

A fairy tale about engineering statistics applications within system life-cycle in order to extract its value. freely inspired by Peter and the Wolf

Contents

- · If words mean something
- · Role
- · Challenges
- Development Process walkthrough
 - User needs
 - Systems Requirements
 - System Architecture
 - Sub-system/component design
 - Component testing
 - System integration
 - System verification
 - System validation
 - System Maintenance
 - System Disposal
- Key Messages

Quantitative

Drives the "good enough" trade-offs in an un-certain environment by

Engineering statistics alias the integration

of statistical and engineering analysis concepts to

Systems

Holystic view with passion and skill for key elements and interfaces

Engineer

Design and manage complexity

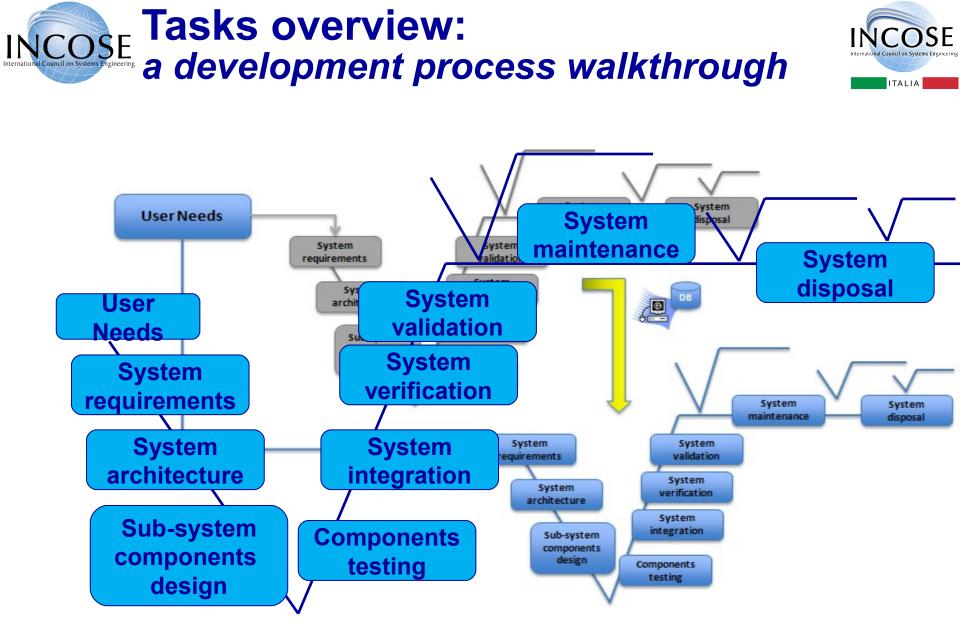
Incose SE twelve roles

Table 1. Systems Engineering Roles

Role	Abbr.	Short Name
1	RO	Requirements Owner
2	SD	System Designer
3	SA	System Analyst
4	VV	Validation/Verification Engr.
5	LO	Logistics/Ops Engineer
6	G	Glue Among Subsystems
7	CI	Customer Interface
8	TM	Technical Manager
9	IM	Information Manager
10	PE	Process Engineer
11	CO	Coordinator
12	CA	Classified Ads SE

Adapted from "TWELVE SYSTEMS ENGINEERING ROLES" Sarah A. Sheard

The Quantitative Systems Engineer is an engineer with specific skills and an holistic view that fosters the system **value** through the key decision points of the overall system life-cycle by applying: the engineering statistics skills and experience

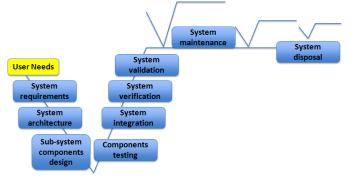


Uncertainty & Variability

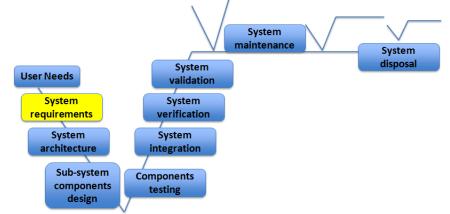
Challenges:

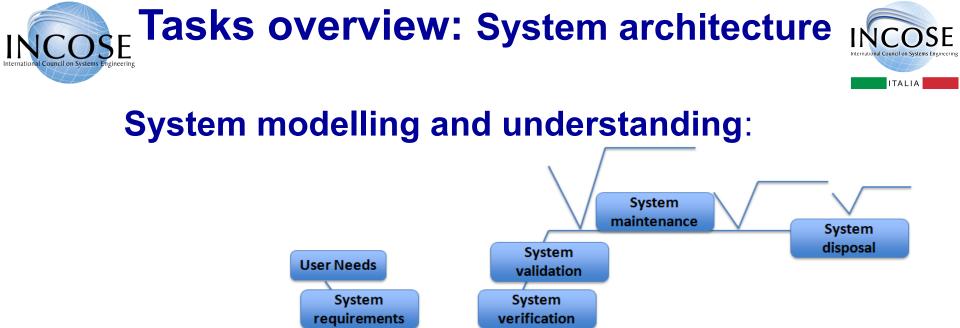
Holistic & detailed mindset

Good enough & Value



Tasks overview: User needs


Collect, identify and refine the **user needs**, understand **project challenges**, identify **usage scenario, characterize human factors:**


- Market trends analysis and customers appraisals: qualitative/quantitative analysis, Kano models, QFD
- KPIs target definition: e.g. Cost targets, Ppk, OEE
- User needs quality assessment: testable targets
- > Usage scenario: Multivariate Data Analysis
- Set-up Validation strategy and plan

Tasks overview: System requirements

Define and qualitatively assess the System Requirements:

- Targets definition: Inferential statistics, TPMs: TBF, TTR, binomial, poisson, and normal
- Evaluate the technical opportunities: ANoVA, inference
- Verification strategy: Combine practical statistical methodologies with technical and project challenges to determine: what, how much and how to test.

System modelling: Simulation, Sysml

System

architecture

Sub-system

components

design

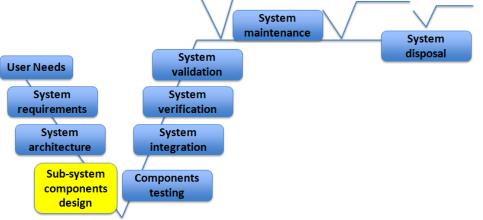
Risk assessment: FMECA, Fault Tree Analysis

System

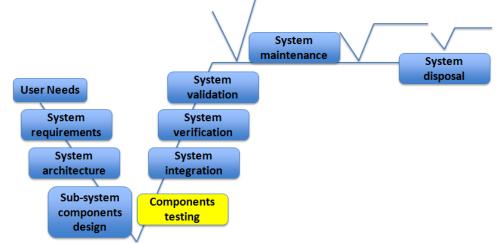
integration

Components

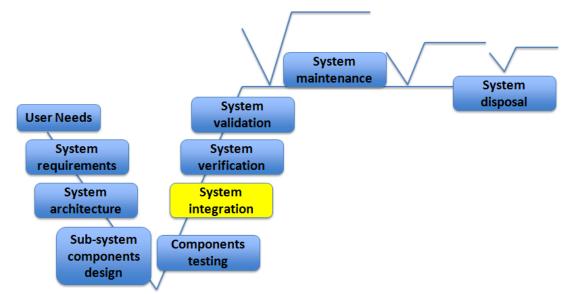
testing


Evaluate the technical opportunities: Simulation and inference.

Tasks overview: Sub-systems/component design

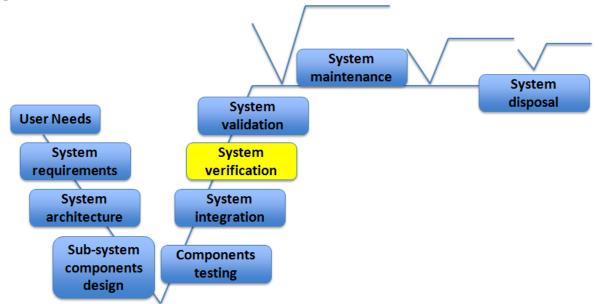

Integration of traditional engineering and statistical analysis:

- Alternatives selection: ANoVA, Design of Experiments, non-parametric statistics
- Sub-systems pre-assessment: Simulation, preliminary testing.
- Robust Design: DoE, noises, loss functions
- Components reliability: ALT, stress tests


Integration of traditional engineering and statistical analysis:

- Components assessment: HW/SW black and white box testing
- Technical Measures assessment: ANoVA, Design of Experiments, comparison tests.

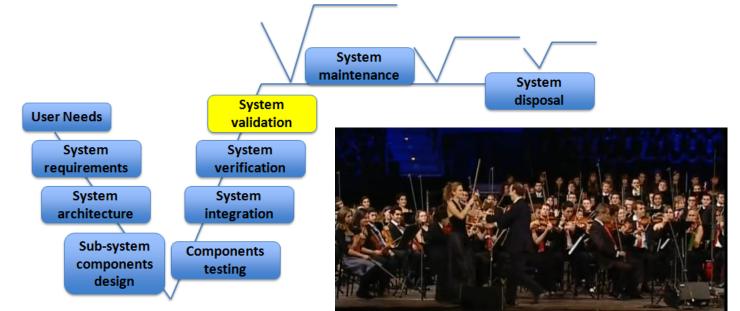
Integrate the system components/sub-systems:



- Interface assessment: Comparative tests, Statistical inference.
- Technical Measures assessment: preliminary testing, SPC, inferential and non-parametric statistics.
- Issue resolution: PDCA cycles, root cause analysis.

F Tasks overview: System verification

Is the system right?

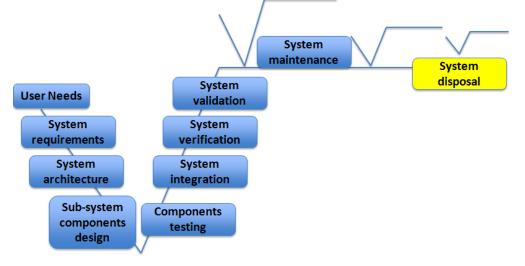


- Update and deploy verification plans: Inferential statistic
- Un-expected events: risk assessment update, risk analysis, bayesian statistic
- FMECA re-evaluation

Tasks overview: System validation

Is the right system?

- Update and deploy validation plans: Inferential statistic, risk assessment and risk analysis
- Un-expected events: root cause analysis, risk assessment and risk analysis, bayesian statistic.
- > Value analysis update


Is the system **still** right? System maintenance System disposal System User Needs validation System System requirements verification System System architecture integration Sub-system Components components testing design

- Quality checks: SPC, reliability data analysis
- Issues/problems/crisis: Root cause analysis, Design of Experiments, risk re-assessment and analysis
- Continuous improvement: Value analysis update

Tasks overview: System disposal

Was the system valuable? What can we learn?

- Historical data analysis: SPC, Multivariate Data Analysis, data mining.
- Value analysis: Qualitative/quantitative analysis
- Lessons learned: track product success/failures history

- * A relevant part of system knowledge and value is enclosed into data.
- * There are methodologies, tools and capabilities to consolidate and to extract it.
- The Quantitative System Engineer can deal this task during and after the overall system life-cycle.