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Developing applications

You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM® MQ support applications written in procedural languages, and object oriented
languages and frameworks.

Before you develop applications for IBM MQ, ensure you are familiar with the concepts in
[Fechnical overview]

IBM MQ provides support for the following procedural programming languages:
- C

* Visual Basic ( Windows systems only)

+ COBOL

. Assembler language ( IBM MQ for z/OS® only)
- B RPG (1BM MQ for IBM i only)
. PL/1 ( IBM MQ for z/OS only)

These languages use the message queue interface (MQI) to access message queuing services. For more
information, see [“Developing MQI applications with IBM MQ” on page 72.|

IBM MQ also provides support for the following object-oriented programming languages and
frameworks:

e NET
e ActiveX
e C++

M

+ Java"
* JMS

These languages and frameworks use the IBM MQ Object Model, which provides classes that provide the
same functionality as IBM MQ calls and structures, but that are a more natural way of programming in
an object-oriented environment. Some of the languages and frameworks that use the IBM MQ Object
Model provide additional functions that are not available to the procedural languages using the MQI. For
more information, see [“Developing object-oriented applications with IBM MQ” on page 637 .|

Related information:

Application development concepts

You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.

Before you start to design and write your IBM MQ applications, familiarize yourself with the basic IBM
MQ concepts, see the topics in [Technical overview]| For information about the types of application you
can write for IBM MQ, see [“Developing applications.”|

Use the following links to find out about IBM MQ concepts specific to application development:
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Related concepts:

['Using the message queue interface (MQI) in a client application” on page 294|
This collection of topics considers the differences between writing your IBM MQ application to run in an
IBM MQ MQI client environment and to run in the full IBM MQ queue manager environment.

['Developing web services with IBM MQ” on page 1271
You can develop IBM MQ applications for Web services using the IBM MQ transport for SOAP or the
IBM MQ bridge for HTTP.

[‘Channel-exit programs for messaging channels” on page 349
This collection of topics contains information about IBM MQ channel-exit programs for messaging
channels.

[‘Designing IBM MQ applications” on page 51|
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

[‘Sample IBM MQ procedural programs” on page 473|
This set of sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.

['Writing a procedural application for queuing” on page 76|
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.

['Writing client procedural applications” on page 293|

What you need to know to write client applications on IBM MQ using a procedural language.
['‘Developing MQI applications with IBM MQ” on page 72|

IBM MQ provides support for C, Visual Basic, COBOL, Assembler, RPG, pTAL, and PL/I. These
procedural languages use the message queue interface (MQI) to access message queuing services.

[‘Developing object-oriented applications with IBM MQ” on page 637

IBM MQ provides support for .NET, ActiveX, C++, Java, and JMS. These languages and frameworks use
the IBM MQ Object Model, which provides classes that provide the same functionality as IBM MQ calls
and structures. Some of the languages and frameworks that use the IBM MQ Object Model provide
additional functions that are not available when you use procedural languages with the message queue
interface (MQI).

[‘Using IBM MQ classes for JMS” on page 903)|

IBM MQ classes for Java Message Service (IBM MQ classes for JMS) is the JMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for JMS provides two sets of extensions to the JMS APIL

[‘Using the Component Object Model Interface ( IBM MQ Automation Classes for ActiveX)” on page 690
The IBM MQ Automation Classes for ActiveX (MQAX) are ActiveX components that provide classes that
you can use in your application to access IBM MQ.

[‘Using IBM MQ classes for Java” on page 832|

IBM MQ classes for Java enable you to use IBM MQ in a Java environment. IBM MQ classes for Java
allow a Java application to connect to IBM MQ as an IBM MQ client, or connect directly to an IBM MQ
queue manager.

[‘Using NET” on page 640

IBM MQ classes for .NET allow a program written in the .NET programming framework to connect to
IBM MQ as an IBM MQ MQI client or to connect directly to an IBM MQ server.

[‘Using C++” on page 805|

IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQL

[‘Building a procedural application” on page 389|
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.

Related information:

[fransactional support scenarios|
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Linux on POWER Systems - Little Endian applications

As Linux on POWER® Systems - Little Endian supports 64-bit applications only, there is no support
provided in IBM MQ for 32-bit applications.

Related concepts:

[‘Designing IBM MQ applications” on page 51|
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

Application programs using the MQlI

IBM MQ application programs need certain objects before they can run successfully.

shows an application that removes messages from a queue, processes them, and then sends some
results to another queue on the same queue manager.

Figure 1. Queues, messages, and applications

Whereas applications can put messages onto local or remote queues (using MQPUT ), they can only get
messages directly from local queues (using MQGET ).

Before this application can run, the following conditions must be satisfied:

* The queue manager must exist and be running.

* The first application queue, from which the messages are to be removed, must be defined.
* The second queue, on which the application puts the messages, must also be defined.

* The application must be able to connect to the queue manager. To do this it must be linked to IBM
MQ. See [“Building a procedural application” on page 389

* The applications that put the messages on the first queue must also connect to a queue manager. If
they are remote, they must also be set up with transmission queues and channels. This part of the
system is not shown in

Developing applications 3



IBM MQ messages

This information introduces the IBM MQ message concept, message parts, and the message descriptor.

IBM MQ messages consist of two parts:
* Message properties
* Application data

represents a message and shows how it is logically divided into message properties and
application data.

Message properties Application data

r I I
| Message description
A (MQMD) "

L I R I O
< > < >i¢ >4 >« >« g

pev e b e b b b e brvapr e b gl

Message ID ARM correlator Address

Persistence ... Customer number Claim details ...

Figure 2. Representation of a message

The application data that is carried in an IBM MQ message is not changed by a queue manager unless
data conversion is carried out on it. Also, IBM MQ does not put any restrictions on the content of this
data. The length of the data in each message cannot exceed the value of the MaxMsglLength attribute of

both the queue and queue manager.

On IBM MQ for AIX®, BEELIMM 1BM MQ for IBM i, IBM MQ for HP-UX, IBM MQ for Linux, IBM
MQ for Solaris, and IBM MQ for Windows, the MaxMsgLength defaults to 100 MB (104 857 600 bytes).

Note: m If you are intending to use IBM MQ messages greater than 15 MB on IBM i, see
[‘Building your procedural application on IBM i” on page 410.

On IBM MQ for z/OS, the MaxMsgLength attribute of the queue manager is fixed at 100 MB and
the MaxMsgLength attribute of the queue defaults to 4 MB (4 194 304 bytes) which you can change up to a
maximum of 100 MB if required.

Make your messages slightly shorter than the value of the MaxMsglLength attribute in some circumstances.
For more information, see [“The data in your message” on page 118|

You create a message when you use the MQPUT or MQPUT1 MQI calls. As input to these calls, you
supply the control information (such as the priority of the message and the name of a reply queue) and
your data, and the call then puts the message on a queue. See MQPUT|and [MQPUT1| for more
information about these calls.

Message descriptor
You can access message control information by using the MQMD structure, which defines the
message descriptor.

For a full description of the MQMD structure, see [MQMD - Message descriptor]

See |“Message context” on page 34| for a description of how to use the fields within the MQMD
that contain information about the origin of the message.
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There are different versions of the message descriptor. Additional information for grouping and
segmenting messages (see [“Message groups” on page 30|) is provided in Version 2 of the message
descriptor (or the MQMDE). This is the same as the Version 1 message descriptor but has extra
fields. These fields are described in the MQMDE - Message descriptor extension}

Types of message
There are four types of messages defined by IBM MQ.

These four messages are:
* [Request messages|

* [Reply messages|

* [Report messages|

— [Types of report message|

- IReport message 0ptions|

Applications can use the first three types of messages to pass information between themselves. The fourth
type, report, is for applications and queue managers to use to report information about events such as the
occurrence of an error.

Each type of message is identified by an MOQMT_* value. You can also define your own types of message.
For the range of values you can use, see

Datagrams

Use a datagram when you do not require a reply from the application that receives the message (that is,
gets the message from the queue).

An example of an application that might use datagrams is one that displays flight information in an
airport lounge. A message might contain the data for a whole screen of flight information. Such an
application is unlikely to request an acknowledgment for a message because it probably does not matter
if a message is not delivered. The application sends an update message after a short time.

Request messages
Use a request message when you want a reply from the application that receives the message.

An example of an application that could use request messages is one that displays the balance of a
checking account. The request message could contain the number of the account, and the reply message
would contain the account balance.

If you want to link your reply message with your request message, there are two options:
* Make the application that handles the request message responsible for ensuring that it puts information
into the reply message that relates to the request message.

* Use the report field in the message descriptor of your request message to specify the content of the
Msgld and Correlld fields of the reply message:

— You can request that either the Msgld or the Correlld of the original message is to be copied into
the Correlld field of the reply message (the default action is to copy Msgld).

— You can request that either a new MsgId is generated for the reply message, or that the Msgld of the
original message is to be copied into the Msgld field of the reply message (the default action is to
generate a new message identifier).
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Reply messages
Use a reply message when you reply to another message.

When you create a reply message, respect any options that were set in the message descriptor of the
message to which you are replying. Report options specify the content of the message identifier (MsgId)
and correlation identifier (Correlld) fields. These fields allow the application that receives the reply to
correlate the reply with its original request.

Report messages

Report messages inform applications about events such as the occurrence of an error when processing a
message.

They can be generated by:

* A queue manager,

* A message channel agent (for example, if they cannot deliver the message), or
* An application (for example, if it cannot use the data in the message).

Report messages can be generated at any time, and might arrive on a queue when your application is not
expecting them.

Types of report message

When you put a message on a queue, you can select to receive:

* An exception report message. This is sent in response to a message with the exceptions flag set.
It is generated by the message channel agent (MCA) or the application.

* An expiry report message. This indicates that an application attempted to retrieve a message that
had reached its expiry threshold; the message is marked to be discarded. This type of report is
generated by the queue manager.

* A confirmation of arrival (COA) report message. This indicates that the message has reached its
target queue. It is generated by the queue manager.

* A confirmation of delivery (COD) report message. This indicates that the message has been
retrieved by a receiving application. It is generated by the queue manager.

* A positive action notification (PAN) report message. This indicates that a request has been
successfully serviced (that is, the action requested in the message has been performed
successfully). This type of report is generated by the application.

* A negative action notification (NAN) report message. This indicates that a request has not been
successfully serviced (that is, the action requested in the message has not been performed
successfully). This type of report is generated by the application.

Note: Each type of report message contains one of the following:

* The entire original message

* The first 100 bytes of data in the original message

* No data from the original message

You can request more than one type of report message when you put a message on a queue. If
you select the delivery confirmation report message and the exception report message options, if
the message fails to be delivered, you receive an exception report message. However, if you select

only the delivery confirmation report message option and the message fails to be delivered, you
do not get an exception report message.

The report messages that you request, when the criteria for generating a particular message are
met, are the only ones that you receive.
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Report message options

You can discard a message after an exception has arisen. If you select the discard option, and have
requested an exception report message, the report message goes to the ReplyToQ and ReplyToQMgr,
and the original message is discarded.

Note: A benefit of this is that you can reduce the number of messages going to the dead-letter
queue. However, it does mean that your application, unless it sends only datagram messages, has
to deal with returned messages. When an exception report message is generated, it inherits the
persistence of the original message.

If a report message cannot be delivered (if the queue is full, for instance), the report message is
placed on the dead-letter queue.

If you want to receive a report message, specify the name of your reply-to queue in the ReplyToQ
field; otherwise the MQPUT or MQPUTT1 of your original message fails with
MQRC_MISSING_REPLY_TO_Q.

You can use other report options in the message descriptor (MQMD) of a message to specify the
content of the MsgId and Correlld fields of any report messages that are created for the message:

* You can request that either the MsgId or the Correlld of the original message is to be copied
into the Correlld field of the report message. The default action is to copy the message
identifier. Use MQRO_COPY_MSG_ID_TO_CORRELID because it enables the sender of a
message to correlate the reply or report message with the original message. The correlation
identifier of the reply or report message is identical to the message identifier of the original
message.

* You can request that either a new Msgld is generated for the report message, or that the MsgId
of the original message is to be copied into the MsgId field of the report message. The default
action is to generate a new message identifier. Use MQRO_NEW_MSG_ID because it ensures
that each message in the system has a different message identifier, and can be distinguished
unambiguously from all other messages in the system.

* Specialized applications might need to use MQRO_PASS_MSG_ID or
MQRO_PASS_CORREL_ID. However, you need to design the application that reads the
messages from the queue to ensure that it works correctly when, for example, the queue
contains multiple messages with the same message identifier.

Server applications must check the settings of these flags in the request message, and set the
MsgId and Correlld fields in the reply or report message appropriately.

Applications that act as intermediaries between a requester application and a server application
do not need to check the settings of these flags. This is because these applications typically
need to forward the message to the server application with the MsgId, Correlld, and Report
fields unchanged. This allows the server application to copy the MsgId from the original
message in the Correlld field of the reply message.

When generating a report about a message, server applications must test to see if any of these
options have been set.

For more information about how to use report messages, see

To indicate the nature of the report, queue managers use a range of feedback codes. They put
these codes in the Feedback field of the message descriptor of a report message. Queue managers
can also return MQI reason codes in the Feedback field. IBM MQ defines a range of feedback
codes for applications to use.

For more information about feedback and reason codes, see [Feedbac

An example of a program that could use a feedback code is one that monitors the workloads of
other programs serving a queue. If there is more than one instance of a program serving a queue,
and the number of messages arriving on the queue no longer justifies this, such a program can
send a report message (with the feedback code MQFB_QUIT) to one of the serving programs to
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indicate that the program should terminate its activity. (A monitoring program could use the
MQINQ call to find out how many programs are serving a queue.)

Reports and segmented messages:

Not supported on IBM MQ for z/OS.

If a message is segmented (see ["Message segmentation” on page 155| for a description of segmented
messages) and you ask for reports to be generated, you might receive more reports than you would have
done had the message not been segmented.

For reports generated by IBM MQ

If you segment your messages or allow the queue manager to do so, there is only one case in which you
can expect to receive a single report for the entire message. This is when you have requested only COD
reports, and you have specified MOQGMO_COMPLETE_MSG on the getting application.

In other cases your application must be prepared to deal with several reports; usually one for each
segment.

Note: If you segment your messages, and you need only the first 100 bytes of the original message data
to be returned, change the setting of the report options to ask for reports with no data for segments that
have an offset of 100 or more. If you do not do this, and you leave the setting so that each segment
requests 100 bytes of data, and you retrieve the report messages with a single MQGET specifying
MQGMO_COMPLETE_MSG, the reports assemble into a large message containing 100 bytes of read data
at each appropriate offset. If this happens, you need a large buffer or you need to specify
MQGMO_ACCEPT_TRUNCATED_MSG.

For reports generated by applications

If your application generates reports, always copy the IBM MQ headers that are present at the start of the
original message data to the report message data.

Then add none, 100 bytes, or all of the original message data (or whatever other amount you would
usually include) to the report message data.

You can recognize the IBM MQ headers that must be copied by looking at the successive Format names,
starting with the MQMD and continuing through any headers present. The following Format names
indicate these IBM MQ headers:

* MQMDE

* MQDLH

« MQXQH

* MQIIH

« MQH*

MQH* means any name that starts with the characters MQH.

The Format name occurs at specific positions for MOQDLH and MQXQH, but for the other IBM MQ
headers it occurs at the same position. The length of the header is contained in a field that also occurs at

™

the same position for MQMDE, MQIMS *, and all MQH* headers.

If you are using a Version 1 MQMD, and you are reporting on a segment, or a message in a group, or a
message for which segmentation is allowed, the report data must start with an MQMDE. Set the
Originallength field to the length of the original message data excluding the lengths of any IBM MQ
headers that you find.
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Retrieving reports

If you ask for COA or COD reports, you can ask for them to be reassembled for you with
MQGMO_COMPLETE_MSG.

An MQGET with MQGMO_COMPLETE_MSG is satisfied when enough report messages (of a single
type, for example COA, and with the same GroupId) are present on the queue to represent one complete
original message. This is true even if the report messages themselves do not contain the complete original
data; the Originallength field in each report message gives the length of original data represented by
that report message, even if the data itself is not present.

You can use this technique even if there are several different report types present on the queue (for
example, both COA and COD), because an MQGET with MQGMO_COMPLETE_MSG reassembles report
messages only if they have the same Feedback code. However, you cannot usually use this technique for
exception reports, because, in general, these have different Feedback codes.

You can use this technique to get a positive indication that the entire message has arrived. However, in
most circumstances you need to cater for the possibility that some segments arrive while others might
generate an exception (or expiry, if you have allowed this). You cannot use MQGMO_COMPLETE_MSG
in this case, because, in general, you might get different Feedback codes for different segments and, you
might get more than one report for a segment. You can, however, use
MQGMO_ALL_SEGMENTS_AVAILABLE.

To allow for this you might need to retrieve reports as they arrive, and build up a picture in your
application of what happened to the original message. You can use the GroupId field in the report
message to correlate reports with the GroupId of the original message, and the Feedback field to identify
the type of each report message. The way in which you do this depends on your application
requirements.

One approach is as follows:
* Ask for COD reports and exception reports.

* After a specific time, check whether a complete set of COD reports has been received using
MQGMO_COMPLETE_MSG. If so, your application knows that the entire message has been processed.

 If not, and exception reports relating to this message are present, handle the problem as for
unsegmented messages, but ensure that you clean up orphan segments at some point.

* If there are segments for which there are no reports of any kind, the original segments (or the reports)
might be waiting for a channel to be reconnected, or the network might be overloaded at some point.
If no exception reports at all have been received (or if you think that the ones you have might be
temporary only), you might decide to let your application wait a little longer.

As before, this is similar to the considerations you have when dealing with unsegmented messages,
except that you must also consider the possibility of cleaning up orphan segments.

If the original message is not critical (for example, if it is a query, or a message that can be repeated
later), set an expiry time to ensure that orphan segments are removed.

Back-level queue managers

When a report is generated by a queue manager that supports segmentation, but is received on a queue
manager that does not support segmentation, the MOQMDE structure (which identifies the 0ffset and
Originallength represented by the report) is always included in the report data, in addition to zero, 100
bytes, or all of the original data in the message.

However, if a segment of a message passes through a queue manager that does not support
segmentation, if a report is generated there, the MQMDE structure in the original message is treated
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purely as data. It is not therefore included in the report data if zero bytes of the original data have been
requested. Without the MQMDE, the report message might not be useful.

Request at least 100 bytes of data in reports if there is a possibility that the message might travel through
a back-level queue manager.

Format of message control information and message data

The queue manager is only interested in the format of the control information within a message, whereas
applications that handle the message are interested in the format of both the control information and the
data.

Format of message control information

Control information in the character-string fields of the message descriptor must be in the character set
used by the queue manager.

The CodedCharSetId attribute of the queue manager object defines this character set. Control information
must be in this character set because, when applications pass messages from one queue manager to
another, message channel agents that transmit the messages use the value of this attribute to determine
what data conversion to perform.

Format of message data

You can specify any of the following things:
* The format of the application data
* The character set of the character data

¢ The format of numeric data

To do this, use these fields:
Format This indicates to the receiver of a message the format of the application data in the message.

When the queue manager creates a message, in some circumstances it uses the Format field to
identify the format of that message. For example, when a queue manager cannot deliver a
message, it puts the message on a dead-letter (undelivered message) queue. It adds a header
(containing more control information) to the message, and changes the Format field to show this.

The queue manager has a number of built-in formats with names beginning MQ, for example
MQFMT_STRING. If these do not meet your needs, you can define your own formats (
user-defined formats ), but you must not use names beginning with MQ for these.

When you create and use your own formats, you must write a data-conversion exit to support a
program getting the message using MQGMO_CONVERT.

CodedCharSetId
This defines the character set of character data in the message. If you want to set this character
set to that of the queue manager, you can set this field to the constant MQCCSI_Q_MGR or
MQCCSI_INHERIT.

When you get a message from a queue, compare the value of the CodedCharSetId field with the
value that your application is expecting. If the two values differ, you might need to convert any
character data in the message or use a data-conversion message exit if one is available.

Encoding
This describes the format of numeric message data that contains binary integers, packed-decimal
integers, and floating point numbers. It is typically encoded according to the particular machine
on which the queue manager is running.
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When you put a message on a queue, you typically specify the constant MQENC_NATIVE in the
Encoding field. This means that the encoding of your message data is the same as that of the
machine on which your application is running.

When you get a message from a queue, compare the value of the Encoding field in the message
descriptor with the value of the constant MQENC_NATIVE on your machine. If the two values
differ, you might need to convert any numeric data in the message or use a data-conversion
message exit if one is available.

Application data conversion:

Application data might need to be converted to the character set and the encoding required by another
application where different platforms are concerned.

It can be converted at the sending queue manager, or at the receiving queue manager. If the library of
built-in formats does not meet your needs, you can define your own. The type of conversion depends on
the message format that is specified in the format field of the message descriptor, MQMD.

Note: Messages with MQFMT_NONE specified are not converted.
Conversion at the sending queue manager

Set the CONVERT channel attribute to YES if you need the sending message channel agent (MCA) to
convert the application data.

The conversion is performed at the sending queue manager for certain built-in formats and for
user-defined formats if a suitable user exit is supplied.

Built-in formats

These include:
* Messages that are all characters (using the format name MQFMT_STRING)
* IBM MQ defined messages, for example Programmable Command Formats

IBM MQ uses Programmable Command Format messages for administration messages and
events (the format name used is MQFMT_ADMIN in this case). You can use the same format
(using the format name MQFMT_PCF) for your own messages, and take advantage of the
built-in data conversion.

The queue manager built-in formats all have names beginning with MQFMT. They are listed and
described in

Application-defined formats

For user-defined formats, application data conversion must be performed by a data-conversion
exit program (for more information, see [“Writing data-conversion exits” on page 371|). In a
client-server environment, the exit is loaded at the server and conversion takes place there.

Conversion at the receiving queue manager

Application message data can be converted by the receiving queue manager for both built-in and
user-defined formats.

The conversion is performed during the processing of an MQGET call if you specify the
MQGMO_CONVERT option. For details, see the
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Coded character sets

IBM MQ products support the coded character sets that are provided by the underlying operating
system.

When you create a queue manager, the queue manager coded character set ID (CCSID) used is based on
that of the underlying environment. If this is a mixed code page, IBM MQ uses the SBCS part of the
mixed code page as the queue manager CCSID.

For general data conversion, if the underlying operating system supports DBCS code pages, IBM MQ can
use it.

See the documentation for your operating system for details of the coded character sets that it supports.
You need to consider application data conversion, format names, and user exits when writing

applications that span multiple platforms. See [“Writing data-conversion exits” on page 371 for
information about invoking and writing data-conversion exits.

Message priorities

You set the priority of a message (in the Priority field of the MQMD structure) when you put the
message on a queue. You can set a numeric value for the priority, or you can let the message take the
default priority of the queue.

The MsgDeliverySequence attribute of the queue determines whether messages on the queue are stored in
FIFO (first in, first out) sequence, or in FIFO within priority sequence. If this attribute is set to
MQMDS_PRIORITY, messages are enqueued with the priority specified in the Priority field of their
message descriptors; but if it is set to MOQMDS_FIFO, messages are enqueued with the default priority of
the queue. Messages of equal priority are stored on the queue in order of arrival.

The DefPriority attribute of a queue sets the default priority value for messages being put on that
queue. This value is set when the queue is created, but it can be changed afterward. Alias queues, and
local definitions of remote queues, can have different default priorities from the base queues to which
they resolve. If there is more than one queue definition in the resolution path (see |Name resolution” on|
), the default priority is taken from the value (at the time of the put operation) of the
DefPriority attribute of the queue specified in the open command.

The value of the MaxPriority attribute of the queue manager is the maximum priority that you can
assign to a message processed by that queue manager. You cannot change the value of this attribute. In
IBM MQ, the attribute has the value 9; you can create messages having priorities between 0 (the lowest)
and 9 (the highest).
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Message properties
Use message properties to allow an application to select messages to process, or to retrieve information

about a message without accessing MOMD or MQRFH?2 headers. They also facilitate communication
between IBM MQ and JMS applications.

A message property is data associated with a message, consisting of a textual name and a value of a
particular type. Message properties are used by message selectors to filter publications to topics or to
selectively get messages from queues. Message properties can be used to include business data or state
information without having to store it in the application data. Applications do not have to access data in
the MQ Message Descriptor (MQMD) or MQRFH2 headers because fields in these data structures can be
accessed as message properties using Message Queue Interface (MQI) function calls.

The use of message properties in IBM MQ mimics the use of properties in JMS. This means that you can
set properties in a JMS application and retrieve them in a procedural IBM MQ application, or the other
way round. To make a property available to a JMS application, assign it the prefix "usr"; it is then
available (without the prefix) as a JMS message user property. For example, the IBM MQ property
usr.myproperty (a character string) is accessible to a JMS application using the JMS call
message.getStringProperty('myproperty'). Note that JMS applications are unable to access properties
with the prefix "usr" if they contain two or more U+002E (".") characters. A property with no prefix and
no U+002E (".") character is treated as if it had the prefix "usr". Conversely, a user property set in a JMS
application can be accessed in an IBM MQ application by adding the "usr." prefix to the property name
inquired on in an MQINQMP call.

Message properties and message length:

Use the queue manager attribute MaxPropertiesLength to control the size of the properties that can flow
with any message in an IBM MQ queue manager.

In general, when you use MQSETMP to set properties, the size of a property is the length of the property
name in bytes, plus the length of the property value in bytes as passed into the MQSETMP call. It is
possible for the character set of the property name and the property value to change during transmission
of the message to its destination because these can be converted into Unicode; in this case the size of the
property might change.

On an MQPUT or MQPUT1 call, properties of the message do not count toward the length of the
message for the queue and the queue manager, but they do count toward the length of the properties as
perceived by the queue manager (whether they were set using the message property MQI calls or not).

If the size of the properties exceeds the maximum properties length, the message is rejected with
MQRC_PROPERTIES_TOO_BIG. Because the size of the properties is dependent on its representation,
you should set the maximum properties length at a gross level.

It is possible for an application to successfully put a message with a buffer that is larger than the value of
MaxMsgLength, if the buffer includes properties. This is because, even when represented as MQRFH2
elements, message properties do not count toward the length of the message. The MQRFH2 header fields
add to the properties length only if one or more folders are contained and every folder in the header
contains properties. If one or more folders are contained in the MQRFH2 header and any folder does not
contain properties, the MQRFH?2 header fields count toward the message length instead.

On an MQGET call, properties of the message do not count toward the length of the message as far as
the queue and the queue manager are concerned. However, because the properties are counted separately
it is possible that the buffer returned by an MQGET call is larger than the value of the MaxMsgLength
attribute.
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Do not have your applications query the value of MaxMsgLength and then allocate a buffer of this size
before calling MQGET; instead, allocate a buffer you consider large enough. If the MQGET fails, allocate a
buffer guided by the size of the DataLength parameter.

The DataLength parameter of the MQGET call returns the length in bytes of the application data and any
properties returned in the buffer you have provided, if a message handle is not specified in the MQGMO
structure.

The Buffer parameter of the MQPUT call contains the application message data to be sent and any
properties represented in the message data.

When flowing to a queue manager that is earlier than Version 7.0 of the product, properties of the
message, except those in the message descriptor, count toward the length of the message. Therefore, you
should either raise the value of the MaxMsgLength attribute of channels going to a system earlier than
Version 7.0 as necessary, to compensate for the fact that more data might be sent for each message.
Alternatively, you can lower the queue or queue manager MaxMsgLength, so that the overall level of data
being sent around the system remains the same.

There is a length limit of 100 MB for message properties, excluding the message descriptor or extension
for each message.

The size of a property in its internal representation is the length of the name, plus the size of its value,
plus some control data for the property. There is also some control data for the set of properties after one
property is added to the message.

Property names:

A property name is a character string. Certain restrictions apply to its length and the set of characters
that can be used.

A property name is a case-sensitive character string, limited to +4095 characters unless otherwise
restricted by the context. This limit is contained in the MQ_MAX_PROPERTY_NAME_LENGTH constant.

If you exceed this maximum length when using a message property MQI call, the call fails with reason
code MQRC_PROPERTY_NAME_LENGTH_ERR.

Because there is no maximum property name length in JMS, it is possible for a JMS application to set a
valid JMS property name that is not a valid IBM MQ property name when stored in an MQRFH?2
structure.

In this case, when parsed, only the first 4095 characters of the property name are used; the following
characters are truncated. This could cause an application using selectors to fail to match a selection string,
or to match a string when not expecting to, since more than one property might truncate to the same
name. When a property name is truncated, WebSphere®MQ issues an error log message.

All property names must follow the rules defined by the Java Language Specification for Java Identifiers,
with the exception that Unicode character U+002E (.) is permitted as part of the name - but not the start.
The rules for Java Identifiers equate to those contained in the JMS specification for property names.

White space characters and comparison operators are prohibited. Embedded nulls are allowed in a
property name but not recommended. If you use embedded nulls, this prevents the use of the
MQVS_NULL_TERMINATED constant when used with the MQCHARYV structure to specify variable
length strings.
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Keep property names simple because applications can select messages based on the property names and
the conversion between the character set of the name and of the selector might cause the selection to fail
unexpectedly.

IBM MQ property names use character U+002E (.) for logical grouping of properties. This divides up the
namespace for properties. Properties with the following prefixes, in any mixture of lowercase or
uppercase are reserved for use by the product:

* mcd

e jms

e usr

© mq

* sib

* wmq

* Root

* Body

* Properties

A good way to avoid name clashes is to ensure that all applications prefix their message properties with
their Internet domain name. For example, if you are developing an application using domain name
ourcompany.com you could name all properties with the prefix com.ourcompany. This naming convention
also allows for easy selection of properties; for example, an application can inquire on all message
properties starting com.ourcompany.%.

See [Property name restrictions| for further information about the use of property names.

Property name restrictions:
When you name a property, you must observe certain rules.

The following restrictions apply to property names:

1. A property must not begin with the following strings:
* "IMS" - reserved for use by IBM MQ classes for JMS.
* "usr.JMS" - not valid.

The only exceptions are the following properties providing synonyms for JMS properties:

Property Synonym for

JMSCorrelationID Root .MQMD.Correlld or jms.Cid
JMSDeliveryMode Root .MQMD.Persistence or jms.Dlv
JMSDestination jms.Dst

JMSExpiration Root MQMD.Expiry or jms.Exp
JMSMessagelD Root .MQMD.Msgld

JMSPriority Root MQMD.Priority or jms.Pri
JMSRedelivered Root .MQMD.BackoutCount

JMSReplyTo (a string encoded as a | Root .MQMD.ReplyToQ or Root .MQMD.ReplyToQMgr or jms.Rto
URI)

JMSTimestamp Root .MQMD.PutDate or Root . MQMD.PutTime or jms.Tms
JMSType mcd.Type or med.Set or med.Fmt
JMSXAppID Root .MQMD.PutApplName
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Property Synonym for

JMSXDeliveryCount Root .MQMD.BackoutCount
JMSXGrouplID Root .MQMD.Groupld or jms.Gid
JMSXGroupSeq Root .MQMD.MsgSeqNumber or jms.Seq
JMSXUserID Root .MQMD.Userldentifier

These synonyms allow an MQI application to access JMS properties in a similar fashion to IBM MQ
classes for JMS client application. Of these properties, only J]MSCorrelationID, J]MSReplyTo, JMSType,
JMSXGrouplD, and JMSXGroupSeq can be set using the MQL
Note that the JMS_IBM_* properties available from within IBM MQ classes for JMS are not available
using the MQI. The fields that the JMS_IBM_* properties reference can be accessed in other ways by
MOQI applications.

2. A property must not be called, in any mixture of lower or uppercase, "NULL", "TRUE", "FALSE",
"NOT", "AND", "OR", "BETWEEN", "LIKE", "IN", "IS" and "ESCAPE". These are the names of SQL
keywords used in selection strings.

3. A property name beginning " mq " in any mixture of lowercase or uppercase and not beginning

"mq_usr" can contain only one "." character (U+002E). Multiple "." characters are not allowed in
properties with those prefixes.

4. Two "." characters must contain other characters in between; you cannot have an empty point in the

"nn

hierarchy. Similarly a property name cannot end in a "." character.

5. If an application sets the property "a.b" and then the property "a.b.c", it is unclear whether in the
hierarchy "b" contains a value or another logical grouping . Such a hierarchy is "mixed content" and
this is not supported. Setting a property that causes mixed content is not allowed.

These restrictions are enforced by the validation mechanism as follows:

* Property names are validated when setting a property using the MQSETMP - Set message property|
call, if validation was requested when the message handle was created . If an attempt to validate a
property is undertaken and fails due to an error in the specification of the property name, the
completion code is MQCC_FAILED with reason:

— MQRC_PROPERTY_NAME_ERROR for reasons 1-4.
- MQRC_MIXED_CONTENT_NOT_ALLOWED for reason 5.

* The names of properties specified directly as MQRFH2 elements are not guaranteed to be validated by
the MQPUT call.

Message descriptor fields as properties:

Most message descriptor fields can be treated as properties. The property name is constructed by adding
a prefix to the message descriptor field's name.

If an MQI application wants to identify a message property contained in a message descriptor field, for
example, in a selector string or using the message property APIs, use the following syntax:

Property name Message descriptor field

Root. MQMD.<Field> <Field>

Specify <Field> with the same case as for the MQMD structure fields in the C language declaration. For
example, the property name Root.MQMD.AccountingToken accesses the AccountingToken field of the
message descriptor.

The Strucld and Version fields of the message descriptor are not accessible using the syntax shown.

Message descriptor fields are never represented in an MQRFH?2 header as for other properties.
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If the message data starts with an MQMDE that is honored by the queue manager, the MQMDE fields
can be accessed using the Root.MQMD.<Field> notation described. In this case the MOMDE fields are
treated as logically part of the MQMD from a properties perspective. See [Overview of MQMDE]

Property data types and values:

A property can be a boolean, a byte string, a character string, or a floating-point or integer number. The
property can store any valid value in the range of the data type unless otherwise restricted by the
context.

The data type of a property value must be one of the following values:
+ MQBOOL

* MQBYTE] ]

* MQCHAR][ ]

* MQFLOAT32

* MQFLOAT®64

* MQINTS

* MQINT16

* MQINT32

* MQINT64

A property can exist but have no defined value; it is a null property. A null property is different from a
byte property (MQBYTE[ ]) or character string property (MQCHAR] ]) in that it has a defined but empty
value, that is, one with a zero-length value.

Byte string is not a valid property data type in JMS or XMS. You are advised not to use byte string
properties in the <usr> folder.

Selecting messages from queues

You can select messages from queues using the Msgld and Correlld fields on an MQGET call, or by using
a SelectionString on an MQOPEN or MQSUB call.

Selectors:

A message selector is a variable-length string used by an application to register its interest in only those
messages that have properties that satisfy the Structured Query Language (SQL) query that the selection
string represents.

Selection using the MQSUB and MQOPEN function calls

You use the SelectionString, which is a structure of type MQCHARYV, to make selections using the
MQSUB and MQOPEN calls.

The SelectionString structure is used to pass a variable-length selection string to the queue manager.
The CCSID associated with the selector string is set via the VSCCSID field of the MOQCHARYV structure.

The value used must be a CCSID that is supported for selector strings. See |[Code page conversion| for a
list of supported code pages.

Specifying a CCSID for which there is no IBM MQ supported Unicode conversion, results in an error of
MQRC_SOURCE_CCSID_ERROR. This error is returned at the time that the selector is presented to the
queue manager, that is, on the MQSUB, MQOPEN, or MQPUT1 call.
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The default value for the VSCCSID field is MQCCSI_APPL, which indicates that the CCSID of the selection
string is equal to the queue manager CCSID, or the client CCSID if connected through a client. The
MQCCSI_APPL constant can however be overridden by an application redefining it before compiling.

If the MQCHARY selector represents a NULL string, no selection takes place for that message consumer
and messages are delivered as if a selector had not been used.

The maximum length of a selection string is limited only by what can be described by the MOQCHARV
field VSLength.

The SelectionString is returned on the output from an MQSUB call using the MQSO_RESUME subscribe
option, if you have provided a buffer and there is a positive buffer length in VSBufSize. If you do not
provide a buffer, only the length of the selection string is returned in the VSLength field of the
MQCHARV. If the buffer provided is smaller than the space required to return the field, only VSBufSize
bytes are returned in the provided buffer.

An application cannot alter a selection string without first closing either the handle to the queue (for
MQOPEN), or subscription (for MQSUB). A new selection string can then be specified on a subsequent
MQOPEN or MQSUB call.

MQOPEN
Use MQCLOSE to close the opened handle, then specify a new selection string on a subsequent
MOQOPEN call.

MQSUB
Use MQCLOSE to close the returned subscription handle (hSub), then specify a new selection
string on a subsequent MQSUB call.

Figure 3 on page 19 shows the process of selection using the MQSUB call.
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MQOPEN

(APP 1)
ObjectName = "MyDestQ" —|_|—
hObj MyDestQ
MQsuB
(APP 1)
SelectionString = "Sport = 'Football"
hODbj |_| ResultsTopic
TopicString = "Results Topic" MyDestQ
< DELIVERED ResultsTopic
—|_|— League = 'Premiership'
MyDestQ Sport = 'Football
Message
NOT DELIVERED
® ResultsTopic
—III— League = 'Premiership'
MyDestQ Sport = 'Cricket'
Message
< DELIVERED ResultsTopic
H League = 'Div 2'
MyDestQ Sport = 'Football
Message
MQGET

(APP 1)  hObj

DELIVERED

League = 'Premiersy H

Sport = 'Football MyDestQ

A

Message

DELIVERED

League = 'Div 2' )

Sport = 'Football MyDestQ

A

Message

Figure 3. Selection using MQSUB call

A selector can be passed in on the call to MQSUB by using the SelectionString field in the MQSD
structure. The effect of passing in a selector on the MQSUB is that only those messages published to the
topic being subscribed to, that match a supplied selection string, are made available on the destination
queue.

Figure 4 on page 20| shows the process of selection using the MQOPEN call.
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MQOPEN

(APP 1)

SelectorString = "League = 'Premiership"
ObjectName = "SportQ"
hObj SportQ

< MQPUT Application 2

League = 'Div 2' )
t = 'Football'
SportQ Spor ootba
Message
< MQPUT Application 2

—|:|_ League = 'Premiersy

SportQ Sport = 'Football

Message

MQGET
(APP 1)  hObj

NOT DELIVERED

League - Div 2 ) gy

Sport = 'Football'
SportQ

Message

DELIVERED

League = 'Premlersy H

Sport = 'Football SportQ

A

Message

MQRC_NO_MSG_AVAILABLE

®

=)

SportQ

Figure 4. Selection using MQOPEN call

A selector can be passed in on the call to MQOPEN by using the SelectionString field in the MQOD
structure. The effect of passing in a selector on the MQOPEN call is that only those messages on the
opened queue, that match a selector, are delivered to the message consumer.

The main use for the selector on the MQOPEN call is for the point-to-point case where an application can
elect to receive only those messages on a queue that match a selector. The previous example shows a
simple scenario where two messages are put to a queue opened by MQOPEN but only one is received by
the application getting it, as it is the only one that matches a selector.

Note that subsequent MQGET calls result in MQRC_NO_MSG_AVAILABLE as no further messages exist
on the queue that match the given selector.

20 1BM MQ: Programming



Related concepts:

['Selection string rules and restrictions” on page 27|
Familiarize yourself with these rules about how selection strings are interpreted and character restrictions
to avoid potential problems when using selectors.

Selection behavior:
Overview of IBM MQ selection behavior.

The fields in an MQMDE structure are considered to be the message properties for the corresponding
message descriptor properties if the MQMD:

* Has format MQFMT_MD_EXTENSION
* Is immediately followed by a valid MQMDE structure
* Is version one or contains the default version two fields only

It is possible for a selection string to resolve to either TRUE or FALSE before any matching against
message properties takes place. For example, it might be the case if the selection string is set to "TRUE
<>FALSE". Such early evaluation is guaranteed to take place only when there are no message property
references in the selection string.

If a selection string resolves to TRUE before any message properties are considered, all messages
published to the topic subscribed to by the consumer are delivered. If a selection string resolves to FALSE
before any message properties are considered, a reason code of MOQRC_SELECTOR_ALWAYS_FALSE, and
completion code MQCC_FAILED are returned on the function call that presented the selector.

Even if a message contains no message properties (other than header properties) then it can still be
eligible for selection. If a selection string references a message property that does not exist, this property
is assumed to have the value of NULL or 'Unknown'.

For example, a message might still satisfy a selection string like 'Color IS NULL', where 'Color' does not
exist as a message property in the message.

Selection can be performed only on the properties that are associated with a message, not the message
itself, unless an extended message selection provider is available. Selection can be performed on the
message payload only if an extended message selection provider is available.

Each message property has a type associated with it. When you perform a selection, you must ensure
that the values used in expressions to test message properties are of the correct type. If a type mismatch
occurs, the expression in question resolves to FALSE.

It is your responsibility to ensure that the selection string and message properties use compatible types.

Selection criteria continue to be applied on behalf of inactive durable subscribers, so that only messages
that match the selection string that was originally supplied are kept.

Selection strings are non-alterable when a durable subscription is resumed with alter (MQSO_ALTER). If
a different selection string is presented when a durable subscriber resumes activity, then

MQRC_SELECTOR_NOT_ALTERABLE is returned to the application.

Applications receive a return code of MOQRC_NO_MSG_AVAILABLE if there is no message on a queue
that meets the selection criteria.

If an application has specified a selection string containing property values then only those messages that
contain matching properties are eligible for selection. For example, a subscriber specifies a selection string
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of "a = 3" and a message is published containing no properties, or properties where 'a' does not exist or is
not equal to 3. The subscriber does not receive that message to its destination queue.

Messaging performance

Selecting messages from a queue requires IBM MQ to sequentially inspect each message on the queue.
Messages are inspected until a message is found that matches the selection criteria or there are no more
messages to examine. Therefore, messaging performance suffers if message selection is used on deep
queues.

To optimize message selection on deep queues when selection is based on JMSCorrelationID or
JMSMessagelD, use a selection string of the form JMSCorrelationID = ... or JMSMessageID = ... and
reference only one property.

This method offers a significant improvement in performance for selection on JMSCorrelationID and
offers a marginal performance improvement for J]MSMessagelD.

Using complex selectors
Selectors can contain many components, for example:
aand b or c and d