IBM MQ

Reference

Version 8 Release 0

<|ll

Note
FBefore using this information and the product it supports, read the information in ["Notices” on page 5101

This edition applies to version 8 release 0 of WebSphere MQ and to all subsequent releases and modifications until
otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2007, 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures .
Tables

Reference .
Configuration reference.
Example confrguratron 1nf0rmat10n for all
platforms .
IBM MQ file system perm1ssrons applred to
/var/mgm . .o
Queue names.
Other object names .
Queue name resolution
System and default objects
Stanza information .
Channel attributes . .
IBM MQ cluster commands
Channel programs.
Environment Variables
Intercommunication jobs
Channel states on IBM i. .
Message channel planning example for
distributed platforms .

Message channel planning example for IBM MQ
. 162

for IBMi.

Message channel plannrng example for z/ OS

Message channel planning example for z/OS

using queue-sharing groups .

Using an alias to refer to an MQ l1brary
Administration reference

Syntax diagrams

IBM MQ Control commands

IBM MQ for IBM i CL commands

MQSC reference

Programmable command formats reference

Using the IBM MQ utilities for z/OS .

IBM MQ Administration Interface .
Developing applications reference .

MQI applications reference .

IBM i Application Programming Reference

(ILE/RPG) .

Data conversion .

SOAP reference .

User exits, API exits, and 1nstallable services

reference

Reference materral for IBM MQ brrdge for

HTTP e e

© Copyright IBM Corp. 2007, 2018

.V

.
— -t

.75
.79
. 80
.81
. 84
.92
. 95

. 135
. 152
. 153
. 157
. 158

. 158

167

. 171
. 175
. 175
. 175
. 178
. 337
. 340

1044

. 1618
. 1697
. 1781
. 1782

. 2783
. 3247
. 3267
. 3318

. 3606

The IBM MQ .NET classes and interfaces. . 3642
IBM MQ C++ classes . 3705
Properties of IBM MQ classes for]MS ob]ects 3816
IBM MQ Telemetry Reference . . 3873
IBM MQ Telemetry Transport format and
protocol . .o o . 3873
MQXR propertres . 3874
AuthCallback MQXR class . 3874
Security reference . 3875
The API exit . 3876
The API-crossing ex1t . . 3877
Certificate validation and trust pol1cy des1gn
on UNIX, Linux and Windows systems . 3878
Cryptographic hardware . . 3891
IBM MQ rules for SSLPEER values . 3892
GSKit: Digital certificate signature algonthms
compliant with FIPS 140-2. . 3893
Migrating with AltGSKit from IBM MQ V7 0 1
to IBM MQ V7.1 3894
CipherSpec mismatches . 3896
Authentication failures . . 3897
Monitoring reference . 3898
Structure data types. . . 3898
Object attributes for event data . . 3923
Event message reference . 3969
Troubleshooting and support reference . 4080
An example of IBM MQ for Windows trace
data . . 4080
Example trace data for IBM MQ for UNIX and
Linux systems. L. L4081
Examples of trace output . . 4085
Examples of CEDF output. . . 4087
Return code 00000461 for TCP/IP . . 4098
Messages . . 4099
IBM MQ AMQ messages . . 4099
AMQXR Messages . 4100
IBM MQ for z/OS messages completron and
reason codes . . 4111
MQJMS Messages . 5025
Index . 5035
Notices Ce . 5101
Programming interface information . 5102
Trademarks . 5103
Sending your comments to IBM 5105
iii

iv IBM MQ: Reference

Figures

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

IBM MQ channel to be set up in the example

configuration

Configuration 1: z/ OS usmg 1ntra—group

queuing. .

Configuration 2 .

Configuration 3 .

Name resolution . .

gqm.ini stanzas for d1str1buted queu1ng

The message channel example for Windows,

UNIX and Linux systems

The message channel example for IBM MQ

for IBM i .

The first example for IBM MQ for zZ / OS

Message channel planning example for IBM

MQ for z/0S using queue-sharing groups .

How to invoke the CSQUTIL utility program

Sample JCL for the FORMAT function of

CSQUTIL

Sample JCL for the FORMAT functlon of

CSQUTIL with the TYPE option .

Sample JCL showing the use of the

PAGEINFO function .

Sample JCL showing the use of the

COPYPAGE function.

Sample JCL showing the use of the

RESETPAGE function

Sample JCL for issuing IBM MQ commands

using CSQUTIL .

Sample JCL for using the MAKEDEF optron

of the COMMAND function .

Sample JCL for using the MAKEALT opt10n

of the COMMAND function . . .
Sample JCL for using the MAKECLNT

option of the COMMAND function.

Sample JCL for the SDEFS function of

CSQUTIL

Sample JCL for the SDEFS functron of

CSQUTIL for objects in the Db2 shared

repository

Sample JCL for the SDEFS functron of

CSQUTIL, when recovering all objects from

a valid page set zero. .o

Sample JCL for the CSQUTIL COPY

functions.

Sample JCL for the CSQUTIL SCOPY

functions.

Sample JCL for the CSQUTIL ANALYZE

function .

Sample JCL for the CSQUTIL EMPTY

function .

Sample JCL for the CSQUTIL LOAD

function .

Sample JCL for the CSQUTIL SLOAD

function .

Sample JCL for the CSQUTIL XPARM

function . e

© Copyright IBM Corp. 2007, 2018

. 50
. 52
. 54
. 82
. 95

. 159

. 163

168

. 172

1622

. 1626

. 1627

. 1628

. 1630

. 1632

. 1635

. 1636

. 1637

. 1637

. 1641

. 1641

. 1641

. 1643

. 1646

. 1647

. 1648

. 1651

. 1653

. 1654

31.

32.

33.
34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.
49.
50.

51.

52.

53.
54.
55.
56.
57.
58.
59.
60.
61.

62.
63.

Sample JCL for querying the switching
status of cluster-sender channels using the
CSQUTIL SWITCH function . .
Sample JCL for switching the transrn1ss1on
queue associated with a cluster-sender
channel using the CSQUTIL SWITCH
function .

Sample JCL to 1nvol<e the CSQJUOO3 ut1l1ty
Sample JCL to invoke the CSQJU004 utility
Sample JCL to invoke the CSQ1LOGP utility
using a BSDS . .

Sample JCL to invoke the CSQlLOGP ut111ty
using active log data sets . .

Sample JCL to invoke the CSQlLOGP ut1lrty
using archive log data sets. .

Sample JCL showing additional statements
for the EXTRACT keyword

Accumulating bytes put to each queue
Sample JCL to invoke the CSQ5PQSG utility
Using the queue-sharing group utility to add
a queue manager into a queue-sharing
group.

Example of the]CL used to 1nvol<e the
CSQJUEMT utility .

Specifying the queue manager and
dead-letter queue names for the dead-letter
queue handler in the JCL .

Specifying the queue manager and
dead-letter queue names for the dead-letter
queue handler in the rules table .

Sample JCL to invoke the CSQUDLQH
utility .

An example rule from a DLQ handler rules
table . .

Sample JCL to 1nvol<e the CSQ]UCNV ut1l1ty
Indexing .

Using mqgExecute to create a local queue
Using mqExecute to inquire about queue
attributes

Correct uses of groups and name / Value
pairs . .
Incorrect use of groups and name / Value
pairs .

Example of a folder and a property folder
Folderl namespace . .
Folder2 namespace .

Folder3 namespace .

Data type attribute .

Single property name mapplng . .
Multiple properties with the same root name
Multiple property name mapping
Sample Client/Server (Echo) program
flowchart . .
Example deployment of Ax1s service
Example deployment of .NET service

. 1656

. 1656
1657
1665
. 1667
. 1667

. 1668

. 1668

1672
1676

. 1679

. 1680

. 1681

. 1681

. 1682

. 1684
1692
. 1777
1780

. 1781

. 2307

. 2307

2308

. 2308
. 2308
. 2308
. 2313
. 2314

2314

. 2314

. 3230

3272
3272

64.

65.

66.

67.
68.
69.

70.
71.
72.
73.
74.
75.

76.

77.

78.

79.
80.
81.

82.

83.

84.

85.

86.
87.
88.

89.
90.
91.
92.
93.

94.
95.
96.
97.

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.

vi

Example URI in generated .NET client to call
NET service 3276
Example URI in generated NET clrent to call

Axis 1 service 3277
IBM MQ configuration commands to trlgger

a SOAP listener. . . . 3277
Starting Axis SOAP llstener on W1ndows 3277
Starting .NET SOAP listener on Windows 3277
Starting Axis SOAP listener on UNIX and

Linux systems3277
run all the default tests 3289
run a specific test from the default tests 3289
run a set of custom tests 3289
Starting Java client using a conﬁgurahon f1le 3300
myjms.config 3300
URI for an Axis service, supplymg only

required parameters 3306
URI for a .NET service, supplylng only

required parameters 3306
URI for an Axis service, supplylng some

optional connectionFactory parameters. . . 3306

URI for an Axis service, supplying the
sslPeerName option of the

connectionFactory parameter 3306
Use jms:jndi to send a SOAP/JMS request 3312
Use jms:queue to send a SOAP/JMS request 3313
Service definition for .NET Framework 2:

Quote.asmx 3315
Service 1mplernentat10n for NET Framework

2: Quote.asmx.cs3315
Java JAX-RPC service 1nterface usmg a

complex type 3315
Java JAX-RPC service 1mplernentat1on us1ng

a complex type 3316
Java JAX-RPC service bean 1mplementat10n

of a complex type.3316
C# Web service client sample3318
Java Web service client example 3318
Sample JCL used to invoke the CSQUCVX

utility. 3324
Example of an HTTP DELETE request 3609
Example of an HTTP DELETE response 3609
Example of an HTTP GET request 3611
Example of an HTTP GET response 3611
Example of an HTTP POST request to a

queue. 3614
Example of an HTTP POST response 3614
Client connection 3694
Overriding MQEnV1r0nment propert1es 3694
Automatically reconnecting a client to a

queue manager 36%
Iquuthentlca’uonRecord class .o.o.. 03720
ImgBinary class3723
ImqCacheclass3725
ImgChannel class.3728
ImqCICSBridgeHeader class3733
ImgDeadLetterHeader class 3740
ImgDistributionList class 3742
ImgError class3743
ImqGetMessageOptions class3745
ImqHeader class3748

IBM MQ: Reference

108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.

147.

ImqIMSBridgeHeader class
Imqltem class . .
ImgMessage class.
ImgMessageTracker class
ImgNamelist class

ImqObject class

ImqgProcess class .
ImqPutMessageOptions class
ImqQueue class .
ImgqQueueManager class
ImqReferenceHeader class .
ImgString class

ImqTrigger class

ImqWorkHeader class .
Sample IBM MQ for Windows trace
Sample IBM MQ for HP-UX trace
Sample IBM MQ for Solaris trace
Sample IBM MQ for Linux trace .
Sample IBM MQ for AIX trace

Example trace data from an entry trace of an
. 4086

MQPUT1 request .

Example trace data from an ex1t trace of an

MQPUT1 request .

Example CEDF output on entry to an

MQOPEN call (hexadecimal) .

Example CEDF output on exit from an
MQOPEN call (hexadecimal) .
Example CEDF output on entry to an
MQOPEN call (character) .

Example CEDF output on exit from an

MQOPEN call (character) .

Example CEDF output on entry to an
MQCLOSE call (hexadecimal).
Example CEDF output on exit from an
MQCLOSE call (hexadecimal).
Example CEDF output on entry to an
MQCLOSE call (character) .

Example CEDF output on exit from an

MQCLOSE call (character) .

Example CEDF output on entry to an
MQPUT call (hexadecimal)

Example CEDF output on exit from an
MQPUT call (hexadecimal)

Example CEDF output on entry to an
MQPUT call (character).

Example CEDF output on exit from an

MQPUT call (character). .o
Example CEDF output on entry to an
MQPUT1 call (hexadecimal)

Example CEDF output on exit from an
MQPUT1 call (hexadecimal)

Example CEDF output on entry to an
MQPUT1 call (character)

Example CEDF output on exit from an

MQPUT1 call (character) .o
Example CEDF output on entry to an
MQGET call (hexadecimal)

Example CEDF output on exit from an
MQGET call (hexadecimal)

Example CEDF output on entry to an
MQGET call (character).

. 3750
. 3753
. 3754
. 3761
. 3764
. 3765
. 3771
. 3772
. 3774
. 3786
. 3803
. 3806
. 3811
. 3814

4081

. 4082
. 4083
. 4084

. 4085

. 4087

. 4088

. 4088

. 4088

. 4089

. 4089

. 4089

. 4090

. 4090

. 4090

. 4091

. 4091

. 4091

. 4092

. 4092

. 4092

. 4093

. 4093

. 4094

. 4094

148.

149.

150.

151.

152.

Example CEDF output on exit from an
MQGET call (character). .o
Example CEDF output on entry to an
MOQINQ call (hexadecimal).

Example CEDF output on exit from an
MOQINQ call (hexadecimal).

Example CEDF output on entry to an
MOQINQ call (character) .

Example CEDF output on exit from an

MQINQ call (character) .

. 4094

. 4095

. 4095

. 4096

. 4096

153.

154.

155.

156.

Example CEDF output on entry to an
MQSET call (hexadecimal) .

Example CEDF output on exit from an

MQSET call (hexadecimal) .
Example CEDF output on entry to an
MQSET call (character)

Example CEDF output on exit from an

MQSET call (character) .

Figures

. 4097

. 4097

. 4097

. 4098

vii

viii IBM MQ: Reference

Tables

10.

11.
12.
13.
14.

15.
16.
17.
18.
19.

20.
21.
22.
23.

24.
25.
26.
27.
28.
29.

30.

31.

32.
33.

34.
35.
36.
37.
38.
39.
40.

Configuration worksheet for IBM MQ for
Windows.

Configuration worksheet for IBM MQ for AIX
Configuration worksheet for IBM MQ for
HP-UX . .

Configuration worksheet for IBM MQ for
Solaris .

Configuration worksheet for IBM MQ for
Linux

Configuration worksheet for IBM MQ for
z/0S.

Configuration worksheet for z/ OS usmg LU
62 . . .

Configuration worksheet for IBM MQ for
z/0S using queue-sharing groups .
Configuration worksheet for SNA on an IBM i
system . .

Configuration worksheet for IBM MQ for IBM
i S
System and default objects:
System and default objects:
System and default objects:
System and default objects:
information objects . .o
System and default objects: listeners
System and default objects: namelists .
System and default objects: processes .
System and default objects: services
Objects created by the Windows default
configuration application . .
Default values of SYSTEM.BASE. TOPIC .
System and default objects: queues.
System and default objects: channels .
System and default objects: authentication
information objects . .o
System and default objects: listeners

System and default objects: namelists .
System and default objects: processes .
System and default objects: services

Channel attributes for the channel types
Negotiated HBINT value and the
corresponding KAINT value

Examples of how the LOCLADDR parameter
can be used . .
PCF equivalents of MQSC commands
specifically to work with clusters .

Attributes for cluster workload management
Channel programs for Windows, UNIX and
Linux systems .

Job names. .

Channel states on IBM i.

How to read railroad diagrams

Categories of control commands .
QueueManager stanza attributes .

Initiation command parameters.
Multi-instance command parameters.

queues.

topics .
channels .
authentication

© Copyright IBM Corp. 2007, 2018

.22

.27

. 34

. 39

. 43

. 47

. 58

.71
. 84
. 85
. 85

. 86
. 86
. 86
. 86
. 86

. 87
. 88
. 89
.91

.91
.91
.91
.92
.92

96

. 114

. 115

. 136

149

. 152
. 157
. 158
. 176
. 179
. 181
. 184

184

41.
42.
43.
44.
45.
46.
47.

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

68.
69.
70.
71.
72.
73.
74.
75.

76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.

87.
88.

89.

Status command parameters.

Reg command parameters. .

Standby values .

Instance values .

Queue manager states.

The object type on which to make the 1nqu1ry
Specifying authorities for different object
types

Authorizations assoc1ated w1th each Value
Valid object types. . .

Delivery parameter values. .

Forward parameter values. .

Persistence parameter values. .
ReportOption parameter values.

Detail parameter values. .

PassExpiry parameter values. .
DisplayOption parameter values. .
dspmgspl command flags.

endmqgm actions.

Valid object types .

Valid object types. . .

Syncpoint parameter values.

Conversion parameter values. .
BackoutThreshold parameter values. .
ContextOption parameter values. .
Transmission protocol values. .
ObjectType values. .

Specifying authorities for dlfferent ob]ect
types .

Authorizations for MQI calls
Authorizations for context. .
Authorizations for commands. .
Authorizations for generic operations.
setmgspl command flags.

TraceType parameter values.

Queue manager commands .

Commands for command server
administration . .

Commands for authority adm1nlstrat10n
Cluster commands . .
Authentication information commands
Channel commands

Listener commands

Namelist commands .

Process commands.

Queue commands .

Service commands .

Other commands .

Options that can be used with r'unchkm and
runmgakm .

DEFINE and ALTER CHANNEL parameters
Automatic reconnection depends on the
values set in the application and in the
channel definition . .

Examples of how the LOCLADDR parameter
can be used .

. 184
. 185
. 218
. 218

. 218
220

. 221

221

. 225
. 231
. 231
. 231
. 232
. 233
. 233
. 234
. 236
. 247
. 255
. 257
. 266
. 266
. 267
. 267
. 268
. 282

. 284
. 287
. 288
. 288

289

. 298
. 308
. 313

. 314

314

. 314

315

. 315
. 316
. 316
. 317
. 317
. 318
. 318

. 328

366

. 378

. 381

ix

90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.

105.
106.

107.
108.
1009.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.

126.

X

How the IP stack to be used for
communication is determined . .
Attribute types supported by SSLPEER
DEFINE and ALTER QUEUE parameters
DEFINE and ALTER CHANNEL parameters
Automatic reconnection depends on the
values set in the application and in the
channel definition .

Examples of how the LOCLADDR parameter

can be used .

How the IP stack to be used for
communication is determined .

Message exit format and length
Attribute types supported by SSLPEER
DEFINE and ALTER QUEUE parameters
QSGDISP parameters

Parameters that result in data belng returned

from the DISPLAY CHANNEL command .
CHLDISP and CMDSCOPE for DISPLAY
CHSTATUS CURRENT .
CHLDISP and CMDSCOPE for DISPLAY
CHSTATUS SHORT .
CHLDISP and CMDSCOPE for DISPLAY
CHSTATUS SAVED

Product Identifier values. . .
Parameters that can be returned by the
DISPLAY QUEUE command. e
Parameters that can be returned by the
DISPLAY TOPIC command . .
CHLDISP and CMDSCOPE for PING
CHANNEL . .

CHLDISP and CMDSCOPE for RESET
CHANNEL . .
CHLDISP and CMDSCOPE for RESOLVE
CHANNEL . .

CHLDISP and CMDSCOPE for START
CHANNEL .

Destinations allowed for each trace type
Constraints allowed for each trace type
Descriptions of trace events and classes
Resource Manager identifiers that are
allowed . .
CHLDISP and CMDSCOPE for STOP
CHANNEL .

MQIACEF_ COMMAND INFO values
Change, Copy, Create Channel parameters
Automatic reconnection depends on the
values set in the application and in the
channel definition.

ChannelDisposition and CommandScope for
Inquire Channel Status, Current . .
ChannelDisposition and CommandScope for
Inquire Channel Status, Short .
ChannelDisposition and CommandScope for
Inquire Channel Status, Saved

Product Identifier values

Inquire Queue command, queue attrlbutes
ChannelDisposition and CommandScope for
PING CHANNEL. .
ChannelDisposition and CommandScope for
RESET CHANNEL

IBM MQ: Reference

. 382

397
470
551

. 563

. 567

. 567
. 573

583
636
. 652

. 741

. 764

. 764

. 765
. 777

. 874

. 925

. 944

. 962

. 976

. 1009

1021
1021
1022

. 1023

. 1026

1050
1074

. 1086

. 1294

. 1294

. 1295
. 1314

1380

. 1514

. 1526

127.

128.

129.

130.

131.

132.

133.

134.

135.
136.

137.
138.
139.
140.
141.

142.
143.

144.

145.

146.

147.

148.

149.

150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.

166.

167.

ChannelDisposition and CommandScope for
RESOLVE CHANNEL .
ChannelDisposition and CommandScope for
START CHANNEL .
ChannelDisposition and CommandScope for
STOP CHANNEL. .
The IBM MQ CSQUTIL utlhty program:
Managing page sets . . .
The IBM MQ CSQUTIL ut111ty program:
Issuing commands . .
The IBM MQ CSQUTIL utlhty program:
Managing queues. .
The IBM MQ CSQUTIL ut1hty program:
Migrating CSQXPARM . . .

The IBM MQ CSQJU003 Change log
inventory utility . .

The remaining IBM MQ ut1ht1es

SDEFS QSGDISP parameters and their
actions . P
dspmgsp] command ﬂags

setmgspl command flags.

CCSID processing.

PCF command type .

Format and MsgType parameters of the
MQMD
Message descrlptor Values

C header files - call prototypes, data types
return codes, constants, and structures.
COBOL copy files - return codes, constants,
and structures .

PL/I include files - data types return codes
constants, and structures .

RPG copy files - return codes, constants, and
structures

Visual Basic module f11es - call declaratlons
data types, return codes, constants, and
structures

z/0OS Assembler copy f11es - data types
return codes, constants, and structures.
Structure data types used on MQI calls (or
exit functions): . .

Structure data types used in message data
C header files .

COBOL CORPY files .

Assembler macros

Fields in MQAIR .

Initial values of fields in MQAIR

Fields in MQBMHO . .

Initial values of fields in MQBMHO
Fields in MQBO .

Initial values of fields in MQBO for MQBO
Fields in MQCBC .

ReconnectDelay values .

Fields in MQCBD.

Initial values of fields in MQCBD

Fields in MQCIH .

Contents of error information f1elds in
MQCIH structure for MQCIH.

Initial values of fields in MQCIH for
MQCIH .

Fields in MQCMHO

. 1534

. 1559

. 1568

. 1618

. 1619

. 1619

. 1619

. 1620
. 1620

. 1640
. 1695
. 1696
. 1778
. 1779

. 1779
. 1779

. 1849

. 1849

. 1851

. 1852

. 1853

. 1854

. 2011

2012

. 2014
. 2018
. 2021
. 2024
. 2028
. 2029

2031
. 2032
2034

. 2035
. 2041
. 2043
. 2048
. 2054

. 2056

. 2068
. 2073

168.
169.
170.

171.
172.
173.
174.
175.
176.
177.
178.

179.
180.
181.
182.
183.
184.
185.

186.
187.

188.

189.

190.

191.
192.
193.
194.
195.
196.
197.
198.
199.

200.

201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.

213.

214.

Initial values of fields in MQCMHO
Fields in MQCNO .
Initial values of fields in MQCNO for
MQCNO. .

Fields in MQCSP .

Initial values of fields in MQCSP for MQCSP
. 2096

Fields in MQCTLO

Initial values of fields in MQCTLO

Fields in MQDH . .

Initial values of fields in MQDH for MQDH
Fields in MQDLH. .
Initial values of fields in MQDLH for
MQDLH .

Fields in MQDMHO .

Initial values of fields in MQDMHO
Fields in MQDMPO .

Initial values of fields in MQDPMO

Fields in MQEPH . .

Initial values of fields in MQCFH

Initial values of fields in MQEPH for
MQEPH .

Fields in MQGMO

Rules for activating MQGET calls on a
shared queue. . . .
MQGET options relatrng to messages in
groups and segments of logical messages .
Outcome when MQGET or MQCLOSE call
is not consistent with group and segment
information .

Initial values of f1elds in MQGMO for
MQGMO

Fields in MQIIH .

Initial values of fields in MQIIH for MQHH
Fields in MQIMPO

Initial values of fields in MQIPMO

Fields in MQMD .

Fields in MQMD . .

Initial values of fields in MQMD for MQMD
Fields in MQMDE

Queue-manager action when MQMDE
specified on MQPUT or MQPUT1 for
MQMDE. .
Initial values of f1elds in MQMDE for
MQMDE. .

Fields in MQMHBO

Initial values of fields in MQMHBO
Fields in MQOR . .o

Initial values of fields in MQOR for MQOR
Fields in MQPD .

Initial values of fields in MQPD

MQPMO structure . .
Reply message handle transformatlon
Report message handle transformation
Initial values of fields in MQPMO .
Fields in MQPMR. . .
Initial values of fields in MQRFH for
MOQRFH .

Jjms property name, synonym data type and
folder. .

mcd property name, synonym data type and
folder.

2075

. 2076

. 2088

. 2091
2094

2098
. 2099
2104

. 2107

. 2113
. 2116

2117

. 2118

2120

. 2122
. 2123

. 2125
. 2128

. 2133

. 2147

. 2149

. 2157

. 2161
2166

. 2169

2176

. 2179

. 2181
2230

. 2234

. 2236

. 2239
. 2242

2243

. 2262

2263

. 2264
. 2268
. 2269

2272
2273

. 2288
. 2292

. 2298

. 2309

. 2310

215.

216.

217.

218.

219.

220.
221.

222.
223.

224.
225.
226.
227.
228.

229.
230.
231.
232.
233.
234.
235.
236.
237.

238.
239.

240.
241.
242.

243.
244.
245.

246.
247.
248.
249.
250.
251.
252.
253.

254.
255.

usr property name, synonym, data type, and
folder .

ibm property name, synonym data type, and
folder .

mgext property name, synonym data type
and folder .

mgps property name, synonym data type
and folder .

mgtt property name, synonym data type
and folder . . Lo
Data type mapplngs .

Initial values of fields in MQRFI—I2 for
MQRFH2

Fields in MQRMH .

Initial values of fields in MQRMH for
MQRMH

Fields in MQRR .

Initial values of fields in MQRR for MQRR
Fields in MQSCO.

Initial values of fields in MQSCO

Attributes in MQSD and MQSUB that can be
. 2347

altered .

Topic string concatenatlon examples

Fields in MQSMPO .

Initial values of fields in MQSMPO

Fields in MQSTS . .

Initial values of fields in MQSTS

Fields in MQTM . .

Initial values of fields in MQTM for MQTM

Fields in MQTMC2 . .

Initial values of fields in MQTMC2 for

MQTMC2

Fields in MQWIH. .

Initial values of fields in MQWIH for

MQWIH .

Fields in MQXP

Fields in MQXQH .

Initial values of fields in MQXQH for

MQXQH. .

MQCTL verb def1n1trons

MQCTL verb definitions .

Scope of nonshared handles on various

platforms .

Scope of nonshared handles on various

platforms

MQGET options permltted when read ahead

is enabled .

MOQINQ attribute selectors for queues

MQINQ attribute selectors for namelists
MQINQ attribute selectors for process

definitions . .

MQINQ attribute selectors for the queue

manager . . .

MQSET attribute selectors for queues

Attributes for the queue manager

Attributes for queues

Suggested or required values of queue 1ndex

type when MQGMO_LOGICAL_ORDER not

specified . e

Tables

. 2311

. 2311

. 2312

. 2312

. 2313
. 2316

. 2319
. 2321

. 2328
. 2331

2332

. 2333

. 2339

2359

. 2364

2366

. 2370
. 2377

. 2380
2386

. 2388

. 2391
. 2393

. 2397
. 2399
. 2404

. 2408
. 2433
. 2434

. 2452

. 2458

. 2492

2495
2497

. 2498

. 2498

2562

. 2586

. 2627

. 2643

xi

256.

257.
258.
259.

260.
261.
262.
263.

264.
265.
266.

267.
268.
269.
270.
271.
272.
273.

274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.

286.

287.
288.
289.
290.
291.

292.
293.
294.
295.
296.
297.

298.

299.
300.
301.
302.
303.

xii

Suggested or required values of queue index
type when MQGMO_LOGICAL_ORDER
specified . . e
Attributes for namel1sts

Attributes for process definitions

Summary of encodings for machine
architectures

Fields in MQDXP. .
Supported MQRFH?2 data types .

Codeset names and CCSIDs .
IBM MQ for z/0OS CCSID conversion
support . .

Elementary data types .

RPG COPY files

ILE RPG bound calls supported by each
service program .

Initial values of fields in MQAIR for MQAIR
Initial values of fields in MQBMHO
Initial values of fields in MQBO .

CBCRCD values .

Initial values of fields in MQCBC

Initial values of fields in MQCBD
Contents of error information fields in
MQCIH structure .

Initial values of fields in MQCIH

Initial values of fields in MQCMHO
Initial values of fields in MQCNO .
Initial values of fields in MQCNO .
Initial values of fields in MQCTLO

Initial values of fields in MQDH.

Initial values of fields in MQDLH

Initial values of fields in MQDMHO
Initial values of fields in MQDPMO
Initial values of fields in EPPCFH

Initial values of fields in MQEPH
MQGET options relating to messages in
groups and segments of logical messages .
Outcome when MQGET or MQCLOSE call
is not consistent with group and segment
information .

Initial values of f1elds in MQGMO

Initial values of fields in MQIIH .

Initial values of fields in MQIPMO

Initial values of fields in MQMD.
Queue-manager action when MQMDE
specified on MQPUT or MQPUT1

Initial values of fields in MQMDE .
Initial values of fields in MQMHBO
Initial values of fields in MQOD.

Initial values of fields in MQOR .

Initial values of fields in MQPD .
MQPUT options relating to messages in
groups and segments of logical messages .
Outcome when MQPUT or MQCLOSE call
is not consistent with group and segment
information . .
Initial values of f1elds in MQPMO .
Initial values of fields in MQRFH

Initial values of fields in MQRFH2

Initial values of fields in MQRMH

Initial values of fields in MQRR .

IBM MQ: Reference

. 2643
. 2662
. 2664

. 2697
. 2708
. 2724
. 2734

. 2759
. 2784
. 2799

. 2802
2805
2807

. 2808
. 2813
. 2814
. 2820

. 2824
. 2833

2837

. 2843
. 2845

2848

. 2853
. 2858

2861
2862

. 2864
. 2865

. 2879

. 2881

2887

. 2892

2899

. 2943

. 2946
. 2949

2951

. 2960
. 2963
. 2966

. 2971

. 2973

. 2981
. 2987

2993
2999

. 3001

304.
305.
306.
307.
308.
309.
310.
311.
312.

313.
314.
315.

316.

317.
318.
319.
320.
321.

322.
323.
324.

325.
326.
327.

328.

329.
330.
331.
332.
333.
334.

335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.

348.

349.
350.
351.
352.
353.

Initial values of fields in MQSCO

Initial values of fields in MQSMPO

Initial values of fields in MQSTS.

Initial values of fields in MQTM .

Initial values of fields in MQTMC2

Initial values of fields in MQWIH

Initial values of fields in MOQXQH .
MQCTL verb definitions

Valid close options for use with retamed or
deleted objects . .
MQINQ attribute selectors for queues
MQINQ attribute selectors for namelists
MQINQ attribute selectors for process
definitions . .
MQINQ attribute selectors for the queue
manager . . .
MQSET attribute selectors for queues
Attributes for queues .
Attributes for the queue manager

Names of the sample programs .

Sample programs demonstratmg use of the
MQI . . .
Client/Server sample program deta1ls

Summary of encodings for machine
architectures .
Output files from amqwdeplowaQSerw ce
MQOMD SOAP settings
Listener behavior resulting from

MQRO_EXCEPTION_x* and MQRO_DISCARD settings.

Command scripts generated by the
deployment utility

queue validation

Skeleton source files .

Fields in MQPSXP

Fields in MQPBC .

Fields in MQSBC. .

Automatic reconnection depends on the
values set in the application and in the
channel definition. .
Queue-manager attributes .

Queue attributes .

Fields in MQWXP. ..
Actions taken by the queue manager
Initial values of fields in MQWXP

Fields in MQWDR.

Initial values of fields in MQWDR

Fields in MQWQR. .

Initial values of fields in MQWQR

Fields in MQWCR.

Initial values of fields in MQWCR
MQXR_BEFORE exit processing . .o
Valid combinations of function identifiers
and ExitReasons . .
API exit errors and appropnate actlons to
take .

Fields in MQZAC.

Fields in MQZAD.

Fields in MQZED.

Fields in MQZFP .

Fields in MQZIC .

. 3005

3022

. 3028
. 3033

3035

. 3038
. 3043
. 3056

. 3067

3106
3108

. 3108

. 3108

3151

. 3170
. 3204
. 3224

. 3225

3230

. 3238

. 3243

3275

. 3280

3284

. 3295
. 3303
. 3323
. 3327
. 3331
. 3332

. 3351
. 3411
. 3411
. 3416

3418

. 3421
. 3423
. 3426
. 3427
. 3430
. 3432
. 3433
. 3440

. 3448

. 3494
. 3554
. 3557
. 3560
. 3562
. 3564

354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.

365.
366.

Mapping between x-msg-class and HTTP

Content-Type 3618
Mapping message types to X-msg- c] ass and
Content-Type 3619
Mapping content-type and X- msg c] ass t0
message format . . . 3622
Mapping between x-msg- c] ass and HTTP
Content-Type 3640
Mapping between x- msg c] ass and]MS

message types.. . . . 3640
Mapping between x-msg- c] ass and IBM MQ
message format 3641
Mapping message types to X- msg c] ass and
Content-Type 3641
Read and Write message methods 3663
SetProperty and GetProperty methods 3665
Data structure, class, and include-file cross
reference.3706
IquutMessageOptlons Cross reference 3714
ImqQueue cross reference 3714
ImqTrigger cross reference. 3720

367.
368.
369.

370.
371.

372.
373.

374.

375.
376.
377.

378.
379.
380.
381.
382.

ImqCICSBridgeHeader class return codes
Property names and applicable object types
Event message structure for queue service
interval events.

Message type codes . .

Format of identification 1nformat10n w1th1n
the data set header record..

Convert from four-character codes to
CipherSpec names

Component identifiers used in IBM MQ
messages and codes .

UNIX System Services sockets return codes
APPC return codes and their meanings
APPC allocate services return codes and
their meanings.

APPC reason codes and thelr meamngs
SSL return codes . .

SSL return codes from 'gsk_. flps state set
Message prefixes .

MQJMS Messages

Tables

3739
3816

. 3970
. 4112

. 4196
. 4644

. 4666

. 5008

5009
5013

. 5017

5017

. 5019

5021

. 5024
. 5025

xiii

Xiv IBM MQ: Reference

Reference

Use the reference information in this section to accomplish the tasks that address your business needs.

* [Syntax diagrams|

Configuration reference
Use the reference information in this section to help you configure IBM® MQ.

The configuration reference information is provided in the following subtopics:

Related information:

E zonﬁéuriné'

7S |Configuring z/ OS®|

Example configuration information for all platforms

The configuration examples describe tasks performed to establish a working IBM MQ network. The tasks
are to establish IBM MQ sender and receiver channels to enable bidirectional message flow between the
platforms over all supported protocols.

To use channel types other than sender-receiver, see the DEFINE CHANNEL]|command.

is a conceptual representation of a single channel and the IBM MQ objects associated with it.

MQPUT + MQGET

Appl1 Appl2
Sender Receiver
‘ ‘ ‘ ‘ | Channel |

Remote
queue [\
v
1] 1]
Transmission Local
queue queue
Queue manager 1 Queue manager?2

Figure 1. IBM MQ channel to be set up in the example configuration

This example is a simple one, intended to introduce only the basic elements of the IBM MQ network. It
does not demonstrate the use of triggering which is described in [Triggering channels]|

The objects in this network are:
* A remote queue

* A transmission queue

* Alocal queue

* A sender channel

© Copyright IBM Corp. 2007, 2018

* A receiver channel
Appll and Appl2 are both application programs; Appll is putting messages and Appl2 is receiving them.

Appll puts messages to a remote queue. The definition for this remote queue specifies the name of a
target queue manager, a local queue on that queue manager, and a transmission queue on this local
queue manager.

When the queue manager receives the request from Appll to put a message to the remote queue, the
queue manager determines from the queue definition that the destination is remote. It therefore puts the
message, along with a transmission header, straight onto the transmission queue specified in the
definition. The message remains on the transmission queue until the channel becomes available, which
might happen immediately.

A sender channel has in its definition a reference to one, and one only, transmission queue. When a
channel is started, and at other times during its normal operation, it looks at this transmission queue and
send any messages on it to the target system. The message has in its transmission header details of the
destination queue and queue manager.

The intercommunication examples describe in detail the creation of each of the preceding objects
described, for various platform combinations.

On the target queue manager, definitions are required for the local queue and the receiver side of the
channel. These objects operate independently of each other and so can be created in any sequence.

On the local queue manager, definitions are required for the remote queue, the transmission queue, and
the sender side of the channel. Since both the remote queue definition and the channel definition refer to
the transmission queue name, it is advisable to create the transmission queue first.

Network infrastructure in the example

The configuration examples assume that particular network infrastructures are in place for particular
platforms:

. z/0S communicates by using a 3745 network controller (or equivalent) that is attached to a
token ring

* Solaris is on an adjacent local area network (LAN) also attached to a 3745 network controller (or
equivalent)

* All other platforms are connected to a token-ring network

It is also assumed that, for SNA, all the required definitions in VTAM and network control program
(NCP) are in place and activated for the LAN-attached platforms to communicate over the wide area
network (WAN).

Similarly, for TCP, it is assumed that name server function is available, either by using a domain name
server or by using locally held tables (for example a host file).

Communications software in the example

Working configurations are given in the examples for the following network software products:
* SNA

— IBM Personal Communications for Windows V5.9

— IBM Communications Server for AIX®, V6.3

— Hewlett-Packard SNAplus2
IBM i

2 IBM MQ: Reference

— Data Connection SNAP-IX Version 7 or later
— 0S/390° Version 2 Release 4
« TCP
— Microsoft Windows
— AIX Version 4 Release 1.4
— HP-UX Version 10.2 or later
— Sun Solaris Release 2.4 or later
- IBMi
— TCP for z/OS
— HP Tru64 UNIX
* NetBIOS
* SPX
Related information:
[Configuring z/O9|

How to use the communication examples

The example-configurations describe the tasks that are carried out on a single platform to set up
communication to another of the platforms. Then they describe the tasks to establish a working channel
to that platform.

Wherever possible, the intention is to make the information as generic as possible. Thus, to connect any
two queue managers on different platforms, you need to refer to only the relevant two sections. Any
deviations or special cases are highlighted as such. You can also connect two queue managers running on
the same platform (on different machines or on the same machine). In this case, all the information can be
derived from the one section.

If you are using a Windows, UNIX or Linux system, before you begin to follow the instructions for your
platform, you must set various environment variables. Set the environment variables by entering one of
the following commands :
* On Windows:

MQ_INSTALLATION_PATH/bin/setmgenv

where MQ _INSTALLATION_PATH refers to the location where IBM MQ is installed.
* On UNIX and Linux systems:
. MQ_INSTALLATION_PATH/bin/setmgenv

where MQ_INSTALLATION_PATH refers to the location where IBM MQ is installed. This command sets the
environment variables for the shell you are currently working in. If you open another shell, you must
enter the command again.

There are worksheets in which you can find the parameters used in the example configurations. There is
a short description of each parameter and some guidance on where to find the equivalent values in your
system. When you have a set of values of your own, record these values in the spaces on the worksheet.
As you proceed through the section, you will find cross-references to these values as you need them.

The examples do not cover how to set up communications where clustering is being used. For
information about setting up communications while using clustering, see [Configuring a queue manager|
The communication configuration values given here still apply.

There are example configurations for the following platforms:

Reference 3

[“Example configuration - IBM MQ for Windows”|

* [“Example configuration - IBM MQ for AIX” on page 13|
* [“Example configuration - IBM MQ for HP-UX” on page 19|
* [“Example configuration - IBM MQ for Solaris” on page 25|

* [“Example configuration - IBM MQ for Linux” on page 31|
. [“Example configuration - IBM MQ for z/OS” on page 37|

. [“Example configuration - IBM MQ for z/OS using queue-sharing groups” on page 42|

. [“Example configuration - IBM MQ for z/OS using intra-group queuing” on page 49|
. m |”Examp1e configuration - IBM MQ for IBM i” on page 57|

IT responsibilities

To understand the terminology used in the examples, consider the following guidelines as a starting

point.

* System administrator: The person (or group of people) who installs and configures the software for a
specific platform.

* Network administrator: The person who controls LAN connectivity, LAN address assignments,
network naming conventions, and other network tasks. This person can be in a separate group or can
be part of the system administration group.

In most z/OS installations, there is a group responsible for updating the ACF/VTAM, ACF/NCP, and
TCP/IP software to support the network configuration. The people in this group are the main source of
information needed when connecting any IBM MQ platform to IBM MQ for z/OS. They can also
influence or mandate network naming conventions on LANs and you must verify their span of control
before creating your definitions.

* A specific type of administrator, for example CICS® administrator, is indicated in cases where we can
more clearly describe the responsibilities of the person.

The example-configuration sections do not attempt to indicate who is responsible for and able to set each
parameter. In general, several different people might be involved.

Related concepts:

[‘Example configuration information for all platforms” on page 1

The configuration examples describe tasks performed to establish a working IBM MQ network. The tasks
are to establish IBM MQ sender and receiver channels to enable bidirectional message flow between the
platforms over all supported protocols.

Related information:

setmageny]

Use the setmgenv command to set up the IBM MQ environment on UNIX, Linux, and Windows.

Example configuration - IBM MQ for Windows
This section gives an example of how to set up communication links from IBM MQ for Windows to IBM
MQ products.

Set up of communication links are shown on the following platforms:
+ AIX

* HP Tru64 UNIX

« HP-UX

* Solaris

* Linux

« IBMi

4 IBM MQ: Reference

e z/0S
* VSE/ESA

When the connection is established, you must define some channels to complete the configuration.
Example programs and commands for configuration are described in [“TBM MQ for Windows|
konfiguration” on page 6

See [“Example configuration information for all platforms” on page 1| for background information about
this section and how to use it.

Establishing an LU 6.2 connection:
Reference to information about configuring AnyNet® SNA over TCP/IP.

For the latest information about configuring AnyNet SNA over TCP/IP, see the following online IBM
documentation: [AnyNet SNA over TCP/IP||[SNA Node Operations| and |[Communications Server for|

|V_Vindows|

Establishing a TCP connection:

The TCP stack that is shipped with Windows systems does not include an inet daemon or equivalent.

The IBM MQ command used to start the IBM MQ for TCP listener is:
runmglsr -t tcp

The listener must be started explicitly before any channels are started. It enables receiving channels to
start automatically in response to a request from an inbound sending channel.

What next?

When the TCP/IP connection is established, you are ready to complete the configuration. Go to [“IBM MQ
for Windows configuration” on page 6.

Establishing a NetBIOS connection:

A NetBIOS connection is initiated from a queue manager that uses the ConnectionName parameter on its
channel definition to connect to a target listener.

To set up a NetBIOS connection, follow these steps:

1. At each end of the channel specify the local NetBIOS name to be used by the IBM MQ channel
processes in the queue manager configuration file qm.ini. For example, the NETBIOS stanza in
Windows at the sending end might look like the following:

NETBIOS:
LocalName=WNTNETB1

and at the receiving end:

NETBIOS:
LocalName=WNTNETB2

Each IBM MQ process must use a different local NetBIOS name. Do not use your system name as the

NetBIOS name because Windows already uses it.

2. At each end of the channel, verify the LAN adapter number being used on your system. The IBM MQ
for Windows default for logical adapter number 0 is NetBIOS running over an Internet Protocol
network. To use native NetBIOS you must select logical adapter number 1. See [Establishing the LAN|
ladapter number|

Reference 5

http://www.ibm.com/software/network/commserver/windows/library/index.html
http://www.ibm.com/software/network/commserver/windows/library/index.html

Specify the correct LAN adapter number in the NETBIOS stanza of the Windows registry. For
example:
NETBIOS:

AdapterNum=1
So that sender channel initiation works, specify the local NetBIOS name by the MOQNAME
environment variable:

SET MQNAME=WNTNETB1I
This name must be unique.
At the sending end, define a channel specifying the NetBIOS name being used at the other end of the
channel. For example:

DEFINE CHANNEL (WINNT.O0S2.NET) CHLTYPE(SDR) +

TRPTYPE(NETBIOS) +

CONNAME (WNTNETB2) +

XMITQ(0S2) +

MCATYPE (THREAD) +

REPLACE
You must specify the option MCATYPE (THREAD) because, on Windows, sender channels must be run as
threads.

At the receiving end, define the corresponding receiver channel. For example:

DEFINE CHANNEL (WINNT.0S2.NET) CHLTYPE(RCVR) +
TRPTYPE(NETBIOS) +
REPLACE

Start the channel initiator because each new channel is started as a thread rather than as a new
process.

runmqchi
At the receiving end, start the IBM MQ listener:
runmglsr -t netbios

Optionally you can specify values for the queue manager name, NetBIOS local name, number of
sessions, number of names, and number of commands. See [Defining a NetBIOS connection on|

or more information about setting up NetBIOS connections.

IBM MQ for Windows configuration:

Example programs and commands for configuration.

Note:

1.

You can use the sample program, AMQSBCG, to show the contents and headers of all the messages in
a queue. For example:

AMQSBCG g_name qmgr_name

shows the contents of the queue g_name defined in queue manager gmgr_name.
Alternatively, you can use the message browser in the IBM MQ Explorer.

You can start any channel from the command prompt using the command
runmqchl -c channel.name

Error logs can be found in the directories MQ_INSTALLATION_PATH\qmgrs\ gmgrname \errors and
MQ_INSTALLATION_PATH\qmgrs\@system\errors. In both cases, the most recent messages are at the end
of amgerr(1.log.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

When you are using the command interpreter runmgqsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the
last parameter and the continuation character.

IBM MQ: Reference

Default confiquration:

You can create a default configuration by using the IBM MQ Postcard application to guide you through
the process.

For information about using the Postcard application, see [Verify the installation using the Postcard]

Basic configuration:

You can create and start a queue manager from the IBM MQ Explorer or from the command prompt.

If you choose the command prompt:
1. Create the queue manager using the command:
crtmgm -u dlgname -q winnt

where:
winnt Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlgname
Specifies the name of the undeliverable message queue
This command creates a queue manager and a set of default objects.
2. Start the queue manager using the command:
strmgm winnt

where winnt is the name given to the queue manager when it was created.
Channel configuration for Windows:
Example configuration to be performed on the Windows queue manager to implement a given channel.

The following sections detail the configuration to be performed on the Windows queue manager to
implement the channel described in [“Example configuration information for all platforms” on page 1.

In each case the MQSC command is shown. Either start runmqsc from a command prompt and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for Windows and IBM MQ for AIX. To connect to IBM MQ
on another platform use the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of IBM MQ objects used throughout
these examples. If you change the names used here, ensure that you also change the other references

made to these objects throughout this section. All others are keywords and should be entered as shown.

Reference

7

Table 1. Configuration worksheet for IBM MQ for Windows

| Parameter Name Reference Example Used |User Value
Definition for local node
A Queue Manager Name WINNT
B Local queue name WINNT.LOCALQ

Connection to IBM MQ for AIX

The values in this section of the table must match those used in[“Channel configuration for AIX” on page 15,)as
indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ
E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name WINNT.AIX.SNA
H Sender (TCP) channel name WINNT.AIX.TCP
I Receiver (SNA) channel name G AIX.WINNT.SNA
] Receiver (TCP) channel name H AIX.WINNT.TCP

Connection to IBM MQ for HP Tru64 UNIX

The values in this section of the table must match those used in your HP Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ
E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.WINNT.TCP
J Receiver (TCP) channel name H WINNT.DECUX.TCP

Comnnection to IBM MQ for HP-UX

The values in this section of the table must match those used in [“Channel configuration for HP-UX” on page 21, as
indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ
E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name WINNT.HPUX.SNA
H Sender (TCP) channel name WINNT.HPUX.TCP
I Receiver (SNA) channel name G HPUX.WINNT.SNA
] Receiver (TCP/IP) channel name H HPUX.WINNT.TCP

Connection to IBM MQ for Solaris

The values in this section of the table must match those used in [“Channel configuration for Solaris” on page 27, as
indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ
E Queue name at remote system B SOLARIS.LOCALQ
F Transmission queue name SOLARIS

8 IBM MQ: Reference

Table 1. Configuration worksheet for IBM MQ for Windows (continued)

Parameter Name Reference Example Used User Value
G Sender (SNA) channel name WINNT.SOLARIS.SNA
H Sender (TCP) channel name WINNT.SOLARIS.TCP
I Receiver (SNA) channel name G SOLARIS.WINNT.SNA
] Receiver (TCP) channel name H SOLARIS.WINNT.TCP

Connection to IBM MQ for Linux

The values in this section of the table must match those used in [“Channel configuration for Linux” on page 34,|as

indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ
E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name WINNT.LINUX.SNA
H Sender (TCP) channel name WINNT.LINUX.TCP
I Receiver (SNA) channel name G LINUX.WINNT.SNA
] Receiver (TCP) channel name H LINUX.WINNT.TCP

m Connection to IBM MQ for IBM i

m The values in this section of the table must match those used in [“Channel configuration for IBM i”|

|on page 71,| as indicated.

mr (TCP) channel name

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name WINNT.AS400.SNA

H Sender (TCP) channel name WINNT.AS400.TCP

I Receiver (SNA) channel name G AS400.WINNT.SNA
H AS400.WINNT.TCP

Connection to IBM MQ for z/OS

The values in this section of the table must match those used in [‘Channel configuration for z/OS” on]

|]:_>age 38J as indicated.

mceiver (TCP/IP) channel name

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name WINNT.MVS.SNA

H Sender (TCP) channel name WINNT.MVS.TCP

I Receiver (SNA) channel name G MVS.WINNT.SNA
H MVS.WINNT.TCP

Reference

9

Table 1. Configuration worksheet for IBM MQ for Windows (continued)

| Parameter Name

Reference

| Example Used

User Value

as indicated.

Connection to IBM MQ for z/OS using queue-sharing groups

The values in this section of the table must match those used in [“Shared channel configuration example”|

C Remote queue manager name A QSG

D Remote queue name QSG.REMOTEQ
E Queue name at remote system B QSG.SHAREDQ

F Transmission queue name QSG

G Sender (SNA) channel name WINNT.QSG.SNA
H Sender (TCP) channel name WINNT.QSG.TCP
I Receiver (SNA) channel name G QSG.WINNT.SNA
mceiver (TCP/IP) channel name H QSG.WINNT.TCP

Connection to MQSeries® for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ
E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name WINNT.VSE.SNA
I Receiver channel name G VSE.WINNT.SNA

IBM MQ for Windows sender-channel definitions using SNA:

A code sample.

def q1 (AIX) +
usage(xmitq) +
replace

def gqr (AIX.REMOTEQ) +
rname (AIX.LOCALQ) +
rgmname (AIX) +
xmitq(AIX) +
replace

def chl (WINNT.AIX.SNA) chltype(sdr) +

trptype(lu62) +
conname (AIXCPIC) +
xmitq(AIX) +
replace

10 IBM MQ: Reference

MO Mo

IBM MQ for Windows receiver-channel definitions using SNA:

A code sample.

def g1 (WINNT.LOCALQ) replace B
def chl (AIX.WINNT.SNA) chltype(rcvr) + I
trptype(lu62) +
replace

IBM MQ for Windows sender-channel definitions using TCP/IP:

A code sample.

def q1 (AIX) + F
usage(xmitq) +
replace

def gqr (AIX.REMOTEQ) +
rname (AIX.LOCALQ) +
rgmname (AIX) +
xmitq(AIX) +
replace

MmO mo

def chl (WINNT.AIX.TCP) chltype(sdr) + H
trptype(tcp) +
conname (remote_tcpip_hostname) +
xmitq(AIX) + F
replace

IBM MQ for Windows receiver-channel definitions using TCP:

A code sample.

def q1 (WINNT.LOCALQ) replace B
def chl (AIX.WINNT.TCP) chltype(rcvr) + J
trptype(tcp) +
replace

Automatic startup:

IBM MQ for Windows allows you to automate the startup of a queue manager and its channel initiator,

channels, listeners, and command servers.

Use the IBM MQ Services snap-in to define the services for the queue manager. When you have
successfully completed testing of your communications setup, set the relevant services to automatic
within the snap-in. This file can be read by the supplied IBM MQ service when the system is started.

For more information, see |Administering IBM MQ |

Reference 11

Running channels as processes or threads:

IBM MQ for Windows provides the flexibility to run sending channels as Windows processes or Windows
threads. This is specified in the MCATYPE parameter on the sender channel definition.

Most installations run their sending channels as threads, because the virtual and real memory required to
support many concurrent channel connections is reduced. However, a NetBIOS connection needs a
separate process for the sending Message Channel Agent.

Multiple thread support - pipelining:

You can optionally allow a message channel agent (MCA) to transfer messages using multiple threads.
This process, called pipelining, enables the MCA to transfer messages more efficiently, with fewer wait
states, which improves channel performance. Each MCA is limited to a maximum of two threads.

You control pipelining with the PipeLineLength parameter in the qm.ini file. This parameter is added to
the CHANNELS stanza:

PipeLineLength=1 | number
This attribute specifies the maximum number of concurrent threads a channel uses. The default is
1. Any value greater than 1 is treated as 2.

With IBM MQ for Windows, use the IBM MQ Explorer to set the PipeLineLength parameter in the registry.
See [The Channels stanza| for a complete description of the CHANNELS stanza.

Note:
1. PipeLineLength applies only to V5.2 or later products.
2. Pipelining is effective only for TCP/IP channels.

When you use pipelining, the queue managers at both ends of the channel must be configured to have a
PipeLineLength greater than 1.

Channel exit considerations

Pipelining can cause some exit programs to fail, because:
* Exits might not be called serially.
* Exits might be called alternately from different threads.

Check the design of your exit programs before you use pipelining;:
+ Exits must be reentrant at all stages of their execution.

* When you use MQI calls, remember that you cannot use the same MQI handle when the exit is
invoked from different threads.

Consider a message exit that opens a queue and uses its handle for MQPUT calls on all subsequent
invocations of the exit. This fails in pipelining mode because the exit is called from different threads. To
avoid this failure, keep a queue handle for each thread and check the thread identifier each time the exit
is invoked.

12 IBM MQ: Reference

Example configuration - IBM MQ for AIX
This section gives an example of how to set up communication links from IBM MQ for AIX to IBM MQ
products.

The following platforms are covered in the examples:
* Windows

* HP Tru64 UNIX

* HP-UX

* Solaris

* Linux

* IBMi

* z/0S

* VSE/ESA

See [“Example configuration information for all platforms” on page 1| for background information about
this section and how to use it.

Establishing an LU 6.2 connection:
Describes the parameters needed for an LU 6.2 connection.

For the latest information about configuring SNA over TCP/IP, refer to the following online IBM
documentation: [Communications Server for AIX]

Establishing a TCP connection:

The listener must be started explicitly before any channels are started. It enables receiving channels to
start automatically in response to a request from an inbound sending channel.

The IBM MQ command used to start the IBM MQ for TCP listener is:
runmglsr -t tcp

Alternatively, if you want to use the UNIX supplied TCP/IP listener, complete the following steps:
1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or root. If you do not have
the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel Tlistener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown,
replacing MQ_INSTALLATION_PATH with the high-level directory in which IBM MQ is installed:

MQSeries stream tcp nowait root MQ_INSTALLATION_PATH/bin/amgcrsta amqcrsta
[-m queue.manager.name]

3. Enter the command refresh -s inetd.
Note: You must add root to the mgm group. You need not have the primary group set to mgm. As long
as mqm is in the set of groups, you can use the commands. If you are running only applications that use

the queue manager you do not need mgm group authority.

What next?

The connection is now established. You are ready to complete the configuration. Go to [“IBM MQ for AIX|
fonfiguration” on page 14

Reference 13

http://www.ibm.com/software/network/commserver/aix/library/index.html

IBM MQ for AIX configuration:

Defining channels to complete the configuration.

Note:

1.

Before beginning the installation process ensure that you have first created the mgm user and group,
and set the password.

If installation fails as a result of insufficient space in the file system you can increase the size as
follows, using the command smit C sna. (Use df to display the status of the file system. This indicates
the logical volume that is full.)
-- Physical and Logical Storage
-- File Systems
-- Add / Change / Show / Delete File Systems
-- Journaled File Systems
-- Change/Show Characteristics of a Journaled File System

Start any channel using the command:
runmqchl -c channel.name

Sample programs are installed in MQ_INSTALLATION_PATH/samp, where MQ_INSTALLATION_PATH
represents the high-level directory in which IBM MQ is installed.

Error logs are stored in /var/mqm/qmgrs/ gmgrname /errors.

On AIX, you can start a trace of the IBM MQ components by using standard IBM MQ trace

commands, or using AIX system trace. See [Using trace| for more information about IBM MQ Trace and
AIX system trace.

When you are using the command interpreter runmgqsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the
last parameter and the continuation character.

Basic configuration

1.

14

Create the queue manager from the AIX command line using the command:
crtmgm -u dlgname -q aix

where:
aix Is the name of the queue manager
-q Indicates that this is to become the default queue manager
-u dlgname
Specifies the name of the undeliverable message queue
This command creates a queue manager and a set of default objects.

Start the queue manager from the AIX command line using the command:
strmgm aix

where agix is the name given to the queue manager when it was created.

Start runmgqsc from the AIX command line and use it to create the undeliverable message queue by
entering the command:

def q1 (dlgname)

where digname is the name given to the undeliverable message queue when the queue manager was
created.

IBM MQ: Reference

Channel configuration for AIX:
Includes information about configuring a queue manager for a given channel and platform.

The following section details the configuration to be performed on the AIX queue manager to implement
the channel described in [“Example configuration information for all platforms” on page 1/

In each case the MQSC command is shown. Either start runmqsc from an AIX command line and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for AIX and IBM MQ for Windows. To connect to IBM MQ
on another platform use the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of IBM MQ objects used throughout
these examples. If you change the names used here, ensure that you also change the other references
made to these objects throughout this section. All others are keywords and should be entered as shown.

Table 2. Configuration worksheet for IBM MQ for AIX
| Referex+db<ample Used

ID | Parameter Name | User Value

Definition for local node
A Queue Manager Name AIX
AIX.LOCALQ

B Local queue name

Connection to IBM MQ for Windows

The values in this section of the table must match those used in [“Channel configuration for Windows” on page 7, as
indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ
F Transmission queue name WINNT

G Sender (SNA) channel name AIX.WINNT.SNA
H Sender (TCP/IP) channel name AIX.WINNT. TCP

I Receiver (SNA) channel name G WINNT.AIX.SNA

] Receiver (TCP) channel name H WINNT.AIX.TCP

Connection to IBM MQ for HP Tru64 UNIX

The values in this section of the table must match those used in your HP Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ
E Queue name at remote system B DECUX.LOCALQ
F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.AIX.TCP

] Receiver (TCP) channel name H AIX.DECUX.TCP

Connection to IBM MQ for HP-UX

The values in this section of the table must match those used in [“Channel configuration for HP-UX” on page 21 as

indicated.
C Remote queue manager name A HPUX
D Remote queue name HPUX.REMOTEQ

Reference 15

Table 2. Configuration worksheet for IBM MQ for AIX (continued)

ID Parameter Name Referendexample Used User Value
E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name AIX.HPUX.SNA

H Sender (TCP) channel name AIX.HPUX.TCP

I Receiver (SNA) channel name G HPUX.AIX.SNA

] Receiver (TCP) channel name H HPUX.AIX.TCP

Connection to IBM MQ for Solaris

The values in this section of the table must match those used in [“Channel configuration for Solaris” on page 27, as

indicated.
C Remote queue manager name A SOLARIS
Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ
F Transmission queue name SOLARIS

G Sender (SNA) channel name AIX.SOLARIS.SNA
H Sender (TCP/IP) channel name AIX.SOLARIS.TCP

I Receiver (SNA) channel name G SOLARIS.AIX.SNA

J Receiver (TCP/IP) channel name H SOLARIS.AIX.TCP

Connection to IBM MQ for Linux

The values in this section of the table must match those used in [“Channel configuration for Linux” on page 34,as

indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ
E Queue name at remote system B LINUX.LOCALQ
F Transmission queue name LINUX

G Sender (SNA) channel name AIX.LINUX.SNA
H Sender (TCP/IP) channel name AIX.LINUX.TCP

I Receiver (SNA) channel name G LINUX.AIX.SNA

] Receiver (TCP/IP) channel name H LINUX.AIX.TCP

m Connection to IBM MQ for IBM i

m The values in this section of the table must match those used in [*Channel configuration for IBM i”|

as indicated.

mceiver (TCP) channel name

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name AIX.AS400.SNA

H Sender (TCP) channel name AIX.AS400.TCP

I Receiver (SNA) channel name G AS400.AIX.SNA
H AS400.AIX.TCP

16 IBM MQ: Reference

Table 2. Configuration worksheet for IBM MQ for AIX (continued)

ID

| Parameter Name

| Referex+d§xample Used

User Value

Connection to IBM MQ for z/OS

The values in this section of the table must match those used in [‘Channel configuration for z/0S” on]

|Eage 38:| as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ
E Queue name at remote system B MVS.LOCALQ
F Transmission queue name MVS

G Sender (SNA) channel name AIX.MVS.SNA
H Sender (TCP) channel name AIX.MVS.TCP

I Receiver (SNA) channel name G MVS.AIX.SNA
] Receiver (TCP) channel name H MVS.AIX.TCP

Connection to IBM MQ for z/OS using queue-sharing groups

The values in this section of the table must match those used in [“Shared channel configuration example”|

lon page 47) as indicated.

C Remote queue manager name A QSG

D Remote queue name QSG.REMOTEQ
E Queue name at remote system B QSG.SHAREDQ
F Transmission queue name QsG

G Sender (SNA) channel name AIX.QSG.SNA
H Sender (TCP) channel name AIX.QSG.TCP

I Receiver (SNA) channel name G QSG.AIX.SNA
b 205 | Receiver (TCP) channel name H QSG.AIX.TCP
Connection to MQSeries for VSE/ESA

The values in this section of the table must match t

hose used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ
E Queue name at remote system B VSE.LOCALQ
F Transmission queue name VSE

G Sender channel name AIX.VSE.SNA

I Receiver channel name G VSE.AIX.SNA

Reference

17

IBM MQ for AIX sender-channel definitions using SNA:

Example commands.

def q1 (WINNT) + F
usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq(WINNT) +
replace

MO Mo

def chl (AIX.WINNT.SNA) chltype(sdr) + G
trptype(lu62) +
conname ('WINNTCPIC') + 17
xmitq (WINNT) + F
replace

IBM MQ for AIX receiver-channel definitions using SNA:

Example commands.

def g1 (AIX.LOCALQ) replace B
def chl (WINNT.AIX.SNA) chltype(rcvr) + I
trptype(lu62) +
replace

IBM MQ for AIX TPN setup:

Alternative ways of ensuring that SNA receiver channels activate correctly when a sender channel
initiates a conversation.

During the AIX Communications Server configuration process, an LU 6.2 TPN profile was created, which
contained the full path to a TP executable program. In the example, the file was called
u/interops/AlX.crs6a. You can choose a name, but consider including the name of your queue manager
in it. The contents of the executable file must be:

#1/bin/sh
MQ_INSTALLATION_PATH/bin/amqcrs6a -m aix

where aix is the queue manager name (A) and MQ_INSTALLATION_PATH is the high-level directory in which
IBM MQ is installed. After creating this file, enable it for execution by running the command:

chmod 755 /u/interops/AIX.crsb6a

As an alternative to creating an executable file, you can specify the path on the Add LU 6.2 TPN Profile
panel, using command-line parameters.

Specifying a path in one of these two ways ensures that SNA receiver channels activate correctly when a
sender channel initiates a conversation.

18 IBM MQ: Reference

IBM MQ for AIX sender-channel definitions using TCP:

Example commands.

def g1 (WINNT) + F
usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq(WINNT) +
replace

MO Mo

def chl (AIX.WINNT.TCP) chltype(sdr) + H
trptype(tcp) +
conname (remote_tcpip_hostname) +
xmitq (WINNT) + F
replace

IBM MQ for AIX receiver-channel definitions using TCP:

Example commands.
def g1 (AIX.LOCALQ) replace B
def chl (WINNT.AIX.TCP) chltype(rcvr) + J

trptype(tcp) +
replace

Example configuration - IBM MQ for HP-UX
This section gives an example of how to set up communication links from IBM MQ for HP-UX to IBM
MQ products.

The following platforms are included:
* Windows

+ AIX

* HP Tru64 UNIX

* Solaris

* Linux

« IBMi

+ 2z/0S

* VSE/ESA

See |“Example configuration information for all platforms” on page 1| for background information about
this section and how to use it.

Reference 19

Establishing an LU 6.2 connection:
Describes the parameters needed for an LU 6.2 connection
For the latest information about configuring SNA over TCP/IP, refer to the following online IBM

documentation: [Communications Server| and the following online HP documentation: [HP-UX SN Aplus2]
[nstallation Guide}

Establishing a TCP connection:
Alternative ways of establishing a connection and next steps.

The listener must be started explicitly before any channels are started. It enables receiving channels to
start automatically in response to a request from an inbound sending channel.

Alternatively, if you want to use the UNIX supplied TCP/IP listener, complete the following steps:
1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or root. If you do not have
the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener

2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown,
replacing MQ_INSTALLATION_PATH with the high-level directory in which IBM MQ is installed.

MQSeries stream tcp nowait root MQ_INSTALLATION_PATH/bin/amgcrsta amgcrsta
[-m queue.manager.name]

3. Find the process ID of the inetd with the command:
ps -ef | grep inetd

4. Run the command:
ki1l -1 inetd processid

Note: You must add root to the mgm group. You do not need not have the primary group set to mqm.
As long as mqm is in the set of groups, you can use the commands. If you are running only applications
that use the queue manager you do not need to have mgm group authority.

What next?

The connection is now established. You are ready to complete the configuration. Go to |"IBM MQ for
HP-UX configuration” on page 21|

20 IBM MQ: Reference

http://www.ibm.com/software/network/commserver/library/index.html
http://docs.hp.com/en/j2740-90001/index.html
http://docs.hp.com/en/j2740-90001/index.html

IBM MQ for HP-UX configuration:
Describes defining the channels to complete the configuration.

Before beginning the installation process ensure that you have first created the mgm user and group, and
set the password.

Start any channel using the command:
runmqchl -c channel.name

Note:

1. Sample programs are installed in MQ_INSTALLATION_PATH/samp, where MQ_INSTALLATION_PATH
represents the high-level directory in which IBM MQ is installed.

2. Error logs are stored in /var/mqm/qmgrs/ gmgrname /errors.

3. When you are using the command interpreter runmgsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the
last parameter and the continuation character.

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:
crtmgm -u dlgname -q hpux
where:
hpux Is the name of the queue manager
-q Indicates that this is to become the default queue manager

-u dlgname
Specifies the name of the undeliverable message queue

This command creates a queue manager and a set of default objects. It sets the DEADQ attribute of
the queue manager but does not create the undeliverable message queue.

2. Start the queue manager from the UNIX prompt using the command:
strmgm hpux

where hpux is the name given to the queue manager when it was created.
Channel configuration for HP-UX:
Includes information about configuring a queue manager for a given channel and platform.

The following section details the configuration to be performed on the HP-UX queue manager to
implement the channel described in [“Example configuration information for all platforms” on page 1]

In each case the MQSC command is shown. Either start runmqsc from a UNIX prompt and enter each
command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for HP-UX and IBM MQ for Windows. To connect to IBM
MQ on another platform use the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of IBM MQ objects used throughout

these examples. If you change the names used here, ensure that you also change the other references
made to these objects throughout this section. All others are keywords and should be entered as shown.

Reference 21

Table 3. Configuration worksheet for IBM MQ for HP-UX

ID | Parameter Name | Refereiﬂimmple Used User Value
Definition for local node

A Queue Manager Name HPUX

B Local queue name HPUX.LOCALQ

Connection to IBM MQ for Windows

The values in this section of the table must match those used in [“Channel configuration for Windows” on page 7, as
indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name HPUX.WINNT.SNA
H Sender (TCP/IP) channel name HPUX.WINNT.TCP
I Receiver (SNA) channel name G WINNT.HPUX.SNA
] Receiver (TCP) channel name H WINNT.HPUX.TCP

Comnnection to IBM MQ for AIX

The values in this section of the table must match those used in [Table 2 on page 15} as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ
E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name HPUX.AIX.SNA
H Sender (TCP) channel name HPUX.AIX.TCP
I Receiver (SNA) channel name G AIX.HPUX.SNA
J Receiver (TCP) channel name H AIX.HPUX.TCP

Connection to IBM MQ for HP Tru64 UNIX

The values in this section of the table must match those used in your HP Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ
E Queue name at remote system B DECUX.LOCALQ
F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.HPUX.TCP
J Receiver (TCP) channel name H HPUX.DECUX.TCP

Connection to IBM MQ for Solaris

The values in this section of the table must match those used in [Table 4 on page 27} as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ
E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name HPUX.SOLARIS.SNA

22 IBM MQ: Reference

Table 3. Configuration worksheet for IBM MQ for HP-UX (continued)

ID Parameter Name Referedbeample Used User Value
H Sender (TCP/IP) channel name HPUX.SOLARIS.TCP
I Receiver (SNA) channel name G SOLARIS.HPUX.SNA
] Receiver (TCP/IP) channel name H SOLARIS.HPUX.TCP

Connection to IBM MQ for Linux

The values in this section of the table must match those used in [Table 5 on page 34} as indicated.

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ
E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name HPUX.LINUX.SNA
H Sender (TCP/IP) channel name HPUX.LINUX.TCP
I Receiver (SNA) channel name G LINUX.HPUX.SNA
] Receiver (TCP/IP) channel name H LINUX.HPUX.TCP

m Connection to IBM MQ for IBM i

m The values in this section of the table must match those used in [Table 10 on page 71} as indicated.

mceiver (TCP) channel name

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name HPUX.AS400.SNA

H Sender (TCP/IP) channel name HPUX.AS400.TCP

I Receiver (SNA) channel name G AS400.HPUX.SNA
H AS400.HPUX.TCP

Connection to IBM MQ for z/OS

The values in this section of the table must match those used in [Table 6 on page 39} as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ
E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name HPUX.MVS.SNA
H Sender (TCP) channel name HPUX.MVS.TCP
I Receiver (SNA) channel name G MVS.HPUX.SNA
b 205 Jf Receiver (TCP) channel name H MVS.HPUX.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C

Remote queue manager name

A

VSE

D

Remote queue name

VSE.REMOTEQ

Reference

23

Table 3. Configuration worksheet for IBM MQ for HP-UX (continued)

ID Parameter Name Referedoeample Used User Value
E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name HPUX.VSE.SNA

I Receiver channel name G VSE.HPUX.SNA

IBM MQ for HP-UX sender-channel definitions using SNA:

Example commands.

def g1 (WINNT) + F
usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq(WINNT) +
replace

Mo Mmo

def chl (HPUX.WINNT.SNA) chltype(sdr) + G
trptype(lu62) +
conname ('WINNTCPIC') + 16
xmitq(WINNT) + F
replace

IBM MQ for HP-UX receiver-channel definitions using SNA:

Example commands.
def g1 (HPUX.LOCALQ) replace B
def chl (WINNT.HPUX.SNA) chltype(rcvr) + I

trptype(lu62) +
replace

IBM MQ for HP-UX invokable TP setup:
Ensuring that SNA receiver channels activate correctly when a sender channel initiates a conversation.

This is not required for HP SNAplus2 Release 6.

During the HP SNAplus2 configuration process, you created an invokable TP definition, which points to
an executable file. In the example, the file was called /users/interops/HPUX.crs6a. You can choose what
you call this file, but consider including the name of your queue manager in the name. The contents of
the executable file must be:

#!/bin/sh
MQ_INSTALLATION_PATH/bin/amgcrs6a -m hpux

where hpux is the name of your queue manager A and MQ_INSTALLATION_PATH is the high-level directory
in which IBM MQ is installed.

This ensures that SNA receiver channels activate correctly when a sender channel initiates a conversation.

24 IBM MQ: Reference

IBM MQ for HP-UX sender-channel definitions using TCP:

Example commands.

def g1 (WINNT) + F
usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq(WINNT) +
replace

Mo mo

def chl (HPUX.WINNT.TCP) chltype(sdr) + H
trptype(tcp) +
conname (remote_tcpip_hostname) +
xmitq (WINNT) + F
replace

IBM MQ for HP-UX receiver-channel definitions using TCP/IP:

Example commands.
def q1 (HPUX.LOCALQ) replace B
def chl (WINNT.HPUX.TCP) chltype(rcvr) + J

trptype(tcp) +
replace

Example configuration - IBM MQ for Solaris

This section gives an example of how to set up communication links from IBM MQ for Solaris to IBM

MQ products.

Examples are given on the following platforms:
* Windows

* AIX

* HP Tru64 UNIX

* HP-UX

* Linux

 IBMi

* z/0S

* VSE/ESA

See |“Example configuration information for all platforms” on page 1| for background information about

this section and how to use it.

Reference

25

Establishing an LU 6.2 connection using SNAP-IX:
Parameters for configuring an LU 6.2 connection using SNAP-IX.

For the latest information about configuring SNA over TCP/IP, refer to the following online IBM
documentation: [Communications Server] the following online MetaSwitch documentation: SNAP-1
Administration Guide| and the following online Sun documentation: [Configuring Intersystem|
Communications (ISC)|

Establishing a TCP connection:
Information about configuring a TCP connection and next steps.

To establish a TCP connection, follow these steps.
1. Edit the file /etc/services.

Note: To edit the /etc/services file, you must be logged in as a superuser or root. If you do not have
the following line in that file, add it as shown:

MQSeries 1414/tcp # MQSeries channel listener
2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown:

MQSeries stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amqcrsta amgcrsta
[-m queue.manager.name]

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
3. Find the process ID of the inetd with the command:
ps -ef | grep inetd
4. Run the appropriate command, as follows:
* For Solaris 9:
ki1l -1 inetd processid
* For Solaris 10 or later:
inetconv

What next?

The TCP/IP connection is now established. You are ready to complete the configuration. Go to |'IBM MQ
for Solaris configuration.”|

IBM MQ for Solaris configuration:
Describes channels to be defined to complete the configuration.

Before beginning the installation process ensure that you have first created the mgm user and group, and
set the password.

Start any channel using the command:

runmqchl -c channel.name

Note:
1. Sample programs are installed in MQ_INSTALLATION_PATH/samp.

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
2. Error logs are stored in /var/mqm/qmgrs/ gmgrname /errors.

3. When you are using the command interpreter runmgqsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the
last parameter and the continuation character.

26 IBM MQ: Reference

http://www.ibm.com/software/network/commserver/library/index.html
http://docs.metaswitch.com/snapix/admin.htm
http://docs.metaswitch.com/snapix/admin.htm
http://docs.oracle.com/cd/E19065-01/servers.12k/816-5328-11/cfgcomms.html
http://docs.oracle.com/cd/E19065-01/servers.12k/816-5328-11/cfgcomms.html

4. For an SNA or LU6.2 channel, if you experience an error when you try to load the communications
library, probably file liblu62.so cannot be found. A likely solution to this problem is to add its
location, which is probably /opt/SUNWIu62, to LD_LIBRARY_PATH.

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:

crtmgm -u dlgname -q solaris

where:

solaris
Is the name of the queue manager

-q Indicates that this is to become the default queue manager

-u dlgname
Specifies the name of the undeliverable message queue
This command creates a queue manager and a set of default objects.
2. Start the queue manager from the UNIX prompt using the command:

strmgm solaris
where solaris is the name given to the queue manager when it was created.
Channel configuration for Solaris:

The following section details the configuration to be performed on the Solaris queue manager to
implement a channel.

The configuration described is to implement the channel described in [Figure 1 on page 1}

The MQSC command to create each object is shown. Either start runmqsc from a UNIX prompt and enter

each command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for Solaris and IBM MQ for Windows. To connect to IBM

MQ on another platform use the appropriate set of values from the table in place of those for Windows.

Note: The words in bold are user-specified and reflect the names of IBM MQ objects used throughout
these examples. If you change the names used here, ensure that you also change the other references

made to these objects throughout this section. All others are keywords and should be entered as shown.

Table 4. Configuration worksheet for IBM MQ for Solaris

ID | Parameter Name | Referer*d"e(ample Used User Value
Definition for local node

A Queue Manager Name SOLARIS

B Local queue name SOLARIS.LOCALQ

Connection to IBM MQ for Windows

The values in this section of the table must match those used in [Table 1 on page 8} as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ

E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name SOLARIS.WINNT.SNA

Reference

27

Table 4. Configuration worksheet for IBM MQ for Solaris (continued)

ID Parameter Name Referendixample Used User Value
H Sender (TCP/IP) channel name SOLARIS.WINNT.TCP
I Receiver (SNA) channel name G WINNT.SOLARIS.SNA
] Receiver (TCP) channel name H WINNT.SOLARIS.TCP

Connection to IBM MQ for AIX

The values in this section of the table must match those used in [Table 2 on page 15} as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name SOLARIS.AIX.SNA
H Sender (TCP) channel name SOLARIS.AIX.TCP
I Receiver (SNA) channel name G AIX.SOLARIS.SNA
] Receiver (TCP) channel name H AIX.SOLARIS.TCP

Connection to MQSeries for Compaq Tru64 Unix

The values in this section of the table must match those used in your Compaq Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.SOLARIS. TCP
] Receiver (TCP) channel name H SOLARIS.DECUX.TCP

Comnnection to IBM MQ for HP-UX

The values in this section of the table must match those used in [Table 3 on page 22} as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ

E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name SOLARIS.HPUX.SNA
H Sender (TCP) channel name SOLARIS.HPUX. TCP
I Receiver (SNA) channel name G HPUX.SOLARIS.SNA
J Receiver (TCP/IP) channel name H HPUX.SOLARIS.TCP

Connection to IBM MQ for Linux

The values in this section of the table must match those used in [Table 5 on page 34} as indicated.
C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ

E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name SOLARIS.LINUX.SNA

H Sender (TCP/IP) channel name SOLARIS.LINUX. TCP

28 IBM MQ: Reference

Table 4. Configuration worksheet for IBM MQ for Solaris (continued)

ID Parameter Name Referendixample Used User Value
I Receiver (SNA) channel name G LINUX.SOLARIS.SNA
Receiver (TCP/IP) channel name H LINUX.SOLARIS.TCP

m Connection to IBM MQ for IBM i

m The values in this section of the table must match those used in [Table 10 on page 71} as indicated.

meiver (TCP) channel name

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name SOLARIS.AS400.SNA

H Sender (TCP) channel name SOLARIS.AS400.TCP

I Receiver (SNA) channel name G AS400.SOLARIS.SNA
H AS400.SOLARIS.TCP

Connection to IBM MQ for z/0OS

The values in this section of the table must match those used in [Table 6 on page 39} as indicated.

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name SOLARIS.MVS.SNA
H Sender (TCP) channel name SOLARIS.MVS.TCP
I Receiver (SNA) channel name G MVS.SOLARIS.SNA
Receiver (TCP) channel name H MVS.SOLARIS. TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name SOLARIS.VSE.SNA
I Receiver channel name G VSE.SOLARIS.SNA

Reference

29

IBM MQ for Solaris sender-channel definitions using SNAP-IX SNA:

Example coding.

def q1 (WINNT) + F
usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq(WINNT) +
replace

MO Mmo

def chl (SOLARIS.WINNT.SNA) chltype(sdr) + G
trptype(lu62) +
conname('NTCPIC') + 14
xmitq (WINNT) + F
replace

IBM MQ for Solaris receiver-channel definitions using SNA:

Example coding.
def g1 (SOLARIS.LOCALQ) replace B

def chl (WINNT.SOLARIS.SNA) chltype(rcvr) + I
trptype(lu62) +
replace

IBM MQ for Solaris sender-channel definitions using TCP:

Example coding.

def q1 (WINNT) + F
usage(xmitq) +
replace

def qr (WINNT.REMOTEQ) +
rname (WINNT.LOCALQ) +
rgmname (WINNT) +
xmitq(WINNT) +
replace

MmO mo

def chl (SOLARIS.WINNT.TCP) chltype(sdr) + H
trptype(tcp) +
conname (remote_tcpip_hostname) +
xmitq(WINNT) + F
replace

30 IBM MQ: Reference

IBM MQ for Solaris receiver-channel definitions using TCP/IP:

Example coding.
def g1 (SOLARIS.LOCALQ) replace B
def chl (WINNT.SOLARIS.TCP) chltype(rcvr) + J

trptype(tcp) +
replace

Example configuration - IBM MQ for Linux
This section gives an example of how to set up communication links from IBM MQ for Linux to IBM MQ
products.

The examples given are on the following platforms:
* Windows

* AIX

* Compaq Tru64 UNIX

* HP-UX

* Solaris

 IBMi

* z/0S

* VSE/ESA

See [“Example configuration information for all platforms” on page 1| for background information about
this section and how to use it.

Establishing an LU 6.2 connection:

Use this worksheet to record the values you use for your configuration.

Note: The information in this section applies only to IBM MQ for Linux (x86 platform). It does not apply
to IBM MQ for Linux (x86-64 platform), IBM MQ for Linux (zSeries s390x platform), or IBM MQ for

Linux (Power platform).

For the latest information about configuring SNA over TCP/IP, refer to the the Administration Guide for
your version of Linux from the following documentation: [Communications Server for Linux libraryl]

Establishing a TCP connection on Linux:

Some Linux distributions now use the extended inet daemon (XINETD) instead of the inet daemon
(INETD). The following instructions tell you how to establish a TCP connection using either the inet
daemon or the extended inet daemon.

Using the inet daemon (INETD)

MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.

To establish a TCP connection, follow these steps.
1. Edit the file /etc/services. If you do not have the following line in the file, add it as shown:
MQSeries 1414/tcp # MQSeries channel Tlistener

Note: To edit this file, you must be logged in as a superuser or root.
2. Edit the file /etc/inetd.conf. If you do not have the following line in that file, add it as shown:

Reference 31

http://www.ibm.com/support/docview.wss?uid=swg27005371

MQSeries stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amqcrsta amgcrsta
[-m queue.manager.name]

3. Find the process ID of the inetd with the command:
ps -ef | grep inetd

4. Run the command:
ki1l -1 inetd processid

If you have more than one queue manager on your system, and therefore require more than one service,
you must add a line for each additional queue manager to both /etc/services and inetd.conf.

For example:

MQSeriesl 1414/tcp
MQSeries2 1822/tcp

MQSeriesl stream tcp nowait mgm MQ_INSTALLATION _PATH/bin/amgcrsta amgcrsta -m QM1
MQSeries2 stream tcp nowait mqm MQ_INSTALLATION_PATH/bin/amgcrsta amgcrsta -m QM2

This avoids error messages being generated if there is a limitation on the number of outstanding
connection requests queued at a single TCP port. For information about the number of outstanding
connection requests, see [Using the TCP listener backlog option}

The inetd process on Linux can limit the rate of inbound connections on a TCP port. The default is 40
connections in a 60 second interval. If you need a higher rate, specify a new limit on the number of
inbound connections in a 60 second interval by appending a period (.) followed by the new limit to the
nowait parameter of the appropriate service in inetd.conf. For example, for a limit of 500 connections in a
60 second interval use:

MQSeries stream tcp nowait.500 mgm /MQ_INSTALLATION_PATH/bin/amgcrsta amgcrsta -m QM1
MQ_INSTALLATION_PATH represents the high-level directory in which IBM MQ is installed.
Using the extended inet daemon (XINETD)

The following instructions describe how the extended inet daemon is implemented on Red Hat Linux. If
you are using a different Linux distribution, you might have to adapt these instructions.

To establish a TCP connection, follow these steps.
1. Edit the file /etc/services. If you do not have the following line in the file, add it as shown:
MQSeries 1414/tcp # MQSeries channel Tistener

Note: To edit this file, you must be logged in as a superuser or root.
2. Create a file called IBM MQ in the XINETD configuration directory, /etc/xinetd.d. Add the following
stanza to the file:

WebSphere MQ service for XINETD
service MQSeries

{

disable = no

flags = REUSE

socket_type = stream

wait = no

user = mgm

server = MQ_INSTALLATION_PATH/bin/amgcrsta

server_args
log_on_failure +

}

3. Restart the extended inet daemon by issuing the following command:
/etc/rc.d/init.d/xinetd restart

-m queue.manager.name
USERID

32 IBM MQ: Reference

If you have more than one queue manager on your system, and therefore require more than one service,
you must add a line to /etc/services for each additional queue manager. You can create a file in the
/etc/xinetd.d directory for each service, or you can add additional stanzas to the IBM MQ file you
created previously.

The xinetd process on Linux can limit the rate of inbound connections on a TCP port. The default is 50
connections in a 10 second interval. If you need a higher rate, specify a new limit on the rate of inbound
connections by specifying the 'cps' attribute in the xinetd configuration file. For example, for a limit of
500 connections in a 60 second interval use:

cps = 500 60
What next?

The TCP/IP connection is now established. You are ready to complete the configuration. Go to |"IBM MQ
for Linux configuration.”|

IBM MQ for Linux configuration:

Before beginning the installation process ensure that you have first created the mqm user ID and the
mqgm group, and set the password.

Start any channel using the command:
runmqchl -c channel.name

Note:

1. Sample programs are installed in MQ_INSTALLATION_PATH/samp, where MQ_INSTALLATION_PATH
represents the high-level directory in which IBM MQ is installed.

2. Error logs are stored in /var/mqm/qmgrs/ gmgrname /errors.

3. When you are using the command interpreter runmgsc to enter administration commands, a + at the
end of a line indicates that the next line is a continuation. Ensure that there is a space between the
last parameter and the continuation character.

Basic configuration
1. Create the queue manager from the UNIX prompt using the command:
crtmgm -u dlgname -q linux
where:
linux Is the name of the queue manager
-q Indicates that this is to become the default queue manager

-u dlgname
Specifies the name of the dead letter queue
This command creates a queue manager and a set of default objects.
2. Start the queue manager from the UNIX prompt using the command:
strmgm linux

where linux is the name given to the queue manager when it was created.

Reference 33

Channel configuration for Linux:

The following section details the configuration to be performed on the Linux queue manager to
implement the channel described in [“Example configuration information for all platforms” on page 1)

The MQSC command to create each object is shown. Either start runmgsc from a UNIX prompt and enter
each command in turn, or build the commands into a command file.

Examples are given for connecting IBM MQ for Linux and IBM MQ for HP-UX. To connect to IBM MQ
on another platform use the appropriate set of values from the table in place of those for HP-UX.

Note: The words in bold are user-specified and reflect the names of IBM MQ objects used throughout
these examples. If you change the names used here, ensure that you also change the other references
made to these objects throughout this section. All others are keywords and should be entered as shown.

Table 5. Configuration worksheet for IBM MQ for Linux

ID | Parameter Name | Refert{ﬂ:bmmple Used User Value
Definition for local node

A Queue Manager Name LINUX

B Local queue name LINUX.LOCALQ

Connection to IBM MQ for Windows

The values in this section of the table must match those used in [“Channel configuration for Windows” on page 7,|as
indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name LINUX.WINNT.SNA
H Sender (TCP/IP) channel name LINUX.WINNT.TCP
I Receiver (SNA) channel name G WINNT.LINUX.SNA
] Receiver (TCP) channel name H WINNT.LINUX.TCP

Connection to IBM MQ for AIX

The values in this section of the table must match those used in [“Channel configuration for AIX” on page 15,)as
indicated.

C Remote queue manager name A AIX
Remote queue name AIX.REMOTEQ

E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name LINUX.AIX.SNA
H Sender (TCP) channel name LINUX.AIX.TCP
I Receiver (SNA) channel name G AIX.LINUX.SNA
J Receiver (TCP) channel name H AIX.LINUX.TCP

Connection to MQSeries for Compaq Tru64 UNIX

The values in this section of the table must match those used in your Compaq Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ

34 IBM MQ: Reference

Table 5. Configuration worksheet for IBM MQ for Linux (continued)

ID Parameter Name Refer¢doeample Used User Value
E Queue name at remote system B DECUX.LOCALQ

F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.LINUX.TCP

] Receiver (TCP) channel name H LINUX.DECUX.TCP

Connection to IBM MQ for HP-UX

The values in this section of the table must match those used in [Table 3 on page 22} as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ
E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name LINUX.HPUX.SNA
H Sender (TCP) channel name LINUX.HPUX.TCP
I Receiver (SNA) channel name G HPUX.LINUX.SNA
] Receiver (TCP/IP) channel name H HPUX.LINUX.TCP

Connection to IBM MQ for Solaris

The values in this section of the table must match those used in [Table 4 on page 27} as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ

E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name GIS

G Sender (SNA) channel name LINUX.SOLARIS.SNA
H Sender (TCP/IP) channel name LINUX.SOLARIS.TCP
I Receiver (SNA) channel name G SOLARIS.LINUX.SNA
J Receiver (TCP/IP) channel name H SOLARIS.LINUX. TCP

m Connection to IBM MQ for IBM i

m The values in this section of the table must match those used in [Table 10 on page 71} as indicated.

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ

E Queue name at remote system B AS400.LOCALQ

F Transmission queue name AS400

G Sender (SNA) channel name LINUX.AS400.SNA
H Sender (TCP) channel name LINUX.AS400.TCP
I Receiver (SNA) channel name G AS400.LINUX.SNA
mgteiver (TCP) channel name H AS400.LINUX.TCP

Connection to IBM MQ for z/OS

The values in this section of the table must match those used in [Table 6 on page 39} as indicated.

C | Remote queue manager name |A | MVS |

Reference 35

Table 5. Configuration worksheet for IBM MQ for Linux (continued)

ID Parameter Name Refer¢doeample Used User Value
D Remote queue name MVS.REMOTEQ

E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name LINUX.MVS.SNA

H Sender (TCP) channel name LINUX.MVS.TCP

I Receiver (SNA) channel name G MVS.LINUX.SNA

J Receiver (TCP) channel name H MVS.LINUX.TCP

Connection to MQSeries for VSE/ESA (IBM MQ for Linux (x86 platform) only)

The values in this section of the table must match those used in your VSE/ESA system.

C Remote queue manager name A VSE

D Remote queue name VSE.REMOTEQ
E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name LINUX.VSE.SNA
I Receiver channel name G VSE.LINUX.SNA

IBM MQ for Linux (x86 platform) sender-channel definitions using SNA:

Example coding.
def g1 (HPUX) +

def

def

36

usage(xmitq) +
replace

qr (HPUX.REMOTEQ) +
rname (HPUX.LOCALQ) +
rgmname (HPUX) +
xmitq(HPUX) +
replace

chl (LINUX.HPUX.SNA) chltype(sdr) +
trptype(lu62) +
conname ('HPUXCPIC') +

xmitq(HPUX) +

replace

IBM MQ: Reference

MmO Mmo

IBM MQ for Linux (x86 platform) receiver-channel definitions using SNA:

Example coding.

def g1 (LINUX.LOCALQ) replace B
def chl (HPUX.LINUX.SNA) chltype(rcvr) + I
trptype(lu62) +
replace

IBM MQ for Linux sender-channel definitions using TCP:

Example coding.

def g1 (HPUX) + F
usage(xmitq) +
replace

def gqr (HPUX.REMOTEQ) +
rname (HPUX.LOCALQ) +
rgmname (HPUX) +
xmitq(HPUX) +
replace

MmO mo

def chl (LINUX.HPUX.TCP) chltype(sdr) + H
trptype(tcp) +
conname (remote_tcpip_hostname) +
xmitq(HPUX) + F
replace

IBM MQ for Linux receiver-channel definitions using TCP/IP:

Example coding.

def g1 (LINUX.LOCALQ) replace B
def chl (HPUX.LINUX.TCP) chltype(rcvr) + J
trptype(tcp) +
replace

Example configuration - IBM MQ for z/0S

This section gives an example of how to set up communication links from IBM MQ for z/OS to IBM MQ

products on other platforms.

The following are the other platforms covered by this example:
* Windows

+ AIX

* Compaq Tru64 UNIX

+ HP-UX

* Solaris

¢ Linux

« IBMi

* VSE/ESA

You can also connect any of the following:
e 7z/0S to z/OS

* z/0S to MVS

* MVS to MVS

Reference

37

See [“Example configuration information for all platforms” on page 1| for background information about
this section and how to use it.

Establishing a connection:
To establish a connection there are a number of things to configure.
Establishing an LU 6.2 connection

For the latest information about configuring SNA over TCP/IP, refer to the following online IBM
documentation: [Communications Server for z/OS}

Establishing a TCP connection

Alter the queue manager object to use the correct distributed queuing parameters using the following
command. You must add the name of the TCP address space to the TCPNAME queue manager attribute.

ALTER QMGR TCPNAME(TCPIP)

The TCP connection is now established. You are ready to complete the configuration.
IBM MQ for z/OS configuration:

The following steps outline how to configure IBM MQ); starting and configuring channels and listeners.
1. Start the channel initiator using the command:

/cpf START CHINIT 1
2. Start an LU 6.2 listener using the command:

/cpf START LSTR LUNAME(M1) TRPTYPE(LU62)

The LUNAME of M1 refers to the symbolic name you gave your LU (5). You must specify
TRPTYPE(LU62), otherwise the listener assumes that you want TCP.

3. Start a TCP listener using the command:
/epf START LSTR

If you want to use a port other than 1414 (the default IBM MQ port), use the command:
/cpf START LSTR PORT(1555)

IBM MQ channels do not initialize successfully if the channel negotiation detects that the message
sequence number is different at each end. You might need to reset these channels manually.

Channel configuration for z/OS:
To implement the example channels, there is some configuration necessary on the z/OS queue manager.

The following sections detail the configuration to be performed on the z/OS queue manager to
implement the channel described in [“Example configuration information for all platforms” on page 1)

Examples are given for connecting IBM MQ for z/OS and IBM MQ for Windows. To connect to IBM MQ
on another platform use the appropriate set of values from the table in place of the values for Windows.

Note: The words in bold are user-specified and reflect the names of IBM MQ objects used throughout

these examples. If you change the names used here, ensure that you also change the other references
made to these objects throughout this section. All others are keywords and must be entered as shown.

38 IBM MQ: Reference

http://www.ibm.com/software/network/commserver/zos/library/

Table 6. Configuration worksheet for IBM MQ for z/OS

ID | Parameter Name

Reference

Example Used

User Value

Definition for local node

A Queue Manager Name

MVS

B Local queue name

MVS.LOCALQ

Connection to IBM MQ for Windows

The values in this section of the table must match the values used in[‘Channel configuration for Windows” on page|

as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ
F Transmission queue name WINNT

G Sender (LU 6.2) channel name MVS.WINNT.SNA
H Sender (TCP) channel name MVS.WINNT.TCP
I Receiver (LU 6.2) channel name G WINNT.MVS.SNA
] Receiver (TCP/IP) channel name H WINNT.MVS.TCP

Connection to IBM MQ for AIX

The values in this section of the table must match the values used in[‘Channel configuration for AIX” on page 15

as indicated.

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ
E Queue name at remote system B AIX.LOCALQ
F Transmission queue name AIX

G Sender (LU 6.2) channel name MVS.AIX.SNA
H Sender (TCP/IP) channel name MVS.AIX.TCP
I Receiver (LU 6.2) channel name G AIX.MVS.SNA
] Receiver (TCP/IP) channel name H AIX.MVS.TCP

Connection to MQSeries for Compaq Tru64 Unix

The values in this section of the table must match the values used in your Compaq Tru64

UNIX system.

Remote queue manager name A DECUX
D Remote queue name DECUX.REMOTEQ
E Queue name at remote system B DECUX.LOCALQ
F Transmission queue name DECUX
H Sender (TCP) channel name DECUX.MVS. TCP
] Receiver (TCP) channel name H MVS.DECUX.TCP

Connection to IBM MQ for HP-UX

The values in this section of the table must match the values used in[‘Channel configuration for HP-UX” on page]

as indicated.

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ
E Queue name at remote system B HPUX.LOCALQ
F Transmission queue name HPUX

Reference 39

Table 6. Configuration worksheet for IBM MQ for z/OS (continued)

ID Parameter Name Reference Example Used User Value
G Sender (LU 6.2) channel name MVS.HPUX.SNA
H Sender (TCP) channel name MVS.HPUX. TCP
I Receiver (LU 6.2) channel name G HPUX.MVS.SNA
] Receiver (TCP) channel name H HPUX.MVS.TCP

Connection to IBM MQ for Solaris

The values in this section of the table must match the values used in [‘Channel configuration for Solaris” on page]

as indicated.

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ
E Queue name at remote system B SOLARIS.LOCALQ
F Transmission queue name SOLARIS

G Sender (LU 6.2) channel name MVS.SOLARIS.SNA
H Sender (TCP) channel name MVS.SOLARIS.TCP
I Receiver (LU 6.2) channel name G SOLARIS.MVS.SNA
J Receiver (TCP/IP) channel name H SOLARIS.MVS.TCP

Connection to IBM MQ for Linux

as indicated.

The values in this section of the table must match the values used in [“Channel configuration for Linux” on page 34,

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ
E Queue name at remote system B LINUX.LOCALQ
F Transmission queue name LINUX

G Sender (LU 6.2) channel name MVS.LINUX.SNA
H Sender (TCP) channel name MVS.LINUX.TCP
I Receiver (LU 6.2) channel name G LINUX.MVS.SNA
] Receiver (TCP/IP) channel name H LINUX.MVS.TCP

Comnnection to IBM MQ for IBM i

as indicated.

The values in this section of the table must match the values used in [“Channel configuration for IBM i” on page 71

C Remote queue manager name A AS400

D Remote queue name AS400.REMOTEQ
E Queue name at remote system B AS400.LOCALQ
F Transmission queue name AS400

G Sender (LU 6.2) channel name MVS.AS400.SNA
H Sender (TCP/IP) channel name MVS.AS400.TCP
I Receiver (LU 6.2) channel name G AS400.MVS.SNA
J Receiver (TCP/IP) channel name H AS400.MVS.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match the values used in your VSE/ESA system.

C Remote queue manager name

A

VSE

40 I1BM MQ: Reference

Table 6. Configuration worksheet for IBM MQ for z/OS (continued)

ID Parameter Name Reference Example Used User Value
D Remote queue name VSE.REMOTEQ

E Queue name at remote system B VSE.LOCALQ

F Transmission queue name VSE

G Sender channel name MVS.VSE.SNA

I Receiver channel name G VSE.MVS.SNA

IBM MQ for z/OS sender-channel definitions:

This topic details the sender-channel definitions required to configure IBM MQ for z/OS using LU 6.2 or

TCP.

For LU 6.2:
Local Queue

Object type :
Name :
Usage :

Remote Queue

Object type :

Name :

Name on remote system :
Remote system name :
Transmission queue :

Sender Channel

Channel name :

Transport type :
Transmission queue name :
Connection name :

For TCP:
Local Queue

Object type :
Name :
Usage :

Remote Queue

Object type :

Name :

Name on remote system :
Remote system name :
Transmission queue :

Sender Channel

Channel name :

Transport type :
Transmission queue name :
Connection name :

QLOCAL
WINNT
X (XmitQ)

QREMOTE
WINNT.REMOTEQ
WINNT.LOCALQ
WINNT

WINNT

MVS .WINNT. SNA
L (LU6.2)
WINNT

M3

QLOCAL
WINNT
X (XmitQ)

QREMOTE
WINNT.REMOTEQ
WINNT.LOCALQ
WINNT

WINNT

MVS .WINNT.TCP
T (TCP)
WINNT

MmO mo

13

MO Mo

F

winnt.tcpip.hostname

Reference

41

IBM MQ for z/OS receiver-channel definitions:

This topic details the receiver-channel definitions required to configure IBM MQ for z/OS using LU6.2 or
TCP.

For LU 6.2:

Local Queue
Object type : QLOCAL
Name : MVS.LOCALQ B
Usage : N (Normal)

Receiver Channel
Channel name : WINNT.MVS.SNA I

For TCP:

Local Queue
Object type : QLOCAL
Name : MVS.LOCALQ B
Usage : N (Normal)

Receiver Channel
Channel name : WINNT.MVS.TCP J

Example configuration - IBM MQ for z/OS using queue-sharing groups
This section gives an example of how to set up communication links to a queue-sharing group on IBM
MQ for z/OS from IBM MQ products on Windows and AIX. You can also connect from z/OS to z/OS.

Setting up communication links from a queue-sharing group to a platform other than z/OS is the same
as described in |[“Example configuration - IBM MQ for z/OS” on page 37 There are examples to other
platforms in that section.

When the connection is established, you must define some channels to complete the configuration. This
process is described in [“IBM MQ for z/OS shared channel configuration” on page 47

See [“Example configuration information for all platforms” on page 1| for background information about
this section and how to use it.

Configuration parameters for an LU 6.2 connection:

The following worksheet lists all the parameters required to set up communication from a z/OS system
to one of the other IBM MQ platforms. The worksheet shows examples of the parameters, which have
been tested in a working environment, and leaves space for you to enter your own values.

Use the worksheet in this section with the worksheet in the section for the platform to which you are
connecting.

The steps required to set up an LU 6.2 connection are described in [“Establishing an LU 6.2 connection|
into a queue-sharing group” on page 45| with numbered cross-references to the parameters on the
worksheet.

Numbers in the Reference column indicate that the value must match that in the appropriate worksheet
elsewhere in this section. The examples that follow in this section refer to the values in the ID column.
The entries in the Parameter Name column are explained in [“Explanation of terms” on page 43|

42 IBM MQ: Reference

Table 7. Configuration worksheet for z/OS using LU 6.2

ID | Parameter Name Reference Example Used User Value

Definition for local node using generic resources

1 Command prefix /cpf

2 Network ID NETID

3 Node name MVSPU

6 Modename #INTER

7 Local Transaction Program name MQSERIES

8 LAN destination address 400074511092

9 Local LU name MVSLU1

10 Generic resource name MVSGR

11 Symbolic destination G1

12 Symbolic destination for generic G2
resource name

Connection to a Windows system

13 Symbolic destination M3

14 Modename 21 #INTER

15 Remote Transaction Program name 7 MQSERIES

16 Partner LU name 5 WINNTLU

21 Remote node ID 4 05D 30F65

Connection to an AIX system

13 Symbolic Destination M4

14 Modename 18 #INTER

15 Remote Transaction Program name 6 MQSERIES

16 Partner LU name 4 AIXLU

Explanation of terms:

An explanation of the terms used in the configuration worksheet.

1 Command prefix
This term is the unique command prefix of your IBM MQ for z/OS queue-manager subsystem.

The z/0OS system programmer defines this value at installation time, in

SYS1.PARMLIB(IEFSSNss), and can tell you the value.

2 Network ID
The VTAM startup procedure in your installation is partly customized by the ATCSTRxx member
of the data set referenced by the DDNAME VTAMLST. The Network ID is the value specified for
the NETID parameter in this member. For Network ID, you must specify the name of the NETID
that owns the IBM MQ communications subsystem. Your network administrator can tell you the

value.

3 Node name
VTAM, being a low-entry network node, does not have a Control Point name for Advanced
Peer-to-Peer Networking (APPN) use. It does however have a system services control point name
(SSCPNAME). For node name, you must specify the name of the SSCP that owns the IBM MQ
communications subsystem. This value is defined in the same ATCSTRxx member as the Network
ID. Your network administrator can tell you the value.

Reference 43

9 Local LU name
A logical unit (LU) is software that serves as an interface or translator between a transaction
program and the network. It manages the exchange of data between transaction programs. The
local LU name is the unique VTAM APPLID of this IBM MQ subsystem. Your network
administrator can tell you this value.

11 12 13 Symbolic destination
This term is the name you give to the CPI-C side information profile. You need a side
information entry for each LU 6.2 listener.

6 14 Modename
This term is the name given to the set of parameters that control the LU 6.2 conversation. An
entry with this name and similar attributes must be defined at each end of the session. In VTAM,
this corresponds to a mode table entry. You network administrator can assign this table entry to
you.

7 15 Transaction Program name
IBM MQ applications trying to converse with this queue manager specify a symbolic name for
the program to be run at the receiving end. This has been specified in the TPNAME attribute on
the channel definition at the sender. For simplicity, wherever possible use a transaction program
name of MQSERIES, or in the case of a connection to VSE/ESA, where the length is limited to 4
bytes, use MQTP.

See [Defining an LU6.2 connection for z/OS using APPC/MVS| for more information.

8 LAN destination address
This term is the LAN destination address that your partner nodes use to communicate with this
host. When you are using a 3745 network controller, it is the value specified in the LOCADD
parameter for the line definition to which your partner is physically connected. If your partner
nodes use other devices such as 317X or 6611 devices, the address is set during the customization
of those devices. Your network administrator can tell you this value.

10 Generic resource name
A generic resource name is a unique name assigned to a group of LU names used by the channel
initiators in a queue-sharing group.

16 Partner LU name
This term is the LU name of the IBM MQ queue manager on the system with which you are
setting up communication. This value is specified in the side information entry for the remote
partner.

21 Remote node ID
For a connection to Windows, this ID is the ID of the local node on the Windows system with
which you are setting up communication.

44 1BM MQ: Reference

Establishing an LU 6.2 connection into a queue-sharing group:

There are two steps to establish an LU 6.2 connection. Defining yourself to the network and defining a
connection to the partner.

Defining yourself to the network using generic resources:

You can use VTAM Generic Resources to have one connection name to connect to the queue-sharing
group.
1. SYS1.PARMLIB(APPCPMxx) contains the start-up parameters for APPC. You must add a line to this
file to tell APPC where to locate the sideinfo. This line must be of the form:
SIDEINFO
DATASET (APPC.APPCSI)
2. Add another line to SYS1.PARMLIB(APPCPMxx) to define the local LU name you intend to use for
the IBM MQ LU 6.2 group listener. The line you add must take the form
LUADD ACBNAME (mvslul)
NOSCHED

TPDATA(csq.appctp)
GRNAME (mvsgr)

Specify values for ACBNAME (9), TPDATA and GRNAME(10).

The NOSCHED parameter tells APPC that our new LU is not using the LU 6.2 scheduler (ASCH), but
has one of its own. TPDATA refers to the Transaction Program data set in which LU 6.2 stores
information about transaction programs. Again, IBM MQ does not use this parameter, but it is
required by the syntax of the LUADD command.

3. Start the APPC subsystem with the command:
START APPC,SUB=MSTR,APPC=xx

where xx is the suffix of the PARMLIB member in which you added the LU in step 1.

Note: If APPC is already running, it can be refreshed with the command:
SET APPC=xx

The effect of this is cumulative, that is, APPC does not lose its knowledge of objects already defined
to it in this member or another PARMLIB member.

4. Add the new LU to a suitable VTAM major node definition. These are typically in SYS1.VTAMLST.
The APPL definition will look like the sample shown.

MVSLU APPL ACBNAME=MVSLU1, 9
APPXC=YES,
AUTOSES=0,
DDRAINL=NALLOW,
DLOGMOD=#INTER, 6
DMINWML=10,
DMINWNR=10,
DRESPL=NALLOW,
DSESLIM=60,
LMDENT=19,
MODETAB=MTCICS,
PARSESS=YES,
VERIFY=NONE,
SECACPT=ALREADYV,
SRBEXIT=YES

5. Activate the major node. This activation can be done with the command:
V,NET,ACT ,majornode

6. Add entries defining your LU and generic resource name to the CPI-C side information data set. Use
the APPC utility program ATBSDFMU to do so. Sample JCL is in thlqual SCSQPROC(CSQ4SIDE)
(where thlqual is the target library high-level qualifier for IBM MQ data sets in your installation.)

Reference 45

The entries you add will look like this example:

SIADD
DESTNAME (G1) 11
MODENAME (#INTER)
TPNAME (MQSERIES)
PARTNER_LU(MVSLU1) 9
SIADD
DESTNAME (G2) 12
MODENAME (#INTER)
TPNAME (MQSERIES)
PARTNER_LU(MVSGR) 10

7. Alter the queue manager object to use the correct distributed queuing parameters using the following
command. You must specify the local LU (9) assigned to your queue manager in the LUGROUP
attribute of the queue manager.

ALTER QMGR LUGROUP(MVSLU1)

Defining a connection to a partner:
You can define a connection to a partner by adding an entry to the CPI-C side information data set.
Note: This example is for a connection to a Windows system but the task is the same for other platforms.

Add an entry to the CPI-C side information data set to define the connection. Sample JCL to do this
definition is in thlqual.SCSQPROC(CSQA4SIDE).

The entry you add will look like this:

SIADD
DESTNAME (M3) 13
MODENAME (#INTER) 14
TPNAME (MQSERIES) 15

PARTNER_LU(WINNTLU) 16

What next?:

The connection is now established. You are ready to complete the configuration.

Go to[“IBM MQ for z/OS shared channel configuration” on page 47|

Establishing a TCP connection Using Sysplex Distributor:

You can set up Sysplex distributor to use one connection name to connect to the queue-sharing group.
1. Define a Distributed DVIPA address as follows:

a. Add a DYNAMICXCEF statement to the IPCONFIG. This statement is used for inter-image
connectivity using dynamically created XCF TCP/IP links.

b. Use the VIPADYNAMIC block on each image in the Sysplex.

1) On the owning image, code a VIPADEFINE statement to create the DVIPA Then code a
VIPADISTRIBUTE statement to distribute it to all other or selected images.

2) On the backup image, code a VIPABACKUP statement for the DVIPA address.

2. If more than one channel initiator will be started on any LPAR in the sysplex then add the
SHAREPORT option for the port to be shared in the PORT reservation list in the PROFILE data set.

See z/OS CS: IP Configuration Guide and z/OS CS: IP Configuration Reference for more information.
Sysplex Distributor balances the inbound connections between each LPAR. If there is more than one

channel initiator on an LPAR, then the use of SHAREPORT passes that inbound connection to the listener
port with the smallest number of connections.

46 IBM MQ: Reference

When you have completed these steps, the TCP connection is established. You are ready to complete the
configuration.

Go to['IBM MQ for z/OS shared channel configuration.”]

IBM MQ for z/OS shared channel configuration:

Configure the shared channel by starting the channel initiator and issuing appropriate commands for
your configuration.

1. Start the channel initiator using the command:
/cpf START CHINIT
2. Start an LU6.2 group listener using the command:
/cpf START LSTR TRPTYPE(LU62) LUNAME(G1) INDISP(GROUP)
The LUNAME of G1 refers to the symbolic name you gave your LU (11).

3. If you are using Virtual IP Addressing using Sysplex Distributor and want to listen on a specific
address, use the command:

/cpf START LSTR TRPTYPE(TCP) PORT(1555) IPADDR(mvsvipa) INDISP(GROUP)
There can be only one instance of the shared channel running at a time. If you try to start a second
instance of the channel it fails (the error message varies depending on other factors). The shared

synchronization queue tracks the channel status.

IBM MQ channels do not initialize successfully if the channel negotiation detects that the message
sequence number is different at each end. You might need to reset this manually.

Shared channel configuration example:
To configure a shared channel, a number of steps must be completed.

The subsequent topics detail the configuration to be performed on the z/OS queue manager to
implement the channel described in [“Example configuration information for all platforms” on page 1

Examples are given for connecting IBM MQ for z/OS and Windows. To connect to IBM MQ on another
platform use the appropriate set of values from the table in place of the values for Windows.

Note: The words in bold are user-specified and reflect the names of IBM MQ objects used throughout
these examples. If you change the names used here, ensure that you also change the other references
made to these objects throughout this section. All others are keywords and must be entered as shown.

Table 8. Configuration worksheet for IBM MQ for z/OS using queue-sharing groups

ID | Parameter Name Reference | Example Used | User Value
Definition for local node

A Queue Manager Name QSG

B Local queue name QSG.SHAREDQ

Connection to IBM MQ for Windows

The values in this section of the table must match the values used in [‘Channel configuration for Windows” on pagel

as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ
F Transmission queue name WINNT

Reference 47

Table 8. Configuration worksheet for IBM MQ for z/OS using queue-sharing groups (continued)

ID Parameter Name Reference Example Used User Value
G Sender (LU 6.2) channel name QOSG.WINNT.SNA
H Sender (TCP) channel name QSG.WINNT.TCP
I Receiver (LU 6.2) channel name G WINNT.QSG.SNA
] Receiver (TCP/IP) channel name H WINNT.QSG.TCP

Comnnection to IBM MQ for AIX

as indicated.

The values in this section of the table must match the values used in [‘Channel configuration for AIX” on page 15)

C Remote queue manager name AIX

D Remote queue name AIX.REMOTEQ
E Queue name at remote system B AIX.LOCALQ
F Transmission queue name AIX

G Sender (LU 6.2) channel name 0OSG.AIX.SNA
H Sender (TCP/IP) channel name QSG.AIX.TCP
I Receiver (LU 6.2) channel name G AIX.QSG.SNA
J Receiver (TCP/IP) channel name H AIX.QSG.TCP

IBM MQ for z/OS shared sender-channel definitions:

An example definition of shared sender-channels for LU 6.2 and TCP.

Using LU 6.2
Local Queue

Object type : QLOCAL
Name : WINNT
Usage : X (XmitQ)

Disposition : SHARED

Remote Queue
Object type : QREMOTE
Name : WINNT.REMOTEQ

Name on remote system : WINNT.LOCALQ

Remote system name : WINNT
Transmission queue : WINNT
Disposition : GROUP

Sender Channel
Channel name : MVS.WINNT.SNA
Transport type : L (LU6.2)

Transmission queue name : WINNT

Connection name : M3
Disposition : GROUP

Using TCP

48

Local Queue
Object type : QLOCAL
Name : WINNT
Usage : X (XmitQ)
Disposition : SHARED

Remote Queue

Object type : QREMOTE
Name : WINNT.REMOTEQ

IBM MQ: Reference

13

MmO mo

Name on remote system :
Remote system name :
Transmission queue :

Disposition :

Sender Channel

Channel name :

Transport type :
Transmission queue name :
Connection name :
Disposition :

IBM MQ for z/OS shared receiver-channel definitions:

An example definition of shared receiver-channels for LU 6.2 and TCP.

Using LU 6.2

Local Queue

Object type :
Name :
Usage :
Disposition :

Receiver Channel

Channel name :
Disposition :

Using TCP
Local Queue

Object type :
Name :
Usage :
Disposition :

Receiver Channel

Channel name :
Disposition :

Example configuration - IBM MQ for z/OS using intra-group queuing

WINNT.LOCALQ
WINNT
WINNT
GROUP

QSG.WINNT.TCP
T (TCP)
WINNT

o m

H

F

winnt.tcpip.hostname

GROUP

QLOCAL
QSG.SHAREDQ
N (Normal)
SHARED

WINNT.QSG.SNA
GROUP

QLOCAL

QSG. SHAREDQ
N (Normal)
SHARED

WINNT.QSG.TCP
GROUP

This section describes how a typical payroll query application, that currently uses distributed queuing to

transfer small messages between queue managers, could be migrated to use queue sharing groups and

shared queues.

Three configurations are described to illustrate the use of distributed queuing, intra-group queuing with
shared queues, and shared queues. The associated diagrams show only the flow of data in one direction,

that is, from queue manager QMG1 to queue manager QMG3.

Reference

49

Configuration 1:

Configuration 1 describes how distributed queuing is currently used to transfer messages between queue
managers QMG1 and QMGS3.

Configuration 1 shows a distributed queuing system that is used to transfer messages received by queue

manager QMG1 from the payroll query to queue manager QMG2 and then finally on to queue manager
QMGS3, to be sent to the payroll server.

,,,

P Windows NT | | P
¢ | TCP/IP | 0
% PAYROLL. ; ! Y
R » QUERY | () | R
© TCP/IP | | o
L T’@ T R 1 L
L ! | L
| : | 0
R QMG2 i QMG3 PAYROLL | ! S
E (xmitq) | (xmitq) i v
Q 1 ! R
L] QMG1 ' CHINIT2 QMG2 CHINIT3 QMG3 | ke

Figure 2. Configuration 1: z/OS using intra-group queuing

The flow of operations is as follows:
1. A query is entered using the payroll request application connected to queue manager QMGI.

2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue
PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to queue PAYROLL on queue
manager QMG3. As queue PAYROLL on QMG3 resolves to transmission queue QMG3, the query is
put on to transmission queue QMGS3.

5. Sender channel (S) on queue manager QMG2 delivers the query to the partner receiver channel (R) on
queue manager QMGS3.

6. Receiver channel (R) on queue manager QMG3 puts the query on to local queue PAYROLL.

7. The payroll server application connected to queue manager QMG3 retrieves the query from local
queue PAYROLL, processes it, and generates a suitable reply.

50 IBM MQ: Reference

Configuration 1 definitions:

The definitions required for Configuration 1 are as follows (note that the definitions do not take into

account triggering, and that only channel definitions for communication using TCP/IP are provided).

On OMG1

Remote queue definition:

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT (ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT (ENABLED) USAGE (XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME ('MVSQMG2(1415)")

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.T0.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')

On QMG2

Transmission queue definition:
DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMGl') REPLACE +
PUT (ENABLED) USAGE (XMITQ) GET(ENABLED)

DEFINE QLOCAL(QMG3) DESCR('Transmission queue to QMG3') REPLACE +
PUT (ENABLED) USAGE(XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG2.T0.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG1') XMITQ(QMG1) CONNAME('WINTQMG1(1414)')

Here you replace WINTQMG1(1414) with your queue manager connection name and port.

DEFINE CHANNEL(QMG2.T0.QMG3) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG3') XMITQ(QMG3) CONNAME('MVSQMG3(1416)")

Here you replace MVSQMG3(1416) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.T0.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG1')

DEFINE CHANNEL(QMG3.T0.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG3')

Reference

51

On QMG3

Local queue definition:
DEFINE QLOCAL(PAYROLL) DESCR('Payroll query request queue') REPLACE +
PUT (ENABLED) USAGE (NORMAL) GET(ENABLED) SHARE

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT (ENABLED) USAGE (XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG3.T0.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2) XMITQ(QMG2) CONNAME ('MVSQMG2(1415)")

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.T0.QMG3) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2)

Configuration 2:

Configuration 2 describes how queue-sharing groups and intra-group queuing can be used, with no effect
on the back-end payroll server application, to transfer messages between queue managers QMG1 and
QMGS3.

Configuration 2 shows a distributed queuing system that uses queue-sharing groups and intra-group
queuing to transfer messages from the payroll request application to the payroll server. This configuration
removes the need for channel definitions between queue managers QMG2 and QMGS3 because
intra-group queuing is used to transfer messages between these two queue managers.

,,,

— | QSG=SQ26 S/390 | —
P Windows NT | | P
A } | A
Y » PAYROLL. | IGQ | Y
R QUERY | CF Agent | | | R
o) | | (@]

TCP/P | x |
L S T » R ; > L
5 B il | } 1
| | | IMENE
R QMG2 i SYSTEM.QSG.TRANSMIT.QUEUE | PAYROLL | ! S
E (xmitq) 1 3 Y,
Q | ! R
el QMG1 | CHINIT2 QMG2 QMG3 | |

Figure 3. Configuration 2

The flow of operations is as follows:
1. A query is entered using the payroll request application connected to queue manager QMGI.

2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue
PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
QMG2.

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

52 IBM MQ: Reference

4. Receiver channel (R) on queue manager QMG2 puts the query on to queue PAYROLL on queue
manager QMG3. As queue PAYROLL on QMGS3 resolves to shared transmission queue
SYSTEM.QSG.TRANSMIT.QUEUE, the query is put on to shared transmission queue
SYSTEM.QSG.TRANSMIT.QUEUE.

5. IGQ agent on queue manager QMGS3 retrieves the query from shared transmission queue
SYSTEM.QSG.TRANSMIT.QUEUE, and puts it on to local queue PAYROLL on queue manager QMGS3.

6. The payroll server application connected to queue manager QMG3 retrieves the query from local
queue PAYROLL, processes it, and generates a suitable reply.

Note: The payroll query example transfers small messages only. If you need to transfer both persistent
and non-persistent messages, a combination of Configuration 1 and Configuration 2 can be established,
so that large messages can be transferred using the distributed queuing route, while small messages can
be transferred using the potentially faster intra-group queuing route.

Configuration 2 definitions:

The definitions required for Configuration 2 are as follows (note that the definitions do not take into
account triggering, and that only channel definitions for communication using TCP/IP are provided).

It is assumed that queue managers QMG2 and QMG3 are already configured to be members of the same
queue-sharing group.

On OMGI1

Remote queue definition:

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT (ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT (ENABLED) USAGE (XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.TO.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME ('MVSQMG2(1415)")

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.T0.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')

On QMG2

Transmission queue definition:

DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMGl') REPLACE +
PUT (ENABLED) USAGE (XMITQ) GET(ENABLED)

DEFINE QLOCAL(SYSTEM.QSG.TRANSMIT.QUEUE) QSGDISP(SHARED) +
DESCR('IGQ Transmission queue') REPLACE PUT(ENABLED) USAGE(XMITQ) +
GET(ENABLED) INDXTYPE(CORRELID) CFSTRUCT('APPLICATION1') +

DEFSOPT (SHARED) DEFPSIST(NO)

Reference 53

Here you replace APPLICATION1 with your defined CF structure name. Also note that this queue, being
a shared queue, need only be defined on one of the queue managers in the queue sharing group.

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG2.T0.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) REPLACE +
DESCR('Sender channel to QMG1') XMITQ(QMG1) CONNAME('WINTQMG1(1414)')

Here you replace WINTQMG1(1414) with your queue manager connection name and port.
Receiver channel definition (for TCP/IP):
DEFINE CHANNEL(QMG1.T0.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +

REPLACE DESCR('Receiver channel from QMG1')

Queue Manager definition:
ALTER QMGR IGQ(ENABLED)

On OMG3

Local queue definition:

DEFINE QLOCAL(PAYROLL) DESCR('Payroll query request queue') REPLACE +
PUT (ENABLED) USAGE (NORMAL) GET(ENABLED) SHARE

Queue Manager definition:
ALTER QMGR IGQ(ENABLED)

Configuration 3:
Configuration 3 describes how queue-sharing groups and shared queues can be used, with no effect on
the back-end payroll server application, to transfer messages between queue managers QMG1 and

QMGS3.

Configuration 3 shows a distributed queuing system that uses queue-sharing groups and shared queues
to transfer messages between queue manager QMG1 and queue manager QMGS3.

,,,

— | QSG=SQ26 S/390 | —
P Windows NT i ! P
A ! ! A
Y » PAYROLL. | | Y
g QUERY ! CF | cR)
TCP/P| | |
: COTT® ! b
| ! | |
R QMG2 i PAYROLL : S
E (xmitq) | i Y
Q } | R
il QMG1 ' CHINIT2 QMG2 QMG3 | L

Figure 4. Configuration 3

The flow of operations is:
1. A query is entered using the payroll request application connected to queue manager QMGI.

2. The payroll request application puts the query on to remote queue PAYROLL.QUERY. As queue
PAYROLL.QUERY resolves to transmission queue QMG2, the query is put on to transmission queue
QMG2.

54 IBM MQ: Reference

3. Sender channel (S) on queue manager QMG1 delivers the query to the partner receiver channel (R) on
queue manager QMG2.

4. Receiver channel (R) on queue manager QMG2 puts the query on to shared queue PAYROLL.

5. The payroll server application connected to queue manager QMG3 retrieves the query from shared
queue PAYROLL, processes it, and generates a suitable reply.

This configuration is certainly the simplest to configure. However, distributed queuing or intra-group
queuing would need to be configured to transfer replies (generated by the payroll server application
connected to queue manager QMG3) from queue manager QMG3 to queue manager QMG2, and then on
to queue manager QMGI. (See [“What this example shows” on page 171|for the configuration used to
transfer replies back to the payroll request application.)

No definitions are required on QMG3.
Configuration 3 definitions:

The definitions required for Configuration 3 are as follows (note that the definitions do not take into
account triggering, and that only channel definitions for communication using TCP/IP are provided).

It is assumed that queue managers QMG2 and QMG3 are already configured to be members of the same
queue-sharing group.

On OMGI1

Remote queue definition:

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QMG3') REPLACE +
PUT (ENABLED) RNAME(PAYROLL) RQMNAME(QMG3) XMITQ(QMG2)

Transmission queue definition:

DEFINE QLOCAL(QMG2) DESCR('Transmission queue to QMG2') REPLACE +
PUT (ENABLED) USAGE (XMITQ) GET(ENABLED)

Sender channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.T0.QMG2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QMG2') XMITQ(QMG2) CONNAME ('MVSQMG2(1415)")

Here you replace MVSQMG2(1415) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG2.T0.QMG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG2')

Reply-to queue definition:

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to payroll queries sent to QMG3')

On QMG2

Transmission queue definition:

DEFINE QLOCAL(QMG1) DESCR('Transmission queue to QMGl') REPLACE +
PUT (ENABLED) USAGE (XMITQ) GET(ENABLED)

Sender channel definitions (for TCP/IP):

DEFINE CHANNEL(QMG2.TO.QMG1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QMG1') XMITQ(QMG1) CONNAME('WINTQMG1(1414)")

Reference 55

Here you replace WINTQMG1(1414) with your queue manager connection name and port.

Receiver channel definition (for TCP/IP):

DEFINE CHANNEL(QMG1.T0.QMG2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QMG1')

Local queue definition:

DEFINE QLOCAL(PAYROLL) QSGDISP(SHARED) DESCR('Payroll query request queue') +
REPLACE PUT(ENABLED) USAGE(NORMAL) GET(ENABLED) SHARE +
DEFSOPT (SHARED) DEFPSIST(NO) CFSTRUCT(APPLICATION1)

Here you replace APPLICATION1 with your defined CF structure name. Also note that this queue, being
a shared queue, need only be defined on one of the queue managers in the queue sharing group.

On OMG3

No definitions are required on QMGS3.

Running the example:

After setting up the sample, you can run the sample.

For Configuration 1:
1. Start queue managers QMG1, QMG2, and QMGS3.
2. Start channel initiators for QMG2 and QMGS3.

3. Start the listeners on QMGI1 to listen to port 1414, QMG?2 to listen on port 1415, and QMGS3 to listen
on port 1416.

Start sender channels on QMG1, QMG2, and QMG3.
Start the payroll query requesting application connected to QMGI.
Start the payroll server application connected to QMG3.

N oo~

Submit a payroll query request to QMG3 and wait for the payroll reply.

For Configuration 2:

Start queue managers QMG1, QMG2, and QMGS3.

Start the channel initiator for QMG2.

Start the listeners on QMGI1 to listen on port 1414, and QMG?2 to listen on port 1415.
Start the sender channel on QMG1 and QMG2.

Start the payroll query requesting application connected to QMGI.

Start the payroll server application connected to QMG3.

No ook~ owbd=

Submit a payroll query request to QMG3 and wait for the payroll reply.

For Configuration 3:

Start queue managers QMG1, QMG2, and QMGS3.

Start the channel initiator for QMG2.

Start the listeners on QMGI1 to listen on port 1414, and QMG?2 to listen on port 1415.
Start sender channels on QMG1 and QMG2.

Start the payroll query requesting application connected to QMGI.

Start the payroll server application connected to QMG3.

N O~ =

Submit a payroll query request to QMG3 and wait for the payroll reply.

56 IBM MQ: Reference

Expanding the example:
The example can be expanded in a number of ways.

The example can be:

* Expanded to use channel triggering as well as application (PAYROLL and PAYROLL.REPLY queue)
triggering.

* Configured for communication using LU6.2.

* Expanded to configure more queue managers to the queue sharing group. Then the server application
can be cloned to run on other queue manager instances to provide multiple servers for the PAYROLL
query queue.

* Expanded to increase the number of instances of the payroll query requesting application to
demonstrate the processing of requests from multiple clients.

* Expanded to use security (IGQAUT and IGQUSER).

Example configuration - IBM MQ for IBM i
This section gives an example of how to set up communication links from IBM MQ for IBM i to IBM MQ
products on other platforms.

Other platforms covered are the following platforms:
* Windows

+ AIX

* Compaq Tru64 UNIX

+ HP-UX

* Solaris

¢ Linux

* z/0S or MVS

* VSE/ESA

See |“Example configuration information for all platforms” on page 1| for background information about
this section and how to use it.

Configuration parameters for an LU 6.2 connection:

The following worksheet lists all the parameters needed to set up communication from IBM i system to
one of the other IBM MQ platforms. The worksheet shows examples of the parameters, which have been
tested in a working environment, and leaves space for you to enter your own values.

Use the worksheet in this section to record the values for this configuration. Use the worksheet with the
worksheet in the section for the platform to which you are connecting.

Where numbers appear in the Reference column they indicate that the value must match that in the
appropriate worksheet elsewhere in this section. The examples that follow in this section refer to the
values in the ID column of this table.

The entries in the Parameter Name column are explained in [“Explanation of terms” on page 60

Reference 57

Table 9. Configuration worksheet for SNA on an IBM i system

ID | Parameter Name Reference Example Used User Value
Definition for local node

1 Local network ID NETID

2 Local control point name AS400PU

3 LU name AS400LU

4 LAN destination address 10005A5962EF
5 Subsystem description QCMN

6 Line description TOKENRINGL
7 Resource name LIN041

8 Local Transaction Program name MQSERIES
Connection to a Windows system

9 Network ID 2 NETID

10 Control point name 3 WINNTCP

11 LU name 5 WINNTLU

12 Controller description WINNTCP

13 Device WINNTLU

14 Side information NTCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 9 08005A A5FAB9
17 Mode 17 #INTER
Connection to an AIX system

9 Network ID 1 NETID

10 Control point name AIXPU

11 LU name 4 AIXLU

12 Controller description AIXPU

13 Device AIXLU

14 Side information AIXCPIC

15 Transaction Program 6 MOQSERIES

16 LAN adapter address 8 123456789012
17 Mode 14 #INTER
Connection to an HP-UX system

9 Network ID 4 NETID

10 Control point name 2 HPUXPU

11 LU name 5 HPUXLU

12 Controller description HPUXPU

13 Device HPUXLU

14 Side information HPUXCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 100090DC2C7C
17 Mode 17 #INTER

Connection to a Solaris system

58 IBM MQ: Reference

Table 9. Configuration worksheet for SNA on an IBM i system (continued)

ID Parameter Name Reference Example Used User Value
9 Network ID 2 NETID

10 Control point name 3 SOLARPU

11 LU name 7 SOLARLU

12 Controller description SOLARPU

13 Device SOLARLU

14 Side information SOLCPIC

15 Transaction Program 8 MQSERIES

16 LAN adapter address 5 08002071CC8A
17 Mode 17 #INTER
Connection to a Linux (x86 platform) system

9 Network ID 4 NETID

10 Control point name 2 LINUXPU

11 LU name 5 LINUXLU

12 Controller description LINUXPU

13 Device LINUXLU

14 Side information LXCPIC

15 Transaction Program 7 MQSERIES

16 LAN adapter address 8 08005AC6DF33
17 Mode 6 #INTER
Connection to an z/OS system

9 Network ID 2 NETID

10 Control point name 3 MVSPU

11 LU name 4 MVSLU

12 Controller description MVSPU

13 Device MVSLU

14 Side information MVSCPIC

15 Transaction Program 7 MOQSERIES

16 LAN adapter address 8 400074511092
17 Mode 6 #INTER
Connection to a VSE/ESA system ed

9 Network ID 1 NETID

10 Control point name 2 VSEPU

11 LU name 3 VSELU

12 Controller description VSEPU

13 Device VSELU

14 Side information VSECPIC

15 Transaction Program 4 MQO01 MQO01
16 LAN adapter address 5 400074511092
17 Mode #INTER

Reference

59

Explanation of terms:

An explanation of the terms used in the configuration worksheet.

123 See['How to find network attributes” on page 61| for the details of how to find the configured
values.

4 LAN destination address
The hardware address of the IBM i system token-ring adapter. You can find the value using the
command DSPLIND Line description (6).

5 Subsystem description
This parameter is the name of any IBM i subsystem that is active while using the queue manager.
The name QCMN has been used because it is the IBM i communications subsystem.

6 Line description
If this parameter has been specified it is indicated in the Description field of the resource
Resource name. See [“How to find the value of Resource name” on page 61| for details. If the
value is not specified you need to create a line description.

7 Resource name
See [“How to find the value of Resource name” on page 61| for details of how to find the
configured value.

8 Local Transaction Program name
IBM MQ applications trying to converse with this workstation specify a symbolic name for the
program to be run at the receiving end. This name is defined on the channel definition at the
sender. For simplicity, wherever possible use a transaction program name of MQSERIES, or in the
case of a connection to VSE/ESA, where the length is limited to 4 bytes, use MQTP.

See [Settings on the local IBM i system for a remote queue manager platform| for more
information.

12 Controller description
This parameter is an alias for the Control Point name (or Node name) of the partner system. For
convenience, we have used the actual name of the partner in this example.

13 Device
This parameter is an alias for the LU of the partner system. For convenience, we have used the
LU name of the partner in this example.

14 Side information
This parameter is the name given to the CPI-C side information profile. You specify your own
8-character name.

60 IBM MQ: Reference

How to find network attributes:

The local node has been partially configured as part of the IBM i installation. To display the current

network attributes enter the command DSPNETA.

If you need to change these values use the command CHGNETA. An IPL might be required to apply

your changes.

/Bisp1ay Network Attributes

&

System: AS400PU

Current systemname : AS400PU
Pending systemname

Local network ID : NETID
Local control point name : AS400PU
Default local Tocation : AS400LU
Default mode : BLANK
APPN node type : *ENDNODE
Data compression *=NONE
Intermediate data compression : *NONE
Maximum number of intermediate sessions : 200
Route addition resistance : 128
Server network ID/control point name : NETID
More...

Press Enter to continue.

F3=Exit F12=Cancel

NETCP

/

Check that the values for Local network ID (1), Local control point name (2), and Default local location

(3), correspond to the values on your worksheet.

How to find the value of Resource name:

To find the value of resource name, type WRKHDWRSC TYPE (*CMN) and press enter.

The Work with Communication Resources panel is displayed. The value for Resource name is found as

the token-ring Port. It is LIN0O41 in this example.

Reference

61

Work with Communication Resources

System: AS400PU

Type options, press Enter.

2=Edit 4=Remove 5=Work with configuration description
7=Add configuration description ...

Configuration

Opt Resource Description Type Description
cco2 2636 Comm Processor

LINO4 2636 LAN Adapter

LINO41 TOKEN-RING 2636 Token-ring Port

Bottom
F3=Exit F5=Refresh F6=Print Fl1l=Display resource addresses/statuses
\f12=Cance1 F23=More options

Establishing an LU 6.2 connection:

This section describes how to establish an LU 6.2 connection.

Local node configuration:

To configure the local node you need to create a line description and add a routing entry.

Creating a line description
1. If the line description has not already been created use the command CRTLINTRN.

2. Specify values for Line description (6) and Resource name (7).

/Ereate Line Desc (token-ring) (CRTLINTRN)

Type choices, press Enter.

Line description TOKENRINGL Name

Resource name LINO41 Name, *NWID

NWI type *FR *FR, *ATM

Online at IPL *YES *YES, *NO

Vary on wait *NOWAIT *NOWAIT, 15-180 (1 second)
Maximum controllers 40 1-256

Attached NWI *NONE Name, *NONE

Bottom

F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter LIND required. +

Adding a routing entry
1. Type the command ADDRTGE and press enter.

62 IBM MQ: Reference

/;dd Routing Entry (ADDRTGE) A
Type choices, press Enter.
Subsystem description QCMN Name
Library *LIBL Name, *LIBL, *CURLIB
Routing entry sequence number . 1 1-9999
Comparison data:
Compare value '"MQSERIES'
Starting position 37 1-80
Program to call AMQCRC6B ~ Name, *RTGDTA
Library QMAS400 Name, * LI BL, *CURLIB
ClassS v v v v v v v v v v v *SBSD Name, *SBSD
Library o ... *LIBL Name, *LIBL, *CURLIB
Maximum active routing steps . . *NOMAX 0-1000, *NOMAX
Storage pool identifier 1 1-10
Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Parameter SBSD required. +
o %

2. Specify your value for Subsystem description (5), and the values shown here for Routing entry
sequence number, Compare value (8), Starting position, Program to call, and the Library containing
the program to call.

3. Type the command STRSBS subsystem description (5) and press enter.
Connection to partner node:

To connect to a partner node, you need to: create a controller description, create a device description,
create CPI-C side information, add a communications entry for APPC, and add a configuration list entry.

This example is for a connection to a Windows system, but the steps are the same for other nodes.

Creating a controller description
1. At a command-line, type CRTCTLAPPC and press enter.

/Ereate Ct1 Desc (APPC) (CRTCTLAPPC) h
Type choices, press Enter.
Controller description WINNTCP Name
Link type *LAN *FAX, *FR, *IDLC,
*LAN. ..
Online at IPL *NO *YES, *NO
Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
Parameter CTLD required. +)

2. Specify a value for Controller description (12), set Link type to *LAN, and set Online at IPL to *NO.
3. Press enter twice, followed by F10.

Reference 63

/Ereate Ct1 Desc (APPC) (CRTCTLAPPC) R
Type choices, press Enter.
Controller description > WINNTCP Name
Link type > *LAN *FAX, *FR, *IDLC, =*LAN...
Online at IPL > *NO *YES, *NO
APPN-capable *YES *YES, *NO
Switched Tine Tist TOKENRINGL Name
+ for more values
Maximum frame size *LINKTYPE 265-16393, 256, 265, 512...
Remote network identifier . . . NETID Name, *NETATR, *NONE, *ANY
Remote control point WINNTCP Name, *ANY
Exchange identifier 00000000-FFFFFFFF
Initial connection *DIAL *DIAL, *ANS
Dial initiation *LINKTYPE ~ *LINKTYPE, *IMMED, *DELAY
LAN remote adapter address . . . 10005AFC5D83 000000000001-FFFFFFFFFFFF
APPN CP session support =*YES *YES, *NO
APPN node type *ENDNODE ~ *ENDNODE, *LENNODE...
APPN transmission group number 1 1-20, *CALC
More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
o %
4. Specify values for Switched line list (6), Remote network identifier (9), Remote control point (10),
and LAN remote adapter address (16).
5. Press enter.
Creating a device description
1. Type the command CRTDEVAPPC and press enter.
/Ereate Device Desc (APPC) (CRTDEVAPPC) h
Type choices, press Enter.
Device description WINNTLU Name
Remote location WINNTLU Name
Online at IPL *YES *YES, *NO
Local location AS400LU Name, *NETATR
Remote network identifier . . . NETID Name, *NETATR, *NONE
Attached controller WINNTCP Name
Mode *NETATR Name, *NETATR
+ for more values
Message queue QSYSOPR Name, QSYSOPR
Library *LIBL Name, *LIBL, *CURLIB
APPN-capable *YES *YES, *NO
Single session:
Single session capable =*NO *NO, *YES
Number of conversations . . . 1-512
Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters Fl12=Cancel
F13=How to use this display F24=More keys
Parameter DEVD required. + Y,

2. Specify values for Device description (13), Remote location (11), Local location (3), Remote network
identifier (9), and Attached controller (12).

Note: You can avoid having to create controller and device descriptions manually by taking advantage of
the IBM i auto-configuration service. Consult the IBM i documentation for details.

64 IBM MQ: Reference

Creating CPI-C side information
1. Type CRTCSI and press F10.

/Ereate Comm Side Information (CRTCSI)

Type choices, press Enter.

Side information NTCPIC Name
Library *CURLIB Name, *CURLIB
Remote location WINNTLU Name
Transaction program MQSERIES

Text 'description' *BLANK

Additional Parameters

Device *L0C Name, *LOC

Local location AS400LU Name, *LOC, *NETATR

Mode oL L. #INTER Name, *NETATR

Remote network identifier . . . NETID Name, *LOC, *NETATR, *NONE
Authority *LIBCRTAUT Name, *LIBCRTAUT, *CHANGE...
Bottom

F3=Exit F4=Prompt F5=Refresh Fl12=Cancel F13=How to use this display
F24=More keys
Parameter CSI required.

2. Specify values for Side information (14), Remote location (11), Transaction program (15), Local
location (3), Mode, and Remote network identifier (9).

3. DPress enter.

Adding a communications entry for APPC
1. At a command-line, type ADDCMNE and press enter.

/;dd Communications Entry (ADDCMNE)

Type choices, press Enter.

Subsystem description QCMN Name

Library *LIBL Name, *LIBL, *CURLIB

Device WINNTLU Name, generic*, *ALL...
Remote location Name

Job description *USRPRF Name, *USRPRF, *SBSD
Library Name, *LIBL, *CURLIB

Default user profile *NONE Name, *NONE, =*SYS

Mode *ANY Name, *ANY

Maximum active jobs *NOMAX 0-1000, *NOMAX

Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Parameter SBSD required.

2. Specify values for Subsystem description (5) and Device (13), and press enter.

Adding a configuration list entry
1. Type ADDCFGLE ~APPNRMT and press F4.

Reference

65

/;dd Configuration List Entries (ADDCFGLE)
Type choices, press Enter.
Configuration list type > *APPNRMT *APPNLCL, *APPNRMT...
APPN remote Tocation entry:
Remote location name WINNTLU Name, generic*, *ANY
Remote network identifier . . NETID Name, *NETATR, *NONE
Local location name AS400LU Name, *NETATR
Remote control point WINNTCP Name, *NONE
Control point net ID NETID Name, *NETATR, *NONE
Location password *NONE
Secure Tlocation *NO *YES, *NO
Single session *NO *YES, *NO
Locally controlled session . . =*NO *YES, *NO
Pre-established session . . . =*NO *YES, *NO
Entry 'description' *BLANK
Number of conversations . . . 10 1-512
+ for more values
Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

N Yy

2. Specify values for Remote location name (11), Remote network identifier (9), Local location name
(3), Remote control point (10), and Control point net ID (9).

3. Press enter.
What next?:

The LU 6.2 connection is now established. You are ready to complete the configuration.

Go to|[“IBM MQ for IBM i configuration” on page 68

Establishing a TCP connection:

If TCP is already configured there are no extra configuration tasks. If TCP/IP is not configured you need
to: add a TCP/IP interface, add a TCP/IP loopback interface, and add a default route.

Adding a TCP/IP interface
1. At a command-line, type ADDTCPIFC and press enter.

66 IBM MQ: Reference

/;dd TCP/IP Interface (ADDTCPIFC)

Type choices, press Enter.

Internet address
Line description
Subnet mask
Type of service
Maximum transmission unit . . .
Autostarto L.
PVC logical channel identifier
+ for more values

X.25 idle circuit timeout . . .
X.25 maximum virtual circuits .
X.25 DDN interface
TRLAN bit sequencing

Bottom

F3=Exit F4=Prompt F5=Refresh
F24=More keys

o

19.22.11.55

TOKENRINGL Name, *LOOPBACK
255.255.0.0
*NORMAL *MINDELAY, *MAXTHRPUT..
*LIND 576-16388, *LIND
*YES *YES, *NO

001-FFF

60 1-600
64 0-64

*NO *YES, *NO

*MSB *MSB, *LSB

F12=Cancel F13=How to use this display

2. Specify the IP address and Line description, and a Subnet mask of the machine.

3. Press enter.

Adding a TCP/IP loopback interface
1. At a command-line, type ADDTCPIFC and press enter.

/;dd TCP Interface (ADDTCPIFC)
Type choices, press Enter.

Internet address
Line description
Subnet mask
Type of service
Maximum transmission unit . . .
Autostart oL L.
PVC Togical channel identifier
+ for more values

X.25 idle circuit timeout . . .
X.25 maximum virtual circuits .
X.25 DDN interface
TRLAN bit sequencing

Bottom

F24=More keys
o

F3=Exit F4=Prompt F5=Refresh F12=Cancel

127.0.0.1

*LOOPBACK Name, *LOOPBACK
255.0.0.0
*NORMAL *MINDELAY, *MAXTHRPUT..
*LIND 576-16388, *LIND
*YES *YES, *NO

001-FFF

60 1-600
64 0-64

*NO *YES, *NO

*MSB *MSB, *LSB

F13=How to use this display

2. Specify the values for IP address, Line description, and Subnet mask.

Adding a default route

1. At a command-line, type ADDTCPRTE and press enter.

Reference

67

/;dd TCP Route (ADDTCPRTE) R

Type choices, press Enter.

Route destination *DFTROUTE

Subnet mask *NONE

Type of service *NORMAL *MINDELAY, *MAXTHRPUT.
Next hop 19.2.3.4

Maximum transmission unit . . . 576 576-16388, *IFC

Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
Command prompting ended when user pressed F12.

2. Enter values appropriate to your network and press enter to create a default route entry.
What next?

The TCP connection is now established. You are ready to complete the configuration. Go to ["IBM MQ for
[BM i configuration.”]

IBM MQ for IBM i configuration:

To configure IBM MQ for IBM i, use the WRKMQMQ command to display the configuration menu.
Start the TCP channel listener using the command STRMQMLSR.

Start any sender channel using the command STRMQMCHL CHLNAME(channel_name).

Use the WRKMQMQ command to display the IBM MQ configuration menu.

Note: AMQ* errors are placed in the log relating to the job that found the error. Use the WRKACTJOB
command to display the list of jobs. Under the subsystem name QSYSWRK, locate the job and enter 5
against it to work with that job. IBM MQ logs are prefixed AMQ.

Creating a queue manager:

Use the following steps to set up the basic configuration queue manager.
1. First you need to create a queue manager. Type CRTMQM and press enter.

68 IBM MQ: Reference

4 N

Create Message Queue Manager (CRTMQM)
Type choices, press Enter.

Message Queue Manager name . . .

Text 'description' *BLANK

Trigger interval 999999999 0-999999999
Undelivered message queue . . . *NONE

Default transmission queue . . . *NONE

Maximum handle Timit 256 1-999999999
Maximum uncommitted messages . . 1000 1-10000
Default Queue manager *NO *YES, *NO

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

2. In the Message Queue Manager name field, type AS400. In the Undelivered message queue field,
type DEAD.LETTER.QUEUE.

3. Press enter.
4. Now start the queue manager by entering STRMQM MQMNAME (AS400).

5. Create the undelivered message queue using the following parameters. (For details and an example
refer to [“Defining a queue.”)

Local Queue
Queue name : DEAD.LETTER.QUEUE
Queue type : *|CL

Defining a queue:
You can define a queue using the CRTMQMQ command.

Type CRTMQMQ on the command line.

Reference 69

/Ereate MQM Queue (CRTMQMQ)
Type choices, press Enter.
Queue name

Queue type *ALS, *LCL, *RMT

Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Parameter QNAME required.

%

Complete the two fields of this panel and press enter. Another panel is shown, with entry fields for the
other parameters you have. Defaults can be taken for all other queue attributes.

Defining a channel:
You can define a channel using the CRTMQMCHL command.

Type CRTMQMCHL on the command line.

/Ereate MQM Channel (CRTMQMCHL) h
Type choices, press Enter.
Channel name
Channel type *RCVR, *SDR, *SVR, *RQSTR
Bottom
F3=Exit F4=Prompt F5=Refresh Fl12=Cancel F13=How to use this display
F24=More keys
Parameter CHLNAME required.
o %

Complete the two fields of this panel and press enter. Another panel is displayed on which you can
specify the values for the other parameters given earlier. Defaults can be taken for all other channel
attributes.

70 IBM MQ: Reference

Channel configuration for IBM i:

You need to configure your channels to implement the example configuration channels.

This section details the configuration to be performed on the IBM i queue manager to implement the

channel described in [“Example configuration information for all platforms” on page 1.

Examples are given for connecting IBM MQ for IBM i and IBM MQ for Windows. To connect to IBM MQ
on another platform, use the appropriate values from the table in place of those values for Windows

Note:

1. The words in bold are user-specified and reflect the names of IBM MQ objects used throughout these
examples. If you change the names used here, ensure that you also change the other references made
to these objects throughout this section. All others are keywords and must be entered as shown.

2. The IBM MQ channel ping command (PNGMQMCHL) runs interactively, whereas starting a channel
causes a batch job to be submitted. If a channel ping completes successfully but the channel does not

start, the network and IBM MQ definitions are probably correct, but that the IBM i environment for

the batch job is not. For example, make sure that QSYS2 is included in the system portion of the
library list and not just your personal library list.

For details and examples of how to create the objects listed refer to [“Defining a queue” on page 69| and

['Defining a channel” on page 70,

Table 10. Configuration worksheet for IBM MQ for IBM i

ID | Parameter Name

Reference

Example Used

User Value

Definition for local node

A Queue Manager Name

AS400

B Local queue name

AS400.LOCALQ

Connection to IBM MQ for Windows

The values in this section of the table must match the values used in[’Channel configuration for Windows” on page|

as indicated.

C Remote queue manager name A WINNT

D Remote queue name WINNT.REMOTEQ
E Queue name at remote system B WINNT.LOCALQ

F Transmission queue name WINNT

G Sender (SNA) channel name AS400.WINNT.SNA
H Sender (TCP/IP) channel name AS400.WINNT.TCP
I Receiver (SNA) channel name G WINNT.AS400.SNA
] Receiver (TCP/IP) channel name H WINNT.AS400.TCP

Connection to IBM MQ for AIX

as indicated.

The values in this section of the table must match the values used in[‘Channel configuration for AIX” on page 15,

C Remote queue manager name A AIX

D Remote queue name AIX.REMOTEQ
E Queue name at remote system B AIX.LOCALQ

F Transmission queue name AIX

G Sender (SNA) channel name AS400.AIX.SNA
H Sender (TCP/IP) channel name AS400.AIX.TCP

Reference

71

Table 10. Configuration worksheet for IBM MQ for IBM i (continued)

ID Parameter Name Reference Example Used User Value
I Receiver (SNA) channel name G AIX.AS400.SNA
J Receiver (TCP) channel name H AIX.AS400.TCP

Connection to MQSeries for Compaq Tru64 Unix

The values in this section of the table must match the values used in your Compaq Tru64 UNIX system.

C Remote queue manager name A DECUX

D Remote queue name DECUX.REMOTEQ
E Queue name at remote system B DECUX.LOCALQ
F Transmission queue name DECUX

H Sender (TCP) channel name DECUX.AS400.TCP
J Receiver (TCP) channel name H AS400.DECUX.TCP

Connection to IBM MQ for HP-UX

as indicated.

The values in this section of the table must match the values used in [‘Channel configuration for HP-UX” on page]

C Remote queue manager name A HPUX

D Remote queue name HPUX.REMOTEQ
E Queue name at remote system B HPUX.LOCALQ

F Transmission queue name HPUX

G Sender (SNA) channel name AS400.HPUX.SNA
H Sender (TCP) channel name AS400.HPUX.TCP
I Receiver (SNA) channel name G HPUX.AS400.SNA
] Receiver (TCP) channel name H HPUX.AS400.TCP

Connection to IBM MQ for Solaris

as indicated.

The values in this section of the table must match the values used in [‘Channel configuration for Solaris” on page]

C Remote queue manager name A SOLARIS

D Remote queue name SOLARIS.REMOTEQ
E Queue name at remote system B SOLARIS.LOCALQ

F Transmission queue name SOLARIS

G Sender (SNA) channel name AS400.SOLARIS.SNA
H Sender (TCP/IP) channel name AS400.SOLARIS.TCP
I Receiver (SNA) channel name G SOLARIS.AS400.SNA
J Receiver (TCP/IP) channel name H SOLARIS.AS400.TCP

Connection to IBM MQ for Linux

as indicated.

The values in this section of the table must match the values used in [‘Channel configuration for Linux” on page 34,

C Remote queue manager name A LINUX

D Remote queue name LINUX.REMOTEQ
E Queue name at remote system B LINUX.LOCALQ

F Transmission queue name LINUX

G Sender (SNA) channel name AS400.LINUX.SNA

72 IBM MQ: Reference

Table 10. Configuration worksheet for IBM MQ for IBM i (continued)

ID Parameter Name Reference Example Used User Value
H Sender (TCP/IP) channel name AS400.LINUX.TCP
I Receiver (SNA) channel name G LINUX.AS400.SNA
] Receiver (TCP/IP) channel name H LINUX.AS400.TCP

as indicated.

Connection to IBM MQ for z/OS

The values in this section of the table must match the values used in[‘Channel configuration for z/OS” on page 38

C Remote queue manager name A MVS

D Remote queue name MVS.REMOTEQ
E Queue name at remote system B MVS.LOCALQ

F Transmission queue name MVS

G Sender (SNA) channel name AS400.MVS.SNA
H Sender (TCP) channel name AS400.MVS.TCP
I Receiver (SNA) channel name G MVS.AS400.SNA
] Receiver (TCP) channel name H MVS.AS400.TCP

Connection to MQSeries for VSE/ESA

The values in this section of the table must match the values used in your VSE/ESA system.

C Remote queue manager name A VSE
D Remote queue name VSE.REMOTEQ
E Queue name at remote system B VSE.LOCALQ
F Transmission queue name VSE
G Sender channel name AS400.VSE.SNA
1 Receiver channel name G VSE.AS400.SNA
IBM MQ for IBM i sender-channel definitions:
Example sender-channel definitions for SNA and TCP.
Using SNA
Local Queue
Queue name : WINNT F
Queue type : *LCL
Usage : *TMQ
Remote Queue
Queue name : WINNT.REMOTEQ D
Queue type : *RMT
Remote queue : WINNT.LOCALQ E
Remote Queue Manager : WINNT C
Transmission queue : WINNT F
Sender Channel
Channel Name : AS400.WINNT.SNA G
Channel Type : *SDR
Transport type : *LU62
Connection name : WINNTCPIC 14
Transmission queue : WINNT F

Reference

73

Using TCP
Local Queue

Queue name :
Queue type :
Usage :

Remote Queue

Queue name :

Queue type :

Remote queue :

Remote Queue Manager :
Transmission queue :

Sender Channel

Channel Name :
Channel Type :
Transport type :
Connection name :
Transmission queue :

WINNT
*LCL
*TMQ

WINNT
*RMT

WINNT
WINNT
WINNT

AS400
*SDR
*TCP
WINNT
WINNT

.REMOTEQ

.LOCALQ

WINNT.TCP

.tepip.hostname

IBM MQ for IBM i receiver-channel definitions:

Example receiver-channel definitions for SNA and TCP

Using SNA
Local Queue
Queue name :
Queue type :

Receiver Channel

Channel Name :
Channel Type :
Transport type :

Using TCP
Local Queue
Queue name :
Queue type :

Receiver Channel

Channel Name :
Channel Type :
Transport type :

74 IBM MQ: Reference

AS400
*LCL

WINNT
*RCVR
*LU62

AS400
*LCL

WINNT
*RCVR
*TCP

.LOCALQ

.AS400.SNA

.LOCALQ

.AS400.TCP

Mmoo m

IBM MQ file system permissions applied to /var/mgm

The following information describes the security applied to the files and directories under /var/mgm/ and
why the file-system permissions are set as they are. In order to ensure the correct operation of IBM MQ
you should not alter the file system permissions as set by IBM MQ

IBM MQ file system Security on UNIX, Linux, and IBM i

The files under the IBM MQ data directory (/var/mgm) are used to store:

* IBM MQ configuration data

* Application data (IBM MQ objects and the data contained within IBM MQ messages)
* Run-time control information

* Monitoring information (messages and FFST files)

Access to this data is controlled using file system permissions with some of the data being accessible to
all users while other data is restricted only to members of the IBM MQ Administrator group 'mqm' (or
QMOM on IBM i).

Access is granted in the following three categories:
mqm group only

The files and directories in this category are only accessible to IBM MQ Administrators (members of the
'mqm' group) and the IBM MQ queue manager processes.

The file permissions for these files and directories are:

- PWXTWX--~- mgm:mgm (UNIX and Linux)
—PWXPWX==~ QMQMADM:QMQM (IBM i)

An example of the files and directories in this category is:

/var/mgm/gmgrs/<QMGR>/gm. ini
/var/mgm/qmgrs/<QMGR>/channel/
/var/mgm/gmgrs/<QMGR>/channel/SYSTEM!DEF!SCRVONN
/var/mgm/qmgrs/<QMGR>/queues/
/var/mgm/gmgrs/<QMGR>/queues/SYSTEM!DEFAULT ! LOCAL!QUEUES/
/var/mgm/qmgrs/<QMGR>/errors/
/var/mgm/qgmgrs/<QMGR>/errors/AMQERROL.LOG
/var/mgm/gmgrs/<QMGR>/ss1/

/var/mgm/qmgrs/<QMGR>/@qgmgr/
/var/mgm/gmgrs/<QMGR>/@gmpersist/

All users read access - mgm group members read and write access

The files and directories in this category can be read by all users, but only members of the 'mqm' group
can modify these files and manipulate these directories.

The file permissions for these files and directories are:

—PWXTWXT-X mgm:mgm (UNIX and Linux)
-PWXPWXr=X QMQMADM:QMQM (IBM i)

An example of the files and directories in this category is:

/var/mgm/mgs.ini
/var/mgm/exits/
/var/mgm/qmgrs/
/var/mgm/qmgrs/<QMGR>/
/var/mgm/qgmgrs/<QMGR>/@app/
/var/mgm/qmgrs/<QMGR>/@ipcc/

Reference 75

IBM WebSphere® MQ V7.1 and V7.5, and IBM MQ Version 8.0:

/var/mgm/sockets/@SYSTEM
/var/mgm/sockets/<QMGR>/@app/<hostname>
/var/mgm/sockets/<QMGR>/@ipcc/<hostname>

All users read and write access
Files that have read and write access for all users

IBM MQ has no regular files that have world writable file permissions (777). However there are a number
of special files that appear as having world writable file permissions.

These special files provide no security exposure. Although the permissions are shown as 777, they are not
regular files and you cannot write directly to them.

These special files are:

Symbolic links
Symbolic links are identified by the '1' character at the start of their permissions. The permissions
on the symbolic link have no effect on who is able to access the target file, as access to the
command is controlled by the permissions on the target of the symbolic link.

On most UNIX and Linuxsystems it is not possible to change the permissions on symbolic links,
so they always appear as 1rwxrwxrwx.

Socket files
Socket files are special files created by the operating system, as a result of a process creating a
UNIX domain socket. These files can be identified by the 's' at the start of the file permissions,
that is srwxrwxrwx.

The permissions on the file do not grant access to the file itself, but define who can connect to the
UNIX domain socket.

IBM MQ uses a number of these socket files and the permissions are always set according to who
is allowed to communicate with the socket.

The following directories contain socket files that have read /write permissions for all users
(SrWXrwxrwx).

IBM WebSphere MQ V7.r and IBM MQ Version 8.0:
/var/mgm/sockets/<QMGR>/zsocketEC/<hostname>/Zsocket *

Socket files used by applications that connect to IBM MQ using isolated bindings.
/var/mgm/sockets/<QMGR>/@ipcc/ssem/<hostname>/*

Directories that have read and write access for all users

There are times when IBM MQ applications need to create files under the IBM MQ data directory. To
ensure that applications are able to create files when they are required, a number of directories are
granted world write access, which means that any user on the system can create files within that
directory.

With the exception of the errors logs files, that can be written to by any member of the 'mgm' group, all
files created in these directories are created with restricted permissions that allows only the file creator
write access. This allows the system administrator to track the user ID of all data written to files in these
directories.

fvar/mgm/errors/
This directory contains the system error log files and FFST files. The permission of this directory
is 'drwxrwsrwt' meaning that all users on the system can create files in this directory.

76 IBM MQ: Reference

The SetGroupld bit 's' indicates that all files created in this directory have the group ownership of
mgm'.

The 't' sticky bit is not set by default on this directory, but an IBM MQ administrator can set this
explicitly, to allow users to delete only the files that they create.

Note: This feature is not available on IBM i.

AMOQERRO0*.LOG
These error log files can only be written to directly by members of the group but any user
can read the messages written to these files (permission: -rw-rw-r--).

AMOQnnnnn.*. FDC
These files contain FFST information written when an error occurs in the queue manager
or in an application written by a user. These files are created with the permissions
-rW-r----- .

[var/mgm/trace/
Trace files are written to this directory when IBM MQ trace is enabled. IBM MQ trace is written
by all process associated with a queue manager for which trace is enabled.

The permissions of this directory are 'drwxrwsrwt' meaning that all users on the system can create
files in this directory.

The SetGroupld bit 's' indicates that all files created in this directory have the group ownership of

mgm'.

The 't' sticky bit is not set by default on this directory, but an IBM MQ administrator can set this
explicitly, to allow users to delete only the files that they create.

Note: This feature is not available on IBM i.

AMQnnnnn.*.TRC
These files contain the trace data written by each process which is tracing and are created
with permissions -rw-r-----

The permissions on this directory are drwxrwsrwt and the permissions of the socket files
created in this directory are srwx------ .

IBM WebSphere MQ V7.1 and V7.5, and IBM MQ Version 8.0:
/var/mgm/sockets/<QMGR>/zsocketapp/<hostname>/

This directory is used by applications that connect to the IBM MQ queue manager using
isolated bindings. During connect processing a socket file is created by the connecting
application in this directory. The socket file is removed after the connection is made to
the queue manager.

The permissions on this directory are drwxrwsrwt and the permissions of the socket files
created in this directory are srwx------ .

The SetGroupld bit 's' on this directory ensures that all files created in this directory have
the group ownership of 'mgm'.

On all platforms except IBM i, this directories also has the 't' sticky bit set which prevents
a user from deleting any files except the ones for which they are the owner. This prevents
an unauthorized user from deleting files that they do not own.

/var/mgm/sockets/<QMGR>/@ipcc/ssem/<hostname>/
/var/mgm/sockets/<QMGR>/@app/ssem/<hostname>/

For processes that connect to IBM MQusing shared bindings then UNIX domain sockets
might be used to synchronize between the application and the queue manager. When
UNIX domain sockets are being used then the associated socket file is created in these
directories.

Reference 77

The permissions on these directories are drwxrwsrwt and the permissions of the socket
files created in these directories are srwxrwxrwx.

The SetGroupId bit 's' on these directories ensures that all files created in these directories
have the group ownership of 'mgm'.

On all platforms except IBM i, these directories also have the 't' sticky bit set which
prevents a user from deleting any files except the ones for which they are the owner. This
prevents an unauthorized user from deleting files that they do not own.

Use of System V IPC resources by IBM MQ

IBM MQ uses System V shared memory and semaphores for inter-process communication. These
resources are grouped according to how they are used with each group having appropriate ownership
and access permissions.

To verify which of the System V IPC resources on a system belong to IBM MQ you can:
* Check the ownership.

The owning user of IBM MQ System V IPC resources is always the 'mgm' user on UNIX platforms and
Linux. On IBM i the owning user is 'QMQM'.

* IBM WebSphere MQ V7.5 and later, use the amgspdbg utility.
The amgqspdbg utility which is shipped with IBM MQ can be used to display the shared memory and
semaphore id's for a given queue manager.
You must issue the command once for the 'system' group of System V resources created by IBM MQ
amqspbg -z -I

and then four times for each queue manager on the system to get the complete list of System V
resources used by IBM MQ. Assume a queue manager name of QMGR1 in the following examples:.
amqspdbg -i QMGR1 -I

amqspdbg -q QMGR1 -1

amgqspdbg -p QMGR1 -I

amgspdbg -a QMGR1 -1

The access permissions on the System V resources created by IBM MQ are set to grant only the correct
level of access to the permitted users. A number of the System V IPC resources created by IBM MQ are
accessible to all users on the machine and have permissions of -rw-rw-rw-.

The -g ApplicationGroup parameter on the command can be used to restrict access to a queue

manager to membership of a specific operating system group. The use of this restricted group
functionality restricts the permissions granted on the System V IPC resources further.

78 IBM MQ: Reference

Queue names

Use this information to understand the restrictions of queue names and reserved queue names.

Queues can have names up to 48 characters long.

Reserved Queue names

Names that start with “SYSTEM.” are reserved for queues defined by the queue manager. You can use the
ALTER or DEFINE REPLACE commands to change these queue definitions to suit your installation. The

following names are defined for IBM MQ:

Queue Name

Description

SYSTEM.

ADMIN.ACTIVITY.QUEUE

Queue for activity reports

SYSTEM.

ADMIN.CHANNEL.EVENT

Queue for channel events

SYSTEM.

ADMIN.COMMAND.EVENT

Queue for command events

SYSTEM.

ADMIN.COMMAND.QUEUE

Queue to which PCF command messages are sent

SYSTEM.

ADMIN.CONFIG.EVENT

Queue for configuration events

SYSTEM.

ADMIN.PERFM.EVENT

Queue for performance events

SYSTEM.

ADMIN.PUBSUB.EVENT

System publish/subscribe related event queue

SYSTEM.

ADMIN.QMGR.EVENT

Queue for queue manager events

SYSTEM.

ADMIN.TRACE.ROUTE.QUEUE

Queue for trace-route reply messages

SYSTEM.

AUTH.DATA.QUEUE

The queue that holds access control lists for the queue manager.
(Not for z/OS)

SYSTEM.

CHANNEL.INITQ

Initiation queue for channels

SYSTEM

.CHANNEL.SYNCQ

The queue that holds the synchronization data for channels

SYSTEM.

CHLAUTH.DATA.QUEUE

IBM MQ channel authentication data queue

SYSTEM.

CICS.INITIATION.QUEUE

Queue used for triggering (not for z/OS)

SYSTEM.

CLUSTER.COMMAND.QUEUE

Queue used to communicate repository changes between queue
managers (AIX, HP-UX, Linux, IBM i, Solaris, Windows, and
z/0S only)

SYSTEM.

CLUSTER.HISTORY.QUEUE

The queue is used to store the history of cluster state
information for service purposes.

SYSTEM.

CLUSTER.REPOSITORY.QUEUE

Queue used to hold information about the repository (AIX,
HP-UX, Linux, IBM i, Solaris, Windows, and z/OS only)

SYSTEM

.CLUSTER.TRANSMIT.MODEL.QUEUE

The queue is used to create individual transmit queues for each
cluster-sender channel.

SYSTEM.

CLUSTER.TRANSMIT.QUEUE

Transmission queue for all destinations managed by cluster
support (AIX, HP-UX, Linux, IBM i, Solaris, Windows, and
z/0S only)

SYSTEM.

COMMAND. INPUT

Queue to which command messages are sent on z/0OS

SYSTEM.

COMMAND.REPLY .MODEL

Model queue definition for command replies (for z/OS)

SYSTEM.

DEAD.LETTER.QUEUE

Dead-letter queue (not for z/OS)

SYSTEM.

DEFAULT.ALIAS.QUEUE

Default alias queue definition

SYSTEM.

DEFAULT.INITIATION.QUEUE

Queue used to trigger a specified process (not for z/OS)

SYSTEM.

DEFAULT.LOCAL.QUEUE

Default local queue definition

SYSTEM.

DEFAULT.MODEL.QUEUE

Default model queue definition

SYSTEM.

DEFAULT.REMOTE.QUEUE

Default remote queue definition

Reference 79

Queue Name

Description

SYSTEM.DURABLE.SUBSCRIBER.QUEUE

A local queue used to hold a persistent copy of the durable
subscriptions in the queue manager

SYSTEM.HIERARCHY.STATE

Queue used to hold information about the state of inter-queue
manager relationships in a publish/subscribe hierarchy

SYSTEM.JMS.TEMPQ.MODEL

Model for JMS temporary queues

SYSTEM. INTERNAL.REPLY.QUEUE

IBM MQ internal reply queue (not for z/OS)

SYSTEM. INTER.QMGR.CONTROL

Queue used in a publish/subscribe hierarchy to receive requests
from a remote queue manager to create a proxy subscription

SYSTEM. INTER.QMGR. PUBS

Queue used in a publish/subscribe hierarchy to receive
publications from a remote queue manager

SYSTEM. INTER.QMGR. FANREQ

Queue used in a publish/subscribe hierarchy to process
requests to create a proxy subscription on a remote queue
manager

SYSTEM.MQEXPLORER.REPLY.MODEL

Model queue definition for replies for MQ Explorer

SYSTEM.MQSC.REPLY.QUEUE

Model queue definition for MQSC command replies (not for
z/0S)

SYSTEM.QSG.CHANNEL.SYNCQ

Shared local queue used for storing messages that contain the
synchronization information for shared channels (z/OS only)

SYSTEM.QSG.TRANSMIT.QUEUE

Shared local queue used by the intra-group queuing agent when
transmitting messages between queue managers in the same
queue-sharing group (z/OS only)

SYSTEM.RETAINED.PUB.QUEUE

A local queue used to hold a copy of each retained publication
in the queue manager.

SYSTEM.SELECTION.EVALUATION.QUEUE

IBM MQ internal selection evaluation queue (not for z/OS)

SYSTEM.SELECTION.VALIDATION.QUEUE

IBM MQ internal selection validation queue (not for z/OS)

Other object names

Processes, namelists, clusters, topics, services, and authentication information objects can have names up
to 48 characters long. Channels can have names up to 20 characters long. Storage classes can have names
up to 8 characters long. CF structures can have names up to 12 characters long.

Reserved object names

Names that start with SYSTEM. are reserved for objects defined by the queue manager. You can use the
ALTER or DEFINE REPLACE commands to change these object definitions to suit your installation. The

following names are defined for IBM MQ:

Object Name

Description

SYSTEM.ADMIN.SVRCONN Server-connection channel used for remote administration of a
queue manager

SYSTEM.AUTO.RECEIVER Default receiver channel for auto definition (Windows, UNIX
and Linux systems only)

SYSTEM.AUTO.SVRCONN Default server-connection channel for auto definition (IBM i,
Windows, UNIX and Linux systems only)

SYSTEM.BASE.TOPIC Base topic for ASPARENT resolution. If a particular
administrative topic object has no parent administrative topic
objects, any ASPARENT attributes are inherited from this object

SYSTEM.DEE.CLNTCONN Default client-connection channel definition

80 IBM MQ: Reference

Object Name

Description

SYSTEM.DEF.CLUSRCVR Default cluster-receiver channel definition
SYSTEM.DEFE.CLUSSDR Default cluster-sender channel definition
SYSTEM.DEFE.RECEIVER Default receiver channel definition
SYSTEM.DEF.REQUESTER Default requester channel definition
SYSTEM.DEE.SENDER Default sender channel definition
SYSTEM.DEE.SERVER Default server channel definition
SYSTEM.DEESVRCONN Default server-connection channel definition

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP

Default authentication information object definition for defining
authentication information objects of type CRLLDAP

SYSTEM.DEFAULT.AUTHINFO.OCSP

Default authentication information object definition for defining
authentication information objects of type OCSP

SYSTEM.DEFAULT.LISTENER.LU62

Default SNA listener (Windows only)

SYSTEM.DEFAULT.LISTENER.NETBIOS

Default NetBIOS listener (Windows only)

SYSTEM.DEFAULT.LISTENER.SPX

Default SPX listener (Windows only)

SYSTEM.DEFAULT.LISTENER.TCP

Default TCP/IP listener (IBM i, Windows, UNIX and Linux
systems only)

SYSTEM.DEFAULT.NAMELIST

Default namelist definition

SYSTEM.DEFAULT.PROCESS Default process definition

SYSTEM.DEFAULT.SEVICE Default service (IBM i, Windows, UNIX and Linux systems
only)

SYSTEM.DEFAULT.TOPIC Default topic definition

SYSTEM.QPUBSUB.QUEUE.NAMELIST

A list of queues for the Queued Publish/Subscribe interface to
monitor

SYSTEMST

Default storage class definition (z/OS only)

Queue name resolution

This topic contains information about queue name resolution as performed by queue managers at both

sending and receiving ends of a channel.

In larger networks, the use of queue managers has a number of advantages over other forms of
communication. These advantages derive from the name resolution function in DQM and the main

benefits are:

* Applications do not need to make routing decisions

* Applications do not need to know the network structure

* Network links are created by systems administrators

* Network structure is controlled by network planners

* Multiple channels can be used between nodes to partition traffic

The following figure shows an example of queue name resolution. The figure shows two machines in a
network, one running a put application, the other running a get application. The applications
communicate with each other though the IBM MQ channel, controlled by the MCAs. As far as the
application is concerned, the process is the same as putting messages on a local queue.

Reference 81

4+— MachineA——» 4— MachineB——»

Application Application
Putting Getting
application application
MQPUT MQGET
call call
v v
Queue Manager Queue Manager
Queue name __ Channe| ———— Queue name
resolution resolution
process process
call call
Queue | 'transmission’ Sending —» Network [Receiving Queue | 'Target'
A
File | Channeldefinition File Channel definition

Figure 5. Name resolution

Referring to the basic mechanism for putting messages on a remote queue, as far as the
application is concerned, is the same as for putting messages on a local queue:

* The application putting the message issues MQOPEN and MQPUT calls to put messages on the target
queue.

* The application getting the messages issues MQOPEN and MQGET calls to get the messages from the
target queue.

If both applications are connected to the same queue manager then no inter-queue manager
communication is required, and the target queue is described as local to both applications.

However, if the applications are connected to different queue managers, two MCAs and their associated
network connection are involved in the transfer, as shown in the figure. In this case, the target queue is
considered to be a remote queue to the putting application.

The sequence of events is as follows:
1. The putting application issues MQOPEN and MQPUT calls to put messages to the target queue.

2. During the MQOPEN call, the name resolution function detects that the target queue is not local, and
decides which transmission queue is appropriate. Thereafter, on the MQPUT calls associated with the
MQOPEN call, all messages are placed on this transmission queue.

3. The sending MCA gets the messages from the transmission queue and passes them to the receiving
MCA at the remote computer.

4. The receiving MCA puts the messages on the target queue, or queues.
5. The getting application issues MQOPEN and MQGET calls to get the messages from the target queue.

Note: Only step 1 and step 5 involve application code; steps 2 through 4 are performed by the local
queue managers and the MCA programs. The putting application is unaware of the location of the target
queue, which could be in the same processor, or in another processor on another continent.

82 IBM MQ: Reference

The combination of sending MCA, the network connection, and the receiving MCA, is called a message
channel, and is inherently a unidirectional device. Normally, it is necessary to move messages in both
directions, and two channels are set up for this movement, one in each direction.

What is queue name resolution?
Queue name resolution is vital to DQM. It removes the need for applications to be concerned with the
physical location of queues, and insulates them against the details of networks.

A systems administrator can move queues from one queue manager to another, and change the routing
between queue managers without applications needing to know anything about it.

In order to uncouple from the application design the exact path over which the data travels, it is
necessary to introduce a level of indirection between the name used by the application when it refers to
the target queue, and the naming of the channel over which the flow occurs. This indirection is achieved
using the queue name resolution mechanism.

In essence, when an application refers to a queue name, the name is mapped by the resolution
mechanism either to a transmission queue or to a local queue that is not a transmission queue. For
mapping to a transmission queue, a second name resolution is needed at the destination, and the
received message is placed on the target queue as intended by the application designer. The application
remains unaware of the transmission queue and channel used for moving the message.

Note: The definition of the queue and channel is a system management responsibility and can be
changed by an operator or a system management utility, without the need to change applications.

An important requirement for the system management of message flows is that alternative paths need to
be provided between queue managers. For example, business requirements might dictate that different
classes of service are sent over different channels to the same destination. This decision is a system
management decision and the queue name resolution mechanism provides a flexible way to achieve it.
The Application Programming Guide describes this in detail, but the basic idea is to use queue name
resolution at the sending queue manager to map the queue name supplied by the application to the
appropriate transmission queue for the type of traffic involved. Similarly at the receiving end, queue
name resolution maps the name in the message descriptor to a local (not a transmission) queue or again
to an appropriate transmission queue.

Not only is it possible for the forward path from one queue manager to another to be partitioned into
different types of traffic, but the return message that is sent to the reply-to queue definition in the
outbound message can also use the same traffic partitioning. Queue name resolution satisfies this
requirement and the application designer need not be involved in these traffic partitioning decisions.

The point that the mapping is carried out at both the sending and receiving queue managers is an
important aspect of the way name resolution works. This mapping allows the queue name supplied by
the putting application to be mapped to a local queue or a transmission queue at the sending queue
manager, and again remapped to a local queue or a transmission queue at the receiving queue manager.

Reply messages from receiving applications or MCAs have the name resolution carried out in the same

way, allowing return routing over specific paths with queue definitions at all the queue managers on
route.

Reference 83

System and default objects

Lists the system and default objects created by the crtmgm command.

When you create a queue manager using the crtmgm control command, the system objects and the default
objects are created automatically.

* The system objects are those IBM MQ objects needed to operate a queue manager or channel.

* The default objects define all the attributes of an object. When you create an object, such as a local
queue, any attributes that you do not specify explicitly are inherited from the default object.

The following tables list the system and default objects created by crtmgm:

* [Table 11|lists the system and default queue objects.
* [Table 12 on page 85|lists the system and default topic objects.

* [Table 13 on page 85|lists the system and default channel objects.

* [Table 14 on page 86|lists the system and default authentication information objects.

[Table 15 on page 86| lists the system and default listener objects.

[Table 16 on page 86|lists the system and default namelist objects.

* [Table 17 on page 86|lists the system and default process objects.

* [Table 18 on page 86|lists the system and default service objects.

Table 11. System and default objects: queues

Object name Description

SYSTEM.ADMIN.ACCOUNTING.QUEUE The queue that holds accounting monitoring data.

SYSTEM.ADMIN.ACTIVITY.QUEUE The queue that holds returned activity reports.

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.

SYSTEM.ADMIN.COMMAND.EVENT Event queue for command events.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used for remote MQSC

commands and PCF commands.

SYSTEM.ADMIN.

CONFIG.EVENT

Event queue for configuration events.

SYSTEM.ADMIN.

PERFM.EVENT

Event queue for performance events.

SYSTEM.ADMIN.

PUBSUB.EVENT

System publish/subscribe related event queue

SYSTEM. ADMIN.

QMGR.EVENT

Event queue for queue manager events.

SYSTEM.ADMIN

.STATISTICS.QUEUE

The queue that holds statistics monitoring data.

SYSTEM.ADMIN.

TRACE.ACTIVITY.QUEUE

The queue that displays trace activity.

SYSTEM.ADMIN.

TRACE.ROUTE.QUEUE

The queue that holds returned trace-route reply messages.

SYSTEM.AUTH.DATA.QUEUE

The queue that holds access control lists for the queue
manager.

SYSTEM. CHANNEL.INITQ

Channel initiation queue.

SYSTEM. CHANNEL. SYNCQ

The queue that holds the synchronization data for channels.

SYSTEM.CHLAUTH.DATA.QUEUE

IBM MQ channel authentication data queue

SYSTEM.CICS.INITIATION.QUEUE

Default CICS initiation queue.

SYSTEM.CLUSTER.COMMAND.QUEUE

The queue used to carry messages to the repository queue
manager.

SYSTEM.CLUSTER.HISTORY.QUEUE

The queue is used to store the history of cluster state
information for service purposes.

SYSTEM.CLUSTER. TRANSMIT.MODEL.QUEUE

The queue is used to create individual transmit queues for
each cluster-sender channel.

84 1BM MQ: Reference

Table 11. System and default objects: queues (continued)

Object name

Description

SYSTEM.

CLUSTER.REPOSITORY.QUEUE

The queue used to store all repository information.

SYSTEM.

CLUSTER.TRANSMIT.QUEUE

The transmission queue for all messages to all clusters.

SYSTEM

.DEAD.LETTER.QUEUE

Dead-letter (undelivered-message) queue.

SYSTEM.

DEFAULT.ALIAS.QUEUE

Default alias queue.

SYSTEM.

DEFAULT.INITIATION.QUEUE

Default initiation queue.

SYSTEM.

DEFAULT.LOCAL.QUEUE

Default local queue.

SYSTEM.

DEFAULT.MODEL.QUEUE

Default model queue.

SYSTEM.

DEFAULT.REMOTE.QUEUE

Default remote queue.

SYSTEM

.JMS.TEMPQ.MODEL

Model for JMS temporary queues

SYSTEM.

MQEXPLORER.REPLY.MODEL

The MQ Explorer reply-to queue. This is a model queue that
creates a temporary dynamic queue for replies to the MQ
Explorer.

SYSTEM.

MQSC.REPLY.QUEUE

MQSC command reply-to queue. This is a model queue that
creates a temporary dynamic queue for replies to remote
MQSC commands.

SYSTEM.

PENDING.DATA.QUEUE

Support deferred messages in JMS.

Table 12. System and default objects: topics

Object name

Description

[SYSTEM.BASE.TOPIC]

Base topic for ASPARENT resolution. If a particular topic has no
parent administrative topic objects, or those parent objects
also have ASPARENT, any remaining ASPARENT attributes are
inherited from this object.

SYSTEM.

DEFAULT.TOPIC

Default topic definition.

Table 13. System and default objects: channels

Object name

Description

SYSTEM.

AUTO.RECEIVER

Dynamic receiver channel.

SYSTEM.

AUTO.SVRCONN

Dynamic server-connection channel.

SYSTEM.

DEF.CLUSRCVR

Default receiver channel for the cluster, used to supply
default values for any attributes not specified when a
CLUSRCVR channel is created on a queue manager in the
cluster.

SYSTEM.

DEF.CLUSSDR

Default sender channel for the cluster, used to supply default
values for any attributes not specified when a CLUSSDR
channel is created on a queue manager in the cluster.

SYSTEM.DEF.RECEIVER Default receiver channel.
SYSTEM.DEF.REQUESTER Default requester channel.
SYSTEM.DEF.SENDER Default sender channel.
SYSTEM.DEF.SERVER Default server channel.
SYSTEM.DEF.SVRCONN Default server-connection channel.

SYSTEM.

DEF.CLNTCONN

Default client-connection channel.

L= R SYSTEM.DEF. AMQP

Default AMQP channel.

Reference 85

Table 14. System and default objects: authentication information objects

Object name

Description

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP

Default authentication information object for defining
authentication information objects of type CRLLDAP.

SYSTEM.DEFAULT.AUTHINFO.0CSP

Default authentication information object for defining
authentication information objects of type 0CSP.

Table 15. System and default objects: listeners

Object name

Description

SYSTEM.DEFAULT.LISTENER.TCP

Default TCP listener.

SYSTEM.DEFAULT.LISTENER.LU62

Default LU62 listener.

SYSTEM.DEFAULT.LISTENER.NETBIOS

Default NETBIOS listener.

SYSTEM.DEFAULT.LISTENER.SPX

Default SPX listener.

1. Windows only

Table 16. System and default objects: namelists

Object name

Description

SYSTEM.DEFAULT.NAMELIST

Default namelist.

Table 17. System and default objects: processes

Object name

Description

SYSTEM.DEFAULT.PROCESS

Default process definition.

Table 18. System and default objects: services

Object name

Description

SYSTEM.DEFAULT.SERVICE

Default service.

SYSTEM.BROKER

Publish/subscribe broker

Windows default configuration objects

On Windows systems, you can set up a default configuration using the IBM MQ Postcard application.
Note: You cannot set up a default configuration if other queue managers exist on your computer.

Many of the names used for the Windows default configuration objects involve the use of a short TCP/IP
name. This is the TCP/IP name of the computer, without the domain part; for example the short TCP/IP
name for the computer mycomputer.hursley.ibm.com is mycomputer. In all cases, where this name has to

be truncated, if the last character is a period (.), it is removed.

Any characters within the short TCP/IP name that are not valid for IBM MQ object names (for example,
hyphens) are replaced by an underscore character.

Valid characters for IBM MQ object names are: a to z, A to Z, 0 to 9, and the four special characters / % .
and _

The cluster name for the Windows default configuration is DEFAULT_CLUSTER.

If the queue manager is not a repository queue manager, the objects listed in [Table 19 on page 87| are
created.

86 IBM MQ: Reference

Table 19. Objects created by the Windows default configuration application

Object

Name

Queue manager

The short TCP/IP name prefixed with the characters QM_. The maximum
length of the queue manager name is 48 characters. Names exceeding this
limit are truncated at 48 characters. If the last character of the name is a
period (.), this is replaced by a space ().

The queue manager has a command server, a channel listener, and channel
initiator associated with it. The channel listener listens on the standard IBM
MQ port, port number 1414. Any other queue managers created on this
machine must not use port 1414 while the default configuration queue
manager still exists.

Generic cluster receiver channel

The short TCP/IP name prefixed with the characters TO_QM_. The
maximum length of the generic cluster receiver name is 20 characters. Names
exceeding this limit are truncated at 20 characters. If the last character of the
name is a period (.), this is replaced by a space ().

Cluster sender channel

The cluster sender channel is initially created with the name
TO_+QMNAME+. When IBM MQ has established a connection to the
repository queue manager for the default configuration cluster, this name is
replaced with the name of the repository queue manager for the default
configuration cluster, prefixed with the characters TO_. The maximum length
of the cluster sender channel name is 20 characters. Names exceeding this
limit are truncated at 20 characters. If the last character of the name is a
period (.), this is replaced by a space ().

Local message queue

The local message queue is called default.

Local message queue for use by the
IBM MQ Postcard application

The local message queue for use by the IBM MQ Postcard application is
called postcard.

Server connection channel

The server connection channel allows clients to connect to the queue
manager. Its name is the short TCP/IP name, prefixed with the characters S_.
The maximum length of the server connection channel name is 20 characters.
Names exceeding this limit are truncated at 20 characters. If the last character
of the name is a period (.), this is replaced by a space ().

If the queue manager is a repository queue manager, the default configuration is similar to that described

in [Table 19} but with the following differences:

* The queue manager is defined as a repository queue manager for the default configuration cluster.

¢ There is no cluster-sender channel defined.

* Alocal cluster queue that is the short TCP/IP name prefixed with the characters clq_default_ is
created. The maximum length of this name is 48 characters. Names exceeding this length are truncated

at 48 characters.

If you request remote administration facilities, the server connection channel,
SYSTEM.ADMIN.SVRCONN is also created.

Reference 87

SYSTEM.BASE.TOPIC

Base topic for ASPARENT resolution. If a particular topic has no parent administrative topic objects, or those
parent objects also have ASPARENT, any remaining ASPARENT attributes are inherited from this object.

Table 20. Default values of SYSTEM. BASE. TOPIC

Parameter Value

TOPICSTR "

CLROUTE DIRECT

CLUSTER The default value is an empty string.
COMMINFO SYSTEM.DEFAULT.COMMINFO.MULTICAST
DEFPRESP SYNC

DEFPRTY 0

DEFPSIST NO

DESCR 'Base topic for resolving attributes'
DURSUB YES

MCAST DISABLED

MDURMDL SYSTEM.DURABLE.MODEL.QUEUE
MNDURMDL SYSTEM.NDURABLE.MODEL.QUEUE
NPMSGDLV ALLAVATIL

PMSGDLV ALLDUR

PROXYSUB FIRSTUSE

PUB ENABLED

PUBSCOPE ALL

QSGDISP (z/OS platform only) | MGR

SuB ENABLED

SUBSCOPE ALL

USEDLQ YES

WILDCARD PASSTHRU

If this object does not exist, its default values are still used by IBM MQ for ASPARENT attributes that are
not resolved by parent topics further up the topic tree.

Setting the PUB or SUB attributes of SYSTEM.BASE.TOPIC to DISABLED prevents applications publishing or

subscribing to topics in the topic tree, with two exceptions:

1. Any topic objects in the topic tree that have PUB or SUB explicitly set to ENABLE. Applications can
publish or subscribe to those topics, and their children.

2. Publication and subscription to SYSTEM.BROKER.ADMIN.STREAM is not disabled by the setting the PUB or
SUB attributes of SYSTEM.BASE.TOPIC to DISABLED.

See also [Special handling for the PUB parameter]

88 IBM MQ: Reference

IBM MQ for IBM i system and default objects

When you create a queue manager using the CRTMQM command, the system objects and the default

objects are created automatically.

* The system objects are those IBM MQ objects required for the operation of a queue manager or

channel.

* The default objects define all the attributes of an object. When you create an object, such as a local
queue, any attributes that you do not specify explicitly are inherited from the default object.

The following tables list the system and default objects created by CRTMQM :

* [Table 21]lists the system and default queue objects.

+ [Table 22 on page 91| lists the system and default channel objects.
Yy)

* [Table 23 on page 91| gives the system and default authentication information objects.

* [Table 24 on page 91| gives the system and default listener object.
& Yy)

[Table 25 on page 91| gives the system and default namelist object.
[Table 26 on page 92| gives the system and default process object.

* [Table 27 on page 92| gives the system and default service object.

Table 21. System and default objects: queues

Object name

Description

SYSTEM.ADMIN.ACCOUNTING.QUEUE

Accounting message data generated when an application
disconnects from the queue manager.

SYSTEM.ADMIN.ACTIVITY.QUEUE Activity report message data.
SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channels.
SYSTEM. ADMIN.COMMAND.QUEUE Administration command queue. Used for remote MQSC
commands and PCF commands.
SYSTEM.ADMIN.LOGGER.EVENT Logger event (journal receiver) message data.
SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.
SYSTEM.ADMIN.PUBSUB.EVENT System publish/subscribe related event queue
SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.
SYSTEM.ADMIN.STATISTICS.QUEUE MQI, queue and channel statistics message data queue.
SYSTEM.ADMIN.TRACE.ROUTE.QUEUE Trace-route reply message data queue.
SYSTEM.AUTH.DATA.QUEUE Used by the object authority manager (OAM).

SYSTEM.BROKER.ADMIN.STREAM

Admin stream used by the queued publish/subscribe
interface.

SYSTEM.BROKER.CONTROL.QUEUE

Publish/subscribe interface control queue.

SYSTEM.BROKER.DEFAULT.STREAM

The default stream used by the queued
publish/subscribe interface.

SYSTEM.BROKER. INTER.BROKER.COMMUNICATIONS

Broker to broker communications queue.

SYSTEM. CHANNEL. INITQ

Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ

The queue that holds the synchronization data for
channels.

SYSTEM.CHLAUTH.DATA.QUEUE

IBM MQ channel authentication data queue

SYSTEM.DURABLE .MODEL.QUEUE

A queue used as a model for managed durable
subscriptions.

89

Reference

Table 21. System and default objects: queues (continued)

Object name

Description

SYSTEM.DURABLE.SUBSCRIBER.QUEUE

A queue used to hold a persistent copy of the durable
subscriptions in the queue manager.

SYSTEM.CICS.INITIATION.QUEUE

Default CICS initiation queue.

SYSTEM.CLUSTER.COMMAND. QUEUE

The queue used to carry messages to the repository
queue manager.

SYSTEM.CLUSTER.HISTORY.QUEUE

The queue is used to store the history of cluster state
information for service purposes.

SYSTEM.CLUSTER.REPOSITORY.QUEUE

The queue used to store all repository information.

SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE

The queue is used to create individual transmit queues
for each cluster-sender channel.

SYSTEM.CLUSTER.TRANSMIT.QUEUE

The transmission queue for all messages to all clusters.

SYSTEM.DEAD.LETTER.QUEUE

Dead-letter (undelivered message) queue.

SYSTEM.DEFAULT.ALIAS.QUEUE

Default alias queue.

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP

Default authentication information definition.

SYSTEM.DEFAULT.INITIATION.QUEUE

Default initiation queue.

SYSTEM.DEFAULT.LOCAL.QUEUE

Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE

Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE

Default remote queue.

SYSTEM.JMS.TEMPQ.MODEL

Model for JMS temporary queues

SYSTEM.HIERARCHY.STATE

IBM MQ distributed publish/subscribe hierarchy
relationship state.

SYSTEM. INTER.QMGR.CONTROL

IBM MQ distributed publish/subscribe control queue.

SYSTEM. INTER.QMGR. FANREQ

IBM MQ distributed publish/subscribe internal proxy
subscription fan-out process input queue.

SYSTEM. INTER.QMGR. PUBS

IBM MQ distributed publish/subscribe publications.

SYSTEM.MQEXPLORER.REPLY.MODEL

MQ Explorer reply-to queue. This is a model queue that
creates a temporary dynamic queue for replies to the MQ
Explorer.

SYSTEM.MQSC.REPLY.QUEUE

MQSC command reply-to queue. This is a model queue
that creates a temporary dynamic queue for replies to
remote MQSC commands.

SYSTEM.NDURABLE.MODEL.QUEUE

A queue used as a model for managed non durable
subscriptions.

SYSTEM.PENDING.DATA.QUEUE

Support deferred messages in JMS.

SYSTEM.RETAINED.PUB.QUEUE

A queue used to hold a copy of each retained publication
in the queue manager.

90 IBM MQ: Reference

Table 22. System and default objects: channels

Object name Description

SYSTEM.AUTO.RECEIVER Dynamic receiver channel.

SYSTEM.AUTO.SVRCONN Dynamic server-connection channel.
SYSTEM.DEF.CLNTCONN Default client connection channel, used to supply default

values for any attributes not specified when a CLNTCONN
channel is created on a queue manager.

SYSTEM.DEF.CLUSRCVR Default receiver channel for the cluster used to supply
default values for any attributes not specified when a
CLUSRCVR channel is created on a queue manager in the
cluster.

SYSTEM.DEF.CLUSSDR Default sender channel for the cluster used to supply
default values for any attributes not specified when a
CLUSSDR channel is created on a queue manager in the

cluster.
SYSTEM.DEF.RECEIVER Default receiver channel.
SYSTEM.DEF.REQUESTER Default requester channel.
SYSTEM.DEF.SENDER Default sender channel.
SYSTEM.DEF.SERVER Default server channel.
SYSTEM.DEF.SVRCONN Default server-connection channel.

Table 23. System and default objects: authentication information objects

Object name Description

SYSTEM.DEFAULT.AUTHINFO.CRLLDAP Default authentication information object for
authentication type CRLLDAP.

SYSTEM.DEFAULT.AUTHINFO.0CSP Default authentication information object for

authentication type 0CSP.

Table 24. System and default objects: listeners

Object name Description

SYSTEM.DEFAULT.LISTENER.TCP Default listener for TCP transport.

Table 25. System and default objects: namelists

Object name Description

SYSTEM.DEFAULT.NAMELIST Default namelist definition.

SYSTEM.QPUBSUB.QUEUE.NAMELIST A list of queue names monitored by the queued
publish/subscribe interface.

SYSTEM.QPUBSUB.SUBPOINT.NAMELIST A list of topic objects used by the queued
publish/subscribe interface to match topic objects to
subscription points.

Reference 91

Table 26. System and default objects: processes

Object name Description

SYSTEM.DEFAULT.PROCESS Default process definition.

Table 27. System and default objects: services

Object name Description

SYSTEM.DEFAULT.SERVICE Default service.

Stanza information

The following information helps you configure the information within stanzas, and lists the contents of
the mgs.ini, gn.ini, and mqclient.ini files.

Configuring stanzas

Use the links to help you configure the system, or systems, in your enterprise:

* [Changing IBM MQ configuration information| helps you configure the:

AllQueueManagers stanza

DefaultQueueManager stanza
— ExitProperties stanza

LogDefaults stanza

Security stanza in the gm.ini file

* |Changing queue manager configuration information| helps you configure the:

— AccessMode stanza (Windows only)

— Service stanza - for Installable services

— Log stanza

— RestrictedMode stanza (UNIX and Linux systems only)
— XAResourceManager stanza

- TCP, LU62, and NETBIOS stanzas

— ExitPath stanza

— QMErrorLog stanza

— SSL stanza

— ExitPropertiesLocal stanza

* |Configuring services and components| helps you configure the:

— Service stanza
— ServiceComponent stanza

and contains links to how they are used for different services on UNIX and Linux, and Windows
platforms.

* [Configuring API exits helps you configure the:

- AllActivityTrace stanza
— AppplicationTrace stanza

* [Configuring activity trace behavior helps you configure the:

— ApiExitCommon stanza
— ApiExitTemplate stanza
— ApiExitLocal stanza

* |Configuration information for clients| helps you configure the:

92 IBM MQ: Reference

— CHANNELS stanza

— ClientExitPath stanza

— LU62, NETBIOS and SPX stanza (Windows only)
— MessageBuffer stanza

— SSL stanza

— TCP stanza

* [“Configuration file stanzas for distributed queuing” on page 94| helps you configure the:

— CHANNELS stanza
— TCP stanza

— LUG62 stanza

— NETBIOS

— ExitPath stanza

* [Setting queued publish/subscribe message attributes| helps you configure the:
PersistentPublishRetry attribute

— NonPersistentPublishRetry attribute

PublishBatchSize attribute

PublishRetrylInterval attribute

in the Broker stanza.
Attention: You must create a Broker stanza if you need one.
Configuration files

See:
* Imgqs.ini file|
-

* Imgclient.ini file|

for a list of the possible stanzas in each configuration file.

mgs.ini file

[Example of an IBM MQ configuration file for UNIX and Linux systems|shows an example

mgs.ini file.
An mgs.ini file can contain the following stanzas:

* |AllQueueManagers|
* |DefaultQueueManager|

 |ExitProperties
* [LogDefaults|

In addition, there is one [QueueManager| stanza for each queue manager.

qm.ini file

[Example queue manager configuration file for IBM MQ for UNIX and Linux systems|shows an

example gm.ini file.

A gm.ini file can contain the following stanzas:

* [ExitPat

* IQMErrorLog]
* |QueueManage

@@Ei
!I)

Reference

93

.

* |Service| and [ServiceComponent]

To configure [[nstallableServicespn:

— UNIX and Linux platforms, use the Service and ServiceComponent stanzas.
— Windows, use regedit.

* Connection for

Attention: You must create a Connection stanza if you need one.

SSL and TLS

[TCP, LU62, and NETBIOS|

+ [XAResourceManager|

In addition, you can change the:
* AccessMode (Windows only)
* RestrictedMode (UNIX and Linux systems only)

by using the command.

mgqclient.ini file

Anmqclient.ini file can contain the following stanzas:
* |[CHANNELS

e |ClientExitPath,

i

=]
-
[
)
=
ﬂ
o)
—
O
)
QO
=}
a.
%
I
[<]

7 7

* |MessageBuffe

SL

. [IC

In addition, you might need a stanza to configure a preconnect exit.

[99)

Configuration file stanzas for distributed queuing
A description of the stanzas of the queue manager configuration file, qm.ini, related to distributed
queuing.

This topic shows the stanzas in the queue manager configuration file that relate to distributed queuing. It

applies to the queue manager configuration file for IBM MQ on m IBM i, Windows, UNIX
and Linux systems. The file is called qm.ini on all platforms.

The stanzas that relate to distributed queuing are:

CHANNELS
TCP

LU62
NETBIOS
EXITPATH

Figure 6 on page 95| shows the values that you can set using these stanzas. When you are defining one of

these stanzas, you do not need to start each item on a new line. You can use either a semicolon (;) or a
hash character (#) to indicate a comment.

94

IBM MQ: Reference

CHANNELS::
MAXCHANNELS=n 5 Maximum number of channels allowed, the

; default value is 100.

MAXACTIVECHANNELS=n ; Maximum number of channels allowed to be active at
; any time, the default is the value of MaxChannels.
3 Maximum number of initiators allowed, the default
3 and maximum value is 3.

MQIBINDTYPE=typél s Whether the binding for applications is to be
; "fastpath" or "standard".

; The default is "standard".

; Stops previous process if channel fails to start.

; The default is "NO".

ADOPTNEWMCATIMEOUT=n ; Specifies the amount of time that the new

5 process should wait for the old process to end.

; The default is 60.

MAXINITIATORS=n

ADOPTNEWMCA=chTtype

ADOPTNEWMCACHECK= ; Specifies the type checking required.
typecheck ; The default is "NAME","ADDRESS", and "QM".

TCP: ; TCP entries

PORT=n ; Port number, the default is 1414

KEEPALIVE=Yes ; Switch TCP/IP KeepAlive on
LIBRARY2=DLLName2 ; Used if code is in two libraries
EXITPATH:E ; Location of user exits (MQSeries for AIX,
HP-UX, and Solaris only)

String of directory paths.

we

EXITPATHS=

..

Figure 6. gm.ini stanzas for distributed queuing

Note:

1. MQIBINDTYPE applies only to IBM MQ for AIX, LM 1BM MQ for IBM i, IBM MQ for
HP-UX, and IBM MQ for Solaris.

2. EXITPATH applies only to IBM MQ for AIX, IBM MQ for HP-UX, and IBM MQ for Solaris.
Related information:

[Configuring z/0S|

Changing configuration information on Windows, UNIX, and Linux systems|

mIChanging configuration information on IBM i|

Channel attributes
This section describes the channel attributes held in the channel definitions.

You choose the attributes of a channel to be optimal for a particular set of circumstances for each channel.
However, when the channel is running, the actual values might have changed during startup
negotiations. See [Preparing channels|

Many attributes have default values, and you can use these values for most channels. However, in those
circumstances where the defaults are not optimal, see this section for guidance in selecting the correct
values.

For cluster channels, you specify the cluster channel attributes on the cluster-receiver channels at the
target queue managers. Any attributes you specify on the matching cluster-sender channels are likely to
be ignored. See |Cluster channels|

Note: In IBM MQ for IBM i, most attributes can be specified as *SYSDFTCHL, which means that the value
is taken from the system default channel in your system.

Reference 95

Channel attributes and channel types

Different types of channel support different channel attributes.

The channel types for IBM MQ channel attributes are listed in the following table.

Note: For cluster channels (the CLUSSDR and CLUSRCVR columns in the table), if an attribute can be
set on both channels, set it on both and ensure that the settings are identical. If there is any discrepancy
between the settings, those that you specify on the CLUSRCVR channel are likely to be used. This is

explained in [Cluster channels}

v 8.0.0.4

Table 28. Channel attributes for the channel types

Attribute field MQSC SDR SVR |[RCVR|RQSTR| CLNT- | SVR- | CLUS-| CLUS- m
command CONN | CONN | SDR RCVR
parameter

ALTDATE Yes Yes Yes Yes Yes Yes Yes Yes Yes

ALTTIME Yes Yes Yes Yes Yes Yes Yes Yes Yes

distributed AMQPKA Yes
VE8.0.0.4 [ryyrsg|

I|1<eeE alive|

BATCHHB | Yes Yes Yes Yes

[Batch interval BATCHINT | Yes | Yes Yes Yes

| BATCHLIM Yes Yes Yes Yes

| BATCHSZ Yes Yes Yes Yes Yes Yes
| CERTLABL Yes Yes Yes Yes Yes Yes Yes Yes Yes
| CHANNEL Yes Yes Yes Yes Yes Yes Yes Yes Yes
ilChannel statistics)| STATCHL Yes Yes Yes Yes Yes Yes
| CHLTYPE Yes Yes Yes Yes Yes Yes Yes Yes Yes

[Client channel CLNTWGHT Yes

[Cluster CLUSTER Yes Yes

[Cluster namelis§ | CLUSNL Yes Yes

ilCluster workload| | CLWLPRTY Yes Yes

||Eriorityl

"Cluster workload] CLWLRANK Yes Yes

lrand

I|Cluster workload] CLWLWGHT Yes Yes

I|Connection affinity| | AFFINITY Yes

ilConnection name| |CONNAME Yes Yes Yes Yes Yes Yes

ilConvert message] | CONVERT | Yes Yes Yes Yes

ilData compression| | COMPMSG Yes Yes Yes Yes Yes Yes Yes Yes

| DESCR Yes Yes Yes Yes Yes Yes Yes Yes Yes

ilDisconnect interval| | DISCINT Yes Yes Yes ! Yes Yes
| ! QSGDISP Yes Yes Yes Yes Yes Yes Yes Yes

96

IBM MQ: Reference

Table 28. Channel attributes for the channel types (continued)

Attribute field MQSC SDR SVR |RCVR|RQSTR| CLNT- | SVR- | CLUS-| CLUS- m
command CONN | CONN | SDR RCVR
parameter

[Header COMPHDR Yes Yes Yes Yes Yes Yes Yes Yes

llcompression|

([Heartbeat intervall HBINT Yes Yes Yes Yes Yes Yes Yes Yes

[[Keepalive intervall KAINT Yes Yes Yes Yes Yes Yes Yes Yes

|L0ca1 addres LOCLADDR Yes Yes Yes Yes Yes Yes Yes

| LONGRTY Yes Yes Yes Yes

"Long retry intervall | LONGTMR Yes Yes Yes Yes

LU 6.2 mode name]MODENAME | Yes Yes Yes Yes Yes Yes

IILU 6.2 transaction| | TPNAME Yes Yes Yes Yes Yes Yes

[program name|

vV 2.0.0.4 mmINST Yes Yes

I|ins’cances|

[Maximun] MAXINSTC Yes

[instances per client

[Maximum message| | MAXMSGL | Yes Yes Yes Yes Yes Yes Yes Yes Yes

[length

[Message channell |MCANAME Yes Yes Yes Yes Yes

[Message channel MCATYPE Yes Yes Yes Yes Yes

[Message channel MCAUSER Yes Yes Yes Yes Yes Yes Yes Yes

[Message exit name|l | MSGEXIT Yes Yes Yes Yes Yes Yes

[Message exit user] | MSGDATA Yes Yes Yes Yes Yes Yes

||data|

[Message-retry exitf | MREXIT Yes Yes Yes

| ame

[Message-retry exit{ | MRDATA Yes Yes Yes

||Eser data

IWI essage retr?/l MRRTY Yes Yes Yes

[count|

[Message retry] MRTMR Yes Yes Yes

lintervall

| MONCHL Yes Yes Yes Yes Yes Yes Yes

[Network] NETPRTY Yes

[connection priority]

INonpersisten NPMSPEED Yes Yes Yes Yes Yes Yes

[message speed|

I|Password| PASSWORD Yes Yes Yes Yes Yes

soos R

or{

Eumbeﬂ

Property control PROPCTL Yes Yes Yes Yes

[PUT authority| PUTAUT Yes Yes Yes ! Yes

Reference 97

Table 28. Channel attributes for the channel types (continued)

Attribute field MQSC SDR | SVR |RCVR|RQSTR| CLNT- | SVR- | CLUS-| CLUS- m,'m
command CONN | CONN | SDR RCVR
parameter

QMNAME Yes

name

"Receive exit name| | RCVEXIT Yes Yes Yes Yes Yes Yes Yes Yes
| RCVDATA | Yes Yes Yes Yes Yes Yes Yes Yes

[Security exit name] | SCYEXIT Yes Yes Yes Yes Yes Yes Yes Yes

[Security exit user] SCYDATA Yes Yes Yes Yes Yes Yes Yes Yes

|data|

SENDEXIT | Yes Yes Yes Yes Yes Yes Yes Yes

[Send exit user data| [SENDDATA Yes Yes Yes Yes Yes Yes Yes Yes

Sequence number] | SEQWRAP | Yes Yes Yes Yes Yes Yes

wraE]

Shared connections [SHARECNV Yes Yes

[Short retry count{ | SHORTRTY Yes Yes Yes Yes

[Short retry interval| [SHORTTMR| Yes Yes Yes Yes

SSL. Ciphe SSLCIPH Yes Yes Yes Yes Yes Yes Yes Yes Yes

Specificatio

SSL Clien SSLCAUTH Yes Yes Yes Yes Yes Yes

[Authenticatio

SSL Pee SSLPEER Yes Yes Yes Yes Yes Yes Yes Yes Yes

1..' 31}1}4 @3 TPROOT Yes
ro0

Transmissio XMITQ Yes Yes

ueue nam
TRPTYPE Yes Yes Yes Yes Yes Yes Yes Yes
v B P.ﬂ.4 USECLTID Yes
USEDLQ Yes Yes Yes Yes Yes Yes
ueue
USERID Yes Yes Yes Yes Yes

Note:

1. Valid on z/OS only.

98

IBM MQ: Reference

Related concepts:

[‘Channel attributes in alphabetical order”|
This section describes each attribute of a channel object, with its valid values and notes on its use where
appropriate.

Related information:

MQSC reference]

Use MQSC commands to manage queue manager objects, including the queue manager itself, queues,
process definitions, channels, client connection channels, listeners, services, namelists, clusters, and
authentication information objects.

Channel attributes in alphabetical order
This section describes each attribute of a channel object, with its valid values and notes on its use where
appropriate.

IBM MQ for some platforms might not implement all the attributes shown in this section. Exceptions and
platform differences are mentioned in the individual attribute descriptions, where relevant.

The keyword that you can specify in MQSC is shown in brackets for each attribute.

The attributes are arranged in alphabetical order.

Alter date (ALTDATE):

This attribute is the date on which the definition was last altered, in the form yyyy-mm-dd.
This attribute is valid for all channel types.

Alter time (ALTTIME):

This attribute is the time at which the definition was last altered, in the form hh:mm:ss.

This attribute is valid for all channel types.

AMQP keep alive (AMQPKA):

Use this attribute to specify a keep alive time for the AMQP client connection.

Specify the keep alive time in seconds. If the AMQP client has not sent any frames within the keep alive
interval, then the connection is closed with a amgp:resource-1imit-exceeded AMQP error condition.

Reference 99

Batch Heartbeat Interval (BATCHHB):

This attribute allows a sending channel to verify that the receiving channel is still active just before
committing a batch of messages.

The batch heartbeat interval thus allows the batch to be backed out rather than becoming in-doubt if the
receiving channel is not active. By backing out the batch, the messages remain available for processing so
they could, for example, be redirected to another channel.

If the sending channel has had a communication from the receiving channel within the batch heartbeat
interval, the receiving channel is assumed to be still active, otherwise a 'heartbeat' is sent to the receiving
channel to check. The sending channel waits for a response from the receiving end of the channel for an
interval, based on the number of seconds specified in the channel Heartbeat Interval (HBINT) attribute.

The value is in milliseconds and must be in the range zero through 999999. A value of zero indicates that
batch heart beating is not used.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

* Cluster receiver

Batch interval (BATCHINT):

This attribute is a period, in milliseconds, during which the channel keeps a batch open even if there are
no messages on the transmission queue.

You can specify any number of milliseconds, from zero through 999 999 999. The default value is zero.

If you do not specify a batch interval, the batch closes when the number of messages specified in
BATCHSZ has been sent or when the transmission queue becomes empty. On lightly loaded channels,
where the transmission queue frequently becomes empty the effective batch size might be much smaller
than BATCHSZ.

You can use the BATCHINT attribute to make your channels more efficient by reducing the number of
short batches. Be aware, however, that you can slow down the response time, because batches last longer
and messages remain uncommitted for longer.

If you specify a BATCHINT, batches close only when one of the following conditions is met:
* The number of messages specified in BATCHSZ have been sent.

* There are no more messages on the transmission queue and a time interval of BATCHINT has elapsed
while waiting for messages (since the first message of the batch was retrieved).

Note: BATCHINT specifies the total amount of time that is spent waiting for messages. It does not
include the time spent retrieving messages that are already available on the transmission queue, or the
time spent transferring messages.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

* Cluster receiver

100 1BM MQ: Reference

Batch limit (BATCHLIM):

This attribute is the limit, in kilobytes, of the amount of data that can be sent through a channel before
taking a sync point.

A sync point is taken after the message that caused the limit to be reached has flowed across the channel.
The value must be in the range 0 - 999999. The default value is 5000.
A value of zero in this attribute means that no data limit is applied to batches over this channel.

The batch is terminated when one of the following conditions is met:
* BATCHSZ messages have been sent.

* BATCHLIM bytes have been sent.

* The transmission queue is empty and BATCHINT is exceeded.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

* Cluster receiver

This parameter is supported on all platforms.
Batch size (BATCHSZ):
This attribute is the maximum number of messages to be sent before a sync point is taken.

The batch size does not affect the way the channel transfers messages; messages are always transferred
individually, but are committed or backed out as a batch.

To improve performance, you can set a batch size to define the maximum number of messages to be
transferred between two sync points. The batch size to be used is negotiated when a channel starts, and
the lower of the two channel definitions is taken. On some implementations, the batch size is calculated
from the lowest of the two channel definitions and the two queue manager MAXUMSGS values. The
actual size of a batch can be less; for example, a batch completes when there are no messages left on the
transmission queue or the batch interval expires.

A large value for the batch size increases throughput, but recovery times are increased because there are
more messages to back out and send again. The default BATCHSZ is 50, and you are advised to try that
value first. You might choose a lower value for BATCHSZ if your communications are unreliable, making
the need to recover more likely.

Sync point procedure needs a unique logical unit of work identifier to be exchanged across the link every
time a sync point is taken, to coordinate batch commit procedures.

If the synchronized batch commit procedure is interrupted, an in-doubt situation might arise. In-doubt
situations are resolved automatically when a message channel starts. If this resolution is not successful,
manual intervention might be necessary, using the RESOLVE command.

Some considerations when choosing the number for batch size:

* If the number is too large, the amount of queue space taken up on both ends of the link becomes
excessive. Messages take up queue space when they are not committed, and cannot be removed from
queues until they are committed.

Reference 101

* If there is likely to be a steady flow of messages, you can improve the performance of a channel by
increasing the batch size because fewer confirm flows are needed to transfer the same quantity of
bytes.

* If message flow characteristics indicate that messages arrive intermittently, a batch size of 1 with a
relatively large disconnect time interval might provide a better performance.

* The number can be in the range 1 through 9999. However, for data integrity reasons, channels
connecting to any of the current platforms must specify a batch size greater than 1. A value of 1 is for
use with Version 1 products, apart from IBM MQ for MVS.

* Even though nonpersistent messages on a fast channel do not wait for a sync point, they do contribute
to the batch-size count.

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

* Cluster receiver
Certificate label (CERTLABL):
This attribute specifies the certificate label of the channel definition.

The label identifies which personal certificate in the key repository is sent to the remote peer. The
certificate is defined as described in [Digital certificate labels|

Inbound channels (including RCVR, CLUSRCVR, unqualified SERVER, and SVRCONN channels) will
only send the configured certificate if the IBM MQ version of the remote peer fully supports certificate
label configuration and the channel is using a TLS CipherSpec. If that is not the case, the queue manager
CERTLABL attribute determines the certificate sent. This restriction is because the certificate label selection
mechanism for inbound channels depends upon a TLS protocol extension that is not supported in all
cases. In particular, Java " clients, JMS clients, and all versions of IBM MQ prior to Version 8.0 do not
support the required protocol extension and will only ever receive the certificate configured by the queue
manager CERTLABL attribute, regardless of the channel-specific label setting.

None of the administrative interfaces allow this attribute to be inquired or set for CLUSSDR channels.
You will receive an MQRCCF_WRONG_CHANNEL_TYPE message. However, the attribute is present in
CLUSSDR channel objects (including MQCD structures) and a CHAD exit can set it programmatically if
required.

For more information about what the certificate label can contain, see [Digital certificate labels)
understanding the requirements}

This attribute is valid for all channel types.

102 IBM MQ: Reference

Channel name (CHANNEL):

This attribute specifies the name of the channel definition.

The name can contain up to 20 characters, although as both ends of a message channel must have the
same name, and other implementations might have restrictions on the size, the actual number of

characters might have to be smaller.

Where possible, channel names are unique to one channel between any two queue managers in a
network of interconnected queue managers.

The name must contain characters from the following list:

Alphabetic (A-Z, a-z; note that uppercase and lowercase are significant)
Numerics (0-9)

Period 0]

Forward slash /)

Underscore Q)

Percentage sign (%)

Note:

1. Embedded blanks are not allowed, and leading blanks are ignored.
2. On systems using EBCDIC Katakana, you cannot use lowercase characters.

This attribute is valid for all channel types.

Channel statistics (STATCHL): m

This attribute controls the collection of statistics data for channels.

The possible values are:

QOMGR

Statistics data collection for this channel is based upon the setting of the queue manager attribute

STATCHL. This value is the default value.
OFF Statistics data collection for this channel is disabled.
LOW Statistics data collection for this channel is enabled with a low ratio of data collection.

MEDIUM
Statistics data collection for this channel is enabled with a moderate ratio of data collection.

HIGH Statistics data collection for this channel is enabled with a high ratio of data collection.

For more information about channel statistics, see [Monitoring referencel

On z/0S, this parameter simply turns on statistics data collection, regardless of the value you select.
Specifying LOW, MEDIUM, or HIGH makes no difference to your results.

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

Reference

103

* Cluster receiver
Channel type (CHLTYPE):
This attribute specifies the type of the channel being defined.

The possible channel types are:

Message channel types:
* Sender
* Server
* Receiver
* Requester
* Cluster-sender

e Cluster-receiver

MQI channel types:
* Client-connection (IBM MQ for Windows systems, and UNIX systems only)

Note: Client-connection channels can also be defined on z/OS for use on other platforms.

* Server-connection

. LEDNEE AMQP

The two ends of a channel must have the same name and have compatible types:
* Sender with receiver

* Requester with server

* Requester with sender (for callback)

» Server with receiver (server is used as a sender)

* Client-connection with server-connection

¢ Cluster-sender with cluster-receiver
o ENESN AMQP with AMQP

Client channel weight (CLNTWGHT):
This attribute specifies a weighting to influence which client-connection channel definition is used.

The client channel weighting attribute is used so that client channel definitions can be selected at random
based on their weighting when more than one suitable definition is available.

When a client issues an MQCONN requesting connection to a queue manager group, by specifying a
queue manager name starting with an asterisk, which enables client weight balancing across several
queue managers, and more than one suitable channel definition is available in the client channel
definition table (CCDT), the definition to use is randomly selected based on the weighting, with any
applicable CLNTWGHT(0) definitions selected first in alphabetical order.

Specify a value in the range 0 - 99. The default is 0.

A value of 0 indicates that no load balancing is performed and applicable definitions are selected in
alphabetical order. To enable load balancing choose a value in the range 1 - 99 where 1 is the lowest
weighting and 99 is the highest. The distribution of connections between two or more channels with
non-zero weightings is proportional to the ratio of those weightings. For example, three channels with
CLNTWGHT values of 2, 4, and 14 are selected approximately 10%, 20%, and 70% of the time. This

104 1BM MQ: Reference

distribution is not guaranteed. If the AFFINITY attribute of the connection is set to PREFERRED, the first
connection chooses a channel definition according to client weightings, and then subsequent connections
continue to use the same channel definition.

This attribute is valid for the client-connection channel type only.

Cluster (CLUSTER):

This attribute is the name of the cluster to which the channel belongs.

The maximum length is 48 characters conforming to the rules for naming IBM MQ objects.

Up to one of the resultant values of CLUSTER or CLUSNL can be non-blank. If one of the values is
non-blank, the other must be blank.

This attribute is valid for channel types of:
* Cluster sender
* Cluster receiver

Cluster namelist (CLUSNL):
This attribute is the name of the namelist that specifies a list of clusters to which the channel belongs.

Up to one of the resultant values of CLUSTER or CLUSNL can be nonblank. If one of the values is
nonblank, the other must be blank.

This attribute is valid for channel types of:
* Cluster sender

e Cluster receiver

CLWLPRTY channel attribute:

The CLWLPRTY channel attribute specifies the priority order for channels for cluster workload
distribution. The value must be in the range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the CLWLPRTY channel attribute to set a priority order for the available cluster destinations. IBM MQ
selects the destinations with the highest priority before selecting destinations with the lowest cluster
destination priority. If there are multiple destinations with the same priority, it selects the least recently
used destination.

If there are two possible destinations, you can use this attribute to allow failover. Messages go to the
queue manager with the highest priority channel. If it becomes unavailable then messages go to the next
highest priority queue manager. Lower priority queue managers act as reserves.

IBM MQ checks channel status before prioritizing the channels. Only available queue managers are
candidates for selection.

Notes:

* Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See [Cluster channels}

* The availability of a remote queue manager is based on the status of the channel to that queue
manager. When channels start, their state changes several times, with some of the states being less
preferential to the cluster workload management algorithm. In practice this means that lower priority
(backup) destinations can be chosen while the channels to higher priority (primary) destinations are
starting.

Reference 105

* If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider
using separate queues, or CLWLRANK with a manual switch over from the primary to backup.

CLWLRANK channel attribute:

The CLWLRANK channel attribute specifies the rank of channels for cluster workload distribution. The value
must be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK channel attribute if you want control over the final destination for messages sent to a
queue manager in another cluster. Control the choice of final destination by setting the rank of the
channels connecting a queue manager to the gateway queue managers at the intersection of the clusters.

When you set CLWLRANK, messages take a specified route through the interconnected clusters towards a
higher ranked destination. For example, messages arrive at a gateway queue manager that can send them
to either of two queue managers using channels ranked 1 and 2. They are automatically sent to the queue
manager connected by a channel with the highest rank, in this case the channel to the queue manager
ranked 2.

IBM MQ gets the rank of channels before checking channel status. Getting the rank before checking
channel status means that even non-accessible channels are available for selection. It allows messages to
be routed through the network even if the final destination is unavailable.

Notes:

* Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See [Cluster channels}

* If you also used the priority attribute CLWLPRTY, IBM MQ selects between available destinations. If a
channel is not available to the destination with the highest rank, the message is held on the
transmission queue. It is released when the channel becomes available. The message does not get sent
to the next available destination in the rank order.

CLWLWGHT channel attribute:

The CLWLWGHT channel attribute specifies the weight applied to CLUSSDR and CLUSRCVR channels for cluster
workload distribution. The value must be in the range 1-99, where 1 is the lowest weight and 99 is the
highest.

Use CLWLWGHT to send servers with more processing power more messages. The higher the channel
weight, the more messages are sent over that channel.

Notes:

* Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See |Cluster channels}

* When CLWLWGHT is modified from the default of 50 on any channel, workload balancing becomes
dependent on the total number of times each channel was chosen for a message sent to any clustered
queue. For more information, sed“The cluster workload management algorithm” on page 149,

106 IBM MQ: Reference

Connection affinity (AFFINITY):

This attribute specifies whether client applications that connect multiple times using the same queue
manager name, use the same client channel.

Use this attribute when multiple applicable channel definitions are available.

The possible values are:

PREFERRED
The first connection in a process reading a client channel definition table (CCDT) creates a list of
applicable definitions based on the client channel weight, with any definitions having a weight of 0
first and in alphabetical order. Each connection in the process attempts to connect using the first
definition in the list. If a connection is unsuccessful the next definition is used. Unsuccessful
definitions with client channel weight values other than 0 are moved to the end of the list. Definitions
with a client channel weight of 0 remain at the start of the list and are selected first for each
connection.

Each client process with the same host name always creates the same list.

For client applications written in C, C++, or the .NET programming framework (including fully
managed .NET), and for applications that use the IBM MQ classes for Java and IBM MQ classes for
JMS, the list is updated if the CCDT has been modified since the list was created.

This value is the default value.

NONE
The first connection in a process reading a CCDT creates a list of applicable definitions. All
connections in a process select an applicable definition based on the client channel weight, with any
definitions having a weight of 0 selected first in alphabetical order.

For client applications written in C, C++, or the .NET programming framework (including fully
managed .NET), and for applications that use the IBM MQ classes for Java and IBM MQ classes for
JMS, the list is updated if the CCDT has been modified since the list was created.

This attribute is valid for the client-connection channel type only.
Connection name (CONNAME):

This attribute is the communications connection identifier. It specifies the particular communications links
to be used by this channel.

It is optional for server channels, unless the server channel is triggered, in which case it must specify a
connection name.

Specify CONNAME as a comma-separated list of names of machines for the stated TRPTYPE. Typically
only one machine name is required. You can provide multiple machine names to configure multiple
connections with the same properties. The connections are usually tried in the order they are specified in
the connection list until a connection is successfully established. The order is modified for clients if the
CLNTWGHT attribute is provided. If no connection is successful, the channel attempts the connection
again, as determined by the attributes of the channel. With client channels, a connection-list provides an
alternative to using queue manager groups to configure multiple connections. With message channels, a
connection list is used to configure connections to the alternative addresses of a multi-instance queue
manager.

Providing multiple connection names in a list was first supported in IBM WebSphere MQ Version 7.0.1. It
changes the syntax of the CONNAME parameter. Earlier clients and queue managers connect using the
first connection name in the list, and do not read the rest of the connection names in the list. In order for
the earlier clients and queue managers to parse the new syntax, you must specify a port number on the

Reference 107

first connection name in the list. Specifying a port number avoids problems when connecting to the
channel from a client or queue manager that is running at a level earlier than IBM WebSphere MQ
Version 7.0.1.

On AIX, HP-UX, IBM i, Linux, Solaris, and Windows platforms, the TCP/IP connection name parameter
of a cluster-receiver channel is optional. If you leave the connection name blank, IBM MQ generates a
connection name for you, assuming the default port and using the current IP address of the system. You
can override the default port number, but still use the current IP address of the system. For each
connection name leave the IP name blank, and provide the port number in parentheses; for example:

(1415)

The generated CONNAME is always in the dotted decimal (IPv4) or hexadecimal (IPv6) form, rather than in
the form of an alphanumeric DNS host name.

The name is up to 48 characters (see note 1) for z/OS, 264 characters for other platforms, and:

If the transport type is TCP
CONNAME is either the host name or the network address of the remote machine (or the local
machine for cluster-receiver channels). For example, (ABC.EXAMPLE.COM), (2001:DB8:0:0:0:0:0:0)
or (127.0.0.1). It can include the port number, for example (MACHINE(123)). It can include the
IP_name of a z/OS dynamic DNS group or a Network Dispatcher input port.

If you use an IPv6 address in a network that only supports IPv4, the connection name is not
resolved. In a network which uses both IPv4 and IPv6, Connection name interacts with Local
Address to determine which IP stack is used. See [“Local Address (LOCLADDR)” on page 114
for further information.

If the transport type is LU 6.2
For IBM MQ for IBM i, Windows systems, and UNIX systems, give the fully-qualified name of
the partner LU if the TPNAME and MODENAME are specified. For other versions or if the
TPNAME and MODENAME are blank, give the CPI-C side information object name for your
specific platform.

On z/0S, there are two forms in which to specify the value:

* Logical unit name

The logical unit information for the queue manager, comprising the logical unit name, TP
name, and optional mode name. This name can be specified in one of three forms:

Form Example

luname IGY12355
luname/TPname IGY12345/APING
luname/TPname/modename 1GY12345/APINGD/#INTER

For the first form, the TP name and mode name must be specified for the TPNAME and
MODENAME attributes; otherwise these attributes must be blank.

Note: For client-connection channels, only the first form is allowed.
* Symbolic name

The symbolic destination name for the logical unit information for the queue manager, as
defined in the side information data set. The TPNAME and MODENAME attributes must be
blank.

Note: For cluster-receiver channels, the side information is on the other queue managers in the

cluster. Alternatively, in this case it can be a name that a channel auto-definition exit can
resolve into the appropriate logical unit information for the local queue manager.

108 IBM MQ: Reference

The specified or implied LU name can be that of a VTAM generic resources group.

If the transmission protocol is NetBIOS
CONNAME is the NetBIOS name defined on the remote machine.

If the transmission protocol is SPX
CONNAME is an SPX-style address consisting of a 4 byte network address, a 6 byte node

address and a 2 byte socket number. Enter these values in hexadecimal, with the network and

node addresses separated by a period and the socket number in brackets. For example:
CONNAME (' 0a0b0c0d.804abcde23al(5e86) ')

If the socket number is omitted, the default IBM MQ SPX socket number is used. The default is

X'5E86'.

This attribute is valid for channel types of:
* Sender

* Server

* Requester

* Client connection

* Cluster sender

* Cluster receiver

It is optional for server channels, unless the server channel is triggered, in which case it must specify a

connection name.

Note:
1. A workaround to the 48 character limit might be one of the following suggestions:

* Set up your DNS servers so that you use, for example, host name of "myserver" instead of
"myserver.location.company.com", ensuring you can use the short host name.

* Use IP addresses.
2. The definition of transmission protocol is contained in [“Transport type (TRPTYPE)” on page 134

Convert message (CONVERT):

This attribute specifies that the message must be converted into the format required by the receiving
system before transmission.

Application message data is typically converted by the receiving application. However, if the remote
queue manager is on a platform that does not support data conversion, use this channel attribute to
specify that the message must be converted into the format required by the receiving system before
transmission.

The possible values are yes and no. If you specify yes, the application data in the message is converted

before sending if you have specified one of the built-in format names, or a data conversion exit is

available for a user-defined format (See [Writing data-conversion exits|). If you specify no, the application

data in the message is not converted before sending.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

¢ Cluster receiver

Reference

109

Data compression (COMPMSG):
This attribute is a list of message data compression techniques supported by the channel.

For sender, server, cluster-sender, cluster-receiver, and client-connection channels the values specified are
in order of preference. The first compression technique supported by the remote end of the channel is
used. The channels' mutually supported compression techniques are passed to the sending channel's
message exit where the compression technique used can be altered on a per message basis. Compression
alters the data passed to send and receive exits. See [‘Header compression (COMPHDR)” on page 112| for
compression of the message header.

The possible values are:

NONE
No message data compression is performed. This value is the default value.

RLE Message data compression is performed using run-length encoding.

ZLIBFAST
Message data compression is performed using the zlib compression technique. A fast compression
time is preferred.

ZLIBFAST can optionally be offloaded to the zEnterprise® Data Compression facility. See

Express facility| for further information.

ZLIBHIGH
Message data compression is performed using the zlib compression technique. A high level of
compression is preferred.

ANY Allows the channel to support any compression technique that the queue manager supports.
Only supported for Receiver, Requester and Server-Connection channels.

This attribute is valid for all channel types.
Description (DESCR):
This attribute describes the channel definition and contains up to 64 bytes of text.

Note: The maximum number of characters is reduced if the system is using a double byte character set
(DBCS).

Use characters from the character set identified by the coded character set identifier (CCSID) for the
queue manager to ensure that the text is translated correctly if it is sent to another queue manager.

This attribute is valid for all channel types.

110 IBM MQ: Reference

Disconnect interval (DISCINT):

This attribute is the length of time after which a channel closes down, if no message arrives during that
period.

This attribute is a time-out attribute, specified in seconds, for the server, cluster-sender, sender, and
cluster-receiver channels. The interval is measured from the point at which a batch ends, that is when the
batch size is reached or when the batch interval expires and the transmission queue becomes empty. If no
messages arrive on the transmission queue during the specified time interval, the channel closes down.
(The time is approximate.)

The close-down exchange of control data between the two ends of the channel includes an indication of
the reason for closing. This ensures that the corresponding end of the channel remains available to start
again.

You can specify any number of seconds from zero through 999 999 where a value of zero means no
disconnect; wait indefinitely.

For server-connection channels using the TCP protocol, the interval represents the client inactivity
disconnect value, specified in seconds. If a server-connection has received no communication from its
partner client for this duration, it terminates the connection. The server-connection inactivity interval
applies under the following circumstances:

* between IBM MQ API calls from a client
* between an MQGET call, only if:
— client application executes an MQGET with WaitInterval

— the DISCINT parameter is set on the server-connection channel and is smaller than the MQGET
WaitInterval

— the SHARECNYV parameter of the server-connection channel is greater than 0.

This attribute is valid for channel types of:
* Sender

* Server

* Server connection

* Cluster sender

* Cluster receiver

This attribute is not applicable for server-connection channels using protocols other than TCP.
Note: Performance is affected by the value specified for the disconnect interval.

A low value (for example a few seconds) can be detrimental to system performance by constantly starting
the channel. A large value (more than an hour) might mean that system resources are needlessly held up.
You can also specify a heartbeat interval, so that when there are no messages on the transmission queue,
the sending MCA sends a heartbeat flow to the receiving MCA, thus giving the receiving MCA an
opportunity to quiesce the channel without waiting for the disconnect interval to expire. For these two
values to work together effectively, the heartbeat interval value must be significantly lower than the
disconnect interval value.

The default DISCINT value is set to 100 minutes. However, a value of a few minutes is often a reasonable
value to use without impacting performance or keeping channels running for unnecessarily long periods
of time. If it is appropriate for your environment you can change this value, either on each individual
channel or through changing the value in the default channel definitions, for example
SYSTEM.DEESENDER.

Reference 111

For more information, see [Stopping and quiescing channels|

Disposition (QSGDISP):
This attribute specifies the disposition of the channel in a queue-sharing group. It is valid on z/OS only.

Values are:

OMGR
The channel is defined on the page set of the queue manager that executes the command. This
value is the default.

GROUP
The channel is defined in the shared repository. This value is allowed only if there is a shared
queue manager environment. When a channel is defined with QSGDISP(GROUP), the command
DEFINE CHANNEL(name) NOREPLACE QSGDISP(COPY) is generated automatically and sent
to all active queue managers to cause them to make local copies on page set 0. For queue
managers which are not active, or which join the queue sharing group at a later date, the
command is generated when the queue manager starts.

COPY The channel is defined on the page set of the queue manager that executes the command,
copying its definition from the QSGDISP(GROUP) channel of the same name. This value is
allowed only if there is a shared queue manager environment.

This attribute is valid for all channel types.
Header compression (COMPHDR):
This attribute is a list of header data compression techniques supported by the channel.

For sender, server, cluster-sender, cluster-receiver, and client-connection channels the values specified are
in order of preference with the first compression technique supported by the remote end of the channel
being used. The channels' mutually supported compression techniques are passed to the sending
channel's message exit where the compression technique used can be altered on a per message basis.
Compression alters the data passed to send and receive exits.

Possible values are:

NONE
No header data compression is performed. This value is the default value.

SYSTEM
Header data compression is performed.

This attribute is valid for all channel types.

112 IBM MQ: Reference

Heartbeat interval (HBINT):

This attribute specifies the approximate time between heartbeat flows that are to be passed from a
sending message channel agent (MCA) when there are no messages on the transmission queue.

Heartbeat flows unblock the receiving MCA, which is waiting for messages to arrive or for the disconnect
interval to expire. When the receiving MCA is unblocked, it can disconnect the channel without waiting
for the disconnect interval to expire. Heartbeat flows also free any storage buffers that have been
allocated for large messages and close any queues that have been left open at the receiving end of the
channel.

The value is in seconds and must be in the range 0 - 999 999. A value of zero means that no heartbeat
flows are to be sent. The default value is 300. To be most useful, the value must be significantly less than
the disconnect interval value.

With applications that use IBM MQ classes for Java, JMS or .NET APIs, the HBINT value is determined in
one of the following ways:

* Either by the value on the SVRCONN channel that is used by the application.
* Or by the value on the CLNTCONN channel, if the application has been configured to use a CCDT.

For server-connection and client-connection channels, heartbeats can flow from both the server side as
well as the client side independently. If no data has been transferred across the channel for the heartbeat
interval, the client-connection MQI agent sends a heartbeat flow and the server-connection MQI agent
responds to it with another heartbeat flow. This happens irrespective of the state of the channel, for
example, irrespective of whether it is inactive while making an API call, or is inactive waiting for client
user input. The server-connection MQI agent is also capable of initiating a heartbeat to the client, again
irrespective of the state of the channel. To prevent both server-connection and client-connection MQI
agents heart beating to each other at the same time, the server heartbeat is flowed after no data has been
transferred across the channel for the heartbeat interval plus 5 seconds.

For server-connection and client-connection channels working in the channel mode before IBM
WebSphere MQ Version 7.0, heartbeats flow only when a server MCA is waiting for an MQGET
command with the WAIT option specified, which it has issued on behalf of a client application.

For more information about making MQI channels work in the two modes, see [SharingConversations|
Related information:

DEFINE CHANNEL)

Use the MQSC command DEFINE CHANNEL to define a new channel, and set its parameters.

IALTER CHANNEIL]
Use the MQSC command ALTER CHANNEL to alter the parameters of a channel.

Keepalive Interval (KAINT):
This attribute is used to specify a timeout value for a channel.

The Keepalive Interval attribute is a value passed to the communications stack specifying the Keepalive
timing for the channel. It allows you to specify a different keepalive value for each channel.

You can set the Keepalive Interval (KAINT) attribute for channels on a per-channel basis. On platforms
other than z/0OS, you can access and modify the parameter, but it is only stored and forwarded; there is
no functional implementation of the parameter. If you need the functionality provided by the KAINT
parameter, use the Heartbeat Interval (HBINT) parameter, as described in [‘Heartbeat interval (HBINT).”|

Reference 113

For this attribute to have any effect, TCP/IP keepalive must be enabled. On z/OS, you do enable
keepalive by issuing the ALTER QMGR TCPKEEP(YES) MQSC command. On other platforms, it occurs
when the KEEPALIVE=YES parameter is specified in the TCP stanza in the distributed queuing
configuration file, qm.ini, or through the IBM MQ Explorer. Keepalive must also be switched on within
TCP/IP itself, using the TCP profile configuration data set.

The value indicates a time, in seconds, and must be in the range 0 - 99999. A Keepalive Interval value of
0 indicates that channel-specific Keepalive is not enabled for the channel and only the system-wide
Keepalive value set in TCP/IP is used. You can also set KAINT to a value of AUTO (this value is the
default). If KAINT is set to AUTO, the Keepalive value is based on the value of the negotiated heartbeat
interval (HBINT) as follows:

Table 29. Negotiated HBINT value and the corresponding KAINT value.

The table has two columns. The first column lists the negotiated HBINT values and the second column lists the
corresponding KAINT value for each negotiated HBINT.

Negotiated HBINT KAINT
>0 Negotiated HBINT + 60 seconds
0 0

This attribute is valid for all channel types.

The value is ignored for all channels that have a TransportType (TRPTYPE) other than TCP or SPX
Local Address (LOCLADDR):

This attribute specifies the local communications address for the channel.

Note: AMQP channels do not support the same format of LOCLADDR as other IBM MQ channels. For
more information, see ["LOCLADDR for AMQP channels” on page 117

LOCLADDR for all channels except AMQP channels

This attribute only applies if the transport type (TRPTYPE) is TCP/IP. For all other transport types, it is
ignored.

This attribute is valid for channel types of:
* Sender

* Server

* Requester

* Client connection

* Cluster sender

¢ Cluster receiver

When a LOCLADDR value is specified, a channel that is stopped and then restarted continues to use the
TCP/IP address specified in LOCLADDR. In recovery scenarios, this attribute might be useful when the
channel is communicating through a firewall. It is useful because it removes problems caused by the
channel restarting with the IP address of the TCP/IP stack to which it is connected. LOCLADDR can also
force a channel to use an IPv4 or IPv6 stack on a dual stack system, or a dual-mode stack on a single
stack system.

114 1BM MQ: Reference

When LOCLADDR includes a network address, the address must be a network addresses belonging to a
network interface on the system where the channel is run. For example, when defining a sender channel
on queue manager ALPHA to queue manager BETA with the following MSQC command:

DEFINE CHANNEL(TO.BETA) CHLTYPE(SDR) CONNAME(192.0.2.0) XMITQ(BETA) LOCLADDR(192.60.2.1)

The LOCLADDR address is the IPv4 address 192.0.2.1. This sender channel runs on the system of queue
manager ALPHA, so the IPv4 address must belong to one of the network interfaces its system.

The value is the optional IP address, and optional port or port range used for outbound TCP/IP
communications. The format for this information is as follows:

LOCLADDR([ip-addr] [(Tow-port[,high-port])]/, [ip-addr][(low-port[,high-port])]])

The maximum length of LOCLADDR, including multiple addresses, is MQ_LOCAL_ADDRESS_LENGTH.

If you omit LOCLADDR, a local address is automatically allocated.

Note, that you can set LOCLADDR for a C client using the Client Channel Definition Table (CCDT).

All the parameters are optional. Omitting the ip-addr part of the address is useful to enable the configuration of a
fixed port number for an IP firewall. Omitting the port number is useful to select a particular network adapter
without having the identify a unique local port number. The TCP/IP stack generates a unique port number.

Specify [, [ip-addr][(low-port[, high-port])]] multiple times for each additional local address. Use multiple local
addresses if you want to specify a specific subset of local network adapters. You can also use [, [ip-addr][(low-
port[,high-port])]] to represent a particular local network address on different servers that are part of a
multi-instance queue manager configuration.
ip-addr

ip-addr is specified in one of three forms:

IPv4 dotted decimal
For example 192.0.2.1

IPv6 hexadecimal notation
For example 2001:DB8:0:0:0:0:0:0

Alphanumeric host name form
For example WWW.EXAMPLE.COM

lTow-port and high-port
Tow-port and high-port are port numbers enclosed in parentheses.

The following table shows how the LOCLADDR parameter can be used:
Table 30. Examples of how the LOCLADDR parameter can be used

LOCLADDR Meaning

9.20.4.98 Channel binds to this address locally

9.20.4.98, 9.20.4.99 Channel binds to either IP address. The address might be two network adapters on
one server, or a different network adapter on two different servers in a multi-instance
configuration.

9.20.4.98(1000) Channel binds to this address and port 1000 locally

9.20.4.98(1000,2000) Channel binds to this address and uses a port in the range 1000 - 2000 locally

(1000) Channel binds to port 1000 locally

(1000,2000) Channel binds to port in range 1000 - 2000 locally

Reference 115

When a channel is started the values specified for connection name (CONNAME) and local address (
LOCLADDR) determine which IP stack is used for communication. The IP stack used is determined as
follows:

If the system has only an IPv4 stack configured, the IPv4 stack is always used. If a local address (
LOCLADDR) or connection name (CONNAME) is specified as an [Pv6 network address, an error is
generated and the channel fails to start.

If the system has only an IPv6 stack configured, the IPv6 stack is always used. If a local address (
LOCLADDR) is specified as an IPv4 network address, an error is generated and the channel fails to
start. On platforms supporting IPv6 mapped addressing, if a connection name (CONNAME) is
specified as an IPv4 network address, the address is mapped to an IPv6 address. For example,

XXX . XXX . XXX. XXX is mapped to ::ffff:xxx.xxx.xxx.xxx. The use of mapped addresses might require
protocol translators. Avoid the use of mapped addresses where possible.

If a local address (LOCLADDR) is specified as an IP address for a channel, the stack for that IP
address is used. If the local address (LOCLADDR) is specified as a host name resolving to both IPv4
and IPv6 addresses, the connection name (CONNAME) determines which of the stacks is used. If
both the local address (LOCLADDR) and connection name (CONNAME) are specified as host
names resolving to both IPv4 and IPv6 addresses, the stack used is determined by the queue manager
attribute IPADDRV.

If the system has dual IPv4 and IPv6 stacks configured and a local address (LOCLADDR) is not
specified for a channel, the connection name (CONNAME) specified for the channel determines

which IP stack to use. If the connection name (CONNAME) is specified as a host name resolving to
both IPv4 and IPv6 addresses, the stack used is determined by the queue manager attribute IPADDRYV.

On distributed platforms, it is possible to set a default local address value that will be
used for all sender channels that do not have a local address defined. The default value is defined by
setting the MQ_LCLADDR environment variable prior to starting the queue manager. The format of the
value matches that of MQSC attribute LOCLADDR.

Local addresses with cluster sender channels

Cluster sender channels always inherit the configuration of the corresponding cluster receiver channel as
defined on the target queue manager. This is true even if there is a locally defined cluster sender channel
of the same name, in which case the manual definition is only used for initial communication.

For this reason, it is not possible to depend on the LOCLADDR defined in the cluster receiver channel as
it is likely that the IP address is not owned by the system where the cluster senders are created. For this
reason, the LOCLADDR on the cluster receiver should not be used unless there is a reason to restrict only
the ports, but not the IP address, for all potential cluster senders, and it is known that those ports are
available on all systems where a cluster sender channel may be created.

If a cluster must use LOCLADDR to get the outbound communication channels to bind to a specific IP
address, either use a [Channel Auto-Definition Exit} or use the default LOCLADDR for the queue manager
when possible. When using a channel exit, it forces the LOCLADDR value from the exit into any of the
automatically defined CLUSSDR channels.

If using a non-default LOCLADDR for cluster sender channels through the use of an exit or a default
value, any matching manually defined cluster sender channel, for example to a full repository queue
manager, must also have the LOCLADDR value set to enable initial communication over the channel.

Note: If the operating system returns a bind error for the port supplied in LOCLADDR (or all ports, if a
port range is supplied), the channel does not start; the system issues an error message.

116 IBM MQ: Reference

LOCLADDR for AMQP channels

AMQP channels support a different format of LOCLADDR than other IBM MQ channels:
LOCLADDR (ip-addr)

LOCLADDR is the local communications address for the channel. Use this parameter if you want
to force the client to use a particular IP address. LOCLADDR is also useful to force a channel to
use an IPv4 or IPv6 address if a choice is available, or to use a particular network adapter on a
system with multiple network adapters.

The maximum length of LOCLADDR is MQ_LOCAL_ADDRESS_LENGTH.
If you omit LOCLADDR, a local address is automatically allocated.

ip-addr
ip-addr is a single network address, specified in one of three forms:

IPv4 dotted decimal
For example 192.0.2.1

IPv6 hexadecimal notation
For example 2001:DB8:0:0:0:0:0:0

Alphanumeric host name form
For example WWW.EXAMPLE.COM

If an IP address is entered, only the address format is validated. The IP address itself is not
validated.

Related information:

Working with auto-defined cluster-sender channels|

Long retry count (LONGRTY):

This attribute specifies the maximum number of times that the channel is to try allocating a session to its
partner.

If the initial allocation attempt fails, the short retry count number is decremented and the channel
retries the remaining number of times. If it still fails, it retries a long retry count number of times with
an interval of long retry interval between each try. If it is still unsuccessful, the channel closes down.
The channel must then be restarted with a command (it is not started automatically by the channel
initiator).

(Retry is not attempted if the cause of failure is such that a retry is not likely to be successful.)

If the channel initiator (on z/OS) or the channel (on distributed platforms) is stopped while the channel
is retrying, the short retry count and long retry count are reset when the channel initiator or the channel is
restarted, or when a message is successfully put at the sender channel. However, if the channel initiator
(on z/0OS) or queue manager (on distributed platforms) is shut down and restarted, the short retry count
and long retry count are not reset. The channel retains the retry count values it had before the queue
manager restart or the message being put.

Note: For IBM i, UNIX systems, and Windows systems:

1. When a channel goes from RETRYING state to RUNNING state, the short retry count and long retry
count are not reset immediately. They are reset only once the first message flows across the channel
successfully after the channel went into RUNNING state, that is; once the local channel confirms the
number of messages sent to the other end.

2. The short retry count and long retry count are reset when the channel is restarted.

The long retry count attribute can be set from zero through 999 999 999.

Reference 117

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

¢ Cluster receiver

Note: For m IBM i, UNIX systems, and Windows systems, in order for retry to be attempted
a channel initiator must be running. The channel initiator must be monitoring the initiation queue
specified in the definition of the transmission queue that the channel is using.

Long retry interval (LONGTMR):

This attribute is the approximate interval in seconds that the channel is to wait before retrying to
establish connection, during the long retry mode.

The interval between retries can be extended if the channel has to wait to become active.

The channel tries to connect long retry count number of times at this long interval, after trying the
short retry count number of times at the short retry interval.

This attribute can be set from zero through 999 999.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

* Cluster receiver

LU 6.2 mode name (MODENAME):

This attribute is for use with LU 6.2 connections. It gives extra definition for the session characteristics of
the connection when a communication session allocation is performed.

When using side information for SNA communications, the mode name is defined in the CPI-C
Communications Side Object or APPC side information, and this attribute must be left blank; otherwise,
it must be set to the SNA mode name.

The name must be one to eight alphanumeric characters long.

This attribute is valid for channel types of:
* Sender

* Server

* Requester

* Client connection

* Cluster sender

* Cluster receiver

It is not valid for receiver or server-connection channels.

118 I1BM MQ: Reference

LU 6.2 transaction program name (TPNAME):

This attribute is for use with LU 6.2 connections. It is the name, or generic name, of the transaction
program (MCA) to be run at the far end of the link.

When using side information for SNA communications, the transaction program name is defined in the
CPI-C Communications Side Object or APPC side information and this attribute must be left blank.
Otherwise, this name is required by sender channels and requester channels.

The name can be up to 64 characters long.
The name must be set to the SNA transaction program name, unless the CONNAME contains a

side-object name in which case it must be set to blanks. The actual name is taken instead from the CPI-C
Communications Side Object, or the APPC side information data set.

This information is set in different ways on different platforms; see [Configuring distributed queuing] for
more information about setting up communication for your platform.

This attribute is valid for channel types of:
* Sender

* Server

* Requester

* Client connection

* Cluster sender

¢ Cluster receiver

Maximum instances (MAXINST): =00

This attribute specifies the maximum number of simultaneous instances of a server-connection channel or
AMQP channel that can be started.

See the child topics for information on how the attribute is used for each channel type.

Maximum instances of server-connection channel connections: MR-

This attribute specifies the maximum number of simultaneous instances of a sever-connection channel
that can be started.

This attribute can be set from zero through 999 999 999. A value of zero indicates that no client
connections are allowed on this channel. The default value is 999 999 999.

If the value is reduced so that it is less than the number of instances of the server-connection channel that

are currently running, then the running channels are not affected. However, new instances are not able to
start until sufficient existing ones have ceased to run.

Reference 119

Maximum instances of AMQP channel connections: a=AA

This attribute specifies the maximum number of simultaneous instances of an AMQP channel that can be
started.

This attribute can be set from zero through 999 999 999. A value of zero indicates that no client
connections are allowed on this channel. The default value is 999 999 999.

If a client attempts to connect, and the number of connected clients has reached MAXINST, the channel
closes the connection with a close frame. The close frame contains the following message:

amgp:resource-1imit-exceeded

If a client connects with an ID that is already connected (that is, it performs a client-takeover) the
takeover will succeed regardless of whether the number of connected clients has reached MAXINST.

Maximum instances per client (MAXINSTC):

This attribute specifies the maximum number of simultaneous instances of a server-connection channel
that can be started from a single client.

This attribute can be set from zero through 999 999 999. A value of zero indicates that no client
connections are allowed on this channel. The default value is 999 999 999.

If the value is reduced so that it is less than the number of instances of the server-connection channel that
are currently running from individual clients, then the running channels are not affected. However, new
instances from those clients are not able to start until sufficient existing ones have ceased to run.

This attribute is valid for server-connection channels only.

Maximum message length (MAXMSGL):

This attribute specifies the maximum length of a message that can be transmitted on the channel.

On IBM MQ for IBM i, UNIX systems, and Windows systems, specify a value greater than or equal to
zero, and less than or equal to the maximum message length for the queue manager. See the MAXMSGL
parameter of the ALTER QMGR command in |[ALTER QMGR| for more information. On IBM MQ for
z/0S, specify a value greater than or equal to zero, and less than or equal to 104 857 600 bytes.

Because various implementations of IBM MQ systems exist on different platforms, the size available for
message processing might be limited in some applications. This number must reflect a size that your

system can handle without stress. When a channel starts, the lower of the two numbers at each end of
the channel is taken.

By adding the digital signature and key to the message, [BM MQ Advanced Message Security| increases
the length of the message.

Note:

1. You can use a maximum message size of 0 which is taken to mean that the size is to be set to the
local queue manager maximum value.

This attribute is valid for all channel types.

120 1BM MQ: Reference

Message channel agent name (MCANAME):

This attribute is reserved and if specified must only be set to blanks.

Its maximum length is 20 characters.

Message channel agent type (MCATYPE):

This attribute can specify the message channel agent as a process or a thread.

On IBM MQ for z/0S, it is supported only for channels with a channel type of cluster-receiver.

Advantages of running as a process include:

* Isolation for each channel providing greater integrity
* Job authority specific for each channel

* Control over job scheduling

Advantages of threads include:
* Much reduced use of storage
 Easier configuration by typing on the command line

* Faster execution - it is quicker to start a thread than to instruct the operating system to start a process

For channel types of sender, server, and requester, the default is process. For channel types of
cluster-sender and cluster-receiver, the default is thread. These defaults can change during your
installation.

If you specify process on the channel definition, a RUNMQCHL process is started. If you specify thread,
the MCA runs on a thread of the AMQRMPPA process, or of the RUNMQCHI process if
MQNOREMPOOL is specified. On the machine that receives the inbound allocates, the MCA runs as a
thread if you use RUNMQLSR. It runs as a process if you use inetd.

On IBM MQ for z/OS, this attribute is supported only for channels with a channel type of
cluster-receiver. On other platforms, it is valid for channel types of:

* Sender

* Server

* Requester

* Cluster sender
* Cluster receiver

Reference 121

Message channel agent user identifier (MCAUSER):

This attribute is the user identifier (a string) to be used by the MCA for authorization to access IBM MQ
resources.

Note: An alternative way of providing a user ID for a channel to run under is to use channel
authentication records. With channel authentication records, different connections can use the same
channel while using different credentials. If both MCAUSER on the channel is set and channel
authentication records are used to apply to the same channel, the channel authentication records take
precedence. The MCAUSER on the channel definition is only used if the channel authentication record
uses USERSRC(CHANNEL).

This authorization includes (if PUT authority is DEF) putting the message to the destination queue for
receiver or requester channels.

On IBM MQ for Windows, the user identifier can be domain-qualified by using the format, user@domain,
where the domain must be either the Windows systems domain of the local system, or a trusted domain.

If this attribute is blank, the MCA uses its default user identifier. For more information, see [DEFINE

This attribute is valid for channel types of:
* Receiver

* Requester

* Server connection

* Cluster receiver

Related information:

[Channel authentication records|

Message exit name (MSGEXIT):
This attribute specifies the name of the user exit program to be run by the channel message exit.

This attribute can be a list of names of programs that are to be run in succession. Leave blank, if no
channel message exit is in effect.

The format and maximum length of this attribute depend on the platform, as for [‘Receive exit name]
(RCVEXIT)” on page 128

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

* Cluster receiver

122 IBM MQ: Reference

Message exit user data (MSGDATA):
This attribute specifies user data that is passed to the channel message exits.
You can run a sequence of message exits. The limitations on the user data length and an example of how

to specify MSGDATA for more than one exit are as shown for RCVDATA. See [“Receive exit user datal
(RCVDATA)” on page 129,

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

* Cluster receiver
Message-retry exit name (MREXIT):
This attribute specifies the name of the user exit program to be run by the message-retry user exit.

Leave blank if no message-retry exit program is in effect.

The format and maximum length of the name depend on the platform, as for |“Receive exit name
(RCVEXIT)” on page 128|However, there can only be one message-retry exit specified

This attribute is valid for channel types of:
* Receiver

* Requester

* Cluster receiver

Message-retry exit user data (MRDATA):
This attribute specifies data passed to the channel message-retry exit when it is called.

This attribute is valid for channel types of:
* Receiver

* Requester

* Cluster receiver

Reference 123

Message retry count (MRRTY):
This attribute specifies the number of times the channel tries to redeliver the message.

This attribute controls the action of the MCA only if the message-retry exit name is blank. If the exit
name is not blank, the value of MRRTY is passed to the exit, but the number of attempts made (if any) is
controlled by the exit, and not by this attribute.

The value must be in the range 0 - 999 999 999. A value of zero means that no additional attempts are
made. The default is 10.

This attribute is valid for channel types of:
* Receiver

* Requester

* Cluster receiver

Message retry interval (MRTMR):

This attribute specifies the minimum interval of time that must pass before the channel can retry the
MQPUT operation.

This time interval is in milliseconds.

This attribute controls the action of the MCA only if the message-retry exit name is blank. If the exit
name is not blank, the value of MRTMR is passed to the exit for use by the exit, but the retry interval is
controlled by the exit, and not by this attribute.

The value must be in the range 0 - 999 999 999. A value of zero means that the retry is performed as soon
as possible (if the value of MRRTY is greater than zero). The default is 1000.

This attribute is valid for the following channel types:
* Receiver

* Requester

* Cluster receiver

Monitoring (MONCHL):
This attribute controls the collection of online Monitoring data.

Possible values are:

OMGR
The collection of Online Monitoring Data is inherited from the setting of the MONCHL attribute
in the queue manager object. This value is the default value.

OFF Online Monitoring Data collection for this channel is switched off.

LOW A low ratio of data collection with a minimal effect on performance. However, the monitoring
results shown might not be up to date.

MEDIUM
A moderate ratio of data collection with limited effect on the performance of the system.

HIGH A high ratio of data collection with the possibility of an effect on performance. However, the
monitoring results shown are the most current.

This attribute is valid for channel types of:

124 1BM MQ: Reference

* Sender

* Server

* Receiver

* Requester

* Server connection
* Cluster sender

¢ Cluster receiver

For more information about monitoring data, see [Displaying queue and channel monitoring data}

NETPRTY channel attribute:

The NETPRTY channel attribute specifies the priority for a CLUSRCVR channel. The value must be in the
range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the NETPRTY attribute to make one network the primary network, and another network the backup
network. Given a set of equally ranked channels, clustering chooses the path with the highest priority
when multiple paths are available.

A typical example of using the NETPRTY channel attribute is to differentiate between networks that have
different costs or speeds and connect the same destinations.

Note: Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing
you specify on the matching cluster-sender channel is likely to be ignored. See [Cluster channels}

Nonpersistent message speed (NPMSPEED):
This attribute specifies the speed at which nonpersistent messages are to be sent.

Possible values are:

NORMAL
Nonpersistent messages on a channel are transferred within transactions.

FAST Nonpersistent messages on a channel are not transferred within transactions.

The default is FAST. The advantage of this is that nonpersistent messages become available for retrieval
far more quickly. The disadvantage is that because they are not part of a transaction, messages might be
lost if there is a transmission failure or if the channel stops when the messages are in transit. See Safety

of messages

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

e Cluster receiver

Reference 125

Password (PASSWORD):

This attribute specifies a password that can be used by the MCA when attempting to initiate a secure LU
6.2 session with a remote MCA.

You can specify a password of maximum length 12 characters, although only the first 10 characters are
used.

It is valid for channel types of sender, server, requester, or client-connection.

On IBM MQ for z/0OS, this attribute is valid only for client connection channels. On other platforms, it is
valid for channel types of:

* Sender

* Server

* Requester

* Client connection

* Cluster sender
Port number (PORT):
Specify the port number that is used to connect the AMQP client.

The default port for AMQP 1.0 connections is 5672. If you are already using port 5672, you can specify a
different port.

PUT authority (PUTAUT):
This attribute specifies the type of security processing to be carried out by the MCA.

This attribute is valid for channel types of:
* Receiver

* Requester

* Server connection (z/OS only)

* Cluster receiver

Use this attribute to choose the type of security processing to be carried out by the MCA when executing:
* An MQPUT command to the destination queue (for message channels), or
* An MQI call (for MQI channels).

2/0S
On z/0S, the user IDs that are checked, and how many user IDs are checked, depends on the setting of
the MQADMIN RACF® class hlq.RESLEVEL profile. Depending on the level of access the user ID of the
channel initiator has to hlq.RESLEVEL, zero, one or two user IDs are checked. To see how many user IDs
are checked, see [RESLEVEL and channel initiator connections| For more information about which user
IDs are checked, see [User IDs used by the channel initiator]

You can choose one of the following:

Process security, also called default authority (DEF)
The default user ID is used.

On platforms other than z/OS, the user ID used to check open authority on the queue is that of
the process or user running the MCA at the receiving end of the message channel.

126 IBM MQ: Reference

On z/0S, both the user ID received from the network, and the user ID derived from [MCAUSE
might be used, depending on the number of user IDs that are to be checked.

The queues are opened with this user ID and the open option MQOO_SET_ALL_CONTEXT.

Context security (CTX)
The user ID from the context information associated with the message is used as an alternate user
ID.

The UserIdentifier in the message descriptor is moved into the AlternatelUserlId field in the
object descriptor. The queue is opened with the open options MQOO_SET_ALL_CONTEXT and
MQOO_ALTERNATE_USER_AUTHORITY.

On platforms other than z/OS, the user ID used to check open authority on the queue for
MQOO_SET_ALL_CONTEXT and MQOO_ALTERNATE_USER_AUTHORITY is that of the
process or user running the MCA at the receiving end of the message channel. The user ID used
to check open authority on the queue for MQOO_OUTPUT is the Userldentifier in the message
descriptor.

On z/0S, the user ID received from the network or that derived from [MCAUSER|might be used,
as well as the user ID from the context information in the message descriptor, depending on the
number of user IDs that are to be checked.

Context security (CTX) is not supported on server-connection channels.
Only Message Channel Agent security (ONLYMCA)
The user ID derived from [MCAUSER|is used.
Queues are opened with the open option MQOO_SET_ALL_CONTEXT.
This value only applies to z/OS.
Alternate Message Channel Agent security (ALTMCA)
The user ID from the context information (the UserIdentifier field) in the message descriptor
might be used, as well as the user ID derived from [MCAUSER} depending on the number of user
IDs that are to be checked.
This value only applies to z/OS.

Further details about context fields and open options can be found in [Controlling context information}

More information about security can be found in:

.
* [Setting up security on Windows, UNIX and Linux systems| for IBM MQ UNIX systems and Windows
systems,

. m [Setting up security on IBM i ffor IBM MQ for IBM i
. [Setting up security on z/0S for IBM MQ for z/OS

Reference 127

Queue manager name (QMNAME):

This attribute specifies the name of the queue manager or queue manager group to which an IBM MQ
MQI client application can request connection.

This attribute is valid for channel types of:

* Client connection
Receive exit name (RCVEXIT):
This attribute specifies the name of the user exit program to be run by the channel receive user exit.

This attribute can be a list of names of programs that are to be run in succession. Leave blank, if no
channel receive user exit is in effect.

The format and maximum length of this attribute depend on the platform:

* On z/0S it is a load module name, maximum length 8 characters, except for client-connection channels
where the maximum length is 128 characters.

* On IBM j, it is of the form:
Libname/progname

when specified in CL commands.
When specified in IBM MQ Commands (MQSC) it has the form:
progname libname

where progname occupies the first 10 characters, and libname the second 10 characters (both
blank-padded to the right if necessary). The maximum length of the string is 20 characters.

* On Windows, it is of the form:

dl1lname (functionname)

where dllname is specified without the suffix .DLL. The maximum length of the string is 40 characters.
* On UNIX systems, it is of the form:
libraryname (functionname)

The maximum length of the string is 40 characters.
During cluster sender channel auto-definition on z/OS, channel exit names are converted to z/OS format.

If you want to control how exit names are converted, you can write a channel auto-definition exit. For
more information, see [Channel auto-definition exit program|

You can specify a list of receive, send, or message exit program names. The names must be separated by
a comma, a space, or both. For example:

RCVEXIT (exitl exit2)
MSGEXIT (exitl,exit2)
SENDEXIT (exitl, exit2)

The total length of the string of exit names and strings of user data for a particular type of exit is limited
to 500 characters. In IBM MQ for IBM i, you can list up to 10 exit names. In IBM MQ for z/OS, you can

list up to eight exit names.

This attribute is valid for all channel types.

128 IBM MQ: Reference

Receive exit user data (RCVDATA):
This attribute specifies user data that is passed to the receive exit.

You can run a sequence of receive exits. The string of user data for a series of exits must be separated by
a comma, spaces, or both. For example:

RCVDATA(exitl data exit2_data)
MSGDATA(exitl data,exit2_data)
SENDDATA(exitl data, exit2_data)

In IBM MQ for UNIX systems, and Windows systems, the length of the string of exit names and strings
of user data is limited to 500 characters. In IBM MQ for IBM i, you can specify up to 10 exit names and
the length of user data for each is limited to 32 characters. In IBM MQ for z/OS, you can specify up to
eight strings of user data each of length 32 characters.

This attribute is valid for all channel types.

Security exit name (SCYEXIT):

This attribute specifies the name of the exit program to be run by the channel security exit.

Leave blank if no channel security exit is in effect.

The format and maximum length of the name depend on the platform, as for [“Receive exit name
(RCVEXIT)” on page 128 However, you can only specify one security exit.

This attribute is valid for all channel types.

Security exit user data (SCYDATA):

This attribute specifies user data that is passed to the security exit.

The maximum length is 32 characters.

This attribute is valid for all channel types.

Send exit name (SENDEXIT):

This attribute specifies the name of the exit program to be run by the channel send exit.

This attribute can be a list of names of programs that are to be run in sequence. Leave blank if no
channel send exit is in effect.

The format and maximum length of this attribute depend on the platform, as for [“Receive exit name]
(RCVEXIT)” on page 128

This attribute is valid for all channel types.

Reference 129

Send exit user data (SENDDATA):
This attribute specifies user data that is passed to the send exit.
You can run a sequence of send exits. The limitations on the user data length and an example of how to

specify SENDDATA for more than one exit, are as shown for RCVDATA. See [“Receive exit user datal
(RCVDATA)” on page 129,

This attribute is valid for all channel types.
Sequence number wrap (SEQWRAP):
This attribute specifies the highest number the message sequence number reaches before it restarts at 1.

The value of the number must be high enough to avoid a number being reissued while it is still being
used by an earlier message. The two ends of a channel must have the same sequence number wrap value
when a channel starts; otherwise, an error occurs.

The value can be set from 100 through 999 999 999.

This attribute is valid for channel types of:
* Sender

* Server

* Receiver

* Requester

* Cluster sender

* Cluster receiver

Short retry count (SHORTRTY):

This attribute specifies the maximum number of times that the channel is to try allocating a session to its
partner.

If the initial allocation attempt fails, the short retry count is decremented and the channel retries the
remaining number of times with an interval, defined in the short retry interval attribute, between each
attempt. If it still fails, it retries long retry count number of times with an interval of long retry
interval between each attempt. If it is still unsuccessful, the channel terminates.

(Retry is not attempted if the cause of failure is such that a retry is not likely to be successful.)

If the channel initiator (on z/OS) or the channel (on distributed platforms) is stopped while the channel
is retrying, the short retry count and long retry count are reset when the channel initiator or the channel is
restarted, or when a message is successfully put at the sender channel. However, if the channel initiator
(on z/OS) or queue manager (on distributed platforms) is shut down and restarted, the short retry count
and long retry count are not reset. The channel retains the retry count values it had before the queue
manager restart or the message being put.

Note: For m IBM i, UNIX systems, and Windows systems:

1. When a channel goes from RETRYING state to RUNNING state, the short retry count and long retry
count are not reset immediately. They are reset only once the first message flows across the channel
successfully after the channel went into RUNNING state, that is; once the local channel confirms the
number of messages sent to the other end.

2. The short retry count and long retry count are reset when the channel is restarted.

130 IBM MQ: Reference

This attribute can be set from zero through 999 999 999.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

¢ Cluster receiver

Note: On m IBM i, UNIX systems, and Windows systems, in order for retry to be attempted
a channel initiator must be running. The channel initiator must be monitoring the initiation queue
specified in the definition of the transmission queue that the channel is using.

Short retry interval (SHORTTMR):

This attribute specifies the approximate interval in seconds that the channel is to wait before retrying to
establish connection, during the short retry mode.

The interval between retries might be extended if the channel has to wait to become active.
This attribute can be set from zero through 999 999.

This attribute is valid for channel types of:
* Sender

* Server

* Cluster sender

* Cluster receiver
SSL Cipher Specification (SSLCIPH):
This attribute specifies a single CipherSpec for a TLS or SSL connection.

Every IBM MQ channel definition includes the SSLCIPH attribute. The value is a string with a maximum
length of 32 characters.

Note the following:
* The SSLCIPH attribute can contain a blank value, meaning that you are not using SSL or TLS. If one

end of the channel has a blank SSLCIPH attribute, the other end of the channel must also have a blank
SSLCIPH attribute.

* Alternatively, if SSLCIPH contains a nonblank value, the channel attempts to use the specified cipher
to utilize SSL or TLS. Again, in this case, both ends of the channel must specify the same SSLCIPH
value.

* The only exception to the rule that SSLCIPH must be the same at both ends of a channel, is that a
fully-managed .NET client can specify the special value *NEGOTIATE. This option allows the channel to
select the most recent protocol version supported by the .NET framework, and negotiate a CipherSpec
that the server supports.

It is valid only for channels with a transport type (TRPTYPE) of TCP. If the TRPTYPE is not TCD, the data
is ignored and no error message is issued.

For more information about SSLCIPH, see [DEFINE CHANNEIL|and [Specifying CipherSpecs]

Reference 131

SSL Client Authentication (SSLCAUTH):

This attribute specifies whether the channel needs to receive and authenticate an SSL certificate from an
SSL client.

Possible values are:

OPTIONAL
If the peer SSL client sends a certificate, the certificate is processed as normal but authentication
does not fail if no certificate is sent.

REQUIRED
If the SSL client does not send a certificate, authentication fails.

The default value is REQUIRED.

You can specify a value for SSLCAUTH on a non-SSL channel definition, one on which SSLCIPH is
missing or blank. You can use this to temporarily disable SSL for debugging without first having to clear
and then reinput the SSL parameters.

SSLCAUTH is an optional attribute.

This attribute is valid on all channel types that can ever receive a channel initiation flow, except for
sender channels.

This attribute is valid for channel types of:
* Server

* Receiver

* Requester

* Server connection

¢ Cluster receiver

For more information about SSLCAUTH, see [DEFINE CHANNEL (MQTT)| and [Security]

SSL Peer (SSLPEER):

This attribute is used to check the Distinguished Name (DN) of the certificate from the peer queue
manager or client at the other end of an IBM MQ channel.

Note: An alternative way of restricting connections into channels by matching against the SSL or TLS
Subject Distinguished Name, is to use channel authentication records. With channel authentication
records, different SSL or TLS Subject Distinguished Name patterns can be applied to the same channel. If
both SSLPEER on the channel and a channel authentication record are used to apply to the same channel,
the inbound certificate must match both patterns in order to connect.

If the DN received from the peer does not match the SSLPEER value, the channel does not start.

SSLPEER is an optional attribute. If a value is not specified, the peer DN is not checked when the
channel is started.

On z/0S, the maximum length of the attribute is 256 bytes. On all other platforms, it is 1024 bytes.
Channel authentication records provide greater flexibility when using SSLPEER and support 1024 bytes
on all platforms.

On z/0S, the attribute values used are not checked. If you enter incorrect values, the channel fails at
startup, and error messages are written to the error log at both ends of the channel. A Channel SSL Error

132 IBM MQ: Reference

event is also generated at both ends of the channel. On platforms that support SSLPEER, other than
z/0S, the validity of the string is checked when it is first entered.

You can specify a value for SSLPEER on a non-SSL channel definition, one on which SSLCIPH is missing
or blank. You can use this to temporarily disable SSL for debugging without having to clear and later
reinput the SSL parameters.

For more information about using SSLPEER, see [SET CHLAUTH]| and [Security]

This attribute is valid for all channel types.
Related information:

[Channel authentication records|

Topic root (TPROOT): =Sl

This attribute specifies the topic root for an AMQP channel.

You can use the TPROOT attribute to specify a topic root for an AMQP channel. Using this attribute
ensures that an MQ Light application, when deployed to a queue manager, does not publish or subscribe
to messages to or from areas of the topic tree that are being used by other applications.

The default value for TPROOT is SYSTEM.BASE.TOPIC. With this value, the topic string an AMQP client
uses to publish or subscribe has no prefix, and the client can exchange messages with other MQ pub/sub
applications. To have AMQP clients publish and subscribe under a topic prefix, first create an MQ topic
object with a topic string set to the prefix you want, then change the value of the AMQP channel
TPROOT attribute to the name of the MQ topic object you created. The following example shows the
topic root being set to APPGROUP1.BASE.TOPIC for AMQP channel MYAMQP:

DEFINE CHANNEL(MYAMQP) CHLTYPE(AMQP) TPROOT(APPGROUP1.BASE.TOPIC) PORT(5673)

Note: If the TPROOT attribute value, or the topic string that underpins it, is changed, existing AMQP
topics and their messages might be orphaned.

Transmission queue name (XMITQ):

This attribute specifies the name of the transmission queue from which messages are retrieved.

This attribute is required for channels of type sender or server, it is not valid for other channel types.
Provide the name of the transmission queue to be associated with this sender or server channel, that
corresponds to the queue manager at the far side of the channel. You can give the transmission queue the

same name as the queue manager at the remote end.

This attribute is valid for channel types of:
* Sender

* Server

Reference 133

Transport type (TRPTYPE):
This attribute specifies the transport type to be used.

The possible values are:

LU62 LU 6.2

TCP TCpP/IP

NETBIOS NetBIOS ([1])

SPX sPx ([i])

Notes:

1. For use on Windows. Can also be used on z/OS for defining client-connection channels for use on Windows.

This attribute is valid for all channel types.
Use client ID (USECLTID):
Use client ID for connection to AMQP channel.

Specify whether the client ID is used for connection on an AMQP channel. Set to Yes or No.

Use Dead-Letter Queue (USEDLQ):

This attribute determines whether the dead-letter queue (or undelivered message queue) is used when
messages cannot be delivered by channels.
Possible values are:

NO Messages that cannot be delivered by a channel are treated as a failure. The channel either
discards these messages, or the channel ends, in accordance with the setting of NPMSPEED.

YES (default)
If the queue manager DEADQ attribute provides the name of a dead-letter queue, then it is used,
otherwise the behavior is as for NO.

User ID (USERID):

This attribute specifies the user ID to be used by the MCA when attempting to initiate a secure SNA
session with a remote MCA.

You can specify a task user identifier of 20 characters.

It is valid for channel types of sender, server, requester, or client-connection.

This attribute does not apply to IBM MQ for z/OS except for client-connection channels.

On the receiving end, if passwords are kept in encrypted format and the LU 6.2 software is using a

different encryption method, an attempt to start the channel fails with invalid security details. You can
avoid this failure by modifying the receiving SNA configuration to either:

* Turn off password substitution, or

* Define a security user ID and password.

On IBM MQ for z/0OS, this attribute is valid only for client connection channels. On other platforms, it is
valid for channel types of:

134 1BM MQ: Reference

* Sender

* Server

* Requester

* Client connection
* Cluster sender

IBM MQ cluster commands

The IBM MQ Script commands runmgsc commands have special attributes and parameters that apply to
clusters. There are other administrative interfaces you can use to manager clusters.

The MQSC commands are shown as they would be entered by the system administrator at the command
console. Remember that you do not have to issue the commands in this way. There are a number of other
methods, depending on your platform; for example:

* On IBM MQ for IBM i, you run MQSC commands interactively from option 26 of WRKMQM. You can also
use CL commands or you can store MQSC commands in a file and use the STRMQMMQSC CL command.

. On z/0S you can use the COMMAND function of the CSQUTIL utility, the operations and control
panels or you can use the z/OS console.

* On all other platforms, you can store the commands in a file and use runmgsc.

In a MQSC command, a cluster name, specified using the CLUSTER attribute, can be up to 48 characters
long.

A list of cluster names, specified using the CLUSNL attribute, can contain up to 256 names. To create a
cluster namelist, use the DEFINE NAMELIST command.

IBM MQ Explorer

The Explorer GUI can administer a cluster with repository queue managers on IBM MQ for z/OS Version
6 or later. You do not need to nominate an additional repository on a separate system. For earlier versions
of IBM MQ for z/0S, the IBM MQ Explorer cannot administer a cluster with repository queue managers.
You must therefore nominate an additional repository on a system that the IBM MQ Explorer can
administer.

On IBM MQ for Windows and IBM MQ for Linux, you can also use IBM MQ Explorer to work with
clusters. You can also use the stand-alone IBM MQ Explorer client.

Using the IBM MQ Explorer you can view cluster queues and inquire about the status of cluster-sender
and cluster-receiver channels. IBM MQ Explorer includes two wizards, which you can use to guide you
through the following tasks:

* Create a cluster

* Join an independent queue manager to a cluster

Programmable command formats (PCF)

Reference 135

Table 31. PCF equivalents of MQSC commands specifically to work with clusters

runmgsc command PCF equivalent

DISPLAY CLUSQMGR MQCMD_INQUIRE_CLUSTER_Q_MGR
SUSPEND QMGR MQCMD_SUSPEND_Q_MGR_CLUSTER
RESUME QMGR MQCMD_RESUME_Q_MGR_CLUSTER
REFRESH CLUSTER MQCMD_REFRESH_CLUSTER
RESET CLUSTER MQCMD_RESET_CLUSTER

Related information:
Clustering: Using REFRESH CLUSTER best practices|

Queue-manager definition commands
Cluster attributes that can be specified on queue manager definition commands.

To specify that a queue manager holds a full repository for a cluster, use the ALTER QMGR command
specifying the attribute REPOS(clustername). To specify a list of several cluster names, define a cluster
namelist and then use the attribute REPOSNL(namelist) on the ALTER QMGR command:

DEFINE NAMELIST(CLUSTERLIST)
DESCR('List of clusters whose repositories I host')
NAMES (CLUS1, CLUS2, CLUS3)

ALTER QMGR REPOSNL(CLUSTERLIST)

You can provide additional cluster attributes on the ALTER QMGR command

CLWLEXIT(name)
Specifies the name of a user exit to be called when a message is put to a cluster queue.

CLWLDATA(data)
Specifies the data to be passed to the cluster workload user exit.

CLWLLEN(length)
Specifies the maximum amount of message data to be passed to the cluster workload user exit

CLWLMRUC(channels)
Specifies the maximum number of outbound cluster channels.

CLWLMRUC is a local queue manager attribute that is not propagated around the cluster. It is made
available to cluster workload exits and the cluster workload algorithm that chooses the
destination for messages.

CLWLUSEQ(LOCAL|ANY)
Specifies the behavior of MQPUT when the target queue has both a local instance and at least
one remote cluster instance. If the put originates from a cluster channel, this attribute does not
apply. It is possible to specify CLWLUSEQ as both a queue attribute and a queue manager attribute.

If you specify ANY, both the local queue and the remote queues are possible targets of the
MQPUT.

If you specify LOCAL, the local queue is the only target of the MQPUT.

The equivalent PCFs are MQCMD_CHANGE_Q_MGR and MQCMD_INQUIRE_Q_MGR.

136 IBM MQ: Reference

Channel definition commands
Cluster attributes that can be specified on channel definition commands.

The DEFINE CHANNEL, ALTER CHANNEL, and DISPLAY CHANNEL commands have two specific CHLTYPE
parameters for clusters: CLUSRCVR and CLUSSDR. To define a cluster-receiver channel you use the DEFINE
CHANNEL command, specifying CHLTYPE(CLUSRCVR). Many attributes on a cluster-receiver channel definition
are the same as the attributes on a receiver or sender-channel definition. To define a cluster-sender
channel you use the DEFINE CHANNEL command, specifying CHLTYPE(CLUSSDR), and many of the same
attributes as you use to define a sender-channel.

It is no longer necessary to specify the name of the full repository queue manager when you define a
cluster-sender channel. If you know the naming convention used for channels in your cluster, you can
make a CLUSSDR definition using the +QMNAME+ construction. The +QMNAME+ construction is not supported
on z/0OS. After connection, IBM MQ changes the name of the channel and substitutes the correct full
repository queue manager name in place of +QUNAME+. The resulting channel name is truncated to 20
characters.

For more information on naming conventions, see [Cluster naming conventions]

The technique works only if your convention for naming channels includes the name of the queue
manager. For example, you define a full repository queue manager called QM1 in a cluster called CLUSTER1
with a cluster-receiver channel called CLUSTERL.QM1.ALPHA. Every other queue manager can define a
cluster-sender channel to this queue manager using the channel name, CLUSTER1.+QMNAME+. ALPHA.

If you use the same naming convention for all your channels, be aware that only one +QMNAME+ definition
can exist at one time.

The following attributes on the DEFINE CHANNEL and ALTER CHANNEL commands are specific to cluster
channels:

CLUSTER
The CLUSTER attribute specifies the name of the cluster with which this channel is associated.
Alternatively use the CLUSNL attribute.

CLUSNL
The CLUSNL attribute specifies a namelist of cluster names.

NETPRTY
Cluster-receivers only.

The NETPRTY attribute specifies a network priority for the channel. NETPRTY helps the workload
management routines. If there is more than one possible route to a destination, the workload
management routine selects the one with the highest priority.

CLWLPRTY
The CLWLPRTY parameter applies a priority factor to channels to the same destination for workload
management purposes. This parameter specifies the priority of the channel for the purposes of
cluster workload distribution. The value must be in the range zero through 9, where zero is the
lowest priority and 9 is the highest.

CLWLRANK
The CLWLRANK parameter applies a ranking factor to a channel for workload management
purposes. This parameter specifies the rank of a channel for the purposes of cluster workload
distribution. The value must be in the range zero through 9, where zero is the lowest rank and 9
is the highest.

CLWLWGHT
The CLWLWGHT parameter applies a weighting factor to a channel for workload management
purposes. CLWLWGHT weights the channel so that the proportion of messages sent down that

Reference 137

channel can be controlled. The cluster workload algorithm uses CLWLWGHT to bias the destination
choice so that more messages can be sent over a particular channel. By default all channel weight
attributes are the same default value. The weight attribute allows you to allocate a channel on a
powerful UNIX machine a larger weight than another channel on small desktop PC. The greater
weight means that the cluster workload algorithm selects the UNIX machine more frequently
than the PC as the destination for messages.

CONNAME
The CONNAME specified on a cluster-receiver channel definition is used throughout the cluster to
identify the network address of the queue manager. Take care to select a value for the CONNAME
parameter that resolves throughout your IBM MQ cluster. Do not use a generic name. Remember
that the value specified on the cluster-receiver channel takes precedence over any value specified
in a corresponding cluster-sender channel.

These attributes on the DEFINE CHANNEL command and ALTER CHANNEL command also apply to the DISPLAY
CHANNEL command.

Note: Auto-defined cluster-sender channels take their attributes from the corresponding cluster-receiver
channel definition on the receiving queue manager. Even if there is a manually defined cluster-sender
channel, its attributes are automatically modified to ensure that they match the attributes on the
corresponding cluster-receiver definition. Beware that you can, for example, define a CLUSRCVR without
specifying a port number in the CONNAME parameter, while manually defining a CLUSSDR that does specify
a port number. When the auto-defined CLUSSDR replaces the manually defined one, the port number
(taken from the CLUSRCVR) becomes blank. The default port number would be used and the channel
would fail.

Note: The DISPLAY CHANNEL command does not display auto-defined channels. However, you can use the
DISPLAY CLUSQMGR command to examine the attributes of auto-defined cluster-sender channels.

Use the DISPLAY CHSTATUS command to display the status of a cluster-sender or cluster-receiver channel.
This command gives the status of both manually defined channels and auto-defined channels.

The equivalent PCFs are MQCMD_CHANGE_CHANNEL, MQCMD_COPY_CHANNEL, MQCMD_CREATE_CHANNEL, and
MQCMD_INQUIRE_CHANNEL.

Omitting the CONNAME value on a CLUSRCVR definition

In some circumstances you can omit the CONNAME value on a CLUSRCVR definition. You must not omit the
CONNAME value on z/OS.

On AIX, HP-UX, IBM i, Linux, Solaris, and Windows platforms, the TCP/IP connection name parameter
of a cluster-receiver channel is optional. If you leave the connection name blank, IBM MQ generates a
connection name for you, assuming the default port and using the current IP address of the system. You
can override the default port number, but still use the current IP address of the system. For each
connection name leave the IP name blank, and provide the port number in parentheses; for example:

(1415)

The generated CONNAME is always in the dotted decimal (IPv4) or hexadecimal (IPv6) form, rather than in
the form of an alphanumeric DNS host name.

This facility is useful when you have machines using Dynamic Host Configuration Protocol (DHCP). If

you do not supply a value for the CONNAME on a CLUSRCVR channel, you do not need to change the
CLUSRCVR definition. DHCP allocates you a new IP address.

138 IBM MQ: Reference

If you specify a blank for the CONNAME on the CLUSRCVR definition, IBM MQ generates a CONNAME from the
IP address of the system. Only the generated CONNAME is stored in the repositories. Other queue managers
in the cluster do not know that the CONNAME was originally blank.

If you issue the DISPLAY CLUSQMGR command you see the generated CONNAME. However, if you issue the
DISPLAY CHANNEL command from the local queue manager, you see that the CONNAME is blank.

If the queue manager is stopped and restarted with a different IP address, because of DHCP, IBM MQ
regenerates the CONNAME and updates the repositories accordingly.

Queue definition commands
Cluster attributes that can be specified on the queue definition commands.

The DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands

The cluster attributes on the DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands, and the
three equivalent ALTER commands, are:

CLUSTER
Specifies the name of the cluster to which the queue belongs.

CLUSNL
Specifies a namelist of cluster names.

DEFBIND
Specifies the binding to be used when an application specifies MQOO_BIND_AS_Q_DEF on the
MQOPEN call. The options for this attribute are:

* Specify DEFBIND(OPEN) to bind the queue handle to a specific instance of the cluster queue
when the queue is opened. DEFBIND (OPEN) is the default for this attribute.

* Specify DEFBIND(NOTFIXED) so that the queue handle is not bound to any instance of the cluster
queue.

* Specify DEFBIND(GROUP) to allow an application to request that a group of messages are all
allocated to the same destination instance.

When multiple queues with the same name are advertised in a Queue Manager Cluster,
applications can choose whether to send all messages from this application to a single instance
(MQOO_BIND_ON_OPEN), to allow the workload management algorithm to select the most
suitable destination on a per message basis (MQOO_BIND_NOT_FIXED), or allow an application
to request that a 'group’ of messages be all allocated to the same destination instance
(MQOO_BIND_ON_GROUP). The workload balancing is re-driven between groups of messages
(without requiring an MQCLOSE and MQOPEN of the queue).

When you specify DEFBIND on a queue definition, the queue is defined with one of the attributes,
MQBND_BIND_ON_OPEN, MQBND_BIND_NOT_FIXED, or MQBND_BIND_ON_GROUP. Either MQBND_BIND_ON_OPEN
or MQBND_BIND_ON_GROUP must be specified when using groups with clusters.

We recommend that you set the DEFBIND attribute to the same value on all instances of the same
cluster queue. Because MQOO_BIND_ON_GROUP is new in IBM WebSphere MQ Version 7.1, it
must not be used if any of the applications opening this queue are connecting to IBM WebSphere
MQ Version 7.0.1 or earlier queue managers.

CLWLRANK
Applies a ranking factor to a queue for workload management purposes. CLWLRANK parameter is
not supported on model queues. The cluster workload algorithm selects a destination queue with
the highest rank. By default CLWLRANK for all queues is set to zero.

If the final destination is a queue manager on a different cluster, you can set the rank of any
intermediate gateway queue managers at the intersection of neighboring clusters. With the

Reference 139

intermediate queue managers ranked, the cluster workload algorithm correctly selects a
destination queue manager nearer the final destination.

The same logic applies to alias queues. The rank selection is made before the channel status is
checked, and therefore even non-accessible queue managers are available for selection. This has
the effect of allowing a message to be routed through a network, rather than having it select
between two possible destinations (as the priority would). So, if a channel is not started to the
place where the rank has indicated, the message is not routed to the next highest rank, but waits
until a channel is available to that destination (the message is held on the transmit queue).

CLWLPRTY
Applies a priority factor to a queue for workload management purposes. The cluster workload
algorithm selects a destination queue with the highest priority. By default priority for all queues
is set to zero.

If there are two possible destination queues, you can use this attribute to make one destination
failover to the other destination. The priority selection is made after the channel status is checked.
All messages are sent to the queue with the highest priority unless the status of the channel to
that destination is not as favorable as the status of channels to other destinations. This means that
only the most accessible destinations are available for selection. This has the effect of prioritizing
between multiple destinations that are all available.

CLWLUSEQ
Specifies the behavior of an MQPUT operation for a queue. This parameter specifies the behavior
of an MQPUT operation when the target queue has a local instance and at least one remote
cluster instance (except where the MQPUT originates from a cluster channel). This parameter is
only valid for local queues.

Possible values are: QMGR (the behavior is as specified by the CLWLUSEQ parameter of the queue
manager definition), ANY (the queue manager treats the local queue as another instance of the
cluster queue, for the purposes of workload distribution), LOCAL (the local queue is the only target
of the MQPUT operation, providing the local queue is put enabled). The MQPUT behavior
depends upon the [cluster workload management algorithm|

The DISPLAY QUEUE and DISPLAY QCLUSTER commands

The attributes on the DEFINE QLOCAL, DEFINE QREMOTE, and DEFINE QALIAS commands also apply to the
DISPLAY QUEUE command.

To display information about cluster queues, specify a queue type of QCLUSTER or the keyword CLUSINFO
on the DISPLAY QUEUE command, or use the command DISPLAY QCLUSTER.

The DISPLAY QUEUE or DISPLAY QCLUSTER command returns the name of the queue manager that hosts the
queue (or the names of all queue managers if there is more than one instance of the queue). It also
returns the system name for each queue manager that hosts the queue, the queue type represented, and
the date and time at which the definition became available to the local queue manager. This information
is returned using the CLUSQMGR, QMID, CLUSQT, CLUSDATE, and CLUSTIME attributes.

The system name for the queue manager (QMID), is a unique, system-generated name for the queue
manager.

You can define a cluster queue that is also a shared queue. For example. on z/OS you can define:
DEFINE QLOCAL(MYQUEUE) CLUSTER(MYCLUSTER) QSGDISP(SHARED) CFSTRUCT(STRUCTURE)

The equivalent PCFs are MQCMD_CHANGE_Q, MQCMD_COPY_Q, MQCMD_CREATE_Q, and MQCMD_INQUIRE_Q.

140 1BM MQ: Reference

DISPLAY CLUSQMGR

Use the DISPLAY CLUSQMGR command to display cluster information about queue managers in a cluster.

If you issue this command from a queue manager with a full repository, the information returned applies
to every queue manager in the cluster. Otherwise the information returned applies only to the queue
managers in which it has an interest. That is, every queue manager to which it has tried to send a
message and every queue manager that holds a full repository.

The information includes most channel attributes that apply to cluster-sender and cluster-receiver
channels. In addition, the following attributes can be displayed:

CHANNEL
The cluster-receiver channel name for the queue manager.

CLUSDATE
The date at which the definition became available to the local queue manager.

CLUSTER
What clusters the queue manager is in.

CLUSTIME
The time at which the definition became available to the local queue manager.

DEFTYPE
How the queue manager was defined. DEFTYPE can be one of the following values:

CLUSSDR
A cluster sender-channel has been administratively defined on the local queue manager
but not yet recognized by the target queue manager. To be in this state the local queue
manager has defined a manual cluster-sender channel but the receiving queue manager
has not accepted the cluster information. This may be due to the channel never having
been established due to availability or to an error in the cluster-sender configuration, for
example a mismatch in the CLUSTER property between the sender and receiver
definitions. This is a transitory condition or error state and should be investigated.

CLUSSDRA

This value represents an automatically discovered cluster queue manager, no

cluster-sender channel is defined locally. This is the DEFTYPE for cluster queue managers

for which the local queue manager has no local configuration but has been informed of.

For example

* If the local queue manager is a full repository queue manager it should be the
DEFTYPE value for all partial repository queue managers in the cluster.

* If the local queue manager is a partial repository, this could be the host of a cluster
queue that is being used from this local queue manager or from a second full
repository queue manager that this queue manager has been told to work with.

If the DEFTYPE value is CLUSSDRA and the local and remote queue managers are both
full repositories for the named cluster, the configuration is not correct as a locally defined
cluster-sender channel must be defined to convert this to a DEFTYPE of
CLUSSDRB
A cluster sender-channel has been administratively defined on the local queue manager
and accepted as a valid cluster channel by the target queue manager. This is the expected
DEFTYPE of a partial repository queue manager's manually configured full repository
queue manager. It should also be the DEFTYPE of any CLUSQMGR from one full
repository to another full repository in the cluster. Manual cluster-sender channels should
not be configured to partial repositories or from a partial repository queue manager to

more than one full repository. If a DEFTYPE of CLUSSDRB is seen in either of these
situations it should be investigated and corrected.

Reference 141

CLUSRCVR
Administratively defined as a cluster-receiver channel on the local queue manager. This
represents the local queue manager in the cluster.

Note: To identify which CLUSQMGRs are full repository queue managers for the cluster, see the
OMTYPE| property.

For more information on defining cluster channels, see [Cluster channels]

QMTYPE
Whether it holds a full repository or only a partial repository.

STATUS
The status of the cluster-sender channel for this queue manager.

SUSPEND
Whether the queue manager is suspended.

VERSION
The version of the IBM MQ installation that the cluster queue manager is associated with.

The version has the format VVRRMMFF:
* VV: Version

* RR: Release

* MM: Maintenance level

* FF: Fix level

XMITQ The cluster transmission queue used by the queue manager.

See also the DISPLAY QCLUSTER command. This is briefly described in [DISPLAY QUEUE| and in the
DISPLAY QUEUE and DISPLAY QCLUSTER commands| section of [“Queue definition commands” on page 139/
For examples of using DISPLAY QCLUSTER, search the information set for “DISPLAY QCLUSTER” and “DIS
QCLUSTER”.

Related information:

MQSC command DISPLAY CLUSQMGR|

Use the MQSC command DISPLAY CLUSQMGR to display information about cluster channels for queue
managers in a cluster.

SUSPEND QMGR, RESUME QMGR and clusters

Use the SUSPEND QMGR and RESUME QMGR command to temporarily reduce the inbound cluster activity to
this queue manager, for example, before you perform maintenance on this queue manager, and then
reinstate it.

While a queue manager is suspended from a cluster, it does not receive messages on cluster queues that
it hosts if there is an available queue of the same name on an alternative queue manager in the cluster.
However, messages that are explicitly targeted at this queue manager, or where the target queue is only
available on this queue manager, are still directed to this queue manager.

Receiving further inbound messages while the queue manager is suspended can be prevented by
stopping the cluster receiver channels for this cluster. To stop the cluster receiver channels for a cluster,
use the FORCE mode of the SUSPEND QMGR| command.

142 1BM MQ: Reference

Related information:

BUSPEND QMGR)|

Use the MQSC command SUSPEND QMGR to advise other queue managers in a cluster to avoid sending
messages to the local queue manager if possible.

RESUME QMGR|

Use the MQSC command RESUME QMGR to inform other queue managers in a cluster that the local
queue manager is available again for processing and can be sent messages. It reverses the action of the
SUSPEND QMGR command.

Maintaining a queue manager]

REFRESH CLUSTER

Issue the REFRESH CLUSTER command from a queue manager to discard all locally held information about
a cluster. You are unlikely to need to use this command, except in exceptional circumstances.

There are three forms of this command:

REFRESH CLUSTER(clustername) REPOS(NO)
The default. The queue manager retains knowledge of all locally defined cluster queue manager
and cluster queues and all cluster queue managers that are full repositories. In addition, if the
queue manager is a full repository for the cluster it also retains knowledge of the other cluster
queue managers in the cluster. Everything else is removed from the local copy of the repository
and rebuilt from the other full repositories in the cluster. Cluster channels are not stopped if
REPOS(NO) is used. A full repository uses its CLUSSDR channels to inform the rest of the cluster that
it has completed its refresh.

REFRESH CLUSTER(clustername) REPOS(YES)
In addition to the default behavior, objects representing full repository cluster queue managers
are also refreshed. It is not valid to use this option if the queue manager is a full repository, if
used the command will fail with an error AMQ9406/CSQX406E logged. If it is a full repository,
you must first alter it so that it is not a full repository for the cluster in question. The full
repository location is recovered from the manually defined CLUSSDR definitions. After refreshing
with REPOS(YES) has been issued the queue manager can be altered so that it is once again a full
repository, if required.

REFRESH CLUSTER(*)
Refreshes the queue manager in all the clusters it is a member of. If used with REPOS (YES)
REFRESH CLUSTER(*) has the additional effect of forcing the queue manager to restart its search for
full repositories from the information in the local CLUSSDR definitions. The search takes place even
if the CLUSSDR channel connects the queue manager to several clusters.

Note: For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster while it is
in progress, and again at 27 day intervals thereafter when the cluster objects automatically send status
updates to all interested queue managers. See [Refreshing in a large cluster can affect performance and|
hvailability of the cluster|

Reference 143

Related information:
Clustering: Using REFRESH CLUSTER best practices|

RESET CLUSTER

Use the RESET CLUSTER command to forcibly remove a queue manager from a cluster in exceptional
circumstances.

You are unlikely to need to use this command, except in exceptional circumstances.

You can issue the RESET CLUSTER command only from full repository queue managers. The command
takes two forms, depending on whether you reference the queue manager by name or identifier.

1. RESET CLUSTER(clustername
) QMNAME(gmname) ACTION(FORCEREMOVE) QUEUES(NO)

2. RESET CLUSTER(clustername
) QMID(gmid) ACTION(FORCEREMOVE) QUEUES(NO)

You cannot specify both QMNAME and QMID. If you use QMNAME, and there is more than one queue manager
in the cluster with that name, the command is not run. Use QMID instead of QMNAME to ensure the RESET
CLUSTER command is run.

Specifying QUEUES(NO) on a RESET CLUSTER command is the default. Specifying QUEUES(YES) removes
references to cluster queues owned by the queue manager from the cluster. The references are removed in
addition to removing the queue manager from the cluster itself.

The references are removed even if the cluster queue manager is not visible in the cluster; perhaps
because it was previously forcibly removed, without the QUEUES option.

You might use the RESET CLUSTER command if, for example, a queue manager has been deleted but still
has cluster-receiver channels defined to the cluster. Instead of waiting for IBM MQ to remove these
definitions (which it does automatically) you can issue the RESET CLUSTER command to tidy up sooner. All
other queue managers in the cluster are then informed that the queue manager is no longer available.

If a queue manager is temporarily damaged, you might want to tell the other queue managers in the
cluster before they try to send it messages. RESET CLUSTER removes the damaged queue manager. Later,
when the damaged queue manager is working again, use the REFRESH CLUSTER command to reverse the
effect of RESET CLUSTER and return the queue manager to the cluster.If the queue manager is in a

ublish/subscribe cluster, you then need to reinstate any required proxy subscriptions. See
CLUSTER considerations for publish/subscribe clusters|

Note: For large clusters, use of the REFRESH CLUSTER command can be disruptive to the cluster while it is
in progress, and again at 27 day intervals thereafter when the cluster objects automatically send status
updates to all interested queue managers. See [Refreshing in a large cluster can affect performance and|
hvailability of the cluster|

Using the RESET CLUSTER command is the only way to delete auto-defined cluster-sender channels. You
are unlikely to need this command in normal circumstances. The IBM Support Center might advise you
to issue the command to tidy up the cluster information held by cluster queue managers. Do not use this
command as a short cut to removing a queue manager from a cluster. The correct way to remove a queue
manager from a cluster is described in [Removing a queue manager from a cluster|

Because repositories retain information for only 90 days, after that time a queue manager that was
forcibly removed can reconnect to a cluster. It reconnects automatically, unless it has been deleted. If you
want to prevent a queue manager from rejoining a cluster, you need to take appropriate security
measures.

144 1BM MQ: Reference

All cluster commands, except DISPLAY CLUSQMGR, work asynchronously. Commands that change object
attributes involving clustering update the object and send a request to the repository processor.
Commands for working with clusters are checked for syntax, and a request is sent to the repository
processor.

The requests sent to the repository processor are processed asynchronously, along with cluster requests
received from other members of the cluster. Processing might take a considerable time if they have to be
propagated around the whole cluster to determine if they are successful or not.

Workload balancing in clusters

If a cluster contains more than one instance of the same queue, IBM MQ selects a queue manager to route
a message to. It uses the cluster workload management algorithm, and a number of cluster
workload-specific attributes, to determine the best queue manager to use.

Suitable destinations are chosen, by the cluster workload management algorithm, based on the
availability of the queue manager and queue, and on a number of cluster workload-specific attributes
associated with queue managers, queues, and channels. These attributes are described in the subtopics.

Note: Specify the cluster workload channel attributes on the cluster-receiver channels at the target queue
managers. Any balancing you specify on the matching cluster-sender channels is likely to be ignored. See
[Cluster channels]

After you configure the cluster workload-specific attributes, if the configuration does not behave as you
expected, explore the details of how the algorithm chooses a queue manager. See [“The cluster workload|
management algorithm” on page 149If the results of this algorithm do not meet your needs, you can
write a cluster workload user exit program, and use this exit to route messages to the queue of your
choice in the cluster. See [Writing and compiling cluster workload exits]

CLWLPRTY queue attribute:

The CLWLPRTY queue attribute specifies the priority of local, remote, or alias queues for cluster workload
distribution. The value must be in the range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the CLWLPRTY queue attribute to set a preference for destination queues. IBM MQ selects the
destinations with the highest priority before selecting destinations with the lowest cluster destination
priority. If there are multiple destinations with the same priority, it selects the least recently used
destination.

If there are two possible destinations, you can use this attribute to allow failover. The highest priority
queue manager receives requests, lower priority queue managers act as reserves. If the highest priority
queue manager fails, then the next highest priority queue manager that is available, takes over.

IBM MQ obtains the priority of queue managers after checking channel status. Only available queue
managers are candidates for selection.

Note:

The availability of a remote queue manager is based on the status of the channel to that queue manager.
When channels start, their state changes several times, with some of the states being less preferential to
the cluster workload management algorithm. In practice this means that lower priority (backup)

destinations can be chosen while the channels to higher priority (primary) destinations are starting.

If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider using
separate queues, or CLWLRANK with a manual switch over from the primary to backup.

Reference 145

CLWLRANK queue attribute:

The CLWLRANK queue attribute specifies the rank of a local, remote, or alias queue for cluster workload
distribution. The value must be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK queue attribute if you want control over the final destination for messages sent to a
queue manager in another cluster. When you set CLWLRANK, messages take a specified route through the
interconnected clusters towards a higher ranked destination.

For example, you might have defined two identically configured gateway queue managers to improve the
availability of a gateway. Suppose you have defined cluster alias queues at the gateways for a local queue
defined in the cluster. If the local queue becomes unavailable, you intend the message to be held at one
of the gateways pending the queue becoming available again. To hold the queue at a gateway, you must
define the local queue with a higher rank than the cluster alias queues at the gateway.

If you define the local queue with the same rank as the queue aliases and the local queue is unavailable,
the message travels between the gateways. On finding the local queue unavailable the first gateway
queue manager routes the message to the other gateway. The other gateway tries to deliver the message
to the target local queue again. If the local queue is still unavailable, it routes the message back to the
first gateway. The message keeps being moved back and forth between the gateways until the target local
queue became available again. By giving the local queue a higher rank, even if the queue is unavailable,
the message is not rerouted to a destination of lower rank.

IBM MQ obtains the rank of queues before checking channel status. Obtaining the rank before checking
channel status means that even non-accessible queues are available for selection. It allows messages to be
routed through the network even if the final destination is unavailable.

If you used the priority attribute IBM MQ selects between available destinations. If a channel is not
available to the destination with the highest rank, the message is held on the transmission queue. It is
released when the channel becomes available. The message does not get sent to the next available
destination in the rank order.

CLWLUSEQ queue attribute:

The CLWLUSEQ queue attribute specifies whether a local instance of a queue is given preference as a
destination over other instances in a cluster.

The CLWLUSEQ queue attribute is valid only for local queues. It only applies if the message is put by an
application, or a channel that is not a cluster channel.

LOCAL The local queue is the only target of MQPUT, providing the local queue is put enabled. MQPUT
behavior depends upon the [cluster workload managemen

QMGR The behavior is as specified by the CLWNLUSEQ queue manager attribute.

ANY MQPUT treats the local queue the same as any other instance of the queue in the cluster for
workload distribution.

146 1BM MQ: Reference

CLWLUSEQ queue manager attribute:

The CLWLUSEQ queue manager attribute specifies whether a local instance of a queue is given preference as
a destination over other instances of the queue in a cluster. The attribute applies if the CLWLUSEQ queue
attribute is set to QMGR.

The CLWLUSEQ queue attribute is valid only for local queues. It only applies if the message is put by an
application, or a channel that is not a cluster channel.

LOCAL The local queue is the only target of MQPUT. LOCAL is the default.

ANY MQPUT treats the local queue the same as any other instance of the queue in the cluster for
workload distribution.

CLWLMRUC queue manager attribute:

The CLWLMRUC queue manager attribute sets the number of most recently chosen channels. The cluster
workload management algorithm uses CLWLMRUC to restrict the number of active outbound cluster
channels. The value must be in the range 1 - 999 999 999.

The initial default value is 999 999 999.
CLWLPRTY channel attribute:

The CLWLPRTY channel attribute specifies the priority order for channels for cluster workload
distribution. The value must be in the range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the CLWLPRTY channel attribute to set a priority order for the available cluster destinations. IBM MQ
selects the destinations with the highest priority before selecting destinations with the lowest cluster
destination priority. If there are multiple destinations with the same priority, it selects the least recently
used destination.

If there are two possible destinations, you can use this attribute to allow failover. Messages go to the
queue manager with the highest priority channel. If it becomes unavailable then messages go to the next
highest priority queue manager. Lower priority queue managers act as reserves.

IBM MQ checks channel status before prioritizing the channels. Only available queue managers are
candidates for selection.

Notes:

* Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See [Cluster channels}

* The availability of a remote queue manager is based on the status of the channel to that queue
manager. When channels start, their state changes several times, with some of the states being less
preferential to the cluster workload management algorithm. In practice this means that lower priority
(backup) destinations can be chosen while the channels to higher priority (primary) destinations are
starting.

* If you need to ensure that no messages go to a backup destination, do not use CLWLPRTY. Consider
using separate queues, or CLWLRANK with a manual switch over from the primary to backup.

Reference 147

CLWLRANK channel attribute:

The CLWLRANK channel attribute specifies the rank of channels for cluster workload distribution. The value
must be in the range 0-9, where 0 is the lowest rank and 9 is the highest.

Use the CLWLRANK channel attribute if you want control over the final destination for messages sent to a
queue manager in another cluster. Control the choice of final destination by setting the rank of the
channels connecting a queue manager to the gateway queue managers at the intersection of the clusters.

When you set CLWLRANK, messages take a specified route through the interconnected clusters towards a
higher ranked destination. For example, messages arrive at a gateway queue manager that can send them
to either of two queue managers using channels ranked 1 and 2. They are automatically sent to the queue
manager connected by a channel with the highest rank, in this case the channel to the queue manager
ranked 2.

IBM MQ gets the rank of channels before checking channel status. Getting the rank before checking
channel status means that even non-accessible channels are available for selection. It allows messages to
be routed through the network even if the final destination is unavailable.

Notes:

* Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See |Cluster channels|

* If you also used the priority attribute CLWLPRTY, IBM MQ selects between available destinations. If a
channel is not available to the destination with the highest rank, the message is held on the
transmission queue. It is released when the channel becomes available. The message does not get sent
to the next available destination in the rank order.

CLWLWGHT channel attribute:

The CLWLWGHT channel attribute specifies the weight applied to CLUSSDR and CLUSRCVR channels for cluster
workload distribution. The value must be in the range 1-99, where 1 is the lowest weight and 99 is the
highest.

Use CLWLWGHT to send servers with more processing power more messages. The higher the channel
weight, the more messages are sent over that channel.

Notes:

* Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing you
specify on the matching cluster-sender channel is likely to be ignored. See |Cluster channels|

* When CLWLWGHT is modified from the default of 50 on any channel, workload balancing becomes
dependent on the total number of times each channel was chosen for a message sent to any clustered
queue. For more information, seq”“The cluster workload management algorithm” on page 149,

148 1BM MQ: Reference

NETPRTY channel attribute:

The NETPRTY channel attribute specifies the priority for a CLUSRCVR channel. The value must be in the
range 0-9, where 0 is the lowest priority and 9 is the highest.

Use the NETPRTY attribute to make one network the primary network, and another network the backup
network. Given a set of equally ranked channels, clustering chooses the path with the highest priority
when multiple paths are available.

A typical example of using the NETPRTY channel attribute is to differentiate between networks that have
different costs or speeds and connect the same destinations.

Note: Specify this attribute on the cluster-receiver channel at the target queue manager. Any balancing
you specify on the matching cluster-sender channel is likely to be ignored. See |Cluster channels}

The cluster workload management algorithm:

The workload management algorithm uses workload balancing attributes and many rules to select the
final destination for messages being put onto cluster queues.

The workload management algorithm is exercised every time a choice of destination is required:
* It is used at the point a cluster queue is opened, by using the MQOO_BIND_ON_OPEN option.
* It is used each time a message is put to a cluster queue when it is opened with MQOO_BIND_NOT_FIXED.

* It is used each time a new message group is started when MQOO_BIND_ON_GROUP is used to open a cluster
queue.

« For [topic host routing] it is used each time a message is published to a clustered topic. If the local
queue manager is not a host for this topic, the algorithm is used to choose a host queue manager to
route the message through.

The following section describes the workload management algorithm used when determining the final
destination for messages being put onto cluster queues. These rules are influenced by the settings applied
to the following attributes for queues, queue managers, and channels:

Table 32. Attributes for cluster workload management

Queues Queue managers Channels

* |CLWLPRTY (This attribute applies + [cLwLUSEQE e |CLWLPRTY
only when choosing a clustered . [ctwivruc . [CLWLRAN
ueue, not when choosing a topic.) . [CLuwent

. [CCWLRANKE * [NETPRTY

+ [cLwLusEQF

e PUT / PUB

Initially, the queue manager builds a list of possible destinations from two procedures:

* Matching the target ObjectName and ObjectQmgrName with queue manager alias definitions that are
shared in the same clusters as the queue manager.

* Finding unique routes (that is, channels) to a queue manager that hosts a queue with the name
ObjectName and is in one of the clusters that the queue manager is a member of.

The algorithm steps through the following rules to eliminate destinations from the list of possible
destinations.

1. If a queue or topic name is specified:

Reference 149

10.

11.

12.

13.

150

a. Queues that are not put enabled are eliminated as possible destinations.
b. Administered topic definitions that are not pub enabled are eliminated as possible destinations.

Remote instances of queues or topics that do not share a cluster with the local queue manager are
eliminated.

d. Remote CLUSRCVR channels that are not in the same cluster as the queue or topic are eliminated.
If a queue manager name is specified:
a. Queue manager aliases that are not put enabled are eliminated.

b. Remote CLUSRCVR channels that are not in the same cluster as the local queue manager are
eliminated.

When choosing a queue, if the resulting set of queues contains the local instance of the queue, the
local instance is typically used. The local instance of the queue is used if one of these three
conditions are true:

* Either the use-queue attribute of the queue, CLWLUSEQ is set to LOCAL,
* Or both the following statements are true:
a. The use-queue attribute of the queue, CLWLUSEQ is set to QMGR.
b. The use-queue attribute of the queue manager, CLWLUSEQ is set to LOCAL.
* Or the message is received over a cluster channel rather than by being put by a local application.

All channels to queue managers or queue manager aliases that have a CLWLRANK less than the
maximum rank of all remaining channels or queue manager aliases are eliminated.

All queues (not queue manager aliases) with a CLWLRANK less than the maximum rank of all
remaining queues are eliminated.

If only remote instances of a queue or topic remain, resumed queue managers are chosen in
preference to suspended ones.

If more than one remote instance of a queue or topic remains, all channels that are inactive or
running are included. The state constants are listed:

* MQCHS_INACTIVE

* MQCHS_RUNNING

If no remote instance of a queue or topic remains, all channels that are in binding, initializing,
starting, or stopping state are included. The state constants are listed:

MQCHS_BINDING

* MQCHS_INITIALIZING

MQCHS_STARTING

MQCHS_STOPPING

If no remote instance of a queue or topic remains, all channels that are being tried again are
included. The state constant is listed:
* MQCHS_RETRYING

If no remote instance of a queue or topic remains, all channels in requesting, paused, or stopped
state are included. The state constants are listed:

* MQCHS_REQUESTING

* MQCHS_PAUSED

* MQCHS_STOPPED

If more than one remote instance of a queue or topic on any queue manager remains, channels with
the highest NETPRTY value for each queue manager are chosen.

If a queue manager is being chosen:

* All remaining channels and queue manager aliases other than channels and aliases with the
highest priority, CLWLPRTY, are eliminated. If any queue manager aliases remain, channels to the
queue manager are kept.

If a queue is being chosen:

+ All queues other than queues with the highest priority, CLWLPRTY, are eliminated, and channels are
kept.

IBM MQ: Reference

14. The remaining channels are then reduced to no more than the maximum allowed number of most
recently-used channels, CLWLMRUC, by eliminating the channels with the lowest values of
MQWDR.DestSegNumber.

Note: Internal cluster control messages are sent using the same cluster workload algorithm where
appropriate.

After the list of valid destinations has been calculated, messages are workload balanced across them,

using the following logic:

* When more than one remote instance of a destination remains and all channels to those destination
have CLWLWGHT set to the default setting of 50, then the least recently used channel is chosen. This
approximately equates to a round-robin style of workload balancing when multiple remote instances
exist.

* When more than one remote instance of a destination remains and one or more of the channels to
those queues has CLWLWGHT set to a non-default setting (even if they all have a matching non-default
value), then routing becomes dependent on the relative weightings of each channel and the total
number of times each channel has previously been chosen when sending messages.

* When observing the distribution of messages for a single clustered queue with multiple instances, this
can appear to lead to an unbalanced distribution across a subset of queue instances. This is because it
is the historic use of each cluster sender channel from this queue manager that is being balanced, not
just the message traffic for that queue. If this behavior is not desirable, do one of the following steps.

— Either set CLWLWGHT to 50 on all cluster receiver channels if even distribution is required,

— O, if certain queue instances need to be weighted differently from others, define those queues in a
dedicated cluster, with defined dedicated cluster receiver channels. This action isolates the workload
balancing of these queues from others in the cluster.

* The historic data that is used to balance the channels is reset if any cluster workload attributes of
available cluster receiver channels are altered or the status of a cluster receiver channel becomes
available. Modification to the workload attributes of manually defined cluster sender channels does not
reset the historic data.

* When you are considering cluster workload exit logic, the chosen channel is the one with the lowest
MQWDR.DestSeqFactor. Each time a channel is chosen, this value is increased by approximately
1000/CLWLWGHT. If there is more than one channel with the lowest value, one of the channels with the
lowest MOQWDR.DestSeqNumber value is chosen.

The distribution of user messages is not always exact because administration and maintenance of the
cluster causes messages to flow across channels. The result is an uneven distribution of user messages
that can take some time to stabilize. Because of the admixture of administration and user messages, place
no reliance on the exact distribution of messages during workload balancing.

Reference 151

Asynchronous behavior of CLUSTER commands on z/OS
The command issuer of a cluster command on z/OS receives confirmation a command has been sent, but
not that it has completed successfully.

For both REFRESH CLUSTER and RESET CLUSTER, message CSQM130I is sent to the command issuer
indicating that a request has been sent. This message is followed by message CSQ9022I to indicate that
the command has completed successfully, in that a request has been sent. It does not indicate that the
cluster request has been completed successfully.

Any errors are reported to the z/OS console on the system where the channel initiator is running, they
are not sent to the command issuer.

The asynchronous behavior is in contrast to CHANNEL commands. A message indicating that a channel
command has been accepted is issued immediately. At some later time, when the command has been
completed, a message indicating either normal or abnormal completion is sent to the command issuer.

Related information:

[Checking that async commands for distributed networks have finished|

Channel programs

This section looks at the different types of channel programs (MCAs) available for use at the channels.

The names of the MCAs are shown in the following tables.

Table 33. Channel programs for Windows, UNIX and Linux systems

Program name Direction of connection Communication
amqrmppa Any

runmglsr Inbound Any

amqcrs6a Inbound LU 6.2

amgqcrsta Inbound TCP

runmgqchl Outbound Any

runmgqchi Outbound Any

runmglsr (Run IBM MQ listener), runmgqchl (Run IBM MQ channel), and runmgqchi (Run IBM MQ
channel initiator) are control commands that you can enter at the command line.

amqcrsta is invoked for TCP channels on UNIX and Linux systems using inetd, where no listener is
started.

amgqcrsba is invoked as a transaction program when using LU6.2

152 IBM MQ: Reference

Environment Variables

A list of all the server and client Environment Variables. Example of use, on UNIX and Linux systems
use: export [environment variable]=filename. On Windows Systems, use: Set [environment
variable]=filename. On IBM i systems use: ADDENVVAR ENVVAR(environment variable) VALUE(xx)

AMQ_MQS_INI_LOCATION
On UNIX and Linux systems, you can alter the location used for the mgs.ini file by setting the
location of the mgs.ini file in this variable. This variable must be set at the system level.

AMQ_REVERSE_COMMIT_ORDER
This variable configures a queue manager so that in an XA transaction the IBM MQ queue
manager change is committed after the corresponding database update is completed.

Do not set AMQ_REVERSE_COMMIT_ORDER without reading and understanding the scenario

that is described in the following topic:
vV 8.0.0.7

AMQ_SSL_ALLOW_DEFAULT_CERT
From IBM MQ Version 8.0.0, Fix Pack 7, when this variable is not set, an application can connect
to a queue manager with a personal certificate in the client keystore only when the certificate
includes the label name of ibmwebspheremg<userid>. By using the AMQ_SSL_ALLOW_DEFAULT_CERT
environment variable, the certificate does not require the label name of ibmwebspheremg<userid>.
That is, the certificate that is used to connect to a queue manager can be a default certificate,
provided that a default certificate is present in the queue repository, and the key repository does
not contain a personal certificate with the prefix ibmwebspheremg<userid>. For more information,
see the technote [Specifying the userid in the SSL certificate label for an MQ client}

A value of 1 enables the use of a default certificate.

From IBM MQ Version 8.0, instead of using the AMQ_SSL_ALLOW_DEFAULT_CERT
environment variable, an application can use the CertificateLabel setting of the SSL stanza in
the mqclient.ini file. For more information, see [Digital certificate labels, understanding the|
frequirements| and [SSL stanza of the client configuration file}

vV 8.0.0.8

AMQ_SSL_LDAP_SERVER_VERSION
From IBM MQ Version 8.0.0, Fix Pack 8, this variable can be used to ensure that either LDAP v2
or LDAP v3 is used by IBM MQ cryptographic components in cases where CRL servers require
that a specific version of the LDAP protocol be used.

Set the variable to appropriate value in the environment that is used to start the queue manager
or channel. To request that LDAP v2 is used, set AMQ_SSL_LDAP_SERVER_VERSION=2. To request that
LDAP v3 is used, set AMQ_SSL_LDAP_SERVER _VERSION=3.

This variable does not affect LDAP connections established by the IBM MQ queue manager for
user authentication or user authorization.

GMQ MQ LIB
When both the IBM MQ MQI client and IBM MQ server are installed on your system, MQAX
applications run against the server by default. To run MQAX against the client, the client
bindings library must be specified in the GMQ_MQ_LIB environment variable, for example, set
GMQ_MQ_LIB=mgic.d11. For a client only installation, it is not necessary to set the GMQ_MQ_LIB
environment variable. When this variable is not set, IBM MQ attempts to load amqzst.d11. If this
DLL is not present (as is the case in a client only installation), IBM MQ attempts to load
mgic.d11.

Reference 153

http://www.ibm.com/support/docview.wss?uid=swg21245474

HOME
This variable contains the name of the directory which is searched for the mqclient.ini file. This
file contains configuration information used by IBM MQ MQI clients on IBM i, UNIX and Linux
systems.

HOMEDRIVE and HOMEPATH
To be used both of these variables must be set. They are used to contain the name of the
directory which is searched for the mqclient.ini file. This file contains configuration information
used by IBM MQ MQI clients on Windows systems.

LDAP_BASEDN
The required environment variable for running an LDAP sample program. It specifies the base
Distinguished Name for the directory search.

LDAP_HOST
An optional variable for running an LDAP sample program. It specifies the name of the host
where the LDAP server is running; it defaults to the local host if it is not specified

LDAP_VERSION
An optional variable for running an LDAP sample program. It specifies the version of the LDAP
protocol to be used, and can be either 2 or 3. Most LDAP servers now support version 3 of the
protocol; they all support the older version 2. This sample works equally well with either version
of the protocol, and if it is not specified it defaults to version 2.

MOAPI_TRACE_LOGFILE
The sample API exit program generates an MQI trace to a user-specified file with a prefix defined
in the MQAPI_TRACE_LOGFILE environment variable.

MQCCSID
Specifies the coded character set number to be used and overrides the native CCSID of the
application.

MOQCERTLABL
Defines the certificate label.

MQCERTVPOL
Determines the type of certificate validation used:

ANY Use any certificate validation policy supported by the underlying secure sockets library.
This setting is the default setting.

RFC5280
Use only certificate validation which complies with the RFC 5280 standard.

MQCHLLIB
Specifies the directory path to the file containing the client channel definition table (CCDT). The
file is created on the server, but can be copied across to the IBM MQ MQI client workstation.

MQCHLTAB
MQCHLTAB specifies the name of the file containing the client channel definition table (ccdt).
The default file name is AMQCLCHL.TAB.

MQC_IPC_HOST
When sharing IBM MQ files and the generated value of myHostName creates a problem set
myHostName using the environment variable MQC_IPC_HOST

MQCLNTCF
Use this environment variable to modify the mqclient.ini file path.

MQ_CONNECT_TYPE
On IBM MQ for IBM i, Windows, UNIX and Linux systems, use this environment variable in
combination with the type of binding specified in the Options field of the MQCNO structure
used on an MQCONNYX call. See MQCONNX environment variable]

154 1BM MQ: Reference

¥ 8.0.0.7

MQ_CROSS_QUEUE_ORDER_ALL
When you set the MQ_CROSS_QUEUE_ORDER_ALL environment variable to a non-zero value,
the message put order is maintained in a unit of work. This means that, if messages in a Unit of
Work (UoW) are put onto multiple queues (for example, Q1, then Q2), when an MQCMIT is
issued, the messages are delivered and made available in the same queue order in which they
were PUT.

In a multi-queue manager environment, MQ_CROSS_QUEUE_ORDER_ALL must exist and have
a non-empty value on both the sending and receiving side before each queue manager is started.

MOQ_FILE_PATH
During the installation of the runtime package on the Windows platform, a new environment
variable called MQ_FILE_PATH is configured. This environment variable contains the same data
as the following key in the Windows Registry:

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\WebSphere MQ\Installation\<InstallationName>\FilePath

MOQIPADDRV
MOQIPADDRYV specifies which IP protocol to use for a channel connection. It has the possible
string values of "MQIPADDR_IPv4" or "MQIPADDR_IPv6". These values have the same meanings
as IPv4 and IPv6 in ALTER QMGR IPADDRV. If it is not set, "MQIPADDR_IPv4" is assumed.

MQ_JAVA_DATA_PATH
Specifies the directory for log and trace output.

MOQ_JAVA_INSTALL_PATH
Specifies the directory where IBM MQ classes for Java are installed, as shown in IBM MQ classes
for Java installation directories.

MQ_JAVA_LIB_PATH
Specifies the directory where the IBM MQ classes for Java libraries are stored. Some scripts
supplied with IBM MQ classes for Java, such as IVTRun, use this environment variable.

MQNAME
MQNAME specifies the local NetBIOS name that the IBM MQ processes can use.

MOQONOREMPOOL
When you set this variable, it switches off channel pooling and causes channels to run as threads
of the listener.

MQPSE_TRACE_LOGFILE
Use when you Publish the Exit Sample Program. In the application process to be traced, this
environment variable describes where the trace files must be written to. See [The Publish Exit|

lsample program|
MQSERVER
MQSERVER environment variable is used to define a minimal channel. You cannot use

MQSERVER to define an SSL channel or a channel with channel exits. MQSERVER specifies the
location of the IBM MQ server and the communication method to be used.

MQ_SET_NODELAYACK
When you set this variable, it switches off TCP delayed acknowledgment

When you set this variable on AIX, the setting switches off TCP delayed acknowledgment by
calling the operating system's setsockopt call with the TCP_NODELAYACK option. Only AIX
supports this function, so the MQ_SET_NODELAYACK environment variable only has an effect
on AIX.

MQSNOAUT
MQSNOAUT disables the object authority manager (OAM) and prevents any security checking.
The MQSNOAUT variable only takes effect when a queue manager is created.

Reference 155

MOQSPREFIX
As an alternative to changing the default prefix, you can use the environment variable
MQSPREFIX to override the DefaultPrefix for the crtmgm command.

MQSSLCRYP
MQSSLCRYP holds a parameter string that you can use to configure the cryptographic hardware
present on the system. The permitted values are the same as for the SSLCRYP parameter of the
ALTER QMGR command.

MOQSSLFIPS
MQSSLFIPS specifies whether only FIPS-certified algorithms are to be used if cryptography is
carried out in IBM MQ. The values are the same as for the SSLFIPS parameter of the ALTER
OMGR command.

MQSSLKEYR
MQSSLKEYR specifies the location of the key repository that holds the digital certificate
belonging to the user, in stem format. Stem format means that it includes the full path and the
file name without an extension. For full details, see the SSLKEYR parameter of the ALTER QMGR
command.

MQSSLPROXY
MQSSLPROXY specifies the host name and port number of the HTTP proxy server to be used by
GSKit for OCSP checks.

MQSSLRESET
MQSSLRESET represents the number of unencrypted bytes sent and received on an SSL channel
before the SSL secret key is renegotiated.

MQS_TRACE_OPTIONS
Use the environment variable MQS_TRACE_OPTIONS to activate the high detail and parameter
tracing functions individually.

MQTCPTIMEOUT
This variable specifies how long IBM MQ waits for a TCP connect call.

MOQSUITEB
This variable specifies whether Suite B compliant cryptography is to be used. In the instance that
Suite B cryptography is used you can specify the strength of the cryptography by setting
MOQSUITEB to one of the following;:

* NONE

128_BIT, 192_BIT
e 128_BIT

* 192_BIT

ODQ_MSG
If you use a dead-letter queue handler that is different from RUNMQDLQ the source of the
sample is available for you to use as your base. The sample is like the dead-letter handler
provided within the product but trace and error reporting are different. Use the ODQ_MSG
environment variable to set the name of the file containing error and information messages. The
file provided is called amqgsdlg.msg.

ODQ_TRACE
If you use a dead-letter queue handler that is different from RUNMQDLQ the source of the
sample is available for you to use as your base. The sample is like the dead-letter handler
provided within the product but trace and error reporting are different. Set the ODQ_TRACE
environment variable to YES or yes to switch on tracing

OMQ_PATH
This environment variable is where you can find the First Failure Symptom report if your IBM
MQ automation classes for ActiveX script fails.

156 IBM MQ: Reference

OMOQ_TRACE
MQAX includes a trace facility to help the service organization identify what is happening when
you have a problem. It shows the paths taken when you run your MQAX script. Unless you have
a problem, run with tracing set off to avoid any unnecessary use of system resources.
OMOQ_TRACE is one of the three environment variables set to control trace. Specifying any value
for OMQ_TRACE switches the trace facility on. Even if you set OMQ_TRACE to OFF, trace is still

active. See [Using trace

OMOQ_TRACE_PATH
One of the three environment variables set to control trace. See

OMOQ_TRACE_LEVEL
One of the three environment variables set to control trace. See

ONCONFIG
The name of the Informix® server configuration file. For example, on UNIX and Linux systems,
use:

export ONCONFIG=onconfig.hostname_1

On Windows systems, use:
set ONCONFIG=onconfig.hostname_1

WCF_TRACE_ON
Two different trace methods are available for the WCF custom channel, the two trace methods are
activated independently or together. Each method produces its own trace file, so when both trace
methods have been activated, two trace output files are generated. There are four combinations
for enabling and disabling the two different trace methods. As well as these combinations to
enable WCF trace, the XMS .NET trace can also be enabled using the WCF_TRACE_ON
environment variable. See [WCF trace configuration and trace file names|

WMQSOAP_HOME
Use when making additional configuration steps after the NET SOAP over JMS service hosting
environment is correctly installed and configured in IBM MQ. It is accessible from a local queue
manager. See WCF client to a .NET service hosted by IBM MQ sample| and [WCF client to an Axis]
Java service hosted by IBM MQ sample|

Also use when you install IBM MQ web transport for SOAP. See [Installing IBM MQ Web|
[transport for SOAP|

Intercommunication jobs

The following jobs are associated with Intercommunication on IBM i. The names are contained in the
following table.

Table 34. Job names

Job name Description

AMQCLMAA Non-threaded Listener
AMQCRSTA Non-threaded Responder Job
AMQRMPPA Channel Pool Job
RUNMQCHI Channel Initiator
RUNMQCHL Channel Job

RUNMQLSR Threaded Listener

Reference 157

Channel states on IBM i
Channel states are displayed on the Work with Channels panel

Table 35. Channel states on IBM i

State name Meaning

STARTING Channel is ready to begin negotiation with target MCA
BINDING Establishing a session and initial data exchange
REQUESTING Requester channel initiating a connection

RUNNING Transferring or ready to transfer

PAUSED Waiting for message-retry interval

STOPPING Establishing whether to retry or stop

RETRYING Waiting until next retry attempt

STOPPED Channel stopped because of an error or because an end-channel command is issued
INACTIVE Channel ended processing normally or channel never started
*None No state (for server-connection channels only)

Message channel planning example for distributed platforms

This section provides a detailed example of how to connect two queue managers together so that
messages can be sent between them.

The example illustrates the preparations required to enable an application using queue manager QM1 to
put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that channels are to be
triggered to start when the first message arrives on the transmission queue they are servicing. You must
start the channel initiator in order for triggering to work.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue is already defined by
IBM MQ. You can use a different initiation queue, but you must define it yourself and specify the name
of the queue when you start the channel initiator.

What the example shows
The example shows the IBM MQ commands (MQSC) that you can use.

In all the examples, the MQSC commands are shown as they would appear in a file of commands, and as
they would be typed at the command line. The two methods look identical, but, to issue a command at
the command line, you must first type runmgsc, for the default queue manager, or runmqsc gmname where
gmname is the name of the required queue manager. Then type any number of commands, as shown in the
examples.

An alternative method is to create a file containing these commands. Any errors in the commands are
then easy to correct. If you called your file mgsc.in then to run it on queue manager QMNAME use:

runmgsc QMNAME < mgsc.in > mgsc.out

You could verify the commands in your file before running it using:

runmgsc -v QMNAME < mgsc.in > mgsc.out

For portability, you should restrict the line length of your commands to 72 characters. Use a
concatenation character to continue over more than one line. On Windows use Ctrl-z to end the input at
the command line. On UNIX and Linux systems use Ctrl-d. Alternatively, use the end command.

158 IBM MQ: Reference

igure 7| shows the example scenario.

Application Queue manager'QM1' Queue manager'QM2' Application
Query
message | oo T ;
P Queue remote 'PAYROLL.QUERY",
,,,,,,,,,,,,,,,,,,,,,,,,, |
; Channel Query
| | message
Payroll ‘ Queue transmission'QM2' —% QM1.TO.QM2 }—-ﬁ Queuelocal 'PAYROLL' | P Payroll
query ¢ Reply processing
| | message
‘ 'SYSTEM.CHANNEL.INITQ' Queue transmission'QM1' ‘1
Reply Channel ¢
message | |
< ‘ Queuelocal'PAYROLL.REPLY' F——{ QM2.T0.QM1 F— 'SYSTEM.CHANNEL.INITQ'

Figure 7. The message channel example for Windows, UNIX and Linux systems

The example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM1. The payroll query messages are sent from
QM1 to QM2 on a sender-receiver channel called QM1.TO.QM2, and the reply messages are sent back
from QM2 to QM1 on another sender-receiver channel called QM2.TO.QM1. Both of these channels are
triggered to start as soon as they have a message to send to the other queue manager.

The payroll query application puts a query message to the remote queue “PAYROLL.QUERY” defined on
QM1. This remote queue definition resolves to the local queue “PAYROLL” on QM2. In addition, the
payroll query application specifies that the reply to the query is sent to the local queue
“PAYROLL.REPLY” on QM1. The payroll processing application gets messages from the local queue
“PAYROLL” on QM2, and sends the replies to wherever they are required; in this case, local queue
“PAYROLL.REPLY” on QM1.

In the example definitions for TCP/IP, QM1 has a host address of 192.0.2.0 and is listening on port 1411,
and QM2 has a host address of 192.0.2.1 and is listening on port 1412. The example assumes that these
are already defined on your system and available for use.

The object definitions that need to be created on QM1 are:

* Remote queue definition, PAYROLL.QUERY

* Transmission queue definition, QM2 (default=remote queue manager name)
* Sender channel definition, QM1.TO.QM?2

* Receiver channel definition, QM2.TO.QM1

* Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

* Local queue definition, PAYROLL

* Transmission queue definition, QM1 (default=remote queue manager name)
* Sender channel definition, QM2.TO.QM1

* Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in

Reference 159

Queue manager QM1 example:

These object definitions allow applications connected to queue manager QM1 to send request messages to
a queue called PAYROLL on QM2, and to receive replies on a queue called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE attributes. The other
attributes supplied are the minimum required to make the example work. The attributes that are not
supplied take the default values for queue manager QM1.

Run the following commands on queue manager QM1.

Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +
PUT (ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME (QM2)

Note: The remote queue definition is not a physical queue, but a means of directing messages to
the transmission queue, QM2, so that they can be sent to queue manager QM2.

Transmission queue definition

DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +
USAGE (XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM1.T0.QM2.PROCESS)

When the first message is put on this transmission queue, a trigger message is sent to the
initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the
initiation queue and starts the channel identified in the named process.

Sender channel definition

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('192.0.2.1(1412)")

Receiver channel definition
DEFINE CHANNEL(QM2.T0.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM2')

Reply-to queue definition

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QM2')

The reply-to queue is defined as PUT(ENABLED). This ensures that reply messages can be put to
the queue. If the replies cannot be put to the reply-to queue, they are sent to the dead-letter
queue on QM1 or, if this queue is not available, remain on transmission queue QM1 on queue
manager QM2. The queue has been defined as GET(ENABLED) to allow the reply messages to be
retrieved.

160 IBM MQ: Reference

Queue manager QM2 example:

The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL, and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1. The
message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to queue
and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM?2, the reply message can be sent. In
this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE attributes and are the
minimum required to make the example work. The attributes that are not supplied take the default
values for queue manager QM2.

Run the following commands on queue manager QM2.

Local queue definition

DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the
reply-to queue definition on queue manager QM1.

Transmission queue definition

DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +
USAGE (XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
INITQ(SYSTEM.CHANNEL.INITQ) PROCESS(QM2.TO.QM1.PROCESS)

When the first message is put on this transmission queue, a trigger message is sent to the
initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the
initiation queue and starts the channel identified in the named process.

Sender channel definition

DEFINE CHANNEL(QM2.T0.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME ('192.0.2.0(1411) ")

Receiver channel definition

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM1')

Reference 161

Running the example

Information about starting the channel initiator and listener and suggestions for expanding on this
scenario.

Once these definitions have been created, you need to:
* Start the channel initiator on each queue manager.

* Start the listener for each queue manager.

For information about starting the channel initiator and listener, see [Setting up communication for]
Windows hnd [Setting up communication on UNIX and Linux systems]

Expanding this example

This simple example could be expanded with:
* The use of LU 6.2 communications for interconnection with CICS systems, and transaction processing.

* Adding more queue, process, and channel definitions to allow other applications to send messages
between the two queue managers.

* Adding user-exit programs on the channels to allow for link encryption, security checking, or
additional message processing.

* Using queue-manager aliases and reply-to queue aliases to understand more about how these can be
used in the organization of your queue manager network.

Message channel planning example for IBM MQ for IBM i

This section provides a detailed example of how to connect two IBM i queue managers together so that
messages can be sent between them.

The example illustrates the preparations needed to allow an application using queue manager QM1 to
put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of TCP/IP connections. The example assumes that channels are to be
triggered to start when the first message arrives on the transmission queue they are servicing.

This example uses SYSTEM.CHANNEL.INITQ as the initiation queue. This queue is already defined by
IBM MQ. You can use a different initiation queue, but you have to define it yourself, start a new instance
of the channel initiator using the STRMQMCHLI command, and provide it with the name of your
initiation queue. For more information about triggering channels, see [Triggering channels]

162 IBM MQ: Reference

What the example shows

This example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM1.

Application Queue manager'QM1' Queue manager'QM2' Application
Query
message | [T oo T ;
» Queue remote 'PAYROLL.QUERY"|
,,,,,,,,,,,,,,,,,,,,,,,,, |
£ Channel Query
| | message
Payroll ‘ Queuetransmission'QM2' —% QM1.TO.QM2 }—ﬁ Queuelocal 'PAYROLL' | P Payroll
rocessin
query ¢ Reply p ing
| | message
‘ 'SYSTEM.CHANNEL.INITQ' Queue transmission'QM1’ ‘:
Reply Channel ¢
message | |
< ‘ Queuelocal'PAYROLL.REPLY" F——{ QM2.TO.QM1 F— 'SYSTEM.CHANNEL.INITQ'

Figure 8. The message channel example for IBM MQ for IBM i

The payroll query messages are sent from QM1 to QM2 on a sender-receiver channel called
OM1.TO.QM2, and the reply messages are sent back from QM2 to QM1 on another sender-receiver
channel called QM2.TO.QML1. Both of these channels are triggered to start as soon as they have a message
to send to the other queue manager.

The payroll query application puts a query message to the remote queue “PAYROLL.QUERY” defined on
QM1. This remote queue definition resolves to the local queue “PAYROLL” on QM2. In addition, the
payroll query application specifies that the reply to the query is sent to the local queue
“PAYROLL.REPLY” on QM1. The payroll processing application gets messages from the local queue
“PAYROLL” on QM2, and sends the replies to wherever they are required; in this case, local queue
“PAYROLL.REPLY” on QM1.

Both queue managers are assumed to be running on IBM i. In the example definitions, QM1 has a host
address of 192.0.2.0 and is listening on port 1411. QM2 has a host address of 192.0.2.1 and is listening on
port 1412. The example assumes that these queue managers are already defined on your IBM i system,
and are available for use.

The object definitions that need to be created on QM1 are:

* Remote queue definition, PAYROLL.QUERY

* Transmission queue definition, QM2 (default=remote queue manager name)
* Sender channel definition, QM1.TO.QM?2

* Receiver channel definition, QM2.TO.QM1

* Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

* Local queue definition, PAYROLL

* Transmission queue definition, QM1 (default=remote queue manager name)
* Sender channel definition, QM2.TO.QM1

* Receiver channel definition, QM1.TO.QM2

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in

Reference 163

Queue manager QM1 example:

The following object definitions allow applications connected to queue manager QM1 to send request
messages to a queue called PAYROLL on QM2, and to receive replies on a queue called PAYROLL.REPLY
on QM1.

All the object definitions have been provided with the TEXT attributes. The other attributes supplied are
the minimum required to make the example work. The attributes that are not supplied take the default
values for queue manager QM1.

Run the following commands on queue manager QM1:

Remote queue definition
The CRTMQMQ command with the following attributes:

QNAME PAYROLL.QUERY"

QTYPE *RMT

TEXT 'Remote queue for QM2'

PUTENBL *YES

TMQNAME 'QM2' (default = remote queue manager name)
RMTQNAME PAYROLL'

RMTMQMNAME '‘QM2'

Note: The remote queue definition is not a physical queue, but a means of directing messages to
the transmission queue, QM2, so that they can be sent to queue manager QM2.

Transmission queue definition
The CRTMQMQ command with the following attributes:

QNAME QM2

QTYPE *LCL

TEXT "Transmission queue to QM2'
USAGE *TMQ

PUTENBL *YES

GETENBL *YES

TRGENBL *YES

TRGTYPE *FIRST

INITQNAME SYSTEM.CHANNEL.INITQ
TRIGDATA QM1.TO.QM2

When the first message is put on this transmission queue, a trigger message is sent to the
initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the
initiation queue and starts the channel identified in the named process.

Sender channel definition
The CRTMQMCHL command with the following attributes:

164 1BM MQ: Reference

CHLNAME QM1.TO.QM2

CHLTYPE *SDR

TRPTYPE *TCP

TEXT 'Sender channel to QM?2'
TMQNAME QM2

CONNAME '192.0.2.1(1412)'

Receiver channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QOM2.TO.QM1

CHLTYPE *RCVR

TRPTYPE *TCP

TEXT 'Receiver channel from QM?2'

Reply-to queue definition
The CRTMQMOQ command with the following attributes:

QONAME PAYROLL.REPLY

QTYPE *LCL

TEXT 'Reply queue for replies to query messages sent to QM2'
PUTENBL *YES

GETENBL *YES

The reply-to queue is defined as PUT(ENABLED). This definition ensures that reply messages can
be put to the queue. If the replies cannot be put to the reply-to queue, they are sent to the
dead-letter queue on QM1 or, if this queue is not available, remain on transmission queue QM1
on queue manager QM2. The queue has been defined as GET(ENABLED) to allow the reply
messages to be retrieved.

Queue manager QM2 example:

The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL, and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1. The
message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to queue
and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM?2, the reply message can be sent. In
this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

All the object definitions have been provided with the TEXT attribute and are the minimum required to
make the example work. The attributes that are not supplied take the default values for queue manager
QM2.

Run the following commands on queue manager QM2:

Local queue definition
The CRTMQMQ command with the following attributes:

Reference 165

QNAME PAYROLL

QTYPE *LCL
TEXT "Local queue for QM1 payroll details'
PUTENBL *YES
GETENBL *YES

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the
reply-to queue definition on queue manager QM1.

Transmission queue definition
The CRTMQMQ command with the following attributes:

QNAME QM1

QTYPE *LCL

TEXT "Transmission queue to QM1'
USAGE *TMQ

PUTENBL *YES

GETENBL *YES

TRGENBL *YES

TRGTYPE *FIRST

INITQNAME SYSTEM.CHANNEL.INITQ
TRIGDATA QM2.TO.QM1

When the first message is put on this transmission queue, a trigger message is sent to the
initiation queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the
initiation queue and starts the channel identified in the trigger data.

Sender channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME QM2.TO.QM1
CHLTYPE *SDR

TRPTYPE *TCP

TEXT 'Sender channel to QM1'
TMQNAME QoM1

CONNAME '192.0.2.0(1411)’

Receiver channel definition
The CRTMQMCHL command with the following attributes:

CHLNAME OM1.TO.QM2

CHLTYPE *RCVR

TRPTYPE *TCP

TEXT 'Receiver channel from QM1'

166 IBM MQ: Reference

Running the example
When you have created the required objects you must start the channel initiators and listeners for both
queue managers.

The applications can then send messages to each other. The channels are triggered to start by the first
message arriving on each transmission queue, so you do not need to issue the STRMQMCHL command.

For details about starting a channel initiator and a listener, see [Monitoring and controlling channels on|
-BM i

Expanding this example
The example can be expanded in a number of ways.

This example can be expanded by:

* Adding more queue and channel definitions to allow other applications to send messages between the
two queue managers.

* Adding user exit programs on the channels to allow for link encryption, security checking, or
additional message processing.

* Using queue manager aliases and reply-to queue aliases to understand more about how these objects
can be used in the organization of your queue manager network.

For a version of this example that uses MQSC commands, see [“Message channel planning example for|

Message channel planning example for z/OS

This section provides a detailed example of how to connect z/OS or MVS queue managers together so
that messages can be sent between them.

The example illustrates the preparations needed to allow an application using queue manager QM1 to
put messages on a queue at queue manager QM2. An application running on QM2 can retrieve these
messages, and send responses to a reply queue on QM1.

The example illustrates the use of both TCP/IP and LU 6.2 connections. The example assumes that
channels are to be triggered to start when the first message arrives on the transmission queue they are
servicing.

What the example shows

This example involves a payroll query application connected to queue manager QM1 that sends payroll
query messages to a payroll processing application running on queue manager QM2. The payroll query
application needs the replies to its queries sent back to QM1.

Reference 167

Application Queue manager'QM1' Queue manager'QM2' Application
Query
message | [T T T T TTToo oo omm oo ;
» Queue remote 'PAYROLL.QUERY",
777777777777777777777777 |
£ Channel Query
| | message
Payroll ‘ Queue transmission'QM2' —% QM1.TO.QM2 }—*‘ Queuelocal 'PAYROLL' | P Payroll
uer rocessin
query * Reply p g
| | message
‘ 'SYSTEM.CHANNEL.INITQ' Queue transmission'QM1' ‘1
Reply Channel ¢
message | |
< ‘ Queuelocal'PAYROLL.REPLY' F——{ QM2.T0.QM1 F— 'SYSTEM.CHANNEL.INITQ'

Figure 9. The first example for IBM MQ for z/OS

The payroll query messages are sent from QM1 to QM2 on a sender-receiver channel called
OM1.TO.QM2, and the reply messages are sent back from QM2 to QM1 on another sender-receiver
channel called QM2.TO.QM1. Both of these channels are triggered to start as soon as they have a message
to send to the other queue manager.

The payroll query application puts a query message to the remote queue “PAYROLL.QUERY” defined on
QM1. This remote queue definition resolves to the local queue “PAYROLL” on QM2. In addition, the
payroll query application specifies that the reply to the query is sent to the local queue
“PAYROLL.REPLY” on QM1. The payroll processing application gets messages from the local queue
“PAYROLL” on QM2, and sends the replies to wherever they are required; in this case, local queue
“PAYROLL.REPLY” on QM1.

Both queue managers are assumed to be running on z/OS. In the example definitions for TCP/IP, QM1
has a host address of 192.0.2.0 and is listening on port 1411, and QM2 has a host address of 192.0.2.1 and
is listening on port 1412. In the definitions for LU 6.2, QM1 is listening on a symbolic luname called
LUNAME1 and QM2 is listening on a symbolic luname called LUNAME2. The example assumes that
these lunames are already defined on your z/OS system and available for use. To define them, see
[‘Example configuration - IBM MQ for z/0S” on page 37

The object definitions that need to be created on QM1 are:

* Remote queue definition, PAYROLL.QUERY

* Transmission queue definition, QM2 (default=remote queue manager name)
* Sender channel definition, QM1.TO.QM2

* Receiver channel definition, QM2.TO.QM1

* Reply-to queue definition, PAYROLL.REPLY

The object definitions that need to be created on QM2 are:

* Local queue definition, PAYROLL

* Transmission queue definition, QM1 (default=remote queue manager name)
* Sender channel definition, QM2.TO.QM1

* Receiver channel definition, QM1.TO.QM2

The example assumes that all the SYSTEM.COMMAND.* and SYSTEM.CHANNEL.* queues required to
run DQM have been defined as shown in the supplied sample definitions, CSQ4INSG and CSQ4INSX.

The connection details are supplied in the CONNAME attribute of the sender channel definitions.

You can see a diagram of the arrangement in

168 IBM MQ: Reference

Queue manager QM1 example:

The following object definitions allow applications connected to queue manager QM1 to send request
messages to a queue called PAYROLL on QM2. It also allows applications to receive replies on a queue
called PAYROLL.REPLY on QM1.

All the object definitions have been provided with the DESCR and REPLACE attributes. The other
attributes supplied are the minimum required to make the example work. The attributes that are not
supplied take the default values for queue manager QM1.

Run the following commands on queue manager QM1.

Remote queue definition

DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QM2') REPLACE +
PUT (ENABLED) XMITQ(QM2) RNAME(PAYROLL) RQMNAME (QM2)

Note: The remote queue definition is not a physical queue, but a means of directing messages to the
transmission queue, QM2, so that they can be sent to queue manager QM2.

Transmission queue definition

DEFINE QLOCAL(QM2) DESCR('Transmission queue to QM2') REPLACE +
USAGE (XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM1.T0.QM2) INITQ(SYSTEM.CHANNEL.INITQ)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the trigger data. The channel initiator can only get trigger messages from
the SYSTEM.CHANNEL.INITQ queue, so do not use any other queue as the initiation queue.

Sender channel definition

For a TCP/IP connection:

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME('192.0.2.1(1412)")

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM2') XMITQ(QM2) +
CONNAME (' LUNAME2')

Receiver channel definition

For a TCP/IP connection:

DEFINE CHANNEL(QM2.T0.QM1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM2')

For an LU 6.2 connection:

DEFINE CHANNEL(QM2.T0.QM1) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM2')

Reply-to queue definition

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QM2')

Reference 169

The reply-to queue is defined as PUT(ENABLED) which ensures that reply messages can be put to the
queue. If the replies cannot be put to the reply-to queue, they are sent to the dead-letter queue on QM1
or, if this queue is not available, remain on transmission queue QM1 on queue manager QM2. The queue
has been defined as GET(ENABLED) to allow the reply messages to be retrieved.

QueueManager QM2 example:

The following object definitions allow applications connected to queue manager QM2 to retrieve request
messages from a local queue called PAYROLL and to put replies to these request messages to a queue
called PAYROLL.REPLY on queue manager QM.

You do not need to provide a remote queue definition to enable the replies to be returned to QM1. The
message descriptor of the message retrieved from local queue PAYROLL contains both the reply-to queue
and the reply-to queue manager names. Therefore, as long as QM2 can resolve the reply-to queue
manager name to that of a transmission queue on queue manager QM2, the reply message can be sent. In
this example, the reply-to queue manager name is QM1 and so queue manager QM2 requires a
transmission queue of the same name.

All the object definitions have been provided with the DESCR and REPLACE attributes and are the
minimum required to make the example work. The attributes that are not supplied take the default
values for queue manager QM2.

Run the following commands on queue manager QM2.

Local queue definition

DEFINE QLOCAL(PAYROLL) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Local queue for QM1 payroll details')

This queue is defined as PUT(ENABLED) and GET(ENABLED) for the same reason as the reply-to queue
definition on queue manager QM1.

Transmission queue definition

DEFINE QLOCAL(QM1) DESCR('Transmission queue to QM1') REPLACE +
USAGE (XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM2.T0.QM1) INITQ(SYSTEM.CHANNEL.INITQ)

When the first message is put on this transmission queue, a trigger message is sent to the initiation
queue, SYSTEM.CHANNEL.INITQ. The channel initiator gets the message from the initiation queue and
starts the channel identified in the trigger data. The channel initiator can only get trigger messages from
SYSTEM.CHANNEL.INITQ so do not use any other queue as the initiation queue.

Sender channel definition
For a TCP/IP connection:
DEFINE CHANNEL(QM2.T0.QM1) CHLTYPE(SDR) TRPTYPE(TCP) +

REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME('192.0.2.0(1411)")

For an LU 6.2 connection:
DEFINE CHANNEL(QM2.T0.QM1) CHLTYPE(SDR) TRPTYPE(LU62) +

REPLACE DESCR('Sender channel to QM1') XMITQ(QM1) +
CONNAME (' LUNAMEL")

Receiver channel definition

For a TCP/IP connection:

170 IBM MQ: Reference

DEFINE CHANNEL(QM1.T0.QM2) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM1')

For an LU 6.2 connection:

DEFINE CHANNEL(QM1.TO.QM2) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM1')

Running the example
When you have created the required objects, you must start the channel initiators and listeners for both
queue managers.

The applications can then send messages to each other. Because the channels are triggered to start by the
arrival of the first message on each transmission queue, you do not need to issue the START CHANNEL
MQSC command.

For details about starting a channel initiator see [Starting a channel initiator] and for details about starting
a listener see [Starting a channel listener|

Expanding the example
The example can be expanded in a number of ways.

The example can be expanded by:

* Adding more queue, and channel definitions to allow other applications to send messages between the
two queue managers.

* Adding user exit programs on the channels to allow for link encryption, security checking, or
additional message processing.

* Using queue manager aliases and reply-to queue aliases to understand more about how these aliases
can be used in the organization of your queue manager network.

Message channel planning example for z/OS using queue-sharing
groups

This example illustrates the preparations needed to allow an application using queue manager QM3 to
put a message on a queue in a queue-sharing group that has queue members QM4 and QMS5.

Ensure you are familiar with the example in [“Message channel planning example for z/OS” on page 167|
before trying this example.

What this example shows
This example shows the IBM MQ commands (MQSC) that you can use in IBM MQ for z/OS for
distributed queuing with queue-sharing groups.

This example expands the payroll query scenario of the example in [“Message channel planning example|
for z/OS” on page 167|to show how to add higher availability of query processing by adding more
serving applications to serve a shared queue.

The payroll query application is now connected to queue manager QM3 and puts a query to the remote
queue 'PAYROLL QUERY' defined on QM3. This remote queue definition resolves to the shared queue
PAYROLL' hosted by the queue managers in the queue-sharing group QSG1. The payroll processing
application now has two instances running, one connected to QM4 and one connected to QMS.

Reference 171

Application Queue manager'QM3’

Query Channel

message | T — — — — — —/ —/ ™
;Igueue remote 'PAYROLL.QUERY" QM3.TO.QSG1

Payroll | Queue transmission'QSG1’
query l
| 'SYSTEM.CHANNEL.INITQ'
Reply Channel
message [T
< | Queue local'PAYROLL.REPLY' |<——| QSG1.TO.QM3
Sysplex Distributor
.
1 Queue sharinggroup named 'QSG1’ Application
L Get
g_ ; : ; PR I _rtiqge;st_ o Payroll
o 1 o—>| QM3.TO.QSG1 Queue manager ‘QM4 : f processing
[o Trig 1 |
3 B { SYSTEM.CHANNEL.INITQ | ! Query |
— ‘—| QSG1.TO.QM3 |<— message
$: ’:\—b Query
g | 1
| |
1
Coupling Facility :
I | Reply
| 1 o '
< Queue local ‘PAYROLL |——o1— 1
[(] Reply 1
0o message !
CLapgeliocetng 8 4 | Queue transmission ‘QM3’ |<——’\— : Application
1
_ Payroll
processing
A 4
QM3.TO.QSG1 Queue manager ‘QM5’ Query
message
dh J > Query
| < { SYSTEM.CHANNEL.INITQ
- QSG1.T0.QM3|<— Trig Reply
chan message
< Reply

Figure 10. Message channel planning example for IBM MQ for z/OS using queue-sharing groups

All three queue managers are assumed to be running on z/OS. In the example definitions for TCP/IP,
QM4 has a VIPA address of MVSIPO1 and QM5 has a VIPA address of MVSIP02. Both queue managers
are listening on port 1414. The generic address that Sysplex Distributor provides for this group is
QSG1.MVSIP. QM3 has a host address of 192.0.2.0 and is listening on port 1411.

In the example definitions for LU6.2, QM3 is listening on a symbolic luname called LUNAME]1. The
name of the generic resource defined for VTAM for the lunames listened on by QM4 and QM5 is
LUQSG1. The example assumes that they are already defined on your z/OS system and are available for
use. To define them see [“Defining yourself to the network using generic resources” on page 45.

In this example QSG1 is the name of a queue-sharing group, and queue managers QM4 and QMS5 are the
names of members of the group.

172 1BM MQ: Reference

Queue-sharing group definitions
Producing the following object definitions for one member of the queue-sharing group makes them
available to all the other members.

Queue managers QM4 and QM5 are members of the queue sharing group. The definitions produced for

QM4 are also available for QM5.

It is assumed that the coupling facility list structure is called 'APPLICATIONT'". If it is not called
'APPLICATIONT', you must use your own coupling facility list structure name for the example.

Shared objects

The shared object definitions are stored in DB2® and their associated messages are stored within the
coupling facility.
DEFINE QLOCAL(PAYROLL) QSGDISP(SHARED) REPLACE PUT(ENABLED) GET(ENABLED) +

CFSTRUCT (APPLICATIONI) +
DESCR('Shared queue for payroll details')

DEFINE QLOCAL(QM3) QSGDISP(SHARED) REPLACE USAGE(XMITQ) PUT(ENABLED) +
CFSTRUCT (APPLICATION1) +

DESCR('Transmission queue to QM3') TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QSG1.T0.QM3) GET(ENABLED) INITQ(SYSTEM.CHANNEL.INITQ)

Group objects

The group object definitions are stored in Db2, and each queue manager in the queue-sharing group
creates a local copy of the defined object.

Sender channel definition for a TCP/IP connection:

DEFINE CHANNEL(QSG1.T0.QM3) CHLTYPE(SDR) QSGDISP(GROUP) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QM3') XMITQ(QM3) +
CONNAME('192.0.2.0(1411) ")

Sender channel definition for an LU 6.2 connection:

DEFINE CHANNEL(QSG1.T0.QM3) CHLTYPE(SDR) QSGDISP(GROUP) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QM3') XMITQ(QM3) +
CONNAME (' LUNAME1"')

Receiver channel definition for a TCP/IP connection:

DEFINE CHANNEL(QM3.T0.QSG1) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QM3') QSGDISP(GROUP)

Receiver channel definition for an LU 6.2 connection:

DEFINE CHANNEL(QM3.T0.QSG1) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QM3') QSGDISP(GROUP)

Reference

173

Related reference:

['Disposition (QSGDISP)” on page 112
This attribute specifies the disposition of the channel in a queue-sharing group. It is valid on z/OS only.

Queue manager QM3 example
QM3 is not a member of the queue-sharing group. The following object definitions allow it to put
messages to a queue in the queue-sharing group.

The CONNAME for this channel is the generic address of the queue-sharing group, which varies
according to transport type.

For a TCP/IP connection:

DEFINE CHANNEL(QM3.T0.QSG1) CHLTYPE(SDR) TRPTYPE(TCP) +
REPLACE DESCR('Sender channel to QSG1') XMITQ(QSG1) +
CONNAME ('QSG1.MVSIP(1414)")

For an LU 6.2 connection:

DEFINE CHANNEL(QM3.T0.QSG1) CHLTYPE(SDR) TRPTYPE(LU62) +
REPLACE DESCR('Sender channel to QSG1') XMITQ(QSG1l) +
CONNAME ('LUQSG1') TPNAME('MQSERIES') MODENAME('#INTER')

Other definitions

These definitions are required for the same purposes as the definitions in the first example.
DEFINE QREMOTE(PAYROLL.QUERY) DESCR('Remote queue for QSG1') REPLACE +
PUT (ENABLED) XMITQ(QSG1) RNAME(APPL) RQMNAME (QSG1)

DEFINE QLOCAL(QSG1) DESCR('Transmission queue to QSG1') REPLACE +
USAGE (XMITQ) PUT(ENABLED) GET(ENABLED) TRIGGER TRIGTYPE(FIRST) +
TRIGDATA(QM3.T0.QSG1) INITQ(SYSTEM.CHANNEL.INITQ)

DEFINE CHANNEL(QSG1.T0.QM3) CHLTYPE(RCVR) TRPTYPE(TCP) +
REPLACE DESCR('Receiver channel from QSG1')

DEFINE CHANNEL(QSG1.T0.QM3) CHLTYPE(RCVR) TRPTYPE(LU62) +
REPLACE DESCR('Receiver channel from QSG1')

DEFINE QLOCAL(PAYROLL.REPLY) REPLACE PUT(ENABLED) GET(ENABLED) +
DESCR('Reply queue for replies to query messages sent to QSG1')

Running the example
When you have created the required objects you need to start the channel initiators for all three queue
managers. You also need to start the listeners for both queue managers in the queue-sharing group.

For a TCP/IP connection, each member of the group must have a group listener started that is listening
on port 1414.

STA LSTR PORT(1414) IPADDR(MVSIPO1) INDISP(GROUP)
The previous entry starts the listener on QM4, for example.

For an LU6.2 connection, each member of the group must have a group listener started that is listening
on a symbolic luname. This luname must correspond to the generic resource LUQSGL1.

¢ Start the listener on QM3
STA LSTR PORT(1411)

174 1BM MQ: Reference

Using an alias to refer to an MQ library

You can define an alias to refer to an MQ library in your JCL, rather than use the name of the MQ library
directly. Then, if the name of the MQ library changes, you have only to delete and redefine the alias.

Example

The following example defines an alias MOM.SCSQANLE to refer to the MQ library
MOM.V600.SCSQANLE:

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD =

DELETE (MQM.SCSQANLE)

DEFINE ALIAS (NAME(MQM.SCSQANLE) RELATE(MQM.V600.SCSQANLE))

/*

Then, to refer to the MQM.V600.SCSQANLE library in your JCL, use the alias MOQM.SCSQANLE.

Note: The library and alias names must be in the same catalog, so use the same high level qualifier for
both; in this example, the high level qualifier is MQM.

Administration reference

Use the links to reference information in this section to help you operate and administer IBM MQ.

* [“Syntax diagrams”|
+ [“IBM MQ Control commands” on page 178|

. m [“IBM MQ for IBM i CL commands” on page 337]
+ [“MQSC reference” on page 340|
* [“Programmable command formats reference” on page 1044|

. |“Using the IBM MQ utilities for z/OS” on page 1618|
* [“IBM MQ Administration Interface” on page 1697
Related information:

(Queue names|

Use this information to understand the restrictions of queue names and reserved queue names.

m [[BM MQ for IBM i system and default objects|
When you create a queue manager using the CRTMQM command, the system objects and the default

objects are created automatically.

Syntax diagrams

The syntax for a command and its options is presented in the form of a syntax diagram called a railroad
diagram.

Railroad diagrams are a visual format suitable for sighted users; see, ["How to read railroad diagrams” on|

page 1761t tells you what options you can supply with the command, how to enter them, indicates
relationships between different options, and sometimes different values of an option.

Reference 175

How to read railroad diagrams

Each railroad diagram begins with a double right arrow and ends with a right and left arrow pair. Lines
beginning with a single right arrow are continuation lines. You read a railroad diagram from left to right
and from top to bottom, following the direction of the arrows.

Other conventions used in railroad diagrams are:

Table 36. How to read railroad diagrams

Convention

Meaning

»—A—B—(C——— >«

You must specify values A, B, and C. Required values are shown on the main line of a
railroad diagram.

You may specify value A. Optional values are shown below the main line of a railroad
diagram.

Values A, B, and C are alternatives, one of which you must specify.

Values A, B, and C are alternatives, one of which you might specify.

v
A

You might specify one or more of the values A, B, and C. Any required separator for
multiple or repeated values (in this example, the comma (,)) is shown on the arrow.

You might specify value A multiple times. The separator in this example is optional.

Values A, B, and C are alternatives, one of which you might specify. If you specify none of
the values shown, the default A (the value shown above the main line) is used.

176 IBM MQ: Reference

Table 36. How to read railroad diagrams (continued)

Convention Meaning

The railroad fragment Name is shown separately from the main railroad diagram.

»—| Name |—><

Name:

—A] I

Reference 177

Table 36. How to read railroad diagrams (continued)

Convention Meaning

Punctuation and Specify exactly as shown.
uppercase values

IBM MQ Control commands

Find out how to use the IBM MQ control commands.

If you want to issue control commands, your user ID must be a member of the mgm group. For more
information, see [Authority to administer IBM MQ on UNIX, Linux, and Windows systems|

When using control commands that operate on a queue manager configured to use connection
authentication with CHCKLOCL(REQUIRED), and a failure to connect is observed, either

* Supply a user id and password if the control command allows this.
* Use MQSC equivalents of the control commands where those exist.

* Start the queue manager using the -ns option, while control commands that cannot connect need to be
run.

When using control commands that operate on a queue manager, you must use the command from the
installation associated with the queue manager you are working with.

In addition, note the following environment-specific information:

* On Windows, all control commands can be issued from a command line. Command names and their
flags are not case-sensitive: you can enter them in uppercase, lowercase, or a combination of uppercase
and lowercase. However, arguments to control commands (such as queue names) are case-sensitive.

In the syntax descriptions, the hyphen (-) is used as a flag indicator. You can use the forward slash (/)
instead of the hyphen.

* On UNIX and Linux systems, all IBM MQ control commands can be issued from a shell. All
commands are case-sensitive.

* A subset of the control commands can be issued using the IBM MQ Explorer.

For a list of the control commands see, [“The control commands” on page 180.|

For a comparison of the different administration command sets, see [“Comparing command sets” on page|
B313.

For information about commands for managing keys and certificates, see [‘Managing keys and|
kertificates” on page 319.|

178 IBM MQ: Reference

Related concepts:

['MQSC reference” on page 340|

Use MQSC commands to manage queue manager objects, including the queue manager itself, queues,
process definitions, channels, client connection channels, listeners, services, namelists, clusters, and
authentication information objects.

['Programmable command formats reference” on page 1044

Programmable Command Formats (PCFs) define command and reply messages that can be exchanged
between a program and any queue manager (that supports PCFs) in a network. PCFs simplify queue
manager administration and other network administration.

Related reference:

mr’IBM MQ for IBM i CL commands” on page 337
A list of IBM MQ for IBM i CL commands grouped according to command type:

Using control commands
The table in this topic shows the three categories of control commands: queue manager commands,
channel commands, and utility commands.

Control commands can be divided into three categories, as shown in

Table 37. Categories of control commands

Category Description

Queue manager commands | Queue manager control commands include commands for creating, starting, stopping,
and deleting queue managers and command servers

Channel commands Channel commands include commands for starting and ending channels and channel
initiators
Utility commands Utility commands include commands associated with:

* Running MQSC commands

» Conversion exits

* Authority management

* Recording and recovering media images of queue manager resources
* Displaying and resolving transactions

¢ Trigger monitors

* Displaying the file names of IBM MQ objects

For more information, see ["JBM MQ Control commands” on page 178|

Using control commands on Windows systems:
In IBM MQ for Windows, you enter control commands at a command prompt.

In Windows environments, control commands and their flags are not case-sensitive, but arguments to
those commands (such as queue names and queue-manager names) are case-sensitive.

For example, in the command:
crtmgm /u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

* The command name can be entered in uppercase or lowercase, or a mixture of the two. These are all
valid: crtmgm, CRTMQM, and CRTmgm.

* The flag can be entered as -u, -U, /u, or /U.
* SYSTEM.DEAD.LETTER.QUEUE and jupiter.queue.manager must be entered exactly as shown.

For more information, see [[BM MQ control commands}

Reference 179

Using control commands on UNIX and Linux systems:
In IBM MQ for UNIX and Linux systems, you enter control commands in a shell window.

In UNIX environments, control commands, including the command name itself, the flags, and any
arguments, are case-sensitive. For example, in the command:

crtmgm -u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

* The command name must be crtmgm, not CRTMQM.

* The flag must be -u, not -U.

* The dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE.

* The argument is specified as jupiter.queue.manager, which is different from JUPITER.queue.manager.

Take care to type the commands exactly as you see them in the examples.

For more information about the crtmgm command, see [“crtmgm” on page 194

For more information on control commands, see [“IBM MQ Control commands” on page 178§|

The control commands
This collection of topics provides reference information for each of the IBM MQ control commands.

For information about running these commands refer to [“IBM MQ Control commands” on page 178

addmgqinf:

Add IBM MQ configuration information (Windows and UNIX platforms only).

Purpose

Use the addmqinf command to add information to the IBM MQ configuration data.

For example, use dspmqinf and addmqinf to copy configuration data from the system where a queue
manager was created, to other systems where the same multi-instance queue manager is also to be

started.

Syntax

|—-S—QueueManager—

»»—addmqinf Y __v—Attribute=Value ><

l—- s—StanzaType—

Required parameters

-v Attribute = Value
The name and value of the stanza attributes to be placed in the stanza specified in the command.

[Table 38 on page 181|lists the QueueManager stanza attribute values. The queue manager stanza is
the only stanza that is currently supported.

180 IBM MQ: Reference

Table 38. QueueManager stanza attributes

Required or
Attribute Value optional

Name The name of the queue manager. Required

You must provide a different name from any other queue manager stanza on
the system.

Prefix The directory path under which this queue manager data directory is stored | Required
by default.

You can use Prefix to modify the location of the queue manager data
directories. The value of Directory is automatically appended to this path.

Directory The name of the queue manager data directory. Required

Sometimes the name must be provided (as in), because it is
different from the queue manager name. Copy the directory name from the
value returned by dspmqinf.

The rules for transforming queue manager names into directory names are
described in [Understanding IBM MQ file names}

DataPath The directory path where the queue manager data files are placed. The value | UNIX: Optional
of Directory is not automatically appended to this path - you must provide | Windows: Required
the transformed queue manager name as part of DataPath.

If the DataPath attribute is omitted on UNIX, the queue manager data
directory path is defined as Prefix / Directory .

Optional parameters

-s StanzaType
A stanza of the type StanzaType is added to the IBM MQ configuration.

The default value of StanzaType is QueueManager.
The only supported value of StanzaType is QueueManager.
Return codes

Return code Description

0 Successful operation

1 Queue manager location is invalid (either Prefix or DataPath)
39 Bad command-line parameters

45 Stanza already exists

46 Required configuration attribute is missing
58 Inconsistent use of installations detected
69 Storage is not available

71 Unexpected error

72 Queue manager name error

100 Log location is invalid

Example

addmginf -v DataPath=/MQHA/gmgrs/QM!NAME +
-v Prefix=/var/mgm +
-v Directory=QM!NAME +
-v Name=QM.NAME

Creates the following stanza in mgs.ini:

Reference 181

QueueManager:
Name=QM.NAME
Prefix=/var/mgm
Directory=QM!NAME
DataPath=/MQHA/qmgrs/QM!NAME

Usage notes

Use dspmgqinf with addmgqinf to create an instance of a multi-instance queue manager on a different
server.

To use this command you must be an IBM MQ administrator and a member of the mgm group.

Related commands

Command Description

"dspmginf” on page 226 Display IBM MQ configuration information
‘rmvmginf” on page 259 Remove IBM MQ configuration information
amqgmdain:

amgmdain is used to configure or control some Windows specific administrative tasks.

Purpose

The amgmdain command applies to IBM MQ for Windows only.

Use amgmdain to perform some Windows specific administrative tasks.

Starting a queue manager with amgmdain is equivalent to using the strmgm command with the option -ss.
amgmdain makes the queue manager run in a non-interactive session under a different user account.
However, to ensure that all queue manager startup feedback is returned to the command line, use the
strmgm -ss command rather than amgmdain.

You must use the amgmdain command from the installation associated with the queue manager that you
are working with. You can find out which installation a queue manager is associated with using the

dspmg -0 installation command.

To administer and define IBM MQ service and listener objects, use MQSC commands, PCF commands, or
the MQ Explorer.

The amgmdain command has been updated to modify either the .1ini files or the registry as appropriate.

Syntax

182 IBM MQ: Reference

»»>—amgmdain——qgmgr start—QMgrName

_ C_l
—qgmgr end—QMgrName
o
—-1 -r
—p

=X

—amgr alter—QMgriName

—-i—Initiation
—-x—Multi-instance—

—refresh
—auto—QMgrName
—manual—QMgrName

—status
i:OMngame—
all

—regsec

—spn—~QMg rName—Es et
unset

—reg RegParams

—QMgrName—

Keywords and parameters

All parameters are required unless the description states they are optional.

In every case, QMgrName is the name of the queue manager to which the command applies.

qmgr start QMgriName

Starts a queue manager.
This parameter can also be written in the form start QMgrName.

If you start your queue manager as a service and need the queue manager to continue to run after
logoff, use strmqm -ss gmgr instead of amgmdain start gmgr.

qmgr end QMgrName

Ends a queue manager.
This parameter can also be written in the form end QMgrName.

For consistency across platforms, use endmqm gmgr instead of amqmdain end gmgr.

For fuller descriptions of the options, see|‘endmgm” on page 244

Controlled (or quiesced) shutdown.

Wait shutdown.

Immediate shut down.

Pre-emptive shut down.

Reconnect clients.

Switch over to a standby queue manager instance.

End the standby instance of the queue manager without ending the active instance.

qmgr alter QMgriName

Alters a queue manager.

-i Initiation

Specifies the initiation type. Possible values are:

A\
A

Reference 183

Table 39. Initiation command parameters.

Value

Description

auto

Sets the queue manager to automatic startup (when the
machine starts, or more precisely when the IBM MQ
service starts). The syntax is:

amgmdain gmgr alter QmgrName -i auto

interactive

Sets the queue manager to manual startup that then runs
under the logged on (interactive) user. The syntax is:

amgmdain gmgr alter QmgrName -i interactive

service

Sets the queue manager to manual startup that then runs
as a service. The syntax is:

amgmdain gmgr alter QmgrName -i service

-X Multi-instance

Specifies if auto queue manager start by the IBM MQ service permits multiple instances. Equivalent
to the -sax option on the crtmgm command. Also specifies if the amgmdain start qmgr command

permits standby instances. Possible values are:

Table 40. Multi-instance command parameters.

Value

Description

set

Sets automatic queue manager startup to permit multiple
instances. Issues strmgm -x . The set option is ignored
for queue managers that are initiated interactively or as a
manual service startup. The syntax of the command is:

amgmdain gmgr alter QmgrName -x set

unset

Sets automatic queue manager startup to single instance.
Issues strmgm. The unset option is ignored for queue
managers that are initiated interactively or as a manual
service startup. The syntax of the command is:

amgmdain gmgr alter QmgrName -x unset

refresh

Refreshes or checks the status of a queue manager. You will not see anything returned on the screen

after executing this command.

auto QMgriName
Sets a queue manager to automatic startup.

manual QMgrName
Sets a queue manager to manual startup.

status QMgrhame | all
These parameters are optional.

Table 41. Status command parameters.

Header

Header

If no parameter is supplied:

Displays the status of the IBM MQ services.

If a QMgrName is supplied:

Displays the status of the named queue manager.

If the parameter all is supplied:

Displays the status of the IBM MQ services and all
queue managers.

184 1BM MQ: Reference

regsec
Ensures that the security permissions assigned to the Registry keys containing installation
information are correct.

spn QMgrName set | unset
You can set or unset the service principal name for a queue manager.

reg QMgrName | * RegParams
Parameters QMgrName, and * are optional.

Table 42. Reg command parameters.

Value Description

If RegParams is specified alone: Modifies queue manager configuration information
related to the default queue manager.

If QMgrName and RegParams are specified: Modifies queue manager configuration information

related to the queue manager specified by QMgrName.

If * and RegParams are specified: Modifies IBM MQ configuration information.

The parameter, RegParams, specifies the stanzas to change, and the changes that are to be made.
RegParams takes one of the following forms:

* -c add -s stanza -v attribute= value
* -c remove -s stanza -v [attribute|*]
« -c display -s stanza -v [attribute]|x]

If you are specifying queue manager configuration information, the valid values for stanza are:

XAResourceManager\name
ApiExitLocal\name
Channels

ExitPath
InstanceData

Log
QueueManagerStartup
TCP

LU62

SPX

NetBios

Connection
QMErrorLog

Broker

ExitPropertieslLocal
SSL

If you are modifying IBM MQ configuration information, the valid values for stanza are:

ApiExitCommon\name
ApiExitTemplate\name
ACPI
Al11QueueManagers
Channels
DefaultQueueManager
LogDefaults
ExitProperties

The following are usage considerations:

+ amgmdain does not validate the values you specify for name, attribute, or value.
* When you specify add, and an attribute exists, it is modified.

» If a stanza does not exist, amgmdain creates it.

* When you specify remove, you can use the value * to remove all attributes.

Reference

185

* When you specify display, you can use the value * to display all attributes which have been
defined. This value only displays the attributes which have been defined and not the complete list
of valid attributes.

* If you use remove to delete the only attribute in a stanza, the stanza itself is deleted.
* Any modification you make to the Registry re-secures all IBM MQ Registry entries.

Examples

The following example adds an XAResourceManager to queue manager TEST. The commands issued are:

amgmdain reg TEST -c add -s XAResourceManager\Sample -v SwitchFile=sfl
amgmdain reg TEST -c add -s XAResourceManager\Sample -v Thread0fControl=THREAD
amgmdain reg TEST -c add -s XAResourceManager\Sample -v XAOpenString=openit
amgmdain reg TEST -c add -s XAResourceManager\Sample -v XACloseString=closeit

To display the values set by the commands, use:

amgmdain reg TEST -c display -s XAResourceManager\Sample -v *

The display would look something like the following;:

0784726, 5639-B43 (C) Copyright IBM Corp. 1994, 2002. ALL RIGHTS RESERVED.
Displaying registry value for Queue Manager 'TEST'

Attribute = Name, Value = Sample

Attribute = SwitchFile, Value = sfl

Attribute = ThreadOfControl, Value = THREAD

Attribute = XAOpenString, Value = openit

Attribute = XACloseString, Value = closeit

To remove the XAResourceManager from queue manager TEST, use:
amgmdain reg TEST -c remove -s XAResourceManager\Sample -v *

Return codes

Return code Description

0 Command completed normally

-2 Syntax error

-3 Failed to initialize MFC

-6 Feature no longer supported

-7 Configuration failed

-9 Unexpected Registry error

-16 Failed to configure service principal name
-29 Inconsistent use of installations detected
62 The queue manager is associated with a different installation
71 Unexpected error

119 Permission denied (Windows only)
Note:

1. If the gmgr start QMgrName command is issued, all return codes that can be returned with strmqm,
can be returned here also. For a list of these return codes, see [“strmgm” on page 303

2. If the gmgr end QMgrName command is issued, all return codes that can be returned with endmqm,
can be returned here also. For a list of these return codes, see [“endmgm” on page 244

amgmfsck (file system check):

amgmfsck checks whether a shared file system on UNIX and IBM i systems meets the requirements for
storing the queue manager data of a multi-instance queue manager.

186 IBM MQ: Reference

Purpose
The amgmfsck command applies only to UNIX and IBM i systems. You do not need to check the network
drive on Windows. amgmfsck tests that a file system correctly handles concurrent writes to a file and the

waiting for and releasing of locks.

Syntax

»»—amgmfsck |_ _| DirectoryName ><
-v

L [262144ﬂ
-p PageCount

Required parameters

DirectoryName
The name of the directory to check.

Optional parameters

-a Perform the second phase of the data integrity test.
Run this on two machines at the same time. You must have formatted the test file using the -f
option previously

-c Test writing to a file in the directory concurrently.

-f Perform the first phase of the data integrity test.
Formats a file in the directory in preparation for data integrity testing.

-i Perform the third phase of the data integrity test.
Checks the integrity of the file after the failure to discover whether the test worked.

-p Specifies the size of the test file used in the data integrity test in pages. .

The size is rounded up to the nearest multiple of 16 pages. The file is formatted with PageCount
pages of 4 KB.

The optimum size of the file depends on the speed of the filesystem and the nature of the test you
perform. If this parameter is omitted, the test file is 262144 pages, or 1 GB.

The size is automatically reduced so that the formatting completes in about 60 seconds even on a
very slow filesystem.

-v Verbose output.
-w Test waiting for and releasing locks.

-x Deletes any files created by amqmfsck during the testing of the directory.

Do not use this option until you have completed the testing, or if you need to change the number
of pages used in the integrity test.

Usage

You must be an IBM MQ Administrator to run the command. You must have read /write access to the
directory being checked.

Reference 187

m On IBM i, use QSH to run the program. There is no CL command.

The command returns an exit code of zero if the tests complete successfully.

The task, [Verifying shared file system behavior] describes how to use amqmfsck to check the whether of a
file system is suitable for multi-instance queue managers.

Interpreting your results

If the check fails, the file system is not capable of being used by IBM MQ queue managers. If the tests
fail, choose verbose mode to help you to interpret the errors. The output from the verbose option helps
you understand why the command failed, and if the problem can be solved by reconfiguring the file
system.

Sometimes the failure might be an access control problem that can be fixed by changing directory
ownership or permissions. Sometimes the failure can be fixed by reconfiguring the file system to behave
in a different way. For example, some file systems have performance options that might need to be
changed. It is also possible that the file system protocol does not support concurrency sufficiently
robustly, and you must use a different file system. For example, you must use NFSv4 rather than NFSv3.

If the check succeeds, the command reports The tests on the directory completed successfully. If
your environment is not listed as supported in the [Testing and support statement for IBM MQ)|
multi-instance queue managers) this result does not necessarily mean that you can run IBM MQ
multi-instance queue managers successfully.

You must plan and run a variety of tests to satisfy yourself that you have covered all foreseeable
circumstances. Some failures are intermittent, and there is a better chance of discovering them if you run
the tests more than once.

Related information:

[Verifying shared file system behavior

crtmqcevx:
Create data conversion code from data type structures.
Purpose

Use the crtmqcvx command to create a fragment of code that performs data conversion on data type
structures. The command generates a C function that can be used in an exit to convert C structures.

The command reads an input file containing structures to be converted, and writes an output file
containing code fragments to convert those structures.

For information about using this command, see [Utility for creating conversion-exit code}

Syntax

188 IBM MQ: Reference

http://www.ibm.com/support/docview.wss?uid=swg21433474
http://www.ibm.com/support/docview.wss?uid=swg21433474

A\
A

»»—crtmqcvx—SourceFile—TargetFile

Required parameters

SourceFile
The input file containing the C structures to convert.

TargetFile
The output file containing the code fragments generated to convert the structures.

Return codes

Return code Description

0 Command completed normally

10 Command completed with unexpected results
20 An error occurred during processing
Examples

The following example shows the results of using the data conversion command against a source C
structure. The command issued is:

crtmgcvx source.tmp target.c

The input file, source.tmp, looks like this:

/* This is a test C structure which can be converted by the */
/* crtmgcvx utility */

struct my_structure
{
int code;
MQLONG value;
bs

The output file, target.c, produced by the command, looks like this:

Reference 189

MQLONG Convertmy_structure(
PMQDXP pExitParms,
PMQBYTE =*in_cursor,
PMQBYTE =*out_cursor,
PMQBYTE in_lastbyte,
PMQBYTE out_lastbyte,
MQHCONN hConn,
MQLONG opts,

MQLONG MsgEncoding,
MQLONG RegEncoding,
MQLONG MsgCCSID,
MQLONG ReqCCSID,
MQLONG CompCode,
MQLONG Reason)

MQLONG ReturnCode = MQRC_NONE;
ConvertlLong(1); /* code =/

AlignLong();
Convertlong(1); /* value */

Fail:
return(ReturnCode) ;
1

You can use these code fragments in your applications to convert data structures. However, if you do so,
the fragment uses macros supplied in the header file amgsvmha.h.

crtmqgenv:
Create a list of environment variables for an installation of IBM MQ, on UNIX, Linux, and Windows.
Purpose

You can use the crtmgenv command to create a list of environment variables with the appropriate values
for an installation of IBM MQ. The list of environment variables is displayed on the command line, and

any variables that exist on the system have the IBM MQ values added to them. This command does not
set the environment variables for you, but gives you the appropriate strings to set the variables yourself,
for example, within your own scripts.

If you want the environment variables set for you in a shell environment, you can use the
command instead of using the crtmgenv command.

You can specify which installation the environment is created for by specifying a queue manager name,
an installation name, or an installation path. You can also create the environment for the installation that
issues the crtmgenv command by issuing the command with the -s parameter.

This command lists the following environment variables, and their values, appropriate to your system:
+ CLASSPATH

+ INCLUDE

+ LIB

* MANPATH

* MQ_DATA_PATH

*+ MQ_ENV_MODE

* MQ_FILE PATH

190 1BM MQ: Reference

+ MQ JAVA_INSTALL_PATH
« MQ_JAVA_DATA_PATH

« MQ_JAVA_LIB_PATH

« MQ JAVA_JVM_FLAG

« MQ_JRE_PATH

« PATH

On UNIX and Linux systems, if the -1 or -k flag is specified, the LIBPATH environment variable is set on
AIX, and the LD _LIBRARY PATH environment variable is set on HP-UX, Linux, and Solaris.

Usage notes

The crtmgenv command removes all directories for all IBM MQ installations from the environment
variables before adding new references to the installation for which you are setting up the environment.
Therefore, if you want to set any additional environment variables that reference IBM MQ, set the
variables after issuing the crtmqenv command. For example, if you want to add MQ_INSTALLATION_PATH/
java/lib to LD_LIBRARY PATH, you must do so after running crtmqenv.

Syntax

»>—crtmgenv -m—QMgrhName »><
-n—InstallationName— i:- k:‘ |—-x—ModeJ |—- i J
-p—InstallationPath— -1

-r
=S

Required Parameters

-m QMgrName
Create the environment for the installation associated with the queue manager QMgrName.

-n InstallationName
Create the environment for the installation named InstallationName.

-p InstallationPath
Create the environment for the installation in the path InstallationPath.

-r Remove all installations from the environment.

-s Create the environment for the installation that issued the command.

Optional Parameters
-k UNIX and Linux only.

Include the LD_LIBRARY_PATH, or LIBPATH, environment variable in the environment, adding the
path to the IBM MQ libraries at the start of the current LD_LIBRARY_PATH, or LIBPATH, variable.

-1 UNIX and Linux only.

Include the LD_LIBRARY_PATH, or LIBPATH, environment variable in the environment, adding the
path to the IBM MQ libraries at the end of the current LD_LIBRARY_PATH, or LIBPATH, variable.

-X Mode
Mode can take the value 32, or 64.

Create a 32-bit or 64-bit environment. If this parameter is not specified, the environment matches that
of the queue manager or installation specified in the command.

Any attempt to display a 64-bit environment with a 32-bit installation fails.

Reference 191

-i List only the additions to the environment.

When this parameter is specified, the environment variables set for previous installations remain in
the environment variable path and must be manually removed.

Return codes

Return code Description

0 Command completed normally.

10 Command completed with unexpected results.
20 An error occurred during processing.
Examples

The following examples assume that a copy of IBM MQ is installed in /opt/mgm on a UNIX or Linux
system.

1. This command creates a list of environment variables for an installation installed in /opt/mgm:
/opt/mgm/bin/crtmgenv -s

2. This command creates a list of environment variables for an installation installed in /opt/mgm2, and
includes the path to the installation at the end of the current value of the LD_LIBRARY_PATH
variable:

/opt/mgm/bin/crtmgenv -p /opt/mgm2 -1

3. This command creates a list of environment variables for the queue manager QM1, in a 32-bit
environment:

/opt/mgm/bin/crtmgenv -m QM1 -x 32

The following example assumes that a copy of IBM MQ is installed in C:\Program Files\IBM\WebSphere
MQ on a Windows system.

1. This command creates a list of environment variables for an installation called installationl:
"C:\Program Files\IBM\WebSphere MQ\crtmgenv" -n installationl
Related reference:

[‘setmgenv” on page 290
Use the setmgenv command to set up the IBM MQ environment on UNIX, Linux, and Windows.

Related information:

[Choosing a primary installation|

Multiple installations|

crtmgqinst:
Create installation entries in mqinst.ini on UNIX and Linux systems.
Purpose

File mginst.ini contains information about all IBM MQ installations on a system. For more information
about mqinst.ini, see [[nstallation configuration file, mqinst.inil

The first IBM MQ installation is automatically given an installation name of Installationl because the
crtmginst command is not available until an installation of IBM MQ is on the system. Subsequent
installations can have an installation name set before installation occurs, by using the crtmqinst
command. The installation name cannot be changed after installation. For more information about
installation names, see |Choosing an installation namel

Syntax

192 IBM MQ: Reference

»»—crtmginst -p—InstallationPath |_ _|
-n—InstallationName -d—DescriptiveText
(1)

(1)

-p—InstallationPath—-n—InstallationName

-n—InstallationName—-p—InstallationPath

Notes:

1 When specified together, the installation name and installation path must refer to the same
installation.

Parameters

-d Text that describes the installation.

The text can be up to 64 single-byte characters, or 32 double-byte characters. The default value is all
blanks. You must use quotation marks around the text if it contains spaces.

-n InstallationName
The name of the installation.

The name can contain up to 16 single-byte characters and must be a combination of alphabetic and
numeric characters in the ranges a-z, A-Z, and 0-9. The installation name must be unique, regardless
of whether uppercase or lowercase characters are used. For example, the names INSTALLATIONNAME
and InstallationName are not unique. If you do not supply the installation name, the next available
name in the series Installation1, Installation2... is used.

-p InstallationPath
The installation path. If you do not supply the installation path, /opt/mgm is used on UNIX and Linux
systems, and /usr/mgm is used on AIX.

Return codes

Return code Description

0 Entry created without error
10 Invalid installation level

36 Invalid arguments supplied
37 Descriptive text was in error
45 Entry already exists

59 Invalid installation specified
71 Unexpected error

89 Aini file error

96 Could not lock .ini file

98 Insufficient authority to access .ini file
131 Resource problem

Example

1. This command creates an entry with an installation name of myInstallation, an installation path of
/opt/myInstallation, and a description “My IBM MQ installation”:

crtmginst -n MyInstallation -p /opt/myInstallation -d "My IBM MQ installation"
Quotation marks are needed because the descriptive text contains spaces.

Note: On UNIX systems, the crtmginst command must be run by the root user because full access
permissions are required to write to the mqinst.ini configuration file.

Reference 193

crtmgm:
Create a queue manager.

Purpose

Use the crtmgm command to create a queue manager and define the default and system objects. The

objects created by the crtmgm command are listed in [System and default objectss When you have created a
queue manager, use the strmgm command to start it.

The queue manager is automatically associated with the installation from which the crtmgm command
was issued. To change the associated installation, use the setmqm command. Note that the Windows
installer does not automatically add the user that performs the installation to the mgm group. For more

details, see |Authority to administer IBM MQ on UNIX, Linux and Windows systems]

Syntax

»>—crtmgm
L (1)

-a [r]—=<access_group>

R '

l—- c—Text—| |—-d—De faultTransmiss ion()ueue—|

|——h—MaximumHandleLimit—I l——H—l |——1d—LogPath—| I——]f—LogFiZePages—|

=SS

»-

-sax
-si

l——]p—LogPr‘imcvaiZes—| l——]s—LogSecondoryFiles—l |——q—| E—sa I——md—DataPath—|

l—-g—AppZicationGroup—l |—-t—Im.‘ervaZVaZue—| I—-u—DeadLetterQueue—| L (2) |—gr0up—|
-0a

|—US€Y‘J

Notes:
1 Windows only
2 UNIX and Linux only

Required parameters

QMgrName

The name of the queue manager that you want to create. The name can contain up to 48 characters.

l—— p—Por‘tNumber‘—| |——x—MaximumUncommi ttedMessages—l |——z

QMgriName
il

This parameter must be the last item in the command.

Note: The QMgrName is used by IBM MQ applications, other IBM MQ queue managers, and IBM

MQ control commands to identify this queue manager.

194 1BM MQ: Reference

No other queue manager with the same name can exist on this machine. Where this queue manager
is going to connect to other queue managers you must ensure that queue manager names are unique
within that group of queue managers.

The QMgrName is also used to name the directories created on disk for the queue manager. Due to
filesystem limitations the name of the directories created might not be identical to the QMgrName
supplied on the crtmgm command.

In these cases the directories created will be based upon the supplied QMgrName, but might be
modified, or have a suffix such as .000 or .001, and so on, added to the queue manager name.

Optional parameters

BT -a[r] access_group
Use the access group parameter to specify a Windows security group, members of which will be
granted full access to all queue manager data files. The group can either be a local or global group,
depending on the syntax used.

Valid syntax for the group name is as follows:
LocalGroup
Domain name\GlobalGroup name
GlobalGroup name @ Domain name

You must define the additional access group before running the crtmgm command with the -a [1]
option.

If you specify the group using -ar instead of -a , the local mqm group is not granted access to the
queue manager data files. Use this option if the file system hosting the queue manager data files does
not support access control entries for locally defined groups.

The group is typically a global security group, which is used to provide multi-instance queue
managers with access to a shared queue manager data and logs folder. Use the additional security
access group to set read and write permissions on the folder or to share containing queue manager
data and log files.

The additional security access group is an alternative to using the local group named mgm to set
permissions on the folder containing queue manager data and logs. Unlike the local group mgm, you
can make the additional security access group a local or a global group. It must be a global group to
set permissions on the shared folders that contain the data and log files used by multi-instance queue
managers.

The Windows operating system checks the access permissions to read and write queue manager data
and log files. It checks the permissions of the user ID that is running queue manager processes. The
user ID that is checked depends on whether you started the queue manager as a service or you
started it interactively. If you started the queue manager as a service, the user ID checked by the
Windows system is the user ID you configured with the Prepare IBM MQ wizard. If you started the
queue manager interactively, the user ID checked by the Windows system is the user ID that ran the
strmgm command.

The user ID must be a member of the local mqm group to start the queue manager. If the user ID is a
member of the additional security access group, the queue manager can read and write files that are
given permissions by using the group.

Restriction: You can specify an additional security access group only on Windows operating system.
If you specify an additional security access group on other operating systems, the crtmgm command
returns an error.

-c Text
Descriptive text for this queue manager. You can use up to 64 characters; the default is all blanks.

Reference 195

If you include special characters, enclose the description in single quotation marks. The maximum
number of characters is reduced if the system is using a double-byte character set (DBCS).

-d DefaultTransmissionQueue

The name of the local transmission queue where remote messages are put if a transmission queue is
not explicitly defined for their destination. There is no default.

-g ApplicationGroup

The name of the group that contains members that are allowed to perform the following actions:

* Run MQI applications

* Update all IPCC resources

* Change the contents of some queue manager directories

This option applies to IBM MQ for AIX, Solaris, HP-UX, and Linux.

The default value is -g all , which allows unrestricted access.

The -g ApplicationGroup value is recorded in the queue manager configuration file named, qm.ini.

The mgm user ID and the user running the command must belong to the specified Application Group.
For further details of the operation of restricted mode, see [Restricted mode}

-h MaximumHandlelimit

The maximum number of handles that an application can open at the same time.

Specify a value in the range 1 - 999999999. The default value is 256.

The next set of parameter descriptions relate to logging, which is described in [Using the log for recovery]|

Note: Choose the logging arrangements with care, because some cannot be changed after they are
committed.

-1c

-1d

196

Use circular logging. This method is the default logging method.

LogPath
The directory used to store log files. The default directory to store log paths is defined when you
install IBM MQ.

If the volume containing the log file directory supports file security, the log file directory must have
access permissions. The permissions allow the user IDs, under whose authority the queue manager
runs, read and write access to the directory and its subdirectories. When you install IBM MQ, you
grant permissions to the user IDs and to the mgm group on the default log directory. If you set the
LogPath parameter to write the log file to a different directory, you must grant the user IDs
permission to read and write to the directory. The user ID and permissions for UNIX and Linux are
different from those for the Windows system:

UNIX and Linux
The directory and its subdirectories must be owned by the user mgm in the group mgm.

If the log file is shared between different instances of the queue manager, the security
identifiers (sid) that are used must be the same for the different instances. You must have set
the user mqm to the same sid on the different servers running instances of the queue manager.
Likewise for the group mqm.

Windows
If the directory is accessed by only one instance of the queue manager, you must give read
and write access permission to the directory for the following groups and users:

* The local group mgm
* The local group Administrators
e The SYSTEM user ID

IBM MQ: Reference

To give different instances of a queue manager access to the shared log directory, the queue
manager must access the log directory using a global user. Give the global group, which
contains the global user, read and write access permission to the log directory. The global
group is the additional security access group specified in the -a parameter.

In IBM MQ for Windows systems, the default directory is C:\ProgramData\IBM\MQ\1og (assuming that
C is your data drive). If the volume supports file security, the SYSTEM ID, Administrators, and mqm
group must be granted read/write access to the directory.

In IBM MQ for UNIX and Linux systems, the default directory is /var/mqm/1og. User ID mgm and
group mgm must have full authorities to the log files.

If you change the locations of these files, you must give these authorities yourself. If these authorities
are set automatically, then the log files are in their default locations.

-1f LogFilePages

-1

_'lp

-1s

The log data is held in a series of files called log files. The log file size is specified in units of 4 KB
pages.

In IBM MQ for UNIX and Linux systems, the default number of log file pages is 4096, giving a log
file size of 16 MB. The minimum number of log file pages is 64 and the maximum is 65535.

In IBM MQ for Windows systems, the default number of log file pages is 4096, giving a log file size
of 16 MB. The minimum number of log file pages is 32 and the maximum is 65535.

Note: The size of the log files for a queue manager specified during creation of that queue manager
cannot be changed.

LinearLogging
Use linear logging.

LogPrimaryFiles
The log files allocated when the queue manager is created.

On a Windows system, the minimum number of primary log files you can have is 2 and the
maximum is 254. On UNIX and Linux systems, the minimum number of primary log files you can
have is 2 and the maximum is 510. The default is 3.

On a Windows system, the total number of primary and secondary log files must not exceed 255 and
must not be less than 3. On UNIX and Linux systems the total number of primary and secondary log
files must not exceed 511 and must not be less than 3.

Operating system limits can reduce the maximum log size.

The value is examined when the queue manager is created or started. You can change it after the
queue manager has been created. However, a change in the value is not effective until the queue
manager is restarted, and the effect might not be immediate.

For more information about primary log files, see [What logs look like]

To calculate the size of the primary log files, see [Calculating the size of the log]

LogSecondaryFiles
The log files allocated when the primary files are exhausted.

On a Windows system, the minimum number of secondary log files you can have is 1 and the
maximum is 253. On UNIX and Linux systems, the minimum number of secondary log files you can
have is 2 and the maximum is 509. The default is 2.

On a Windows system, the total number of primary and secondary log files must not exceed 255 and
must not be less than 3. On UNIX and Linux systems the total number of primary and secondary log
files must not exceed 511 and must not be less than 3.

Operating system limits can reduce the maximum log size.

Reference 197

The value is examined when the queue manager is started. You can change this value, but changes
do not become effective until the queue manager is restarted, and even then the effect might not be
immediate.

For more information about the use of secondary log files, see [What logs look likel

To calculate the size of the secondary log files, see [Calculating the size of the log]

-md DataPath
The directory used to hold the data files for a queue manager.

In IBM MQ for Windows systems, the default is C:\ProgramData\IBM\MQ\gmgrs (assuming that C: is
your data drive). If the volume supports file security, the SYSTEM ID, Administrators, and mqm group
must be granted read/write access to the directory.

In IBM MQ for UNIX and Linux systems, the default is /var/mgm/gmgrs. User ID mgm and group mgm
must have full authorities to the log files.

The DataPath parameter is provided to assist in the configuration of multi-instance queue managers.
For example, on UNIX and Linux systems: if the /var/mgm directory is located on a local file system,
use the DataPath parameter and the LogPath parameter to point to the shared file systems accessible
to multiple queue managers.

Note: A queue manager created using DataPath parameter runs on versions of IBM MQ earlier than
Version 7.0.1, but the queue manager must be reconfigured to remove the DataPath parameter. You
have two options to restore the queue manager to a pre-Version 7.0.1 configuration and run without
the DataPath parameter: If you are confident about editing queue manager configurations, you can
manually configure the queue manager using the Prefix queue manager configuration parameter.
Alternatively, complete the following steps to edit the queue manager:

Stop the queue manager.

Save the queue manager data and log directories.

Delete the queue manager.

Backout IBM MQ to the pre-v7.0.1 fix level.

Create the queue manager with the same name.

I A

Replace the new queue manager data and log directories with the ones you saved.

-oa group | user

On UNIX and Linux systems, you can specify whether group or user
authorization is to be used. If you do not set this parameter, group authorization is used. You can
change the authorization model later by setting the SecurityPolicy parameter in the Service stanza of
the gm.ini file (see [Service stanza format|).

For further information, see [Object authority manager (OAM)\

-p PortNumber
Create a managed TCP listener on the specified port.

Specify a valid port value in the range 1-65535, to create a TCP listener object that uses the specified
port. The new listener is called SYSTEM.LISTENER.TCP.1. This listener is under queue manager
control, and is started and stopped along with the queue manager.

-q Makes this queue manager the default queue manager. The new queue manager replaces any existing
default queue manager.

If you accidentally use this flag and you want to revert to an existing queue manager as the default

queue manager, change the default queue manager as described in [Making an existing queue
fmanager the default]

-sa
Automatic queue manager startup. For Windows systems only.

198 IBM MQ: Reference

The queue manager is configured to start automatically when the IBM MQ Service starts.
This is the default option if you create a queue manager from MQ Explorer.

Queue managers created in IBM MQ releases earlier than Version 7 retain their existing startup type.

-Sax

-si

=SS

Automatic queue manager startup, permitting multiple instances. For Windows systems only.
The queue manager is configured to start automatically when the IBM MQ Service starts.

If an instance of the queue manager is not already running the queue manager starts, the instance
becomes active, and standby instances are permitted elsewhere. If a queue manager instance that
permits standbys is already active on a different server, the new instance becomes a standby instance.

Only one instance of a queue manager can run on a server.

Queue managers created in IBM MQ versions earlier than Version 7.0.1 retain their existing startup
type.

Interactive (manual) queue manager startup.

The queue manager is configured to start only when you manually request startup by using the
strmgm command. The queue manager runs under the (interactive) user when that user is logged-on.
Queue managers configured with interactive startup end when the user who started them logs off.

Service (manual) queue manager startup.

A queue manager configured to start only when manually requested by using the strmgm command.
The queue manager then runs as a child process of the service when the IBM MQ Service starts.
Queue managers configured with service startup continue to run even after the interactive user has
logged off.

This is the default option if you create a queue manager from the command line.

-t IntervalValue

The trigger time interval in milliseconds for all queues controlled by this queue manager. This value
specifies the length of time triggering is suspended, after the queue manager receives a
trigger-generating message. That is, if the arrival of a message on a queue causes a trigger message to
be put on the initiation queue, any message arriving on the same queue within the specified interval
does not generate another trigger message.

You can use the trigger time interval to ensure that your application is allowed sufficient time to deal
with a trigger condition before it is alerted to deal with another trigger condition on the same queue.
You might choose to see all trigger events that happen; if so, set a low or zero value in this field.

Specify a value in the range 0 - 999999999. The default is 999999999 milliseconds; a time of more than
11 days. Allowing the default to be used effectively means that triggering is disabled after the first
trigger message. However, an application can enable triggering again by servicing the queue using a
command to alter the queue to reset the trigger attribute.

-u DeadletterQueue

The name of the local queue that is to be used as the dead-letter (undelivered-message) queue.
Messages are put on this queue if they cannot be routed to their correct destination.

The default is no dead-letter queue.

-X MaximumUncommittedMessages

The maximum number of uncommitted messages under any one sync point. The uncommitted
messages are the sum of:

* The number of messages that can be retrieved from queues

¢ The number of messages that can be put on queues

Reference 199

-z

* Any trigger messages generated within this unit of work

This limit does not apply to messages that are retrieved or put outside a sync point.

Specify a value in the range 1 - 999999999. The default value is 10000 uncommitted messages.
Suppresses error messages.

This flag is used within IBM MQ to suppress unwanted error messages. Do not use this flag when
using a command line. Using this flag can result in a loss of information.

Return codes

Return code Description

0 Queue manager created

8 Queue manager exists

39 Invalid parameter specified

49 Queue manager stopping

58 Inconsistent use of installations detected

69 Storage unavailable

70 Queue space unavailable

71 Unexpected error

72 Queue manager name error

74 The IBM MQ service is not started.

100 Log location invalid

111 Queue manager created. However, there was a problem processing the default queue manager
definition in the product configuration file. The default queue manager specification might be
incorrect.

115 Invalid log size

119 Permission denied (Windows only)

Examples

The following command creates a default queue manager called Paint.queue.manager, with a
description of Paint shop, and creates the system and default objects. It also specifies that linear
logging is to be used:

crtmgm -c "Paint shop" -11 -q Paint.queue.manager

The following command creates a default queue manager called Paint.queue.manager, creates the
system and default objects, and requests two primary and three secondary log files:

crtmgm -c "Paint shop" -11 -1p 2 -1s 3 -q Paint.queue.manager

The following command creates a queue manager called travel, creates the system and default objects,
sets the trigger interval to 5000 milliseconds (5 seconds), and specifies SYSTEM.DEAD.LETTER.QUEUE as its
dead-letter queue.

crtmgm -t 5000 -u SYSTEM.DEAD.LETTER.QUEUE travel

The following command creates a queue manager called QM1 on UNIX and Linux systems, which has
log and queue manager data folders in a common parent directory. The parent directory is to be shared
on highly available networked storage to create a multi-instance queue manager. Before issuing the
command, create other parameters /MQHA, /MQHA/1ogs and /MQHA/gmgrs owned by the user and group
mgm, and with permissions rwxrwxr-x.

crtmgm -1d /MQHA/Togs -md /MQHA/gmgrs QM1

Related commands

200 1BM MQ: Reference

Command Description

‘strmgm” on page 303)| Start queue manager
‘endmam” on page 244 End queue manager
‘dltmgm” on page 202 Delete queue manager
‘setmgm” on page 294 Set associated installation
dltmqinst:

Delete installation entries from mqinst.ini on UNIX and Linux systems.
Purpose

File mqinst.ini contains information about all IBM MQ installations on a system. For more information
about mgqinst.ini, see [Installation configuration file, mginst.inil

Syntax
»»—dltmginst -p—InstallationPath »<
-n—InstallationName
(1)
-p—InstallationPath—-n—InstallationName
(1)
-n—InstallationName—-p—InstallationPath
Notes:
1 When specified together, the installation name and installation path must refer to the same
installation.
Parameters

-n InstallationName
The name of the installation.

-p InstallationPath
The installation path is the location where IBM MQ is installed.

Return codes

Return code Description

0 Entry deleted without error
5 Entry still active

36 Invalid arguments supplied
44 Entry does not exist

59 Invalid installation specified
71 Unexpected error

89 ini file error

96 Could not lock ini file

98 Insufficient authority to access ini file
131 Resource problem
Example

1. This command deletes an entry with an installation name of myInstallation, and an installation path
of /opt/myInstallation:

d1tmginst -n MyInstallation -p /opt/myInstallation

Reference 201

Note: You can only use the d1tmqinst command on another installation from the one it runs from. If you
only have one IBM MQ installation, the command will not work.

Note: On a Solaris 10 MQ Client installation, only the root user has permissions to edit the mqinst.ini
file.

dlitmqm:
Delete a queue manager.
Purpose

Use the d1tmgm command to delete a specified queue manager and all objects associated with it. Before
you can delete a queue manager, you must end it using the endmgm command.

You must use the d1tmgm command from the installation associated with the queue manager that you are
working with. You can find out which installation a queue manager is associated with using the dspmq -o

installation command.

In IBM MQ for Windows, it is an error to delete a queue manager when queue manager files are open. If
you get this error, close the files and reissue the command.

Syntax

»»—d1tmgm |_ J QMgrName ><
-z

Required parameters

QMgrName
The name of the queue manager to delete.

Optional parameters

-z Suppresses error messages.

Return codes

Return code Description

0 Queue manager deleted

3 Queue manager being created

5 Queue manager running

16 Queue manager does not exist

24 A process that was using the previous instance of the queue manager has not yet disconnected.
25 An error occurred while creating or checking the directory structure for the queue manager.
26 Queue manager running as a standby instance.

27 Queue manager could not obtain data lock.

29 Queue manager deleted, however there was a problem removing it from Active Directory.
33 An error occurred while deleting the directory structure for the queue manager.

49 Queue manager stopping

58 Inconsistent use of installations detected

62 The queue manager is associated with a different installation

69 Storage not available

71 Unexpected error

72 Queue manager name error

74 The IBM MQ service is not started.

202 IBM MQ: Reference

Return code Description

100 Log location invalid.

112 Queue manager deleted. However, there was a problem processing the default queue manager
definition in the product configuration file. The default queue manager specification might be
incorrect.

119 Permission denied (Windows only).

Examples

1. The following command deletes the queue manager saturn.queue.manager.
d1tmgm saturn.queue.manager

2. The following command deletes the queue manager travel and also suppresses any messages caused
by the command.

d1tmgm -z travel
Usage notes

In IBM MQ for Windows, it is an error to delete a queue manager when queue manager files are open. If
you get this error, close the files and reissue the command.

Deleting a cluster queue manager does not remove it from the cluster. To check whether the queue
manager you want to delete is part of a cluster, issue the command DIS CLUSQMGR (*). Then check whether
this queue manager is listed in the output. If it is listed as a cluster queue manager you must remove the
queue manager from the cluster before deleting it. See the related link for instructions.

If you do delete a cluster queue manager without first removing it from the cluster, the cluster continues
to regard the deleted queue manager as a member of the cluster for at least 30 days. You can remove it
from the cluster using the command RESET CLUSTER on a full repository queue manager. Re-creating a
queue manager with an identical name and then trying to remove that queue manager from the cluster
does not result in the cluster queue manager being removed from the cluster. This is because the newly
created queue manager, although having the same name, does not have the same queue manager ID
(QMID). Therefore it is treated as a different queue manager by the cluster.

Related commands

Command Description

crtmgm Create queue manager
strmgm Start queue manager
endmqm End queue manager
dmpmgqaut:

Dump a list of current authorizations for a range of IBM MQ object types and profiles.
Purpose
Use the dmpmgqaut command to dump the current authorizations to a specified object.

Syntax

Reference 203

»»—dmpmqaut

I— -m—()Mngame—| -n—Profile— I— -t—Object‘Type—|
) P
-a

\/

I— —s—ServiceComponent—I i: -p—PrincipalName— i: —e:‘

-g—GroupName -X

Optional parameters

-m QMgriName
Dump authority records only for the queue manager specified. If you omit this parameter, only
authority records for the default queue manager are dumped.

-n Profile
The name of the profile for which to dump authorizations. The profile name can be generic, using

wildcard characters to specify a range of names as explained in [Using OAM generic profiles on|
[UNIX, Linux, and Windows systems}

-1 Dump only the profile name and type. Use this option to generate a terse list of all defined profile
names and types.

-a Generate set authority commands.

-t ObjectType
The type of object for which to dump authorizations. Possible values are:

Value Description

authinfo An authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl A channel

clntconn or clen A client connection channel

listener or Istr A listener

namelist or nl A namelist

process or prcs A process

queue or q A queue or queues matching the object name parameter

qmgr A queue manager

rqgmname or rgmn A remote queue manager name

service or srvc A service

topic or top A topic

-s ServiceComponent
If installable authorization services are supported, specifies the name of the authorization service for
which to dump authorizations. This parameter is optional; if you omit it, the authorization inquiry is
made to the first installable component for the service.

-p PrincipalName

This parameter applies to IBM MQ for Windows only; UNIX systems keep only group authority
records.

The name of a user for whom to dump authorizations to the specified object. The name of the
principal can optionally include a domain name, specified in the following format:
userid@domain

204 1BM MQ: Reference

For more information about including domain names on the name of a principal, see |Principals and

O D
-g GroupName
The name of the user group for which to dump authorizations. You can specify only one name,
which must be the name of an existing user group.
For IBM MQ for Windows only, the group name can optionally include a domain name, specified in
the following formats:
GroupName@domain
domain\GroupName
-e Display all profiles used to calculate the cumulative authority that the entity has to the object
specified in -n Profile. The variable Profile must not contain any wildcard characters.
The following parameters must also be specified:
* -m QMgrName
* -n Profile
* -t ObjectType
and either -p PrincipalName, or -g GroupName.
-x Display all profiles with the same name as specified in -n Profile. This option does not apply to the
OMGR object, so a dump request of the form dmpmqaut -m QM -t QMGR ... -x is not valid.
Examples

The following examples show the use of dmpmgqaut to dump authority records for generic profiles:

1.

This example dumps all authority records with a profile that matches queue a.b.c for principal userl.
dmpmgaut -m gml -n a.b.c -t q -p userl

The resulting dump would look something like this:

profile: a.b.x
object type: queue
entity: userl
type: principal

authority: get, browse, put, ing

Note: UNIX users cannot use the -p option; they must use -g groupname instead.
This example dumps all authority records with a profile that matches queue a.b.c.
dmpmgaut -m gmgrl -n a.b.c -t q

The resulting dump would look something like this:

profile: a.b.c

object type: queue

entity: Administrator
type: principal
authority: all

profile: a.b.*

object type: queue

entity: userl

type: principal
authority: get, browse, put, ing
profile: a.x*

object type: queue

entity: groupl

type: group

authority: get

Reference 205

3. This example dumps all authority records for profile a.b.*, of type queue.

dmpmgaut -m gmgrl -n a.b.* -t g

The resulting dump would look something like this:

profile:
object type:
entity:
type:
authority:

a.b.x

queue

userl

principal

get, browse, put, inqg

This example dumps all authority records for queue manager qmX.

dmpmgaut -m gmX

The resulting dump would look something like this:

profile:
object type:
entity:
type:
authority:

profile:
object type:
entity:
type:
authority:

profile:
object type:
entity:
type:
authority:

profile:
object type:
entity:
type:
authority:

ql

queue
Administrator
principal

all

q*

queue
userl
principal
get, browse
name.*
namelist
user2
principal
get

prl
process
groupl
group
get

This example dumps all profile names and object types for queue manager qmX.

dmpmgaut -m gmX -1

The resulting dump would look something like this:

profile: ql,
profile: g*,

type: queue
type: queue

profile: name.*, type: namelist
profile: prl, type: process

Note:

1.

206

For IBM MQ for Windows only, all principals displayed include domain information, for example:

profile:
object type:
entity:
type:
authority:

a.b.*

queue

userl@domainl
principal

get, browse, put, ing

Each class of object has authority records for each group or principal. These records have the profile
name @CLASS and track the crt (create) authority common to all objects of that class. If the crt
authority for any object of that class is changed then this record is updated. For example:

profile:
object type:
entity:
entity type:
authority:

@class
queue
test
principal
crt

IBM MQ: Reference

This shows that members of the group test have crt authority to the class queue.

3. For IBM MQ for Windows only, members of the “Administrators” group are by default given full
authority. This authority, however, is given automatically by the OAM, and is not defined by the
authority records. The dmpmgqaut command displays authority defined only by the authority records.
Unless an authority record has been explicitly defined, therefore, running the dmpmgqaut command
against the “Administrators” group displays no authority record for that group.

dmpmqcfg:
Use the dmpmgcfg command to dump the configuration of an IBM MQ queue manager.
Purpose

Use the dmpmgqcfg command to dump the configuration of IBM MQ queue managers. If any default
object has been edited, the -a option must be used if the dumped configuration will be used to restore the
configuration.

The dmpmqcfg utility dumps only subscriptions of type MQSUBTYPE_ADMIN, that is, only subscriptions
that are created using the MQSC command DEFINE SUB or its PCF equivalent. The output from dmpmqcfg
is a runmgsc command to enable the administration subscription to be re-created. Subscriptions that are
created by applications using the MQSUB MQI call of type MQSUBTYPE_API are not part of the queue
manager configuration, even if durable, and so are not dumped by dmpmqcfg. MQTT channels will only
be returned for types -t all and -t mqttchl if the telemetry (MQXR) service is running. For instructions on
how to start the telemetry service, see [Administering IBM MQ Telemetry]

Note: The dmpmqcfg command does not make a backup of the IBM MQ Advanced Message Security
policies. If you want to export the IBM MQ Advanced Message Security policies, ensure that you run
dspmgsp1 with the —export flag. This command exports the policies for IBM MQ Advanced Message
Security into a text file, which can be used for restoration purposes. For more information see
[‘dspmgspl” on page 236,

»—dmpmqcfg
l—-?—l i:-c—DEFINE CHANNEL String— L
-c—default -X

v

|—-a—| l—- s—SeqNumber'—|

rﬁ”

object—
authrec—
chlauth—
sub
policy—

| 2

v

L, Ln . Lt —all

—0ObjectName— —authinfo— 11ine
—channel— 21ine
—cTntconn— setmqaut—
—comminfo— grtmgmaut—
—1str setmgspl—
—mqttchl—
namelist—

L |—S YSTEM.DEFAULT.MODEL. QUEUE— l—— r‘—RthMgr‘—| |——m—()Mgr'Name—| l——w—Wai tTime—|
-G
|—Rep lyQueueName

Reference 207

I— -u—UserId—|

Optional Parameters

-2

v
A

-C

=X

-a

-n

Inquire the usage message for dmpmqcfg.

Force a client mode connection. If the -¢ parameter is qualified with the option default, the default
client connection process is used. If -c is omitted, the default is to attempt to connect to the queue
manager first by using server bindings and then if this fails by using client bindings.

If the option is qualified with an MQSC DEFINE CHANNEL CHLTYPE(CLNTCONN) string then
this is parsed and if successful, used to create a temporary connection to the queue manager.

[all | object | authrec | chlauth | sub | policy]

Filter the definition procedure to show object definitions, authority records, channel
authentication records, durable subscriptions or policy. The default value all is that all types are
returned.

Note that when you specify an export type of policy, the security policies for the queue manager are
reported in the configuration information dumped.

Return object definitions to show all attributes. The default is to return only attributes which differ
from the defaults for the object type.

SeqNumber
Reset channel sequence number for sender, server and cluster sender channel types to the numeric
value specified. The value SeqNumber must be in the range 1 - 999999999.

Activate silent mode in which warnings, such as those which appear when inquiring attributes from
a queue manager of a higher command level are suppressed.

[= | ObjectName]
Filter the definitions produced by object or profile name, the object/profile name can contain a single
asterisk. The * option can be placed only at the end of the entered filter string.

-t
Choose a single type of object to export. Possible values are:
Value Description
all All object types
authinfo An authentication information object

channel or chl

A channel

comminfo

A communications information object

Istr or Tistener

A listener

mattchl An MQTT channel
namelist or nl A namelist
process or prcs A process

queue or q A queue

gmgr A queue manager
srvc or service A service

topic or top A topic

-0

208

[mgsc | 1line | 2line | setmqaut | grtmgmaut | setmgspl]
Possible values are:

IBM MQ: Reference

Value Description

mgsc Multi-line MQSC that can be used as direct input to runmgsc

1line MQSC with all attributes on a single line for line diffing

21ine MQSC with output on two lines. The first line is an MQSC command string and the
second is a commented version with immutable values.

setmgaut setmqaut statements for UNIX and Windows queue managers; valid only when -x
authrec is specified

grtmgmaut Linux only; generates iSeries syntax for granting access to the objects.

setmgspl The security policies for the queue manager are reported in the format of setmgsp1

command lines. This format can be used to generate scripts to restore policy
configuration to a queue manager.

Note that the setmqsp1 command lines produced by this format includes parameters (-m)
that specify the queue manager from which the definition was backed up. This implies
that the definitions need to be replayed against the same queue manager.

If you need to backup policy definitions from one queue manager, and restore them to a
different queue manager, consider using the default MQSC format where the queue
manager name is not explicitly specified.

-q The name of the reply-to queue used when getting configuration information.

-r The name of the remote queue manager/transmit queue when using queued mode. If this parameter
is omitted the configuration for the directly connected queue manager (specified with the -m
parameter) is dumped.

-m The name of the queue manager to connect to. If omitted the default queue manager name is used.
-w WaitTime

The time, in seconds, that dmpmqcfg waits for replies to its commands.

Any replies received after a timeout are discarded, but the MQSC commands still run.

The check for timeout is performed once for each command reply.

Specify a time in the range 1 through 999999; the default value is 60 seconds.

Timed-out failure is indicated by:
* Nonzero return code to the calling shell or environment.
* Error message to stdout or stderr.

-u Userld
The ID of the user authorized to dump the configuration of queue managers.

Authorizations

The user must have MQZAO_OUTPUT (+put) authority to access the command input queue
(SYSTEM.ADMIN.COMMAND.QUEUE) and MQZAQO_DISPLAY (+dsp) authority to access the default
model queue (SYSTEM.DEFAULT.MODEL.QUEUE), to be able to create a temporary dynamic queue if
using the default reply queue.

The user must also have MQZAO_CONNECT (+connect) and MQZAO_INQUIRE (+inq) authority for the
queue manager, and MQZAQO_DISPLAY (+dsp) authority for every object that is requested.

Return code

If a failure occurs dmpmqcfg returns an error code. Otherwise, the command outputs a footer, an example
of which follows:

Reference 209

Script ended on 2016-01-05 at 05.10.09
Number of Inquiry commands issued: 14
Number of Inquiry commands completed: 14
Number of Inquiry responses processed: 273
QueueManager count: 1

Queue count: 55

NameList count: 3

Process count: 1

Channel count: 10

AuthInfo count: 4

Listener count: 1

Service count: 1

CommInfo count: 1

Topic count: 5

Subscription count: 1

Ch1AuthRec count: 3

Policy count: 1

AuthRec count: 186

Number of objects/records: 273

ok ok ok ok 3k ok X 3k ok X ok k% ok X 3k ok F

Examples

To make these examples work you need to ensure that your system is set up for remote MQSC operation.
See [Preparing queue managers for remote administration| and [Preparing channels and transmission|
lueues for remote administration}

dmpmgcfg -m MYQMGR -c "DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(CLNTCONN)
CONNAME ('myhost.mycorp.com(1414)')"

dumps all the configuration information from remote queue manager MYQMGR in MQSC format and
creates an ad-hoc client connection to the queue manager using a client channel called
SYSTEM.ADMIN.SVRCONN.

Note: You need to ensure that a server-connection channel with the same name exists.
dmpmgcfg -m LOCALQM -r MYQMGR

dumps all configuration information from remote queue manager MYQMGR, in MQSC format, connects
initially to local queue manager LOCALQM, and sends inquiry messages through this local queue
manager.

Note: You need to ensure that the local queue manager has a transmission queue named MYQMGR, with
channel pairings defined in both directions, to send and receive replies between queue managers.

Related information:

Restoring queue manager configuration|

dmpmgqlog:

Display and format a portion of the IBM MQ system log.

Purpose

Use the dmpmgqlog command to dump a formatted version of the IBM MQ system log to standard out.

The log to be dumped must have been created on the same type of operating system as that being used
to issue the command.

Syntax

210 IBM MQ: Reference

-s—StartLSN
-n—ExtentNumber—

»»—dmpmq1og
E -b— I— -e—EndLSN—| I— -f—LogFiZePath—| I— -m—()Mngame—|

Optional parameters

Dump start point
Use one of the following parameters to specify the log sequence number (LSN) at which the dump
should start. If you omit this, dumping starts by default from the LSN of the first record in the active
portion of the log.

-b Start dumping from the base LSN. The base LSN identifies the start of the log extent that
contains the start of the active portion of the log.

-s StartLSN
Start dumping from the specified LSN. The LSN is specified in the format nnnn:nnnn:nnnn:nnnn.

If you are using a circular log, the LSN value must be equal to or greater than the base LSN
value of the log.

-n ExtentNumber
Start dumping from the specified extent number. The extent number must be in the range O -
9999999.

This parameter is valid only for queue managers using linear logging.

-e EndLSN
End dumping at the specified LSN. The LSN is specified in the format nnnn:nnnn:nnnn:nnnn.

-f LogFilePath
The absolute (rather than relative) directory path name to the log files. The specified directory must
contain the log header file (amghlct1.1fh) and a subdirectory called active. The active subdirectory
must contain the log files. By default, log files are assumed to be in the directories specified in the
IBM MQ configuration information. If you use this option, queue names associated with queue
identifiers are shown in the dump only if you use the -m option to name a queue manager name that
has the object catalog file in its directory path.

On a system that supports long file names this file is called qmgmobjcat and, to map the queue
identifiers to queue names, it must be the file used when the log files were created. For example, for
a queue manager named qml, the object catalog file is located in the directory ..\gmgrs\gml\
gmanager\. To achieve this mapping, you might need to create a temporary queue manager, for
example named tmpgq, replace its object catalog with the one associated with the specific log files, and
then start dmpmglog, specifying -m tmpq and -f with the absolute directory path name to the log
files.

-m QMgriName
The name of the queue manager. If you omit this parameter, the name of the default queue manager
is used.

Note: Do not dump the log while the queue manager is running, and do not start the queue manager
while dmpmgqlog is running.

dmpmqmsg;:
Formerly the IBM MQ queue load and unload utility.
Purpose

Use the dmpmgmsg utility to copy or move the contents of a queue, or its messages, to a file.

Reference 211

Syntax

»»>—dmpmgqmsg— -m—Queue manager name— -i or -I—Input queue name— -f or -F—Filename

»—

-0—Output queue name
|—‘ Mode options |J |— -cJ |— -P—CodepageJ

|—‘ Context options ’J |—‘ Display options ’J |—‘ Delay options ’J |—‘ Get options ’J

\

|— -h—Strip header‘sJ |— —p—Pur‘geJ |— -g—Quiet modeJ |—| Message range ’J

\

|— -t—Transaction message limitJ |— -T—Message age selectionJ

| 2

\/

|— -s or -e—Message content seZectionJ |— -w—hWait z'ntervalJ

Mode options:

T

Context options:

—A—

—-C I

a
a

L
L d—1
n

Display options:

f—-d

Delay options:

f—-D positive value
Enegative value—

r (value)

212 IBM MQ: Reference

Get options:

F—-g ¢ (value)

m (value)
g (value)
xc (value)
xm (value)
xg (value)

Message range options:

f—-r X
X. .Y
x#y
#x

Required parameters

-m

=i

QueueManagerName

The name of the queue manager on which the queue, or queues, exist.

or -I Input queue name

The name of the input queue.

Note: Using -i browses the queue, whereas using -I gets messages from the queue.

Optional parameters

-f

or -F Filename

Specifies either the source or target file name.

Note: Using -F on a target file forces output to a file if it already exists. The program does not ask

you if the file should be overwritten.

Output queue name

Specifies the name of the output queue.

Controls whether the file is opened in append or binary mode, by adding one of the following values

to the keyword:
a Append mode
b Binary mode

Connect in client mode.

If you do not select this flag, the utility runs in local mode, which is the default.
This option is not available on z/OS.

Controls whether messages taken from a queue are converted.

Use the command

-P <CCSID> [: X 'Encoding']

For example -P850:111

Controls the context option, by adding one of the following values to the keyword:
A Set all context. This is the default value.

I Set identity context.

Reference

213

a Pass all context.
p Pass identity context.
Use of the pass options is not applicable if the source messages are browsed on a queue.
d Default context.
n No context.

-d Controls the display option or options, by adding one or more of the following values to the
keyword. For example -dsCM:

a Add ASCII columns to the hexadecimal output in the file to aid readability.

A Write ASCII lines of data wherever possible.

c Output ApplicationOriginData and ApplicationldentityData as characters

C Display the Correlation Identifier in the queue summary.

H Do not write the file header.
Files created with this option are not loadable by the program as the program does not
recognize the file format. However, if necessary you can use an editor to add an appropriate
header manually, to make the file loadable.

i Include the message index in the output.

p Printable character output format.
This format is not codepage safe. Loading a file written in this format, while running in a
new codepage does not guarantee to produce the same message.

s Write a simple summary of the messages found on input.

M Display the Message Identifier in the queue summary.

N Do not write out the message descriptor content, only the message payload.

t text line output format.
This format is not codepage safe. Loading a file written in this format, while running in a
new codepage does not guarantee to produce the same message.

T Display the time the message has been on the queue.

w <Length>

Set the data width for the output.

-D Add a delay, expressed in milliseconds, before writing a message to the output destination, by adding
one of the following values to the keyword. For example.

<positive value>
Add a fixed delay before putting a message. For example, -D500 puts each message half a
second apart.

<negative value>
Add a random delay, up to the specified value before putting a message. For example,
-D-10000 adds a random delay of up to 10 seconds before putting a message.

r <value>
Replays the messages at a percentage of their original put speed. For example:

r Replays messages at their original speed.
r50 Replays messages at half their original speed.

r200 Replays messages at twice their original speed.

214 1BM MQ: Reference

-9

-W

Filter by Message identifier, Correlation identifier, or Group identifier, by adding one of the following
values to the keyword.

c<value>
Get by character Correlation identifier.

m<value>
Get by character Message identifier.

g<value>
Get by character Group identifier.

xc<value>
Get by hexadecimal Correlation identifier.

xm<value>
Get by hexadecimal Message identifier.

xg<value>
Get by hexadecimal Group identifier.

Strip headers.

Any Dead Letter Queue header (MQDLH) or Transmission Queue header (MQXQH) is removed from
the message before the message is written.

Output queue name.

Causes the source queue to be purged of messages as they are copied to the target destination.
Sets quiet mode. When set, the program does not output its usual summary of activity.

Sets the applicable message range by adding one of the following values to the keyword.

X Only message x. For example, -r10.

X..y From message x to message y. For example, -r 10..20.

x#ty Output y messages starting at message x. For example, -r 100#10.

#x Output the first x messages. For example, -r #100.

Set the transaction message limit. If the optional -n flag is not set, all the messages are done in a
single transaction.

n The message operations are split into groups of n messages. For example -t 1000 deals with
1000 messages in a single transaction.

Allows message selection based on message age.

See [“Using message age” on page 216| for information on selection using message age.

or -e
Allows message selection based on message content.
On ASCII platforms (Windows and UNIX and Linux) use the -s option to search for a natively

encoded string; on EBCDIC platforms (z/OS) use the -e option to search for a natively encoded
string.

See [“Using message content” on page 216| for information on selection using message content.

Wait interval, in seconds, for consuming messages. If specified the program waits for messages to
arrive, for the specified period, before ending.

See [Examples of using the dmpmqmsg utility| for examples on using the utility.

Reference 215

Message selection:

The following information describes how message selection occurs using message age and message
content.

Using message age
You can choose to process only messages older than a certain time interval using the -T flag.

Time interval can be specified in Days, Hours and Minutes. The general format being
[days:]hours:]minutes.

The parameter can take one or two times, -T [01derThanTime] [, YoungerThanTime].

For example:

* Display messages older than five minutes
dmpmgmsg -m QM1 -i Ql -fstdout -T5

* Display messages younger than five minutes
dmpmgmsg -m QM1 -i Ql -fstdout -T,5

* Display messages older than one day but younger than two days.
dmpmgmsg -m QM1 -i Ql -fstdout -T1440,2880

* The following command copies messages older than one hour from Q1 to Q2.
dmpmgmsg -m QM1 -i Ql -0 Q2 -T1:0

* The following command moves messages older than one week from Q1 to Q2
dmpmgmsg -m QM1 -I Q1 -0 Q2 -T7:0:0

Using message content
You can specify a maximum of three of each search string. If multiple strings are used, they are treated as

follows:

Positive search strings
When multiple positive strings are used, then all the strings must be present for the search to
match. For example, the command

dmpmgmsg -iMATCH -s LIVERPOOL -s CHELSEA

only returns messages that contain both strings.

Negative search strings
When multiple negative strings are used, then none of the strings must be present for the search
to match. For example, the command

dmpmgmsg -IMATCH -S HOME -S DRAW

only returns messages that contain neither string.

216 IBM MQ: Reference

dspmgq:

Display information about queue managers.

Purpose

Use the dspmq command to display names and details of the queue managers on a system.

Syntax

v
A

>>—dspma L _m—QMngame—| — -0 all |——x—| I—-n—l L-a—l L‘C—l

-0 default
-0 installation—
-0 status
-0 standby

Required parameters
None

Optional parameters
-a Displays information about the active queue managers only.
A queue manager is active if it is associated with the installation from which the dspmq command was
issued and one or more of the following statements are true:
¢ The queue manager is running
* A listener for the queue manager is running
c A process is connected to the queue manager
-m QMgriName

The queue manager for which to display details. If you give no name, all queue manager names are
displayed.

-n Suppresses translation of output strings.

-s The operational status of the queue managers is displayed. This parameter is the default status
setting.

The parameter -o status is equivalent to -s.

-0 all
The operational status of the queue managers is displayed, and whether any are the default queue
manager.

On Windows, UNIX and Linux, the installation name (INSTNAME), installation path (INSTPATH),
and installation version (INSTVER) of the installation that the queue manager is associated with is
also displayed.

-0 default
Displays whether any of the queue managers are the default queue manager.

-0 installation
Windows, UNIX and Linux only.

Reference 217

Displays the installation name (INSTNAME), installation path (INSTPATH), and installation version
(INSTVER) of the installation that the queue manager is associated with.

-0 status
The operational status of the queue managers is displayed.

-0 standby
Displays whether a queue manager currently permits starting a standby instance. The possible values
are shown in [Table 43

Table 43. Standby values

Value Description

Permitted The queue manager is running and is permitting standby instances.

Not permitted The queue manager is running and is not permitting standby instances.

Not applicable The queue manager is not running. You can start the queue manager and this instance becomes
active if it starts successfully.

-x Information about queue manager instances are displayed. The possible values are shown in [Iable 44

Table 44. Instance values

Value Description
Active The instance is the active instance.
Standby The instance is a standby instance.

-c Shows the list of processes currently connected to the IPCC, QMGR, and PERSISTENT sub pools for
a queue manager.

For example, this list typically includes:

* Queue manager processes

* Applications, including those that are inhibiting shutdown
* Listeners

Queue Manager States

The following is a list of the different states a queue manager can be in:

Table 45. Queue manager states.

Queue Manager States

Starting

Running

Running as standby
Running elsewhere
Quiescing

Ending immediately
Ending pre-emptively
Ended normally
Ended immediately
Ended unexpectedly
Ended pre-emptively

Status not available

218 IBM MQ: Reference

Return codes

Return code Description

0 Command completed normally

36 Invalid arguments supplied

58 Inconsistent use of installations detected
71 Unexpected error

72 Queue manager name error

Examples

1. The following command displays queue managers on this server:
dspmgq -0 all

2. The following command displays standby information for queue managers on this server that have
ended immediately:

dspmg -o standby

3. The following command displays standby information and instance information for queue managers
on this server:

dspmgq -o standby -x
dspmgqaut:
dspmgqaut displays the authorizations of a specific IBM MQ object.
Purpose
Use the dspmqaut command to display the current authorizations to a specified object.

If a user ID is a member of more than one group, this command displays the combined authorizations of
all the groups.

Only one group or principal can be specified.

For more information about authorization service components, see [[nstallable services) [Service]
komponents| and [Authorization service interface]

Syntax

»»—dspmqaut

-n—Profile— —t—0bjectType—|: -g—~GroupName J >

|— -rn—QMngameJ -p—PrincipalName

> [

I— -s—ServiceComponen t—l

Required parameters

-n Profile
The name of the profile for which to display authorizations. The authorizations apply to all IBM MQ
objects with names that match the profile name specified.

This parameter is required, unless you are displaying the authorizations of a queue manager. In this
case you must not include it and instead specify the queue manager name using the -m parameter.

-t ObjectType
The type of object on which to make the inquiry. Possible values are:

Reference 219

Table 46. The object type on which to make the inquiry.

Object Type

Description

authinfo

An authentication information object, for use with Secure
Sockets Layer (SSL) channel security

channel or chl

A channel

clntconn or clen

A client connection channel

listener or Istr A Listener
namelist or nl A namelist
process or prcs A process

queue or q A queue or queues matching the object name parameter
qmgr A queue manager

rqgmname or rqmn A remote queue manager name

service or srvc A service

topic or top A topic

Optional parameters

-m QMgrName
The name of the queue manager on which to make the inquiry. This parameter is optional if you are
displaying the authorizations of your default queue manager.

-g GroupName
The name of the user group on which to make the inquiry. You can specify only one name, which
must be the name of an existing user group.

For IBM MQ for Windows only, the group name can optionally include a domain name, specified in
the following formats:

GroupName@domain

domain\GroupName

-p PrincipalName
The name of a user for whom to display authorizations to the specified object.

For IBM MQ for Windows only, the name of the principal can optionally include a domain name,
specified in the following format:

userid@domain

For more information about including domain names on the name of a principal, see |Principals and

-s ServiceComponent
If installable authorization services are supported, specifies the name of the authorization service to
which the authorizations apply. This parameter is optional; if you omit it, the authorization inquiry is
made to the first installable component for the service.

Returned parameters
Returns an authorization list, which can contain none, one, or more authorization values. Each

authorization value returned means that any user ID in the specified group or principal has the authority
to perform the operation defined by that value.

[Table 47 on page 221| shows the authorities that can be given to the different object types.

220 IBM MQ: Reference

Table 47. Specifying authorities for different object types

Authority | Queue |Process |Queue |Remote |Namelist Topic |Auth |Clntconn Channel|Listener |Service
manager| queue info
manager
name
all Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
alladm Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes
allmgqi Yes Yes Yes Yes Yes Yes Yes No No No No
none Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
altusr No No Yes No No No No No No No No
browse Yes No No No No No No No No No No
chg Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes
clr Yes No No No No Yes No No No No No
connect |No No Yes No No No No No No No No
crt Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes
ctrl No No No No No Yes No No Yes Yes Yes
ctrlx No No No No No No No No Yes No No
dlt Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes
dsp Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes
get Yes No No No No No No No No No No
pub No No No No No Yes No No No No No
put Yes No No Yes No Yes No No No No No
inq Yes Yes Yes No Yes No Yes No No No No
passall Yes No No No No Yes No No No No No
passid Yes No No No No Yes No No No No No
resume No No No No No Yes No No No No No
set Yes Yes Yes No No No No No No No No
setall Yes No Yes No No Yes No No No No No
setid Yes No Yes No No Yes No No No No No
sub No No No No No Yes No No No No No
system No No Yes No No No No No No No No

The following list defines the authorizations associated with each value:

Table 48. Authorizations associated with each value.

Value Description

all Use all operations relevant to the object. all authority is
equivalent to the union of the authorities alladm, allmqi,
and system appropriate to the object type.

alladm Perform all administration operations relevant to the
object

allmgqi Use all MQI calls relevant to the object

altusr Specify an alternative user ID on an MQI call

browse Retrieve a message from a queue by issuing an MQGET
call with the BROWSE option

Reference 221

Table 48. Authorizations associated with each value. (continued)

Value Description

chg Change the attributes of the specified object, using the
appropriate command set

clr Clear a queue (PCF command Clear queue only) or a
topic

ctrl Start, and stop the specified channel, listener, or service,
and ping the specified channel.

ctrlx Reset or resolve the specified channel

connect Connect the application to the specified queue manager
by issuing an MQCONN call

crt Create objects of the specified type using the appropriate
command set

dlt Delete the specified object using the appropriate
command set

dsp Display the attributes of the specified object using the
appropriate command set

get Retrieve a message from a queue by issuing an MQGET
call

inq Make an inquiry on a specific queue by issuing an
MOQINQ call

passall Pass all context

passid Pass the identity context

pub Publish a message on a topic using the MQPUT call.

put Put a message on a specific queue by issuing an MQPUT
call

resume Resume a subscription using the MQSUB call.

set Set attributes on a queue from the MQI by issuing an
MQSET call

setall Set all context

setid Set the identity context

sub Create, alter, or resume a subscription to a topic using
the MQSUB call.

system Use queue manager for internal system operations

The authorizations for administration operations, where supported, apply to these command sets:

¢ Control commands
* MQSC commands
¢ PCF commands

Return codes

222 IBM MQ: Reference

Return code Description

0 Successful operation

26 Queue manager running as a standby instance.
36 Invalid arguments supplied

40 Queue manager not available

49 Queue manager stopping

58 Inconsistent use of installations detected
69 Storage not available

71 Unexpected error

72 Queue manager name error

133 Unknown object name

145 Unexpected object name

146 Object name missing

147 Object type missing

148 Invalid object type

149 Entity name missing

Examples

The following example shows a command to display the authorizations on queue manager
saturn.queue.manager associated with user group staff:

dspmgaut -m saturn.queue.manager -t gmgr -g staff
The results from this command are:

Entity staff has the following authorizations for object:
get
browse
put
ing
set
connect
altusr
passid
passall
setid

The following example displays the authorities userl has for queue a.b.c:
dspmgaut -m gmgrl -n a.b.c -t q -p userl
The results from this command are:

Entity userl has the following authorizations for object:
get
put

dspmgqcsv:

The status of a command server is displayed

Purpose

Use the dspmgcsv command to display the status of the command server for the specified queue manager.

The status can be one of the following:

Starting

Running

Running with SYSTEM.ADMIN.COMMAND.QUEUE not enabled for gets
Ending

Stopped

Reference 223

You must use the dspmqcsv command from the installation associated with the queue manager that you
are working with. You can find out which installation a queue manager is associated with using the
dspmg -0 installation command.

Syntax

»>—dspmqcsv ><

|—()Mngame—|

Required parameters
None

Optional parameters

QMgrName
The name of the local queue manager for which the command server status is being requested.

Return codes

Return code Description

0 Command completed normally

10 Command completed with unexpected results
20 An error occurred during processing
Examples

The following command displays the status of the command server associated with venus.q.mgr:
dspmgcsv venus.q.mgr

Related commands

Command Description

strmqcsv Start a command server
endmgqcsv End a command server
dspmqfls:

Display the file names corresponding to IBM MQ objects.
Purpose

Use the dspmqfls command to display the real file system name for all IBM MQ objects that match a
specified criterion. You can use this command to identify the files associated with a particular object. This
command is useful for backing up specific objects. See [Understanding IBM MQ file names| for
information about name transformation.

Syntax

224 IBM MQ: Reference

»»—dspmqfls

GenericObjName

A\
A

L -m—()Mngame—| L -t—0bj T}’PE—l

Required parameters

GenericObjName

The name of the object. The name is a string with no flag and is a required parameter. Omitting the
name returns an error.

This parameter supports an asterisk (*) as a wildcard at the end of the string.

Optional parameters

-m QMgriName
The name of the queue manager for which to examine files. If you omit this name, the command
operates on the default queue manager.

-t 0bjType
The object type. The following list shows the valid object types. The abbreviated name is shown first
followed by the full name.

Table 49. Valid object types.

Object Type Description

* or all All object types; this parameter is the default
authinfo Authentication information object, for use with Secure

Sockets Layer (SSL) channel security

channel or chl A channel

cIntconn or clen A client connection channel

catalog or ctlg An object catalog

namelist or nl A namelist

listener or Istr A listener

process or prcs A process

queue or q A queue or queues matching the object name parameter
qalias or qa An alias queue

qlocal or ql A local queue

qmodel or qm A model queue

qremote or qr A remote queue

qmgr A queue manager object

service or srvc A service
Note:

1. The dspmgfls command displays the name of the directory containing the queue, not the name of the
queue itself.

2. In IBM MQ for UNIX systems, you must prevent the shell from interpreting the meaning of special
characters, for example, an asterisk (*). The way you do this depends on the shell you are using. It
may involve the use of single quotation marks, double quotation marks, or a backslash.

Return codes

Reference 225

Return code Description

0 Command completed normally

10 Command completed but not entirely as expected
20 An error occurred during processing

Examples

1. The following command displays the details of all objects with names beginning SYSTEM.ADMIN
defined on the default queue manager.

dspmqfls SYSTEM.ADMIN*

2. The following command displays file details for all processes with names beginning PROC defined on
queue manager RADIUS.

dspmgfls -m RADIUS -t prcs PROC*
dspmgqinf:
Display IBM MQ configuration information (Windows and UNIX platforms only).
Purpose
Use the dspmqinf command to display IBM MQ configuration information.
Syntax

|—-s—QueueManager— |—-o—stanza—|

»»—dspmqinf |_ |_ _| StanzaName
-s—StanzaType— -o—command

Y
A

Required parameters

StanzaName
The name of the stanza. That is, the value of the key attribute that distinguishes between multiple
stanzas of the same type.

Optional parameters

-s StanzaType
The type of stanza to display. If omitted, the QueueManager stanza is displayed.

The only supported value of StanzaType is QueueManager.

-0 stanza
Displays the configuration information in stanza format as it is shown in the .1ini files. This format is
the default output format.

Use this format to display stanza information in a format that is easy to read.

-0 command
Displays the configuration information as an addmqinf command.

Information about the installation associated with the queue manager is not displayed using this
parameter. The addmqinf command does not require information about the installation.

Use this format to paste into a command shell.

Return codes

226 IBM MQ: Reference

Return code Description

0 Successful operation

39 Bad command-line parameters

44 Stanza does not exist

58 Inconsistent use of installations detected
69 Storage not available

71 Unexpected error

72 Queue manager name error

Examples

dspmginf QM.NAME

The command defaults to searching for a QueueManager stanza named QM.NAME and displays it in stanza
format.

QueueManager:
Name=QM.NAME
Prefix=/var/mgm
Directory=QM!NAME
DataPath=/MQHA/qmgrs/QM! NAME
InstallationName=Installationl

The following command gives the same result:
dspmginf -s QueueManager -o stanza QM.NAME

The next example displays the output in addmqinf format.
dspmgqinf -o command QM.NAME

The output is on one line:
addmginf -s QueueManager -v Name=QM.NAME -v Prefix=/var/mgm -v Directory=QM!NAME
-v DataPath=/MQHA/qmgrs/QM!NAME

Usage notes

Use dspmgqinf with addmgqinf to create an instance of a multi-instance queue manager on a different
server.

To use this command you must be an IBM MQ administrator and a member of the mqm group.

Related commands

Command Description

‘addmginf” on page 180| Add queue manager configuration information
‘rmvmginf” on page 259 Remove queue manager configuration information
dspmgqinst:

Display installation entries from mginst.ini on UNIX, Linux, and Windows.
Purpose

File mginst.ini contains information about all IBM MQ installations on a system. For more information
about mqinst.ini, see [[nstallation configuration file, mqinst.inil

Syntax

Reference 227

v
A

»»—dspmginst |
-p—InstallationPath
-n—InstallationName

(1)
(1)

-p—InstallationPath—-n—InstallationName

-n—InstallationName—-p—InstallationPath

Notes:

1 When specified together, the installation name and installation path must refer to the same
installation.

Required parameters
None

Optional parameters

-n InstallationName
The name of the installation.

-p InstallationPath
The installation path.

? Display usage information.

Return codes

Return code Description

0 Entry displayed without error
36 Invalid arguments supplied
44 Entry does not exist

59 Invalid installation specified
71 Unexpected error

89 .ini file error

96 Could not lock .ini file

131 Resource problem

Examples

1. Display details of all IBM MQ installations on the system:
dspmginst
2. Query the entry for the installation named Installation3:
dspmginst -n Installation3
3. Query the entry with an installation path of /opt/mgm:
dspmginst -p /opt/mgm
4. Query the entry for the installation named Installation3. Its expected installation path is /opt/mqm:
dspmginst -n Installation3 -p /opt/mgm

dspmgqrte:

Determine the route that a message has taken through a queue manager network.

228 IBM MQ: Reference

Purpose

The IBM MQ display route application (dspmqrte) can be run on all platforms except z/OS.
You can run the IBM MQ display route application as a client to an IBM MQ for z/OS queue manager by
specifying the -c parameter when issuing the dspmqrte command.

The IBM MQ display route application generates and puts a trace-route message into a queue manager
network. As the trace-route message travels through the queue manager network, activity information is
recorded. When the trace-route message reaches its target queue, the activity information is collected by
the IBM MQ display route application and displayed. For more information, and examples of using the
IBM MQ display route application, see [[BM MQ display route application}

Syntax

|—| Generation options '—

»»—dspmgrte
I— —c—| I— —1'—Cor'reZId—| Display options |—

\/

-q—TargetQName

A\
A

I— -m—QMgr‘Name—| I— -u—UserId—|

Generation options:

|
|
I— _acﬁ I— —d—Deliver—| I— —f—For‘war‘d—| L (1) I— —o—|
-ar -1—Persistence

I— -p—Priority—l I— -qm—Tar‘getOMgr‘Name—| I— -ro none
LReportOption]—|

l— -rg—~ReplyToQ | l— -s—Activities—| l— -t—Detail—l
I— -r*qm—RepZyToOMgr—|

v

A\

Yy
4

|—| Display options |—

|
I— —ts—TopicString—l I— —xp—PassExpir‘y—| I— —xs—Expiry—l L (2)
_n—

\

Display options:

-V summary
| |_ |

I |
I_ -b—l I_ -v all I— -w—WaitTime—l

i: none
outline
\\' DisplayOption]—|

Reference 229

Notes:

1 If Persistence is specified as yes, and is accompanied by a request for a trace-route reply message (
-ar), or any report generating options (-ro ReportOption), then you must specify the parameter -rq
ReplyToQ. The reply-to queue must not resolve to a temporary dynamic queue.

2 If this parameter is accompanied by a request for a trace-route reply message (-ar), or any of the
report generating options (-ro ReportOption), then a specific (non-model) reply-to queue must be
specified using -rq ReplyToQ . By default, activity report messages are requested.

Required parameters

-q TargetQName
If the IBM MQ display route application is being used to send a trace-route message into a queue
manager network, TargetQName specifies the name of the target queue.

If the IBM MQ display route application is being used to view previously gathered activity
information, TargetQName specifies the name of the queue where the activity information is stored.
Optional parameters

-c Specifies that the IBM MQ display route application connects as a client application. For more
information about how to set up client machines, see [Installing an IBM MQ client}

This parameter can be used only if the client component is installed.

-i Correlld
This parameter is used when the IBM MQ display route application is used to display previously
accumulated activity information only. There can be many activity reports and trace-route reply
messages on the queue specified by -q TargetQName. Correlld is used to identify the activity reports, or
a trace-route reply message, related to a trace-route message. Specify the message identifier of the
original trace-route message in Correlld.

The format of Correlld is a 48 character hexadecimal string.

-m QMgriName
The name of the queue manager to which the IBM MQ display route application connects. The name
can contain up to 48 characters.

If you do not specify this parameter, the default queue manager is used.
Generation options

The following parameters are used when the IBM MQ display route application is used to put a
trace-route message into a queue manager network.

-ac
Specifies that activity information is to be accumulated within the trace-route message.

If you do not specify this parameter, activity information is not accumulated within the trace-route
message.

-ar
Requests that a trace-route reply message containing all accumulated activity information is
generated in the following circumstances:
* The trace-route message is discarded by a IBM WebSphere MQ Version 7.0 queue manager.
* The trace-route message is put to a local queue (target queue or dead-letter queue) by a IBM
WebSphere MQ Version 7.0 queue manager.

¢ The number of activities performed on the trace-route message exceeds the value of specified in -s
Activities.

For more information about trace-route reply messages, see [Trace-route reply message reference]

If you do not specify this parameter, a trace-route reply message is not requested.

230 IBM MQ: Reference

-d Deliver

Specifies whether the trace-route message is to be delivered to the target queue on arrival. Possible

values for Deliver are:

Table 50. Delivery parameter values.

Value Description

yes On arrival, the trace-route message is put to the target
queue, even if the queue manager does not support
trace-route messaging.

no On arrival, the trace-route message is not put to the

target queue.

If you do not specify this parameter, the trace-route message is not put to the target queue.

-f Forward

Specifies the type of queue manager that the trace-route message can be forwarded to. Queue
managers use an algorithm when determining whether to forward a message to a remote queue

manager. For details of this algorithm, see [The cluster workload management algorithm| The possible

values for Forward are:

Table 51. Forward parameter values.

Value

Description

all

The trace-route message is forwarded to any queue
manager.

Warning: If forwarded to an IBM MQ queue manager
before Version 6.0, the trace-route message is not
recognized and can be delivered to a local queue despite
the value of the -d Deliver parameter.

supported

The trace-route message is only forwarded to a queue
manager that honors the Deliver parameter from the
TraceRoute PCF group.

If you do not specify this parameter, the trace-route message is only forwarded to a queue manager

that honors the Deliver parameter.

-1 Persistence

Specifies the persistence of the generated trace-route message. Possible values for Persistence are:

Table 52. Persistence parameter values.

Value Description

yes The generated trace-route message is persistent.
(MQPER_PERSISTENT).

no The generated trace-route message is not persistent.
(MQPER_NOT_PERSISTENT).

q The generated trace-route message inherits its persistence

value from the queue specified by -g TargetQName.
(MQPER_PERSISTENCE_AS_Q_DEF).

A trace-route reply message, or any report messages, returned shares the same persistence value as

the original trace-route message.

If Persistence is specified as yes, you must specify the parameter -rq ReplyToQ. The reply-to queue

must not resolve to a temporary dynamic queue.

If you do not specify this parameter, the generated trace-route message is not persistent.

231

Reference

-0 Specifies that the target queue is not bound to a specific destination. Typically this parameter is used
when the trace-route message is to be put across a cluster. The target queue is opened with option
MQOO_BIND_NOT_FIXED.

If you do not specify this parameter, the target queue is bound to a specific destination.

-p Priority
Specifies the priority of the trace-route message. The value of Priority is either greater than or equal
to 0, or MQPRI_PRIORITY_AS_Q_DEE. MQPRI_PRIORITY_AS_Q_DEF specifies that the priority
value is taken from the queue specified by -q TargetQName.

If you do not specify this parameter, the priority value is taken from the queue specified by -4
TargetQName.

-gqm TargetQMgrName
Qualifies the target queue name; normal queue manager name resolution applies. The target queue is
specified with -q TargetQName .

If you do not specify this parameter, the queue manager to which the IBM MQ display route
application is connected is used as the reply-to queue manager.

-ro none | ReportOption

Table 53. ReportOption parameter values.

Value Description
none Specifies no report options are set.
ReportOption Specifies report options for the trace-route message.

Multiple report options can be specified using a comma
as a separator. Possible values for ReportOption are:

activity The report option MQRO_ACTIVITY is set.

coa The report option
MQRO_COA_WITH_FULL_DATA is set.

cod The report option
MQRO_COD_WITH_FULL_DATA is set.

exception
The report option
MQRO_EXCEPTION_WITH_FULL_DATA is set.

expiration
The report option
MQRO_EXPIRATION_WITH_FULL_DATA is
set.

discard The report option MQRO_DISCARD_MSG is
set.

If -ro ReportOption or -ro none are not specified, then the MQRO_ACTIVITY and
MQRO_DISCARD_MSG report options are specified.

-rq ReplyToQ
Specifies the name of the reply-to queue that all responses to the trace-route message are sent to. If
the trace-route message is persistent, or if the -n parameter is specified, a reply-to queue must be
specified that is not a temporary dynamic queue.

If you do not specify this parameter, the system default model queue,
SYSTEM.DEFAULT.MODEL.QUEUE is used as the reply-to queue. Using this model queue causes a
temporary dynamic queue, for the IBM MQ display route application, to be created.

232 IBM MQ: Reference

-rqm ReplyToQMgr

Specifies the name of the queue manager where the reply-to queue is located. The name can contain

up to 48 characters.

If you do not specify this parameter, the queue manager to which the IBM MQ display route
application is connected is used as the reply-to queue manager.

-s Activities

Specifies the maximum number of recorded activities that can be performed on behalf of the
trace-route message before it is discarded. This parameter prevents the trace-route message from
being forwarded indefinitely if caught in an infinite loop. The value of Activities is either greater than
or equal to 1, or MQROUTE_UNLIMITED_ACTIVITIES. MQROUTE_UNLIMITED_ACTIVITIES
specifies that an unlimited number of activities can be performed on behalf of the trace-route

message.

If you do not specify this parameter, an unlimited number of activities can be performed on behalf of

the trace-route message.

-t Detail

Specifies the activities that are recorded. The possible values for Detail are:

Table 54. Detail parameter values.

Value Description

low Activities performed by user-defined application are
recorded only.

medium Activities specified in low are recorded. Additionally,
activities performed by MCAs are recorded.

high Activities specified in low, and medium are recorded.

MCAs do not expose any further activity information at
this level of detail. This option is available to
user-defined applications that are to expose further
activity information only. For example, if a user-defined
application determines the route a message takes by
considering certain message characteristics, the routing
logic can be included with this level of detail.

If you do not specify this parameter, medium level activities are recorded.

-ts TopicString

Specifies a topic string to which the IBM MQ display route application is to publish a trace-route
message, and puts this application into topic mode. In this mode, the application traces all of the

messages that result from the publish request.

-Xp PassExpiry

Specifies whether the report option MOQRO_DISCARD_MSG and the remaining expiry time from the
trace-route message is passed on to the trace-route reply message. Possible values for PassExpiry are:

Table 55. PassExpiry parameter values.

Value

Description

yes

The report option
MQRO_PASS_DISCARD_AND_EXPIRY is specified in
the message descriptor of the trace-route message.

If a trace-route reply message, or activity reports, are
generated for the trace-route message, the
MQRO_DISCARD_MSG report option (if specified), and
the remaining expiry time are passed on.

This parameter is the default value.

Reference 233

Table 55. PassExpiry parameter values. (continued)

Value Description

no

The report option
MQRO_PASS_DISCARD_AND_EXPIRY is not specified.

If a trace-route reply message is generated for the
trace-route message, the discard option and remaining
expiry time from the trace-route message are not passed
on.

If you do not specify this parameter, the MQRO_PASS_DISCARD_AND_EXPIRY report option is not
specified in the trace-route message.

-xs Expiry

Specifies the expiry time for the trace-route message, in seconds.
If you do not specify this parameter, the expiry time is specified as 60 seconds.
Specifies that activity information returned for the trace-route message is not to be displayed.

If this parameter is accompanied by a request for a trace-route reply message (-ar), or any of the
report generating options from (-ro ReportOption), then a specific (non-model) reply-to queue
must be specified using -rq ReplyToQ . By default, activity report messages are requested.

After the trace-route message is put to the specified target queue, a 48 character hexadecimal string is
returned containing the message identifier of the trace-route message. The message identifier can be
used by the IBM MQ display route application to display the activity information for the trace-route
message at a later time. This can be done using the -i Correlld parameter.

If you do not specify this parameter, activity information returned for the trace-route message is
displayed in the form specified by the -v parameter.

Display options

The following parameters are used when the IBM MQ display route application is used to display

collected activity information.

-b Specifies that the IBM MQ display route application only browses activity reports or a trace-route
reply message related to a message. This parameter allows activity information to be displayed again

at a later time.

If you do not specify this parameter, the IBM MQ display route application gets activity reports and
deletes them, or a trace-route reply message related to a message.

-v summary | all | none | outline DisplayOption

Table 56. DisplayOption parameter values.

Value

Description

summary The queues that the trace-route message was routed
through are displayed.

all All available information is displayed.

none No i