
Achieving Agility at ScaleAchieving Agility at Scale

Alan W. BrownAlan W. Brown

IBM Rational CTO for EuropeIBM Rational CTO for Europe

alanbrown@es.ibm.com

Topics

• Summary

• Becoming agile

• Thinking agile

• Staying agile

• Where to begin…

Stovepiped

Tools

Rethinking Software Delivery

Operations

C
re

a
tiv

e
 B

e
h
a

v
io

r

P
ro

c
e

d
u

ra
l R

ig
o

r

R
equirem

ents

D
esign

C
oding

R
elease

C
hange M

anage

B
uild &

 Integrate
C
hange m

anage

Test

U
nit test

Development

Analysis

Design

Automation

Code/test

Automation

Platform

Production

Automation

Platform

Waterfall

Process

Platform

Consumers

Users

Operations

C
re

a
tiv

e
 B

e
h
a

v
io

r

P
ro

c
e

d
u

ra
l R

ig
o

r

Development Common

Software Delivery Automation

Analysis

Design

Code

Automation

Software

Delivery

Automation

Agile

Delivery

Process

Platform

Collaborative Automation Platform

M
aintain

Implications

Automation

Measurement

Close Customer Relationship

Project visibility

4

The 3 Key Areas for Effective Agile

Software Delivery

Drive organizational
consensus on

priorities and improve
workforce productivity

Collaboration

Continuously improve
by measuring progress

against desired
business outcomes

Visibility

Lower costs and improve
quality by automating
workflows based on
real-time information

Automation

How Do You Scale Agile Software Delivery?

• Focus on the key Agile practices

– Match them to your organization, people, maturity, projects, culture……etc…

• Reinforce the delivery practices that support your teams

– Find out what works….grow the skills and practices

• Change the delivery rhythm, and make it more transparent

– Push teams to work in shorter cycles with greater feedback and input

• Support practices with automated tooling

– Help overcome the collaboration and integration issues for larger, distributed

teams….make them part of the daily work habits

• Measure and report to get management buy-in and support

– Clearly align technology improvements to business goals, and demonstrate the

value to the business

6

Summary
• Collaborative life-cycle management is the key set of

practices and technologies that unify your organization

• Achieving agility at scale requires new ways of thinking,

acting, and sustained transformation

• Rational´s Jazz platform
– A unified platform that includes collaboration, automation and reporting can

dramatically improve the business process of software delivery

– Embracing open integration strategies, enables IBM and its partners to leverage

and develop best-of-breed solutions

– Achieving business differentiation with agility and confidence is a reality today!

Storage
Collaboration

QueryDiscovery

Administration:
Users, projects,

process

Best Practice Processes

Presentation:

Mashups

Future
IBM

Capabilities

Product
& Project

Management

Compliance
&

Security

Collaborative
Lifecycle

Management
Engineering
& Software
Tools

Business
Planning &
Alignment

Your
existing

capabilities
3rd-Party
Jazz

Capabilities

Topics

• Introduction

• Becoming agile

• Thinking agile

• Staying agile

• Where to begin…

Agile in Context

• There is a difference between:

– Scaling agile practices in collaborative teams

– Introducing agile practices to scaled

collaborative teams

– Providing agile collaboration to scaled teams

• What are the practical implications?

Development
Beijing, China

Development
Pornichet, France

Mgt,Development
Raleigh, US

UA
San Jose, US

Development
Austin, US

Development
Paris, France

Development
Perth, Australia

Research
Haïfa, Israel

Rational Team
Concert

SCM

Work Items

Build

Selfhosting Jazz

server on z/OS

Example 1: Distributed Agile Team

Approx 25 people

• RTCz development project

– Selfhosted on System z

• Access from Jazz.net

– ‘RTCz for System z Project’

– Based on the Scrum template

• Geographically Distributed
Development

– 3 main Scrum teams

• RTP (Raleigh, US)

• FASL (France & Australia)

• BF (Austin, US)

• 2 parallel development lines

– Main development

• Release v2.0

• Post v2 development

– IPD Product Delivery

Canada – (14%)

Israel – (3%)

China – (8%)

Japan – (<1%)France – (2%)

United States – (46%)

India – (19%)

Switzerland – (1%)

Mexico – (2%)

Brazil – (<1%)

Poland – (<1%)

Australia– (<1%)

Sweden – (1%)

UK – (3%)

Approx. 2000 people worldwide

Data from 2010

Example 2: IBM Rational Core Dev. Team

Executive

Dashboard

Development

Health

Business

Health
Development

Quality
Perceived

Quality

� Defect Backlog

� Test Escapes

� Functional Test Trends

� Critical Situations

� System Test Trends

� S-Curve Progress

� Automation Percentage

� Customer Testcases

� Consumability Scorecard

� Defect Latency

� Quality Plan Commitments

� Test Coverage

� Defect Density

� Build Health

� Project Velocity

� Staffing Variance

� Process Timeliness

� Iteration/Milestone Status

� Severity Analysis

� Security Vulnerabilities

� Static Code Analysis

� Requirements Met

� IPD Timeliness

� Transactional Survey

� PMR / Call Rates

� Critical Situations

� Cost of Support

� Installability

� RFE SLAs

� Usability

� Consumability

� Scalability

� Integrations with other

products

� User Experience / Doc

� Time to Resolution

� APAR:PMR ratio

� PostGA metrics

� Transparency

� Sales Plays

� Partner Enablement

� Support Enablement

� Technical Enablement

� Sales Enablement

� MCIF Index

� Alt Packaging

� OEMs

� XL hits

� Tactics

� ROI

� Pipeline / Multiplier

� Revenue

Practices
Vulnerability Assessment

Concurrent Testing

Test Driven Development

Whole Team

Team Change Management

Evolutionary Architecture

Requirements Management

Metric
2006

Measurement

On Time Delivery 47% 82% 100%

Defect Backlog 9+ Months 4.5 months 3.5 months

Beta Defects Fixed Before GA 3% 88% 94%

Customer Calls ~135,000 -24% -16%

Customer Defects Arrival ~5,900 -22% -20%

Lab Advocates 177 240 255

Lab Advocate Companies 203 251 269

Design Partners 25 74 91

Beta Programs 9 26 33

Transparent Products 0 1 7

Ship Readiness 5.4 7.3 7.6

2009
Measurement

2008
Measurement

Example 3: Global Software Integrator

Global Delivery Supply Staffing Plan

Romania
2007 YE HC - 251

2008 YE HC - 860

2009 YE HC - 1,800

French, German,

Italian, English

Egypt
2007 YE HC - 50

2008 YE HC - 150

2009 YE HC - 350

English, Arabic
India
2007 YE HC - 31,975

2008 YE HC – 37,100

2009 YE HC – 41,000

English, (German

training underway)

China
2007 YE HC - 4,048

2008 YE HC – 7,000

2009 YE HC – 16,000

Japanese, English

Vietnam
2007 YE HC - 116

2008 YE HC - 400

2009 YE HC - 800

French, English,

Japanese

Philippines
2007 YE HC - 352

2008 YE HC - 500

2009 YE HC – 1,000

English

Latin America

� Brazil

�Mexico

� Argentina

� Chile
2007 YE HC - 2,855

2008 YE HC – 3,340

2009 YE HC – 5,100

Spanish,Portuguese,

English

2007 YE HC

2009 YE HC

Software Factory – Virtual Application Optimization Services Environment

Requirements
Analysis Center

SAP TAC

TAC = Technology Assembly Center

2. The SOA TAC

completes its work

and dispatches it back

to the Design Center

through the Quality

Center

4. The solutions

are developed,

tested, quality

checked and the

appropriate work

packet reflecting

this is sent back

to the Design

Center

1. The Design

Center packages

necessary artifacts

into a Solution

Design Work

Packet and

dispatches it to the

SOA TAC

3. The Design Center

creates a Test Work

Packet and dispatches

it to the Test TAC

Client
Design Center

Client
Design Center

Test TACTest TAC

Integration
Center

Integration
Center

Design CenterDesign Center

Quality
Center
Quality
Center

SOA TACSOA TAC

3
3

2

2 1

1

4
4

�Design and technology assembly centers are integrated through a standardized work request/response

mechanism. Each center is a delivery team providing specialized services in one or more capability areas

�Work packets enable mobility of work while capturing complete, consistent and reusable instructions for
successfully delivering high-value solutions with lower cost and risk

Case Study: A Global Enterprise Focused on

Improving Productivity and Efficiency

• Collaboration across Global Delivery Teams
• Multiple suppliers, multiple geographies, multiple business units

• Reduce Waste and Optimize Resources and Assets
• Aligned practices to provide a consistent and integrated development

approach with standardized tooling across the organization

• Optimized Reuse of Core Assets and Practices
• Catalog, categorize, and assess the value of current asset inventory to make

it more accessible across the organization

• Asset categories from development, delivery, and deployment

• Business Cost Management Focus
• Greater cost transparency redefine expense ratios

• Move toward virtualized and cloud-based infrastructure

• Continual monitoring of project health across the portfolio of projects, and

across a wide variety of tools and practices

IBM Case Study : An Evaluation of Potential

ALM Savings
• Worldwide AD project chosen for evaluation

– c. 2,800 Man Day AD project which is part of broader programme

– IBM managed and resourced programme based on T&M

– Programme assets developed that have and can be re-used
• Includes : code, components, documentation, security

– 80% of resource effort on project has been offshore
• Handpicked offshore team based on skill-sets required

• Offshore PM’s and technical leads landed during design phase

• Regular ‘High-touch’ visits by core team and customer

• Expectation management, specific instructions and follow-up key

• Online collaboration tools critical (IM, Live meetings)

• Detailed ex-Post analysis of effort across project phases

established a further 15% cost saving potential based on

use of ALM tools and process

– Development > 25% productivity savings (resources mostly

offshore)

– Test > 25% productivity savings (resources mostly offshore)

ALM will make

this more of the

norm based on

industrial tools &

processes vs. the

exception based

on the talents,

effort and visibility

of a single team

Representative

productivity

saving for rest of

programme

IBM Case Study : De-risking More Aggressive

Off-shoring of project

On:Off

Ratio

Avg/Cost

Day

20:80 Baseline Cost

30:70 +11%

40:60 +49%

De-risking

on/offshore

Resource Mix

On:Off

Ratio

Avg/Cost

Day

20:80 - 33%

30:70 - 26%

40:60 Alt. Baseline Cost

More Aggressive

on/offshore

Resource Mix

Same 2800

Man Day Project

ALM will de-risk more aggressive

off-shoring through enhanced :
traceability,

componentisation

collaboration, and

governance

…..based on integrated workflow

and performance management

metrics

AGILE development

IBM Case Study : Baseline Man Days Billed for Project

Staffing of project has been an average of 20:80 onshore/offshore

Requirements Design Development Test

Days

IBM Case Study : Man Days

Projected with ALM Discipline (ex-Post)
FTE Savings - Major reduction in Development and Test effort expected due to

enhanced definition and tracking of requirements and ‘decoupled’ test cycles

Requirements Design Development Test

Days

(Reduced by 1 month)

Cycle time reduced

by 1 month

Reduced

peak effort

IBM Case Study : ALM Productivity Savings

Between Project Without vs. With ALM Discipline

Days

saved

Requirements Design Development Test
(Reduced by 1 month)

Development reduced

from 4 to 3 months*

Estimated total Project Days saved = 18% (*excludes any asset reuse)

1% net increase

in design effort

25%+ less

Development*
25%+ less

Testing

IBM Case Study: Source of Productivity Savings

• Quality Management
– Reporting / Quality assessment supported by tooling increased productivity of onshore

management team.

• Data Management
– ALM Tooling enables data analysis and modelling, increasing quality of data used to test,

reducing development and test timelines.

• Requirements Traceability
– Design and code development from requirements reduces design gaps and misunderstanding

– Significant time saved in Development from not having to query requirements for unclear design.

– Reduced critical and major defects in test as build is more focused at requirements and design.

– CR’s more easily scoped for estimated impact when considering impacted existing
requirements, design, test scripts.

• End to End Environment Management
– Faster environment procurement

– Predefined developer profiles – resources effective immediately

• On boarding from Dev/Test factory
– Faster on-boarding

– Guaranteed skill sets

***Not considered but could equally save more in productivity

– Jump start design using template blue prints and other assets

– Jumpstart teams using blue print software components e.g. security component

– Reduced risk allows more aggressive offshore model

Three Common Solution Patterns
Vertically aligned

> Centralized ALMaaS

Divided by Function

> Integrated ALM Cloud

Outsourced

> Secure and Connected

◄ Integrated team with collaborative,

transparent and automated workflows

◄ Functional silos, organized by

discipline and line organization, form

software delivery chain

◄ Organizations depending on functions and

contributors outside corporate

boundaries, while preserving IP security

24

Example: Managing Service Providers at La Caixa

From: Ferran Rodenas, Director Dev Architecture, Serveis Informatics La Caixa

Example: Agile at scale adoption at Danske Bank

2009

Total IT expenses

(DKK millions)
4,093

Portion attributable to IT integration expense

(DKK millions)
266

Total IT expenses/operating expenses (%) 14.2

Ejby

Brabrand

Lyngby

• Dashboards and reports

• Integration with HP Quality Center

• Integration with existing task management system

Work item types Plan layout
Timelines, workflows and

permissions

From: Christian Bornfeld, Group Architect, Danske Bank

Example: Visibility and Transparency at

Panasonic Automotive

From: Robert Baillargeon, SW Engineeing Manager, Panasonic Automotive Systems

Topics

• Introduction

• Becoming agile

• Thinking agile

• Staying agile

• Where to begin…

Mainstream Agile Practices

• Regular Deployment
of Working Software

• Non-Solo
Development

• Refactoring

• Continuous
Integration

• Configuration
Management

• Test Driven
Development (TDD)

• Agile Testing

• Agile Documentation

The Agile Construction Lifecycle

The Full Agile Delivery Lifecycle

Challenges with Agile in the Mainstream

Agile
Development

Co-located

Geographical distribution

Global

Compliance requirement

Low risk Critical,
Audited

Application complexity

Simple,
single
platform

Complex,
multi-platform

Organization distribution
(outsourcing, partnerships)

Team size

Under 10
developers

100’s of
developers

Degree of Governance

In-house Third party

Informal Formal

Entrenched process,
people, and policy

Minimal Significant

Achieving Agility at Scale

Disciplined agile teams:

1. Produce working software on a regular basis.

2. Do continuous regression testing, and better yet take a

Test-Driven Development (TDD) approach.

3. Work closely with their stakeholders, ideally on a daily basis.

4. Are self-organizing, and disciplined teams work within an

appropriate governance framework.

5. Regularly reflect, and measure, on how they work together and

then act to improve on their findings in a timely manner.

Conventional Governance

Activity-based management Results-based management
Mature processes, PMI/PMBOK More art than engineering

Plan in detail, then track variances Plan/steer/plan/steer…

Adversarial relationships Honest collaborative communication
Paper exchange, speculation Progressions/digressions, facts

Requirements first Architecture (risk mitigation) first
Assumes certainty in desired product Admits uncertainties
Avoid change Manage change

Early false precision Evolving artifacts
“More detail = higher quality” Scope (Problem specs)

Design (Solution specs)
Constraints (Planning specs)

Apply too much or too little process Right-size the process
Process is primary, blind adherence Desired results drive process

Manage variances

Agile Governance

Critical culture shifts in improving software economics

Actual Path

Thinking Agile means “Measure and Steer”
• At onset of program

– Report: Establish estimates/variances of effort, cost, establish initial plan

– Collaborate: Set initial scope and expectations with stakeholders

– Automate: Establish a collaborative development environment

Uncertainty
in stakeholder

satisfaction space

Variance in
estimate to
complete

Initial Planned Path

Initial Plan

Initial State

� At each iteration, improve estimates and report

� Report: Values and variances of progress achieved, quality achieved, resources expended

� Collaborate: With stakeholders to refine scope and plans

� Automate: Manage changes to plans, baselines, test-beds

Case Study: A Large-scale Agile

Improvement Effort

• A large Scandinavian bank

• 2000+ developers

• 6 business units

• Development teams are often

geographically distributed

IBM Practice Library
Start here!

A version of these practices is available in OpenUP

Case Study – Practices by Priority
• Foundation

– Iterative Development

– Two-Level Planning

– Team Change Management

– Shared Vision

– Continuous Integration

– Whole Team

• High

– Risk-Value Lifecycle

– Test-driven development

– Use case-driven development

• Medium

– Evolutionary Architecture

– Concurrent Testing

• Low

– Business Process Sketching

– Evolutionary Design

• Ultra Low

– Process authoring and Tailoring

– Requirements Management

– Formal Change Management

– Component Based Software

Architecture

– Design Driven Implementation

– Test Management

– Independent Testing

– Application Vulnerability

Assessment

– Performance Testing

What’s in a Practice?

• Key concepts

• Work products

• Tasks

• Guidance

• Measurements

• Tool mentors

Roles, work products, tasks

• Roles

– Product owner

– Scrum master

• Work Products

– Product backlog

– Blockers list

– Sprint Goal

– Task Board

– Epics

– User stories

• Tasks

– Various

Screen shots from published versions of

SCRUM EPF and OpenUP

Measures help answer key questions
Agile-Related

Measures

IT-Related

Measures

Business-Related

Measures

Projects deliver

faster than today

Appropriate level of

management and

analysis activities

Agile role

adoption

Projects deliver with

lower overall cost

than today

Systems created or

updated in the

projects have the

agreed quality

The development

organisation is a

learning

organisation

Employee

satisfaction

Agile work product

adoption

Agile task

adoption

Agile process

adoption

Efficient change

request process

Efficient

requirements

definition and

signoff

Fewer breakages

when solution

elements are

integrated

Less “solution

hardening” needed

Agile practice

adoption

Are we meeting

business

objectives?

Are we seeing the

benefit where we

expected?

Are we agile?

Selecting Measures (Metrics)
• Simple criteria

– Who cares?

– Will it add value?

– Will collection be

intrusive?

Case Study – Initial Metrics

Business-related Agile-related

Cycle time

reduction

•Time spent from project initiation

to delivery of first increment

•Time spent from project initiation

to project closure

•Sprint velocity

•Blocking work items

Quality •Defects (severity 1 and 2) in

production per 100 FPs

•Defect trend

Continuous

optimisation

•Process maturity level •Adoption of agile practices

Productivity •Function points per man year •Sprint burndown chart

•Release burndown chart

Category: Cycle time reduction

Metric: Sprint velocity

Objectives Sprint velocity is used to measure the performance (and therefore capability) of

the team. The velocity is useful in identifying the trend of how much work a team

can complete in a sprint.

Baseline Metric The number of points is plotted on the Y-axis and sprints on the X-axis. In initial

sprints, the team velocity is typically low but subsequently increases and

stabilises as the project proceeds. If the velocity rises or falls dramatically then it

needs the immediate attention.

Unit Velocity can be measured in term of points, days, hours, or any other unit the

team is using for estimation.

Responsibility Project Manager.

When to Measure During project execution.

Manual/Automate

d

Automated in Rational Team Concert.

Data Repository Available in Rational Team Concert.

Project

Calculation

Velocity, calculated as the number of units of work the team has completed in a

given sprint. Units can be points, days, hours or any other unit your team is using

for estimation.

Example See over for chart.

Target A trend of a steady or increasing number of work items addressed over time.

Sprint Velocity Example

Taken from RTC 2.0 project at jazz.net on 3rd December 2009

Category: Quality

Metric: Defect trend

Objectives The defect trend is used to ensure that arrival and closure rates have some

correlation (i.e. that your arrivals don’t consistently outpace your closure, resulting

in a high defect backlog), to determine the remaining defect backlog, to project

the future defect arrival/close rate up to (and after) customer ship.

Baseline Metric Slope of a trend chart showing total cumulative defects (total found – total closed)

over time. Ideally, the slope should be flat or decreasing.

Unit Chart slope.

Responsibility Project Manager.

When to Measure During project execution.

Manual/Automate

d

Automated in Rational Team Concert.

Data Repository Available in Rational Team Concert and Rational Quality Manager.

Project

Calculation

•Number of defects found for each unit of time (usually a week, but could be day

or month, depending on sprint length).

•Number of defects closed for each unit of time.

•Total cumulative defects (total found - total closed).

Example See over for chart.

Target A trend of a steady or decreasing number of defects over time.

Defect Trend Example

Taken from RTC 2.0 project at jazz.net on 3rd December 2009

Category: Productivity

Metric: Sprint burndown chart

Objectives A sprint burndown chart allows the progress of the sprint to be measured.

Baseline Metric Slope of the chart. The number of remaining units (such as work items or hours)

is shown on the Y-axis, together with the number of planned units, and time is

shown on the X-axis. Ideally, the trend of remaining units should go down as time

progresses.

Unit Chart slope.

Responsibility Project Manager

When to Measure During project execution.

Manual/Automate

d

Automated in Rational Team Concert.

Data Repository Available in Rational Team Concert.

Project

Calculation

•Number of planned units during time I for the sprint.

•Number of actioned units during time I for the sprint.

Example See over for chart.

Target A trend of a decreasing number of remaining units over time.

Sprint Burndown Example

Taken from RTC 2.0 project at jazz.net on 3rd December 2009

Agile Adoption Example (detail)

Agile Adoption Example (summary)

Case Study – Automation

Automated Manual

Cycle time

reduction

•Time spent from project initiation to

delivery of first increment

•Time spent from project initiation to

project closure

•Sprint velocity

•Blocking work items

Quality •Defects (severity 1 and 2) in production

per 100 FPs (FP count is manual)

•Defect trend

Continuous

optimisation

•Process maturity level

•Adoption of agile practices

Productivity •Function points per man year (FP count

is manual)

•Sprint burndown chart

•Release burndown chart

Topics

• Introduction

• Becoming agile

• Thinking agile

• Staying agile

• Where to begin…

Consider all the elements

• Delivering agility in your organization requires several coordinated

elements

• Process and method content based on content from standard frameworks

(SCRUM and OpenUP) augmented with content from the organization´s

existing processes extended with guidance from IBM.

• A workbench delivering the appropriate supporting capabilities to automate,

accelerate, guide and measure adoption of the new practices.

• Decision framework for selection of lifecycle practices that are appropriate

to the project characteristics, and guide process adaptation.

• Metrics and dashboards for assessing projects, BU, and organizational

KPIs.

• Pilot strategy and criteria for selecting pilots, managing candidate pilot

project adoption, and adjusting practices and tool based on pilot progress.

• Organizational improvement through scheduled training activities,

support/coaching concept and communication, and broad educational tasks.

Typical programme structure & plan for large-scale

Agile at Scale rollout

The programme must be structured as:

• Initial setup phase to define standards, setup benefit tracking mechanisms and setup programme
governance and oversight

• An ongoing oversight and steering stream to enforce standards, ensure continuity and track
benefits across the disparate projects

• For each ‘practice area’:

– A set of Pilot projects on a small pool of users per area (2-5 projects). These would typically
take 3-6 months to setup and then require 3-6 months of ‘running’ to evaluate the concept and
make improvements

– Once the pilot has completed, a separate ‘launch’ scale out is needed to be rolled out
across the organization

Groupwide LaunchPilot Phase

Setup

Setup Overarching
Governance

Agree KPIs

Identify
Target Projects

Overarching strategy

Design, Build & Test

Agree & charter
Pilot objectives

Training &
Change Management

Training & Onboarding
Materials

Mentors & Champions

Centre of Excellence

Process Adoption

Oversight & Steering

Methods & Standards

Steering Benefit Tracking Lessons Learned

Run Pilot Projects

Review & Improve

E
v
a
lu
a
tio
n

3-6 months per Pilot2-3 months 3-6 months per Pilot Determined by rollout plan

Run Proof of Concepts

Scaling and change mgt

A Call To Action
• Consider an Agile Pilot Project

– See it work for yourself

– Get mentoring help

• Get some Agile training
– Project management training is critical

– Training modelers, developers, … is also critical

• Get an Agile Health Check
– Look at key agile practice areas

– Use a Measured Capability Improvement Framework (MCIF) to

establish target

• Adopt appropriate Agile practices
– Select agile practices that optimize you project characteristics

– Align with control mechanisms and risk-mitigation strategies

– Support with tools that automate those practices

© Copyright IBM Corporation 2011. All rights reserved.

The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied. IBM shall not be responsible
for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these materials
to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way.

IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks of the International Business Machines Corporation,
in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

