IBM MQ

Programming

Version 8 Release 0

<|ll

Note
FBefore using this information and the product it supports, read the information in ["Notices” on page 1365]

This edition applies to version 8 release 0 of WebSphere MQ and to all subsequent releases and modifications until
otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2007, 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures.IX
Tables. Xxiii

Developing applications. 1
Application development concepts . .
Linux on POWER Systems Little Endlan

applications. . .3
Application programs usmg the MQI . . .3
IBM MQ messages 4
Preparing and running M1crosoft Transactlon
Server applications36
Using IBM MQ with WebSphere Apphcatlon
Server . . . 36
IMS and IMS brldge apphcatlons on IBM MQ for
z/OS R 74
Actions that your apphcatlons can perform .o 49
Designing IBM MQ applications . . . 51
Should I use IBM MQ classes for]ava or IBM
MQ classes for J]MS?54
Designing your messages. . .)
Application design and performance S . 56

Application design and performance on IBMi. . 57
Setting up IBM MQ on IBM i with Java and JMS 59
Design considerations for IBM MQ for z/OS

applications66
Advanced IBM MQ techmques .o . . .70
Developing MQI applications with IBM MQ .. .72
IBM MQ data definition files72
Writing a procedural application for queuing . . 76
Local units of work230
Global units of work230
Interfaces to external syncpoint managers L. 0232

Interfaces to the IBM i external
syncpointmanager. 235

Starting IBM MQ appllcatlons using

triggers. 237
Prerequisites for trlggermg 2 Y |
Conditions for a trigger event.243
Controlling trigger events 247
Designing an application that uses trlggered
queues249
Trigger monitors 251
Trigger monitors on UNIX and Wmdows
systems 251
IBM MQ for IBM i trlgger monltors253
Properties of trigger messages.254
When triggering does not work256

Working with the MQI and clusters 257
MQOPEN and clusters257
MQPUT, MQPUT1 and clusters259

© Copyright IBM Corp. 2007, 2018

MQINQ and clusters.25
MQSET and clusters260
Returncodes260

Using and writing applications on IBM

MQ forz/OS 263
Environment-dependent IBM MQ for z/ OS
functions 263
Debugging fac111t1es syncpomt support and
recovery support 264
The IBM MQ for z/OS mterface w1th the
application environment.265
The batch adapter.265
The RRS batch adapter266
The IMS adapter 267
Writing z/0OS UNIX System Serv1ces apphcatlons 267
The API-crossing exit for z/OS268
Writing your own exit program 268
The sample API-crossing exit program,
CSQCAPX 269
Preparing and using the API crossmg ex1t .. 270
IBM MQ Workflow 271
Application programming w1th shared queues .. 272
Serializing your applications 272
Applications that are not suitable for use w1th
shared queues 273
Deciding whether to share non—apphcatlon
queues 273
Migrating your ex1st1ng apphcatlons to use
shared queves274

IMS and IMS bridge applications on

IBMMQforz/OS. 277
Writing IMS applications using IBM MQ .o 277
Syncpoints in IMS applications 278
MQI calls in IMS applications279
Writing IMS bridge applications 282
How the IMS bridge deals with messages .. 282
Writing IMS transaction programs through IBM
MQ.o 289

Writing client procedural applications 293
Using the message queue interface (MQI) in a

client application 294
Limiting the size of a message in a Chent
application 294
Choosing client or server coded character set
identifier (CCSID). 2%
Using MQINQ in a client aphcatlon29
Using sync point coordination in a client
application29
Using read ahead in a chent apphcatlon .. .29

Using asynchronous put in a client application 296
Using sharing conversations in a client
application297

iii

Using MQCONNX .. 298

Building applications for IBM MQ MQI chents .. 299
Linking C applications with the IBM MQ MQI
client code . . 300
Linking C++ apphcatlons w1th the IBM MQ
MQI client code . . 300
Linking COBOL apphcat1ons w1th the IBM MQ
MQI client code . 301
Linking Visual Basic apphcatlons Wlth the IBM
MQ MQI client code . . . 301

Running applications in the IBM MQ MQI chent

environment. . 302
Connecting IBM MQ MQI Chent apphcatlons to
queue managers .. 302
Triggering in the client env1ronment . 313

Preparing and running CICS and Tuxedo

applications . . 314
CICS and Tuxedo sample programs . . 315
Error message AMQ5203, as modified for CICS
and Tuxedo applications. . . 316

Preparing and running Microsoft Transactlon

Server applications . 317

Preparing and running IBM MQ]MS apphcatlons 317

User exits, API exits, and IBM MQ

installable services . . 319

Writing exits and installable services on UNIX,

Linux and Windows . . 319
API exits not linked w1th an MQI hbrary . 322

Installable services and components for UNIX,

Linux and Windows . . 322
Writing a service component . 323
Configuring services and components . . 330

Installable services and components for IBM i . 333
Functions and components . . 334
Initialization. . . 335
Configuring services and components . . 336
Creating your own service component . . 337
Authorization service. . . 337

Writing and compiling API exits . . 340
Writing APT exits . . . 341
Compiling API exits . . 342
Configuring API exits . .. 346

Channel-exit programs for messagmg channels . . 349
Processing overview . . . 350
Writing channel-exit programs. . 351
Compiling channel exit programs on Wlndows
UNIX and Linux systems . 370
Configuring channel exits . 371

Writing data-conversion exits . . 371
Invoking the data-conversion exit . . 372
Writing a data-conversion exit program for IBM
MQ for IBM i . . 373
Writing a data-conversion ex1t program for IBM
MQ for z/OS . 375
Writing a data-conversion ex1t for IBM MQ on
UNIX and Linux systems . 376
Writing a data-conversion exit for IBM MQ for
Windows. . 379
Exit and switch load f11es on Wrndows
operating systems . . 380

iv IBM MQ: Programming

Referencing connection definitions using a

pre-connect exit from a repository 381
Writing and compiling publish exits. 383
Configuring publish exits38
Writing and compiling cluster workload ex1ts . .38
Sample cluster workload exit 387
Cluster workload exit programming for IBM
MQ forz/OS2388
Building a procedural application. . 389
Building your procedural application on AIX. . . 389
Preparing C programs in AIX 389
Preparing COBOL programs in AIX. 391

Preparing CICS application programs in AIX 393
Building your procedural application on HP
Integrity NonStop Server . . . 395
OSS and Guardian headers and pubhc hbrarles 395
Preparing C programs in HP Integrlty NonStop

Server. 397
Preparing COBOL programs N M)
Preparing pTAL programs 399
Building your procedural application on HP UX 400
Preparing C programs in HP-UX. 400
Preparing COBOL programs in HP-UX. . . . 402
Preparing CICS programs in HP-UX. . . . 404
Address Space models supported by IBM MQ
for HP-UX on IA64 (IPF) 405
Building your procedural application on Llnux .. 405
Preparing C programs in Linux 405
Preparing COBOL programs in Linux 409
Building your procedural application on IBMi . . 410
Preparing C programs in IBMi41l
Preparing COBOL programs in IBMi 412
Preparing CICS programs in IBMi 413
Preparing RPG programs in IBMi 413
SQL programming considerations 413
IBM i programming considerations 414
Building your procedural application on Solaris 414
Preparing C programs in Solaris 414
Preparing COBOL programs in Solaris 417
Preparing CICS programs in Solaris 418
Building your procedural apphcatlon on Wlndows
systems 419
Building 64 b1t apphcatlons on Wlndows ... 420
Preparing C programs in Windows 420
Preparing COBOL programs in Windows . . . 421
Preparing Visual Basic programs in Windows 423
SSPI security exit 424
Building your procedural appllcatlon on z / OS .. 426
Preparing your program to run 427
Dynamically calling the IBM MQ stub .. . 433
Debugging your programs 439
Handling procedural program errors 443
Locally determined errors 443
Using report messages for problem determmatlon 445
Remotely determined errors 446
Using the dead-letter (undelivered message)
queue 447

Multicast programming . .
Multicast and the Message Queue Interface
High availability for multicast. .
Data conversion in the MQI for mult1cast
messaging o

Multicast exception reporting .

Coding in C .

Coding in Visual Basic

Coding in COBOL

Coding in System/390 assembler
language .

Using the MQI calls .

Coding in RPG.

Coding in pTAL

Coding in PL/I .

. 449
. 449
. 451

. 452
. 452

. 455

. 459

. 461

. 463

. 466

. 467

. 469

. 471

Sample IBM MQ procedural programs 473

Sample procedural programs (platforms except
z/0S).

Features demonstrated in the sample programs

Preparing and running the sample programs
The API exit sample program .

The Asynchronous consumption sample
program . . .o
The Asynchronous Put sample program
The Browse sample programs .

The Browser sample program .

The CICS transaction sample .

The Connect sample program . .
The Data-Conversion sample program .
Database coordination samples
Dead-letter queue handler sample

The Distribution List sample program .
The Echo sample programs.

The Get sample programs . .

High availability sample programs .

The Inquire sample programs .

The Inquire Properties of a Message Handle
sample program .
The Publish/Subscribe sample programs .
The Publish Exit sample program

The Put sample programs . .
The Reference Message sample programs .
The Request sample programs.

The Set sample programs

The SSL/TLS sample program.

The Triggering sample programs .
TUXEDO samples . .
Using the SSPI secur1ty ex1t on Wmdows
systems . .
Running the samples usmg remote queues

. 473

475
485

. 490

. 491
. 492
. 493
. 494
. 495
. 496
. 497
. 497
. 504
. 504
. 505
. 506
. 507
. 511

. 512
. 512
. 516
. 517
. 519
. 526
. 531
. 532
. 535
. 537

. 549
. 550

The Cluster Queue Monitoring sample program
(AMQSCLM) .

Sample program for Connectlon Endpomt
Lookup (CEPL).

Sample programs for IBM MQ for z / OS

Features demonstrated in the sample
applications .

Preparing and runnmg sample apphcat1ons for
the batch environment

Preparing sample applications for the TSO
environment.

Preparing the sample appl1cat1ons for the CICS
environment.

Preparing the sample applrcat1on for the IMS
environment. e
The Put samples

The Get samples

The Browse sample

The Print Message sample .

The Queue Attributes sample .

The Mail Manager sample .

The Credit Check sample

The Message Handler sample .

The Asynchronous Put sample

The Batch Asynchronous Consumption sample
The CICS Asynchronous Consumption and
Publish/Subscribe sample . .
The Publish/Subscribe Sample

The Set and Inquire message property sample

Developing object-oriented
applications with IBM MQ .
The IBM MQ Object Model.

Using .NET .

Getting started with IBM MQ classes for NET
Writing and deploying IBM MQ .NET programs

Using the Component Object Model Interface (
IBM MQ Automation Classes for ActiveX).

Designing and programming using IBM MQ
Automation Classes for ActiveX . .
IBM MQ Automation Classes for Act1veX
reference .

Troubleshooting

ActiveX interface to the MQAI . .
About the IBM MQ Automation Classes for
ActiveX Starter samples .

Using C++

C++ sample programs

C++ language considerations .
Messaging in C++. .

Building IBM MQ C++ programs

Using IBM MQ classes for Java

Why should I use IBM MQ classes for]ava7 .
Prerequisites for IBM MQ classes for Java .
Running IBM MQ classes for Java applications
within Java EE . .

Character string conversions in IBM MQ classes
for Java

Installation and conﬁguratlon of IBM MQ
classes for Java

Using IBM MQ classes for]ava

Contents

. 550

. 560
. 578

. 579

. 583

. 586

. 588

. 591
. 592
. 594
. 596
. 598
. 602
. 603
. 610
. 623
. 627

628

. 629
. 632

634

. 637
. 638
. 640

641
656

. 690

. 691

. 697
. 785
. 791

. 800
. 805
. 807
. 812
. 816
. 823
. 832
. 833
. 834

. 834

. 836

. 837
. 850

v

Writing IBM MQ classes for Java applications 852
IBM MQ classes for Java environment-
dependent behavior89

Developing JMS and Java Platform,
Enterprise Edition applications. . . . 903

Using IBM MQ classes for]MS 903
Why should I use IBM MQ classes for]MS7 .. 904
Prerequisites for IBM MQ classes for]MS . . . 906
Installation and configuration of IBM MQ
classes forJIMS908
Obtaining the IBM MQ classes for]MS
separately . . . 943
Overview of IBM MQ classes for]MS ob]ect
pooling 945
Introduction to automatlc cl1ent reconnectlon in
Java EE environments 948
Character string conversions in IBM MQ classes
for]MS 948

Writing IBM MQ classes for]MS appllcat1ons 950
IBM MQ classes for JMS Apphcat1on Server

Facilities. 1079

Using IBM MQ classes for IMS ina CICS OSG1

JVM server. 1087
Using IBM MQ classes for]MS in IMS ... 1091

Using the IBM MQ JMS administration tool 1097
Configuring JMS objects using MQ Explorer 1099
Using the IBM MQ resource adapter 1099
IBM MQ resource adapter statement of support 1101
Limitations of the IBM MQ resource adapter 1103
WebSphere Application Server and the IBM

MQ resource adapter 1103
WebSphere Application Server L1berty and the
IBM MQ resource adapter. 1104
Installing the IBM MQ resource adapter .. . 1105
Configuring the IBM MQ resource adapter 1108
The installation verification test program for
the IBM MQ resource adapter 1139
Installing and testing the resource adapter in
GlassFish Server . . . N ¥)
Installing and testing the resource adapter in
Wildfly 1146
Using the IBM MQ Headers package T I V4
Using with IBM MQ classes for Java 1148
Using with IBM MQ classes for]MS 1149

Developing applications for IBM MQ

Telemetry 1151
IBM MQ Telemetry Transport sample programs 1151
MQTTV3Sample program 1151
Creating your first IBM MQ Telemetry Transport
publisher application using Java. 1152
Creating an asynchronous publisher for IBM MQ
Telemetry Transport using Java 1158
Creating a recoverable asynchronous publisher for
IBM MQ Telemetry Transport using Java. . . . 1163
Creating a subscriber for IBM MQ Telemetry
Transport using Java 11e9

Authenticating an MQTT]ava cllent usmg JAAS 1175

vi IBM MQ: Programming

Authenticating an SSL telemetry connection using

self-signed certificates . . . oo 182
Modifying PubSync.java to use SSL 1183
Authenticating the telemetry channel 1184
Authenticating the telemetry channel and
clients 1185

Authenticating an SSL telemetry connect1on usmg

a certificate chain. 1186
Authenticating the telemetry channel ... 1187
Authenticating the telemetry channel and
clients 1189

Creating your first IBM MQ Telemetry Transport

publisher application using C . . . 1191

Creating an asynchronous publisher for IBM MQ

Telemetry Transport using C 1195

Creating a subscriber for IBM MQ Telemetry

Transport using C 1199
Receiving messageso 1201

MOQTT client programming concepts . . 1204
Callbacks and synchronization in MQTT cl1ent
applications1205
Clean sessions.1207
Client identifier 1208
Delivery tokens L1209
Last will and testament pubhcat1on 1210
Message persistence in MQTT clients 1210
Publications 1212
Qualities of service prov1ded by an MQTT
client. 1213
Retained publrcat1ons and MQTT chents .. 1214
Subscriptions 1215
Topic strings and topic ﬁlters in MQTT chents 1216

C client programming concepts 1217

Developing MQ Light applications 1221
AMQP and IBM MQ application interaction. . . 1222
AMQP messages.1223

Developing Microsoft Windows
Communication Foundation (WCF)
applications with IBMMQ 1231
Introduction to the use of IBM MQ custom
channel for WCF with NET3 1231
What is the IBM MQ custom channel for WCF7 1231
When and why do I use the IBM MQ custom
channel for WCF? 1232
Software requirements and 1nstallat1on
instructions for the IBM MQ custom channel

for WCF. 1233
IBM MQ custom channel for WCF What s
installed?1234
WCF architecture. 1235
Using IBM MQ custom channels for WCF .. L1236
WCF Custom channel features and capabilities 1237
WCF Connection options 1243
Creating and configuring the IBM MQ custom
channel for WCF. . . . oL 1244
Building and hosting services for WCF .. 1251
Building client applications for WCF 1253
Using the WCF samples 1256

Simple one-way client and server WCF sample 1256
Simple request-reply client and server WCF

sample 1257
WOCEF client to a NET service hosted by IBM
MQ sample. 1258
WCEF client to an Axis]ava service hosted by
IBM MQ sample 1259
WOCEF client to Java service hosted by
WebSphere Application Server sample. . . . 1260
Problem determination on the WCF custom
channel for IBMMQ 1262
WCEF custom channel exceptlon h1erarchy .. 1263
WOCEF trace configuration . . . 1264
WCF XMS First Failure Support Technology (
FFST) 1267
WCF version mformatlon 1268
WCEF hints and tips 1268

Developing web services with IBM

Mma e .. 1271

IBM MQ transport for SOAP .o . 1271
Introduction to IBM MQ transport for SOAP 1272
Installing and verifying IBM MQ Web services 1282
Developing Web services for IBM MQ

transport for SOAP 1285
Developing IBM MQ Web service chents for
IBM MQ transport for SOAP. 1292

Deploying Web services using the IBM MQ

transport for SOAP . . . 1322

Deploying Web service clients to use IBM MQ

transport for SOAP . . 1327

Connect an Axis2 client to a]AX WS service

using W3C SOAP over JMS and WebSphere

Application Server 1336
IBM MQ bridge for HTTP. . 1337

Introduction to IBM MQ bridge for HTTP . 1337

Installing, configuring, and verifying IBM MQ

bridge for HTTP . . 1340

Publish/subscribe using the IBM MQ brldge

for HTTP . . 1343

Running the IBM MQ brrdge for HTTP

samples . . 1344

Security con51derat10ns for WebSphere brldge

for HTTP . . 1346
Index . 1347
Notices - . 1365
Programming interface information . 1366
Trademarks . 1367
Sending your comments to IBM 1369

Contents Vii

viii IBM MQ: Programming

Figures

USRS

7.
8.
9.
10.
11.
12.
13.

14.
15.
16.

17.
18.
19.
20.

21.
22.
23.
24.

25.
26.
27.

28.

29.

30.
31.
32.
33.

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

Queues, messages, and applications.
Representation of a message

Selection using MQSUB call .

Selection using MQOPEN call

Standard Message Driven application
consuming from two queues .

Single Threaded Message Driven apphcatron
consuming from two queues . S
Group of logical messages

Segmented messages

How distribution lists work.

Opening a distribution list in C

Opening a distribution list in COBOL
Putting a message to a distribution list in C
Putting a message to a distribution list in
COBOL .o

Logical order on a queue

Physical order on a queue

Skipping backout using
MQGMO_MARK_SKIP_BACKOUT .
Simple IBM MQ publisher to a fixed topic.
Sample output from first publisher example
Simple IBM MQ publisher to a variable topic.
Sample output from second publisher
example .

Topic object assocrat1ons

MQ publication consumer. .o
Output from MQ publication consumer
Managed MQ subscriber - part 1: declarations
and parameter handling. .

Managed MQ subscriber - part 2: code body
Output from managed MQ subscriber
Unmanaged MQ subscriber - part 1:
declarations. . .

Unmanaged MQ subscrlber part 2
parameter handling. . .
Unmanaged MQ subscriber - part 3 code
body. . .o
Publish 130 to NYSE / IBM / PRICE

Receive the retained publication

Resume subscription .

Receive retained publication w1th new
unmanaged non durable subscription
Overlapping subscriptions . . .
Subscription topics cannot be changed
Managed non-durable subscriber lifelines
Managed durable subscriber lifelines
Unmanaged durable subscriber lifelines
Sequence of intercepting subscribers .
Preprocessor directives

Declarations .

Initializations .

Preparing to intercept pubhcatlons

Intercept publication and repubhsh .
Completion .

Interception and Pubhsh ex1t in a Cluster

© Copyright IBM Corp. 2007, 2018

.19
. 20
.29

. 30
.31

.31
. 125

. 127

127
129

. 129
. 137
. 138

. 165

177
178
181

. 182
. 183
. 186

187

. 189
191
192

. 197

. 198

. 200
. 201
. 201
. 202

. 202
. 202

203
205
206
207

. 210
. 213
. 213
. 214
. 215
. 216
. 216

217

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

58.
59.

60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Complex deployment of intercepting
subscribers

Flow of application and trlgger messages
Relationship of queues within triggering
Queue manager groups .

MQCONN example . .
Understanding services, cornponents and
entry points . . .
UNIX and Linux authorlzatlon service stanzas
in gm.ini .

Name service stanzas in qm ini (for UNIX
and Linux systems)

IBM MQ for IBM i authorlzatlon service
stanzas in qm.ini

Compile and link amqsaxe@ con 32 b1t
Windows .

Compile and link amqsaxe@ c on 64 b1t
Windows . .

Security exit loop . .

Example of a send exit at the sender end of
message channel

Example of a receive exit at the receiver end
of message channel .o

Sample source code for a channel ex1t
Sample DEF file for Windows . .
Sender-initiated exchange with agreement
Sender-initiated exchange with no agreement
Receiver-initiated exchange with agreement
Receiver-initiated exchange with no
agreement . .

Security exit skeleton code . .
Fragments of JCL to link-edit the ob]ect
module in the batch environment, using
single-phase commit . .

Fragments of JCL to link-edit the ob]ect
module in the batch environment, using
two-phase commit .

Fragments of JCL to hnk-edlt the ob)ect
module in the CICS environment . .
Fragments of JCL to link-edit the object
module in the IMS environment .

Dynamic linking using COBOL in the batch
environment . .

Dynamic linking us1ng COBOL in the CICS
environment .

Dynamic linking usmg COBOL in the IMS
environment .

Dynamic linking usmg assembly Ianguage in
the batch environment .

Dynamic linking using assembly language in
the CICS environment

Dynamic linking using assembly Ianguage in
the IMS environment . .

Dynamic linking using C language in the
batch environment .

. 218

239
240

. 305
. 310

. 324

. 332

. 333

. 338

. 345

. 346
. 350

. 350

. 351

355

. 356

358
359
360

. 361
. 362

. 428

. 429

. 431

. 432

. 435

. 435

. 436

. 436

. 436

. 436

. 437

ix

79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

93.
94.

95.

96.

97.

98.

99.

100.

101.
102.

103.
104.
105.
106.
107.
108.

109.

110.
111.
112.
113.
114.
115.

116.
117.
118.

X

Dynamic linking using C language in the
CICS environment .

Dynamic linking using C language in the IMS
environment . . .
Dynamic linking usmg PL / I in the batch
environment .

Dynamic linking usmg PL / I in the IMS
environment . . .

The database coord1nat10n samples
Reconnectable client samples

File system import . .

Running the Reference Message samples
Request and Inquire samples using triggering
Sample IBM i Client/Server (Echo) program
flowchart . .

Example of ubbstxcn. cfg flle for IBM MQ for
Windows .

Sample TUXEDO makefrle for IBM MQ for
Windows .

Example of ubbstxcn cfg f11e for IBM MQ for
Windows .

Sample TUXEDO makefrle for IBM MQ for
Windows . .
How TUXEDO samples work together
Example of a report from the Print Message
sample application.

Programs and panels for the TSO versions of
the Mail Manager .

Programs and panels for the CICS version of
the Mail Manager .

Example of a panel showmg a l1st of wa1tmg
messages .

Example of a panel showmg the contents of a
message

Immediate Inqulry panel for the Cred1t Check
sample application .

Programs and queues for the Cred1t Check
sample application (COBOL programs only)
Initial screen for Message Handler sample
Message list screen for Message Handler
sample.

Chosen message is d1splayed

Supplied IBM MQ constants for encodmg
IBM MQ C++ classes (item handling)

IBM MQ C++ classes (queue management)
JMS objects and their relationships

How messages are transformed between JMS
and IBM MQ using the MQRFH?2 header
How JMS messages are transformed to IBM
MQ messages with no MQRFH2 header
Enable queue manager data conversion
Code snippet from amqsget0.c.

Sending a String in a]MSBytesMessage
Receiving a String from a JMSBytesMessage
Sending and receiving a JMSObjectMessage
Send text message in the character set defined
by the destination .

Send text message in ccsid 37
Receive text message .

Send data in]MSStreamMessage and
JMSMapMessage .

IBM MQ: Programming

. 437

. 437

. 437

. 438
. 498
. 509
. 515

520
528

. 531

. 544

. 545

. 546

. 547

548

. 600

. 606

. 607

. 608

. 609

. 611

. 613

623

. 624
. 625

694
805
806
. 951

. 958

. 971

976

. 979

980
980
983

. 983
. 983
. 983

. 984

119.
120.
121.

122.

123.
124.

125.

126.
127.
128.

129.

130.
131.
132.
133.

134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.

146.
147.
148.

149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.

Sending a String in a J]MSBytesMessage
Receiving a String from a J]MSBytesMessage
Send a JMSBytesMessage using a
DataOutputStream . . .
Receive a]MSBytesMessage usmg a
DatalnputStream .

Incorrect code page conversion .
Writing bytes representing a string in a
JMSStreamMessage using the destination
character set .

Send text message in the character set defmed

. 990
. 990
. 990

by the destination . .

Send text message in ccsid 37

Receive text message . .

Sending a number using the destlnatlon
encoding in a J]MSStreamMessage .

Sending a number using the destination
encoding in a JMSBytesMessage .
Sending a String in a J]MSBytesMessage
Receiving a String from a J]MSBytesMessage
Enable queue manager data conversion
Set target coded character set for queue
manager conversion

Code snippet from amqsgetO c.
RECORD.h .

Modify amgsget0.c.

TryMyRecord .

RECORD

MyRecord

EndPoint

MyProducer

MyConsumer .

Inconsistently coded MQMD and message data
Send a message with an MQ message body.
ServerSessionPool and ServerSession
functionality .

The initial page of the IVT program

Page showing the results of a successful IVT
Page showing the results of an IVT that
failed . . .

Successful IVT output
mqttExampleTopic.txt

PubSync.java

Example.java

mqttExampleTopic. txt

PubAsync.java .

CallBack java

Example.java

Reusable client 1dent1f1er
mqttExampleTopic.txt
PubAsyncRestartablejava .

CallBack.java .

Example.java

Reusable client 1dent1f1er

Subscribe java .

CallBack.java

Example.java

Console output from PubSyncJAAS java
MyLogin.Tog. ..

MyLogin.java .
JAASLog1nPr1nc1pa1 java .

984
984

. 985

. 985
. 988

. 989

. 990

. 991

991
991
992

. 992

. 993

. 995

. .99
. 1004

. 1005

. 1006

. 1007

. 1008

. 1008
1045
1045

. 1086

1140
1141

. 1142
. 1145
. 1156
. 1157
. 1158
. 1160
. 1161
. 1162
. 1163
. 1164
. 1166
. 1167
. 1168
. 1169
. 1170
. 1173
. 1174
. 1175

1178

. 1178
. 1179
. 1180

170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.

184.

185.
186.
187.

188.

189.
190.
191.

192.
193.
194.
195.
196.

197.

198.

199.
200.

PubSyncJAAS.Java.

Example java

PubSyncSSL.Java .

Modifications to Example.java

pubsync.c

settings.h .

pubasync.c .

callback.h .

callback.c .

settings.h .

subscriber.c

callback.h .

settings.h .

WCF archltecture for the SOAP /]MS
interface .

WCEF architecture for the
Non-SOAP/Non-JMS interface

SOAP envelope .

Overview of IBM MQ transport for SOAP
Queues used by SOAP/IBM MQ (single
queue manager)

Queues used by SOAP/ IBM MQ (separate
queue managers) . .

Inline service: StockQuoteDotNet asmx
Code-behind: Design SQDNNonInline.asmx
Code-behind: Implementation:
SQDNNonInTine.asmx.cs .
SQAXxis2Axis.java .

SQAXxis2DotNet java .

WsdlIClient.java

Static client using Echpse generated proxy

Static client using amqwdeployWMQService

generated proxy .
Dynamic client using Echpse generated

proxy . ..
Dynamic client usrng

amqwdeployWMQService generated proxy

DII client (No proxy)
SQA2StaticClient.java .

. 1181
. 1182
. 1184
. 1184
. 1194
. 1194
. 1197
. 1197
. 1198
. 1198
. 1203
. 1204
. 1204

. 1235

. 1236
. 1276

1277

. 1278

. 1279

1287
1288

. 1288
. 1298
. 1298
. 1299

1299

. 1300
. 1300
. 1300

. 1301
. 1304

201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.

218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.

232.
233.
234.
235.
236.

SQA2DynamicClient.java
SQA2CallbackHandler. java.
SQA2AsyncClient.java

Console output from SQAZAsyncC] i ent java

DynamicProxyClientSync.java
DynamicProxyClientAsyncPolling.java
DynamicProxyClientAsyncCallback.java
DispatchClientSync.java . .
DispatchClientAsyncPolling.java
DispatchClientAsyncCallback.java
HTTP StockQuoteClientDotNet program

Modified StockQuoteClientDotNet program

SQVB2AXxis .
SQVB2DotNet .
SQCS2AXxis .
SQCS2DotNet .

Build command for .NET Framework V2

service .
Service def1n1t10n

Axis 1.4 Java client

Client configuration and output .
Output from running SQA2AsyncClient
runpojo.bat: Windows, using a classpath
runpojo.sh: Linux, using a classpath.
runaxis2.bat: Windows, using axis2.bat
runaxis2.sh: Linux, using axis2.sh

URL from StockQuoteAxis.wsdl .

Static client proxy constructor.

Client program .
Configuration and output .

IBM MQ bridge for HTTP . .
Example of an HTTP POST request toa
queue. .
Example of an HTTP POST response
Example of an HTTP DELETE request
Example of an HTTP DELETE response
Example of an HTTP GET request
Example of an HTTP GET response

Figures

. 1305
. 1306
. 1307

1307

. 1309

1310
1311

. 1313

1315
1317
1319
1319

. 1321
. 1321
. 1321
. 1322

. 1325
. 1328
. 1328
. 1329

1331
1331
1331
1332

. 1332
. 1333
. 1335
. 1335
. 1335
. 1338

. 1338

1339
1339
1339

. 1340

1340

xi

xii IBM MQ: Programming

Tables

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.

28.
29.
30.
31.
32.
33.

34.
35.

36.

Boolean operator outcome when logic is A AND

Boolean operator outcome when logic is A OR
B .

Boolean operator outcome when logic is NOT A

Mapping IBM MQ messages to IMS
transaction types. .

Library files for non—threaded IBM i
applications

Library files for threaded IBM i apphcatlons
Library files for Windows applications

Library files for non-threaded AIX apphcatlons

Library files for threaded AIX applications
Library files for non-threaded HP-UX
applications

. Library files for threaded HP UX appllcatlons

Library files for non-threaded Linux
applications

Library files for threaded Llnux apphcatlons
Library files for Solaris applications

The MQ_CONNECT_TYPE environment
variable .
Resolving queue names when usmg
MQOPEN. .

How queue attributes and optlons of the
MQOPEN call affect access to queues
MQPUT options relating to messages in
groups and segments of logical messages .
Outcome when MQPUT or MQCLOSE call is
not consistent with group and segment
information . .
Using message and correlatlon 1dent1f1ers
Using the group identifier

MQGET options and read ahead . .
Point to point versus publish/subscribe IBM
MQ program pattern. .

Point to point vs. subscribe IBM MQ program
patterns. .
Errors from MQSUB w1th d1fferent queue
handles and subscription combinations .
Publication properties. .
Subscription options for 1ntercept1ng
subscribers . .
MQPUT values for repubhshed messages
z/0S environmental features

When to use a shared-initiation queue
Mapping IBM MQ messages to IMS
transaction types

Programming languages supported in chent
environments

Client system hbrarres on AIX HP UX and
Solaris .

Client system 11brar1es on Wmdows systems
Sample programs for AIX, HP-UX, and
Solaris client systems .

Sample programs for Wlndows chent systems

© Copyright IBM Corp. 2007, 2018

. 26

. 26

26

. 43

. 82

. 82
84
84

. 85

85

. 86

86

. 87

. 100

. 104

. 109

. 140

. 142

148

. 148

. 151

. 175

. 184

. 196
. 209

. 211

212

. 264

274

. 284

. 299

. 315

315

. 315
316

37.
38.

39.
40.

41.
42.

43.

44.

45.
46.

47.
48.

49.
50.
51.
52.
53.

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.

69.

70.

Installable service components summary
Example of entry—points for an installable
service .
Authorization service components summary
Libraries that are now in the client and server
packages .

Channel exits avaﬂable for each channel type
Libraries that are now in the client and server
packages .

Sample cluster workload ex1t program
location (not z/OS) . .
Essential code for CICS application programs
on AIX: XA initialization routine .

OSS headers .

OSS public executable and pubhc 1mport
libraries Lo .o .
Guardian headers .

Guardian public executable and pubhc 1mport
. 397

libraries

323

. 330

334

. 343
349

. 372

. 387

. 393
. 395

. 396

. 396

. 397
. 398
. 399

Essential code for CICS applications (HP-UX)
Example of CRTPGM in the nonthreaded
environment . . .
Example of CRTPGM in the threaded
environment . . Lo
Non-threaded env1ronment

Threaded environment

Essential code for CICS apphcatlons (Solarrs)
Location of IBM MQ libraries .

Context initiators and their associated context
acceptors .

Side-deck name requlred for each
coordination semantic.

404

. 411

. 411
. 411
. 411

418
. 420

. 425

. 427

. 429

Call names for dynamic linking

CICS adapter trace entries

MQI concepts and how they relate to
multicast . . .
Multicast event code descrlptlons

IBM MQ on UNIX and Linux sample
programs demonstrating use of the MQI (C
and COBOL). . .
IBM MQ on HP Integrlty NonStop Server
sample programs demonstratmg use of C,
COBOL, and pTAL.

IBM MQ for Windows sample programs
demonstrating use of the MQI (C and
COBOL) .

IBM MQ for Wmdows sample programs
demonstrating use of the MQI (Visual Basic)
IBM MQ for IBM i sample programs
demonstrating use of the MQI (C and
COBOL) o

. 434
. 439

. 449

. 453

. 475

. 477

. 481

. 483

. 483

xiii

71.
72.
73.
74.
75.

76.
77.
78.

79.

80.
81.
82.

83.
84.
85.
86.
87.
88.
89.
90.
91.

92.

93.
94.

95.
96.
97.
98.
99.
100.
101.
102.
103.
104.

105.
106.

107.
108.

1009.
110.

xiv

Where to find the samples for IBM MQ on
UNIX and Linux systems

Where to find the samples for IBM MQ for
Windows . .
Categories of legacy publ1sh/ subscrlbe
sample C programs .

IBM MQ client channel d1rectory strlng
attributes .

IBM MQ client channel d1rectory 1nteger
attributes .

IBM MQ client channel boolean attrlbute
IBM MQ client channel list attributes
Source for the distributed queuing exit
samples

Source for the data conversion ex1t samples
(assembler language only)

Batch Put and Get samples .

Batch Browse sample .

Batch Print Message sample (C language
only) . e
Publish/ Subscr1be samples .

Other samples . .

TSO Mail Manager sample .

TSO Message Handler sample .

CICS Put and Get samples .

CICS Queue Attributes sample. .

CICS Mail Manager sample (COBOL only)
CICS Credit Check sample . . .
CICS Asynchronous Consumption and
Publish/Subscribe samples . .
Source and JCL for the Credit Check IMS
sample (C only). .

IBM MQ and Microsoft. NET mapplng table
Location of sample applications for
implementing SSL in managed .NET.
Properties defined in the mgtrace.config file
Location of sample programs .

C/C++ header files

z/0S sample program files . .

IBM MQ classes for Java installation
directories

Samples d1rector1es

JRE directories .

CLASSPATH setting to run IBM MQ Classes
for Java applications, including the IBM MQ
classes for Java sample applications .

The location of the IBM MQ classes for]ava
libraries for each platform

Which stanza of the client conf1gurat1on f1le
contains which attribute .

The directory for channel exit programs
CipherSpecs supported by IBM MQ and the
equivalent CipherSuites . .
CipherSuites and their supported and
unsupported CipherSpecs .

IBM MQ classes for JMS 1nstallat1on
directories e

Samples dlrectorles

CLASSPATH setting to Comp1le and run IBM
MQ classes for JMS applications, 1nclud1ng
the sample applications . .o

IBM MQ: Programming

. 488

. 488

. 513

. 568

. 569

569
570

. 582

. 582
. 584
. 584

. 585
. 585
. 585
. 586
. 587
. 589
. 589

589

. 590

. 590

. 591

676

. 683

689

. 808
. 812
. 831
. 839
. 839
. 840
. 840
. 841

. 845

875

. 893
. 895
. 909
. 910

. 912

111.

112.

113.

114.

115.
116.

117.

118.

119.
120.
121.
122.
123.

124.
125.
126.

127.
128.
129.

130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.

142.
143.

144.

145.

146.

147.

The location of the IBM MQ classes for JMS
libraries for each platform

Which stanza of the client conf1gurat1on f1le
contains which attribute. . .

Scripts provided with IBM MQ classes for
JMS. .

The JMS domain 1ndependent and doma1n
specific interfaces .

Possible values for NameValueCCSID f1eld
mcd property name, synonym, data type, and
folder .

mgext property name, synonym data type
and folder

mgps property name, synonym data type, and
folder .

MQRFH2 folders and propertles used by]MS
Property data types

JMS header fields mapping to MQMD f1elds
JMS properties mapping to MQMD fields
JMS provider-specific propert1es mapping to
MQMD fields

Outgoing message field mapplng .
Outgoing message JMS property mapping
Outgoing message JMS provider-specific
property mapping . .

Incoming message JMS header fleld mapp1ng
Incoming message property mapping
Incoming message provider-specific JMS
property mapping . . .
Message types and conversion types
Message types and conversion types
Message types and conversion types
Supported conversions from one data type
to another .

Property names and Valld Values for use in
queue and topic URIs .

Property names and descriptions .
Property names, values, and set methods
Property names, descriptions, and types
Property names and descriptions

Property names, values, and set methods
CipherSpecs supported by IBM MQ and the
equivalent CipherSuites. .
CipherSuites and their supported and
unsupported CipherSpecs .

The IBM MQ exits directory . .
Possible CLIENTRECCECTOPTIONS
property values. .
Possible CLIENTRECCECTOPTIONS
property .

PUTASYNCALLOWED and DEFPRESP
properties determining if messages are put
asynchronously.

READAHEADALLOWED and DEFREADA
properties determining if read ahead is used
when receiving or browsing non-persistent
messages outside of a transaction.
Considerations when you are choosing
between shared subscriptions and cloned
subscriptions

. 914

. 917

. 940

. 952

959

. 960

. 960

. 960
961

. 962

963
963

. 963
. 964

965

. 965
969
970

. 970

978
985
987

. 1014

. 1025
. 1040

1041
1043

. 1046

1047

. 1054

. 1056
. 1059

. 1063

. 1065

. 1071

. 1072

. 1078

148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.

162.

The directory containing wmgq.jmsra.rar for
each platform .

Properties of the ResourceAdapter ob]ect that
. 1110

are associated with the connection pool
Properties of an ActivationSpec object that
are used to create a JMS connection .
Properties of an ActivationSpec object that
are used to create a JMS connection
consumer .
Properties of a Connect1onFactory ob]ect
Properties that are common to a Queue
object and a Topic object

Properties that are specific to a Queue ob]ect

Properties that are specific to a Topic object
Synchronization behavior of methods that
result in requests to the server

Header field mappings .

Properties field mappings . .

Message descriptor for AMQP message

Key Classes required for using the custom
channel . .
New binding element f1elds

. 1105

. 1112

. 1119

1126

. 1135
1138
1138

. 1207
. 1224
. 1225

1226

. 1227

. 1234
. 1245

163.
164.
165.
166.

167.
168.
169.
170.

171.
172.
173.

174.
175.

176.
177.
178.
179.
180.
181.

New binding configuration fields

New client endpoint fields.

New service endpoint fields .
Values of binding properties when settmg
administratively or programmatically .
IBM MQ required configuration .

WCEF trace configuration variables .
WCEF trace enablement combinations.

IBM MQ transport for SOAP apphcatron

environments .
Windows installation d1rector1es
AIX installation directories.

HP-UX, Solaris, and Linux (all platforms)

installation directories

Top down EJB Web service conf1gurat1on

WebSphere JAX-WS JMS Bmdmg
Configuration . .
Additional JNDI parameters .

IBM MQ bridge for HTTP verbs .
Queue manager configuration

Set or modify the following fields
Publish/subscribe configuration modes
Location of HTTP samples.

Tables

. 1245
. 1246
. 1246

. 1250
. 1260
. 1265

1266

. 1272
. 1283
. 1283

. 1283

1290

. 1291
. 1333
. 1338
. 1342
. 1342

1344

. 1344

XV

xvi IBM MQ: Programming

Developing applications

You can develop applications to send and receive messages, and to manage your queue managers and
related resources. IBM® MQ support applications written in procedural languages, and object oriented
languages and frameworks.

Before you develop applications for IBM MQ, ensure you are familiar with the concepts in
[Fechnical overview]

IBM MQ provides support for the following procedural programming languages:
- C

* Visual Basic (Windows systems only)

+ COBOL

. Assembler language (IBM MQ for z/OS® only)
- B RPG (1BM MQ for IBM i only)
. PL/1 (IBM MQ for z/OS only)

These languages use the message queue interface (MQI) to access message queuing services. For more
information, see [“Developing MQI applications with IBM MQ” on page 72.|

IBM MQ also provides support for the following object-oriented programming languages and
frameworks:

e NET
e ActiveX
e C++

M

+ Java"
* JMS

These languages and frameworks use the IBM MQ Object Model, which provides classes that provide the
same functionality as IBM MQ calls and structures, but that are a more natural way of programming in
an object-oriented environment. Some of the languages and frameworks that use the IBM MQ Object
Model provide additional functions that are not available to the procedural languages using the MQI. For
more information, see [“Developing object-oriented applications with IBM MQ” on page 637 .|

Related information:

Application development concepts

You can use a choice of procedural or object-oriented languages to write IBM MQ applications. Use the
links in this topic for information about IBM MQ concepts that are useful for application developers.

Before you start to design and write your IBM MQ applications, familiarize yourself with the basic IBM
MQ concepts, see the topics in [Technical overview]| For information about the types of application you
can write for IBM MQ, see [“Developing applications.”|

Use the following links to find out about IBM MQ concepts specific to application development:

© Copyright IBM Corp. 2007, 2018 1

Related concepts:

['Using the message queue interface (MQI) in a client application” on page 294|
This collection of topics considers the differences between writing your IBM MQ application to run in an
IBM MQ MQI client environment and to run in the full IBM MQ queue manager environment.

['Developing web services with IBM MQ” on page 1271
You can develop IBM MQ applications for Web services using the IBM MQ transport for SOAP or the
IBM MQ bridge for HTTP.

[‘Channel-exit programs for messaging channels” on page 349
This collection of topics contains information about IBM MQ channel-exit programs for messaging
channels.

[‘Designing IBM MQ applications” on page 51|
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

[‘Sample IBM MQ procedural programs” on page 473|
This set of sample programs are written in procedural languages, and demonstrate typical uses of the
Message Queue Interface (MQI). IBM MQ programs on different platforms.

['Writing a procedural application for queuing” on page 76|
Use this information to learn about writing queuing applications, connecting to and disconnecting from a
queue manager, publish/subscribe, and opening and closing objects.

['Writing client procedural applications” on page 293|

What you need to know to write client applications on IBM MQ using a procedural language.
['‘Developing MQI applications with IBM MQ” on page 72|

IBM MQ provides support for C, Visual Basic, COBOL, Assembler, RPG, pTAL, and PL/I. These
procedural languages use the message queue interface (MQI) to access message queuing services.

[‘Developing object-oriented applications with IBM MQ” on page 637

IBM MQ provides support for .NET, ActiveX, C++, Java, and JMS. These languages and frameworks use
the IBM MQ Object Model, which provides classes that provide the same functionality as IBM MQ calls
and structures. Some of the languages and frameworks that use the IBM MQ Object Model provide
additional functions that are not available when you use procedural languages with the message queue
interface (MQI).

[‘Using IBM MQ classes for JMS” on page 903)|

IBM MQ classes for Java Message Service (IBM MQ classes for JMS) is the JMS provider that is supplied
with IBM MQ. As well as implementing the interfaces defined in the javax.jms package, IBM MQ classes
for JMS provides two sets of extensions to the JMS APIL

[‘Using the Component Object Model Interface (IBM MQ Automation Classes for ActiveX)” on page 690
The IBM MQ Automation Classes for ActiveX (MQAX) are ActiveX components that provide classes that
you can use in your application to access IBM MQ.

[‘Using IBM MQ classes for Java” on page 832|

IBM MQ classes for Java enable you to use IBM MQ in a Java environment. IBM MQ classes for Java
allow a Java application to connect to IBM MQ as an IBM MQ client, or connect directly to an IBM MQ
queue manager.

[‘Using NET” on page 640

IBM MQ classes for .NET allow a program written in the .NET programming framework to connect to
IBM MQ as an IBM MQ MQI client or to connect directly to an IBM MQ server.

[‘Using C++” on page 805|

IBM MQ provides C++ classes equivalent to IBM MQ objects and some additional classes equivalent to
the array data types. It provides a number of features not available through the MQL

[‘Building a procedural application” on page 389|
You can write an IBM MQ application in one of several procedural languages, and run the application on
several different platforms.

Related information:

[fransactional support scenarios|

2 IBM MQ: Programming

Linux on POWER Systems - Little Endian applications

As Linux on POWER® Systems - Little Endian supports 64-bit applications only, there is no support
provided in IBM MQ for 32-bit applications.

Related concepts:

[‘Designing IBM MQ applications” on page 51|
When you have decided how your applications can take advantage of the platforms and environments
available to you, you need to decide how to use the features offered by IBM MQ.

Application programs using the MQlI

IBM MQ application programs need certain objects before they can run successfully.

shows an application that removes messages from a queue, processes them, and then sends some
results to another queue on the same queue manager.

Figure 1. Queues, messages, and applications

Whereas applications can put messages onto local or remote queues (using MQPUT), they can only get
messages directly from local queues (using MQGET).

Before this application can run, the following conditions must be satisfied:

* The queue manager must exist and be running.

* The first application queue, from which the messages are to be removed, must be defined.
* The second queue, on which the application puts the messages, must also be defined.

* The application must be able to connect to the queue manager. To do this it must be linked to IBM
MQ. See [“Building a procedural application” on page 389

* The applications that put the messages on the first queue must also connect to a queue manager. If
they are remote, they must also be set up with transmission queues and channels. This part of the
system is not shown in

Developing applications 3

IBM MQ messages

This information introduces the IBM MQ message concept, message parts, and the message descriptor.

IBM MQ messages consist of two parts:
* Message properties
* Application data

represents a message and shows how it is logically divided into message properties and
application data.

Message properties Application data

r I I
| Message description
A (MQMD) "

L I R I O
< > < >i¢ >4 >« >« g

pev e b e b b b e brvapr e b gl

Message ID ARM correlator Address

Persistence ... Customer number Claim details ...

Figure 2. Representation of a message

The application data that is carried in an IBM MQ message is not changed by a queue manager unless
data conversion is carried out on it. Also, IBM MQ does not put any restrictions on the content of this
data. The length of the data in each message cannot exceed the value of the MaxMsglLength attribute of

both the queue and queue manager.

On IBM MQ for AIX®, BEELIMM 1BM MQ for IBM i, IBM MQ for HP-UX, IBM MQ for Linux, IBM
MQ for Solaris, and IBM MQ for Windows, the MaxMsgLength defaults to 100 MB (104 857 600 bytes).

Note: m If you are intending to use IBM MQ messages greater than 15 MB on IBM i, see
[‘Building your procedural application on IBM i” on page 410.

On IBM MQ for z/OS, the MaxMsgLength attribute of the queue manager is fixed at 100 MB and
the MaxMsgLength attribute of the queue defaults to 4 MB (4 194 304 bytes) which you can change up to a
maximum of 100 MB if required.

Make your messages slightly shorter than the value of the MaxMsglLength attribute in some circumstances.
For more information, see [“The data in your message” on page 118|

You create a message when you use the MQPUT or MQPUT1 MQI calls. As input to these calls, you
supply the control information (such as the priority of the message and the name of a reply queue) and
your data, and the call then puts the message on a queue. See MQPUT|and [MQPUT1| for more
information about these calls.

Message descriptor
You can access message control information by using the MQMD structure, which defines the
message descriptor.

For a full description of the MQMD structure, see [MQMD - Message descriptor]

See |“Message context” on page 34| for a description of how to use the fields within the MQMD
that contain information about the origin of the message.

4 1BM MQ: Programming

There are different versions of the message descriptor. Additional information for grouping and
segmenting messages (see [“Message groups” on page 30|) is provided in Version 2 of the message
descriptor (or the MQMDE). This is the same as the Version 1 message descriptor but has extra
fields. These fields are described in the MQMDE - Message descriptor extension}

Types of message
There are four types of messages defined by IBM MQ.

These four messages are:
* [Request messages|

* [Reply messages|

* [Report messages|

— [Types of report message|

- IReport message 0ptions|

Applications can use the first three types of messages to pass information between themselves. The fourth
type, report, is for applications and queue managers to use to report information about events such as the
occurrence of an error.

Each type of message is identified by an MOQMT_* value. You can also define your own types of message.
For the range of values you can use, see

Datagrams

Use a datagram when you do not require a reply from the application that receives the message (that is,
gets the message from the queue).

An example of an application that might use datagrams is one that displays flight information in an
airport lounge. A message might contain the data for a whole screen of flight information. Such an
application is unlikely to request an acknowledgment for a message because it probably does not matter
if a message is not delivered. The application sends an update message after a short time.

Request messages
Use a request message when you want a reply from the application that receives the message.

An example of an application that could use request messages is one that displays the balance of a
checking account. The request message could contain the number of the account, and the reply message
would contain the account balance.

If you want to link your reply message with your request message, there are two options:
* Make the application that handles the request message responsible for ensuring that it puts information
into the reply message that relates to the request message.

* Use the report field in the message descriptor of your request message to specify the content of the
Msgld and Correlld fields of the reply message:

— You can request that either the Msgld or the Correlld of the original message is to be copied into
the Correlld field of the reply message (the default action is to copy Msgld).

— You can request that either a new MsgId is generated for the reply message, or that the Msgld of the
original message is to be copied into the Msgld field of the reply message (the default action is to
generate a new message identifier).

Developing applications 5

Reply messages
Use a reply message when you reply to another message.

When you create a reply message, respect any options that were set in the message descriptor of the
message to which you are replying. Report options specify the content of the message identifier (MsgId)
and correlation identifier (Correlld) fields. These fields allow the application that receives the reply to
correlate the reply with its original request.

Report messages

Report messages inform applications about events such as the occurrence of an error when processing a
message.

They can be generated by:

* A queue manager,

* A message channel agent (for example, if they cannot deliver the message), or
* An application (for example, if it cannot use the data in the message).

Report messages can be generated at any time, and might arrive on a queue when your application is not
expecting them.

Types of report message

When you put a message on a queue, you can select to receive:

* An exception report message. This is sent in response to a message with the exceptions flag set.
It is generated by the message channel agent (MCA) or the application.

* An expiry report message. This indicates that an application attempted to retrieve a message that
had reached its expiry threshold; the message is marked to be discarded. This type of report is
generated by the queue manager.

* A confirmation of arrival (COA) report message. This indicates that the message has reached its
target queue. It is generated by the queue manager.

* A confirmation of delivery (COD) report message. This indicates that the message has been
retrieved by a receiving application. It is generated by the queue manager.

* A positive action notification (PAN) report message. This indicates that a request has been
successfully serviced (that is, the action requested in the message has been performed
successfully). This type of report is generated by the application.

* A negative action notification (NAN) report message. This indicates that a request has not been
successfully serviced (that is, the action requested in the message has not been performed
successfully). This type of report is generated by the application.

Note: Each type of report message contains one of the following:

* The entire original message

* The first 100 bytes of data in the original message

* No data from the original message

You can request more than one type of report message when you put a message on a queue. If
you select the delivery confirmation report message and the exception report message options, if
the message fails to be delivered, you receive an exception report message. However, if you select

only the delivery confirmation report message option and the message fails to be delivered, you
do not get an exception report message.

The report messages that you request, when the criteria for generating a particular message are
met, are the only ones that you receive.

6 IBM MQ: Programming

Report message options

You can discard a message after an exception has arisen. If you select the discard option, and have
requested an exception report message, the report message goes to the ReplyToQ and ReplyToQMgr,
and the original message is discarded.

Note: A benefit of this is that you can reduce the number of messages going to the dead-letter
queue. However, it does mean that your application, unless it sends only datagram messages, has
to deal with returned messages. When an exception report message is generated, it inherits the
persistence of the original message.

If a report message cannot be delivered (if the queue is full, for instance), the report message is
placed on the dead-letter queue.

If you want to receive a report message, specify the name of your reply-to queue in the ReplyToQ
field; otherwise the MQPUT or MQPUTT1 of your original message fails with
MQRC_MISSING_REPLY_TO_Q.

You can use other report options in the message descriptor (MQMD) of a message to specify the
content of the MsgId and Correlld fields of any report messages that are created for the message:

* You can request that either the MsgId or the Correlld of the original message is to be copied
into the Correlld field of the report message. The default action is to copy the message
identifier. Use MQRO_COPY_MSG_ID_TO_CORRELID because it enables the sender of a
message to correlate the reply or report message with the original message. The correlation
identifier of the reply or report message is identical to the message identifier of the original
message.

* You can request that either a new Msgld is generated for the report message, or that the MsgId
of the original message is to be copied into the MsgId field of the report message. The default
action is to generate a new message identifier. Use MQRO_NEW_MSG_ID because it ensures
that each message in the system has a different message identifier, and can be distinguished
unambiguously from all other messages in the system.

* Specialized applications might need to use MQRO_PASS_MSG_ID or
MQRO_PASS_CORREL_ID. However, you need to design the application that reads the
messages from the queue to ensure that it works correctly when, for example, the queue
contains multiple messages with the same message identifier.

Server applications must check the settings of these flags in the request message, and set the
MsgId and Correlld fields in the reply or report message appropriately.

Applications that act as intermediaries between a requester application and a server application
do not need to check the settings of these flags. This is because these applications typically
need to forward the message to the server application with the MsgId, Correlld, and Report
fields unchanged. This allows the server application to copy the MsgId from the original
message in the Correlld field of the reply message.

When generating a report about a message, server applications must test to see if any of these
options have been set.

For more information about how to use report messages, see

To indicate the nature of the report, queue managers use a range of feedback codes. They put
these codes in the Feedback field of the message descriptor of a report message. Queue managers
can also return MQI reason codes in the Feedback field. IBM MQ defines a range of feedback
codes for applications to use.

For more information about feedback and reason codes, see [Feedbac

An example of a program that could use a feedback code is one that monitors the workloads of
other programs serving a queue. If there is more than one instance of a program serving a queue,
and the number of messages arriving on the queue no longer justifies this, such a program can
send a report message (with the feedback code MQFB_QUIT) to one of the serving programs to

Developing applications 7

indicate that the program should terminate its activity. (A monitoring program could use the
MQINQ call to find out how many programs are serving a queue.)

Reports and segmented messages:

Not supported on IBM MQ for z/OS.

If a message is segmented (see ["Message segmentation” on page 155| for a description of segmented
messages) and you ask for reports to be generated, you might receive more reports than you would have
done had the message not been segmented.

For reports generated by IBM MQ

If you segment your messages or allow the queue manager to do so, there is only one case in which you
can expect to receive a single report for the entire message. This is when you have requested only COD
reports, and you have specified MOQGMO_COMPLETE_MSG on the getting application.

In other cases your application must be prepared to deal with several reports; usually one for each
segment.

Note: If you segment your messages, and you need only the first 100 bytes of the original message data
to be returned, change the setting of the report options to ask for reports with no data for segments that
have an offset of 100 or more. If you do not do this, and you leave the setting so that each segment
requests 100 bytes of data, and you retrieve the report messages with a single MQGET specifying
MQGMO_COMPLETE_MSG, the reports assemble into a large message containing 100 bytes of read data
at each appropriate offset. If this happens, you need a large buffer or you need to specify
MQGMO_ACCEPT_TRUNCATED_MSG.

For reports generated by applications

If your application generates reports, always copy the IBM MQ headers that are present at the start of the
original message data to the report message data.

Then add none, 100 bytes, or all of the original message data (or whatever other amount you would
usually include) to the report message data.

You can recognize the IBM MQ headers that must be copied by looking at the successive Format names,
starting with the MQMD and continuing through any headers present. The following Format names
indicate these IBM MQ headers:

* MQMDE

* MQDLH

« MQXQH

* MQIIH

« MQH*

MQH* means any name that starts with the characters MQH.

The Format name occurs at specific positions for MOQDLH and MQXQH, but for the other IBM MQ
headers it occurs at the same position. The length of the header is contained in a field that also occurs at

™

the same position for MQMDE, MQIMS *, and all MQH* headers.

If you are using a Version 1 MQMD, and you are reporting on a segment, or a message in a group, or a
message for which segmentation is allowed, the report data must start with an MQMDE. Set the
Originallength field to the length of the original message data excluding the lengths of any IBM MQ
headers that you find.

8 1BM MQ: Programming

Retrieving reports

If you ask for COA or COD reports, you can ask for them to be reassembled for you with
MQGMO_COMPLETE_MSG.

An MQGET with MQGMO_COMPLETE_MSG is satisfied when enough report messages (of a single
type, for example COA, and with the same GroupId) are present on the queue to represent one complete
original message. This is true even if the report messages themselves do not contain the complete original
data; the Originallength field in each report message gives the length of original data represented by
that report message, even if the data itself is not present.

You can use this technique even if there are several different report types present on the queue (for
example, both COA and COD), because an MQGET with MQGMO_COMPLETE_MSG reassembles report
messages only if they have the same Feedback code. However, you cannot usually use this technique for
exception reports, because, in general, these have different Feedback codes.

You can use this technique to get a positive indication that the entire message has arrived. However, in
most circumstances you need to cater for the possibility that some segments arrive while others might
generate an exception (or expiry, if you have allowed this). You cannot use MQGMO_COMPLETE_MSG
in this case, because, in general, you might get different Feedback codes for different segments and, you
might get more than one report for a segment. You can, however, use
MQGMO_ALL_SEGMENTS_AVAILABLE.

To allow for this you might need to retrieve reports as they arrive, and build up a picture in your
application of what happened to the original message. You can use the GroupId field in the report
message to correlate reports with the GroupId of the original message, and the Feedback field to identify
the type of each report message. The way in which you do this depends on your application
requirements.

One approach is as follows:
* Ask for COD reports and exception reports.

* After a specific time, check whether a complete set of COD reports has been received using
MQGMO_COMPLETE_MSG. If so, your application knows that the entire message has been processed.

 If not, and exception reports relating to this message are present, handle the problem as for
unsegmented messages, but ensure that you clean up orphan segments at some point.

* If there are segments for which there are no reports of any kind, the original segments (or the reports)
might be waiting for a channel to be reconnected, or the network might be overloaded at some point.
If no exception reports at all have been received (or if you think that the ones you have might be
temporary only), you might decide to let your application wait a little longer.

As before, this is similar to the considerations you have when dealing with unsegmented messages,
except that you must also consider the possibility of cleaning up orphan segments.

If the original message is not critical (for example, if it is a query, or a message that can be repeated
later), set an expiry time to ensure that orphan segments are removed.

Back-level queue managers

When a report is generated by a queue manager that supports segmentation, but is received on a queue
manager that does not support segmentation, the MOQMDE structure (which identifies the 0ffset and
Originallength represented by the report) is always included in the report data, in addition to zero, 100
bytes, or all of the original data in the message.

However, if a segment of a message passes through a queue manager that does not support
segmentation, if a report is generated there, the MQMDE structure in the original message is treated

Developing applications 9

purely as data. It is not therefore included in the report data if zero bytes of the original data have been
requested. Without the MQMDE, the report message might not be useful.

Request at least 100 bytes of data in reports if there is a possibility that the message might travel through
a back-level queue manager.

Format of message control information and message data

The queue manager is only interested in the format of the control information within a message, whereas
applications that handle the message are interested in the format of both the control information and the
data.

Format of message control information

Control information in the character-string fields of the message descriptor must be in the character set
used by the queue manager.

The CodedCharSetId attribute of the queue manager object defines this character set. Control information
must be in this character set because, when applications pass messages from one queue manager to
another, message channel agents that transmit the messages use the value of this attribute to determine
what data conversion to perform.

Format of message data

You can specify any of the following things:
* The format of the application data
* The character set of the character data

¢ The format of numeric data

To do this, use these fields:
Format This indicates to the receiver of a message the format of the application data in the message.

When the queue manager creates a message, in some circumstances it uses the Format field to
identify the format of that message. For example, when a queue manager cannot deliver a
message, it puts the message on a dead-letter (undelivered message) queue. It adds a header
(containing more control information) to the message, and changes the Format field to show this.

The queue manager has a number of built-in formats with names beginning MQ, for example
MQFMT_STRING. If these do not meet your needs, you can define your own formats (
user-defined formats), but you must not use names beginning with MQ for these.

When you create and use your own formats, you must write a data-conversion exit to support a
program getting the message using MQGMO_CONVERT.

CodedCharSetId
This defines the character set of character data in the message. If you want to set this character
set to that of the queue manager, you can set this field to the constant MQCCSI_Q_MGR or
MQCCSI_INHERIT.

When you get a message from a queue, compare the value of the CodedCharSetId field with the
value that your application is expecting. If the two values differ, you might need to convert any
character data in the message or use a data-conversion message exit if one is available.

Encoding
This describes the format of numeric message data that contains binary integers, packed-decimal
integers, and floating point numbers. It is typically encoded according to the particular machine
on which the queue manager is running.

10 1BM MQ: Programming

When you put a message on a queue, you typically specify the constant MQENC_NATIVE in the
Encoding field. This means that the encoding of your message data is the same as that of the
machine on which your application is running.

When you get a message from a queue, compare the value of the Encoding field in the message
descriptor with the value of the constant MQENC_NATIVE on your machine. If the two values
differ, you might need to convert any numeric data in the message or use a data-conversion
message exit if one is available.

Application data conversion:

Application data might need to be converted to the character set and the encoding required by another
application where different platforms are concerned.

It can be converted at the sending queue manager, or at the receiving queue manager. If the library of
built-in formats does not meet your needs, you can define your own. The type of conversion depends on
the message format that is specified in the format field of the message descriptor, MQMD.

Note: Messages with MQFMT_NONE specified are not converted.
Conversion at the sending queue manager

Set the CONVERT channel attribute to YES if you need the sending message channel agent (MCA) to
convert the application data.

The conversion is performed at the sending queue manager for certain built-in formats and for
user-defined formats if a suitable user exit is supplied.

Built-in formats

These include:
* Messages that are all characters (using the format name MQFMT_STRING)
* IBM MQ defined messages, for example Programmable Command Formats

IBM MQ uses Programmable Command Format messages for administration messages and
events (the format name used is MQFMT_ADMIN in this case). You can use the same format
(using the format name MQFMT_PCF) for your own messages, and take advantage of the
built-in data conversion.

The queue manager built-in formats all have names beginning with MQFMT. They are listed and
described in

Application-defined formats

For user-defined formats, application data conversion must be performed by a data-conversion
exit program (for more information, see [“Writing data-conversion exits” on page 371|). In a
client-server environment, the exit is loaded at the server and conversion takes place there.

Conversion at the receiving queue manager

Application message data can be converted by the receiving queue manager for both built-in and
user-defined formats.

The conversion is performed during the processing of an MQGET call if you specify the
MQGMO_CONVERT option. For details, see the

Developing applications 11

Coded character sets

IBM MQ products support the coded character sets that are provided by the underlying operating
system.

When you create a queue manager, the queue manager coded character set ID (CCSID) used is based on
that of the underlying environment. If this is a mixed code page, IBM MQ uses the SBCS part of the
mixed code page as the queue manager CCSID.

For general data conversion, if the underlying operating system supports DBCS code pages, IBM MQ can
use it.

See the documentation for your operating system for details of the coded character sets that it supports.
You need to consider application data conversion, format names, and user exits when writing

applications that span multiple platforms. See [“Writing data-conversion exits” on page 371 for
information about invoking and writing data-conversion exits.

Message priorities

You set the priority of a message (in the Priority field of the MQMD structure) when you put the
message on a queue. You can set a numeric value for the priority, or you can let the message take the
default priority of the queue.

The MsgDeliverySequence attribute of the queue determines whether messages on the queue are stored in
FIFO (first in, first out) sequence, or in FIFO within priority sequence. If this attribute is set to
MQMDS_PRIORITY, messages are enqueued with the priority specified in the Priority field of their
message descriptors; but if it is set to MOQMDS_FIFO, messages are enqueued with the default priority of
the queue. Messages of equal priority are stored on the queue in order of arrival.

The DefPriority attribute of a queue sets the default priority value for messages being put on that
queue. This value is set when the queue is created, but it can be changed afterward. Alias queues, and
local definitions of remote queues, can have different default priorities from the base queues to which
they resolve. If there is more than one queue definition in the resolution path (see |Name resolution” on|
), the default priority is taken from the value (at the time of the put operation) of the
DefPriority attribute of the queue specified in the open command.

The value of the MaxPriority attribute of the queue manager is the maximum priority that you can
assign to a message processed by that queue manager. You cannot change the value of this attribute. In
IBM MQ, the attribute has the value 9; you can create messages having priorities between 0 (the lowest)
and 9 (the highest).

12 1BM MQ: Programming

Message properties
Use message properties to allow an application to select messages to process, or to retrieve information

about a message without accessing MOMD or MQRFH?2 headers. They also facilitate communication
between IBM MQ and JMS applications.

A message property is data associated with a message, consisting of a textual name and a value of a
particular type. Message properties are used by message selectors to filter publications to topics or to
selectively get messages from queues. Message properties can be used to include business data or state
information without having to store it in the application data. Applications do not have to access data in
the MQ Message Descriptor (MQMD) or MQRFH2 headers because fields in these data structures can be
accessed as message properties using Message Queue Interface (MQI) function calls.

The use of message properties in IBM MQ mimics the use of properties in JMS. This means that you can
set properties in a JMS application and retrieve them in a procedural IBM MQ application, or the other
way round. To make a property available to a JMS application, assign it the prefix "usr"; it is then
available (without the prefix) as a JMS message user property. For example, the IBM MQ property
usr.myproperty (a character string) is accessible to a JMS application using the JMS call
message.getStringProperty('myproperty'). Note that JMS applications are unable to access properties
with the prefix "usr" if they contain two or more U+002E (".") characters. A property with no prefix and
no U+002E (".") character is treated as if it had the prefix "usr". Conversely, a user property set in a JMS
application can be accessed in an IBM MQ application by adding the "usr." prefix to the property name
inquired on in an MQINQMP call.

Message properties and message length:

Use the queue manager attribute MaxPropertiesLength to control the size of the properties that can flow
with any message in an IBM MQ queue manager.

In general, when you use MQSETMP to set properties, the size of a property is the length of the property
name in bytes, plus the length of the property value in bytes as passed into the MQSETMP call. It is
possible for the character set of the property name and the property value to change during transmission
of the message to its destination because these can be converted into Unicode; in this case the size of the
property might change.

On an MQPUT or MQPUT1 call, properties of the message do not count toward the length of the
message for the queue and the queue manager, but they do count toward the length of the properties as
perceived by the queue manager (whether they were set using the message property MQI calls or not).

If the size of the properties exceeds the maximum properties length, the message is rejected with
MQRC_PROPERTIES_TOO_BIG. Because the size of the properties is dependent on its representation,
you should set the maximum properties length at a gross level.

It is possible for an application to successfully put a message with a buffer that is larger than the value of
MaxMsgLength, if the buffer includes properties. This is because, even when represented as MQRFH2
elements, message properties do not count toward the length of the message. The MQRFH2 header fields
add to the properties length only if one or more folders are contained and every folder in the header
contains properties. If one or more folders are contained in the MQRFH2 header and any folder does not
contain properties, the MQRFH?2 header fields count toward the message length instead.

On an MQGET call, properties of the message do not count toward the length of the message as far as
the queue and the queue manager are concerned. However, because the properties are counted separately
it is possible that the buffer returned by an MQGET call is larger than the value of the MaxMsgLength
attribute.

Developing applications 13

Do not have your applications query the value of MaxMsgLength and then allocate a buffer of this size
before calling MQGET; instead, allocate a buffer you consider large enough. If the MQGET fails, allocate a
buffer guided by the size of the DataLength parameter.

The DataLength parameter of the MQGET call returns the length in bytes of the application data and any
properties returned in the buffer you have provided, if a message handle is not specified in the MQGMO
structure.

The Buffer parameter of the MQPUT call contains the application message data to be sent and any
properties represented in the message data.

When flowing to a queue manager that is earlier than Version 7.0 of the product, properties of the
message, except those in the message descriptor, count toward the length of the message. Therefore, you
should either raise the value of the MaxMsgLength attribute of channels going to a system earlier than
Version 7.0 as necessary, to compensate for the fact that more data might be sent for each message.
Alternatively, you can lower the queue or queue manager MaxMsgLength, so that the overall level of data
being sent around the system remains the same.

There is a length limit of 100 MB for message properties, excluding the message descriptor or extension
for each message.

The size of a property in its internal representation is the length of the name, plus the size of its value,
plus some control data for the property. There is also some control data for the set of properties after one
property is added to the message.

Property names:

A property name is a character string. Certain restrictions apply to its length and the set of characters
that can be used.

A property name is a case-sensitive character string, limited to +4095 characters unless otherwise
restricted by the context. This limit is contained in the MQ_MAX_PROPERTY_NAME_LENGTH constant.

If you exceed this maximum length when using a message property MQI call, the call fails with reason
code MQRC_PROPERTY_NAME_LENGTH_ERR.

Because there is no maximum property name length in JMS, it is possible for a JMS application to set a
valid JMS property name that is not a valid IBM MQ property name when stored in an MQRFH?2
structure.

In this case, when parsed, only the first 4095 characters of the property name are used; the following
characters are truncated. This could cause an application using selectors to fail to match a selection string,
or to match a string when not expecting to, since more than one property might truncate to the same
name. When a property name is truncated, WebSphere®MQ issues an error log message.

All property names must follow the rules defined by the Java Language Specification for Java Identifiers,
with the exception that Unicode character U+002E (.) is permitted as part of the name - but not the start.
The rules for Java Identifiers equate to those contained in the JMS specification for property names.

White space characters and comparison operators are prohibited. Embedded nulls are allowed in a
property name but not recommended. If you use embedded nulls, this prevents the use of the
MQVS_NULL_TERMINATED constant when used with the MQCHARYV structure to specify variable
length strings.

14 1BM MQ: Programming

Keep property names simple because applications can select messages based on the property names and
the conversion between the character set of the name and of the selector might cause the selection to fail
unexpectedly.

IBM MQ property names use character U+002E (.) for logical grouping of properties. This divides up the
namespace for properties. Properties with the following prefixes, in any mixture of lowercase or
uppercase are reserved for use by the product:

* mcd

e jms

e usr

© mq

* sib

* wmq

* Root

* Body

* Properties

A good way to avoid name clashes is to ensure that all applications prefix their message properties with
their Internet domain name. For example, if you are developing an application using domain name
ourcompany.com you could name all properties with the prefix com.ourcompany. This naming convention
also allows for easy selection of properties; for example, an application can inquire on all message
properties starting com.ourcompany.%.

See [Property name restrictions| for further information about the use of property names.

Property name restrictions:
When you name a property, you must observe certain rules.

The following restrictions apply to property names:

1. A property must not begin with the following strings:
* "IMS" - reserved for use by IBM MQ classes for JMS.
* "usr.JMS" - not valid.

The only exceptions are the following properties providing synonyms for JMS properties:

Property Synonym for

JMSCorrelationID Root .MQMD.Correlld or jms.Cid
JMSDeliveryMode Root .MQMD.Persistence or jms.Dlv
JMSDestination jms.Dst

JMSExpiration Root MQMD.Expiry or jms.Exp
JMSMessagelD Root .MQMD.Msgld

JMSPriority Root MQMD.Priority or jms.Pri
JMSRedelivered Root .MQMD.BackoutCount

JMSReplyTo (a string encoded as a | Root .MQMD.ReplyToQ or Root .MQMD.ReplyToQMgr or jms.Rto
URI)

JMSTimestamp Root .MQMD.PutDate or Root . MQMD.PutTime or jms.Tms
JMSType mcd.Type or med.Set or med.Fmt
JMSXAppID Root .MQMD.PutApplName

Developing applications 15

Property Synonym for

JMSXDeliveryCount Root .MQMD.BackoutCount
JMSXGrouplID Root .MQMD.Groupld or jms.Gid
JMSXGroupSeq Root .MQMD.MsgSeqNumber or jms.Seq
JMSXUserID Root .MQMD.Userldentifier

These synonyms allow an MQI application to access JMS properties in a similar fashion to IBM MQ
classes for JMS client application. Of these properties, only J]MSCorrelationID, J]MSReplyTo, JMSType,
JMSXGrouplD, and JMSXGroupSeq can be set using the MQL
Note that the JMS_IBM_* properties available from within IBM MQ classes for JMS are not available
using the MQI. The fields that the JMS_IBM_* properties reference can be accessed in other ways by
MOQI applications.

2. A property must not be called, in any mixture of lower or uppercase, "NULL", "TRUE", "FALSE",
"NOT", "AND", "OR", "BETWEEN", "LIKE", "IN", "IS" and "ESCAPE". These are the names of SQL
keywords used in selection strings.

3. A property name beginning " mq " in any mixture of lowercase or uppercase and not beginning

"mq_usr" can contain only one "." character (U+002E). Multiple "." characters are not allowed in
properties with those prefixes.

4. Two "." characters must contain other characters in between; you cannot have an empty point in the

"nn

hierarchy. Similarly a property name cannot end in a "." character.

5. If an application sets the property "a.b" and then the property "a.b.c", it is unclear whether in the
hierarchy "b" contains a value or another logical grouping . Such a hierarchy is "mixed content" and
this is not supported. Setting a property that causes mixed content is not allowed.

These restrictions are enforced by the validation mechanism as follows:

* Property names are validated when setting a property using the MQSETMP - Set message property|
call, if validation was requested when the message handle was created . If an attempt to validate a
property is undertaken and fails due to an error in the specification of the property name, the
completion code is MQCC_FAILED with reason:

— MQRC_PROPERTY_NAME_ERROR for reasons 1-4.
- MQRC_MIXED_CONTENT_NOT_ALLOWED for reason 5.

* The names of properties specified directly as MQRFH2 elements are not guaranteed to be validated by
the MQPUT call.

Message descriptor fields as properties:

Most message descriptor fields can be treated as properties. The property name is constructed by adding
a prefix to the message descriptor field's name.

If an MQI application wants to identify a message property contained in a message descriptor field, for
example, in a selector string or using the message property APIs, use the following syntax:

Property name Message descriptor field

Root. MQMD.<Field> <Field>

Specify <Field> with the same case as for the MQMD structure fields in the C language declaration. For
example, the property name Root.MQMD.AccountingToken accesses the AccountingToken field of the
message descriptor.

The Strucld and Version fields of the message descriptor are not accessible using the syntax shown.

Message descriptor fields are never represented in an MQRFH?2 header as for other properties.

16 1BM MQ: Programming

If the message data starts with an MQMDE that is honored by the queue manager, the MQMDE fields
can be accessed using the Root.MQMD.<Field> notation described. In this case the MOMDE fields are
treated as logically part of the MQMD from a properties perspective. See [Overview of MQMDE]

Property data types and values:

A property can be a boolean, a byte string, a character string, or a floating-point or integer number. The
property can store any valid value in the range of the data type unless otherwise restricted by the
context.

The data type of a property value must be one of the following values:
+ MQBOOL

* MQBYTE]]

* MQCHAR][]

* MQFLOAT32

* MQFLOAT®64

* MQINTS

* MQINT16

* MQINT32

* MQINT64

A property can exist but have no defined value; it is a null property. A null property is different from a
byte property (MQBYTE[]) or character string property (MQCHAR]]) in that it has a defined but empty
value, that is, one with a zero-length value.

Byte string is not a valid property data type in JMS or XMS. You are advised not to use byte string
properties in the <usr> folder.

Selecting messages from queues

You can select messages from queues using the Msgld and Correlld fields on an MQGET call, or by using
a SelectionString on an MQOPEN or MQSUB call.

Selectors:

A message selector is a variable-length string used by an application to register its interest in only those
messages that have properties that satisfy the Structured Query Language (SQL) query that the selection
string represents.

Selection using the MQSUB and MQOPEN function calls

You use the SelectionString, which is a structure of type MQCHARYV, to make selections using the
MQSUB and MQOPEN calls.

The SelectionString structure is used to pass a variable-length selection string to the queue manager.
The CCSID associated with the selector string is set via the VSCCSID field of the MOQCHARYV structure.

The value used must be a CCSID that is supported for selector strings. See |[Code page conversion| for a
list of supported code pages.

Specifying a CCSID for which there is no IBM MQ supported Unicode conversion, results in an error of
MQRC_SOURCE_CCSID_ERROR. This error is returned at the time that the selector is presented to the
queue manager, that is, on the MQSUB, MQOPEN, or MQPUT1 call.

Developing applications 17

The default value for the VSCCSID field is MQCCSI_APPL, which indicates that the CCSID of the selection
string is equal to the queue manager CCSID, or the client CCSID if connected through a client. The
MQCCSI_APPL constant can however be overridden by an application redefining it before compiling.

If the MQCHARY selector represents a NULL string, no selection takes place for that message consumer
and messages are delivered as if a selector had not been used.

The maximum length of a selection string is limited only by what can be described by the MOQCHARV
field VSLength.

The SelectionString is returned on the output from an MQSUB call using the MQSO_RESUME subscribe
option, if you have provided a buffer and there is a positive buffer length in VSBufSize. If you do not
provide a buffer, only the length of the selection string is returned in the VSLength field of the
MQCHARV. If the buffer provided is smaller than the space required to return the field, only VSBufSize
bytes are returned in the provided buffer.

An application cannot alter a selection string without first closing either the handle to the queue (for
MQOPEN), or subscription (for MQSUB). A new selection string can then be specified on a subsequent
MQOPEN or MQSUB call.

MQOPEN
Use MQCLOSE to close the opened handle, then specify a new selection string on a subsequent
MOQOPEN call.

MQSUB
Use MQCLOSE to close the returned subscription handle (hSub), then specify a new selection
string on a subsequent MQSUB call.

Figure 3 on page 19 shows the process of selection using the MQSUB call.

18 1BM MQ: Programming

MQOPEN

(APP 1)
ObjectName = "MyDestQ" —|_|—
hObj MyDestQ
MQsuB
(APP 1)
SelectionString = "Sport = 'Football"
hODbj |_| ResultsTopic
TopicString = "Results Topic" MyDestQ
< DELIVERED ResultsTopic
—|_|— League = 'Premiership'
MyDestQ Sport = 'Football
Message
NOT DELIVERED
® ResultsTopic
—III— League = 'Premiership'
MyDestQ Sport = 'Cricket'
Message
< DELIVERED ResultsTopic
H League = 'Div 2'
MyDestQ Sport = 'Football
Message
MQGET

(APP 1) hObj

DELIVERED

League = 'Premiersy H

Sport = 'Football MyDestQ

A

Message

DELIVERED

League = 'Div 2')

Sport = 'Football MyDestQ

A

Message

Figure 3. Selection using MQSUB call

A selector can be passed in on the call to MQSUB by using the SelectionString field in the MQSD
structure. The effect of passing in a selector on the MQSUB is that only those messages published to the
topic being subscribed to, that match a supplied selection string, are made available on the destination
queue.

Figure 4 on page 20| shows the process of selection using the MQOPEN call.

Developing applications 19

MQOPEN

(APP 1)

SelectorString = "League = 'Premiership"
ObjectName = "SportQ"
hObj SportQ

< MQPUT Application 2

League = 'Div 2')
t = 'Football'
SportQ Spor ootba
Message
< MQPUT Application 2

—|:|_ League = 'Premiersy

SportQ Sport = 'Football

Message

MQGET
(APP 1) hObj

NOT DELIVERED

League - Div 2) gy

Sport = 'Football'
SportQ

Message

DELIVERED

League = 'Premlersy H

Sport = 'Football SportQ

A

Message

MQRC_NO_MSG_AVAILABLE

®

=)

SportQ

Figure 4. Selection using MQOPEN call

A selector can be passed in on the call to MQOPEN by using the SelectionString field in the MQOD
structure. The effect of passing in a selector on the MQOPEN call is that only those messages on the
opened queue, that match a selector, are delivered to the message consumer.

The main use for the selector on the MQOPEN call is for the point-to-point case where an application can
elect to receive only those messages on a queue that match a selector. The previous example shows a
simple scenario where two messages are put to a queue opened by MQOPEN but only one is received by
the application getting it, as it is the only one that matches a selector.

Note that subsequent MQGET calls result in MQRC_NO_MSG_AVAILABLE as no further messages exist
on the queue that match the given selector.

20 1BM MQ: Programming

Related concepts:

['Selection string rules and restrictions” on page 27|
Familiarize yourself with these rules about how selection strings are interpreted and character restrictions
to avoid potential problems when using selectors.

Selection behavior:
Overview of IBM MQ selection behavior.

The fields in an MQMDE structure are considered to be the message properties for the corresponding
message descriptor properties if the MQMD:

* Has format MQFMT_MD_EXTENSION
* Is immediately followed by a valid MQMDE structure
* Is version one or contains the default version two fields only

It is possible for a selection string to resolve to either TRUE or FALSE before any matching against
message properties takes place. For example, it might be the case if the selection string is set to "TRUE
<>FALSE". Such early evaluation is guaranteed to take place only when there are no message property
references in the selection string.

If a selection string resolves to TRUE before any message properties are considered, all messages
published to the topic subscribed to by the consumer are delivered. If a selection string resolves to FALSE
before any message properties are considered, a reason code of MOQRC_SELECTOR_ALWAYS_FALSE, and
completion code MQCC_FAILED are returned on the function call that presented the selector.

Even if a message contains no message properties (other than header properties) then it can still be
eligible for selection. If a selection string references a message property that does not exist, this property
is assumed to have the value of NULL or 'Unknown'.

For example, a message might still satisfy a selection string like 'Color IS NULL', where 'Color' does not
exist as a message property in the message.

Selection can be performed only on the properties that are associated with a message, not the message
itself, unless an extended message selection provider is available. Selection can be performed on the
message payload only if an extended message selection provider is available.

Each message property has a type associated with it. When you perform a selection, you must ensure
that the values used in expressions to test message properties are of the correct type. If a type mismatch
occurs, the expression in question resolves to FALSE.

It is your responsibility to ensure that the selection string and message properties use compatible types.

Selection criteria continue to be applied on behalf of inactive durable subscribers, so that only messages
that match the selection string that was originally supplied are kept.

Selection strings are non-alterable when a durable subscription is resumed with alter (MQSO_ALTER). If
a different selection string is presented when a durable subscriber resumes activity, then

MQRC_SELECTOR_NOT_ALTERABLE is returned to the application.

Applications receive a return code of MOQRC_NO_MSG_AVAILABLE if there is no message on a queue
that meets the selection criteria.

If an application has specified a selection string containing property values then only those messages that
contain matching properties are eligible for selection. For example, a subscriber specifies a selection string

Developing applications 21

of "a = 3" and a message is published containing no properties, or properties where 'a' does not exist or is
not equal to 3. The subscriber does not receive that message to its destination queue.

Messaging performance

Selecting messages from a queue requires IBM MQ to sequentially inspect each message on the queue.
Messages are inspected until a message is found that matches the selection criteria or there are no more
messages to examine. Therefore, messaging performance suffers if message selection is used on deep
queues.

To optimize message selection on deep queues when selection is based on JMSCorrelationID or
JMSMessagelD, use a selection string of the form JMSCorrelationID = ... or JMSMessageID = ... and
reference only one property.

This method offers a significant improvement in performance for selection on JMSCorrelationID and
offers a marginal performance improvement for J]MSMessagelD.

Using complex selectors
Selectors can contain many components, for example:
aand b or c and d