlineQuoteOneWay was invoked.");

}

[WebMethod]
[SoapRpcMethod]
public float getNonInlineQuote(String symbol)
{

if (symbol.ToUpper().Equals("DELAY")) Thread.Sleep(10000);
return 88.88F;

}

[WebMethod]
[SoapRpcMethod]
public int asyncNonInlineQuote(int delay)
{

Thread.Sleep(delay);
return delay;

}
[WebMethod]
public float getNonInlineQuoteDOC(String symbol)
{

return 77.77F;
}

}

Figure 191. Code-behind: Implementation: SQDNNonInline.asmx.cs

1288 IBM MQ: Programming

Developing a JAX-WS EJB Web service for W3C SOAP over JMS
A Web service bound to the W3C candidate recommendation for SOAP over JMS must run in the EJB
container of a JEE application server. This task is step 2 of connecting an Axis2 Web service client and a
Web service deployed to WebSphere Application server using the W3C SOAP over JMS protocol.

Before you begin

Use Rational Application Developer to create the EJB Web service. The Web service wizard in Rational
Application Developer has an option to create a Web service using the W3C candidate recommendation
for the SOAP over JMS binding. Rational Application Developer 7.54 is required. The exercise used
Rational Application Developer included in Rational Software Architect for WebSphere Software v7.5.5.1,

The EJB is deployed to WebSphere Application Server from Rational Application Developer as part of this
task.

To create the WSDL actually used in the task, you must first set up the Liberty profile. Then you can
either import the WSDL from the Dynamic Web project in the Eclipse Galileo workspace, or from the
running HTTP Web service deployed to the Liberty profile.

WebSphere Application Server might still be running. If it is not, you can start it from the Servers view in
RAD.

About this task

In this task, you redeploy the StockQuoteAxis service from running as a JAX-RPC Axis service run by the
SimpleJavaListener using IBM MQ transport for SOAP, to being a JAX-WS service running in WebSphere
Application server using the W3C SOAP over JMS protocol.

There are two parts to migrating the service from the SimpleJavaListener to WebSphere Application
Server:
1. Generate the Web service interface from the WSDL for the service using the Top-down EJB Web

service wizard in Rational Application Developer.
2. Implementing the service by importing the IBM MQ SOAP sample StockQuoteAxis.java.

An alternative approach would have been to generate the service bottom up, from the
StockQuoteAxis.java. However, to be sure that the interface to the migrated service is identical, the
top-down approach is better, as it uses the same WSDL.

The Web service is developed for the EJB container and not the Web container because the JMS support is
part of the EJB container.

Procedure
1. Start Rational Application Developer, and verify WebSphere Application Server is running.

a. Start Rational Application Developer in a new workspace.
b. Open the Java EE perspective.
c. Open the Servers tab, and check WebSphere Application Server is running.
v If there is no WebSphere Application Server v7.0 in the view, right-click in the view > New >

Server. Follow the choices in the wizard to create a WebSphere Application Server v7.0 instance.
v If the server is present, but not started, click the arrow head to start it.
v To verify the properties and get quick access to the server logs, right-click WebSphere

Application Server v7.0 at localhost > Properties > WebSphere Application Server.

Developing web services with IBM MQ 1289

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_about.html

v To administer the server, either use an external browser and open the URL,
http://localhost:9061/ibm/console/unsecureLogon.jsp, or right-click WebSphere Application
Server v7.0 at localhost > Run administrative console.

v The default setting is to publish automatically. Many people prefer deploy updates to the server
manually. Double-click WebSphere Application Server v7.0 at localhost, and expand the
Publishing twisty in the Overview window. Click Never publish automatically.

v Another default that you might want to alter is to clear the Terminate server on workbench
shutdown checkbox in the Overview window.

2. Create the JEE projects You must create an Enterprise Application Project (EAR) and an Enterprise
Java Bean (EJB) Project.
a. File > New > Enterprise Application Project. Name the project W3CJMSEAR > Finish.

The defaults must identify WebSphere Application Server v7.0 as the target runtime, and EAR
version 5.0. The default configuration must be selected.

b. File > New > EJB Project. Name the project W3CJMSEJB. Select W3CEARJMS as the EAR Project
Name > Next.
The default EJB module version is 3.0 and the default configuration is used again.

c. Clear the Create an EJB Client JAR module checkbox> Finish.
3. Generate and deploy the EJB Web service from the StockQuoteAxis WSDL.

a. Run > Launch the Web Services Explorer.
b. Select the WSDL page using the icons in the Web Services Explorer window > click WSDL main

in the Navigator.
c. In the Actions window, type in or browse to the WSDL URL for StockQuoteAxis.wsdl.

If you have Liberty running with StockQuoteAxis deployed as an HTTP service, the URL is:
http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis?wsdl

If you have the WSDL in the file system, the URL might be:
File:\Dirpath\StockQuoteAxis\WebContent\wsdl\StockQuoteAxis.wsdl

d. Click the line containing the imported URL in the Navigator tree.
It is the line immediately following WSDL Main, if it is the first WSDL you have imported into
Web Services Explorer.

e. In the Actions window, click Launch Web Service Wizard > Web Service Skeleton > Go

f. In the Web Service wizard, select Top down EJB Web Service

Select or verify the Configuration using information from Table 174 Check Overwrite files without
warning > Next.

Table 174. Top down EJB Web service configuration

Field Value

Server WebSphere Application Server v7.0

Web service run time IBM WebSphere JAX-WS

Service project W3CJMSEJB

Service EAR project W3CJMSEAR

Configuration: No client generation

g. On the page subtitled, Specify options for creating a WebSphere JAX-WS EJB Top Down Web
Service, check the Switch to JMS binding box. Also check Enable Wrapper Style, Copy WSDL to
project, and Generate Web Service Deployment Descriptor > Next.

h. On the page titled, WebSphere JAX-WS JMS Binding Configuration, check Use SOAP/JMS
interoperability protocol and provide values from Table 175 on page 1291, leaving other fields
blank > Next.

1290 IBM MQ: Programming

Table 175. WebSphere JAX-WS JMS Binding Configuration

Field Value

JMS destination queue

Destination JNDI name: requestaxis

JMS connection factory qm1

Reply to Name W3CJMSEAR

Configuration: replyaxis

a. On the page titled, WebSphere JAX-WS Router Project Configuration, type qm1as in the
ActivationSpec JNDI name field > Next.
RAD takes about 30 seconds to a minute to generate and deploy the project.

b. Ignore the options in the Web Service Publication page> Finish.
4. Check the generated WSDL.

You asked for the service-specific WSDL to be generated and saved in the project.
a. In the Enterprise Explorer navigator, open the folder W3CJMSEJB > ejbmodule > META-INF >

wsdl. Double click StockQuoteAxis.wsdl to open it in the WSDL editor.
Inspect the binding; you see the JMS url:
jms:jndi:requestaxis?jndiConnectionFactoryName=qm1&targetService=StockQuoteAxis

5. Optional step: Bind the EJB to SOAP over HTTP using JAX-WS.
Providing two bindings to the EJB gives clients the choice of SOAP bindings to call the Web service. It
also provides clients with the means to query the Web server to obtain its WSDL, using HTTP.
The steps to bind an EJB to SOAP over HTTP are not included as part of the task.

6. Implement and redeploy StockQuoteAxis using the sample StockQuoteAxis.java
a. In the Enterprise Explorer navigator, open the folder W3CJMSEJB > Services Double click

StockQuoteAxisService to open the implementation class in a Java editor.
b. Open the StockQuoteAxis.java sample program in the WebSphere MQ Installation

directory\tools\soap\samples\java\server folder> Select all the methods, but not the class name
> Copy.

c. In StockQuoteAxisSoapBindingImpl.java select all the methods, but not the class name, and paste
in the methods from StockQuoteAxis.java.

d. Add a print statement to output to the WebSphere Application Server console when the service is
called. Change the getQuote(String symbol) method:
public float getQuote(String symbol) {
System.out.println("StockQuoteAxisSoapBindingImpl called with symbol: "
+ symbol);
return ((float) 55.25);

e. Correct the imports: Source > Organize imports > Save.
f. Correct the three errors due to the implementation not matching the interface.

The errors are due to three of the methods in StockQuoteAxis.java throwing exceptions, and the
WSDL for the service not containing any fault messages. The problem is diagnosed as being a
mismatch between the method signatures and the method Web service annotations.
Either annotate the methods with @WebFault and regenerate the WSDL, or keep the interface
unchanged, and remove the exceptions.
To keep the interface the same, remove the three throws exception from the method signatures >
Save.

What to do next

“Deploying to an Axis2 client using W3C SOAP over JMS” on page 1332

Developing web services with IBM MQ 1291

Developing IBM MQ Web service clients for IBM MQ transport for
SOAP
Use your normal development environment to develop Web service clients for use with the IBM MQ
transport for SOAP.

Before you begin

Create the service. You can use one of the examples in “Developing Web services for IBM MQ transport
for SOAP” on page 1285.

Make choices about how you are going to develop, deploy and use the clients, and where to go to get the
WSDL for client generation.

Decide on your approach to developing clients and services for IBM MQ transport for SOAP.

There are two approaches.
1. Use standard development tools, develop an HTTP service and client, and then use the URL

for WebSphere MQ transport for SOAP.
2. Use the tools and samples supplied with IBM MQ transport for SOAP.

If you take the HTTP route, you can run the service on an HTTP server and also run it using IBM
MQ transport for SOAP. To run it using IBM MQ transport for SOAP, configure the appropriate
IBM MQ listener for SOAP and set up the paths and deployment descriptors to run the service.
The tools provided by IBM MQ transport for SOAP do the configuration for you. Alternatively,
you can configure the environment to run the listeners.

The tools supplied with IBM MQ transport for SOAP are useful in getting started and learning
how to deploy the transport. For production work, there are benefits in using standard tools, and
deploying the same service accessible to different SOAP transports.

Decide on the type of client to develop

You must decide what type of Web service client to develop. The choice depends on whether you
know the service interface and the address of the service.

If the interface is known, use Axis or .NET tools to generate proxy client classes from the service
interface. The proxy client classes make it easier to write a client to call the service. If the location
of the service is known when you develop the client, then use the static proxy interface. If the
location of the service changes, for example if the service is redeployed onto a production server,
then use the dynamic proxy interface.

If the service interface is not known at the time you develop a client, on Axis, you can create a
Dynamic Invocation Interface (DII) client for Axis 1.4. A DII client uses a generic interface to call
any service. To pass parameters to a particular service correctly, you need to build the specific
service interface programmatically. Build the interface programmatically in the client, or by
loading the WSDL for the service into the client. On Axis2, you can create a Dispatch client. The
Dispatch client uses a document model to describe the client request, whereas a DII client uses a
call model. Both work on building the request dynamically.

Obtain the WSDL for the service

Except for the case of the service interface being built programmatically, you must first obtain the
service WSDL in order to create a Web service client. The service WSDL is obtainable from three
different sources:
1. Directly from the Web service implementation using a tool such as java2wsdl (Axis) or disco

(.NET).
2. By querying the Web service using the URL: Web service http url ?wsdl.
3. From a file, either on a file system, or from a registry such as UDDI or WebSphere Service

Registry and Repository.

1292 IBM MQ: Programming

Note: If the service is not accessible using HTTP, then the WSDL query does not work. The
service itself might only be available using the IBM MQ transport for SOAP.

The WSDL generated by amqwdeployWMQService is not the same as WSDL generated using
java2wsdl or disco. The generated WSDL is also different to any WSDL you might have started
with to create the service "Top Down". On Axis, the server-config.wsdd deployment descriptor
maps the SOAP message produced by a client to an operation and service. amqwdeployWMQService
generates a different deployment descriptor from Eclipse.

The WSDL you use to build clients depends on how the service is deployed:

Deployed using amqwdeployWMQService
Use the WSDL generated by amqwdeployWMQService. Specify the -w flag and select
rpcLiteral WSDL. For compatibility, you can select rpcEncoded WSDL. rpcEncoded WSDL
works only with .NET and Axis 1.4 clients.

Manual deployment using SimpleJavaListener
Use one of the following WSDL files:
1. WSDL used to define the service, or stored in a repository.
2. WSDL generated from the service by java2wsdl.
3. WSDL queried using the URL Web service http url ?wsdl, if available from an HTTP

server. You might run a tool such as Web Services Explorer to import the service
definition directly into Eclipse.

You might need to change the URI for the service. Change it from the address of the
HTTP service, to the URI for the IBM MQ transport for SOAP.

Manual deployment using amqSOAPNETListener.
Use one of the following WSDL files:
1. WSDL used to define the service, or stored in a repository.
2. WSDL obtained from the .NET service class (.asmx). using disco.
3. WSDL queried using the URL Web service http url ?wsdl, if available. You might

run a tool such as Web Services Explorer to import the service definition directly into
Eclipse.

4. WSDL obtained by running amqswsdl against the .NET service class (.asmx).

You might need to change the URI for the service. Change it from the address of the
HTTP service, to the URI for the IBM MQ transport for SOAP.

Deployed to Windows Communication Foundation
Obtain the service WSDL by using the URL Web service http url ?wsdl. The service
must be defined with the serviceMetaData behavior configuration as part of the service
definition.

Deployment to a different server platform.
Follow the guidance provided with the platform about how to obtain the correct service
WSDL.

About this task

Develop clients using standard development tools. The following tasks illustrate how to build clients for
.NET 1 and 2, Axis 1.4 (JAX-RPC) and Axis2 (JAX-WS). For Windows Communication Foundation, see
the related tasks links.

Developing web services with IBM MQ 1293

Developing a JAX-RPC client for WebSphere transport for SOAP using Eclipse
Develop an Axis 1.4 Web service client to run using the IBM MQ transport for SOAP.

Before you begin

You must have the service available. You need to have an application server running in eclipse that
supports Axis 1.4 Web services. In this task we use the freely available Liberty profile. You might also use
Tomcat 6, which is a smaller open source application server.

About this task

The task shows the development of three types of client for the sample StockQuoteAxis service using
Eclipse running on Windows. The clients are a static and dynamic client developed using the client proxy,
and a DII client.

Two alternative approaches to generating the client proxies from WSDL are illustrated:
1. Generating client proxies using amqwdeployWMQService.
2. Importing WSDL into Eclipse, and using the Web service wizard to generate the client proxies.

Procedure
1. Start the Eclipse IDE for Java EE developers.
2. Create a Java project called StockQuoteAxisClient:

a. Switch to the Java perspective > File > New > Java Project. In the Project name field of the Create
a Java Project page type, StockQuoteAxisEclipseClient. Make sure that the execution environment
is either J2SE1-1.4 or J2SE-1.5 > Next.

b. On the Java Settings page, select the Libraries tab > Add External JARs...

c. Browse to MQ_INSTALLATION_PATH/java/lib and select all the .jar files > Open.
MQ_INSTALLATION_PATH is the directory where IBM MQ is installed.

d. Browse to MQ_INSTALLATION_PATH/java/lib/soap and select all the .jar files > Open. You must
have installed axis.jar from the IBM MQ installation media into this directory.
MQ_INSTALLATION_PATH is the directory where IBM MQ is installed.

e. The Library tab now references all the .jar files needed to build the client> Finish.
3. Follow one of these two approaches to create proxies in Eclipse for the sample StockQuoteAxis Web

service:
v Generate the client proxies using amqwdeployWMQService.

a. Create a queue manager. For the task create QM1 as the default queue manager.
b. Create a working directory, samples. Copy the StockQuoteAxis.java sample program into

samples/soap/server.
c. Modify amqwsetcp.cmd in MQ_INSTALLATION_PATH/bin to include the current directory in the

classpath. MQ_INSTALLATION_PATH is the directory where IBM MQ is installed.
d. Open a command window in samples and run the modified amqwsetcp command
e. Create WSDL for the StockQuoteAxis service by running the command,

amqwdeployWMQService -f soap/server/StockQuoteAxis.java -c genAxisWsdl
-u "jms:/queue?destination=REQUESTAXIS
&initialContextFactory=com.ibm.mq.jms.Nojndi
&connectionFactory=(connectQueueManager(QM1)binding(auto))"

Remember: Use “/”, rather than “.” or “\” when using Java commands.

Tip: Rather than import the generated proxies into Eclipse, you can import the generated WSDL
from .samples/generated. The resulting proxies differ in two ways:
1) The package names are different - which you can refactor.

1294 IBM MQ: Programming

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_about.html

2) The Eclipse generated proxies include an additional helper class, StockQuoteAxisProxy.java
f. Create the client proxies for the StockQuoteAxis service by running the command:

amqwdeployWMQService -f soap/server/StockQuoteAxis.java -c genProxiestoAxis
-u "jms:/queue?destination=REQUESTAXIS
&initialContextFactory=com.ibm.mq.jms.Nojndi
&connectionFactory=(connectQueueManager(QM1)binding(auto))"

g. Import the client proxies into StockQuoteAxisClient:
1) Right click StockQuoteAxisClient\src > Select File System > Next > Browse... > find the

folder .\samples\generated\client\remote\soap\server > OK.
2) Check server in the Import page > Finish.

h. Refactor the package name to soap.server.
1) Right click the package containing the client proxies > Refactor > Rename. Type the New

name: soap.server > leave the selected defaults for the other choices > OK. All the errors are
fixed.

v Generate the client proxies using Eclipse.
You have a choice of ways of obtaining the WSDL for the service. In this example, the service has
been deployed to the Liberty profile and you obtain the WSDL from the Web server.
a. In Eclipse, switch to the Web perspective, and check that the Liberty profile is running and

StockQuoteAxis is deployed and synchronized.
b. Import the WSDL into Web Services Explorer:

1) Click the Web Services Explorer icon in the action-bar, or click Run > Launch the Web
Services Explorer.

2) Click the WSDL page icon in the Web Services Explorer to switch to the WSDL page.
3) Click WSDL Main in the Navigator window of the Web Services Explorer.
4) Type in the URL of the Web service, followed by ?WSDL. The URL for StockQuoteAxis,

deployed in the Liberty profile, is:
http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis?wsdl

c. Generate the client proxies:
1) In the Web Services Explorer navigator, click http://localhost:8080/StockQuoteAxis/services/

StockQuoteAxis?wsdl.
2) In the Actions window, click Launch Web Service Wizard > leave Web Service Client

selected > Go.
3) On the first page of the wizard, click the Client project link in the configuration > Select the

StockQuoteAxisClient client project > OK.

Tip: The wizard window might lose focus. You need to bring it back into focus manually.
4) The Web service runtime must be Apache Axis to generate a JAX-RPC client.
5) Click Finish.
6) Change the static URL of the service to point to the IBM MQ transport for SOAP address for

the StockQuoteAxis service. You might choose to skip this step, until you have tested the
client with an HTTP server.
a) Open StockQuoteAxisServiceLocator.java and find the declaration for

StockQuoteAxis_address.
b) Change the URL to

"jms:/queue?destination=REQUESTAXIS
&initialContextFactory=com.ibm.mq.jms.Nojndi
&connectionFactory=(connectQueueManager(QM1)binding(auto))"

Tip: Eclipse automatically transforms & to &, and the reverse, when you copy and
paste strings into .java code.

Developing web services with IBM MQ 1295

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_about.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_about.html

d. Create three Java client classes, each with a main method:
1) Create package. Right click StockQuoteAxisClient/src > New Package. Name it soap.client

> Finish.
2) Select soap.client > New > Class. Name the class SQAStaticClient > Check public static

void main(string [] args) > Finish
3) Repeat the procedure to create SQADynamicClient.java and SQADIIClient.java

e. Write the client code.
Figure 195 on page 1299 through Figure 199 on page 1301 provide examples of the three styles
of client code. The examples use an HTTP URL to test the client using the StockQuoteAxis
service deployed to an HTTP server. To run the clients against the StockQuoteAxis service
deployed using IBM MQ transport for SOAP, change the URL to:
"jms:/queue?destination=REQUESTAXIS
connectionFactory=(connectQueueManager(QM1)binding(auto))
initialContextFactory=com.ibm.mq.jms.Nojndi
targetService=soap.server.StockQuoteAxis.java
replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE"

– Figure 195 on page 1299 and Figure 197 on page 1300 use the proxy generated by Eclipse,
which has the extra StockQuoteAxisproxy helper class that makes coding a little easier.

– Figure 196 on page 1300 and Figure 198 on page 1300 use the proxy generated by
amqwdeployWMQService.

– Figure 199 on page 1301 uses no proxy classes.

Each of the clients call com.ibm.mq.soap.Register.extension() to link to the IBM MQ transport
for SOAP. The extension is registered in the client deployment descriptor. Client deployment to
Axis 1.4 is described in “Deploying a Web service client to Axis 1.4 to use IBM MQ transport for
SOAP” on page 1327.

f. Run the clients by sending the SOAP request to StockQuoteAxis hosted by the WebSphere
Application Server Community Edition server configured in the workspace.
1) Check that the server is running, StockQuoteAxis is deployed and synchronized.
2) Select or open the client you want to test > Click Run in the action bar. Alternatively, click

the green Run icon or eight click the client in the navigator > Run As > Run Configurations
.... Configure the parameters you require to run the client.

g. Run the client using the IBM MQ transport for SOAP.
The procedure uses amqwdeployWMQService to deploy the service, and only works with the client
that uses the WSDL or proxies built by amqwdeployWMQService. To run the client using the
original WSDL, or proxies built by eclipse, deploy the service with its deployment descriptor
built by Eclipse. Manually start SimpleJavaListener using the service port binding name as the
targetServiceName.
1) Follow the instructions in “Deploying a service to Axis 1.4 to use for WebSphere transport

for SOAP using amqwdeployWMQService” on page 1323 to deploy the service to the IBM MQ
Simple Java SOAP listener. The service deployment works only for the client using the
WSDL or client proxies built by amqwdeployWMQService.

2) In a command window, run amqwclientconfig to create the client deployment descriptor file,
client-deploy.wsdd.

3) Import client-deploy.wsdd into the root of the Java project you want to test using IBM MQ
transport for SOAP.
a) Right click the Java project StockQuoteAxisEclipseClient > Import > File system > Next

> Browse...

b) Browse to the directory containing client-deploy.wsdd > Open > Select the directory in
the Import wizard page > check client-deploy.wsdd.

c) Verify⌂ Into folder: has StockQuoteAxisEclipseClient entered > Finish.

1296 IBM MQ: Programming

4) Confirm that the working directory for running a Java application in this project is the
StockQuoteAxisEclipseClient directory:
Right click the Java project StockQuoteAxisEclipseClient > Run as.... > Run
Configurations... > Select the (x)= Arguments tab > Verify that in Working Directory the
Default radio button is checked, and the path is StockQuoteAxisEclipseClient. Alternatively
make one of the following choices to select a different location or file containing the client
configuration:
– Check Other: > type a directory path of your choice.
– In the VM arguments window, type -Daxis.ClientConfigFile= full path to client

deployment descriptor file

5) Make sure the URL is configured to point to the service deployed using IBM MQ transport
for SOAP. Run the client as described in step ii.

Tip: Typically, you might encounter one of these errors:
1) Exception: No client transport named 'jms' found! .
2) A JMS connection error.
3) Exception: The AXIS engine could not find a target service to invoke! targetService

is soap.server.StockQuoteAxis.java

4) Exception: java.lang.InstantiationException: soap.server.StockQuoteAxis

Explanations:
1) client-config.wsdd is not found, or does include the line <transport name="jms"

pivot="java:com.ibm.mq.soap.transport.jms.WMQSender"/> in client-config.wsdd.
2) Possibly a build path problem - not including the .jar files in MQ_INSTALLATION_PATH/java/

lib. MQ_INSTALLATION_PATH is the directory where IBM MQ is installed.
3) Service deployment problem, either with server-config-wsdd, or with parameters passed to

SimpleSoapListener.
4) Mismatch between deployment descriptor and the implementation of the service.

If you are having difficulty running the client in Eclipse, try using a command window:
1) Switch to the StockQuoteAxisEclipseClient\bin directory in the workspace directory tree.
2) Run amqwsetcp and amqwclientconfig
3) Run java soap/client/SQAStaticClient.

Sample JAX-RPC Web service clients

The sample Java Web service clients shipped with IBM MQ are installed in MQ_INSTALLATION_PATH
\tools\soap\samples\java\clients. MQ_INSTALLATION_PATH is the directory where IBM MQ is installed.

SQAxis2Axis.java
SQAxis2Axis.java, Figure 192 on page 1298, is a dynamic proxy client to invoke the
StockQuoteAxis service. You can override the URL of the service, which is compiled into the
dynamic proxy, by providing a URL on the command line.

SQAxis2DotNet.java
SQAxis2DotNet.java, Figure 193 on page 1298, is a dynamic proxy client to invoke the
StockQuoteDotNet service. You can override the URL of the service, which is compiled into the
dynamic proxy, by providing a URL on the command line.

WsdlClient.java
WsdlClient.java, Figure 194 on page 1299, is a dynamic invocation client to invoke either the
StockQuoteDotNet or StockQuoteAxis service. The client invokes the StockQuoteAxis service by
default. Add the command-line option -D invoke the StockQuoteDotNet service and -w to provide
a different port to the one in .\generated\StockQuoteDotNet_Wmq.wsdl

Developing web services with IBM MQ 1297

package soap.clients;
import java.net.URL;
import soap.server.*;
public class SQAxis2Axis {

public static void main(String[] args) {
com.ibm.mq.soap.Register.extension();
try {

StockQuoteAxisService locator = new StockQuoteAxisServiceLocator();
StockQuoteAxis service = null;
if (args.length == 0)

service = locator.getSoapServerStockQuoteAxis_Wmq();
else

service = locator.getSoapServerStockQuoteAxis_Wmq(
new java.net.URL(args[0]));

System.out.println("Response: " + service.getQuote("XXX"));
} catch (Exception e) {

System.out.println("\n>>> EXCEPTION WHILE RUNNING ProxyClient DEMO <<<\n");
e.printStackTrace();

System.exit(2);
}

}

Figure 192. SQAxis2Axis.java

public class SQAxis2DotNet {
public static void main(String[] args) {

com.ibm.mq.soap.Register.extension();
try {

StockQuoteDotNet locator = new StockQuoteDotNetLocator();
StockQuoteDotNetSoap_PortType service = null;
if (args.length == 0)

service = locator.getStockQuoteDotNetSoap();
else

service = locator.getStockQuoteDotNetSoap(new java.net.URL(
args[0]));

System.out.println("Response: " + service.getQuoteDOC("XXX"));
} catch (Exception e) {

System.out.println("\n>>> EXCEPTION WHILE RUNNING ProxyClient DEMO <<<\n");
e.printStackTrace();

System.exit(2);
}

}
}

Figure 193. SQAxis2DotNet.java

1298 IBM MQ: Programming

The example clients used in this task:

package soap.clients;
import com.ibm.mq.soap.*;
import org.apache.axis.utils.Options;
import java.net.URL;
import javax.xml.rpc.Call;
import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;
import javax.xml.namespace.QName;
public class WsdlClient {
public static void main(String[] args) {

String wsdlService, wsdlPort, namespace, wsdlSource, wsdlTargetURI, s;
try {

Register.extension();
Options opts = new Options(args);
if (opts.isFlagSet(’D’) != 0) {

wsdlService = "StockQuoteDotNet";
wsdlPort = "StockQuoteDotNetSoap";
namespace = "http://stock.samples";
wsdlSource = "file:generated/StockQuoteDotNet_Wmq.wsdl";

} else {
wsdlService = "StockQuoteAxisService";
wsdlPort = "soap.server.StockQuoteAxis_Wmq";
namespace = "soap.server.StockQuoteAxis_Wmq";
wsdlSource = "file:generated/soap.server.StockQuoteAxis_Wmq.wsdl";

}
if (null != (s = (opts.isValueSet(’w’))))

wsdlPort = s;
System.out.println("start WsdlClient demo, wsdl port " + wsdlPort

+ " resolving uri to ...");
QName servQN = new QName(namespace, wsdlService);
QName portQN = new QName(namespace, wsdlPort);
Service service = ServiceFactory.newInstance().createService(

new URL(wsdlSource), servQN);
Call call = (Call) service.createCall(portQN, "getQuote");
wsdlTargetURI = call.getTargetEndpointAddress().toString();
System.out.println(" ’" + wsdlTargetURI + "’");
Object ret = call.invoke(new Object[] { "XXX" });
System.out.println("Response: " + ret);

} catch (Exception e) {
System.out.println("\n>>> EXCEPTION WHILE RUNNING WsdlClient DEMO <<<\n");
e.printStackTrace();
System.exit(2);

}
}

}

Figure 194. WsdlClient.java

package soap.client;
import soap.server.StockQuoteAxisProxy;
public class SQAStaticClient {

public static void main(String[] args) {
try {

com.ibm.mq.soap.Register.extension();
StockQuoteAxisProxy sqa = new StockQuoteAxisProxy();
System.out.println("Static client synchronous result is:"

+ sqa.getQuote("ibm"));
} catch (Exception e) {

System.out.println("Exception: " + e);
}

}
}

Figure 195. Static client using Eclipse generated proxy

Developing web services with IBM MQ 1299

package soap.client;
import soap.server.StockQuoteAxis;
import soap.server.StockQuoteAxisService;
import soap.server.StockQuoteAxisServiceLocator;
public class SQAStaticClient {

public static void main(String[] args) {
try {

com.ibm.mq.soap.Register.extension();
StockQuoteAxisService locator = new StockQuoteAxisServiceLocator();
StockQuoteAxis sqa = locator.getSoapServerStockQuoteAxis_Wmq();
System.out.println("Static client synchronous result is: "

+ sqa.getQuote("ibm"));
} catch (Exception e) {

System.out.println("Exception: " + e);
}

}
}

Figure 196. Static client using amqwdeployWMQService generated proxy

package soap.client;
import soap.server.StockQuoteAxisProxy;
public class SQADynamicClient {

public static void main(String[] args) {
try {

com.ibm.mq.soap.Register.extension();
StockQuoteAxisProxy sqa = new StockQuoteAxisProxy(

"http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis");
System.out.println("Dynamic client synchronous result is: "

+ sqa.getQuote("ibm"));
} catch (Exception e) {

System.out.println("Exception: " + e);
}

}
}

Figure 197. Dynamic client using Eclipse generated proxy

package soap.client;

import java.net.URL;
import soap.server.StockQuoteAxis;
import soap.server.StockQuoteAxisService;
import soap.server.StockQuoteAxisServiceLocator;
public class SQADynamicClient {

public static void main(String[] args) {
try {

com.ibm.mq.soap.Register.extension();
URL sqaURL = new URL(

"http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis");
StockQuoteAxisService locator = new StockQuoteAxisServiceLocator();
StockQuoteAxis sqa = locator.getSoapServerStockQuoteAxis_Wmq(sqaURL);
System.out.println("Dynamic client synchronous result is: "

+ sqa.getQuote("ibm"));
} catch (Exception e) {

System.out.println("Exception: " + e);
}

}
}

Figure 198. Dynamic client using amqwdeployWMQService generated proxy

1300 IBM MQ: Programming

Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse
Develop an Axis2 Web service client to run using the IBM MQ transport for SOAP. The sample Axis2
clients provided with IBM MQ transport for SOAP are listed, and the wsimport command used to
generate proxies.

Before you begin

Obtain the Axis2 libraries, and configure a development and test environment to run the client.

Note: The naming of versions and releases used by Axis causes confusion. Typically, Axis 1.4 refers to the
JAX-RPC implementation, and Axis2 to the JAX-WS implementation.

Axis 1.4 is a version level. If you search for Axis 1.4 on the internet, you are taken to
http://ws.apache.org/axis/. The page contains a list of preceding versions of Axis (1.2, 1.3) and the April
22, 2006, final release of Axis 1.4. There are later releases of Axis 1.4, that fix bugs, but they are all known
as Axis 1.4. It is one of these bug fix releases that is shipped with IBM MQ. For Axis 1.4, use the version
of axis.jar that is shipped with IBM MQ rather than the one obtainable from http://ws.apache.org/
axis/.

The Axis website also refers to Axis 1.1 to refer to all the versions of what is more typically called Axis
1.4. Axis 1.2 is used to refer to what is typically called Axis2.

Axis 1.5 is not a later release of Axis 1.4, it is an Axis2 release. If you search for Axis 1.5 you are directed
to http://ws.apache.org/axis2/. contains a list of release versions of Axis2, labeled 0.9 to 1.5.1 (and
including, confusingly version 1.4). The release version of Axis2 to use with IBM MQ transport for SOAP
is 1.4.1. Download Axis2 1.4.1 from http://ws.apache.org/axis2/download/1_4_1/download.cgi.

You can choose to generate proxies for the Web service clients for IBM MQ transport for SOAP using
either wsimport or the tooling provided with an IDE. Eclipse IDE for Java EE Developer 3.5 SR1 uses
wsdl2java. wsimport is supplied with Java 6. You can use Java 5 to run client proxies generated either
with wsimport or wsdl2java.

The sample Web service Axis2 clients provided with IBM MQ transport for SOAP were developed using
wsimport ; see “Sample Axis2 clients” on page 1308.

package soap.client;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.rpc.Call;
import javax.xml.rpc.Service;
import javax.xml.rpc.ServiceFactory;
public class SQADIIClient {

public static void main(String[] args) {
try {

com.ibm.mq.soap.Register.extension();
URL wsdl = new URL(

"http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis?wsdl");
Service SQAService = (ServiceFactory.newInstance()).createService(wsdl,

new QName("http://server.soap", "StockQuoteAxisService"));
Call SQACall = SQAService.createCall(new QName("http://server.soap",

"StockQuoteAxis"), "getQuote");
System.out.println("DII client synchronous result is "

+ SQACall.invoke(new Object[] { "ibm" }));
} catch (Exception e) {

System.out.println("Exception: " + e);
}

}
}

Figure 199. DII client (No proxy)

Developing web services with IBM MQ 1301

http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://ws.apache.org/axis2/
http://ws.apache.org/axis2/download/1_4_1/download.cgi

The task that follows demonstrates how to generate and use the proxies produced by the Web services
wizard that is packaged with Eclipse IDE for Java EE Developers. The sample clients show how to use
the proxies produced by wsimport.

To use the Web services wizard, you must add an application server that supports Axis2 to the
workbench. The steps show how to configure the Liberty profile to support Axis2 using the workbench.
1. Configure the application server used in Eclipse IDE for Java EE Developers to support Axis2. In this

example, configure the Liberty profile.
a. Open the workspace preferences to configure the server: Open Window > Preferences.
b. Check the installed JRE is Java50: Click Installed JREs.
c. Add the Liberty profile as the server:
d. Add Axis2: Click Web Services > Axis2 Preferences. On the Axis2 Runtime tab > Browse... Open

the directory containing the many Axis2 jar files > Apply.
e. Associate Liberty with Axis2: Click Web Services > Server and Runtime. Under Server select IBM

Liberty Server, and under Web service runtime, select Apache Axis2 > Apply > OK

f. Start the server: Open the Web perspective and open the Servers view. Right click in the Servers
view > New > Server. IBM Liberty Server is selected and configured > Finish. Start the server.

2. Check that you have deployed the StockQuoteAxis service to Liberty to run the Web service wizard.
3. To test the service with the IBM MQ transport for SOAP service, deploy the service to an IBM MQ

transport for SOAP listener for Axis 1.4; see the Liberty profile.

About this task

The Eclipse IDE for Java EE Developers uses Java50 and the Web services wizard to generate the proxy
classes for the service. The proxy classes are different to the classes created by the wsimport tool provided
with Java 6. An alternative approach is to generate the proxy classes using wsimport and import the
packages it creates into your Eclipse Java EE IDE for Web Developers.

The Web services wizard in the Eclipse IDE for Java EE Developers builds a Web service client in a Web
project. You can run the client as a simple Java application; it does not require an application server. You
can also transfer the code to a Java project, and configure the build path to include the Axis2 JAR files.

Procedure
1. Create a Web project in a new Enterprise project:

a. With nothing selected in the Project Explorer > Right-click the white space > New > Enterprise
Application Project > Name it StockQuoteAxis2EAR > Finish. Reply No to the window giving you
the option of opening the Java EE perspective. The defaults are set to use Liberty.

b. Right-click StockQuoteAxis2EAR > New > Dynamic Web Project. Name the project
StockQuoteAxis2WebClient > Check the EAR membership box to add the project to
StockQuoteAxis2EAR. Liberty is selected as the Target runtime.

c. In the Configuration section of the New Dynamic Web Project page > Modify... > Check the Axis2
Web services project facet. Dynamic Web Module 2.5, Java 6.0, and Liberty are already checked. >
OK > Finish. Reply No to the window giving you the option of opening the Java EE perspective.

2. Import WSDL for the service into the workspace and generate the client proxy:
In this example, the WSDL document contains the HTTP service binding and becomes the target for
the static Web client proxy. You can modify the URL in the Web service binding to point to the IBM
MQ transport for SOAP URL before generating the client proxy. The static Web client proxy is then
the service that is deployed to IBM MQ transport for SOAP.
a. Launch the Web Services Explorer: either use the icon in the action bar, or Run > Launch the Web

Services Explorer.

1302 IBM MQ: Programming

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_about.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_about.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_about.html

b. Select the WSDL explorer by clicking the WSDL icon in the Web Services Explorer window > Click
WSDL Main in the Navigator window > Type the URL of the StockQuoteAxis WSDL file > Go. In
this example, obtain the WSDL directly from the HTTP service: http://localhost:8080/
StockQuoteAxis/services/StockQuoteAxis?wsdl

c. In the Navigator, click the line with the URL of the Web service. In the Actions window, click
Import WSDL to Workbench > Select a StockQuoteAxis2WebClient as the Workbench project >
Type the WSDL file name, StockQuoteAxisHTTP.wsdl > Go.

d. Right-click StockQuoteAxisHTTP.wsdl > Web Services > Generate Client. Check the
configuration information about the Web services page of the wizard is as follows: Server: IBM
Liberty Server, Web service runtime: Apache Axis2, Client project: StockQuoteAxis2WebClient,
Client EAR project: StockQuoteAxisEAR. To correct the configuration, click the lines that are
wrong.

e. Click Next > verify the code generation settings > Finish. Notice that a new package, soap.server,
is created and it contains the proxies you require.

3. Configure the project to run IBM MQ transport for SOAP as the JMS transport. IBM MQ transport for
SOAP provides a transportSender, but no transportReceiver. In other words, IBM MQ transport for
SOAP supports Axis2 clients. Currently it does not support Axis2 services.
a. In the StockQuoteAxis2WebClient project, right-click WebContent\WEB-INF\conf\axis2.xml >

Open with... > XML editor.
b. Search for the last transportSender (towards the end of the file) and find the commented out JMS

transportSender > Right-click the line > Add before... > transportSender.
c. Right-click transportSender > Add Attribute > Name > Right-click transportSender > Add

Attribute > Class.
d. Right-click Name > Edit Attribute > Type the Value: jms

e. Right-click Class > Edit Attribute > Type the Value:
com.ibm.mq.axis2.transport.jms.WMQJMSTransportSender.> Save.

f. Add com.ibm.mq.axis2.transport.jms.WMQJMSTransportSender to the build path: Right-click
StockQuoteAxis2WebClient > Build Path > Configure Build Path... > Click the Libraries tab >
Add External JARs.... Select all the JARs in MQ_INSTALLATION_PATH \java\lib > OK.
MQ_INSTALLATION_PATH is the directory where IBM MQ is installed.

4. Create a synchronous static client, test it using HTTP, then convert the proxy to run the static client
using IBM MQ transport for SOAP.
a. Right-click Java Resources: src > New > Package > Name the package soap.client > Finish
b. Right-click soap.client > New > Class > Name the class SQA2StaticClient > Finish.
c. Replace the class with the code in Figure 200 on page 1304 > Save.

Developing web services with IBM MQ 1303

5. Test the client with the StockQuoteAxis service deployed to Liberty, and with IBM MQ transport for
SOAP.
a. In the Project Explorer, right-click SQA2StaticClient > Run as... > Java Application. The result,

Response is 55.25 , appears in the Console view. You can also select the Liberty console window
in the Console view, and see the output on the Liberty server, StockQuoteAxis called with
parameter: ibm .

b. The proxy was built with the service address, http://localhost:8080/StockQuoteAxis/services/
StockQuoteAxis, and so the static client calls the service running on HTTP. You can change the
static client to call the service using IBM MQ transport for SOAP. The following instructions
change the service address in StockQuoteAxisServiceStub.java without rebuilding the proxy, and
configure the SQA2StaticClient runtime parameters to load axis2.xml. You configure axis2.xml
configures Axis2 to use IBM MQ transport for SOAP.

c. Open StockQuoteAxisServiceStub.java > Replace the two occurrences of http://localhost:8080/
StockQuoteAxis/services/StockQuoteAxis with,
jms:/queue?destination=REQUESTAXIS@QM1
&connectionFactory=()
&initialContextFactory=com.ibm.mq.jms.Nojndi
&targetService=StockQuoteAxis
&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE

d. If you run SQA2StaticClient now, it throws an exception because it has not found a
transportSender configured for JMS The exception is:
Exception: null java.lang.NullPointerException at
soap.server.StockQuoteAxisServiceStub.getQuote(StockQuoteAxisServiceStub.java:547)
at soap.client.SQA2StaticClient.main(SQA2StaticClient.java:11)

e. In the Project Explorer, right-click SQA2StaticClient > Run as... > Run Configurations.... Switch
to the (x)= Arguments tab, and in the VM arguments input area, type the path to the axis2.conf
file> Apply > Run. The VM argument is:
-Daxis2.xml=${workspace_loc:StockQuoteAxis2WebClient/WebContent/WEB-INF/conf}/axis2.xml.
Or you can provide a standard path to the Axis2 configuration file.

f. Run SQA2StaticClient again. On this run, you are using the IBM MQ transport for SOAP. Confirm
it by checking there is no new output in the Liberty console. Open the console or command
window that is associated with SimpleJavaListener, and the output there is StockQuoteAxis called
with parameter: ibm .

6. Create a dynamic client for HTTP and IBM MQ transport for SOAP, and test it.
a. Right-click soap.client > New > Class > Name the class SQA2DynamicClient > Finish.
b. Replace the class with the code in Figure 201 on page 1305 > Save.

package soap.client;
import soap.server.StockQuoteAxisServiceStub;
import soap.server.StockQuoteAxisServiceStub.GetQuote;
public class SQA2StaticClient {

public static void main(String[] args) {
try {

StockQuoteAxisServiceStub stub = new StockQuoteAxisServiceStub();
GetQuote request = new GetQuote();
request.setSymbol("ibm");
System.out.println("Response is: "

+ (stub.getQuote(request)).getGetQuoteReturn());
} catch (Exception e) {

System.out.println("Exception: " + e.getMessage());
e.printStackTrace();

}
}

}

Figure 200. SQA2StaticClient.java

1304 IBM MQ: Programming

c. Create a Run configuration for SQA2DynamicClient.java, and add the path to axis2.xml:
-Daxis2.xml=${workspace_loc:StockQuoteAxis2WebClient/WebContent/WEB-INF/conf}/axis2.xml

d. Run SQA2DynamicClient. Check the console output for the SQA2DynamicClient, Liberty and
SimpleJavaListener.

7. Create an asynchronous client, and access the result in a callback handler, and in the main program
thread.
The asynchronous client proxies created by the Web service wizard for Eclipse Java EE IDE for Web
Developers differ from the proxies created by wsimport. The wsimport proxies use Future, Response,
and AsyncHandler generic types.
The Web service wizard for Eclipse Java EE IDE for Web Developers creates a
StockQuoteAxisServiceCallbackHandler abstract class. You must extend
StockQuoteAxisServiceCallbackHandler and create a callback handler.
a. Right-click soap.client > New > Class > Name the class SQA2CallbackHandler > Finish.
b. Replace the class with the code in Figure 202 on page 1306.

package soap.client;
import soap.server.StockQuoteAxisServiceStub;
import soap.server.StockQuoteAxisServiceStub.GetQuote;
public class SQA2DynamicClient {

public static void main(String[] args) {
try {

StockQuoteAxisServiceStub stub = new StockQuoteAxisServiceStub(
"http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis");

GetQuote request = new GetQuote();
request.setSymbol("ibm");
System.out.println("HTTP Sync: "

+ (stub.getQuote(request)).getGetQuoteReturn());
stub = new StockQuoteAxisServiceStub(

"jms:/queue?destination=REQUESTAXIS@QM1"
+ "&connectionFactory=()&initialContextFactory=com.ibm.mq.jms.Nojndi"
+ "&targetService=StockQuoteAxis&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE");

System.out.println("JMS sync: "
+ (stub.getQuote(request)).getGetQuoteReturn());

} catch (Exception e) {
System.out.println("Exception: " + e.getMessage());
e.printStackTrace();

}
}

}

Figure 201. SQA2DynamicClient.java

Developing web services with IBM MQ 1305

c. Right-click soap.client > New > Class > Name the class SQA2AsyncClient > Finish.
d. Replace the class with the code in Figure 203 on page 1307.

package soap.client;
import soap.server.StockQuoteAxisServiceCallbackHandler;
import soap.server.StockQuoteAxisServiceStub.GetQuoteResponse;
public class SQA2CallbackHandler

extends StockQuoteAxisServiceCallbackHandler {
private boolean complete = false;
SQA2CallbackHandler() {

super();
System.out.println("Callback constructor");

}
public void receiveResultgetQuote(GetQuoteResponse response) {

System.out.println("Result in Callback " + response.getGetQuoteReturn());
super.clientData = response;
complete = true;

}
public boolean isComplete() {

return complete;
}

}

Figure 202. SQA2CallbackHandler.java

1306 IBM MQ: Programming

The console output is listed in Figure 204.

HTTP Sync: 55.25
Callback constructor
Waiting for HTTP callback
Result in Callback 55.25
HTTP poll: 55.25
JMS Sync: 55.25
Callback constructor
Waiting for JMS callback
Result in Callback 55.25
JMS poll: 55.25

package soap.client;
import soap.server.StockQuoteAxisServiceStub;
import soap.server.StockQuoteAxisServiceStub.GetQuote;
import soap.server.StockQuoteAxisServiceStub.GetQuoteResponse;
import soap.server.StockQuoteAxisServiceCallbackHandler;
@SuppressWarnings("unused")
public class SQA2AsyncClient {

public static void main(String[] args) {
try {

StockQuoteAxisServiceStub stub = new StockQuoteAxisServiceStub(
"http://localhost:8080/StockQuoteAxis/services/StockQuoteAxis");

GetQuote request = new GetQuote();
request.setSymbol("ibm");
System.out.println("HTTP Sync: "

+ (stub.getQuote(request)).getGetQuoteReturn());
SQA2CallbackHandler callback = new SQA2CallbackHandler();
stub.startgetQuote(request, callback);
do {

System.out.println("Waiting for HTTP callback");
Thread.sleep(2000);

} while (!callback.isComplete());
System.out.println("HTTP poll: "

+ ((GetQuoteResponse) (callback.getClientData()))
.getGetQuoteReturn());

stub = new StockQuoteAxisServiceStub(
"jms:/queue?destination=REQUESTAXIS@QM1"
+ "&connectionFactory=()&initialContextFactory=com.ibm.mq.jms.Nojndi"
+ "&targetService=StockQuoteAxis&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE");

System.out.println("JMS Sync: "
+ (stub.getQuote(request)).getGetQuoteReturn());

callback = new SQA2CallbackHandler();
stub.startgetQuote(request, callback);
while (!callback.isComplete()) {

System.out.println("Waiting for JMS callback");
Thread.sleep(2000);

}
System.out.println("JMS poll: "

+ ((GetQuoteResponse) (callback.getClientData())).getGetQuoteReturn());
} catch (Exception e) {

System.out.println("Exception: " + e.getMessage());
e.printStackTrace();

}
}

}

Figure 203. SQA2AsyncClient.java

Figure 204. Console output from SQA2AsyncClient.java

Developing web services with IBM MQ 1307

Sample Axis2 clients

The sample proxies are generated using the wsimport tool that is packaged with Java 6. Six samples are
provided:
1. DynamicProxyClientSync.java

2. DynamicProxyClientAsyncPolling.java

3. DynamicProxyClientAsyncCallback.java

4. DispatchClientSync.java

5. DispatchClientAsyncPolling.java

6. DispatchClientAsyncCallback.java

The client samples are generated for the sample StockQuoteAxis server. Generate the WSDL with the
amqwdepoyWMQServer command, specifying the -w switch to select rpcLiteral style. Use the following
command to generate the proxies for the samples:
wsimport soap.server.StockQuoteAxis_Wmq.wsdl -d generated -keep -p com.ibm.mq.axis2.samples

1308 IBM MQ: Programming

package com.ibm.mq.axis2.samples;

import com.ibm.mq.axis2.samples.proxy.StockQuoteAxis;
import com.ibm.mq.axis2.samples.proxy.StockQuoteAxisService;

public class DynamicProxyClientSync {

public static void main(String[] args) {
try {

System.out.println("Starting sample DynamicProxyClientSync");

System.out.println("Creating proxy instance for service StockQuoteAxisService");
StockQuoteAxisService stub = new StockQuoteAxisService();
StockQuoteAxis service = stub.getSoapServerStockQuoteAxisWmq();

System.out.println("Invoking getQuoteOneWay OneWay operation synchronously...");
service.getQuoteOneWay("48");
System.out.println(" > getQuoteOneWay has returned");

System.out.println("Invoking getQuote Request Reply operation synchronously...");
float result = service.getQuote("48");
System.out.println(" > getQuote has returned result of " + result);

System.out.println("End of sample");
}
catch (Exception fault) {

// Identify the cause of the Axis Fault
System.err.println(fault.toString());
Throwable e = fault.getCause();
for (int i = 1; e != null; i++) {

// The toString method on an MQAxisException will cause the message, explanation and user
// action.
System.err.println("Exception(" + i + "): " + e.toString());

if (e.getCause() != null) {
e = e.getCause();

}
else {

break;
}

} // end of for loop
} // end of catch block

}
}

Figure 205. DynamicProxyClientSync.java

Developing web services with IBM MQ 1309

package com.ibm.mq.axis2.samples;

import java.util.concurrent.CancellationException;

import javax.xml.ws.Response;

import com.ibm.mq.axis2.samples.proxy.StockQuoteAxis;
import com.ibm.mq.axis2.samples.proxy.StockQuoteAxisService;

public class DynamicProxyClientAsyncPolling {

public static void main(String[] args) {
try {

System.out.println("Starting sample DynamicProxyClientAsyncPolling");

System.out.println("Creating proxy instance for service StockQuoteAxisService");
StockQuoteAxisService stub = new StockQuoteAxisService();
StockQuoteAxis service = stub.getSoapServerStockQuoteAxisWmq();

System.out
.println("Invoking getQuoteAsync Request Reply operation asynchronously by polling...");

Response<Float> response = service.getQuoteAsync("49");

/** Sleep main thread until response arrives **/
System.out.println("Waiting for response to arrive...");
while (!response.isDone()) {

Thread.sleep(100);
}
System.out.println(" > Response received");

/** Retrieve the result **/
try {

Float result = response.get();
System.out.println(" > getQuoteAsync call has returned result of " + result);

}
catch (CancellationException ce) {

// processing was cancelled via response.cancel()
}

System.out.println("End of sample");
}
catch (Exception fault) {

// Identify the cause of the Axis Fault
System.err.println(fault.toString());
Throwable e = fault.getCause();
for (int i = 1; e != null; i++) {

// The toString method on an MQAxisException will cause the message, explanation and user
// action.
System.err.println("Exception(" + i + "): " + e.toString());

if (e.getCause() != null) {
e = e.getCause();

}
else {

break;
}

} // end of for loop
} // end of catch block

}
}

Figure 206. DynamicProxyClientAsyncPolling.java

1310 IBM MQ: Programming

package com.ibm.mq.axis2.samples;

import java.util.concurrent.Future;

import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

import com.ibm.mq.axis2.samples.proxy.StockQuoteAxis;
import com.ibm.mq.axis2.samples.proxy.StockQuoteAxisService;

public class DynamicProxyClientAsyncCallback implements AsyncHandler<Float> {

public static void main(String[] args) {
try {

System.out.println("Starting sample DynamicProxyClientAsyncCallback");

System.out.println("Creating proxy instance for service StockQuoteAxisService");
StockQuoteAxisService stub = new StockQuoteAxisService();
StockQuoteAxis service = stub.getSoapServerStockQuoteAxisWmq();

DynamicProxyClientAsyncCallback handler = new DynamicProxyClientAsyncCallback();

System.out
.println("Invoking getQuoteAsync Request Reply operation asynchronously using a callback...");

Future<?> monitor = service.getQuoteAsync("50", handler);
System.out.println(" > Invoke call has returned");

/** Sleep main thread until handler has been notified **/
System.out.println("Waiting for handler to be called...");
while (!monitor.isDone()) {

Thread.sleep(100);
}

System.out.println("End of sample");
}
catch (Exception fault) {

// Identify the cause of the Axis Fault
System.err.println(fault.toString());
Throwable e = fault.getCause();
for (int i = 1; e != null; i++) {

// The toString method on an MQAxisException will cause the message, explanation and user
// action.
System.err.println("Exception(" + i + "): " + e.toString());

if (e.getCause() != null) {
e = e.getCause();

}
else {

break;
}

} // end of for loop
} // end of catch block

}

public void handleResponse(Response<Float> response) {
try {

Float result = response.get();
System.out.println(" > Async Handler has received a result of " + result);

}
catch (Exception fault) {

// Identify the cause of the Axis Fault
System.err.println("Exception in handleResponce");
System.err.println(fault.toString());
Throwable e = fault.getCause();
for (int i = 1; e != null; i++) {

// The toString method on an MQAxisException will cause the message, explanation and user
// action.
System.err.println("Exception(" + i + "): " + e.toString());

if (e.getCause() != null) {
e = e.getCause();

}
else {

break;
}

} // end of for loop
} // end of catch block

}

}

Figure 207. DynamicProxyClientAsyncCallback.java

Developing web services with IBM MQ 1311

1312 IBM MQ: Programming

package com.ibm.mq.axis2.samples;

import javax.xml.namespace.QName;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPConstants;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPPart;
import javax.xml.ws.Dispatch;
import javax.xml.ws.Service;
import javax.xml.ws.soap.SOAPBinding;

public class DispatchClientSync {

public static void main(String[] args) {
try {

System.out.println("Starting sample DispatchClientSync");

String endpointUrl = "jms:/queue?destination=SOAPJ.demos@WMQSOAP.DEMO.QM&"
+ "connectionFactory=connectQueueManager(WMQSOAP.DEMO.QM)"
+ "&initialContextFactory=com.ibm.mq.jms.Nojndi&targetService=soap.server.StockQuoteAxis.java";

QName serviceName = new QName("soap.server.StockQuoteAxis_Wmq", "StockQuoteAxisService");
QName portName = new QName("soap.server.StockQuoteAxis_Wmq", "soap.server.StockQuoteAxis_Wmq");

Service service = Service.create(serviceName);
service.addPort(portName, SOAPBinding.SOAP11HTTP_BINDING, endpointUrl);

/** Create a Dispatch instance from a service **/
System.out.println("Creating dispatch instance for service StockQuoteAxisService");
Dispatch<SOAPMessage> dispatch = service.createDispatch(portName, SOAPMessage.class,

Service.Mode.MESSAGE);
System.out.println(" > Dispatch instance created.");

/*************************************
* Create OneWay SOAPMessage request.
*************************************/

MessageFactory mf = MessageFactory.newInstance(SOAPConstants.SOAP_1_1_PROTOCOL);

System.out.println("\nCreating a OneWay SOAP Message");
SOAPMessage request = mf.createMessage();

/** Obtain the SOAPEnvelope and header and body elements **/
SOAPPart part = request.getSOAPPart();
SOAPEnvelope env = part.getEnvelope();
SOAPHeader header = env.getHeader();
SOAPBody body = env.getBody();

/** Construct the message payload **/
SOAPElement operation = body.addChildElement("getQuoteOneWay", "ns1",

"soap.server.StockQuoteAxis_Wmq");
SOAPElement value = operation.addChildElement("in0");
value.addAttribute(new QName("http://www.w3.org/2001/XMLSchema-instance", "type"), "string");
value.addTextNode("XXX");
request.saveChanges();
System.out.println(" > SOAP Message created.");

/** Invoke the service endpoint **/
System.out.println("Invoking getQuoteOneWay OneWay operation synchronously...");
dispatch.invokeOneWay(request);
System.out.println(" > getQuoteOneWay call has returned");

/**
* Create Request Reply SOAPMessage request.
**/

mf = MessageFactory.newInstance(SOAPConstants.SOAP_1_1_PROTOCOL);

System.out.println("\nCreating a Request Reply SOAP Message");
request = mf.createMessage();

/** Obtain the SOAPEnvelope and header and body elements **/
part = request.getSOAPPart();
env = part.getEnvelope();
header = env.getHeader();
body = env.getBody();

/** Construct the message payload **/
operation = body.addChildElement("getQuote", "ns1", "soap.server.StockQuoteAxis_Wmq");
value = operation.addChildElement("in0");
value.addAttribute(new QName("http://www.w3.org/2001/XMLSchema-instance", "type"), "string");
value.addTextNode("XXX");
request.saveChanges();
System.out.println(" > SOAP Message created.");

/** Invoke the service endpoint **/
System.out.println("Invoking getQuote Request Reply operation synchronously...");
SOAPMessage ans = dispatch.invoke(request);
System.out.println(" > getQuote call has returned");

/** Retrieve the result **/
part = ans.getSOAPPart();
env = part.getEnvelope();
body = env.getBody();

/** Define name of the SOAP folders we are interested in **/
QName responseName = new QName("soap.server.StockQuoteAxis_Wmq", "getQuoteResponse");
QName resultName = new QName("getQuoteReturn");

/** Retrieve result from SOAP envelope **/
System.out.println("Parsing SOAP response...");
SOAPElement bodyElement = (SOAPElement) body.getChildElements(responseName).next();
SOAPElement responseElement = (SOAPElement) bodyElement.getChildElements(resultName).next();
String message = responseElement.getValue();
System.out.println(" > Response contains result of " + message);

System.out.println("End of sample");
}
catch (Exception fault) {

// Identify the cause of the Axis Fault
System.err.println(fault.toString());
Throwable e = fault.getCause();
for (int i = 1; e != null; i++) {

// The toString method on an MQAxisException will cause the message, explanation and user
// action.
System.err.println("Exception(" + i + "): " + e.toString());

if (e.getCause() != null) {
e = e.getCause();

}
else {

break;
}

} // end of for loop
} // end of catch block

}
}

Figure 208. DispatchClientSync.java

Developing web services with IBM MQ 1313

1314 IBM MQ: Programming

package com.ibm.mq.axis2.samples;

import javax.xml.namespace.QName;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPConstants;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPPart;
import javax.xml.ws.Dispatch;
import javax.xml.ws.Response;
import javax.xml.ws.Service;
import javax.xml.ws.soap.SOAPBinding;

public class DispatchClientAsyncPolling {

public static void main(String[] args) {
try {

System.out.println("Starting sample DispatchClientAsyncPolling");

String endpointUrl = "jms:/queue?destination=SOAPJ.demos@WMQSOAP.DEMO.QM&"
+ "connectionFactory=connectQueueManager(WMQSOAP.DEMO.QM)"
+ "&initialContextFactory=com.ibm.mq.jms.Nojndi&targetService=soap.server.StockQuoteAxis.java";

QName serviceName = new QName("soap.server.StockQuoteAxis_Wmq", "StockQuoteAxisService");
QName portName = new QName("soap.server.StockQuoteAxis_Wmq", "soap.server.StockQuoteAxis_Wmq");

Service service = Service.create(serviceName);
service.addPort(portName, SOAPBinding.SOAP11HTTP_BINDING, endpointUrl);

/** Create a Dispatch instance from a service.* */
System.out.println("Creating dispatch instance for service StockQuoteAxisService");
Dispatch<SOAPMessage> dispatch = service.createDispatch(portName, SOAPMessage.class,

Service.Mode.MESSAGE);
System.out.println(" > Dispatch instance created.");

/** Create SOAPMessage request. * */
MessageFactory mf = MessageFactory.newInstance(SOAPConstants.SOAP_1_1_PROTOCOL);

System.out.println("Creating a Request Reply SOAP Message");
SOAPMessage request = mf.createMessage();

/** Obtain the SOAPEnvelope and header and body elements **/
SOAPPart part = request.getSOAPPart();
SOAPEnvelope env = part.getEnvelope();
SOAPHeader header = env.getHeader();
SOAPBody body = env.getBody();

/** Construct the message payload **/
SOAPElement operation = body.addChildElement("getQuote", "ns1",

"soap.server.StockQuoteAxis_Wmq");
SOAPElement value = operation.addChildElement("in0");
value.addAttribute(new QName("http://www.w3.org/2001/XMLSchema-instance", "type"), "string");
value.addTextNode("XXX");
request.saveChanges();
System.out.println(" > SOAP Message created.");

/** Invoke the service endpoint **/
System.out.println("Invoking getQuote Request Reply operation asynchronously by polling...");
Response<SOAPMessage> response = dispatch.invokeAsync(request);
System.out.println(" > getQuote call has returned");

/** Sleep main thread until response arrives **/
System.out.println("Waiting for response to arrive...");
while (!response.isDone()) {

Thread.sleep(100);
}
System.out.println(" > Response received");

/** retrieve the result **/
SOAPMessage ans = response.get();
part = ans.getSOAPPart();
env = part.getEnvelope();
body = env.getBody();

/** Define name of the SOAP folders we are interested in **/
QName responseName = new QName("soap.server.StockQuoteAxis_Wmq", "getQuoteResponse");
QName resultName = new QName("getQuoteReturn");

/** Retrieve result from SOAP envelope **/
SOAPElement bodyElement = (SOAPElement) body.getChildElements(responseName).next();
SOAPElement responseElement = (SOAPElement) bodyElement.getChildElements(resultName).next();
String message = responseElement.getValue();
System.out.println(" > Response contains result of " + message);

System.out.println("End of sample");

}
catch (Exception fault) {

// Identify the cause of the Axis Fault
System.err.println(fault.toString());
Throwable e = fault.getCause();
for (int i = 1; e != null; i++) {

// The toString method on an MQAxisException will cause the message, explanation and user
// action.
System.err.println("Exception(" + i + "): " + e.toString());

if (e.getCause() != null) {
e = e.getCause();

}
else {

break;
}

} // end of for loop
} // end of catch block

}
}

Figure 209. DispatchClientAsyncPolling.java

Developing web services with IBM MQ 1315

1316 IBM MQ: Programming

package com.ibm.mq.axis2.samples;

import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPConstants;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPPart;
import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Dispatch;
import javax.xml.ws.Response;
import javax.xml.ws.Service;
import javax.xml.ws.soap.SOAPBinding;

public class DispatchClientAsyncCallback implements AsyncHandler<SOAPMessage> {

public static void main(String[] args) {
try {

System.out.println("Starting sample DispatchClientAsyncCallback");

String endpointUrl = "jms:/queue?destination=SOAPJ.demos@WMQSOAP.DEMO.QM&"
+ "connectionFactory=connectQueueManager(WMQSOAP.DEMO.QM)"
+ "&initialContextFactory=com.ibm.mq.jms.Nojndi&targetService=soap.server.StockQuoteAxis.java";

QName serviceName = new QName("soap.server.StockQuoteAxis_Wmq", "StockQuoteAxisService");
QName portName = new QName("soap.server.StockQuoteAxis_Wmq", "soap.server.StockQuoteAxis_Wmq");

Service service = Service.create(serviceName);
service.addPort(portName, SOAPBinding.SOAP11HTTP_BINDING, endpointUrl);

/** Create a Dispatch instance from a service.* */
System.out.println("Creating dispatch instance for service StockQuoteAxisService");
Dispatch<SOAPMessage> dispatch = service.createDispatch(portName, SOAPMessage.class,

Service.Mode.MESSAGE);
System.out.println(" > Dispatch instance created.");

/** Create SOAPMessage request. * */
MessageFactory mf = MessageFactory.newInstance(SOAPConstants.SOAP_1_1_PROTOCOL);

System.out.println("Creating a Request Reply SOAP Message");
SOAPMessage request = mf.createMessage();

/** Obtain the SOAPEnvelope and header and body elements **/
SOAPPart part = request.getSOAPPart();
SOAPEnvelope env = part.getEnvelope();
SOAPHeader header = env.getHeader();
SOAPBody body = env.getBody();

/** Construct the message payload. **/
SOAPElement operation = body.addChildElement("getQuote", "ns1",

"soap.server.StockQuoteAxis_Wmq");
SOAPElement value = operation.addChildElement("in0");
value.addAttribute(new QName("http://www.w3.org/2001/XMLSchema-instance", "type"), "string");
value.addTextNode("XXX");
request.saveChanges();
System.out.println(" > SOAP Message created.");

/** Invoke the service endpoint. **/
DispatchClientAsyncCallback handler = new DispatchClientAsyncCallback();

System.out
.println("Invoking getQuote Request Reply operation asynchronously using a callback...");

Future<?> monitor = dispatch.invokeAsync(request, handler);
System.out.println(" > getQuote call has returned");

/** Sleep main thread until handler has been notified **/
System.out.println("Waiting for handler to be called...");
while (!monitor.isDone()) {

Thread.sleep(100);
}

System.out.println("End of sample");
}
catch (Exception fault) {

// Identify the cause of the Axis Fault
System.err.println(fault.toString());
Throwable e = fault.getCause();
for (int i = 1; e != null; i++) {

// The toString method on an MQAxisException will cause the message, explanation and user
// action.
System.err.println("Exception(" + i + "): " + e.toString());

if (e.getCause() != null) {
e = e.getCause();

}
else {

break;
}

} // end of for loop
} // end of catch block

}

public void handleResponse(Response<SOAPMessage> response) {
try {

// retrieve the result
SOAPMessage ans = response.get();
SOAPPart part = ans.getSOAPPart();
SOAPEnvelope env = part.getEnvelope();
SOAPBody body = env.getBody();

/** Define name of the SOAP folders we are interested in **/
QName responseName = new QName("soap.server.StockQuoteAxis_Wmq", "getQuoteResponse");
QName resultName = new QName("getQuoteReturn");

/** Retrieve result from SOAP envelope **/
SOAPElement bodyElement = (SOAPElement) body.getChildElements(responseName).next();
SOAPElement responseElement = (SOAPElement) bodyElement.getChildElements(resultName).next();
String result = responseElement.getValue();

System.out.println(" > Async Handler has received a result of " + result);
}
catch (Exception fault) {

// Identify the cause of the Axis Fault
System.err.println("Exception in handleResponce");
System.err.println(fault.toString());
Throwable e = fault.getCause();
for (int i = 1; e != null; i++) {

// The toString method on an MQAxisException will cause the message, explanation and user
// action.
System.err.println("Exception(" + i + "): " + e.toString());

if (e.getCause() != null) {
e = e.getCause();

}
else {

break;
}

} // end of for loop
} // end of catch block

}
}

Figure 210. DispatchClientAsyncCallback.java

Developing web services with IBM MQ 1317

Developing a .NET 1 or 2 client for WebSphere transport for SOAP using Microsoft
Visual Studio 2008
Develop an .NET 1 or 2 Web service client to run using the IBM MQ transport for SOAP.

Before you begin

You can start the development of a .NET 1 or 2 client in a number of different ways:
1. Use amqwdeployWMQService to generate client stubs from a Web service and import them into Visual

Studio.
2. Use java2wsdl to generate WSDL from a Java implementation of a Web service, and then use

wsdl.exe, which is shipped with .NET, to generate client stubs.
3. Generate WSDL from a .NET .asmx implementation of the service using amqswsdl, and then use

wsdl.exe.
4. If you have developed and deployed the service for HTTP, use the Add Web reference... wizard in

Visual studio to configure the client to access the HTTP service. Alter the URL refer to the service
deployed to IBM MQ transport for SOAP.

The task uses the service developed in“Developing a .NET 1 or 2 service for IBM MQ transport for SOAP
using Microsoft Visual Studio 2008” on page 1286.

About this task

Follow these steps to create a .NET 1 or 2 Client for HTTP and IBM MQ transport for SOAP.

Procedure
1. Create the client console application and modify it to invoke the StockQuote HTTP Web service.

a. Right click Solution 'StockQuoteDotNet' in the Solution Explorer > Add... > New Project. Select
the C# Project Type, .NET Framework 2.0, and Console Application. Name the project
StockQuoteClientDotNet > OK

b. Right click Solution 'StockQuoteDotNet' in the Solution Explorer > Add... > New Project. Select
the C# Project Type, .NET Framework 2.0, and Console Application. Name the project
StockQuoteClientDotNet > OK

c. Right-click StockQuoteClientDotNet > Set as Startup project.
d. Right-click StockQuoteClientDotNet > Add Web Reference... > Browse to Web services in this

solution > Select StockQuote > Add Reference. Notice you have added a Web reference to local
host and a new configuration file app.config.

e. In the Solution Explorer, change the name of the console application from Program.cs to
StockQuoteClientDotNet.cs > Click OK to changing all the usages of Program.cs to
StockQuoteClientDotNet.cs.

f. Replace the contents of StockQuoteClientDotNet.cs with the code inFigure 211 on page 1319.

1318 IBM MQ: Programming

g. Launch StockQuoteClientDotNet to test against the StockQuote.asmx service:
1) Press F5, click the green arrow in the action bar, or Debug > Start Debugging (F5).

If the StockQuoteDOtNet project is in the same solution, it starts automatically. Otherwise you
need to start the service first.
The command window with the results opens behind the workspace. The Console.ReadLine();
statement prevents it from closing until you press Enter.

Tip: Make sure StockQuote.asmx is the Start page in the StockQuoteDotNet project.
2. Modify StockQuoteClientDotNet to call the StockQuote.asmx service using IBM MQ transport for

SOAP.
a. Add the lines shown in bold to the client.

using System;
using StockQuoteClientDotNet.localhost;
namespace StockQuoteClientDotNet {

class StockQuoteClientDotNet {
static void Main(string[] args) {

try {
StockQuote stockobj = new StockQuote();
Console.WriteLine("http reply is: "

+ stockobj.getNonInlineQuote("http request");
}
catch (System.Exception e) {

Console.WriteLine("Exception thrown: " + e.ToString());
}
Console.ReadLine();

}
}

}

Figure 211. HTTP StockQuoteClientDotNet program

using System;
using StockQuoteClientDotNet.localhost;
namespace StockQuoteClientDotNet {

class StockQuoteClientDotNet {
static void Main(string[] args) {

try {
IBM.WMQSOAP.Register.Extension();
StockQuote stockobj = new StockQuote();
Console.WriteLine("http reply is: "

+ stockobj.getNonInlineQuote("http request");
stockobj.Url = "jms:/queue?"

+ "initialContextFactory=com.ibm.mq.jms.Nojndi"
+ "&connectionFactory=()&destination=REQUESTDOTNET@QM1"
+ "&targetService=StockQuote.asmx";

Console.WriteLine("jms reply is: "
+ stockobj.getNonInlineQuote("jms request")); }

catch (System.Exception e) {
Console.WriteLine("Exception thrown: " + e.ToString());

}
Console.ReadLine();

}
}

}

Figure 212. Modified StockQuoteClientDotNet program

Developing web services with IBM MQ 1319

Alternatively, modify the default URL. Open StockQuoteClientDotNet > Properties >
Settings.settings and change the value of the StockQuoteClientDotNet_localhost_StockQuote
property to the IBM MQ transport for SOAP URL.

b. Add a reference to amqsoap.dll
1) In the StockQuoteClientDotNet project in the Solution Explorer, right-click References > Add

Reference... > Click the Browse tab > browse to MQ_INSTALLATION_PATH\bin > Select
amqsoap.dll > OK. MQ_INSTALLATION_PATH is the directory where IBM MQ is installed.

3. Test the client with the StockQuote.asmx service using IBM MQ transport for SOAP.
a. Open a command window in the StockQuoteDotNet project directory: .\StockQuoteDotNet\

StockQuoteDotNet > Verify that .bin\StockQuoteDotNet.dll exists. If it does not, rebuild the
solution.

b. Type the command amqwRegisterdotNet. You need only run amqwRegisterdotNet once per
installation.

c. If you have run amqwdeployWMQServer with the genAsmxWMQBits, run the .NET SOAP Listener:
generated\server\startWMQNListener

d. Alternatively run the listener directly:
amqwSOAPNETListener -u "jms:/queue?
destination=REQUESTDOTNET@QM1
&connectionFactory=()&initialContextFactory=com.ibm.mq.jms.Nojndi
&targetService=StockQuote.asmx&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE"
-w C:\IBM\ID\StockQuoteDotNet\StockQuoteDotNet -n 10

4. In Visual Studio 2008, press F5 to run StockQuoteClientDotNet.

.NET Framework 1 and .NET Framework 2 Web service clients

The sample .NET clients provided with the IBM MQ transport for SOAP use generated stubs to call the
sample Axis and .NET services.

For .NET Framework 1 and .NET Framework 2 clients, IBM MQ provides access to web services using
.NET clients. The amqwdeployWMQService command has an option, genProxiestoDotNet, that generates
.NET Framework 1 or .NET Framework 2 client stubs for a Web service. You can also use client stubs
generated by the .NET wsdl tool, or by Microsoft Visual Studio 2005, or 2008.

The sample .NET Framework 1 and .NET Web service clients are installed in MQ_INSTALLATION_PATH
\tools\soap\samples\dotnet. MQ_INSTALLATION_PATH is the directory where IBM MQ is installed.

SQVB2Axis.vb
SQVB2Axis.vb,Figure 213 on page 1321, is the Visual Basic client to call the StockQuoteAxisService
service.

SQVB2DotNet.vb
QVB2DotNet.vb,Figure 214 on page 1321, is the Visual Basic client to call the StockQuoteDotNet
service.

SQCS2Axis.cs
SQCS2Axis.cs,Figure 215 on page 1321, is the C# client to call the StockQuoteAxisService service.
You can override the URL of the service by providing a URL on the command line.

SQCS2DotNet.cs
SQCS2DotNet.cs,Figure 216 on page 1322, is the C# client to call the StockQuoteDotNet service. You
can override the URL of the service by providing a URL on the command line.

1320 IBM MQ: Programming

Module SQVB2Axis
Function Main(ByVal CmdArgs() As String) As Integer

IBM.WMQSOAP.Register.Extension()
Dim obj As New StockQuoteAxisService()
Dim res As Single = obj.getQuote("fromcs")
System.Console.WriteLine("SQVB2Axis: reply is: ’{0}’", res)

End Function
End Module

Figure 213. SQVB2Axis

Module SQVB2DotNet
Function Main(ByVal CmdArgs() As String) As Integer

IBM.WMQSOAP.Register.Extension()
Dim obj as new StockQuoteDotNet()
Dim res as Single = obj.getQuote("fromcs")
System.Console.WriteLine("SQVB2DotNet: reply is: ’{0}’", res)

End Function
End Module

Figure 214. SQVB2DotNet

using System;
class SQCS2Axis {

[STAThread]
static void Main(string[] args) {

try {
IBM.WMQSOAP.Register.Extension();
StockQuoteAxisService stockobj = new StockQuoteAxisService();
if (args.GetLength(0) >= 1)

stockobj.Url = args[0];
System.Single res = stockobj.getQuote("XXX");
Console.WriteLine("SQCS2Axis RPC reply is: " + res);

}
catch (System.Exception e) {

Console.WriteLine("\n>>> EXCEPTION WHILE RUNNING SQCS2Axis DEMO <<<\n"
+ e.ToString());

}
}

}

Figure 215. SQCS2Axis

Developing web services with IBM MQ 1321

Deploying Web services using the IBM MQ transport for SOAP
Deploy a Web service to one of a number of different server environments and connect to it using IBM
MQ transport for SOAP.

Before you begin

Develop a Web service and test it using SOAP over HTTP in the target environment.

About this task

You can deploy a web service to run with IBM MQ transport for SOAP in a number of different SOAP
run time environments. You can deploy a service to Axis 1.4 using only the software installed with IBM
MQ. For the other run time environments, you must install additional software.

You are not restricted to running IBM MQ transport for SOAP to the servers for which there are
deployment instructions. Use the instructions to deploy a service to one of the listed environments.

Note: Some integrated environments offer SOAP over JMS using the W3C recommended JMS SOAP
binding, as well as the IBM MQ transport for SOAP binding. Releases of IBM MQ, up to and including
7.0.1.2, support only the IBM MQ transport for SOAP binding. From 7.0.1.3 onwards you can deploy
Axis2 clients using a URI that conforms to the W3C candidate recommendation for SOAP over JMS. See
the tutorial, Develop a SOAP/JMS JAX-WS Web services application with WebSphere Application Server
V7 and Rational Application Developer V7.5.

using System;
class SQCS2DotNet {

[STAThread]
static void Main(string[] args) {

try {
IBM.WMQSOAP.Register.Extension();
StockQuoteDotNet stockobj = new StockQuoteDotNet();
if (args.GetLength(0) >= 1)

stockobj.Url = args[0];
System.Single res = stockobj.getQuote("XXX");
Console.WriteLine("RPC reply is: " + res);
if (args.GetLength(0) == 0) {

res = stockobj.getQuoteDOC("XXX");
Console.WriteLine("DOC reply is: " + res);

}
}
catch (System.Exception e) {

Console.WriteLine("\n>>> EXCEPTION WHILE RUNNING SQCS2DotNet DEMO <<<\n"
+ e.ToString());

}
}

}

Figure 216. SQCS2DotNet

1322 IBM MQ: Programming

http://www.ibm.com/developerworks/websphere/library/tutorials/0903_adams/index.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0903_adams/index.html

Deploying a service to Axis 1.4 to use for WebSphere transport for SOAP using
amqwdeployWMQService
Deploy an Axis 1.4 service to IBM MQ transport for SOAP by creating a deployment directory, running
the amqwdeployWMQService command, and starting the Axis 1.4 listener.

Before you begin
1. Follow the instructions for installing IBM MQ transport for SOAP
2. Verify the installation and your environment using the runivt command.
3. To redeploy a service:

a. Delete the ./generated subdirectory, and all its subdirectories.
b. Remove requests from the destination queue and delete it.
c. Proceed with the instructions from step 2.

About this task

These instructions are to deploy an Axis 1.4 service for the first time. To restart an Axis 1.4 service, rerun
the Axis 1.4 SOAP listener: step 11 on page 1324.

Use the following instructions to deploy a new Axis 1.4 service to IBM MQ transport for SOAP:

Procedure
1. Create a directory deployDir to hold the deployment files. The deployment utility requires that each

service is deployed from a separate directory.
2. Open a command window on Windows, or a command shell using X Window System on UNIX and

Linux systems, in deployDir to run amqwdeployWMQService.
3. Run amqwsetcp to set the classpath. The JRE and JDK must be in the classpath, at version 5.0 or later,

and at the same version level.
4. Copy the class source, className.java, into deployDir
5. Copy all the Java source files in the same package as className into deployDir/packageName , where

packageName is a directory tree corresponding to the package name.
6. Run javac packageName. className . You might need to add a path to the current directory “ . ”,

or to the packageName directory for javac to find the other classes.
7. Create the Axis WSDL for the service:

amqwdeployWMQService -f packageName.className.java -c genAxisWsdl
-v -u "jms:/queue?destination=queueName
&initialContextFactory=com.ibm.mq.jms.Nojndi
&connectionFactory=(connectQueueManager(QmgrName)binding(auto))"

8. Create the IBM MQ resources for the service:
amqwdeployWMQService -f packageName.className.java -c genAxisWMQBits
-v -u "jms:/queue?destination=queueName
&initialContextFactory=com.ibm.mq.jms.Nojndi
&connectionFactory=(connectQueueManager(QmgrName)binding(auto))"

Tip:

If you want to set up a new queue manager, and the resources it needs, to do development and
testing, run setupWMQSOAP.

If you want set up the new queue manager as the default, take a copy of setupWMQSOAP from the WMQ
install directory\tools\soap\samples directory, and add the -q parameter to the line
call :try -q crtmqm %QMGR%

9. Create the Axis listener and deploy the service:

Developing web services with IBM MQ 1323

amqwdeployWMQService -f packageName.className.java -c AxisDeploy
-v -u "jms:/queue?destination=queueName
&initialContextFactory=com.ibm.mq.jms.Nojndi
&connectionFactory=(connectQueueManager(QmgrName)binding(auto))"

10. If you need to generate the WSDL for the service, generate client stubs, or client proxies, run
amqwdeployWMQService with one of the following parameters:
v genAsmxWsdl

v genAxisWsdl

v genProxiesToDotNet

v genProxiestoAxis

Note: You must generate WSDL before generating the proxies. The AllAxis option fails if the
CLASSPATH is not set up to find all the classes that are imported to compile className.java. If there
are multiple Java files in the package containing className.java, you must compile them first using
javac. amqwdeployWMQService -f packageName. className.java -c CompileJava compiles only
className.java.

11. Start the generated Axis listener.
.\generated\server\startWMQJListener.cmd

Deploying a service to .NET Framework 1 or 2 service to use IBM MQ transport for
SOAP
Deploy a .NET Framework 1 or 2 service to IBM MQ transport for SOAP. Create a deployment directory,
run the amqwdeployWMQService command, and start the .NET listener.

Before you begin
1. Follow the instructions for installing IBM MQ transport for SOAP
2. Verify the installation and your environment using the runivt command.
3. The path to the .NET framework files wsdl.exe and csc.exe must be set. The copies of wsdl.exe and

csc.exe identified by the PATH variable must be at the same level of the .NET framework. If you have
multiple .NET frameworks installed, or are using Visual Studio, check the PATH variable carefully.

4. To redeploy a service:
a. Delete the ./generated subdirectory, and all its subdirectories
b. Remove requests from the destination queue and delete it.
c. Proceed with the instructions from step 2.

About this task

These instructions are to deploy a .NET service for the first time. To restart a .NET service, rerun the
.NET SOAP listener, step 9 on page 1325.

Use the following instructions to deploy a new .NET Framework 1 or .NET Framework 2 service to IBM
MQ transport for SOAP:

Procedure
1. Create a directory deployDir to hold the deployment files. The deployment utility requires that each

service is deployed from a separate directory.
2. Open a command window in deployDir to run amqwdeployWMQService.

C:\IBM\ID\QuoteClient>

3. Run amqwsetcp to set the classpath. A classpath is needed only for Axis clients.
4. Copy the .NET service, className.asmx, into deployDir

1324 IBM MQ: Programming

5. Build the service implementation into a library (.dll).
The inline service implementation is in className.asmx. The code-behind service implementation
might be className.asmx.cs.
Figure 217 shows an example of a command to build a .NET Framework V2 service as a library.

6. Copy className.dll into deployDir\bin.
7. Set up the IBM MQ resources, and create the listener required for the service:

amqwdeployWMQService -f className.asmx -c genAsmxWMQBits
-v -u "jms:/queue?destination=queueName
&initialContextFactory=com.ibm.mq.jms.Nojndi
&connectionFactory=(connectQueueManager(QmgrName)binding(auto))
&targetService=className.asmx"

8. If you need to generate the WSDL for the service, generate client stubs, or client proxies, run
amqwdeployWMQService with one of the following parameters:
v genAsmxWsdl

v genAxisWsdl

v genProxiesToDotNet

v genProxiestoAxis

Note: You must generate WSDL before generating the proxies.
9. Start the generated .NET listener.

.\generated\server\startWMQNListener.cmd

Deploying a service to CICS Transaction Server to use WebSphere Transport for
SOAP
IBM MQ transport for SOAP is integrated into CICS Transaction Server 4.1 Web services support.

Before you begin

Use the same tools to develop for a client or service for IBM MQ, as you would to develop for HTTP.
CICS has tools corresponding to Java2wsdl and wsdl2Java:
v DFHWS2LS takes a Web service description as a starting point. It uses the descriptions of the messages,

and the data types used in those messages, to construct high-level language data structures. You can
use in the structures in application programs written in different languages.

v DFHLS2WS takes a high-level language data structure as a starting point. It uses the structure to construct
a Web services description that contains descriptions of messages. It also creates schemas for the
messages from the language data structure.

Follow the instructions, Creating a Web service in the CICS product documentation, to create a Web
service.

c:\WINDOWS\Microsoft.NET\Framework\v3.5\Csc.exe /noconfig /nowarn:1701,1702
/errorreport:prompt /warn:4 /define:TRACE
/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.configuration.dll
/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Data.dll
/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.dll
/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Drawing.dll
/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Web.dll
/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Web.Services.dll
/reference:c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Xml.dll
/debug:pdbonly /filealign:512 /optimize+
/out:obj\Quote.dll /target:library Properties\AssemblyInfo.cs Quote.asmx.cs

Figure 217. Build command for .NET Framework V2 service

Developing web services with IBM MQ 1325

About this task

Follow the instructions, Configuring CICS to use the IBM MQ transport in the CICS product
documentation. Using the instructions, you can deploy the Web service to IBM MQ transport for SOAP.

Deploying a service to WebSphere Application Server to use WebSphere Transport
for SOAP
IBM MQ transport for SOAP is integrated into the service integration bus on WebSphere Application
Server.

Before you begin

Use Rational Application Developer, WebSphere Integration Developer, or a Web services toolkit to
develop the Web service.

About this task

Use the following instructions to deploy a service using IBM MQ transport for SOAP as a SOAP
transport on WebSphere Application Server.

Procedure
1. Configure IBM MQ as the JMS messaging provider for the service integration bus on WebSphere

Application Server.
2. Configure the IBM MQ resources required by the service.
3. Follow the instructions, Configuring JMS resources for the synchronous SOAP over JMS endpoint

listener, in the WebSphere Application Server Network Deployment product documentation. There are
corresponding instructions for other WebSphere Application Server platforms.

4. Modify the service URI to conform to the IBM MQ transport for SOAP URI.
5. Deploy the service to WebSphere Application Server.

What to do next

Deploy the service with HTTP as a transport so that clients can query the service and receive the WSDL
in response.

Deploying a service to WebSphere ESB and Process Server service endpoint to
use WebSphere Transport for SOAP
IBM MQ transport for SOAP is not directly supported by WebSphere ESB and Process Server. You must
configure a custom Export.

About this task

WebSphere Integration Developer provides a SOAP data transformation that you can bind to the IBM
MQ JMS Export to create a custom IBM MQ JMS SOAP Export.

Follow the instructions to create a customized Export to receive SOAP requests over IBM MQ transport
for SOAP.

Procedure
1. Read Overview of imports and exports and How to connect to IBM MQ in the WebSphere Process

Server for Multiplatforms V6.2 product documentation.
2. Follow the task, Generating an MQ JMS export binding in the WebSphere Integration Developer,

Version 6.2 product documentation. Use the SOAP data-binding described in Prepackaged JMS data
format transformations to format the SOAP message.

1326 IBM MQ: Programming

Deploying Web service clients to use IBM MQ transport for SOAP
Deploy a Web service client to one of a number of different client environments and connect to a service
using IBM MQ transport for SOAP.

Before you begin

Develop the Web service and deploy it to use IBM MQ transport for SOAP.

About this task

You can deploy a web service client to run with IBM MQ transport for SOAP in a number of different
client environments. You can deploy a Java client to Axis 1.4 using only the software installed with IBM
MQ. For the other client environments, you must install additional software.

You are not restricted to running WebSphere transport for SOAP in the client environments for which
there are deployment instructions. Use the instructions to deploy a client to one of the supported
environments.

Note: Some integrated environments offer SOAP over JMS using the W3C recommended JMS SOAP
binding, as well as the IBM MQ transport for SOAP binding. Releases of IBM MQ, up to and including
7.0.1.2, support only the IBM MQ transport for SOAP binding. From 7.0.1.3 onwards you can deploy
Axis2 clients using a URI that conforms to the W3C candidate recommendation for SOAP over JMS. See
the tutorial, Develop a SOAP/JMS JAX-WS Web services application with WebSphere Application Server
V7 and Rational Application Developer V7.5.

Deploying a Web service client to Axis 1.4 to use IBM MQ transport for SOAP
Prepare a deployment directory and deployment descriptor for the client. Provide the client proxies and
client class, and set up the CLASSPATH. Configure IBM MQ queues and channels, start the service and test
the client.

Before you begin

Tip: Deploy the service to HTTP, develop and test the client for HTTP, and then modify the client for
IBM MQ transport for SOAP:
1. Add the Register.extension() call to the client.
2. Change the static web service address in the client proxy locator class to use the URI for the IBM MQ

transport for SOAP.

About this task

Deploying an Axis 1.4 client to use IBM MQ transport for SOAP requires one additional deployment step
compared to an HTTP client. You must create a client deployment descriptor, client-config.wsdd, to map
the jms: transport to the sender class com.ibm.mq.soap.transport.jms.WMQSender.

If you use the command amqwdeployWMQService to generate client proxies, you can deploy the client using
the directories the command generates.

Procedure
1. Create a directory deployDir to hold the client deployment files.
2. Open a command window on Windows systems, or a command shell using X Window System on

UNIX and Linux systems, in deployDir.
3. Run the amqwsetcp.cmd command to set the CLASSPATH
4. Run the amqwclientconfig.cmd command to create an Axis 1.4 client deployment descriptor,

client-config.wsdd in deployDir.

Developing web services with IBM MQ 1327

http://www.ibm.com/developerworks/websphere/library/tutorials/0903_adams/index.html
http://www.ibm.com/developerworks/websphere/library/tutorials/0903_adams/index.html

5. Make sure the classes in the client package, the client proxy classes, and the libraries the client uses,
are in the CLASSPATH.
amqwdeployWMQService places the .NET client proxies into ./generated/server/soap/client/remote/
dotnetService and the Axis 1.4 proxies into ./generated/server/soap/client/remote/client package
.

Example

The example shows the configuration and output, Figure 220 on page 1329, from an Axis 1.4 Java client.
The client, Figure 219, calls a Web service that echoes its input parameter. The service definition,
Figure 218, shows the URI taken from the service WSDL.

<wsdl:service name="QuoteSOAPImplService">
wsdl:port binding="intf:org.example.www.QuoteSOAPImplBindingSoap"

name="org.example.www.QuoteSOAPImpl_Wmq">
<wsdlsoap:address location="jms:/queue?destination=REQUESTAXIS

&connectionFactory=(connectQueueManager(QM1)binding(server))
&initialContextFactory=com.ibm.mq.jms.Nojndi
&targetService=org.example.www.QuoteSOAPImpl.java
&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE" />

</wsdl:port>
</wsdl:service>

Figure 218. Service definition

package org.example.www;
import com.ibm.mq.soap.Register;
public class QuoteClient {

public static void main(String[] args) {
try {

Register.extension();
QuoteSOAPImplServiceLocator locator = new QuoteSOAPImplServiceLocator();
System.out.println("Response = "

+ locator.getOrgExampleWwwQuoteSOAPImpl_Wmq().getQuote("IBM"));
} catch (Exception e) {

System.out.println("Exception = " + e.getMessage());
}

}
}

Figure 219. Axis 1.4 Java client

1328 IBM MQ: Programming

What to do next
1. If you are deploying the client as an IBM MQ client, configure the client and server connection

channel.
2. If you are deploying the client to a different queue manager to the service, you must make the

destination queue available to the client. Configure the destination queue on the service queue
manager as a cluster queue, or on the client queue manager as a remote queue definition.

Deploying a Web service client to Axis2 to use IBM MQ transport for SOAP
Prepare a deployment directory and Axis2 configuration file for the client. Provide the client proxies and
client class, and set up the CLASSPATH. Configure IBM MQ queues and channels, start the service and
test the client.

Before you begin

Tip: Deploy the service to HTTP. Develop and test the client for HTTP, and then modify the URL to
reference the service using IBM MQ transport for SOAP.

The task shows how to deploy an unmanaged Axis2 client to Java Standard Edition. You might want to
deploy an Axis2 client to a Web container. In “Developing a JAX-WS client for WebSphere transport for
SOAP using Eclipse” on page 1301, you developed a client in a Web container and deployed it to
WebSphere Application Server Community Edition. As part of the server configuration, you enabled the
Axis2 facet and included the facet in the configuration of the Web container. To configure Web containers
on other application servers, refer to the Axis2 documentation, http://ws.apache.org/axis2/1_4_1/
installationguide.html#servlet_container, or the documentation supplied with the Web server.

Note: Axis2 use the term, Servlet container. A Servlet container is the same as a Web container.

About this task

Deploying an Axis2 client to use IBM MQ transport for SOAP is like deploying an Axis2 client to use
HTTP. Additional steps are required to provide a classpath to the IBM MQ JAR files, and to modify the
Axis2 configuration file. The Axis2 configuration file requires an additional entry for JMS. The entry
refers to the IBM MQ transport for SOAP JAR file that implements the JMS transportSender.

Axis2 provides a script, axis2.bat or axis2.sh, which simplifies client deployment; see the examples in
Figure 224 on page 1332 and Figure 225 on page 1332.

Note:

1. axis2.bat has a bug that must be corrected. The string -Djava.ext.dirs=“%AXIS2_HOME%\lib\” must
be changed to -Djava.ext.dirs=“%AXIS2_HOME%\lib\\”.

C:\IBM\ID\Test>dir /s /b
C:\IBM\ID\Test\client-config.wsdd
C:\IBM\ID\Test\org
C:\IBM\ID\Test\org\example
C:\IBM\ID\Test\org\example\www
C:\IBM\ID\Test\org\example\www\GetQuoteFaultMsg.class
C:\IBM\ID\Test\org\example\www\OrgExampleWwwQuoteSOAPImplBindingSoapStub.class
C:\IBM\ID\Test\org\example\www\QuoteClient.class
C:\IBM\ID\Test\org\example\www\QuoteSOAPImpl.class
C:\IBM\ID\Test\org\example\www\QuoteSOAPImplService.class
C:\IBM\ID\Test\org\example\www\QuoteSOAPImplServiceLocator.class

C:\IBM\ID\Test>amqwsetcp
C:\IBM\ID\Test>java org.example.www.QuoteClient.class
Response = IBM

Figure 220. Client configuration and output

Developing web services with IBM MQ 1329

http://ws.apache.org/axis2/1_4_1/installationguide.html#servlet_container
http://ws.apache.org/axis2/1_4_1/installationguide.html#servlet_container

2. In axis2.bat and axis2.sh, -Djava.ext.dirs is used as a quick way to reference all the Axis2 JAR
files, instead of adding them separately to the classpath. Unfortunately this approach is flawed, and
only works with some JREs. It does not work with the IBM JREs.
The JVM parameter, -Djava.ext.dirs=“%AXIS2_HOME%\lib\\”, makes the Axis JAR files available to the
JVM. The JVM attempts to instantiate some of the Axis JAR files, and leads to an error, the details of
which depend on the JVM. Typically, you might see one of the following lines in the stack trace:
org.apache.axiom.om.util.UUIDGenerator.getInitialUUID(UUIDGenerator.java:76)

or org.apache.axis2.deployment.DeploymentException: java.security.NoSuchAlgorithmException:
MD5 MessageDigest not available

The correct way to run an unmanaged Axis2 client is to add the Axis2 JAR files to the classpath. The
classpath is available only to the client application and not to the JVM.

The procedure describes the general steps to run an unmanaged Axis2 client without using the axis2
script. The examples in Figure 222 on page 1331 and Figure 223 on page 1331 are scripts for Windows
and Linux.

Procedure
1. Download Axis2 1.4.1 from http://ws.apache.org/axis2/download/1_4_1/download.cgi and unpack

into a folder, Axis2-1.4.1.
2. Update axis2.xml in Axis2-1.4.1\conf.

a. Update axis2.xml in Axis2-1.4.1\conf. Add IBM MQ transport for SOAP as a transportSender:
<transportSender name="jms"
class="com.ibm.mq.axis2.transport.jms.WMQJMSTransportSender"/>

b. If required, alter the size of the connection pool from the default of 10.
<transportSender name="jms"
class="com.ibm.mq.axis2.transport.jms.WMQJMSTransportSender">
<parameter name="ResourcePoolCapacity">20</parameter>
</transportSender>

ResourcePoolCapacity defines how many service endpoint entries are kept in the cache. The value
must be at least 1. If the number of service endpoint entries exceeds the cache size, entries are
deleted to make room for new entries. The size of an endpoint entry varies. Set a number that is
large enough to avoid the cache thrashing.

See step 3 in “Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse” on page
1301.

3. Create a directory deployDir. Under this directory copy the folder structure containing the client and
client proxies. deployDir is equivalent to the project\bin folder in an Eclipse Java project.

4. Open a command window on Windows, or a command shell using X Window System on UNIX and
Linux systems, in deployDir.

5. Update the classpath to include the current directory, Axis2 JAR files, com.ibm.mqjms.jar and
com.ibm.mq.axis2.jar. com.ibm.mqjms.jar references all the other IBM MQ JAR files that are required.

6. Use the Java command to start the client program.

Examples

Four example of running an Axis2 client are listed in Figure 223 on page 1331 to Figure 225 on page 1332.
Figure 221 on page 1331 shows the output from running the asynchronous client listed in Figure 203 on
page 1307.

1330 IBM MQ: Programming

http://ws.apache.org/axis2/download/1_4_1/download.cgi

cd C:\IBM\ID\Workspaces\Axis2docs\StockQuoteAxis2PojoClient\bin>
runpojo soap/client/SQA2AsyncClient

HTTP Sync: 55.25
Callback constructor
Waiting for HTTP callback
Result in Callback 55.25
HTTP poll: 55.25
JMS: Sync: 55.25
Callback constructor
Waiting for JMS callback
Result in Callback 55.25
JMS poll: 55.25
Press any key to continue . . .

Figure 221. Output from running SQA2AsyncClient

@echo off
set AXIS2_HOME=C:\OpenSource\axis2-1.4.1
set JAVA_HOME=C:\IBM\Java50
set WMQ_HOME=C:\IBM\MQ\java\lib

setlocal EnableDelayedExpansion
set CLASSPATH=
set AXIS2_CLASS_PATH=
FOR %%c in ("%AXIS2_HOME%\lib*.jar") DO set AXIS2_CLASS_PATH=!AXIS2_CLASS_PATH!;%%c

"%JAVA_HOME%\bin\java" -Daxis2.repo="%AXIS2_HOME%\repository"
-Daxis2.xml="%AXIS2_HOME%\conf\axis2.xml" -cp
".;%WMQ_HOME%\com.ibm.mqjms.jar;%WMQ_HOME%\com.ibm.mq.axis2.jar;%AXIS2_CLASS_PATH%" %1

pause

Figure 222. runpojo.bat: Windows, using a classpath

export AXIS2_HOME=/home/OpenSource/axis2-1.4.1
export JAVA_HOME=/usr/lib/j2sdk1.5-ibm
update classpath
AXIS2_CLASSPATH=""
for f in "$AXIS2_HOME"/lib/*.jar
do

AXIS2_CLASSPATH="$AXIS2_CLASSPATH":$f
done
AXIS2_CLASSPATH="$AXIS2_HOME":"$JAVA_HOME/lib/tools.jar":"$AXIS2_CLASSPATH":"$CLASSPATH"
java -cp /home/alex/dev/sandbox/Soap/axis2:/opt/mqm/java/lib/com.ibm.mqjms.jar:
/opt/mqm/java/lib/com.ibm.mq.axis2.jar:$AXIS2_CLASSPATH
-Daxis2.xml=/home/alex/dev/sandbox/axis2-1.4.1/conf/axis2.xml %1

Figure 223. runpojo.sh: Linux, using a classpath.

Developing web services with IBM MQ 1331

Note

Note

Deploying to an Axis2 client using W3C SOAP over JMS
A Web service bound to the W3C candidate recommendation for SOAP over JMS must run in the EJB
container of a Java EE application server. This task is step 4 of connecting an Axis2 Web service client and
a Web service deployed to WebSphere Application Server using the W3C SOAP over JMS protocol.
Modify the URL in the Axis2 client developed for IBM MQ transport for SOAP to use the W3C candidate
recommendation for SOAP over JMS.

Before you begin

You must first complete the task, “Developing a JAX-WS client for WebSphere transport for SOAP using
Eclipse” on page 1301 to call SimpleJavaListener using an Axis2 client and the IBM MQ transport for
SOAP protocol.

You must also have created the Web service and configured IBM MQ and WebSphere Application Server.

See Planning to use IBM MQ and WebSphere Application Server together.

You must also have completed the following task, “Developing a JAX-WS EJB Web service for W3C
SOAP over JMS” on page 1289.

In the task, the client runs in Eclipse Galileo. You might run the client from the command line by
modifying the Axis2.bat file shipped with Axis2.

About this task

The only change you must make to the existing Axis2 StockQuoteAxis static client to call the
StockQuoteAxis service hosted by WebSphere Application Server is to change the URL passed to the
client. Since the WSDL has not changed, you can use the same proxy classes in the soap.server package.

You have two approaches to defining the URL to pass to the client. You might use the same URL as in
the generated StockQuoteAxis.wsdl. You must add the jndiInitialContextFactory and the jndiURL
parameters to access the WebSphere Application Server JNDI directory. Another approach is to change
the URL and give the client direct access to the REQUESTAXIS and REPLYAXIS queues on QM1, without using
a JNDI lookup.

@echo off
set AXIS2_HOME=C:\OpenSource\axis2-1.4.1
set JAVA_HOME=C:\IBM\Java50
set WMQ_HOME=C:\IBM\MQ\java\lib

%AXIS2_HOME%\bin\axis2 -cp .;%WMQ_HOME%\com.ibm.mqjms.jar;%WMQ_HOME%\com.ibm.mq.axis2.jar; %1
pause

Figure 224. runaxis2.bat: Windows, using axis2.bat

export AXIS2_HOME=/home/OpenSource/axis2-1.4.1
export JAVA_HOME=/usr/lib/j2sdk1.5-ibm

%AXIS2_HOME%\bin\axis2 -cp .;%WMQ_HOME%\com.ibm.mqjms.jar;%WMQ_HOME%\com.ibm.mq.axis2.jar; %1

Figure 225. runaxis2.sh: Linux, using axis2.sh

1332 IBM MQ: Programming

The connection parameters you define in the URL passed to the Axis2 client are used to connect to the
IBM MQ queue manager and queues required to send and receive SOAP messages. The connection
parameters passed to the Axis2 client are not necessarily used by the service. You can use the distributed
queuing capabilities of IBM MQ to decouple the client and service from using the same queue manager,
or the same name server.

Procedure
1. Save the URL from the generated StockQuoteAxis.wsdl and close down Rational Application

Developer to save on memory.
If you did not change the server configuration, closing Rational Application Developer stops the
application server. In which case start the server with the command:
startserver server1

2. Open Eclipse Galileo in the workspace with the Axis2 client project.
3. Open SQA2StaticClient.java.

See SQA2StaticClient.java.
4. Call the service using the queue variant of the URI.

a. Modify the URL. The new URI is:
jms:queue:REQUESTAXIS

?replyToName=REPLYAXIS
&connectionFactory=connectQueueManager(QM1)Bind(Server)
&targetService=StockQuoteAxis;

Compare this to the URL from StockQuoteAxis.wsdl:

v REQUESTAXIS is now uppercase as it is a queue name and not a JNDI name.
v The connection to QM1 is straightforward.
v The URI does not contain the name of the Reply to destination. The client must define the

queue it expects replies on.
b. Run SQA2StaticClient.java using the same Run as... configuration as you did in the task,

“Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse” on page 1301.
5. Call the service using the jndi variant of the URI, using WebSphere Application Server as the naming

server.
a. Use the URL from StockQuoteAxis.wsdl, Figure 226, providing the missing parameters to use the

naming service in WebSphere Application Server.
The missing parameters and values you must provide are:

Table 176. Additional JNDI parameters

Parameter Value used in this example Description

&jndiURL iiop://localhost:2810
or
corbaname:iiop:localhost:2810

URI of naming provider. For WebSphere
Application Server the value defaults to 2809. It
is also known as the port number of the RMI
connector, and the bootstrap port. The value is
listed in the SystemOut.log

00000000 NameServerImp A NMSV0018I:
Name server available on bootstrap port 2810

&jndiInitialContextFactory com.ibm.websphere.naming.
WsnInitialContextFactory

The name of the initial context factory used by
WebSphere Application Server.

&replyToName replyaxis JNDI name of REPLYAXIS queue.

jms:jndi:requestaxis
?jndiConnectionFactoryName=qm1
&targetService=StockQuoteAxis

Figure 226. URL from StockQuoteAxis.wsdl

Developing web services with IBM MQ 1333

jms:jndi:requestaxis?
&jndiURL=iiop//localhost:2810
&jndiConnectionFactoryName=qm1
&jndiInitialContextFactory=com.ibm.websphere.naming.WsnInitialContextFactory
&targetService=StockQuoteAxis
&replyToName=replyaxis;

b. Add the JAR files required by the JNDI lookup.
In this configuration, the following JAR files were added to the build path to run the task using
the jndi variant of the JMS url:
v com.ibm.jaxws.thinclient_7.0.0.jar from Rational install directory\SDP\runtimes\

base_v7\runtimes.
v com.ibm.ws.runtime.jar from Rational install directory\SDP\runtimes\base_v7\plugins

For a different JNDI provider you require different JAR files.
The other JAR files in the build path are:
1) All the JAR files in WebSphere MQ Install directory\java\lib.
2) All the JAR files in Axis2-1.5.1\lib.
3) Java 6.0 JRE.

c. Run SQA2StaticClient.java using the same Run as... configuration as you did in the task,
“Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse” on page 1301.

Results

In both cases the reply from the service is displayed in the client console view.

Deploying a Web service client to .NET Framework 1 and 2 to use IBM MQ
transport for SOAP
Prepare a deployment directory and deployment descriptor for the client. Provide the client proxy and
client class. Configure IBM MQ queues and channels, start the service and test the client.

Before you begin

Tip: Develop and test the service and the client using Visual Studio. Then modify the client for IBM MQ
transport for SOAP.
1. If you are deploying a service using .NET Framework 1 or 2, build the service as a library (.dll).

Deploy using IBM MQ transport for SOAP.
2. Add the Register.Extension() call to the client.
3. Add a reference to amqsoap.dll, which is located in MQ_Install\bin.
4. Change the static Url property in the client proxy class constructor to the jms:/ URI, for IBM MQ

transport for SOAP.

About this task

Deploying a Web service client for .NET Framework 1 or 2 to use IBM MQ transport for SOAP requires
an additional deployment step. You need to register amqsoap.dll with the .NET Framework. amqsoap.dll
is automatically registered as part of installing IBM MQ transport for SOAP, but you might need to
register it again.

If you use the command amqwdeployWMQService to generate client proxies, you can deploy the client using
the directories the command generates.

1334 IBM MQ: Programming

Procedure
1. Create a directory deployDir to hold the client deployment files.
2. Open a command window in deployDir.
3. Run amqwsetcp to set the CLASSPATH if the service is to run on Axis 1.4.
4. If necessary, run amqwRegisterDotNet to register amqsoap.dll with the .NET Framework.

Example

The example shows the configuration and output, Figure 229, from an .NET Framework V2 client. The
client, Figure 228, calls a Web service that echoes its input parameter. The static Url definition, Figure 227,
shows the constructor for the client proxy.

What to do next
1. If you are deploying the client as an IBM MQ MQI client, configure the client and server connection

channel.
2. If you are deploying the client to a different queue manager to the service, you must make the

destination queue available to the client. Configure the destination queue on the service queue
manager as a cluster queue, or on the client queue manager as a remote queue definition.

public Quote() {
this.Url = "jms:/queue?destination=REQUESTDOTNET

&connectionFactory=(connectQueueManager(QM1)binding(server))
&initialContextFactory=com.ibm.mq.jms.Nojndi
&targetService=Quote.asmx
&replyDestination=SYSTEM.SOAP.RESPONSE.QUEUE";

}

Figure 227. Static client proxy constructor

using System;
namespace QuoteClientProgram {

class QuoteMain {
static void Main(string[] args) {

try {
IBM.WMQSOAP.Register.Extension();
Quote q = new Quote();
Console.WriteLine("Response is: " + q.getQuote("ibm"));

} catch (Exception e) {
Console.WriteLine("Exception is: " + e);

}
}

}
}

Figure 228. Client program

C:\IBM\ID\DotNet\QuoteClientProgram\QuoteClientProgram>dir /s /b
C:\IBM\ID\DotNet\QuoteClientProgram\QuoteClientProgram\QuoteClientProgram.exe
C:\IBM\ID\DotNet\QuoteClientProgram\QuoteClientProgram>quoteclientprogram
Response is: IBM

Figure 229. Configuration and output

Developing web services with IBM MQ 1335

Connect an Axis2 client to a JAX-WS service using W3C SOAP over
JMS and WebSphere Application Server
When you complete this task you will have called a JAX-WS Web service running in WebSphere
Application Server from an Axis2 client. The Axis2 client and WebSphere Application Server use the W3C
candidate recommendation for the SOAP over JMS protocol running on IBM MQ. Use Eclipse Galileo and
Rational Application Developer to build the Web service client and Web service, respectively.

Before you begin

The task requires version 7 of Rational Software Development Environment and WebSphere Application
Server. The task was created using the Rational Application Developer packaged with Rational Software
Architect for WebSphere Software v7.5.5.1, and WebSphere Application Server Version 7.0 Test
Environment v7.0.0.9 Update 1. You also require IBM MQ v7.0.1.3, or later.

The task builds on two other tasks, the Liberty profile, and “Developing a JAX-WS client for WebSphere
transport for SOAP using Eclipse” on page 1301. To complete these tasks your development environment
already has Eclipse Galileo, the Liberty profile, the Eclipse plugin for Liberty, and Axis2 1.4.1 installed.

Some of the steps are complex. The steps assume some familiarity with developing Web service
applications for WebSphere Application Server using Rational Application Developer. The processor and
memory demands of the task are large. The task was performed in a VMWare Windows 7 SP1 virtual
machine allocated 1.8GB of memory.

Install all the software before starting the task. The software takes about a day to download and a day to
install, depending on bandwidth. The task takes at least half a day.

About this task

The scenario for this task is that you have developed a stock quotation Web service, StockQuoteAxis,
using an open source tool, Eclipse Galileo. StockQuoteAxis is deployed using SOAP over HTTP running
on an open source server, Liberty profile.

You want to bind the Web services you deploy to a standards-based messaging transport, such as SOAP
over JMS, or to Web services reliable messaging, as well as to SOAP over HTTP. You want both the client
and service to use standards-based interfaces. For this reason, although your future projects development
team have implemented a solution using IBM MQ transport for SOAP, you have not gone into
production.

The Axis2 client has removed the problem that the SOAP client for the IBM MQ transport for SOAP
required a change from the HTTP client. The problem still remained that the service connected by the
IBM MQ transport for SOAP is hosted by a special listener provided by IBM MQ: SimpleJavaListener.

With the W3C SOAP over JMS standard in candidate recommendation status, some vendors are
providing support for W3C SOAP over JMS. The support enables you to deploy a Web service to an
application server and connect to the same service using a variety of connectivity protocols. The support
provided by WebSphere Application Server v7 removes problem of having to host the Web service
separately in order to use a message-based SOAP transport. The use of a standards-based message
transport interface, JMS, means you can develop solutions using tools from different vendors. You hope
the Web services tools in Eclipse will include SOAP over JMS bindings in the future.

Most of the steps are performed using Eclipse, or the management tools provided with the WebSphere
products. The steps are described for a Windows environment. With slight modifications to some
commands, you can perform the steps on other platforms.

1336 IBM MQ: Programming

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_about.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_about.html

The preliminary steps creating the HTTP Web service, and connecting to it using Axis2 are listed. The
client, and WSDL, from these steps are used to create the solution

Procedure
1. Connect to the StockQuoteAxis Web service using an Axis2 client and IBM MQ transport for SOAP

a. Use the Liberty profile
b. “Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse” on page 1301
c. “Deploying a Web service client to Axis2 to use IBM MQ transport for SOAP” on page 1329

2. Connect to the StockQuoteAxis Web service using an Axis2 client and the W3C candidate
recommendation for SOAP over JMS.
a. Configure IBM MQ resources.
b. Configure WebSphere Application Server resources.
c. “Developing a JAX-WS EJB Web service for W3C SOAP over JMS” on page 1289
d. “Deploying to an Axis2 client using W3C SOAP over JMS” on page 1332

IBM MQ bridge for HTTP
With IBM MQ bridge for HTTP, client applications can exchange messages with IBM MQ without the
need to install an IBM MQ MQI client. You can call IBM MQ from any platform or language with HTTP
capabilities.

Introduction to IBM MQ bridge for HTTP
The IBM MQ bridge for HTTP is a Java, Enterprise Environment (JEE) Web application. HTTP clients can
send POST, GET, and DELETE requests to it to put, browse and delete messages from IBM MQ queues. The
IBM MQ bridge for HTTP is not suitable for use with messages, if assured delivery is required.

Benefits

With the IBM MQ bridge for HTTP you can send and receive IBM MQ messages using HTTP from a
wide variety of environments:
v Environments that support HTTP, but not IBM MQ.
v Environments that have insufficient storage space to install an IBM MQ MQI client.
v Environments that are too numerous to install the IBM MQ MQI client on each system that requires

access to IBM MQ.
v Web-based applications from which you want to send or receive messages without coding your own

bridge to IBM MQ.
v Web-based applications that you want to enhance, using asynchronous techniques such as AJAX. IBM

MQ bridge for HTTP makes IBM MQ queues and topics available using Representation State Transfer
(REST) over HTTP.

HTTP support can be used with both point-to-point and publish/subscribe messaging topologies.

How does HTTP support work?

Developing web services with IBM MQ 1337

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/cwlp_about.html

The IBM MQ bridge for HTTP Web application receives HTTP requests from one or more clients. It
interacts with IBM MQ on their behalf, and returns HTTP responses to them.

The IBM MQ bridge for HTTP is a JEE servlet that is connected to IBM MQ using a resource adapter. The
HTTP servlet handles three different types of HTTP requests: POST, GET, and DELETE.

Table 177. IBM MQ bridge for HTTP verbs

HTTP Request Result

POST Puts a message on a queue or topic.

GET Browses the first message on a queue. In line with the HTTP protocol, GET does not delete the
message from the queue. Do not use GET with publish/subscribe messaging.

DELETE Gets and deletes a message from a queue or topic.

HTTP POST example

HTTP POST puts a message to a queue, or a publication to a topic. The HTTPPOST Java sample is an
example an HTTP POST request of a message to a queue. Instead of using Java, you could create an HTTP
POST request using a browser form, or an AJAX toolkit instead.

The following figure shows an HTTP request to put a message on a queue called myQueue. This request
contains the HTTP header x-msg-correlId to set the correlation ID of the IBM MQ message.

The following figure shows the response sent back to the client. There is no response content.

HTTP
Client

WebSphere
MQ

WebSphere
MQ Bridge
for HTTP

JEE

Application Server

Figure 230. IBM MQ bridge for HTTP

POST /msg/queue/myQueue/ HTTP/1.1
Host: www.example.org
Content-Type: text/plain
x-msg-correlID: 1234567890
Content-Length: 50

Here is my message body that is posted on the queue.

Figure 231. Example of an HTTP POST request to a queue

1338 IBM MQ: Programming

HTTP DELETE example

HTTP DELETE gets a message from a queue and deletes the message, or retrieves and deletes a
publication. The HTTPDELETE Java sample is an example an HTTP DELETE request reading a message from
a queue. Instead of using Java, you could create an HTTP DELETE request using a browser form, or an
AJAX toolkit instead.

The following figure shows an HTTP request to delete the next message on queue called myQueue. In
response, the message body is returned to the client. In IBM MQ terms, HTTP DELETE is a destructive get.

The request contains the HTTP request header x-msg-wait, which instructs IBM MQ bridge for HTTP
how long to wait for a message to arrive on the queue. The request also contains the
x-msg-require-headers request header, which specifies that the client is to receive the message correlation
ID in the response.

The following figure shows the response returned to the client. The correlation ID is returned to the
client, as requested in x-msg-require-headers of the request.

HTTP GET example

HTTP GET gets a message from a queue. The message remains on the queue. In IBM MQ terms, HTTP GET
is a browse request. You could create an HTTP GET request using a Java client, a browser form, or an
AJAX toolkit.

The following figure shows an HTTP request to browse the next message on queue called myQueue.

The request contains the HTTP request header x-msg-wait, which instructs IBM MQ bridge for HTTP
how long to wait for a message to arrive on the queue. The request also contains the
x-msg-require-headers request header, which specifies that the client is to receive the message correlation
ID in the response.

HTTP/1.1 200 OK
Date: Wed, 2 Jan 2007 22:38:34 GMT
Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1
Content-Length: 0

Figure 232. Example of an HTTP POST response

DELETE /msg/queue/myQueue/ HTTP/1.1
Host: www.example.org
x-msg-wait: 10
x-msg-require-headers: correlID

Figure 233. Example of an HTTP DELETE request

HTTP/1.1 200 OK
Date: Wed, 2 Jan 2007 22:38:34 GMT
Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1
Content-Length: 50
Content-Type: text/plain; charset=utf-8
x-msg-correlId: 1234567890

Here is my message body that is retrieved from the queue.

Figure 234. Example of an HTTP DELETE response

Developing web services with IBM MQ 1339

The following figure shows the response returned to the client. The correlation ID is returned to the
client, as requested in x-msg-require-headers of the request.

Installing, configuring, and verifying IBM MQ bridge for HTTP
Obtain IBM MQ bridge for HTTP by installing Java Messaging and Web Services from either the IBM MQ
MQI client or server installation materials. Deploy IBM MQ bridge for HTTP to a suitable application
server.

Before you begin

Check the prerequisite products at IBM MQ System Requirements. The installation process does not
check for the presence and availability of the prerequisite software for running IBM MQ bridge for HTTP.
You must verify that the prerequisites are installed.

IBM MQ bridge for HTTP is a Java EE 4 application. For information about supported application
servers, see IBM MQ System Requirements.

About this task

IBM MQ bridge for HTTP is supplied as a .war file, WMQHTTP.war.
v On UNIX platforms and Linux,

– WMQHTTP.war is included as part of the Java Messaging and Web Services install option. The option is
available in both the client and server installation materials.

– WMQHTTP.war is installed to <mqmtop>/java/http/WMQHTTP.war. <mqmtop> is the directory where IBM
MQ is installed.

– WMQHTTP.samples is installed to <mqmtop>/java/http/samples. <mqmtop> is the directory where IBM
MQ is installed.

v z/OS On z/OS,
– WMQHTTP.war is included as part of the IBM MQ z/OS UNIX System Services Components feature.
– WMQHTTP.war is installed to PathPrefix/usr/lpp/mqm/V7R0M0/HTTPBridge/, where PathPrefix is an

optional customer defined prefix.

Carry out the following installation steps to install IBM MQ bridge for HTTP, deploy, and configure it,
and verify the configuration. The details of the configuration steps vary on different application servers.
Use “Deploying and verifying IBM MQ bridge for HTTP on WebSphere Application Server V6.1.0.9” on
page 1341

GET /msg/queue/myQueue/ HTTP/1.1
Host: www.example.org
x-msg-wait: 10
x-msg-require-headers: correlID

Figure 235. Example of an HTTP GET request

HTTP/1.1 200 OK
Date: Wed, 2 Jan 2007 22:38:34 GMT
Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1
Content-Length: 50
Content-Type: text/plain; charset=utf-8
x-msg-correlId: 1234567890

Here is my message body that appears on the queue.

Figure 236. Example of an HTTP GET response

1340 IBM MQ: Programming

http://www.ibm.com/software/integration/wmq/requirements/
http://www.ibm.com/software/integration/wmq/requirements/

page 1342 as a template for the steps to follow on your application server.

Procedure
1. Obtain WMQHTTP.war by installing either the IBM MQ MQI client or server.
2. Copy WMQHTTP.war to a server from which it can be deployed to an application server.
3. Deploy WMQHTTP.war to an application server.
4. If necessary, install IBM MQ as a resource adapter on your application server. Find out if IBM MQ is

already configured as a messaging provider on your application server. Use the administration or
management tool supplied with your application server, to look for IBM MQ. IBM MQ might be
found under the following path, Resources > JMS > Messaging providers.

5. Configure a connection factory on the application server to connect to a queue manager that uses the
IBM MQ MQI client transport12 .

6. Configure the WMQHTTP.war Web application on the application server to use the connection factory
7. Verify the configuration.

a. Set up the queue manager named in the connection factory and a local queue.
b. Place a message on the local queue.
c. Create the server-connection channel named in the connection factory, with authority to read and

write to the local queue.
d. Start the queue manager and the listener.
e. Start the application server and WMQHTTP.war, if they are not already running.
f. Open a browser and type http://hostname: web port/Context root/msg/queue/local queue

Results

The browser window displays the message you placed on the local queue.

What to do next
1. Try the example, “Deploying and verifying IBM MQ bridge for HTTP on WebSphere Application

Server V6.1.0.9.”
2. Run the sample HTTP Java applications.

Deploying and verifying IBM MQ bridge for HTTP on WebSphere Application
Server V6.1.0.9
Use the following example to prepare a deployment of IBM MQ bridge for HTTP to run the sample
HTTP Java programs. The deployment is on WebSphere Application Server V6.1.0.9.

Before you begin
1. Follow the instructions in “Installing, configuring, and verifying IBM MQ bridge for HTTP” on page

1340, to copy WMQHTTP.war onto a server accessible to your installation of WebSphere Application
Server.

2. Configure a queue manager, and a queue, to use to test the configuration:
v In the example, the queue manager is configured as using the values in Table 178 on page 1342:

12. Initially, at least, configure the client transport. Some application servers can connect to IBM MQ by using direct, or bindings
mode connections.

Developing web services with IBM MQ 1341

Table 178. Queue manager configuration

Object Value

Host name itso-01

Queue manager QM1

Local queue HTTPTESTQ

Server connection channel MYSVRCON. Configure an MCA user ID with sufficient authority to read
and write to HTTPTESTQ.

Listener port 1414

3. Start the queue manager and the listener
4. Place a test message onto HTTPTESTQ. For example:

a. Start IBM MQ Explorer.
b. In the list of local queues for QM1, right-click HTTPTESTQ > Put test message > type First Message

> Put message > Close

5. Start the application server and sign on to the Integrated Solutions Console.

About this task

The example shows the steps to take if you are running WebSphere Application Server V6.1.0.9 as your
application server. If you are running a different version of WebSphere Application Server, or running a
different application server, the steps are different. WebSphere Application Server V6.1.0.9 is
pre-configured with IBM MQ installed as a message provider, using the IBM MQ MQI client libraries. If
IBM MQ is not pre-configured as a messaging provider, or if you want to use IBM MQ server bindings,
you need to install and configure the IBM MQ resource adapter for JEE into your application server.

Follow the instructions to deploy IBM MQ bridge for HTTP onto WebSphere Application Server V6.1.0.9,
and verify the deployment using a browser:

Procedure
1. In the navigation pane, click Resources > JMS providers > IBM MQ messaging provider.

You can configure at either Node, Cell, or Server level, depending on your WebSphere Application
Server deployment. The example uses Server level deployment.

2. Under Additional properties, click Connection factories > New.
3. In the JMS providers form, provide the information in Table 179, or alternatives of your choosing,

click Apply> Save.

Table 179. Set or modify the following fields

Field Value

Name WMQHTTPBridge

JNDI Name jms/WMQHTTPJCAConnectionFactory

Queue manager QM1

Host itso-01

Port 1414

Channel MYSVRCON

Transport type CLIENT

4. In the navigation pane, click Applications > Install New Application.
5. Insert the path to WMQHTTP.war into the form, and provide a Context root, click Next.

a. The Context root is optional. mq is the default Context root for the sample HTTP applications.

1342 IBM MQ: Programming

b. The Context root forms part of the URI identifying IBM MQ bridge for HTTP. You can omit the
Context root, or change it later.

6. On the Select installation options page of the installation wizard, you do not have to change any of
the defaults, click Next.

7. On the Map modules to servers page, select a Cluster or Server, check the Select box, click Apply>
Next.

8. On the Map resource references to resources page, in the javax.jms.ConnectionFactory form, click
Browse... on the IBM MQ bridge for HTTP row.

9. On the Enterprise Applications > Available resources page, select WMQHTTPBridge, click Apply.
10. Back in the javax.jms.ConnectionFactory form, select the authentication method.

a. For the example, choose None, click Apply. The other options require additional configuration.
11. Check the Select check box for IBM MQ bridge for HTTP, click Next> Next > Finish > Save

12. In the navigation pane, click Applications > Enterprise Applications.
13. Check the selection box for WMQHTTP.war, click Start.
14. Open a browser window. Type http://itso-01:9080/mq/msg/queue/HTTPTESTQ, using the appropriate

host name and port.

Results

The browser window displays First Message, if the configuration is successful.

What to do next

Run the sample HTTP Java applications.

Publish/subscribe using the IBM MQ bridge for HTTP
IBM MQ bridge for HTTP uses the IBM MQ classes for JMS publish/subscribe interface. HTTP POST
creates a publication. HTTP DELETE creates a non-durable managed subscription. You must configure
publish/subscribe for JMS before using the topic URI.

Publish/subscribe is fully integrated into IBM MQ in version 7. Before version 7, a separate
publish/subscribe broker handled publications and subscriptions. It is called “queued” publish/subscribe,
to distinguish it from the fully integrated publish/subscribe in version 7. Version 7 emulates queued
publish subscribe using integrated publish/subscribe. The emulation enables existing queued
publish/subscribe applications to coexist with integrated applications running on the same queue
manager. Queued publish/subscribe applications can also interoperate with integrated applications,
sharing the same topics. In Version 6, the broker was shipped with IBM MQ; before Version 6 it was
available as a SupportPack.

Configuration

The IBM MQ bridge for HTTP uses the JMS interface to publish and subscribe. In version 7, you can
control whether the IBM MQ classes for JMS use queued or integrated publish/subscribe, using the
PROVIDERVERSION JMS property.

An additional consideration is that you can use either IBM MQ MQI client libraries with IBM MQ bridge
for HTTP, or server libraries. Version 6 client libraries only support queued publish/subscribe, whereas
version 7 libraries support both queued and integrated publish/subscribe. Most Web or application
servers that use IBM MQ as a messaging provider do so using client libraries. In order to use integrated
publish/subscribe, both the IBM MQ MQI client and server libraries must be at least at version 7. If
either is running an earlier version of WebSphere than 7, then you must configure queued
publish/subscribe; see Table 180 on page 1344. Check what libraries are installed or configured with the
Web server or application server you are using.

Developing web services with IBM MQ 1343

Table 180. Publish/subscribe configuration modes

Client V6 or earlier Client V7 or later

Server V6 or earlier 1. Run the \java\bin\
MQJMS_PSQ.mqsc script

Not supported

Server V7 or later 1. Run the \java\bin\
MQJMS_PSQ.mqsc script

2. Set the queue manager to
PSMODE=ENABLED

1. If PROVIDERVERSION = 7

a. Set the queue manager to
PSMODE=ENABLED or
PSMODE=COMPAT

2. If PROVIDERVERSION = 6

a. Set the queue manager to
PSMODE=ENABLED

Publish

Send an HTTP POST request with the URI:
http://hostname: port/context_root/msg/topic/topicString

The message contents are published using the topic string topicString.

Subscribe

Send an HTTP DELETE request with the URI:
http://hostname: port/context_root/msg/topic/topicString

IBM MQ bridge for HTTP creates a managed non-durable subscription to the topic string topicString.
The subscription is deleted as soon as a publication is returned, or until the wait-interval set by the
custom entity-header, x-msg-wait, expires.

Running the IBM MQ bridge for HTTP samples
The IBM MQ bridge for HTTP samples are available for use on only the Windows operating system. The
samples show you how to submit HTTP POST and HTTP DELETE commands to IBM MQ bridge for HTTP
from Java programs.

Before you begin

Verify your IBM MQ bridge for HTTP installation by running step 7 on page 1341 in “Installing,
configuring, and verifying IBM MQ bridge for HTTP” on page 1340.

The HTTP samples are installed to the directories shown in Table 181. In each case, source code is
installed to the /src subdirectory.

Table 181. Location of HTTP samples

Platform Location

Windows MQ_INSTALLATION_PATH/tools/http/samples

z/OS z/OS PathPrefix/usr/lpp/mqm/V7R0M0/http/samples

IBM i
MQ_INSTALLATION_PATH/java/samples/http

All other platforms MQ_INSTALLATION_PATH/samp/http

MQ_INSTALLATION_PATH represents the directory where IBM MQ is installed.

1344 IBM MQ: Programming

About this task

The samples simulate the IBM MQ AMQSPUT and AMQSGET sample applications. They illustrate the
following functions in a point-to-point messaging environment:
v HTTPPOST - Sends HTTP POST requests in a Java application to put messages to an IBM MQ queue,

using the IBM MQ bridge for HTTP and handles the responses.
v HTTPDELETE - Sends HTTP DELETE requests in a Java application to get messages from an IBM MQ

queue, using the IBM MQ bridge for HTTP and handles the responses containing the IBM MQ
message.

Parameters for HTTPPOST and HTTPDELETE

►►
SYSTEM.DEFAULT.LOCAL.QUEUE

queueName

localhost:8080

hostName

mq

contextRoot
►◄

To run the HTTPPOST sample, complete the following steps:

Procedure
1. In a command window, navigate to the HTTP samples directory.
2. Run the HTTPPOST sample.

java -classpath . HTTPPOST [parameters]

When the HTTPPOST sample starts, the following output is displayed:

HTTP POST Sample start
Target server is ’ hostName ’
Target queue is ’ queueName ’
Target context-root is ’ contextRoot ’

3. In the command prompt, type the text that you want to form your message body.
4. Press enter to post the message to the IBM MQ queue.

a. If you want to send another message, enter some more text. The texts forms the body of a second
IBM MQ message.

b. Press enter to post the message to the IBM MQ queue.
5. Press enter twice to end HTTPPOST. The following output is displayed:

HTTP POST Sample end

What to do next

The HTTPDELETE sample performs a destructive get of all the messages you placed on the IBM MQ queue.

Run the HTTPDELETE sample by completing the following steps:
1. In a command window, navigate to MQ_INSTALLATION_PATH/tools/samples. MQ_INSTALLATION_PATH

represents the directory where IBM MQ is installed.
2. Run the HTTPDELETE sample.

java -classpath . HTTPPOST [parameters]

When the HTTPDELETE sample starts, the following output is displayed:

Developing web services with IBM MQ 1345

HTTP DELETE Sample start
Target server is ’ host:port ’
Target queue is ’ your queue name ’
Target context-root is ’ your context-root ’
message
message
...

Security considerations for WebSphere bridge for HTTP
Standard Web security considerations apply to authenticating a Web browser client. Authorization to IBM
MQ resources is at the level of the user running the WebSphere Bridge for HTTP servlet, and not the
individual Web browser client. Standard IBM MQ security consideration apply to IBM MQ.

Data flowing from a Web browser to an IBM MQ application using WebSphere bridge for HTTP, and
back, takes a three steps:

Client connection
From the browser to the WebSphere Bridge for HTTP over a TCP/IP connection using HTTP.

Resource adapter connection to IBM MQ
The connection is from the WebSphere Bridge for HTTP to an IBM MQ queue manager. The
connection is either a client connection, over TCP/IP, or a local IBM MQ bindings connection.
Once the connection is made, the HTTP request is placed on a standard local queue or a
transmission queue.

From the IBM MQ local queue over one or more channels, to the target queue.
Apply standard techniques for securing queues, topics, queue managers, and channels.

The reply takes the steps in reverse.

Client connection

Secure connections between HTTP clients and the application server using the Web container. Use
standard HTTP server techniques, such as using HTTPS. Refer to the documentation for your application
server for information.

Resource adapter connection to IBM MQ

The connection between the resource adapter and queue manager is authorized using only a single user
ID. Assign a single user ID to identify requests from the WebSphere Bridge for HTTP. The user ID must
have restricted IBM MQ authorizations only to the resources external users must have access. You must
authenticate the actual client separately, and establish trust for successive interactions with the client,
using standard techniques for Web security.

Secure the connection between the resource adapter and the queue manager using the single user ID.
Restrict the authorities the user ID has to no more than needed to read and write messages to queues and
topics. The WebSphere Bridge for HTTP is a point of attack between the internet and your intranet.

How you secure the connection between your resource adapter and IBM MQ is dependent on your
specific resource adapter. Refer to the documentation for the resource adapter.

1346 IBM MQ: Programming

Index

Special characters
.NET

support for 1
.NET Monitor 684

Numerics
64 bit C applications, building on

z/OS 427

A
About IBM MQ automation classes for

ActiveX classes 698
AccessGetMessageOptions method 701
accessing queues

classes for .NET 663
accessing queues, topics, and processes in

Java 859
accessing topics

classes for .NET 663
AccessPutMessageOptions method 702
AccessQueue method 715
AccessQueueManager method 702
AccountingToken field 34
AccountingToken property 743, 779
AccountingTokenHex property 743, 780
AcessQueue method 703
acknowledgment mode

JMS 1022
ActiveX

support for 1
adapter

batch 265
IMS 267

Add method 794
Selector parameter 794
Value parameter 794

AddDistributionList method 716
AddDistributionListItem method 776
Addinquiry method 795
AddInquiry method

Inquiry parameter 795
Address space models

HP-UX on IA64 (IPF) 405
administered objects 950

retrieving from JNDI 1009
administering JMS objects 1098
administration

commands 1098
verbs 1098

administration tool
configuration file 1097
configuring 1097
overview 1097
properties 1097
starting 1097

advantages
IBM MQ classes for JMS 903

AIX operating system
performance of nonpersistent

messages 153
alias queue

resolving queue name 106
alias queue manager definition 104
alternate PCB, IMS bridge 47, 287
AlternateUserId field 110
AlternateUserId property 705, 720, 773
alternative user authority 110
amaspse0 sample program 516
AMQ0ECHA sample program 505
amq0gbr0 sample program 475, 493
amq0get0 sample program 475, 506
AMQ0GET4 sample program 506
amq0put0 sample program 475, 517
amq0req0 sample program 475, 526
AMQ0REQ4 sample program 526
AMQ0SETA sample program 531
amqiech2 sample program 481, 505
amqiechx sample program 475, 505
amqiinq2 sample program 481, 511
amqiinqx sample program 475, 511
amqiset2 sample program 481, 531
amqisetx sample program 475, 531
amqltmc0 trigger monitor 252
amqmech2 sample program 481, 505
amqmechx sample program 475, 505
amqminq2 sample program 481, 511
amqminqx sample program 475, 511,

512
amqmset2 sample program 481, 531
amqmsetx sample program 475, 531
AMQP

messages 1223
AMQP CorrelationID header field 1223
amqrgrma sample program 519
AMQSAPT sample program 492
amqsapt0 sample program 492
amqsaxe0 sample program 475, 490
amqsbcg sample program 494
amqsbcg0 sample program 475, 494
amqsbcgc sample program 494
amqscbf 491
amqscic0 sample transaction 475, 495
amqscic21 sample transaction 475
AMQSCLM sample program 550, 551,

558
amqsclma.c sample program 550, 551,

558
amqscnxb.vbp sample program 459
amqsdlq sample program 475
amqsech sample program 505
amqsecha sample program 475, 505
AMQSECHA sample program 505
amqsechc sample program 505
AMQSERV4 sample program 251, 535
amqsgbr sample program 493
amqsgbr0 sample program 475, 493
AMQSGBR4 sample program 493
amqsgbrc sample program 493

amqsget0 sample program 475, 506
AMQSGET4 sample program 506
amqsgetc sample program 475, 506
amqsinqa sample program 511
amqsinqc sample program 511
amqsiqma sample program 512
amqsprma sample program 519
amqsptl0 sample program 504
amqsput0 sample program 475, 517
AMQSPUT4 sample program 517
amqsputc sample program 475, 517
amqsreq sample program 526
amqsreq0 sample program 475, 526
AMQSREQ4 sample program 526
amqsreqc sample program 526
amqsset sample program 531
amqsseta sample program 531
AMQSSETA sample program 531
amqssetc sample program 531
amqsspin sample program 475
AMQSSSLC 532
amqstrg sample program 535
amqstrg0 sample program 475, 535
AMQSTRG4 sample program 251, 535
amqstrgc sample program 535
amqstxgx sample program 475, 537
amqstxpx sample program 475, 537
amqstxsx sample program 475, 537
amqsvfc0 sample program 481, 497
AMQSVFC4 sample program 484, 497
amqsvfcx sample program 497
amqswlm0 sample program 475
amqsxa4x sample transaction 475
amqsxab0.sqb sample 497
amqsxab0.sqc sample 497
amqsxaex sample transaction 475
amqsxaf0.sqb sample 497
amqsxaf0.sqc sample 497
amqsxag0.c sample 497
amqsxag0.cbl sample 497
amqsxas0.sqb sample 497
amqsxas0.sqc sample 497
amqsxrma sample program 519
API (Application Programming Interface)

calls 78
dealing with failure of a call 443

API exits
amqsaxe0 sample program 490

API-crossing exit for z/OS
CSQCAPX 269
introducing 268
preparing 270
sample 269
writing your own 268

application configuration file
.NET 659

application data 4
application design, performance

considerations 66
Application log 655

© Copyright IBM Corp. 2007, 2018 1347

application programming
application takeover 272
connection tag 272
dynamic queues 273
index queues 273
migrating applications to use shared

queues 274
persistent messages 273
queue-sharing groups 272
serialized applications 272

application programs
design considerations 56
MQI local administration, support

for 3
persistent messages, effect on

performance 56
searching for messages, effect on

performance 56
threads, application design 56

Application Server Facilities 1079
handling poison messages in

ASF 1083
ApplicationIdData property 743
ApplicationOriginData property 744
applications

building
clients 299

connected to multiple queue
managers 302

connected to multiple servers 302
connection to server 302
in different environments 302
JMS, writing 950
running 895
WebSphere

MQ 36
applications that access non-ActiveX

applications 691
applications, writing 289
ApplIdentityData field 34
ApplOriginData field 35
ApplType 313
ASF (Application Server Facilities) 1079
assembler language

preparing your program to run 427
support for 463
using the MQI 466

asynchronous message delivery 1028
asynchronous put

JMS 1071
attributes 568

DefInputOpenOption 109
DefPriority 12
HardenGetBackout 33, 445
IndexType 154
inquiring about 220
MaxMsgLength 118, 135
MaxPriority 12
MsgDeliverySequence 136
ProcessName 243
selectors 221
setting 220
Shareability 109
TrigData 243
TriggerControl 247
TriggerData 238
TriggerDepth 248

attributes (continued)
TriggerMsgPriority 247
TriggerType 247

attributes of objects 812
audit trail using message context 34
authority checking

alternative user authority on
MQOPEN 110

by MQOPEN 101
AuthorityEvent property 705
authorization

refreshing the OAM after changing a
user's 333

authorization service
component 337
stanza 338
stanza, Windows 332
user interface 327, 339

AUTO_ACKNOWLEDGE 1022
auto-definition exit program 369
automatic client reconnection 304
Automatic client reconnection 671
automatically starting an application

an example 527
how triggering works 237

B
backing out changes 33, 224
Backout method 716
backout, skipping 163
BackoutCount field 33
BackoutCount property 744
BackoutRequeueName property 721
BackoutThreshold property 721
BaseQueueName property 721
batch for IBM MQ for z/OS

adapter 265
building an application 428
calling the stub dynamically 433
restrictions 88
support for 264

Begin method 716
BeginOptions property 706
behavior in different environments 901
benefits

IBM MQ classes for JMS 903
binary strings 813, 815
binding

FASTPATH 95, 100
STANDARD 95, 100

bindings
connection 833, 930
connection, programming

Java 854
verifying 851

bindings mode 646
bindings mode connections 832
body of a message

types 1027
body, message 953, 1223
BROKERCCDSUBQ object

property 1081
BROKERCCSUBQ object property 1081
browse cursor 108
browse with mark 173

browsing (sample for IBM MQ for
z/OS) 596

browsing messages 167
browsing messages in logical order 170
bufferPointer method 820
buffers, message 816
building a connection 1020
building applications

z/OS 830
z/OS UNIX System Services 831

building client applications 299
building your application

batch with IBM MQ for z/OS 428
CICS and IBM MQ for z/OS 431
IMS 432
on AIX 389
on HP-UX 400
on IBM i 410
on Linux 405

31-bit 406
32-bit 407
64-bit 408

on Solaris 414
on Windows systems 419
on z/OS 426
UNIX System Services 433
XPLINK with IBM MQ for z/OS 429

bundles, OSGi 941
bundles, OSGi - IBM MQ classes for

Java 842
bytes message 953, 1223

C
C applications

linking 300
C Extended Transaction client 649
C language

support for 455
C Set++ 825
C, using from C++ 814
C++

support for 1
unsupported functions 816

C++ applications
linking 300

C++ language considerations 812
call interface 78
calling dynamically with IBM MQ for

z/OS 433
CAM (Credit Application Manager) 614
caseIgnoreMatch 568, 570
caseIgnoreSubstringsMatch 568, 570
CCSID (coded character set

identifier) 294
CCSID (Coded Character Set Identifier)

same as queue manager 10
CEDA 314
cepl 560
certificate revocation list (CRL) 888
CHANGE (administration verb) 1098
channel

auto-definition exit program 369
client connection 303
data-conversion exit 371
startup, data negotiation 350, 356
synchronizing 350

1348 IBM MQ: Programming

channel compression
using IBM MQ classes for Java 877
using IBM MQ classes for JMS 1070

channel definition 570
maximum message length 294

channel exit
compatible receive exit 366
reserving space in send exit 366

channel exits
assigning

with IBM MQ classes for Java 874
with IBM MQ classes for

JMS 1058
auto-definition 369
message 367
message-retry 369
not written in Java

used with IBM MQ classes for
Java 876

used with IBM MQ classes for
JMS 1058

passing user data
with IBM MQ classes for Java 875
with IBM MQ classes for

JMS 1059
receive 365
security 356

CLNTCONN and SVRCONN
channels 364

send 365
specifying

classes for .NET 670
using 669

with IBM MQ classes for Java 872
using a sequence

with IBM MQ classes for Java 876
with IBM MQ classes for

JMS 1058, 1059
with SSL 669
writing 669
written in Java

used with IBM MQ classes for
Java 872

used with IBM MQ classes for
JMS 1056

channel-exit program 364
channel-exit programs 349

channel definition structure,
MQCD 351

data buffer 351
IBM MQ for HP-UX 370
IBM MQ for IBM i 355
IBM MQ for Windows 355
IBM MQ for z/OS 353
parameter structure, MQCXP 351
Windows client 355
writing and compiling 351

ChannelAutoDefinition property 706
ChannelAutoDefinitionEvent

property 706
ChannelAutoDefinitionExit property 707
character strings 813, 815
CharacterSet property 707, 744
CICS

API-crossing exit 268
assembler language applications 466

CICS (continued)
calling the stub dynamically with IBM

MQ for z/OS 433
COBOL applications 422
CSQCAPX 268
IBM MQ for z/OS support 264
on IBM i 413
preparing and running client

applications 314
sample client programs 315
storage protection facility 269
with IBM MQ for AIX 393
with IBM MQ for HP-UX 404
with IBM MQ for Solaris 418
with IBM MQ for z/OS 431

CICS applications (non-z/OS)
CEDA 314
CICSENV.CMD file 314
environment specifics 314
MQSERVER 314

CICS bridge, writing a message to 822
CICS sample transaction 495
CICS Transaction Server

running applications 850
CKQC transaction 93
CKTI transaction 251
class path

settings 912
classes 568
classes for .NET 666
classes, core

IBM MQ for Java 896
restrictions and variations 897, 901

classpath
settings 840

Clear method 795
ClearErrorCodes method

MQDistributionList class 777
MQDistributionListItem class 785
MQGetMessageOptions class 772
MQMessage class 755
MQPutMessageOptions class 769
MQQueue class 735
MQQueueManager class 717
MQSession class 703

ClearMessage method 755
client

connection 833, 930
client (IBM MQ)

triggering support 237
client applications

CICS and Tuxedo sample
programs 315

preparing and running
CICS and Tuxedo 314
Microsoft Transaction Server 36,

317
MQ JMS 317
WebSphere Application

Server 317
client bindings connections 641, 1243
client channel definition table

how it is used 304
using IBM MQ classes for Java 857
using IBM MQ classes for JMS 1060
where to find it 302

client configuration file
.NET 659

client connections
.NET managed 656, 657

client library file 300
client mode connections 832
CLIENT_ACKNOWLEDGE 1022
client-connection channel

security exit 364
clients

configuring queue manager 644, 851,
931

programming
Java 853

verifying 851
Close method 735, 777
close, implicit operation 814
CloseOptions property 707, 721, 773
closing

resources using JMS 1033
cluster workload exit

sample 387
use of 385
writing and compiling 388

clusters, use of
return codes 260

CMQC.H header file 812
CN 568, 570
COBOL

CICS applications 422
on AIX 391
on HP-UX 402
on IBM i 412
on Linux 409
on Solaris 417
on Windows systems 421
support for 461

code examples
classses for .NET 660

code level tool 790
coded character set identifier

(CCSID) 294
Coded Character Set Identifier (CCSID)

same as queue manager 10
CodedCharSetId (CCSID) 10

message data 10
com.ibm.mq.headers.jar 837
com.ibm.mq.jar 837
com.ibm.mq.pcf.jar 837
COM+ 649
CommandInputQueueName

property 707
CommandLevel property 708
commands using Windows 786
commands, administration 1098
commit

single-phase 224
two-phase 224

Commit method 717
committing changes 224
common name 570
compile cobol sample z/OS 583
compiler commands 823
compilers for IBM MQ platforms,

overview 823
compiling

for IBM MQ for AIX 389

Index 1349

compiling (continued)
for IBM MQ for HP-UX 400

C programs 400
COBOL programs 402

for IBM MQ for IBM i 411
for IBM MQ for Solaris

C programs 414
COBOL programs 417

for IBM MQ for Windows 419
for IBM MQ for z/OS 427
MQ for Linux

COBOL programs 409
compiling exit on other distributed

platforms 566
compiling exit on windows

platform 566
compiling IBM MQ .NET programs 687
compiling sample programs

IBM i 825
z/OS 830

CompletionCode property
MQDistributionList class 774
MQDistributionListItem class 780
MQGetMessageOptions class 770
MQMessage class 740
MQPutMessageOptions class 767
MQQueue class 722
MQQueueManager class 708
MQSession class 700

components, installable services 333
compression of data 365
Configuration 654
configuration file

authorization service 338
for administration tool 1097
IBM MQ classes for JMS 916
IBM MQ for Java 843

configuration files
.NET 659

configuring
environment variables 840, 912
Java 2 Security Manager 848
Java security manager 924
JTA/JDBC coordination

other platforms 883
Windows 883

MQ resource adapter
inbound communication 1111
introduction 1108
outbound communication 1125
ResourceAdapter object 1110

queue manager for clients 851, 931
the administration tool 1097
unsupported

InitialContextFactory 1097
your class path 912
your classpath 840

configuring queue manager for
clients 644

confirmation of arrival (COA) report 6
confirmation of delivery (COD) report 6
Connect method 717
connect, implicit operation 814
connecting to a queue manager 94, 95,

663
connecting to a queue manager in

Java 856

connection
building 1020
creating 1020
modes 930
options 833
queue managers 302
starting 1020

connection endpoint lookup 560, 566
connection factories

creating
summary 1008
using the IBM JMS

extensions 1010
using the IBM MQ JMS

extensions 1017
setting properties

summary 1008
using the IBM MQ JMS

extensions 1010, 1017
connection handle

returned from MQCONN 94
returned from MQCONNX 95
scope of 94
shared 99
thread independent 99

Connection interface 950
connection options 832
connection pooling 878

example 879
connection tag 272
connection type, defining 657, 854
connectionFactory 1238
ConnectionFactory interface 950
ConnectionHandle property 708
ConnectionReference property 722, 774
connections

client bindings 641, 1243
managed client 641, 1243
server bindings 641, 1243
sharing

in JMS 1068
ConnectionStatus property 708
ConnectOptions property 709
context

default 120
message 34
MQOPEN options 110
MQPUT options 120

Context field 116
conventions 814
Conversations, sharing 297
convert message data

MQGET 133, 166
converting the log file 942
COPY (administration verb) 1098
copying messages 167
copyOut method 819
core classes

IBM MQ for Java 896
restrictions and variations 897, 901

CorrelationId property 745, 780
CorrelationIdHex property 745, 781
CorrelId field 148
correlid, performance considerations 66
CorrelId, performance considerations 56
Count property 793

creating
connection 1020
connection factories

summary 1008
using the IBM JMS

extensions 1010
using the IBM MQ JMS

extensions 1017
destinations

summary 1008
using a session 1023
using the IBM JMS

extensions 1010
using the IBM MQ JMS

extensions 1017
JMS objects 1098
session 1021

creating service components 337
CreationDateTime property 722
Credit Application Manager (CAM) 614
credit check sample (IBM MQ for

z/OS) 610
CSQ4BAA1 sample 596
CSQ4BCA1 sample 596
CSQ4BVA1 sample 596
CSQ4CAC1 sample 602
CSQ4CCB5 sample 618
CSQ4CCC1 sample 602
CSQ4CCG1 sample 598
CSQ4CVB1 sample 614
CSQ4CVB2 sample 614
CSQ4CVB3 sample 617
CSQ4CVB4 sample 617
CSQ4CVB5 sample 618
CSQ4CVC1 sample 602
CSQ4CVD1 sample 607
CSQ4CVD2 sample 608
CSQ4CVD3 sample 608
CSQ4CVD4 sample 609
CSQ4CVD5 sample 610
CSQ4TCD1 sample 607
CSQ4TCD2 sample 608
CSQ4TCD4 sample 609
CSQ4TCD5 sample 610
CSQ4TVD1 sample 607
CSQ4TVD2 sample 608
CSQ4TVD4 sample 609
CSQ4TVD5 sample 610
CSQCAPX API-crossing exit sample 269
CSQCAPX sample 268
CSQQTRMN transaction 251
CurrentDepth property 723
cursor, browse 108

D
data

application 4
compression 365
conversion 367
decompression 365
encryption 367
message 4
preparation 816
types 813

data conversion 302, 694
amqsvfc0 sample program 497

1350 IBM MQ: Programming

data conversion (continued)
AMQSVFC4 sample program 497
amqsvfcx sample program 497
application 11
IMS bridge 48, 288
interface 372
message 166
MQGET 133, 166
MQXCNVC call 80

data conversion interface (DCI) 372
data definition files

copy files 72
header files 72
include files 72
macros 72

data in a message 4
data types

structures 80
data-conversion exit 371

amqsvfc0 sample program 497
AMQSVFC4 sample program 497
amqsvfcx sample program 497
IMS bridge 48, 288
invoking 372
MQXCNVC call 80
writing

IBM i 373
UNIX systems 376
Windows NT 379
z/OS 375

datagram, putting and getting
C++ 808

DataLength parameter 135
DataLength property 741
DataOffset property 741
dataPointer method 820
date and time of messages 35
dead-letter (undelivered message) queue

handler 447
brief description 447
sample 504

sample to deal with messages on
it 504

using 447
dead-letter queue

processing in Java 864
dead-letter queue, writing a message

to 821
DeadLetterQName field 243
DeadLetterQueueName property 709
debugging programs 439
declaring parameters 814
decompression of data 365
default connection pool 878

multiple components 880
default context 120
DefaultInputOpenOption property 723
DefaultPersistence property 723
DefaultPriority property 723
DefaultTransmissionQueueName

property 709
DEFBIND attribute

inquiring on a queue 259
opening a queue 257

DEFINE (administration verb) 1098
defining alias for queue manager 104

defining channels
using MQSC 303

defining connection type 657, 854
DefinitionType property 724
DefInputOpenOption attribute 109
DefPriority attribute 12
DELETE (administration verb) 1098
DepthHighEvent property 724
DepthHighLimit property 724
DepthLowEvent property 724
DepthLowLimit property 725
DepthMaximumEvent property 725
Description property 709, 725
design and programming using IBM MQ

automation classes for ActiveX 691
designing applications that access

non-ActiveX applications 691
Destination interface 950
destinations

creating
summary 1008
using a session 1023
using the IBM JMS

extensions 1010
using the IBM MQ JMS

extensions 1017
setting properties

summary 1008
using a URI 1023
using the IBM JMS

extensions 1010
using the IBM MQ JMS

extensions 1017
differences due to environment 901
directories, installation 839
Disconnect method 717
disconnect, implicit operation 814
disconnecting from a queue

manager 100, 663
disconnecting from a queue manager in

Java 856
DISPLAY (administration verb) 1098
disposition options, message 1082
distributed transaction 646
distribution list, putting messages to 811
distribution lists 124

opening 125
platform dependency 900
putting messages to 128

DistributionList property 781
DistributionLists property 710
DPUT sample program 811
DTC 649
DUPS_OK_ACKNOWLEDGE 1022
durable topic subscribers 1028
dynamic binding 330, 336
dynamic linking of MQI calls for IBM

MQ for z/OS 433
dynamic queue

closing temporary queue 112
creating 111

dynamic queues, shared queues 273
dynamic XA resource management

structure 232
DynamicQName field 111
DynamicQueueName property 725

E
EBCDIC newline character

conversion 167
ECB (event control block) 162
Encoding field 10
Encoding property 746
encryption

in send exit 366
encryption of messages 349
END (administration verb) 1098
endmqdnm 684
environment dependencies

functions not with all platforms 899
distribution lists 900
MQGetMessageOptions fields 899
MQMD fields 900
MQPutMessageOptions fields 900
MQQueueManager begin()

method 899
MQQueueManager

constructor 899
IBM MQ for Java 895
restrictions and variations 897

MQGMO_* values 897
MQPMO_* values 897
MQPMRF_* values 897
MQRO_* values 898
z/OS 898

environment differences 901
environment variable

MQ_CONNECT_TYPE 100
environment variables 840, 912

connecting to a client 303
MQCHLLIB 302
MQCHLTAB 302
MQSERVER 302

environments for IBM MQ for z/OS 263
error

conditions when creating an
object 1099

conditions when using an
object 1099

handling 869
logging 942

IBM MQ classes for JMS 1035
error handling 696
Error handling 791
error handling in the samples 801
error messages 645
errors

classes for .NET 666
dead-letter (undelivered message)

queue 447
dealing with failure of a call 443
report message 445
undelivered message queue 447

errors on parameter passing 698
escaping, in URI 1248
event control block 162
example code

classses for .NET 660
example output file from code level

tool 790
examples

custom encapsulated message-writing
code 819

declaration and use conventions 814

Index 1351

examples (continued)
headers 814
ImqDeadLetterHeader class 819
invoking the cluster workload

exit 387
manipulating binary strings 813
preparing message data 816
retrieving items within a

message 817
retrieving messages into a fixed area

of storage 820
sample programs 807

DPUT (imqdput.cpp) 811
SGET (imqsget.cpp) 811

writing a message to the CICS
bridge 822

writing a message to the dead-letter
queue 821

writing a message to the IMS
bridge 821

writing a message to the work
header 823

exception listeners 1035
exception report options, message 1082
exceptions

IBM MQ classes for JMS 1035
exclusive access to a queue 109
execute method 795
Execute method

Command parameter 796
OptionsBag parameter 796
QueueManager parameter 796
ReplyBag parameter 796
ReplyQ parameter 796
RequestQ parameter 796

execution key of CICS programs 269
exit module 566
exit programs 268
exit, cluster workload

sample 387
use of 385
writing and compiling 388

Expiry property 747
expiry report 6
explicit programming model 648
external syncpoint

interfaces 232
restrictions 233
X/Open XA interface 232

F
failure of the IBM MQ automation classes

for ActiveX script 787
FASTPATH binding 95

environment variable 100
feedback codes, IMS bridge 44, 285
Feedback field 7
Feedback property 747, 781
fields

AlternateUserId 110
ApplIdentityData 34
ApplOriginData 35
BackoutCount 33
Context 116
CorrelId 148
DeadLetterQName 243

fields (continued)
DynamicQName 111
Encoding 10
Feedback 7
Format 10
GroupId

match options 148
MQMO 148

InitiationQName 242
MsgId 148
Persistence 32
Priority 12
PutApplName 35
PutApplType 35
PutDate 35
PutMsgRecFields 117
PutMsgRecOffset 117
PutMsgRecPtr 117
PutTime 35
RecsPresent 116
ReplyToQ 33
ReplyToQMgr 33
ResolvedQMgrName 116
ResolvedQName 116
ResponseRecOffset 117
ResponseRecPtr 117
StrucId 116
UserIdentifier 34
Version 116
WaitInterval 133, 161

FirstDistributionListItem property 774
format

control information 10
message data 10

Format field 10
Format property 747
formatLog utility 942
Frommessage method 796
FromMessage method

Message parameter 796

G
get (sample for IBM MQ for z/OS) 594
get method 820
Get method 735
getting

a particular message 148
message when the length is

unknown 170
messages 131
options 130

getting a datagram, sample program
C++ 808

getting started
IBM MQ classes for JMS 906
IBM MQ for Java 833

getting trigger messages
trigger queue 249

Global Assembly Cache 649
global transaction 646
GMT (Greenwich Mean Time) 35
group attach 50
group batch attach 50
GroupId property 748, 782
GroupIdHex property 748, 782

GroupStatus field
MQGMO structure 134

H
handle

scope of connection handle 94
using object handle 101

handling
errors 869

classes for .NET 666
headers, in Java 862
messages 664, 860

HardenGetBackout attribute 33, 445
HardenGetBackout property 726
Hconn

shared 99
thread independent 99

header
handling, Java 862

header example 814
header files

CMQC.H 812
IMQI.HPP 812
IMQTYPE.H 812

headers
creating classes 867
finding 866
printing in Java 863, 865
skipping over in Java 864

headers, message 953, 1223
HELLO WORLD sample program

C++ 808
how triggering works 237
HP-UX

Address space models 405

I
IBM i compilers

IBM ILE C++ 825
VisualAge C++ 825

IBM i compiling 825
IBM ILE C++ 825
IBM JMS extensions

introduction
general 903

using 1010
IBM MQ classes for JMS

benefits 903
configuration file 916
introduction

general 903
IBM MQ for AIX

amqisetx 531
amqmsetx 531
amqsseta 531
build TUXEDO server

environment 537, 538
building your application 389
CICS support 393
sample programs 473
set sample 531
syncpoints 230
triggering using samples 527
TUXEDO samples 537

1352 IBM MQ: Programming

IBM MQ for HP Integrity NonStop Server
notification of message arrival 162
using signaling 162

IBM MQ for HP-UX
amqisetx 531
amqmsetx 531
amqsseta 531
build TUXEDO server

environment 541, 542
building your application 400
channel-exit programs 370
CICS support 404
sample programs 473
set sample 531
syncpoints 230
triggering using samples 527
TUXEDO samples 537

IBM MQ for IBM i
AMQZSTUB 411
building your application 410
channel-exit programs 355
compiling 411
CRTCMOD 411
disconnecting from queue

manager 100
linking 411
sample program

using triggering 529
SQL programming

considerations 413
syncpoint considerations with CICS

for IBM i 229
syncpoints 230, 235
trigger monitors 253
triggering Java applications 253

IBM MQ for Java
configuration file 843
connection options 832
introduction 832

IBM MQ for Solaris
build TUXEDO server

environment 539, 540
building your application 414
C compiler 414
CICS support 418
sample programs 473

IBM MQ for Windows
amqrspin.dll 549
amqsspin.c 549
authentication

Kerberos 425
NTLM 425

build TUXEDO server
environment 543, 545

building your application 419
channel-exit programs 355
context acceptor, security exit 425
context initiator, security exit 425
Kerberos

authentication 425
NTLM authentication 425
object code, security exit 549
principal, security exit 425
sample programs 473
security exit

object code 549
source code 549

IBM MQ for Windows (continued)
source code, security exit 549
syncpoints 230
triggering using samples 527
TUXEDO sample makefile 544, 547
TUXEDO samples 537
ubbstxcn.cfg example 543, 546

IBM MQ for z/OS
building your application 426
channel-exit programs 353
CMQA 75
CMQDLHA 75
CMQDXPA 75
CMQGMOA 75
CMQIIHA 75
CMQMDA 75
CMQODA 75
CMQPMOA 75
CMQTMA 75
CMQTMC2A 75
CMQXA 75
CMQXPA 75
CMQXQHA 75
CSQQSTUB 432
requesting no backout of

MQGET 163
using signaling 162

IBM MQ resource adapter
introduction 1099

IBM Tivoli Directory Server 6.3 566
ibm-amqChannelName 568, 570
ibm-amqClientChannelWeight 568
ibm-amqConnectionAffinity 568
ibm-amqConnectionName 568, 571
Ibm-amqDescription 568, 571
ibm-amqHeaderCompression 568, 576
ibm-amqHeartBeatInterval 568, 574
ibm-amqIsClientDefault 575
ibm-amqKeepAliveInterval 568, 574
ibm-amqLocalAddress 568, 571
ibm-amqMaximumMessageLength 568,

574
ibm-amqMessageCompression 568, 576
ibm-amqModeName 568, 571
ibm-amqPassword 572

ibm-amqQueueManagerName 568
ibm-amqSendExitUserData 568
ibm-amqSendExitUserName 568
ibm-amqSslCipherSpec 568
ibm-amqSslPeerName 568
ibm-

amqTransactionProgramName 568
ibm-amqUserID 568
ibm-wmqSecurityExitName 568

ibm-amqQueueManagerName 572, 575
ibm-amqReceiveExitName 577
ibm-amqReceiveExitUserData 568, 577
ibm-amqSecurityExitName 572
ibm-amqSecurityExitUserData 572
ibm-amqSendExitName 577
ibm-amqSendExitUserData 576
ibm-amqSharingConversations 568, 575
ibm-amqSslCipherSpec 573
ibm-amqSslPeerName 573
ibm-amqTransactionProgramName 573
ibm-amqTransportType 568, 575
ibm-amqUserID 573

ibm-wmqClientChannelWeight 574
ibm-wmqConnectionAffinity 574
implicit operations 814
implicit programming model 648
IMQI.HPP header file 812
IMQObjectTrigger 684
IMQTYPE.H header file 812
IMS

adapter 267
building application for IBM MQ for

z/OS 432
calling the stub dynamically with IBM

MQ for z/OS 433
closing objects 102
mapping IBM MQ messages to

transactions 43, 284
MQITS_ARCHITECTED

constant 291
support for 264
using MQI calls 38, 279
using OTMA 291
using syncpoints 38, 278
writing IBM MQ applications 37, 277

IMS bridge
alternate PCB 47, 287
data conversion 48, 288
feedback codes 44, 285
IMS commands 42, 282
LLZZ data segment 48, 288
mapping IBM MQ messages to

transactions 43, 284
message segmentation 48, 288
NAK 42, 282
reply messages 47, 287
sense codes 44, 285
undelivered messages 42, 282
writing applications 42, 282

IMS bridge, writing a message to 821
IMS commands, IMS bridge 42, 283
index queues

shared queues 273
index, queue 66
InhibitEvent property 710
InhibitGet property 726
InhibitPut property 726
initial state for objects 813
INITIAL_CONTEXT_FACTORY

property 1097
initialContextFactory 1238
initialization 325
initiation queue

example to create one 241
what it is 238

initiation queue, shared 273
InitiationQName field 242
InitiationQueueName property 727
inquire and set 870

classes for .NET 666
inquiring about attributes

IBM MQ for IBM i sample
program 511

IBM MQ for UNIX sample
program 511, 512

IBM MQ for Windows sample
program 511

IBM MQ for z/OS sample 602
using MQINQ 220

Index 1353

inquiring about properties of a message
handle

IBM MQ for IBM i sample
program 512

IBM MQ for Windows sample
program 512

installable service
authorization service 337
component data 323
component entry-points 323
components 323, 334
configuring services 330, 336
functions 323, 334
initialization 325, 335
multiple components 329
name service 326
name service interface 328
return information 323

installation
classes for .NET 642
directories 839

Installation and Configuration 563
installation verification test

IBM MQ classes for JMS
point-to-point 932

IBM MQ classes for JMS
publish/subscribe 936

installation verification test (IVT)
program

MQ resource adapter 1139
installing

IBM MQ classes for JMS 909
IBM MQ for Java 837
MQ resource adapter 1105

interface, programming
.NET 640

interfaces
JMS 950

interfaces to external syncpoint
managers 232

introduction
for programmers

using Java 852
IBM MQ classes for JMS 906
IBM MQ for Java 832, 833

Introduction 560
invoking data-conversion exit 372
IsConnected property 710
IsOpen property 711, 727, 775
item

description 817
retrieving from a message 817

item property 792
ItemIndex parameter

Item property 793
itemtype method 797
ItemType method

ItemIndex parameter 797
ItemType parameter 797
Selector parameter 797

IVT (installation verification test
program)

MQ resource adapter 1139
IVT (installation verification test)

IBM MQ classes for JMS
point-to-point 932

IVT (installation verification test)
(continued)

IBM MQ classes for JMS
publish/subscribe 936

IVTRun script 932, 940
IVTSetup script 932, 940
IVTTidy script 932, 940

J
J2EE Connector Architecture (JCA)

IBM MQ resource adapter 1099
jar files 837, 909
Java

introduction for programmers 852
Java 2 Security Manager, running

applications under 848
Java programs

triggering on IBM MQ for IBM i 253
Java security manager, running

applications under 924
JCA (J2EE Connector Architecture)

IBM MQ resource adapter 1099
JCL (Job Control Language)

batch 428
CICS and IBM MQ for z/OS 431
IMS 432
XPLINK 429

JDBC coordination 883
JEE 903
JMS 903

administered objects 950
applications, writing 950
benefits 903
interfaces 950
mapping of fields at send or

publish 966
mapping with MQMD 963
messages 953

persistent 1047
model 950
objects, administering 1098
objects, creating 1098
persistent messages 1047

JMS_IBM_RETAIN 1073
JMSAdmin configuration file 1097
JMSAdmin utility 940, 1097
JMSAdmin.config file 1097
JMSCorrelationID header field 953
JNDI

retrieving administered objects 1009
security considerations 1097

journaling 367
JSSE

for SSL support 887, 1049
making changes to the keystore or

truststore
using IBM MQ classes for

Java 891
using IBM MQ classes for

JMS 1053
JTA/JDBC coordination

configuring
other platforms 883
Windows 883

introduction 883
known problems 885

JTA/JDBC coordination (continued)
limitations 885
using 884

K
keystore, making changes

using IBM MQ classes for Java 891
using IBM MQ classes for JMS 1053

L
language considerations

attributes 812
binary strings 813
character strings 813
data types 813
header files 812
methods 812
notational conventions 814
using C from C++ 814

languages supported
clients 299

large messages
reference messages 154
segmented messages 154

LDAP 570
LDAP attributes 568
LDAP naming considerations 1098
LDAP schemas 568
libraries

IBM MQ classes for JMS 914
Java Native Interface (JNI) 914

libraries to use
with IBM MQ for AIX 389
with IBM MQ for Linux 405
with IBM MQ for Windows 420

libraries, IBM MQ classes for Java 841
library file, client 300
library files 81
lifelines, publish/subscribe 203
link libraries 823
linked exceptions 1035
linking 823

for IBM MQ for AIX 389
for IBM MQ for HP-UX 400
for IBM MQ for IBM i 411
for IBM MQ for Windows 419
for IBM MQ for z/OS 427

linking with IBM MQ MQI client code
C applications 300
C++ applications 300
Visual Basic applications 301

LLZZ data segment, IMS bridge 48, 288
local administration

support for application programs 3
local publications

suppressing 1028
local transactions

JMS 1021
LOCALADDRESS

specifying a range of ports 1069
LocalEvent property 711
log file

converting 942
logging errors 942

1354 IBM MQ: Programming

logging errors (continued)
IBM MQ classes for JMS 1035

looking at a message 167

M
mail manager sample application (IBM

MQ for z/OS) 603
managed client connections 641, 1243
managed mode 646, 648
manipulating strings

example 813
introduction 815

map message 953, 1223
marked messages 173
marking messages as browsed 173
MatchOptions field

MQGMO structure 134
MatchOptions property 771
MaximumDepth property 727
MaximumHandles property 711
MaximumMessageLength property 711,

727
MaximumPriority property 712
MaximumUncommittedMessages

property 712
MaxMsgLength attribute 118, 135
MaxPriority attribute 12
message

backed out 33
body 953, 1223
body types 1027
browsing 167
browsing and removing 170
browsing in logical order 170
browsing when message length

unknown 170
confirm arrival 6
confirm delivery 6
context

MQOPEN options 110
MQPUT options 120
types 34

copying 167
creating 4
data 4
data conversion

considerations 11
MQGET 166

data format 10
delivery, asynchronous 1028
design 55
encryption 349
error 645
exception 6
expiry 6
getting 131
getting a particular 148
greater than 4 MB 154
groups 30
handling 664, 860
headers 953, 1223
logical ordering 136
looking at 167
maximum length 294
message body 972
negative action notification 6

message (continued)
notification of arrival 162
order of retrieval from a queue 135
persistence 32
physical ordering 136
positive action notification 6
priority 12, 135
properties 953, 1223
putting 113
putting one 123
reference 159
removing after browsing 170
reply, IMS bridge 47, 287
report 445
retry sending 446
sample to deal with those on

dead-letter queue 504
segmentation 155
segmented 31
selectors 954, 1028
selectors and SQL 22
signaling 162
structure 4
trigger 238, 254
types 5, 953, 1223
undeliverable, IMS bridge 44, 284
undelivered 446
undelivered, sample to handle 504
use of types 5
variable length, performance

considerations 67
waiting for 161

message buffers
application (manual) 816
system (automatic) 816

message channel agent
initiation 356, 365
termination 356, 365

Message Consumer
poison messages 1034

message content
printing in Java 865

message data conversion, MQGET 133,
166

message data preparation 816
message exit program 367

overview 350
message handler sample (IBM MQ for

z/OS) 623
message headers

CICS bridge header 822
dead-letter header 821
IMS bridge header 821
work header 823

Message interface 950
message items

description 817
message object properties 1042
message order 210
message persistence, performance

considerations 66
message properties 13

classes for .NET 665
setting 120

Message Queue Interface
calls 78
dealing with failure of a call 443

Message Queue Interface (continued)
library files 81
structures 80
stub programs 81
using System/390 assembler 466

Message Queue Interface (MQI) 294
message segmentation, IMS bridge 48,

288
message-retry exit program 369
MessageConsumer interface 950
MessageConsumer object 1028
MessageData property 749
MessageDeliverySequence property 728
MessageFlags property 749
MessageId property 749, 782
MessageIdHex property 750, 783
MessageLength property 742
MessageProducer interface 950
MessageProducer object 1027
messages

AMQP 1223
JMS 953
mapping between JMS and IBM

MQ 957
mapping to IMS transaction

types 43, 284
persistent messages, effect on

performance 56
persistent, JMS 1047
placing on named queue, example

C++ 811
poison

Application Server Facilities 1083
JMS 1034

putting to a distribution list,
example 811

reading 817
receiving 1028
retrieving from named queue,

example
C++ 811

retrieving in correct order 272
selecting 954, 1028
sending 1027
variable length 56
writing

to the CICS bridge 822
to the dead-letter queue 821
to the IMS bridge 821
to the work header 823

MessageSequenceNumber property 750
MessageType property 751
messaging domains 950
method signatures 812
methods 816

detailed description
Add method 794
Addinquiry method 795
Clear method 795
execute method 795
Frommessage method 796
itemtype method 797
Remove method 797
selector method 798
Tomessage method 799
Truncate method 799

Index 1355

Microsoft Transaction Server (MTS)
preparing and running client

applications 36, 317
migrating applications to use shared

queues 274
model queue 111
modes

connection 930
Monitor program 684
MOVE (administration verb) 1098
MQ

messages 957
name service interface (NSI) 326
Object Model 805
security enabling interface (SEI) 337

MQ applications
planning 51

MQ Automation Classes for Activex 690
MQ automation classes for ActiveX

failure 787
MQ automation classes for ActiveX

interface 697
MQ automation classes for ActiveX

Reference 697
MQ data conversion interface 372
MQ for Linux

building your application 405
31-bit 406
32-bit 407
64-bit 408

MQ JMS
preparing and running client

applications 317
MQ JMS extensions

introduction
general 903

using 1017
MQ Message Descriptor (MQMD) 957

mapping with JMS 963
MQ object

closing 112
opening 101
process definition

create 242
MQ on UNIX systems

sample programs 473
syncpoints 230
triggering using samples 527
TUXEDO 537

MQ resource adapter
configuration

inbound communication 1111
introduction 1108
outbound communication 1125
ResourceAdapter object 1110

Inbound poison message
handling 1111

installation 1105
installation verification test (IVT)

program 1139
limitations 1103
other required documentation 1108
properties

ActivationSpec object 1111
ConnectionFactory object 1125
Queue or Topic object 1125

MQ resource adapter (continued)
WebSphere Application Server, using

with 1103
MQ Workflow 271
MQ_CONNECT_TYPE 100
MQ_MSG_HEADER_LENGTH 119
MQ_PRECONNECT_EXIT 381
MQ*_DEFAULT values

with IBM MQ for AIX 456
MQBACK 295
MQBag class 791
MQCA_* values 221
MQCD, channel definition structure 351
MQCHLLIB

how it is used 302
MQCHLTAB

how it is used 302
MQCLOSE

call parameters 112
closing a queue 112

MQCMIT 295
MQCNO_FASTPATH_BINDING

variations by environment 898
MQCONN 302

call parameters 94
MQCONNX 95, 302

environment variable 100
options

FASTPATH binding 95
shared connection 99
STANDARD binding 95
thread independent connection 99

MQCONNX call
Using 298

MQCONNXAny call
use in Visual Basic 459

MQCXP structure
ExitReason field 366
ExitSpace field 366

MQCXP, channel exit parameter
structure 351

MQDH 119
MQDISC

when to use 100
MQDistributionList class 772
MQDistributionListItem class 778
MQDLH 119, 447

example 864
MQEnvironment 657, 854
MQGET

backing out changes 224
call parameters 131
committing changes 224
data conversion 166
increase speed of 154
message data conversion 133
order of message retrieval 135
to get a specific message 148
unknown message length 170
waiting for messages 161
when it fails 174
when to use 130

MQGetMessageOptions class 770
MQGetMessageOptions fields

platform dependency 899
MQGMO_*

ACCEPT_TRUNCATED_MSG 134

MQGMO_* values
variations by environment 897

MQGMO_BROWSE_*
MSG_UNDER_CURSOR 170

MQGMO_CONVERT 166
MQGMO_MARK_SKIP_BACKOUT 445

explanation 163
MQGMO_MSG_UNDER_CURSOR 170
MQGMO_WAIT 161
MQHeader 862

example 866
implementing 867

MQHeaderIterator 862
example 863, 864, 866

MQHeaderList 862
example 865, 866

MQI
application in client environment 302

MQI (Message Queue Interface) 294
calls 78
client library files 81
dealing with failure of a call 443
IMS applications 38, 279
library files 81
structures 80
stub programs 81
using System/390 assembler 466

MQI (message-queuing interface)
local administration support 3

MQI calls
MQINQ 259
MQOPEN 257
MQPUT 259
MQPUT1 259
MQSET 260

MQIA_* values 221
MQIIH 42, 282
MQINQ 295

call parameters 222
use of selectors 221
when it fails 223

MQINQ call 259
MQIVP

listing 851
sample application 851
tracing 852

MQMD (MQSeries Message
Descriptor) 957

MQMD fields
platform dependency 900

MQMessage 664, 860
MQMessage class 737
MQMF_SEGMENTATION_ALLOWED

option 257
MQMT_* values 5
MQOD 103
MQOO_* values 107
MQOO_BIND_AS_Q_DEF option 257
MQOO_BIND_NOT_FIXED option 257
MQOO_BIND_ON _OPEN option 257
MQOPEN

call parameters 102
MQOO_* values 107
object handle 101
resolving local queue names 111
using MQOD 103
using options parameter 107

1356 IBM MQ: Programming

MQOPEN call
description 257

MQPMO_* values
variations by environment 897

MQPMRF_* values
variations by environment 897

MQPUT
backing out changes 224
call parameters 114
committing changes 224
context information 120
if it fails 129
quiescing queue manager 116
sync pointing 116

MQPUT and MQPUT1, performance
considerations 56, 68

MQPUT call 259
MQPUT1

call parameters 123
if it fails 129
performance 113

MQPUT1 call 259
MQPutMessageOptions class 767
MQPutMessageOptions fields

platform dependency 900
MQQueue 664, 860
MQQueue class 718
MQQueueManager 859
MQQueueManager begin() method

platform dependency 899
MQQueueManager class 703
MQQueueManager constructor

platform dependency 899
MQRC_*

SECOND_MARK_
NOT_ALLOWED 164

MQRC_* return codes
CLUSTER_EXIT_ERROR 260, 388
CLUSTER_EXIT_LOAD _ERROR 260
CLUSTER_PUT _INHIBITED 260
CLUSTER_RESOLUTION

_ERROR 260
CLUSTER_RESOURCE _ERROR 260
NO_DESTINATIONS

_AVAILABLE 260
STOPPED_BY_CLUSTER _EXIT 260

MQReceiveExit 669
MQRFH2

analyzing, example 866
MQRFH2 header 958
MQRMH, reference-message header 367
MQRMIXASwitch 232
MQRMIXASwitchDynamic 232
MQRO_* values

variations by environment 898
mqs.ini file

role in connecting a client 302
MQSecurityExit 669
MQSendExit 669
MQSeries for OS/2 Warp

sample programs 473
MQSERVER

how it is used 302
relationship with client channel

definition table 304
MQSession Class 699

MQSET
attribute list 223
call parameters 223
use of selectors 221

MQSET call 260
MQTM (trigger message) 252
MQTMC (trigger message,

character) 252
MQTMC2 (trigger message,

character) 252
MQTopic 860
MQWXP data structure 385
MQXCNVC data-conversion call 80
MQXCP_VERSION_5, of MQCXP

structure 366
MQXQH 119
MQXQH, transmission header 367, 369
MQXR_INIT, ExitReason value 366
MQXR_XMIT, ExitReason value 366
MS DTC 646
MsgDeliverySequence attribute 136
MsgHandle field

MQGMO structure 134
MsgId field 148
msgid, performance considerations 66
MsgId, performance considerations when

using 56
MsgToken field

MQGMO structure 134
multiple queue managers 304
multiple service components 329
multithreaded programs 667
multithreaded programs in Java 871

N
Name property 712, 728
name resolution 104
name service

interface (NSI) 326
NAME_PREFIX property 1097
NAME_READABILITY_MARKER

property 1097
namelist

opening 101
sample application 618

naming considerations, LDAP 1098
negative action notification (NAN)

report 6
NET managed clients

programming 656, 657
NextDistributionListItem property 783
NmqiXaResource 648
nondurable topic subscribers 1028
Nonpersistent messages, tuning in

AIX 153
notational conventions, example 814
notification of message arrival 162
NSI (IBM MQ name service

interface) 326

O
OAM

refreshing after changing a user's
authorization 333

object
closing 112
descriptor 103
opening 101
process definition 242
using handle 101

object access methods 698
object attributes 812
object authority manager 326
object creation, error conditions 1099
object use, error conditions 1099
ObjectHandle property 728
objects

administered 950
retrieving from JNDI 1009

JMS, administering 1098
JMS, creating 1098
message 953, 1223

objects, initial state 813
Offset property 751
OID 568
Open method 777
open, implicit operation 814
openFor method 814
opening an IBM MQ object 101
OpenInputCount property 728
OpenOptions property 729, 775
OpenOutputCount property 729
OpenStatus property 729
operations on queue managers

Java 855
options

connection 833
Options field

MQGMO structure 133
MQPMO structure 116

Options parameter
Options Property 794

Options parameter (MQOPEN call) 107
options property 794
Options property 768, 771
order of message retrieval 135
OriginalLength property 751
OSGi support 842, 941
OTMA sense codes 44, 285
Overview of exit and schema 564

P
parameter passing 698
parameters

DataLength 135
declaring 814
Options 107
passing 812
security exit 362

passing parameters 812
pasteIn method 819
PCF

handling in Java 868
pCompCode 381
performance

advantages of using MQPUT1 56
application design, impact on 56
application programs

message length, effects on
performance 56

Index 1357

performance (continued)
CorrelId, effect on 56
message persistence, effect on 56
messages

message length, effects on
performance 56

MQGET and buffer size 135
MQGET for a particular message 149
MQPUT1 113
MsgId, effect on 56
nonpersistent messages in AIX 153
performance

message length, effects on 56
persistent messages 32
sync points, effects on 56
threads, effect on 56

performance considerations 68, 69
PerformanceEvent property 713
Persistence field 32
Persistence property 752
persistent messages, effect on

performance 56
persistent messages, JMS 1047
pExitParms 381
PL/I

support for 471
placing messages on named queue,

example
C++ 811

planning an IBM MQ application 51
platform differences 901
Platform property 713
point-to-point installation verification

test 932
point-to-point messaging 950
poison messages

Application Server Facilities 1083
JMS 1034

ports, specifying a range for client
connections

IBM MQ classes for JMS 1069
IBM MQ for Java 858

positive action notification (PAN)
report 6

ppConnectOpts 381
pQMgrName 381
pReason 381
preconnect stanza 383
Preconnection exit 381
preparing client applications

CICS 314
Microsoft Transaction Server 36, 317
MQ JMS 317
Tuxedo 314
WebSphere Application Server 317

preparing message data
example 816
introduction 816

preparing to run the samples 801
prerequisite software 906

classes for .NET 642
IBM MQ for Java 834

PreviousDistributionListItem
property 783

primary initialization 325
primary termination 325

print message (sample for IBM MQ for
z/OS) 598

Priority field 12
priority in messages 12
Priority property 752
problem delivering a message,

overview 33
problem determination

application design considerations 56
performance 57
searching for messages, performance

effects 56
problem determination, use of report

message 445
problems, solving 645

IBM MQ classes for JMS
general 942
point-to-point installation

verification test 932
publish/subscribe installation

verification test 936
IBM MQ for Java 852

process definition 313
process definition object

example to create one 242
opening 101
triggering prerequisite 242
what it is 238

processes
accessing

in Java 859
ProcessName 252
ProcessName attribute 243
ProcessName property 730
programming

bindings connection
Java 854

client connections
Java 853

compiling
.NET 687

connections 656, 853
managed client connections 656, 657
multithreaded 667

Java 871
tracing

.NET 688
writing 656
writing Java programs 852
z/OS 830

Programming hints and tips 692
programming interface

.NET 640
programs

JMS, writing 950
running 895

properties
connection factories

setting by using the IBM JMS
extensions 1010

setting by using the IBM MQ JMS
extensions 1017

setting summary 1008
destinations

setting by using a URI 1023
setting by using the IBM JMS

extensions 1010

properties (continued)
destinations (continued)

setting by using the IBM MQ JMS
extensions 1017

setting summary 1008
detailed description

Count property 793
item property 792
options property 794

message 953, 1223
JMS_IBM_MQMD_* 1042

message properties 13
MQ resource adapter

ActivationSpec object 1111
ConnectionFactory object 1125
Queue or Topic object 1125

PROVIDER_PASSWORD property 1097
PROVIDER_URL property 1097
PROVIDER_USERDN property 1097
ProxyResourceManager 648
PSIVTRun script 936, 940
Publication consumer 184
publications

suppressing local ones 1028
publish exit

IBM MQ for IBM i sample
program 516

IBM MQ for UNIX sample
program 516

IBM MQ for Windows sample
program 516

publish/subscribe
examples

Automated airline gate 203
Manual airline gate 203

lifecycles 203
managing 203
writing applications 174

publish/subscribe installation verification
test 936

publish/subscribe messaging 950
publisher

applications
similarity with point-to-point 175
types 175
writing 175

fixed topics 175
variable topics 175

Publisher
application 176, 180
fixed topic 176
variable topic 180

put (sample for IBM MQ for z/OS) 592
Put method 737, 777
PutApplicationName property 752
PutApplicationType property 753
PutApplName field 35
PutApplType field 35
PUTASYNCALLOWED object

property 1027
PutDate field 35
PutDateTime property 753
PutMsgRecFields field 117
PutMsgRecOffset field 117
PutMsgRecPtr field 117
PutTime field 35

1358 IBM MQ: Programming

putting
messages 113
one message 123

putting a datagram, sample program
C++ 808

putting messages to a distribution list,
example 811

Q
QSG (queue-sharing group) 50
queue

application 238
authority check on MQOPEN 101
closing 102, 112
dead-letter 447
dynamic, creation of 111
exclusive access 109
handle 101
index 66
initiation 238
model 111
name resolution when remote 112
object handle 101
opening 101
putting messages on

C++ 811
remote

putting messages 120
using local definition 104
using MQOPEN 112

reply-to 33
resolving name 104
retrieving messages from

C++ 811
shared access 109
triggered 249
undelivered message 447

queue attributes for IBM MQ for z/OS
sample application 602

queue management classes 805
queue manager

alias definition 104
configuring for clients 644, 851, 931
connecting to 663

Java 856
connecting using MQCONN 94
connecting using MQCONNX 95,

100
disconnecting 100
disconnecting from 663

Java 856
ini file

authorization service 338
location of default 94
maximum message length 294
operations on

Java 855
reply-to 33

queue manager groups 304
queue manager ini file 338
queue managers 302
Queue objects

creating
using a session 1023
using the IBM JMS

extensions 1010

Queue objects (continued)
creating (continued)

using the IBM MQ JMS
extensions 1017

setting properties
using a URI 1023
using the IBM JMS

extensions 1010
using the IBM MQ JMS

extensions 1017
queue-sharing group (QSG) 50
queue-sharing groups 307

application programming 272
QueueManagerName property 730, 784
QueueName property 784
queues

accessing
in Java 859

for MQSeries applications 3
queues, accessing

classes for .NET 663
QueueType property 730
quiescing connection

MQGET 133
quiescing queue manager

how applications should react 444
MQCONN 94
MQOPEN 111
MQPUT 116

R
range of ports, specifying for client

connections
IBM MQ classes for JMS 1069
IBM MQ for Java 858

read ahead 149
JMS 1072

Read method 755
ReadBoolean method 756
ReadByte method 756
ReadDecimal2 method 756
ReadDecimal4 method 756
ReadDouble method 757
ReadDouble4 method 757
ReadFloat method 758
reading messages 817
ReadInt2 method 758
ReadInt4 method 758
ReadLong method 758
ReadNullTerminatedString 759
ReadShort method 759
ReadString method 759
ReadUInt2 method 760
ReadUnsignedByte method 760
ReadUTF method 760
reason codes 787
ReasonCode property

Message class 742
MQDistributionList class 775
MQDistributionListItem class 784
MQGetMessageOptions class 771
MQPutMessageOptions class 768
MQQueue class 730
MQQueueManager class 713
MQSession class 701

ReasonCodeName method 703

ReasonName property
MQDistributionList class 776
MQDistributionListItem class 785
MQGetMessageOptions class 771
MQMessage class 742
MQPutMessageOptions class 768
MQQueue class 731
MQQueueManager class 714
MQSession class 701

receive exit
program 365

receiving
messages 1028
poison messages 1028

reconnectable clients 671
RecordFields property 769
recoverable resource manager services

(RRS)
batch adapter 266

Recovering Transactions 652
Recovering transactions: Use cases 655
RecsPresent field 116
reference guide for IBM MQ automation

classes for ActiveX 697
reference messages 159
reference-message header

message exit program 367
refreshing the OAM after changing a

user's authorization 333
remote queue

using local definition of 104
using MQOPEN 112

RemoteEvent property 714
RemoteQueueManagerName

property 731
RemoteQueueName property 731
Remove method 797

ItemIndex parameter 797
Selector parameter 797

reopen, implicit operation 814
reply messages, IMS bridge 47, 287
reply-to queue 33
reply-to queue manager 33
ReplyToQ field 33
ReplyToQMgr field 33
ReplyToQueueManagerName

property 753
ReplyToQueueName property 754
report

confirmation of arrival (COA) 6
confirmation of delivery (COD) 6
exception 6
expiry 6
negative action notification (NAN) 6
positive action notification (PAN) 6

report message
creating 445

report options, message 1082
Report property 754
reports

segmented messages 8
ResizeBuffer method 761
resolution of queue names 104
ResolvedQMgrName field 116
ResolvedQName field

MQGMO structure 134
MQPMO structure 116

Index 1359

ResolvedQueueManagerName
property 731, 769

ResolvedQueueName property 732, 769,
772

resolving local queue names
MQOPEN 111

resource adapter, IBM MQ 1099
resource enlistment 646
resource manager, XA compliant

name 232
resources

closing using JMS 1033
ResponseRecOffset field 117
ResponseRecPtr field 117
restrictions and variations

to core classes 901
restrictions in z/OS batch 88
RETAIN_PUBLICATION 1073
retained publications

in JMS 1073
RetentionInterval property 732
retrieving administered objects from

JNDI 1009
retrieving items within a message,

example 817
retrieving messages from named queue,

example
C++ 811

retry sending message 446
return codes 260
ReturnedLength field

MQGMO structure 134
RPG language

on IBM i 413
support for 467

RRS
calling the stub dynamically with IBM

MQ for z/OS 438
RRS (recoverable resource manager

services)
batch adapter 266

run time
creating connection factories

using the IBM JMS
extensions 1010

using the IBM MQ JMS
extensions 1017

creating destinations
using a session 1023
using the IBM JMS

extensions 1010
using the IBM MQ JMS

extensions 1017
runmqdnm 684
runmqtmc 313
runmqtmc monitor 252
runmqtrm monitor

how to run 251
running

applications under CICS Transaction
Server 850

IBM MQ for Java programs 895
IVT program

IBM MQ classes for JMS
point-to-point 932

IBM MQ classes for JMS
publish/subscribe 936

running (continued)
IVT program (continued)

JMS Samples 1139
MQ resource adapter 1139

running a program automatically
an example 527
how triggering works 237

running applications under z/OS UNIX
System Services 831

running client applications
CICS 314
Microsoft Transaction Server 36, 317
MQ JMS 317
Tuxedo 314
WebSphere Application Server 317

running samples on z/OS 830
Running the ActiveX Starter samples

MQAX Starter sample for Microsoft
Excel 95 or later 804

Running the Bank
demonstration 804

Running the simple sample 804
Running the HTML sample 804
starter sample using an ActiveX

compatible WWW browser 804
starter samples for Visual Basic

Version 4 or later
MQAXDLST sample 803
Running the sample 801
Starting the MQAXCLSS

sample 803

S
sample 560
sample application

using to verify 851
sample applications

API-crossing exit for z/OS 268
Sample applications 642
sample applications for IBM MQ for

z/OS
browse 596
compiling 583
credit check 610
features of MQI demonstrated 579
get 594
logging on to CICS 588
mail manager 603
message handler 623
preparing in batch 583
preparing in CICS Transaction Server

for OS/390 588
preparing in IMS 591
preparing in TSO 586
print message 598
put 592
queue attributes 602

sample client programs 315
sample cluster workload exit 387
sample code

classses for .NET 660
sample programs 800

DPUT (imqdput) 811
HELLO WORLD (imqwrld) 807
preparing and running 485, 554

Compaq NonStop Kernel 488

sample programs (continued)
preparing and running (continued)

Linux systems 487
UNIX systems 487

SGET (imqsget) 811
SPUT (imqsput) 811

Sample programs
AMQSSSLC 532

sample programs for IBM MQ for IBM i
AMQ0ECHA 505
AMQ0GET4 506
AMQ0REQ4 526
AMQ0SETA 531
AMQSAPT 492
AMQSCLM 550, 551, 558
AMQSECHA 505
AMQSERV4 535
AMQSGBR4 493
AMQSGET4 506
AMQSPUT4 517
AMQSREQ4 526
AMQSSETA 531
AMQSTRG4 535
AMQSVFC4 497
asynchronous put 492
MQSTAT 492
put 517
using remote queues 550
using triggering 529

sample programs for Windows systems
and UNIX systems

amaspse0 516
amq0gbr0 493
amq0get0 506
amq0put0 517
amq0req0 526
amqiech2 505
amqiechx 505
amqiinq2 511
amqiinqx 511
amqiset2 531
amqisetx 531
amqmech2 505
amqmechx 505
amqminq2 511
amqminqx 511
amqmset2 531
amqmsetx 531
amqrgrm 519
amqrgrma 519
amqsapt 492
amqsbcg 494
amqsbcg0 494
amqsbcgc 494
amqscic0 495
amqsclma.c 550, 551, 558
amqsdlq 504
amqsech 505
amqsecha 505
amqsechc 505
amqsgbr 493
amqsgbr0 493
amqsgbrc 493
amqsget0 506
amqsgetc 506
amqsinq 511
amqsinqa 511

1360 IBM MQ: Programming

sample programs for Windows systems
and UNIX systems (continued)

amqsinqc 511
amqsiqma 512
amqsprm 519
amqsprma 519
amqsptl0 504
amqsput0 517
amqsputc 517
amqsreq 526
amqsreq0 526
amqsreqc 526
amqsset 531
amqsseta 531
amqssetc 531
amqstrg 535
amqstrg0 535
amqstrgc 535
amqstxgx 549
amqstxpx 548
amqstxsx.c 537
amqsvfc0 497
amqsvfcx 497
amqsxab0.sqb 497
amqsxab0.sqc 497
amqsxaf0.sqb 497
amqsxaf0.sqc 497
amqsxag0.c 497
amqsxag0.cbl 497
amqsxas0.sqb 497
amqsxas0.sqc 497
amqsxrm 519
amqsxrma 519
asynchronous put 492
browse 493
browser 494
CICS transaction 495
cluster queue monitoring 550, 551,

558
data conversion 497
dead-letter queue handler 504
distribution list 504
echo 505
get 506
inquire 511
inquire properties of a message

handle 512
MQSTAT 492
publish exit 516
put 517
Reference Messages 519
request 526
set sample 531
trigger monitor 535
TUXEDO 537
TUXEDO get 549
TUXEDO put 548
using remote queues 550
using triggering 527
XA transaction manager 497

sample security exit 362, 364
Scope property 732
scope, handles 94
scripts provided with IBM MQ classes for

JMS 940
secondary initialization 325

Secure Sockets Layer
certificate revocation list (CRL) 888
CipherSpecs 672, 887
CipherSuites 887
distinguished names 888
distinguished names (DN) 672
enabling 672

Java 887
handled by JSSE 887, 1049
introduction 1049

Java 887
properties

SSLCERTSTORES 1051
SSLCIPHERSUITE 1049
SSLFIPSREQUIRED 1050
SSLPEERNAME 1050
SSLRESETCOUNT 1052

renegotiating the secret key 889
sslCertStores field 889
sslCipherSpec property 672
sslCipherSuite field 887
sslFipsRequired field 887
sslPeerName field 888
sslPeerName property 672
sslResetCount field 889
using JMS 1049

security
exit program 356

CLNTCONN and SVRCONN
channels 364

exit program, overview 350
security considerations, JNDI 1097
security enabling interface (SEI) 337
security exit

parameters 362
sample 362, 364

security policy configuration file,
editing 924

Security policy definition file,
editing 848

Security Services Programming Interface
(SSPI) 364

SECURITY_AUTHENTICATION
property 1097

Segmentation field
MQGMO structure 134

segmented messages 31
reports 8

segmented messages, IMS bridge 48,
288

SegmentStatus field
MQGMO structure 134

SEI (IBM MQ security enabling
interface) 337

selecting messages 954, 1028
selector for attributes 221
selector method 798
Selector method

ItemIndex parameter 798
OutSelector parameter 798
Selector parameter 798

Selector parameter
Count Property 793
Item Property 792

selectors
message 954, 1028
message, and SQL 22

send
exit program 365

send message, retry on failure 446
SENDCHECKCOUNT object

property 1027
sending

messages 1027
sense codes, IMS 44, 285
serialized applications 272
server

connecting to a client 302
server bindings connections 641, 1243
server environment

TUXEDO 537
server session pool 1085
server-connection channel

security exit 364
service component

authorization 337
creating your own 337
multiple 329
stanza 331

service stanza 330, 336
ServiceInterval property 732
ServiceIntervalEvent property 733
session

creating 1021
Session interface 950
set and inquire 666, 870
setjmsenv script 940
setjmsenv utility 841, 912
setjmsenv64 script 940
setMessageLength method 816
setting

connection factory properties
summary 1008
using the IBM JMS

extensions 1010
using the IBM MQ JMS

extensions 1017
destination properties

summary 1008
using a URI 1023
using the IBM JMS

extensions 1010
using the IBM MQ JMS

extensions 1017
setting attributes 220
setting attributes on IBM MQ for

z/OS 602
SGET sample program 811
Shareability attribute 109
Shareability property 733
shared access to a queue 109
shared queue 50
shared queues 307

application programming 272
initiation queue 273
SYSTEM.* queues 273

sharing conversations
classes for Java 878

Sharing conversations 297
sharingConversations

variable in Java 878
SharingConversations

MQCD 297
MQCXP 297

Index 1361

signal handling on UNIX products 89
threaded applications 90
unthreaded applications 90

Signal1 field 134, 162
Signal2 field

MQGMO structure 134
signaling 162
single-phase commit 224
Single-phase commit 646
skipping backout 163
software

prerequisites 906
software, prerequisites

classes for .NET 642
IBM MQ for Java 834

solving problems 645
IBM MQ classes for JMS

general 942
IBM MQ for Java 852

SPUT sample program 811
SQL for message selectors 22, 954
SQL on IBM i 413
sslCertStores field 889
SSLCERTSTORES object property 1051
sslCipherSpec property 672
sslCipherSuite field 887
SSLCIPHERSUITE object property 1049
sslFipsRequired field 887
SSLFIPSREQUIRED object

property 1050
sslPeerName field 888
SSLPEERNAME object property 1050
sslPeerName property 672
sslResetCount field 889
SSLRESETCOUNT object property 1052
SSPI (Security Services Programming

Interface) 364
STANDARD binding 95

environment variable 100
stanza

authorization service 338
authorization service, Windows 332

starter samples 800
starting

connection 1020
starting applications automatically

an example 527
how triggering works 237

starting the administration tool 1097
StartStopEvent property 714
startup dialog 350
static XA resource management

structure 232
stream message 953, 1223
strings, manipulating 815
StrucId field

MQGMO structure 132
MQPMO structure 116

structure
MQCXP 366

structures 80
stub program for IBM MQ for z/OS

CSQBSTUB
calling dynamically 433

CSQCSTUB
calling dynamically 433

CSQQSTUB 432

stub program for IBM MQ for z/OS
(continued)

IMS 432
stub programs 81
styles of messaging 950
subscriber

applications
examples 183
patterns 183
styles 183

managed 187, 193
message arrival order 210
self-managed 187
unmanaged 193

subscription
concentration 184
control 184
durable 184, 187, 193
managed 184, 193
multiprocessing 184
non-durable 187, 193
on demand 193
unmanaged 193

Supported Environments 563
suppressing local publications 1028
switches 823
sync point

calls by platform 79
considerations 295
coordination 314

sync point, performance
considerations 56

synchronizing channels 350
syncpoint

considerations 225
external manager interfaces 232
IMS applications 38, 278
in CICS for IBM i applications 229
single-phase commit 224
two-phase commit 224
with IBM MQ for AIX 230
with IBM MQ for HP-UX 230
with IBM MQ for IBM i 230, 235
with IBM MQ for Windows 230
with IBM MQ on UNIX systems 230
X/Open XA interface 232

syncpoint, performance
considerations 67

SyncPointAvailability property 715
System .EnterpriseServices

.ServicedComponent 649
SYSTEM.* queues, shared 273
System.Transactions 649
System.Transactions namespace 648

T
TCP/IP

client verifying 851
connection, programming

Java 853
techniques with IBM MQ 70
temporary dynamic queue

closing 112
text message 953, 1223
threaded applications, UNIX systems 90
threading 696

time and date of messages 35
TMI (trigger monitor interface) 252
tokens, connection pooling 878
Tomessage method 799
ToMessage method

Message parameter 799
OptionsBag parameter 799

Topic objects
creating

using a session 1023
using the IBM JMS

extensions 1010
using the IBM MQ JMS

extensions 1017
setting properties

using a URI 1023
using the IBM JMS

extensions 1010
using the IBM MQ JMS

extensions 1017
topics

accessing
in Java 859

topics, accessing
classes for .NET 663

TotalMessageLength property 754
trace entries for CICS adapter 439
trace file name and directory 786
tracing

turning on 852
tracing programs

.NET 688
transacted sessions

JMS 1021
transaction class 648
Transaction Processing 653
transaction processing system 649
translation of data 167
transmission header

message exit program 367
message-retry exit program 369

transmission of messages
maximum transmission size 366
transmission buffer 366

TransmissionQueueName property 733
TrigData attribute 243
trigger 237

event 238
conditions for 243
controlling 247

message
definition 238
properties 254
without application messages 245

monitor
for IBM MQ for IBM i 253
what it is 238
writing your own 252

monitor, provided
amqltmc0 251
AMQSERV4 251
AMQSTRG0 251
AMQSTRG4 251
by platform 251
CKTI 251
CSQQTRMN 251
runmqtmc 251

1362 IBM MQ: Programming

trigger (continued)
monitor, provided (continued)

runmqtrm 251
process definition 238
type of 248

trigger messages
units of work 249

trigger monitor for IBM MQ clients 313
trigger monitor interface (TMI) 252
TriggerControl attribute 247
TriggerData attribute 238
TriggerData property 734
TriggerDepth attribute 248
TriggerDepth property 734
triggering 237

application design 249
how it works 239
how it works with the samples 527
introduction 237
Java applications on IBM MQ for IBM

i 253
points to note 239
prerequisites 241
sample program

for IBM MQ for IBM i 529
sample trigger monitor for IBM MQ

for Windows 535
sample trigger monitor for IBM MQ

on UNIX systems 535
sequence of events 239
setting conditions 247
when it does not work 256
with the request sample on IBM MQ

on UNIX systems 527
with the request sample on IM MQ

for Windows 527
without application messages 245

triggering for IBM MQ for z/OS
sample application 614

TriggerInterval property 715
TriggerMessagePriority property 734
TriggerMsgPriority attribute 247
TriggerType attribute 247
TriggerType property 734
troubleshooting 785
Truncate method 799

ItemCount parameter 799
trusted applications 95, 100
truststore, making changes

using IBM MQ classes for Java 891
using IBM MQ classes for JMS 1053

Tuning nonpersistent messages in
AIX 153

Tuxedo
preparing and running client

applications 314
sample client programs 315

TUXEDO sample makefile for IBM MQ
for Windows 544, 547

TUXEDO sample programs
amqstxgx 537
amqstxpx 537
amqstxsx 537
building server environment 537

TUXEDO ubbstxcn.cfg example for IBM
MQ for Windows 543, 546

two-phase commit 224, 646

types of AMQP message 1223
types of JMS message 953
types of message body 1027
typical class path settings 912
typical classpath settings 840

U
ubbstxcn.cfg example for IBM MQ for

Windows 543, 546
undelivered message queue, using 447
undelivered messages, IMS bridge 44,

284
uniform resource identifiers (URIs) 1023
unit of work

message persistence 32
Universal Resource Identifier 1248
UNIX products, signal handling 89
UNIX System Services

building application for IBM MQ for
z/OS 433

unmanaged mode 649
Unmanaged mode 646
unsupported functions

C++ 816
unthreaded applications, UNIX

systems 90
URI 1248

keywords 1238
parameters 1238
syntax 1248

Usage property 735
use of message types 5
USE_INITIAL_DIR_CONTEXT

property 1097
useEmptyBuffer method 816, 820
useFullBuffer method 816
user exit

writing and compiling 388
user exits 268

specifying
classes for .NET 670

using 669
with SSL 669
writing 669

user-exit programs 349
writing and compiling 351

UserId property 755
UserIdentifier field 34
using

IBM MQ for Java 850
using C from C++ 814
using data conversion 694
using trace 785
Using WMQDotnetXAMonitor

Application 654
utilities provided with IBM MQ classes

for JMS 940

V
validation

of user IDs 367
Value parameter

Count Property 793
Item property 793

verifying
TCP/IP clients 851
with the sample application 851

Version field
MQGMO structure 132
MQPMO structure 116

versions of software required 906
IBM MQ for Java 834

Visual Basic
amqscnxb.vbp sample 459
link libraries 301
linking 301
linking applications 301
MQCNOCD structure 459
MQCONNXAny call 459
on Windows NT 423
support for 459

Visual C++ 825
VisualAge C++ 825

W
waiting for messages 161
WaitInterval field 133, 161
WaitInterval property 772
WebSphere Application Server 36, 1103

preparing and running client
applications 317

when your IBM MQ automation classes
for ActiveX script fails 787

WLM (workload manager) 271
WMQ_MQMD_MESSAGE

_CONTEXT 1040
WMQ_MQMD_READ_ENABLED 1040
WMQ_MQMD_WRITE_ENABLED 1040
work header, writing a message to 823
Workflow 271
workload manager (WLM) 271
write method 816
Write method 761
WriteBoolean method 762
WriteByte method 762
WriteDecimal2 method 762
WriteDecimal4 method 763
WriteDouble method 763
WriteDouble4 method 763
WriteFloat method 764
WriteInt2 method 764
WriteInt4 method 764
writeItem method 816
WriteLong method 764
WriteNullTerminatedString method 765
WriteShort method 765
WriteString method 765
WriteUInt2 method 766
WriteUnsignedByte method 766
WriteUTF method 766
writing

channel exits 669
channel exits in Java

for IBM MQ classes for Java 872
for IBM MQ classes for JMS 1056

JMS applications 950
programs 656

Java 852
user exits 669

writing a cluster workload user exit 388

Index 1363

writing applications 289
writing exit programs

data conversion
IBM MQ for IBM i 373
IBM MQ for z/OS 375
UNIX systems 376
Windows NT 379

writing messages
to the CICS bridge 822
to the dead-letter queue 821
to the IMS bridge 821
to the work header 823

X
X/Open XA interface support 232
XA 646
XA resource manager

name 232
XA transaction manager samples 497
xa_commit 648
xa_end 648
xa_open 648
xa_prepare 648
xa_start 648

Z
z/OS

batch restrictions 88
differences with 898
support for 264
UNIX System Services 267
WLM (workload manager) 271
workload manager (WLM) 271

z/OS compiling 830

1364 IBM MQ: Programming

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright IBM Corp. 2007, 2018 1365

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information
Programming interface information, if provided, is intended to help you create application software for
use with this program.

1366 IBM MQ: Programming

This book contains information on intended programming interfaces that allow the customer to write
programs to obtain the services of WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,
modification and tuning information is provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information”www.ibm.com/legal/copytrade.shtml. Other product and service names might be
trademarks of IBM or other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

This product includes software developed by the Eclipse Project (http://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 1367

1368 IBM MQ: Programming

Sending your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

Use one of the following methods to send us your comments:
v Send an email to ibmkc@us.ibm.com
v Use the form on the web here: www.ibm.com/software/data/rcf/

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate, without incurring any obligation to you.

Include the following information:
v Your name and address
v Your email address
v Your telephone or fax number
v The publication title and order number
v The topic and page number related to your comment
v The text of your comment

IBM or any other organizations will only use the personal information that you supply to contact you
about the issues that you submit.

Thank you for your participation.

© Copyright IBM Corp. 2007, 2018 1369

1370 IBM MQ: Programming

IBM®

	Contents
	Figures
	Tables
	Developing applications
	Application development concepts
	Linux on POWER Systems - Little Endian applications
	Application programs using the MQI
	IBM MQ messages
	Types of message
	Format of message control information and message data
	Message priorities
	Message properties
	Selecting messages from queues
	Asynchronous consumption of IBM MQ messages
	Message groups
	Message persistence
	Messages that fail to be delivered
	Messages that are backed out
	Reply-to queue and queue manager
	Message context

	Preparing and running Microsoft Transaction Server applications
	Using IBM MQ with WebSphere Application Server
	IMS and IMS bridge applications on IBM MQ for z/OS
	Writing IMS applications using IBM MQ
	Writing IMS bridge applications

	Actions that your applications can perform
	Designing IBM MQ applications
	Should I use IBM MQ classes for Java or IBM MQ classes for JMS?
	Designing your messages
	Application design and performance
	Application design and performance on IBM i
	Setting up IBM MQ on IBM i with Java and JMS
	Testing IBM MQ on IBM i with Java
	Testing IBM MQ on IBM i with JMS

	Design considerations for IBM MQ for z/OS applications
	Advanced IBM MQ techniques

	Developing MQI applications with IBM MQ
	IBM MQ data definition files
	Writing a procedural application for queuing
	The Message Queue Interface overview
	Connecting to and disconnecting from a queue manager
	Opening and closing objects
	Putting messages on a queue
	Getting messages from a queue
	Writing publish/subscribe applications
	Inquiring about and setting object attributes
	Committing and backing out units of work

	Local units of work
	Global units of work
	Interfaces to external syncpoint managers

	Interfaces to the IBM i external syncpoint manager
	Starting IBM MQ applications using triggers
	Prerequisites for triggering
	Conditions for a trigger event
	Controlling trigger events
	Designing an application that uses triggered queues
	Trigger monitors
	Trigger monitors on UNIX and Windows systems
	For CICS

	IBM MQ for IBM i trigger monitors

	Properties of trigger messages
	When triggering does not work

	Working with the MQI and clusters
	MQOPEN and clusters
	MQPUT, MQPUT1 and clusters
	MQINQ and clusters
	MQSET and clusters
	Return codes

	Using and writing applications on IBM MQ for z/OS
	Environment-dependent IBM MQ for z/OS functions
	Debugging facilities, syncpoint support, and recovery support
	The IBM MQ for z/OS interface with the application environment
	The batch adapter
	The RRS batch adapter
	The IMS adapter

	Writing z/OS UNIX System Services applications
	The API-crossing exit for z/OS
	Writing your own exit program
	The sample API-crossing exit program, CSQCAPX
	Preparing and using the API-crossing exit

	IBM MQ Workflow
	Application programming with shared queues
	Serializing your applications
	Applications that are not suitable for use with shared queues
	Deciding whether to share non-application queues
	Migrating your existing applications to use shared queues

	IMS and IMS bridge applications on IBM MQ for z/OS
	Writing IMS applications using IBM MQ
	Syncpoints in IMS applications
	MQI calls in IMS applications

	Writing IMS bridge applications
	How the IMS bridge deals with messages
	Mapping IBM MQ messages to IMS transaction types
	If the message cannot be put to the IMS queue
	IMS bridge feedback codes
	The MQMD fields in messages from the IMS bridge
	The MQIIH fields in messages from the IMS bridge
	Reply messages from IMS
	Using alternate response PCBs in IMS transactions
	Sending unsolicited messages from IMS
	Message segmentation
	Data conversion

	Writing IMS transaction programs through IBM MQ

	Writing client procedural applications
	Using the message queue interface (MQI) in a client application
	Limiting the size of a message in a client application
	Choosing client or server coded character set identifier (CCSID)
	Using MQINQ in a client aplication
	Using sync point coordination in a client application
	Using read ahead in a client application
	Using asynchronous put in a client application
	Using sharing conversations in a client application
	Using MQCONNX
	Shared connection handles on MQCONNX

	Building applications for IBM MQ MQI clients
	Linking C applications with the IBM MQ MQI client code
	Linking C++ applications with the IBM MQ MQI client code
	Linking COBOL applications with the IBM MQ MQI client code
	Linking Visual Basic applications with the IBM MQ MQI client code

	Running applications in the IBM MQ MQI client environment
	Connecting IBM MQ MQI client applications to queue managers
	Connecting client applications to queue managers using environment variables
	Connecting client applications to queue managers using the MQCNO structure
	Connecting client applications to queue managers using a client channel definition table
	Using automatic client reconnection
	Role of the client channel definition table
	Examples of channel weighting and affinity
	Examples of MQCONN calls

	Triggering in the client environment
	Process definition
	Trigger monitor
	CICS applications (non-z/OS)

	Preparing and running CICS and Tuxedo applications
	CICS and Tuxedo sample programs
	Error message AMQ5203, as modified for CICS and Tuxedo applications

	Preparing and running Microsoft Transaction Server applications
	Preparing and running IBM MQ JMS applications

	User exits, API exits, and IBM MQ installable services
	Writing exits and installable services on UNIX, Linux and Windows
	API exits not linked with an MQI library

	Installable services and components for UNIX, Linux and Windows
	Writing a service component
	Initialization and termination of components
	Object authority manager (OAM)
	Name service
	Authorization service interface
	Name service interface
	Using multiple service components

	Configuring services and components
	Service stanza format
	Service component stanza format
	Configuring authorization service stanzas: UNIX and Linux systems
	Configuring authorization service stanzas: Windows systems
	Configuring name service stanzas: Unix and Linux systems
	Refreshing the OAM after changing a user's authorization

	Installable services and components for IBM i
	Functions and components
	Initialization
	Configuring services and components
	Creating your own service component
	Authorization service
	Authorization service interface

	Writing and compiling API exits
	Writing API exits
	Compiling API exits
	Compiling API exits on Unix and Linux systems
	On Windows systems
	On IBM i

	Configuring API exits

	Channel-exit programs for messaging channels
	Processing overview
	Writing channel-exit programs
	Writing channel exit programs on z/OS
	Writing channel exit programs on IBM i
	Writing channel-exit programs on Windows, UNIX and Linux systems
	Channel security exit programs
	SSPI security exit
	Channel send and receive exit programs
	Channel message exit programs
	Channel message retry exit program
	Channel auto-definition exit program

	Compiling channel exit programs on Windows, UNIX and Linux systems
	Configuring channel exits

	Writing data-conversion exits
	Invoking the data-conversion exit
	Writing a data-conversion exit program for IBM MQ for IBM i
	Writing a data-conversion exit program for IBM MQ for z/OS
	Writing a data-conversion exit for IBM MQ on UNIX and Linux systems
	Compiling data-conversion exits on UNIX and Linux systems

	Writing a data-conversion exit for IBM MQ for Windows
	Exit and switch load files on Windows operating systems

	Referencing connection definitions using a pre-connect exit from a repository
	Writing and compiling publish exits
	Configuring publish exits

	Writing and compiling cluster workload exits
	Sample cluster workload exit
	Cluster workload exit programming for IBM MQ for z/OS

	Building a procedural application
	Building your procedural application on AIX
	Preparing C programs in AIX
	Preparing COBOL programs in AIX
	Preparing CICS application programs in AIX
	TXSeries CICS support

	Building your procedural application on HP Integrity NonStop Server
	OSS and Guardian headers and public libraries
	Preparing C programs in HP Integrity NonStop Server
	Preparing COBOL programs
	Preparing pTAL programs

	Building your procedural application on HP-UX
	Preparing C programs in HP-UX
	Preparing COBOL programs in HP-UX
	Preparing CICS programs in HP-UX
	TXSeries CICS support

	Address Space models supported by IBM MQ for HP-UX on IA64 (IPF)

	Building your procedural application on Linux
	Preparing C programs in Linux
	Building 31-bit applications
	Building 32-bit applications
	Building 64-bit applications

	Preparing COBOL programs in Linux

	Building your procedural application on IBM i
	Preparing C programs in IBM i
	Preparing COBOL programs in IBM i
	Preparing CICS programs in IBM i
	Preparing RPG programs in IBM i
	SQL programming considerations
	IBM i programming considerations

	Building your procedural application on Solaris
	Preparing C programs in Solaris
	Building applications on x86-64
	Building applications on SPARC

	Preparing COBOL programs in Solaris
	Preparing CICS programs in Solaris
	TXSeries CICS support

	Building your procedural application on Windows systems
	Building 64-bit applications on Windows
	Preparing C programs in Windows
	Preparing COBOL programs in Windows
	Preparing Visual Basic programs in Windows
	SSPI security exit

	Building your procedural application on z/OS
	Preparing your program to run
	Building 64 bit C applications
	Building z/OS batch applications
	Building z/OS batch applications using Language Environment
	Building CICS applications in z/OS
	Building IMS (BMP or MPP) applications
	Building z/OS UNIX System Services applications

	Dynamically calling the IBM MQ stub
	RRS Considerations

	Debugging your programs

	Handling procedural program errors
	Locally determined errors
	Using report messages for problem determination
	Remotely determined errors
	Using the dead-letter (undelivered message) queue
	Dead-letter queue processing

	Multicast programming
	Multicast and the Message Queue Interface
	High availability for multicast
	Data conversion in the MQI for multicast messaging
	Multicast exception reporting

	Coding in C
	Coding in Visual Basic
	Coding in COBOL
	Coding in System/390 assembler language
	Using the MQI calls

	Coding in RPG
	Coding in pTAL
	Coding in PL/I
	Sample IBM MQ procedural programs
	Sample procedural programs (platforms except z/OS)
	Features demonstrated in the sample programs
	Samples for UNIX and Linux systems
	Samples for IBM MQ client for HP Integrity NonStop Server
	Samples for IBM MQ for Windows
	Visual Basic samples for IBM MQ for Windows
	Samples for IBM MQ for IBM i

	Preparing and running the sample programs
	Preparing and running sample programs on IBM i systems
	Preparing and running sample programs on UNIX systems
	Preparing and running sample programs on Windows systems
	Running the sample programs

	The API exit sample program
	The Asynchronous consumption sample program
	The Asynchronous Put sample program
	The Browse sample programs
	UNIX, Linux and Windows systems
	IBM i

	The Browser sample program
	The CICS transaction sample
	The Connect sample program
	The Data-Conversion sample program
	Database coordination samples
	Creating the databases and tables
	Precompiling, compiling, and linking the samples
	Running the samples

	Dead-letter queue handler sample
	The Distribution List sample program
	The Echo sample programs
	The Get sample programs
	Running the amqsget and amqsgetc samples

	High availability sample programs
	The Inquire sample programs
	The Inquire Properties of a Message Handle sample program
	The Publish/Subscribe sample programs
	Running the MQPubSubApiSample Java sample

	The Publish Exit sample program
	The Put sample programs
	Running the Put sample programs

	The Reference Message sample programs
	Notes for IBM i users
	Running the Reference Message samples
	Design of the Put Reference Message sample (amqsprma.c, AMQSPRM4)
	Design of the Reference Message Exit sample (amqsxrma.c, AMQSXRM4)
	Design of the Get Reference Message sample (amqsgrma.c, AMQSGRM4)

	The Request sample programs
	Running the Request sample programs
	Running the Request sample using triggering
	Design of the Request sample program

	The Set sample programs
	The SSL/TLS sample program
	Running the SSL/TLS sample program

	The Triggering sample programs
	Running the Triggering sample programs
	Design of the trigger server

	TUXEDO samples
	Building the server environment
	Sample server program for TUXEDO
	Put sample program for TUXEDO
	Get sample for TUXEDO

	Using the SSPI security exit on Windows systems
	Running the samples using remote queues
	The Cluster Queue Monitoring sample program (AMQSCLM)
	AMQSCLM: Design and Planning for using the sample
	AMQSCLM: Preparing and running the sample
	AMQSCLM: Troubleshooting

	Sample program for Connection Endpoint Lookup (CEPL)
	Introduction
	Supported environments
	Installation and configuration
	Overview of the exit and schema
	MQ LDAP Context Information
	Sample code for building the connection endpoint lookup exit
	Invocation of the PreConnect exit module
	LDAP schemas
	LDAP attributes

	Sample programs for IBM MQ for z/OS
	Features demonstrated in the sample applications
	Put samples
	Get samples
	Browse sample
	Print Message sample
	Queue Attributes sample
	Mail Manager sample
	Credit Check sample
	The Message Handler sample
	Distributed queuing exit samples
	Data-conversion exit samples
	Publish/Subscribe samples

	Preparing and running sample applications for the batch environment
	Names of the sample batch applications

	Preparing sample applications for the TSO environment
	Names of the sample TSO applications

	Preparing the sample applications for the CICS environment
	Names of the sample CICS applications

	Preparing the sample application for the IMS environment
	Names of the sample IMS application

	The Put samples
	The Put samples for the batch environment
	The Put samples for the CICS environment

	The Get samples
	Design of the Get sample
	The Get samples for the batch environment
	The Get samples for the CICS environment

	The Browse sample
	Design of the Browse sample
	Language-dependent design considerations

	The Print Message sample
	Design of the print message sample

	The Queue Attributes sample
	The Mail Manager sample
	Preparing the sample
	Running the sample
	Design of the sample

	The Credit Check sample
	Preparing and running the Credit Check sample
	Design of the sample
	Design considerations
	The Credit Check sample with multiple queue managers
	The IMS extension to the Credit Check sample

	The Message Handler sample
	Using the sample
	Design of the sample

	The Asynchronous Put sample
	The Batch Asynchronous Consumption sample
	The CICS Asynchronous Consumption and Publish/Subscribe sample
	The Publish/Subscribe Sample
	The Set and Inquire message property sample

	Developing object-oriented applications with IBM MQ
	The IBM MQ Object Model
	Using .NET
	Getting started with IBM MQ classes for .NET
	Options for connecting to a queue manager
	Installing IBM MQ classes for .NET
	Sample applications
	Configuring your queue manager to accept TCP/IP client connections
	Troubleshooting IBM MQ.NET problems
	Distributed transactions in .NET

	Writing and deploying IBM MQ .NET programs
	Connection differences
	Configuration files for IBM MQ classes for .NET
	Example code fragment
	Setting up the IBM MQ environment
	Connecting to and disconnecting from a queue manager
	Accessing queues and topics
	Handling messages
	Handling errors
	Getting and setting attribute values
	Multithreaded programs
	Using a client channel definition table with .NET
	How a .NET application determines what channel definition to use
	Using channel exits in IBM MQ .NET
	Automatic client reconnection in .NET
	Secure Sockets Layer (SSL) and Transport Layer Security (TLS) support for .NET
	Using the .NET Monitor
	Compiling IBM MQ .NET programs
	Tracing IBM MQ .NET programs
	Using the stand-alone IBM MQ .NET client

	Using the Component Object Model Interface (IBM MQ Automation Classes for ActiveX)
	Designing and programming using IBM MQ Automation Classes for ActiveX
	Designing MQAX applications that access non-ActiveX applications
	Programming hints and tips
	Using data conversion
	Threading
	Error handling

	IBM MQ Automation Classes for ActiveX reference
	IBM MQ Automation Classes for ActiveX interface
	About IBM MQ Automation Classes for ActiveX classes
	MQSession Class
	MQQueueManager class
	MQQueue class
	MQMessage class
	MQPutMessageOptions class
	MQGetMessageOptions class
	MQDistributionList class
	MQDistributionListItem class

	Troubleshooting
	Using trace
	When your IBM MQ Automation Classes for ActiveX script fails
	Reason codes
	Code level tool

	ActiveX interface to the MQAI
	The MQBag class
	Item property
	Count property
	Options property
	MQBag methods

	About the IBM MQ Automation Classes for ActiveX Starter samples
	Preparing to run the samples
	Error handling in the samples
	Running the MQAXTRIV sample
	Starting the MQAXCLSS sample
	The MQAXDLST sample
	MQAX Starter sample for Microsoft Excel 95 or later
	Starter sample using an ActiveX compatible WWW browser

	Using C++
	C++ sample programs
	Sample program HELLO WORLD (imqwrld.cpp)
	Sample programs SPUT (imqsput.cpp) and SGET (imqsget.cpp)
	Sample program DPUT (imqdput.cpp)

	C++ language considerations
	C++ Header files
	C++ methods and attributes
	Data types in C++
	Manipulating binary strings in C++
	Manipulating character strings in C++
	Initial state of objects in C++
	Using C from C++
	C++ notational conventions
	Implicit operations in C++
	Binary and character strings in C++
	Unsupported functions in C++

	Messaging in C++
	Preparing message data in C++
	Reading messages in C++
	Writing a message to the dead-letter queue in C++
	Writing a message to the IMS bridge in C++
	Writing a message to the CICS bridge in C++
	Writing a message with a work header in C++

	Building IBM MQ C++ programs
	Building C++ programs on AIX
	Building C++ programs on HP-UX
	Building C++ programs on IBM i
	Building C++ programs on Linux
	Building C++ programs on Solaris
	Building C++ programs on Windows
	Building C++ programs on z/OS Batch, RRS Batch and CICS
	Building C++ programs on z/OS UNIX System Services

	Using IBM MQ classes for Java
	Why should I use IBM MQ classes for Java?
	Prerequisites for IBM MQ classes for Java
	Running IBM MQ classes for Java applications within Java EE
	Character string conversions in IBM MQ classes for Java
	Installation and configuration of IBM MQ classes for Java
	What is installed for IBM MQ classes for Java
	Running IBM MQ classes for Java applications under the Java Security Manager
	Running IBM MQ classes for Java applications under CICS Transaction Server

	Using IBM MQ classes for Java
	Configuring your queue manager to accept client connections from IBM MQ classes for Java
	Verifying your IBM MQ classes for Java installation with the sample application
	Solving IBM MQ classes for Java problems

	Writing IBM MQ classes for Java applications
	IBM MQ classes for Java connection modes
	Operations on queue managers
	Accessing queues, topics, and processes in IBM MQ classes for Java
	Handling messages in IBM MQ classes for Java
	Publish/subscribe in IBM MQ classes for Java
	Handling IBM MQ message headers with IBM MQ classes for Java
	Handling PCF messages with IBM MQ classes for Java
	Handling message properties in IBM MQ classes for Java
	Handling errors in IBM MQ classes for Java
	Getting and setting attribute values in IBM MQ classes for Java
	Multithreaded programs in Java
	Using channel exits in IBM MQ classes for Java
	Channel compression in IBM MQ classes for Java
	Sharing a TCP/IP connection in IBM MQ classes for Java
	Connection pooling in IBM MQ classes for Java
	JTA/JDBC coordination using IBM MQ classes for Java
	Secure Sockets Layer (SSL) support in IBM MQ classes for Java
	Running IBM MQ classes for Java applications

	IBM MQ classes for Java environment-dependent behavior
	Core classes in IBM MQ classes for Java
	Restrictions and variations for core classes of IBM MQ classes for Java
	Features outside the core classes of IBM MQ classes for Java
	Restrictions for IBM MQ classes for Java under CICS Transaction Server

	Developing JMS and Java Platform, Enterprise Edition applications
	Using IBM MQ classes for JMS
	Why should I use IBM MQ classes for JMS?
	Prerequisites for IBM MQ classes for JMS
	Preparing JMS programs for the IBM MQ client for HP Integrity NonStop Server

	Installation and configuration of IBM MQ classes for JMS
	What is installed for IBM MQ classes for JMS
	Running IBM MQ classes for JMS applications under the Java security manager
	ClassName whitelisting in JMS ObjectMessage
	Post installation setup for IBM MQ classes for JMS applications
	The point-to-point installation verification test for IBM MQ classes for JMS
	The publish/subscribe installation verification test for IBM MQ classes for JMS
	Scripts provided with IBM MQ classes for JMS
	Support for OSGi
	Solving problems with IBM MQ classes for JMS

	Obtaining the IBM MQ classes for JMS separately
	Overview of IBM MQ classes for JMS object pooling
	Object pooling in a Java EE environment
	Object pooling in a Java SE environment

	Introduction to automatic client reconnection in Java EE environments
	Character string conversions in IBM MQ classes for JMS
	Writing IBM MQ classes for JMS applications
	The JMS model
	JMS messages
	Creating and configuring connection factories and destinations in an IBM MQ classes for JMS application
	Building a connection in a JMS application
	Creating a session in a JMS application
	Creating destinations in a JMS application
	Sending messages in a JMS application
	Receiving messages in a JMS application
	Retrieval of subscription user data
	Closing down an IBM MQ classes for JMS application
	Handling poison messages in IBM MQ classes for JMS
	Logging errors in IBM MQ classes for JMS
	Exceptions in IBM MQ classes for JMS
	Accessing IBM MQ features from an IBM MQ classes for JMS application
	XA support in IBM MQ classes for JMS
	Using JMS 2.0 functionality

	IBM MQ classes for JMS Application Server Facilities
	The JMS ConnectionConsumer
	Planning an application with ASF
	Error handling
	The function of a server session pool in AFS

	Using IBM MQ classes for JMS in a CICS OSGi JVM server
	Setting up the JVM server environment
	Creating and configuring connection factories and destinations
	Transactional behavior
	JMS API restrictions

	Using IBM MQ classes for JMS in IMS
	Setting up the IMS adapter for use with IBM MQ classes for JMS
	Transactional behavior
	Implications of IMS syncpoints
	Considerations when using the IMS adapter
	JMS API restrictions

	Using the IBM MQ JMS administration tool
	Configuring the JMS Administration tool
	Invoking the IBM MQ classes for JMS administration tool
	Administration commands in the IBM MQ JMS administration tool
	Manipulating subcontexts with the IBM MQ JMS administration tool
	Configuring JMS objects

	Configuring JMS objects using MQ Explorer

	Using the IBM MQ resource adapter
	IBM MQ resource adapter statement of support
	Limitations of the IBM MQ resource adapter
	WebSphere Application Server and the IBM MQ resource adapter
	WebSphere Application Server Liberty and the IBM MQ resource adapter
	Installing the IBM MQ resource adapter
	Installing the resource adapter in Liberty

	Configuring the IBM MQ resource adapter
	Configuration of the ResourceAdapter object
	Configuring the resource adapter for inbound communication
	Configuring the resource adapter for outbound communication

	The installation verification test program for the IBM MQ resource adapter
	Installing and testing the resource adapter in GlassFish Server
	Installing and testing the resource adapter in Wildfly

	Using the IBM MQ Headers package
	Using with IBM MQ classes for Java
	Using with IBM MQ classes for JMS

	Developing applications for IBM MQ Telemetry
	IBM MQ Telemetry Transport sample programs
	MQTTV3Sample program

	Creating your first IBM MQ Telemetry Transport publisher application using Java
	Creating an asynchronous publisher for IBM MQ Telemetry Transport using Java
	Creating a recoverable asynchronous publisher for IBM MQ Telemetry Transport using Java
	Creating a subscriber for IBM MQ Telemetry Transport using Java
	Authenticating an MQTT Java client using JAAS
	Authenticating an SSL telemetry connection using self-signed certificates
	Modifying PubSync.java to use SSL
	Authenticating the telemetry channel
	Authenticating the telemetry channel and clients

	Authenticating an SSL telemetry connection using a certificate chain
	Authenticating the telemetry channel
	Authenticating the telemetry channel and clients

	Creating your first IBM MQ Telemetry Transport publisher application using C
	Creating an asynchronous publisher for IBM MQ Telemetry Transport using C
	Creating a subscriber for IBM MQ Telemetry Transport using C
	Receiving messages

	MQTT client programming concepts
	Callbacks and synchronization in MQTT client applications
	Clean sessions
	Client identifier
	Delivery tokens
	Last will and testament publication
	Message persistence in MQTT clients
	Publications
	Qualities of service provided by an MQTT client
	Retained publications and MQTT clients
	Subscriptions
	Topic strings and topic filters in MQTT clients

	C client programming concepts

	Developing MQ Light applications
	AMQP and IBM MQ application interaction
	AMQP messages
	Mapping IBM MQ fields onto AMQP fields (outgoing messages)
	Mapping AMQP fields onto IBM MQ fields (incoming messages)

	Developing Microsoft Windows Communication Foundation (WCF) applications with IBM MQ
	Introduction to the use of IBM MQ custom channel for WCF with .NET 3
	What is the IBM MQ custom channel for WCF?
	When and why do I use the IBM MQ custom channel for WCF?
	Messages carried using the SOAP over JMS format
	Messages carried using the Non-SOAP/Non-JMS message (Pure MQMessage) format

	Software requirements and installation instructions for the IBM MQ custom channel for WCF
	IBM MQ custom channel for WCF: What's installed?
	WCF architecture

	Using IBM MQ custom channels for WCF
	WCF Custom channel features and capabilities
	WCF custom channel shapes
	WCF URI parameter names and values
	WCF custom channel assured delivery
	WCF custom channel security
	WCF client channel definition tables (CCDT)
	WCF custom channel poison messages
	IBM MQ message capabilities for WCF applications

	WCF Connection options
	Creating and configuring the IBM MQ custom channel for WCF
	Creating a WCF custom channel administratively by supplying binding and endpoint information in an application configuration file
	Creating a WCF custom channel by suppling binding and endpoint information programmatically
	IBM MQ custom channel for WCF endpoint URI address format
	WCF binding configuration options

	Building and hosting services for WCF
	Building WCF service applications using method 1: Self-hosting administratively using an application configuration file
	Building WCF service applications using method 2: Self-hosting programmatically directly from the application
	Exposing metadata using an HTTP endpoint

	Building client applications for WCF
	Generating a WCF client proxy and application configuration files using the svcutil tool with metadata from a running service
	Generating a WCF client proxy and application configuration files using the svcutil tool with WSDL
	Building WCF client applications using a client proxy with an application configuration file
	Building WCF client applications using a client proxy with programmatic configuration

	Using the WCF samples
	Simple one-way client and server WCF sample
	Simple request-reply client and server WCF sample
	WCF client to a .NET service hosted by IBM MQ sample
	WCF client to an Axis Java service hosted by IBM MQ sample
	WCF client to Java service hosted by WebSphere Application Server sample

	Problem determination on the WCF custom channel for IBM MQ
	WCF custom channel exception hierarchy
	WCF trace configuration
	WCF trace configuration and trace file names: SOAP/JMS interface
	WCF trace configuration: Non_SOAP/Non-JMS interface

	WCF XMS First Failure Support Technology (FFST)
	WCF version information
	WCF hints and tips
	Externalizing exceptions from the WCF service host
	Handling different SOAP response element names

	Developing web services with IBM MQ
	IBM MQ transport for SOAP
	Introduction to IBM MQ transport for SOAP
	Integration of SOAP and IBM MQ
	Implementation of WebSphere transport for SOAP on .NET Framework 1, .NET 2 and Axis 1.4
	IBM MQ transport for SOAP and Web services reliable messaging

	Installing and verifying IBM MQ Web services
	Installing IBM MQ Web transport for SOAP
	Verifying the IBM MQ transport for SOAP

	Developing Web services for IBM MQ transport for SOAP
	Developing a .NET 1 or 2 service for IBM MQ transport for SOAP using Microsoft Visual Studio 2008
	Developing a JAX-WS EJB Web service for W3C SOAP over JMS

	Developing IBM MQ Web service clients for IBM MQ transport for SOAP
	Developing a JAX-RPC client for WebSphere transport for SOAP using Eclipse
	Developing a JAX-WS client for WebSphere transport for SOAP using Eclipse
	Developing a .NET 1 or 2 client for WebSphere transport for SOAP using Microsoft Visual Studio 2008

	Deploying Web services using the IBM MQ transport for SOAP
	Deploying a service to Axis 1.4 to use for WebSphere transport for SOAP using amqwdeployWMQService
	Deploying a service to .NET Framework 1 or 2 service to use IBM MQ transport for SOAP
	Deploying a service to CICS Transaction Server to use WebSphere Transport for SOAP
	Deploying a service to WebSphere Application Server to use WebSphere Transport for SOAP
	Deploying a service to WebSphere ESB and Process Server service endpoint to use WebSphere Transport for SOAP

	Deploying Web service clients to use IBM MQ transport for SOAP
	Deploying a Web service client to Axis 1.4 to use IBM MQ transport for SOAP
	Deploying a Web service client to Axis2 to use IBM MQ transport for SOAP
	Deploying to an Axis2 client using W3C SOAP over JMS
	Deploying a Web service client to .NET Framework 1 and 2 to use IBM MQ transport for SOAP

	Connect an Axis2 client to a JAX-WS service using W3C SOAP over JMS and WebSphere Application Server

	IBM MQ bridge for HTTP
	Introduction to IBM MQ bridge for HTTP
	Installing, configuring, and verifying IBM MQ bridge for HTTP
	Deploying and verifying IBM MQ bridge for HTTP on WebSphere Application Server V6.1.0.9

	Publish/subscribe using the IBM MQ bridge for HTTP
	Running the IBM MQ bridge for HTTP samples
	Security considerations for WebSphere bridge for HTTP

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Notices
	Programming interface information
	Trademarks

	Sending your comments to IBM

