
1 #ibmlearning

Leveraging the Newest Tools to
Prevent and Minimize

the Impact of Outages in
WebSphere Commerce Sites

Lab Instructions

Authors:
Andres Voldman, WebSphere Commerce Support, voldman@ca.ibm.com

Charek Chen, Commerce Performance, charekc@ca.ibm.com
Steve McDuff, B2B Performance Architect, mcduffs@ca.ibm.com

mailto:voldman@ca.ibm.com
mailto:charekc@ca.ibm.com
mailto:mcduffs@ca.ibm.com

2 #ibmlearning

1 Introduction

This lab demonstrates how to troubleshoot a production incident using on-line tools

made available by the WebSphere Commerce team:

https://wcsupport.mybluemix.net

Instead of following step by step instructions, this lab presents a scenario and

different reports generated during the incident.

The lab will highlight different findings in the reports. You are welcome to navigate

the reports, and to come up with your own findings and questions.

1.1 Scenario

Shoppers report that the site is unresponsive and they are unable to checkout.

The following data is available for analysis:

a) IHS mpmstats data (automatically collected)

b) Java Health Center data (automatically collected)

c) Performance logger trace for the Performance Measurement tool (collected for

10 minutes during the issue)

d) DB2 data collected with db2collect.sh during the event for use with the

WebSphere Commerce DB2 Report tool

https://wcsupport.mybluemix.net/

3 #ibmlearning

1.2 Requirements

To complete this lab you need a desktop computer with internet access, a recent

version of Firefox or Chrome, and Excel or equivalent software that can open .xls

files.

The Excel viewer for Windows is available for download from the microsoft.com

website: https://www.microsoft.com/en-ca/download/details.aspx?id=10.

1.3 Preparation

Download the lab files and uncompress into a local directory:

ftp://public.dhe.ibm.com/software/is/commerce/education/labperftools.zip

The contents of labperftools.zip are as follows:

Baseline – Samples collected during healthy operation

db2collect.2015-09-19-09.25.46.zip Output of db2collect.sh for input to

the WebSphere Commerce DB2

Report tool

healthcenter180915_200709_15401098_63.hcd Health Center file for input to the

WebSphere Commerce Health

Center Report tool

javacore.20150919.085150.15401098.0084.txt Javacore file

performanceReport (directory) Report generated by the

Performance Measurement Tool

(PMT)

Error – Samples collected during the problem time

db2collect.2015-09-19-13.28.46.zip Output of db2collect.sh for input to

the WebSphere Commerce DB2

Report tool

healthcenter180915_200709_15401098_69.hcd Health Center file for input to the

WebSphere Commerce Health

Center Report tool

javacore.20150919.133054.15401098.0168.txt Javacore file

performanceReport (directory) Report generated by the

Performance Measurement Tool

(PMT)

error_log IHS error_log with mpmstats

output for the WebSphere

Commerce IHS Report Tool

* This file covers both periods,

before (baseline) and during the

problem

https://www.microsoft.com/en-ca/download/details.aspx?id=10

4 #ibmlearning

2 Analyzing the web server layer

As the entry point to the site, the web servers offer excellent statistics to understand

the load, performance, and general health of the site.

Next we’ll discuss how to use mpmstats statistics with the WebSphere Commerce

IHS Report tool to get insight into the timeline and severity of the production

incident we are investigating.

Mpmstats statistics

Mpmstats is a non-intrusive monitoring module that periodically logs the state of the

web server threads. It allows you to quickly get an idea of the load and health of the

site.

In the site being investigated, the default mpmstats configuration was updated to

get more frequent reports and logging of slow requests.

The configuration in httpd.conf is as follows:

<IfModule mod_mpmstats.c>

ReportInterval 60

TrackModules On

SlowThreshold 5

</IfModule>

ReportInterval: Every ReportInterval number of seconds, mpmstats reports thread

statistics if the server is non-idle. This was updated from 600 (10 minutes) to 60

(every minute).

Sample log entry:
[notice] mpmstats: rdy 43 bsy 7 rd 1 wr 6 ka 0 log 0 dns 0 cls 0

TrackModules: Enables monitoring of the number of threads active in the WebSphere

plug-in module.

Sample log entry:
[notice] mpmstats: bsy: 6 in mod_was_ap22_http.c

SlowThreshold (IHS Fix Pack 7.0.0.23+): Logs the number of requests that have

been active for longer than the time specified as threshold. Value is in seconds.

Sample log entry:
[notice] mpmstats (long-running only): bsy: 363 in mod_was_ap22_http.c

WebSphere Commerce IHS Report

The WebSphere Commerce IHS Report (https://wcsupport.mybluemix.net/wcihs/)

can be used to facilitate the analysis of mpmstats data.

https://wcsupport.mybluemix.net/wcihs/

5 #ibmlearning

2.1 Generating a new report

Use the WebSphere Commerce IHS Report tool to graph mpmstats statistics

generated prior (baseline) and during the problem time:

1. Access the WebSphere Commerce IHS Report tool:

http://wcsupport.mybluemix.net/wcihs/

2. Use this file to generate a report:

error\error_log

2.2 Reviewing the report

Open the report and navigate the following menu items:

1. mpmstats > Connections Chart

2. mpmstats > WebSphere Chart

3. mpmstats > WebSphere Chart (long running)

2.2.1 mpmstats - Connections by State

The Connections by State graph shows the state of the connections by time. The

frequency of the measurements is determined by ReportInterval in httpd.conf,

currently configured to 60 seconds.

In this graph you can clearly see that a sudden event was triggered at approximately

13:10, and the number of connections jumped.

The number of connections can increase due to a sudden increase in load (e.g. time

boxed promotion), or due to a responsiveness problem with the site.

Note that although all states are charted, due to overlaps (e.g. Busy and Writing),

some states might not be clear in the graph.

http://wcsupport.mybluemix.net/wcihs/

6 #ibmlearning

The complete list of states is as follows:

State Description

Ready (rdy) Threads started and ready for new connections

Busy (bsy)

Threads already associated to a connection. This number

includes threads in keep-alive state

Reading (rd) Reading a request from the client

Writing (wr)

Either processing the request (e.g. waiting for the Application

Server) or writing back to the client. This value typically

matches the number of requests waiting for the Commerce

servers

Keep-Alive (ka)

Threads waiting for new work (KeepAlive) on the same

connection

Logging (log) Writing to the logs

DNS Lookup

(dns)
Doing a DNS lookup

Closing (cls)

Threads that are waiting for the client to acknowledge that the

entire response has been received so that the connection can be

closed

2.2.2 mpmstats – WebSphere Chart

The WebSphere Chart uses TrackModules output to chart the number of threads in

the WebSphere plugin-in.

This second chart confirms that the increased threads are doing WebSphere work.

This could still be the result of increased load or slower responses.

2.2.3 mpmstats - Long Running WebSphere Plug-in Connections

When SlowThreshold is enabled, the WebSphere Commerce IHS Report also graphs

slow responses.

With SlowThreshold configured to 5 seconds in httpd.conf, the chart shows the

7 #ibmlearning

number of requests that have been active for 5 seconds or longer at every point of

measurement (every 60 seconds as configured with ReportInterval).

SlowThreshold only logs when slow responses are captured. The timeline of this

chart could be a bit misleading. Notice that this chart starts at 13:12 instead of 7:50

like the previous ones. This is because there were no slow responses before 13:12.

This confirms a large number of long running threads in the plug-in, which points to

a responsiveness issue with the WebSphere Commerce servers.

2.3 Learning Checkpoint

After reviewing the IHS Report we find the following:

1. The report confirms the event started at 13:10

2. Most connections are waiting on the plugin for response from the Commerce

servers

3. At some point all the connections are hung or slow responding

The next step is to see what was happening inside the Commerce servers to

understand why they might not be responding.

8 #ibmlearning

3 Analyzing the WebSphere Commerce layer

In this section we’ll analyze the WebSphere Commerce servers using the WebSphere

Commerce Health Center Report tool.

WebSphere Commerce Health Center Report tool

IBM Health Center for Java is a low overhead agent included with the WebSphere

Application Server Java SDK that collects Java configuration and performance data.

The data collected includes CPU, native memory, method profiling, garbage

collection, locks, threads, and others.

Configured in headless mode, the agent continuously collects performance data into

Health Center files (.hcd). This data is valuable not only for performance tuning, but

also serves as a performance "flight recorder" for root cause analysis of production

incidents.

The WebSphere Commerce Health Center Report tool uses the Health Center file

(.hcd) to generate a web-based report of the performance data with WebSphere

Commerce specific insight.

Configuring the Health Center agent

Although the Health Center agent is included with WebSphere, if you are not running

a recent SDK Fix Pack (7.0.0.37+), you might need to update it.

After the Health Center agent is enabled in the generic JVM properties, the server

will start to continuously log performance data into .hcd files.

The following link contains detailed instructions to configure a server:

Health Center agent - Installation

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W02f

8b2c4804e_40e0_bbd1_32921368b666/page/HC%20-%20Installation

3.1 Generating a new report

Use the WebSphere Commerce Health Center Report tool to analyze the data

collected by the Java Health Center agent during the time of the problem:

1. Access the WebSphere Commerce Health Center Report tool:

http://wcsupport.mybluemix.net/hctd/

2. Use this file to generate a report:

error\healthcenter180915_200709_15401098_69.hcd

For comparison purposes, you can also generate a report with data collected during

healthy operation (baseline) using this file:

baseline\healthcenter180915_200709_15401098_63.hcd

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W02f8b2c4804e_40e0_bbd1_32921368b666/page/HC%20-%20Installation
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W02f8b2c4804e_40e0_bbd1_32921368b666/page/HC%20-%20Installation
http://wcsupport.mybluemix.net/hctd/

9 #ibmlearning

3.2 Analyzing the Health Center report

Open the report generated with data collected during the problem and navigate

these menu items:

1. Overview

2. System > Environment

3. System > CPU Usage

The overview panel includes important findings and recommendations for the report:

Some of the findings might not be directly related to the outage, but it is still

worthwhile addressing them. The most interesting finding is that up to 20

WebContainer threads were found to be hung.

3.2.1 Java menu

When reviewing a report, it is a good practice to navigate the different panels to

identify anomalies.

The Java menu item provides access to Java configuration and garbage collection

analysis.

Open the report and navigate the following menu items:

1. Java > Config

2. Java > Statistics

3. Java > Heap Usage

4. Java > Large Allocations

The Java overhead (percentage of time spent doing garbage collection work versus

application work) and the pause times, under Statistics, are good indicators as to

whether the problem is related to Java garbage collection. In this case the values are

not alarming.

10 #ibmlearning

When a server is having memory problems, the garbage collection overhead is

typically +40%, and pauses are of several seconds.

The “Rate Of Garbage Collection” value can help you understand the level of load the

server was receiving, as more load also means more objects are created that need to

be garbage collected. This value is most useful when compared against a baseline.

Although Java garbage collection does not seem to be the cause of the outage, you

should take note of the report findings, to investigate them and address them at a

later time:

1. -Xgcpolicy:gencon not set. Generation Garbage Collection mode is

recommended

2. There are large allocations (largest allocation 20 MB)

When using the Java section of the report, keep in mind that to keep the overhead to

a minimum, the Java Health Center agent limits the information it collects and this

could affect the accuracy of the reports. If you suspect a Heap memory problem, use

a tool such as PMAT and garbage collection logging (verbose gc) for deeper analysis.

IBM Pattern Modeling and Analysis Tool for Java Garbage Collector (PMAT)

https://www.ibm.com/developerworks/community/groups/service/html/communityvi

ew?communityUuid=22d56091-3a7b-4497-b36e-634b51838e11

3.2.2 Thread analysis

Using Health Center for thread analysis has advantages over the use of javacores.

The Health Center agent automates the collection of thread stacks. Samples are

collected every 30 seconds and saved into the binary file.

Using the WebSphere Commerce Health Center Report tool you can extract thread

data into Javacore-like files (from Threads > Thread Dump menu item). The tool also

presents the thread data in charts and table format. The summarized views greatly

reduce the troubleshooting time.

The tool works by discovering activities in the stack and creating a list. The most

recent activity is called the “Base Activity”. It is graphed in the “WebContainer Base

Activity chart”. This chart is very helpful to identify bottlenecks. Commonly seen

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=22d56091-3a7b-4497-b36e-634b51838e11
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=22d56091-3a7b-4497-b36e-634b51838e11

11 #ibmlearning

base activities include: waiting on the database, waiting for an STMP server, waiting

for the Search server, and others.

The complete list of activities for a thread is called the activity chain. The activity

chain is read the same way you read Java stacks, in that the most recent activity is

to the left, and was initiated by the activity to its right. The activity chain helps

identify the code that executed prior to the base activity. You could find, for

example, that all the threads waiting for the database used the same EJB.

The following example summarizes a stack that is over 200 lines long:

Network(DB2):DBQuery:EJB(OrderItemAdjustmentBean):RESTTag:JSP(OrderShip

pingBillingConfirmationPage):Get:Runtime:Web

In this example the OrderShippingBillingConfirmationPage JSP, used the REST Tag to

access the database with the OrderItemAdjustment EJB. The thread is currently

waiting on the database to respond (Network(DB2)).

The tool also uses the concept of “Hung Threads”, which are threads whose stack

hasn’t changed from the previous sample (30 seconds ago). Highlighting hung

threads helps to quickly identify which threads are not moving.

Next we’ll review the charts the tool makes available with this data.

Open the report and navigate these menu items:

1. Threads > Thread Dumps

2. Threads > WebContainer Base Activity

3. Threads > WebContainer Detailed Activity

3.2.2.1 Threads > Thread Dumps

From this menu you can download thread data into Javacore-like files. It’s useful for

additional analysis or analysis of non-WebContainer threads.

3.2.2.2 Threads > WebContainer Base Activity

From the initial findings in the Overview panel we know that up to 20 threads were

detected as being hung, so the WebContainer Base Activity chart should show what

the threads are doing.

In this case, we find that most WebContainer threads are in use, and they are

waiting for DB2 to respond.

12 #ibmlearning

To facilitate analysis, the tool makes a distinction of hung threads. You can see that

the blue and orange lines (top 2), are both for threads waiting on DB2.

For reference, the baseline chart looks as follows. In healthy servers it is common to

find that only a few threads executing.

3.2.2.3 Threads > WebContainer Detailed Activity

The WebContainer Base Activity chart shows the bottleneck is the database. Next

we’ll review the WebContainer Detailed Activity chart which shows the complete

activity chains in table format. This table can be used to identify if all threads waiting

on the database are using the same code (e.g. same EJB), or if the delay appears to

be with all the queries that are executed.

By clicking on an activity chain, the tool reveals a popup with the original Java stack

from which the chain was created. This can be helpful if more details about the stack

are needed.

The review of the WebContainer Base Activity table shows that many of the DB2

queries hanging are for the INVENTORY table from the OrderProcess command:

13 #ibmlearning

The complete activity chain from the image above is as follows:

Network(DB2):CMD(InventoryBase):CMD(UpdateInventory):CMD(DoInventoryA

ction):CMD(ProcessOrder):CMD(OrderProcessPostApproval):CMD(BusinessFlowUrlEv

ent):CMD(OrderProcess)

This matches the report that many shoppers are unable to check out.

3.3 Learning Checkpoint

After reviewing the WebSphere Commerce layer we learned the following:

1. Java Health Center confirms a bottleneck in the Commerce servers

2. The report shows threads waiting on the database

3. Most threads are executing an inventory query from the OrderProcess

command

The next step is to analyze DB2 data to understand why these queries are

unresponsive.

14 #ibmlearning

4 Reviewing the database layer

Given that the WebSphere Commerce analysis points to threads waiting for DB2 to

respond, in this section we’ll analyze database activity.

Using the WebSphere Commerce DB2 Report tool

The WebSphere Commerce DB2 Report tool relies on the db2collect.sh script to

gather DB2 configuration and performance data using DB2 Monitor routines and

views. The collection is lightweight and provides a high level overview of database

performance.

db2collect.sh script

https://wcsupport.mybluemix.net/static/1/db2report/scripts/db2collect.sh

4.1 Generating a new report

Use the WebSphere Commerce DB2 Report tool to generate a report with data

collected during the problem time:

1. Access the WebSphere Commerce DB2 Report tool:

http://wcsupport.mybluemix.net/wcdb2/

2. Use this file to generate a report:

error\ db2collect.2015-09-19-13.28.46.zip

For comparison purposes, you can also generate a report with data collected during

healthy operation (baseline) using this file: baseline\ db2collect.2015-09-19-

09.25.46.zip

4.2 Analyzing the report

The following analysis is based on the report collected during the problem time. The

baseline is provided for comparison purposes.

Open the report generated with data collected during the problem and navigate

these menu items:

1. Overview

2. System

3. Config > Database

4. Config > Instance

5. Config > Profile Variables

https://wcsupport.mybluemix.net/static/1/db2report/scripts/db2collect.sh
http://wcsupport.mybluemix.net/wcdb2/

15 #ibmlearning

4.2.1 Overview

Same as with the previous tools, the Overview tab presents high level data, findings

and recommendations.

An important finding is that up to 45 connections we found to be in lock wait.

4.2.2 Connections

Continue analyzing the report by navigating the following menu items:

1. Connections > Agent State

2. Connections > Timeline

3. Connections > Active SQLs

4.2.2.1 Connections > Agent State

The Agent State chart shows the number of connections and their state at each

snapshot time. States include IDLE, waiting for locks, executing, and others. In a

way, you can think of this as the equivalent to mpmstats in the web server tier.

On a healthy database, you typically find only a few non-idle connections. In this

case, we find a very large number of connections waiting for locks, and that’s a

problem.

16 #ibmlearning

4.2.2.2 Connections > Active Statements

The Active Statements menu displays the statements that were actively executing at

the different snapshot times:

As expected, there are many connections (46) waiting for locks (LOCK:ACQUIRE)

while executing an inventory query. This matches the finding in the WebSphere

Commerce layer that showed many threads waiting for the database while executing

inventory logic from the OrderProcess command.

Interestedly, there is also a select for inventory data that is fetching all data for a

particular store. This can point to a batch job running.

17 #ibmlearning

4.2.3 Locking

Continue analyzing the report by navigating to the following menu item:

1. Locking

As we know the connections are in lock-wait state, next we’ll review the locking

menu item.

Under this option you find various locking data, such as statistics, configuration,

active lock waits, and queries involved in locking.

Locking statistics show there were 519 timeouts while the dbcollect.sh script was

running (13:16 to 13:28), and also significant wait time (in milliseconds). Compare

these values with the baseline report.

4.2.3.1 Summary of Active Lock Waits

The Summary of Active Lock-Waits table lists summarized information for the active

lock waits at the time of each snapshot.

Using the last snapshot (13:28) as an example, the table is interpreted as follows:

There is a single connection (Connections Blocking), holding at least 39 write row

locks on the INVENTORY table. These locks are blocking 45 other connections

(Connections blocked).

18 #ibmlearning

4.3 Interpreting the database data

The DB2 Report tool is meant as a high level, non-intrusive report of the health of

the database. As such, when you find a problem, you might need to do further

troubleshooting to complete root cause analysis.

In this case we know the problem is related to inventory. Inventory problems can

arise when:

a) All shoppers are buying the same products (e.g. free gift promotion)

b) A backend job is updating and locking the table

The fact that in the Summary of Active Lock-Waits table there is always a single

locker, and that the Active Statements captured a select statement for all inventory

records for a store, seems to indicate that a batch job is responsible for the locking.

4.3.1 Using the Excel data

As the data in the web report is aggregated and summarized, to get more specific

data you can use the Excel report which contains all the raw data as extracted from

the db2collect zip file.

A link to the Excel report can be found in the Overview panel:

Each report of the active lock waits shows a single locker. The question is: is it

always the same locker across snapshots?

Complete these steps:

1. From the Overview panel, download db2repot.zip

2. Extract the Excel file within the zip - db2report_MALL_2015-09-19-

13.28.46.xls

3. Find the lockwait tab. The data in this tab was extracted using this view:

MON_LOCKWAITS administrative view

http://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.l

uw.sql.rtn.doc/doc/r0056601.html

4. The lockwait sheet contains multiple snapshots (SNAPSHOT_TIME) column.

Review the locks captured.

5. The HLD_APPLICATION_HANDLE column contains the handle of the

connection holding the locks. Is it always the same one across snapshots?

http://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0056601.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.sql.rtn.doc/doc/r0056601.html

19 #ibmlearning

Your review should show you that handle 2607 is the single holder of the locks.

With the handle of the connection holding the locks (2607), we can use the

connections tab to find more details about the connection, such as the server is

coming from and the database user associated to the connection.

Complete these steps:

1. Open the connections tab

2. Locate application_handle 2607

3. Review the information available for the connection

The connection was initiated from server with IP 1.1.1.2, which is used exclusively

for batch jobs.

20 #ibmlearning

5 Final analysis and conclusion

Analysis of web server data helped us understand the timeline and severity of the

production issue.

Analysis of the WebSphere Commerce servers showed that most threads were hung

waiting on the database to respond, in particular for an inventory query that is

executed as part of checkout (OrderProcess command).

DB2 analysis confirmed the findings in the other layers and showed a large number

of connections in Lock-Wait while executing a select for update for inventory data.

The database report also showed that a single connection (2607) was holding all the

locks. This connection was coming from the server with IP 1.1.1.2 which is known to

be used exclusively for batch jobs.

Further analysis confirmed that a brand new inventory update job was started at 1

PM. This job selected and updated all the inventory records for a store. This was

done using a single database transaction that could last several minutes.

5.1 Resolving the problem

After working with the developers, the code of the custom inventory job was updated

to implement multiple transactions. This allows freeing up the locks more quickly and

minimizes the impact to shoppers.

21 #ibmlearning

6 Optional activities

The following are optional activities:

6.1 Analyzing Java performance with the Performance Measurement Tool (PMT)

Shows how to analyze the WebSphere Commerce servers during the production

incident using the Performance Measurement Tool (PMT).

6.2 DB2 Top 10 SQL performance analysis

Shows how the Top 10 SQL reports can help you find misbehaving queries or queries

that could be cached.

6.3 Analysis: The inventory table is also queried during add-to-cart. Why was

locking only happening during order process?

Discusses how the inventory table is queried from the storefront and the use of the

currently committed DB2 setting.

22 #ibmlearning

6.1 Analyzing Java performance with the Performance Measurement
Tool (PMT)

Another way to analyze performance in the WebSphere Commerce layer is by using

the Performance Measurement Tool (PMT).

WebSphere Commerce Fix Pack 9 includes a new series of performance loggers. The

Performance Measurement Tool can then be used to parse the logs (trace.log) and

generate performance reports.

Performance measurement loggers

http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.a

dmin.doc/refs/rlsperfmeasureservicelog.htm

Although the logger can be left enabled, it can be verbose in production. To

troubleshoot this problem the logger was only enabled for a few minutes.

The trace specification used is as follows:
com.ibm.commerce.foundation.logging.service.*=FINE

For convenience, the PMT reports were already generated using

generatePerformanceReport.bat

Using the Performance Measurement tool

http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.a

dmin.doc/tasks/tdccachemeasuring.htm

Complete these steps:

1. Pre-generated PMT reports are available under the performanceReport folder

for both, the baseline and error time. Select the error folder

2. Open report-operations.html inside the performanceReport folder

3. Inside the Operation Performance Report, sort by Cumulative Execution Time

in descending order. This highlights the operations taking the most time.

http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/refs/rlsperfmeasureservicelog.htm
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/refs/rlsperfmeasureservicelog.htm
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tdccachemeasuring.htm
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tdccachemeasuring.htm

23 #ibmlearning

Your screen should look as follows:

The report shows Order Process and Inventory commands as the most time

consuming, confirming the findings from the Health Center report.

The Performance Measurement Tool is also able to link operations to their callers,

and to display invocation trees.

Complete these steps:

1. Select the stack link for the OrderProcess command, to find the operations

inside OrderProcess that take the most time:

2. The stack data is presented in xml format. Three sample stacks are taken for

this operation: The fastest, the average, and the slowest. Review the xml file.

To facilitate analysis, if available, read the xml file using an editor such as

Notepad++ with no word wrapping.

3. Using the duration attribute, locate the operations inside OrderProcess that

are consuming the most time.

24 #ibmlearning

You should find that the UpdateInventoryCmdImpl accounts for most of the

OrderProcess time:

This links the OrderProcess to the Inventory command. The finding matches what

was found with the WebSphere Commerce Java Health Center Report tool.

25 #ibmlearning

6.2 DB2 Top-10 SQL performance analysis

In the WebSphere Commerce DB2 Report tool, under the Performance menu, you

can find Top-10 SQL Analysis.

This section of the report shows the most expensive queries by different criteria,

such as execution time, number of executions, rows reads and others. It can very

useful to highlight problematic queries.

6.2.1 Generating a new report

Use the WebSphere Commerce DB2 Report tool to generate a report with data

collected during the problem time:

1. Access the WebSphere Commerce DB2 Report tool:

http://wcsupport.mybluemix.net/wcdb2/

2. Use this file to generate a report:

error\ db2collect.2015-09-19-13.28.46.zip

6.2.2 Reviewing the most expensive queries

When a query is problematic, you often see that its cost is orders of magnitude

higher than any other.

Reviewing the top queries by execution time shows the inventory select. You can see

that the lock_wait_time value is almost the same as the stmt_exec_time.

If there were other slow queries, such as due to a missing index, they would also

show in this report.

Reviewing the top queries by number of executions shows something interesting,

that although is not related to the outage, is something that can be fixed.

The top query by number of executions executes 4 times more than the second

highest. The query is to retrieve State/Province and Country data:

SELECT T1.STATEPROVABBR, T1.NAME, T1.LANGUAGE_ID, T1.COUNTRYABBR,

T1.OPTCOUNTER FROM STATEPROV T1 WHERE (T1.COUNTRYABBR = ANY (SELECT

http://wcsupport.mybluemix.net/wcdb2/

26 #ibmlearning

COUNTRY.COUNTRYABBR FROM COUNTRY WHERE COUNTRY.NAME = ? AND

COUNTRY.LANGUAGE_ID = T1.LANGUAGE_ID) AND T1.LANGUAGE_ID = ?)

State/Province and Country data is ideal for caching:

1. The data set is very small

2. Data almost never changes

3. Very high hit ratio expected (few cache entries prevent a high number of

database queries)

WebSphere Commerce does offer caching for most of these objects. Review the list

of beans that can be cached with the Data Cache:

Logical cache names and the DistributedMaps they use by default

http://www-

01.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc

/refs/rdclogcachnameDM.htm

The Data Cache defines caches with name CountryCache and StateProvinceCache

inside the WCSystemDistributedMapCache distributed map:

When these caches are enabled, queries for the STATEPROV/COUNTRY tables are

only expected during cache warm up.

Next Steps:

As WebSphere Commerce provides caching for these objects, validate that the Data

Cache is enabled and sized correctly, in particular the

WCSystemDistributedMapCache distributed map that contains the state/province and

country caches.

Enabling WebSphere Commerce data cache

http://www-01.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/refs/rdclogcachnameDM.htm
http://www-01.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/refs/rdclogcachnameDM.htm
http://www-01.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/refs/rdclogcachnameDM.htm

27 #ibmlearning

http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.a

dmin.doc/tasks/tdcenabcommdatacache.htm

When reviewing other queries, either because they run too frequently or too slow,

the following articles can be of use:

1. Performance: Why is this SQL running so frequently?

https://www.ibm.com/connections/blogs/wcs/entry/performance_why_is_this

_sql_running_so_frequently

2. Tips for troubleshooting slow queries (DB2)

https://www.ibm.com/connections/blogs/wcs/entry/tips_for_troubleshooting_

slow_queries_db2

http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tdcenabcommdatacache.htm
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tdcenabcommdatacache.htm
https://www.ibm.com/connections/blogs/wcs/entry/performance_why_is_this_sql_running_so_frequently
https://www.ibm.com/connections/blogs/wcs/entry/performance_why_is_this_sql_running_so_frequently
https://www.ibm.com/connections/blogs/wcs/entry/tips_for_troubleshooting_slow_queries_db2
https://www.ibm.com/connections/blogs/wcs/entry/tips_for_troubleshooting_slow_queries_db2

28 #ibmlearning

6.3 Analysis: The inventory table is also queried during add-to-cart. Why
was locking only happening during order process?

The inventory table is queried from different pages in the storefront, including add-

to-cart. Why was only OrderProcess failing?

The database uses the cur_commit setting, which is recommended:

With the currently committed (cur_commit) setting, instead of locking, scans using

the cursor stability (CS) isolation level return data that is currently committed,

meaning values before the write operation.

Currently committed semantics improve concurrency

http://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.ad

min.perf.doc/doc/c0053760.html

During add-to-cart, the inventory query is executed with cursor stability (CS)

isolation level, which is the default:

SELECT T1.QUANTITY, T1.FFMCENTER_ID, T1.INVENTORYFLAGS, T1.CATENTRY_ID,

T1.QUANTITYMEASURE, T1.STORE_ID, T1.OPTCOUNTER
 FROM INVENTORY T1

 WHERE (T1.CATENTRY_ID = ? and T1.FFMCENTER_ID = ? and T1.STORE_ID = ?)

 or (T1.CATENTRY_ID = ? and T1.FFMCENTER_ID = ? and T1.STORE_ID = ?)

 or (T1.CATENTRY_ID = ? and T1.FFMCENTER_ID = ? and T1.STORE_ID = ?)

order by T1.CATENTRY_ID

Then, even if the row being read is currently being updated by another connection,

the currently committed setting comes into play and instead of locking the query, it

returns the inventory value that was committed to the database prior to the update

operation.

During OrderProcess inventory is updated. The code uses this query to find the

inventory rows prior to issuing the update statement:

SELECT T1.QUANTITY, T1.FFMCENTER_ID, T1.INVENTORYFLAGS, T1.CATENTRY_ID,

T1.QUANTITYMEASURE, T1.STORE_ID, T1.OPTCOUNTER

 FROM INVENTORY T1

 WHERE (T1.CATENTRY_ID = ? and T1.FFMCENTER_ID = ? and T1.STORE_ID = ?)

 FOR UPDATE

 WITH RS

http://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.admin.perf.doc/doc/c0053760.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.admin.perf.doc/doc/c0053760.html

29 #ibmlearning

The select for update explicitly specifies Read Stability (RS) isolation level instead of

CS. With RS, the currently committed setting does not come into play and the

connection needs to wait for the other connection to release the lock by either

committing or rolling back its transaction.

If the cur_commit setting had been off, the impact of the inventory job would have

been greater, as also pages reading inventory would have locked.

30 #ibmlearning

7 Link Reference

7.1 General

1. WebSphere Commerce Support Tools

https://wcsupport.mybluemix.net/

2. CSE-WebSphere Commerce blogs

https://www.ibm.com/connections/blogs/wcs

7.2 WebSphere Commerce IHS Report

3. WebSphere Commerce IHS Report

https://wcsupport.mybluemix.net/wcihs/

4. Module mod_mpmstats

http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_mpmstats.html

5. Using IBM HTTP Server 7.0.0.23/8.0.0.4 and later extended module timing

diagnostics

http://publib.boulder.ibm.com/httpserv/ihsdiag/mpmstats_module_timing.ht

ml

6. Blog article: mpmstats: The eye to the site

https://www-

304.ibm.com/connections/blogs/wcs/entry/mpmstats_the_eye_to_the_site

7. WebSphere Commerce IHS Report – Community

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wi

ki/W02f8b2c4804e_40e0_bbd1_32921368b666/page/WebSphere%20Comme

rce%20IHS%20Report

7.3 WebSphere Commerce Health Center Report

8. WebSphere Commerce Health Center Report

https://wcsupport.mybluemix.net/hctd/

9. Health Center agent - Installation

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wi

ki/W02f8b2c4804e_40e0_bbd1_32921368b666/page/HC%20-%20Installation

10. IBM Pattern Modeling and Analysis Tool for Java Garbage Collector

https://www.ibm.com/developerworks/community/groups/service/html/com

munityview?communityUuid=22d56091-3a7b-4497-b36e-634b51838e11

https://wcsupport.mybluemix.net/hctd/
https://www.ibm.com/connections/blogs/wcs
https://wcsupport.mybluemix.net/wcihs/
http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_mpmstats.html
http://publib.boulder.ibm.com/httpserv/ihsdiag/mpmstats_module_timing.html
http://publib.boulder.ibm.com/httpserv/ihsdiag/mpmstats_module_timing.html
https://www-304.ibm.com/connections/blogs/wcs/entry/mpmstats_the_eye_to_the_site
https://www-304.ibm.com/connections/blogs/wcs/entry/mpmstats_the_eye_to_the_site
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W02f8b2c4804e_40e0_bbd1_32921368b666/page/WebSphere%20Commerce%20IHS%20Report
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W02f8b2c4804e_40e0_bbd1_32921368b666/page/WebSphere%20Commerce%20IHS%20Report
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W02f8b2c4804e_40e0_bbd1_32921368b666/page/WebSphere%20Commerce%20IHS%20Report
https://wcsupport.mybluemix.net/hctd/
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W02f8b2c4804e_40e0_bbd1_32921368b666/page/HC%20-%20Installation
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W02f8b2c4804e_40e0_bbd1_32921368b666/page/HC%20-%20Installation
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=22d56091-3a7b-4497-b36e-634b51838e11
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=22d56091-3a7b-4497-b36e-634b51838e11

31 #ibmlearning

7.4 WebSphere Commerce DB2 Report

11. WebSphere Commerce DB2 Report

https://wcsupport.mybluemix.net/wcdb2/

12. Performance: Why is this SQL running so frequently?

https://www.ibm.com/connections/blogs/wcs/entry/performance_why_is_this

_sql_running_so_frequently

13. Tips for troubleshooting slow queries (DB2)

https://www.ibm.com/connections/blogs/wcs/entry/tips_for_troubleshooting_

slow_queries_db2

7.5 Inventory

14. Blog: That's my product! Dealing with inventory contention

https://www.ibm.com/connections/blogs/wcs/entry/that_s_my_product_deali

ng_with_inventory_contention

7.6 Performance Measurement Tool

15. Blog: Find your Performance Bottlenecks Using Statistics Gathered at Every

Layer

https://www-

304.ibm.com/connections/blogs/wcs/entry/find_your_performance_bottleneck

s_using_statistics_gathered_at_every_layer

16. CSE PMT Blogs

https://www-304.ibm.com/connections/blogs/wcs/tags/pmt

17. Performance measurement loggers

http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.com

merce.admin.doc/refs/rlsperfmeasureservicelog.htm

18. Using the Performance Measurement tool

http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.com

merce.admin.doc/tasks/tdccachemeasuring.htm

https://wcsupport.mybluemix.net/wcdb2/
https://www.ibm.com/connections/blogs/wcs/entry/performance_why_is_this_sql_running_so_frequently
https://www.ibm.com/connections/blogs/wcs/entry/performance_why_is_this_sql_running_so_frequently
https://www.ibm.com/connections/blogs/wcs/entry/tips_for_troubleshooting_slow_queries_db2
https://www.ibm.com/connections/blogs/wcs/entry/tips_for_troubleshooting_slow_queries_db2
https://www.ibm.com/connections/blogs/wcs/entry/that_s_my_product_dealing_with_inventory_contention
https://www.ibm.com/connections/blogs/wcs/entry/that_s_my_product_dealing_with_inventory_contention
https://www-304.ibm.com/connections/blogs/wcs/entry/find_your_performance_bottlenecks_using_statistics_gathered_at_every_layer
https://www-304.ibm.com/connections/blogs/wcs/entry/find_your_performance_bottlenecks_using_statistics_gathered_at_every_layer
https://www-304.ibm.com/connections/blogs/wcs/entry/find_your_performance_bottlenecks_using_statistics_gathered_at_every_layer
https://www-304.ibm.com/connections/blogs/wcs/tags/pmt
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/refs/rlsperfmeasureservicelog.htm
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/refs/rlsperfmeasureservicelog.htm
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tdccachemeasuring.htm
http://www.ibm.com/support/knowledgecenter/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/tasks/tdccachemeasuring.htm

