

EMF’s Guide for Medical
Device Company Executives

How to develop better products, save money, meet
FDA/CDRH requirements more efficiently, and avoid

recalls, lawsuits, and nasty criminal complaints that can
put you in Jail

Jerry Krasner, Ph.D., MBA

 March 2009

Embedded Market Forecasters

 American Technology International, Inc.

 2

About EMF: www.embeddedforecast.com 508-881-1850

EMF is the premier market intelligence and advisory firm in the embedded technology
industry. Embedded technology refers to the ubiquitous class of products which use some
type of processor as a controller. These products include guided missiles, radars, and
avionics as well as robots, automobiles, telecom gear, and medical electronics.

Embedded Market Forecasters (EMF) is the market research division of American Technology
International, Inc. EMF clients range from startups to Global 100 companies worldwide.
Founded by Dr. Jerry Krasner, a recognized authority on electronics markets, product
development and channel distribution, EMF is headquartered in Framingham, Mass.

About the author:

Jerry Krasner, Ph.D., MBA is Vice President of Embedded Market Forecasters and its parent
company, American Technology International. A recognized authority with over 30 years of
embedded industry experience, Dr. Krasner has extensive clinical research and medical industrial
experience, including the successful filing of more than a dozen 510k submissions.

Dr. Krasner served as President of Biocybernetics, Inc. and CLINCO, Inc., Executive Vice
President of Plasmedics, Inc. and Clinical Development Corporation, and Director of Medical
Sciences for the Carnegie-Mellon Institute of Research. He has been the principal investigator of
several NIH funded clinical research programs.

Dr. Krasner was formerly Chairman of Biomedical Engineering at Boston University, and
Chairman of Electrical and Computer Engineering at Wentworth Institute of Technology.

Dr. Krasner earned BSEE and MSEE degrees from Washington University, a Ph.D. in Medical
Physiology / Biophysics from Boston University and an MBA from Nichols College.

Copyright 2009 by Embedded Market Forecasters, a division of American Technology
International, Inc, 1257 Worcester Road #500, Framingham, MA 01701. All rights reserved. No
part of this document covered by copyright hereon may be reproduced or copied without
expressed permission. Every effort has been made to provide accurate data. To the best of the
editor’s knowledge, data is reliable and complete, but no warranty is made for this.

 3

EMF’s Guide for Medical Device

Company Executives

Jerry Krasner, Ph.D.
January 2009

Table of Contents

Overview…………………………………………………………………………. 4

Creating Value by Adopting Best Practices for Medical Device
Development …………………………………………………………………….. 5

Recommended Best Practices that your developers should consider
………………………………………………………………………………………. 5

APPENDIX A: CEO’s Guide to Best Practices for Systems and Software
Development ……………………………………………………………………. 7

 APPENDIX B: CEO’s Guide to Cost Containment and Enhanced ROI .. 16

 4

I. The Challenge

On July 31, 2008 a Senate Bill cosponsored by Senators Edward Kennedy (D – MA) and Chuck
Grassley (R– IA) was filed that would require senior officers or directors of drug and medical
device companies to certify under penalty of perjury that all information submitted for a product’s
approval is accurate and in compliance with federal regulations.

The Drug and Medical Device Accountability Act Bill expired at the end of the two year Senate
session on December 31, 2008, but is being refilled for the new Senate session.

The Bill provided that product applications later found to have contained false or misleading
information would be subject to stiff fines (up to $5,000,000), assessed both to companies and
their senior officers, who, in addition, could face jail sentences of up to 20 years.

EMF recommends that medical device CEOs advantage themselves by addressing the
impact and consequences of the anticipated new law now before they are forced to do
so under a less favorable time frame. Strategically, the best approach that a medical
device company can take is to utilize the best technology that the industry has to offer –
an approach that includes:

 Requirements Definition and Management
 Change and Configuration Management
 Quality Management/Testing – Software Verification and Validation Tools
 Modeling
 Release Management
 Documentation
 Team Collaboration

Fortunately for medical device company executives, a currently available technology
exits that can integrate all of the above mentioned technologies in an efficient and
comprehensive manner. This technology, known as Model Driven Development (MDD),
can be integrated into a company’s exiting development processes and use their existing
tool sets. MDD can integrate other developmental, testing, validation and tracking tools
provided by many embedded vendors.

Currently, MDD is the most effective strategic approach to dealing with the entire design
and deployment process. Most importantly, to executives who must sign off on the Drug
and Medical Device Accountability Act, it provides the best assurance that what they
represent is factual based on an accurate and fully documented trail. This paper is
intended to present a roadmap illustrating how executives can be in compliance with the
Bill. In addition, by utilizing MDD, companies can increase their ROI and significantly
reduce the chance of a product recall or a patient injury. EMF has created a second
paper that details a step by step description of how developers can integrate these
processes into their current development programs, and can be located and downloaded
at www.embeddedforecast.com .

 5

II. Creating Value by Adopting Best Practices for Medical Device Developments

Let’s examine ways in which companies and their senior officers and directors can protect
themselves against inadvertently certifying information that could be viewed as misleading or
inaccurate.

On May 11, 2005 the CDRH issued a non-binding “Guidance for the Content of
Premarket Submissions for Software Contained in Medical Devices”. Given the potential
consequences of improper filings contained in the Drug and Device Accountability Act of
2008 it would constitute a best practice for any CEO to embrace the guidance provided by the
CDRH.

1) Risk assessment and management is a very important part of your filing with the
CDRH and can be your best approach for protecting you under the Act. Be
exceedingly careful in documenting the “Level of Concern” section of your
application. It would be wise to include systems failure documentation that is
available through modeling or formal methods for certification. Make sure that
you specify the correct level of concern and document your approach to rectifying
potential failures.

2) Submit a Device Hazard Analysis for all software devices – include all hazards
(hardware and software) associated with the products intended use. This can
include the user GUI and how it might be operated by personnel who work under
stressful conditions.

3) Submit a Software Requirements Specification (SRS) that includes functional,
performance, interface, and developmental requirements for the software,
including hardware, OS and programming language requirements.

4) Include an Architecture Design Chart (flowchart or similar illustration) that
describes the relationships among the major functional units in the software
device. There should be sufficient information to allow for the organization of the
software relative to the functionality and intended use of the software device.

5) The software design specification should present information to demonstrate that
the work performed by the software development engineers was clear and
unambiguous, with minimum ad hoc design decisions.

6) Submit a summary of the Life Cycle plan and the Life Cycle processes employed.
It will be useful to include an annotated list of the control/baseline documents
generated during the software development process, and a list or description of
software coding standards.

7) Include verification and validation documentation and base it on the claimed
Level of Concern. Whenever software is changed, a validation analysis should be
conducted to validate the specific change and also to determine the extent to
which this change may impact the entire systems operation. Documentation and
tracking is essential.

8) Include a revision level history of software revisions generated during the course
of product development.

III. Recommended Best Practices that your company should consider

1) Take advantage of modeling technologies. Choose a development platform that
can easily integrate testing and management tracking information, easily upgrade
legacy product code when improvements are added, or when underlying
hardware has changed. Model Driven Development (MDD) technology is not only

 6

effective for meeting this need, but EMF data shows that the expected ROI
derived from using MDD is significantly higher than that for development
methods that don’t employ MDD.

2) Reuse Your Existing Assets: MDD offers code visualization and “reverse
engineering” capabilities which in essence provides a company credit to the
CDRH for pre-existing software without having to start from the beginning again.
Your legacy code can be imported to a MDD model and redeployed as a product
upgrade, or it can be redeployed to a new hardware platform.

3) Validate Design Requirements Early: MDD is particularly useful in this regard.
This will reduce development costs and development time from design start to
shipment (EMF data year-over-year confirms this).

4) Automated testing, the ability of your software to automatically generate test
parameters, examine outcomes and automatically document test outcomes,
should be considered as a best practice.

5) Traceability must be complete and audited to protect the CEO under the act. This
should be considered a good design practice. However, it is important to initiate
traceability early in the development process in order to gain management
efficiencies. Consider automating traceability as a best practice.

6) Document third party code -know what’s in your application even it’s not yours:
Software provided by a third party for which adequate documentation may not
exist is known as Software of Unknown Pedigree (SOUP). As a CEO you can
follow two paths: explain the origin of the software and the circumstances
surrounding the software documentation, or; use MDD to import the SOUP and
apply rigorous testing and validation analysis to it. Some MDD tools allow SOUP
to be either integrated into the product or to be treated as a separate legacy
component for which analysis can verify and validate systems operation. Formal
code certification tools can also be used to ensure that SOUP code is safe.

7) Initiate and document training programs participation for all areas of
development, testing, deployment and support – BEFORE submitting the 510k
application.

Summary

In order to assist companies to be compliant with the tenants of the new Drug and
Medical Device Accountability Act, EMF has set out a series of guidelines and
recommended best practices for medical device executives to consider. EMF has strived
to create a strategic awareness of how currently available technology can be used to
address issues pertaining to the law as well as to use the same technology to create
value by reducing costs and enhancing design outcomes and time-to-market issues.

In the following appendices, EMF lays out supporting information to acquaint medical
device executives with the technologies that can be employed to address the issues
raised by the new law as well as supporting data to show the advantages of using MDD.

Executives should be delighted to see that they don’t have to change development and
testing tools already in use, or change established processes in order to implement MDD
into their development, testing and documentation efforts.

EMF will release a more technical paper for medical device developers that will detail,
step-by-step, how to implement these procedures.

 7

 APPENDIX A

CEO’s Guide to Essential Components for Systems and Software Development

Within the “systems and software development domain” EMF identifies 6 essential
components which are included in our assessment of systems best practices:

 Requirements Definition and Management
 Configuration Management
 Quality Management/Testing – Software Verification Tools
 Modeling and Architecture
 Release Management
 Team Collaboration

Requirements Definition, Traceability and Management:

Requirements Management tools are used to define, prioritize, and maintain
requirements for software systems and applications. In many cases when developments
fail to meet pre-design objectives, it is because requirements are not clearly defined or
clearly tracked to ensure that developments stay on course. Key to this is the ability to
analyze and maintain changes to such requirements. Requirements traceability is also
included under requirements management. It is necessary to be able to trace each
requirement back to its origin and document every change made during the course of
the development. Being able to trace architectural, design, test and implementation
elements back to the requirements that spawned them is important.

Sophisticated requirements management tools have been available for a long time, and
apparently haven’t been sufficiently employed by military contractors or the military. An
overview/analysis of such tools is certainly useful to systems developers, senior managers,
CEOs and CFOs.

High Rely, Inc., a Phoenix, AZ based certification and software consulting company, has
published an excellent detailed evaluation and subgroup breakout of Requirement
Management and Traceability tools. Their comparative analysis includes configuration
management and documentation subcomponents.

EMF is a leading market analysis organization and a supplier of fact-based survey data
that reflects market conditions, developer preferences and measurable design
outcomes. EMF does not evaluate competitive products. High Rely is a respected
software consulting/development and certification organization (e.g., DO-178B
certification, CDRH 510k) and is very qualified to make such comparisons. The following
is High Rely’s competitive evaluation published herein with their permission. EMF
believes that this breakout and assessment is important for readers of this report, and
EMF is grateful for High Rely’s cooperation.

High rely specifies the attributes of these tools that they deem most important in order to
achieve traceability:

 Ability to classify requirements
 Requirements relationship with user-defined attributes

 8

 Advanced filtering, grouping, sorting for reports and documents generation
 Automatic change management
 Import/export tools for interfacing with other tools and applications
 Unique traceability tools for impact and gap analysis
 Bottom-to-top and top-to-bottom traceability
 Availability for common tagging schemas to be employed, while also allowing for

customized tagging schemas

High Rely breaks out requirements and traceability tools with the following groups and
subgroups that they deem important:

 Capturing Requirements/Identification
o Input document enrichment/analysis
o Input document change/comparison analysis
o Automatic parsing of requirements
o Interactive/semi-automatic requirement IDs
o Batch mode operation

 Identify inconsistencies: If so what kind of …

 Configuration management

o Access control (modification, viewing, etc.)

 Documents and other Output Media
o Standard specification output (if so, what kind)
o Quality & consistency (spelling, data dictionary)
o Presentation output
o Custom output features & markings
o WYS/WYG (what you see is what you get) previewing of finished

output
o Status reporting

High Rely developed a capability comparison matrix for requirements management tools
in these categories, which is presented in Table A-I. For each of the above
characteristics they list each tool according to:

 Fully provided (F)
 Partially provided (P)
 Not provided (N)

The following tools are presented in Table A -1

 CRM – CaliberRM
 IBMR - IBM Requisite Pro
 RaQ - RaQuest 2.4
 Cont - Contour
 DCSE - Dassault CSE
 DOOR – IBM -Telelogic DOORS
 Rely - RelyTRACE

 9

 CRM IBMR RaQ Cont DCSE DOOR Rely
 Capturing Requirements/Identification F F F F F F F
 Input document enrichment/analysis F F F N F F F
 Input document change/comparison analysis P F F N P F P
 Automatic parsing of requirements F F N F P F P
 Interactive/semi-automatic requirement IDs F F P F F F F
 Batch mode operation F F F F N F F
 Identify inconsistencies: If so what kind of … F F F P F F F
 Configuration management F F F F F F F
 Access control (modification, viewing, etc.) F P F F F F N
 Documents and other Output Media F F F F F F F
 Standard specification out put (if so, what kind) F P F P P F F
 Quality & consistency (spelling, data dictionary) F P P F F F N
 Presentation output F P F F P F P
 Custom output features & markings P F N F F F F
 WYS/WYG previewing of finished output F F P F F F F
 Status reporting F F F F F F P

 Table A-I: Requirements & Traceability Tools (source High Rely, Inc., with permission)

Configuration Management

Developers need a system that enables them to keep track of reported software
changes and support the ability to track defects throughout the entire software lifecycle.
In addition, developers and managers need to be able to manage multiple versions of
the same unit information. Such tools fall under the name of revision control, source
control or source code management (SCM). Traditional configuration management and
revision control systems models used a shared server for all functions which ran the risk
that if multiple developers were using the same file at the same time they might wind up
overwriting each other’s data. These shared control systems solved the problem by
either using a file locking method or a version merging model.

High Rely recommends in their evaluation of configuration management and revision
control tools that developers use a SCM tool that smoothly provides graphical
differencing and merging – but they also state that there is a need to take manual steps
to ensure data integrity and avoid conflicts.

Table A-II presents High Rely’s assessment of configuration and change management,
and revision control tools:

 10

 SVN – Subversion: Best choice for small companies
 AllChange – Intrasoft: Flexible and customizable
 CM Synergy – IBM - Telelogic: One of the best choices for medium to large size

projects
 ClearCase – IBM: One of the most popular choices for medium to large size

projects
 Perforce: Not as powerful as ClearCase for the price
 PVCS – Merant: Offers basic support for configuration management
 Razor – Visible Systems: Need attaching shell scripts both before and after

Razor events
 Visual SourceSafe – Microsoft: Offers basic support for configuration

management
 RCS Pro-Component SW: Offers basic support for configuration management

 Table A-II

Quality Management/Testing – Software Verification

There is a need to improve verification efficiency. There are many sources of changes in
the software, ranging from bug fixing, to function improvement or the introduction of new
functions. When something has to be changed, all products of the software life cycle
have to be updated consistently, and all verification activities must be performed
accordingly.

The level of verification for certified safety-critical software is much higher than for other
non-safety-critical software. For level A, DO-178B avionics software, the overall
verification cost may account for up to 80% of total costs. Verification is also a bottleneck
for project completion. So, clearly, any change in speed and/or cost of verification has a
major impact on the project time and budget.

There is a difference between software verification and software validation. Verification
testing is used to insure that the software conforms to its specification. Validation testing
is customer-centric and is used to provide assurance that the software relates to what
the customer requires.

Under verification tools, High Rely lists the following tools with comments in Table A-III.

 VectorCast – avionic specific
 GCover – Green Hills integrated path coverage
 IPL – Traditional coverage
 IBM - Telelogic Logiscope - Traditional coverage
 LDRA – modern analysis, strong in Ada
 IBM - RationalTest RealTime – full suite, structural coverage
 Coverity Prevent SQS – resolve critical defects in C, C++ and

Java
 PolySpace – verify C, C++ and Ada

 Table A-III

 11

High Rely broke down their analysis along the lines of:

 Static analysis tools
 Functional verification tools
 Structural coverage tests

As High Rely is expert in certifying to the DO-178B process, their focus is towards such
certification. This expertise can be applied to medical devices as well.

In EMF’s 2008 survey of 455 embedded developers, the data showed that RationalTest
RealTime was the most familiar and most used testing tool by respondents (33.5% and
22.4%). Vector Software VectorCast/C/C++/Ada was second among respondents
(22.2% and 16.3%).

Modeling and Architecture - Model Driven Development (MDD)

Annual surveys by Embedded Market Forecasters (EMF) of embedded developers have shown
that software development is responsible for more than 80% of design delays and associated
design complications. This data also reports on embedded developer responses to design
complications. When asked how close their final design was to pre-design expectations (for
performance, systems functionality, features and schedule) approximately 40% of respondents
indicated that their final design was NOT within 20% of their pre-design expectation. This
problem takes on greater proportions when it becomes the reason for system delays and
systems design failures.

Whether the system is poorly conceived, specified or whether crucial algorithms fail to
adequately address systems performance, traditional methods of embedded software
development are yielding to a process known as MDD. MDD is used to more clearly define
design specifications, test systems concepts and to automatically generate code and
documentation for rapid prototyping as well as for software development.

Moreover an MDD platform can be used integrate a company’s exiting tools and processes. EMF
suggests that MDD be made an essential component of a medical device development program.

One of the major advances in software engineering design has been the use of the Unified
Modeling Language™ (UML®) for enabling embedded design efficiencies. Pioneered by
companies including TogetherSoft, BridgePoint, IBM/Rational, and Telelogic (now IBM) for
embedded and/or real-time applications, its value is the ability to address very complex designs
and (with certain commercial offerings) the ability to go from State Diagrams to source code
(automatic code generation). In addition, UML offers code reuse, legacy upgrades and the ability
to re-port software to changing hardware configurations. This is of huge importance given the
frequent end-of-life changes in chip availability.

Figure A-IV illustrates the traditional use of tools throughout the project development
cycle, from design to deployment.

 12

Development HW/SW integration
Test

OperationIntegration

of Defects Created

of Defects Found

Usage of Tools

Economics of Defects

Cost to Repair

Defects are introduced early in the development cycle and
detected late in the product cycle – resulting in higher

costs to correct

Figure A-IV: Economics of Defects

Figure A-IV illustrates that the majority of defects are introduced during the development
cycle, whereas the majority of defects are detected late in the integration and test cycle.
The cost of repair increases significantly as the project moves into later phases.

Figure A-V illustrates the role of MDD and model driven testing (MDT) in the
development cycle. MDD permits most defects to be detected early in the design cycle.

 13

Development HW/SW Integration
Test

OperationIntegration

of Defects Created

of Defects Found

MDD and MDT

This is MDD !

This is MDT !

Figure A-V: Illustrating MDD and MDT

Figure A-V illustrates the effectiveness of MDD over traditional development methods as
well as the benefit of MDT. EMF expects that the combination of MDD and MDT will
significantly impact software and systems development, deployment and support.

MDD has emerged as a preferred method for software design, deployment and
maintenance. MDD enables the following advantages:

 Design reuse
 Interoperability
 Easy code redeployment under frequent hardware changes necessitated by

processor end-of-life events
 Integrated documentation
 Enhanced design capabilities – better design outcomes
 The ability to integrate legacy code into a new format
 The ability to do systems level design – and systems within systems design and

analysis
 Ability of C (structured) and OO developers to work on the same system within

their respective familiar GUI

In addition, MDD uniquely provides the following abilities that non-MDD tools do not:

 14

 Clear, traceable and testable Requirements
 Good Architectural Design
 Automatic code generation
 Rapid prototyping
 Effective Communications and team-wide collaboration
 Easy code redeployment under frequent hardware changes necessitated by bus

and processor end-of-life events
 Automatic/Integrated Documentation for design history file
 Graphical Design Reviews
 Early Validation
 Executable Designs

EMF data has shown that:

• The use of MDD tools by embedded developers has reduced design delays and
cancellations.

• The use of MDD tools by embedded developers has significantly improved the
relationship between pre-design expectations and final designs.

• UML is the most popular graphical representation for simulation-modeling tools
for discrete embedded system designs.

• UML, simulation and code generation enable faster design iterations that
produce desired performance, functionality and capabilities.

• Using UML, simulation and code generation, design cycles are more predictable
and result in faster product shipments with lower project risk.

• UML, simulation and code generation contribute significantly to a reduction in
design, development and implementation costs.

Release Management

There is a need to close the gap between writing code, building an application, and
releasing it into production. Release Management is a rapidly growing discipline within
software engineering for managing software releases. Software products are typically in
an ongoing cycle of development, testing and release. Add to this an evolution and
growing complexity of the platforms on which these systems run, and it becomes clear
there is a need for a process that seamlessly integrates all aspects of the development
process to insure the success and long-term value of a product or project.

CDRH’s CFR 21 Part 11 of the Code of Federal Regulations deals with guidelines on
electronic records and electronic signatures Part 11 defines the criteria under which
electronic records and electronic signatures are considered to be trustworthy, reliable
and equivalent to paper records. Support for CFR 21 Part 11 is suggested.

The better release management tools automate the software delivery process through
an adaptive build and release management framework to enable development teams to
standardize on repetitive tasks, manage compliance mandates, and share information
through a centralized web interface accessible 24/7 worldwide. These tools should be
able to correlate data from disparate source control, testing and defect tracking tools to
provide a coordinated view of product development.

 15

Although project managers have done this in the past, an automated process is
desirable to insure that details are not overlooked thereby enabling these managers to
be more productive.

Team Collaboration

We have come a long way from the old ways of development – particularly systems and
systems-of-systems developments – that were predicated on local development teams
being able to interact (assuming that they employed some measures of requirements
management practices). Today, development teams span the globe and are inter-
operated across many time zones. The need for a team-collaborative infrastructure is
certainly an important best practice.

An example would be a platform that brings the tool integration qualities Eclipse allows
individuals to the team level.

Conversely, one can be part of a small, local team divided by differing work schedules or
department affiliations. In either case, you collaborate with subject matter experts
separated by time, distance or organization. At issue is to determine the type of
infrastructure that would provide the best work environment for the individual developer,
the small group and the larger collaborative team.

In order to optimize the development lifecycle, it is important to closely link people, best
practices, processes and tools. This makes sense since process improvement enhances
effectiveness while development tools increase efficiency.

 16

 APPENDIX B

CEO’s Guide to Cost Containment and Enhanced ROI

Example: Comparative Telecom Equipment Development ROI Analysis

In a previous paper (The Economics of Embedded Development, December 2008), EMF
compared similar telecom development programs that used MDD with those that didn’t.
Parts of that paper are reprinted here as an example to illustrate for medical device
companies an additional reason why MDD should be considered.

This real world example of a comparative ROI evaluation is presented for
Telecommunications equipment developments based on EMF’s 2008 detailed survey of
embedded developers (455 respondents).

The 2008 EMF Survey data can be used to compare direct costs between MDD-based
telecom developers and non-MDD telecom developers (developers using traditional
hand coding). EMF conducts statistically accurate surveys of embedded developers,
who answer more than 70 detailed questions that provide insights to what they use, how
long it takes them to get a product to market, how close to their final design is to their
pre-design expectation, etc. Our data presented herein is predicated on the responses of
455 developers.

Table B-I presents:

 Total number of lines of code – including written, reuse and open source
 Number of software developers on design – and number of other developers and

support staff.

 Telecom and Telecom
 Not MDD and MDD

Total Project Lines of Code x1000 458.9 464.4
Ave number of SW Developers 13.7 12.4
Ave Project Support Staff 16.3 16.5

 Table B-I

As chance would have it, developers using MDD match up very closely for total lines of
code, number of developers and support staff. Given the common baseline between
these groups of MDD users and non-users, we can objectively calculate the respective
associated costs.

Given the common baseline between alternatives using these parameters, we can then
look to the following for comparative insights.

 Time taken from design start to actual shipment date

 17

 Percent of Designs Cancelled
 Average number of months before cancellation
 Percent of designs completed behind schedule
 Average number of months behind schedule

If there is a compelling reason to replace standard telecom design methodologies with
MDD, we should be able to see significant improvement in the closeness of the final
design outcome to the pre-design expectation.

Table B-II presents a baseline comparison between MDD and non-MDD designs.

 Telecom and Telecom and Improvement
 Not MDD MDD with MDD

 Total lines of Code - Project 458.9 464.4 Same
 Months - start to shipment 11.6 9.4 23.4%
 Designs Cancelled 14.0% 7.2% 94.4%
 Months until Cancellation 3.6 3.7 -2.7%
 Designs behind schedule 36.4% 19.7% 84.8%
 Months behind schedule 2.3 1.8 27.8%

Table B-II

Assuming that the costs associated with software developers (including overhead) is
$10,000/month and the costs of support staff is $8500/month we can calculate the
respective direct costs of development using MDD versus not. These results are
presented in Table B-III.

 Percent Improvement

 Average Telecom Project Cost Telecom and Not MDD Telecom and MDD with MDD

 Cost of Application Software $1,589,200 $1,165,600 36.3%
 Cost of Support Staff $1,607,180 $1,318,350 21.9%

Ave Total Direct Cost of
Development $3,196,380 $2,483,950 28.7%

 Ave Cancellation costs $138,877 $70,396 97.3%
 Ave Late completion costs $230,690 $93,703 146.2%

Total Costs of Software
Development $3,565,947 $2,648,049 31.8%

Table B-III

 18

The calculations are straight forward. The Cost of Application Software equals the
number of project months from start to shipment multiplied by the number of software
developers multiplied by the monthly cost per developer ($10,000).

The calculation for cancellation costs and late completion costs equals the number of
software developers multiplied by the monthly cost/developer plus the number of support
staff multiplied by the monthly cost/support personnel. This number is multiplied by the
number of months it takes before a project is cancelled (or for late completions the
number of months the project is late) multiplied by the percentage of project
cancellations (or late completions).

The comparison between MDD use and no MDD use is significant – and the fact that the
projects matched up nearly exactly makes the conclusion more significant.

