
© 2011 IBM Corporation

Software and Systems Engineering | Rational

Service Testing
Rational Service Tester

© 2011 IBM Corporation80

Software and Systems Engineering | Rational

Centralized test management offering allowing full lifecycle support across all
types of testing and platforms

JAZZ TEAM SERVER

Manage
Test Lab

Create
Plan

Build
Tests

Report
Results

Execute
Tests

IBM Collaborative Application Lifecycle Management

Functional
Testing Code

Quality

Security and
Compliance

Test Management

Rational Quality Manager

Quality Dashboard

Open Lifecycle Service Integrations

Defect
Management

Requirements
Management

Best Practice Processes

homegrown

Open Platform

Java
System z, iSAP

.NET

Performance
Testing

Web Service
Quality

Test Data
Management

SAP

© 2011 IBM Corporation81

Software and Systems Engineering | Rational

81

SOA: Service Oriented Architecture Definitions

To the IT Executive

Flexible applications built upon re-usable
building blocks that are easily connected

© 2011 IBM Corporation82

Software and Systems Engineering | Rational

82

SOA: Service Oriented Architecture Definitions

To the IT Executive

Flexible applications built upon re-usable
building blocks that are easily connected

To the Developers and Testers

Web Services.
Period.

© 2011 IBM Corporation83

Software and Systems Engineering | Rational

83

SOA: Service Oriented Architecture Definitions

To the IT Executive

Flexible applications built upon re-usable
building blocks that are easily connected

To the Software Architect

An IT architectural style which assembles
loosely coupled distributed services to
implement a business process

To the Developers and Testers

Web Services.

© 2011 IBM Corporation84

Software and Systems Engineering | Rational

84

SOA: Implications for Quality Management

To the IT Executive

Flexible applications built upon re-usable
building blocks that are easily connected

Validate Business Process

Challenges

• Identifying test cases

• Managing Data Complexity

• Requirements, Test Cases, Defects

• Ensuring optimal test & configuration coverage

© 2011 IBM Corporation85

Software and Systems Engineering | Rational

85

SOA: Implications for Quality Management

To the Developers and Testers

Web Services. Validate Web Services

• No user accessible interface

• Multiple test case data cases per test

• Service interaction testing

Challenges

© 2011 IBM Corporation86

Software and Systems Engineering | Rational

86

SOA: Implications for Quality Management

To the Software Architect

An IT architectural style which assembles
loosely coupled distributed services to
implement a business process

Validate Infrastructure

• Ensuring service operability post deployment

• Service upgrade & interoperability management

• Service Performance

Challenges

© 2011 IBM Corporation87

Software and Systems Engineering | Rational

87

• Used to test web services

• Key features

� Generic Web Services Client

� XML editing, viewing

� WSDL/Schema validation

� Messaging and logging

� Load and stress functions

� Data driven testing

� Java scripting

� Automated Response validation

� Performance Testing and Analysis

Rational Service Tester for SOA Quality

© 2011 IBM Corporation88

Software and Systems Engineering | Rational

88

Rational Service Tester for SOA Quality
Features Benefits

Packaging � Performance and functional testing personas

� Monitoring/Response Time Breakdown Package

• Improved consumability of functional testing capabilities

• Improved visibility and support, and leverage value of performance problem
determination features

Environment Support � Support for additional WS-* standards

� Text / JSON message formats

� Support for IPv6

• Extend the range of supported SOA environments

• Meet government requirements for IPv6 support

Enterprise readiness � Improved support for multi-day runs with the ability to capture and process large
volume of performance measurements

• Ability to address larger and more complex performance test opportunities

Usability � Universal Service Test Client

� Improved functional testing capabilities (creation, execution, reporting)

• Simple and unique user experience to create tests for all supported protocols

• Improved consumability of functional testing capabilities

Product Integrations � Support for Rational Quality Manager

� Support for Rational Test Lab Manager

• Support quality throughout the life cycle through integration with Quality
Management and Lab Management solutions

© 2011 IBM Corporation

Software and Systems Engineering | Rational

Performance validation
IBM Rational Performance Tester

© 2011 IBM Corporation90

Software and Systems Engineering | Rational

Centralized test management offering allowing full lifecycle support across all
types of testing and platforms

JAZZ TEAM SERVER

Manage
Test Lab

Create
Plan

Build
Tests

Report
Results

Execute
Tests

IBM Collaborative Application Lifecycle Management

Functional
Testing

Web Service
Quality

Code
Quality

Security and
Compliance

Test Management

Rational Quality Manager

Quality Dashboard

Open Lifecycle Service Integrations

Defect
Management

Requirements
Management

Best Practice Processes

homegrown

Open Platform

Java
System z, iSAP

.NET

Performance
Testing

Test Data
Management

© 2011 IBM Corporation91

Software and Systems Engineering | Rational

91

What Is Performance Testing?

� The process of exercising an application by emulating actual users
with a load generation tool for the purpose of finding system bottlenecks

Rational
Performance
Tester

System Under Test
Performance
Tester Agents

© 2011 IBM Corporation92

Software and Systems Engineering | Rational

92

Why do Performance Testing?

� Because a break at any point in your system means your
customers are not getting the service you think they are

System Under Test

© 2011 IBM Corporation93

Software and Systems Engineering | Rational

93

� IBM Rational Performance Tester

– Performance problem identification and diagnosis
for Web, SAP, 3270, Siebel, Oracle and Citrix
based applications

� Performance test automation

– Built for Day 1 Productivity

• Mask complexity to get the job done

– Advanced Data Access & Manipulation

• Automated data variation and synchronization

– Root Cause Analysis

• Identifies location and root cause of
performance problem in hardware and software

Performance Testing with IBM Rational Performance Tester
Test automation for the novice and the professional

© 2011 IBM Corporation94

Software and Systems Engineering | Rational

94

Challenge 1: No in-house experienceChallenge 1: No in-house experience

� Challenge

– Tool complexity and lack of experience intimidates many first time users

� Challenge

– Tool complexity and lack of experience intimidates many first time users

� Resolution

�Represent tests as a tree view of
sequential flow through application

�Simplify test editing with wizards

� Looping

� Conditional events

� Data validation

� Integrate Java code to handle unique
performance challenges

� Resolution

�Represent tests as a tree view of
sequential flow through application

�Simplify test editing with wizards

� Looping

� Conditional events

� Data validation

� Integrate Java code to handle unique
performance challenges

© 2011 IBM Corporation95

Software and Systems Engineering | Rational

95

Challenge 2: Complexity of System Under TestChallenge 2: Complexity of System Under Test

� Resolution

� Integrate data pooling technology to
ensure each unique data for each user

� Identify data relationships to
dynamically reference server generated
data during playback

�Utilize unique TCP/IP addresses for
each user to ensure realistic load

� Resolution

� Integrate data pooling technology to
ensure each unique data for each user

� Identify data relationships to
dynamically reference server generated
data during playback

�Utilize unique TCP/IP addresses for
each user to ensure realistic load

� Challenge

�Complexity of system under test prohibits simple record and playback

� Challenge

�Complexity of system under test prohibits simple record and playback

Data Referencing
Data value used during playback will be
dynamically linked to previous server response

Data Pooling
Data value used during playback will be
unique value for each user read from datapool

© 2011 IBM Corporation96

Software and Systems Engineering | Rational

96

Challenge 2: Tools Lack InsightChallenge 2: Tools Lack Insight

� Resolution

�Root Cause Analysis features provide
additional insight to diagnose the cause
of a bottleneck

�Resource Monitoring data monitors
hardware during test

�Response Time Breakdown report
breaks down response times into

� Resolution

�Root Cause Analysis features provide
additional insight to diagnose the cause
of a bottleneck

�Resource Monitoring data monitors
hardware during test

�Response Time Breakdown report
breaks down response times into

� Challenge

� Tool can find the problem, but not diagnose the root cause

� Challenge

� Tool can find the problem, but not diagnose the root cause

© 2011 IBM Corporation97

Software and Systems Engineering | Rational

97

Creating a Performance Test
Creating a performance test is a three step process

� Script Creation Considerations

�Visual test editor, varying input data & correlating server responses

Build Scripts

© 2011 IBM Corporation98

Software and Systems Engineering | Rational

98

� Script Creation Considerations

�Visual test editor, varying input data & correlating server responses

� Scheduling Considerations

�Accurately representing a true user workload

Schedule WorkloadBuild Scripts

Creating a Performance Test
Creating a performance test is a three step process

© 2011 IBM Corporation99

Software and Systems Engineering | Rational

99

Execute & AnalyzeSchedule WorkloadBuild Scripts

� Script Creation Considerations

�Visual test editor, varying input data & correlating server responses

� Scheduling Considerations

�Accurately representing a true user workload

� Execute and Analyze Considerations

�Validating responses & finding the bottleneck

Creating a Performance Test
Creating a performance test is a three step process

© 2011 IBM Corporation100

Software and Systems Engineering | Rational

100

Performance Problem Identification During Test

� Performance Testing finds bottlenecks

– Next logical question is Why?

– Root Cause Analysis provides to tools to answer this question

Page Performance Report
Shows average response time
per page.

Highest bar = Performance Problem

© 2011 IBM Corporation101

Software and Systems Engineering | Rational

101

Performance & Resource Statistic Report Overlay
Identifying hardware related performance problems

� Data from resource monitoring can be displayed on same graph as
response time data

� Single view to visually correlate system resource and system response
data for faster problem solving

© 2011 IBM Corporation102

Software and Systems Engineering | Rational

102

Business SLA Reporting
Linking performance results to business objectives

� Define detailed performance requirements in Rational Performance Tester

� Communicate results against performance criteria

� Results automatically rolled up and reported against user-defined SLA

� Results and reports are passed to RQM for wide visibility

© 2011 IBM Corporation103

Software and Systems Engineering | Rational

Run Performance Test from Rational Quality Manager

� Utilize any RQM browser to start
Performance Test Case

� Utilizing power of RQM

� Schedule daily at 01:00

� Follow progress while executing

� Results are communicated back to
RQM

© 2011 IBM Corporation104

Software and Systems Engineering | Rational

104

What You’ll See:

� Rational Performance Tester

© 2011 IBM Corporation

Software and Systems Engineering | Rational

Security Testing
Rational Appscan Family

© 2011 IBM Corporation106

Software and Systems Engineering | Rational

Centralized test management offering allowing full lifecycle support across all
types of testing and platforms

JAZZ TEAM SERVER

Manage
Test Lab

Create
Plan

Build
Tests

Report
Results

Execute
Tests

IBM Collaborative Application Lifecycle Management

Functional
Testing

Test Management

Rational Quality Manager

Quality Dashboard

Open Lifecycle Service Integrations

Defect
Management

Requirements
Management

Best Practice Processes

homegrown

Open Platform

Java
System z, iSAP

.NET

Performance
Testing

Web Service
Quality

Code
Quality

Security and
Compliance

Test Data
Management

SAP

© 2011 IBM Corporation107

Software and Systems Engineering | Rational

Application security challenges: vulnerabilities

Web application vulnerabilities dominate enterprise threat landscape

� 49% of all vulnerabilities are in web applications*

� Cross-Site Scripting & SQL injection vulnerabilities continue to dominate

* IBM X-Force 2010 Trend & Risk Report

© 2011 IBM Corporation108

Software and Systems Engineering | Rational

Application security challenges: security-development
disconnect fails to prevent vulnerabilities in production
applications
�Developers Lack Security Insights

(or Incentives to Address Security)

• Mandate to deliver functionality on-time
and on-budget – but not to develop
secure applications

• Developers rarely educated in secure
code practices

• Product innovation drives development of
increasingly complicated applications

�Security Team = SDLC Bottleneck

• Security tests executed just before launch

– Adds time and cost to fix vulnerabilities late
in the process

• Growing number of web applications but small
security staff

– Most enterprises scan ~10% of all applications

• Continuous monitoring of production apps
limited or non-existent

– Unidentified vulnerabilities & risk

© 2011 IBM Corporation109

Software and Systems Engineering | Rational

Security testing within the application life cycle

Most issues are
found by security
auditors prior to

going live.

Most issues are
found by security
auditors prior to

going live.

%
 o

f
Is

s
u
e
 F

o
u
n

d
 b

y
 S

ta
g
e
 o

f
S

D
L
C

© 2011 IBM Corporation110

Software and Systems Engineering | Rational

Ignore the issue until...

� High cost

� High pain

� High disruption

Prevention...

A little bit every day

� Low cost

� Low pain

� Low disruption

This?

Or This?

© 2011 IBM Corporation111

Software and Systems Engineering | Rational

Security testing within the application life cycle

%
 o

f
Is

s
u
e
 F

o
u
n

d
 b

y
 S

ta
g
e
 o

f
S

D
L
C

Desired ProfileDesired Profile

© 2011 IBM Corporation112

Software and Systems Engineering | Rational

Cycle of secure application development

� Design

� Consider security requirements of the application
& apply threat models

� Issues such as required controls and best
practices are documented on par with functional
requirements

� Secure code libraries maintained for reusable
secure code

� Development

� Create work items that map to security
requirements

� Use secure code libraries

� Software is checked during coding for:

– Implementation error vulnerabilities

– Compliance with security requirements

� Build & Test

� Map test plan to security requirements

� Testing begins for errors and compliance with
security requirements across the entire
application

� Applications are also tested for exploitability in
deployment scenario

� Deployment

� Configure infrastructure for application policies

� Deploy applications into production

� Operational

� Continuously monitor applications for appropriate
application usage, vulnerabilities and defend
against attacks

Make applications secure, by design

© 2011 IBM Corporation113

Software and Systems Engineering | Rational

Cost is a significant driver

During the
CODING phase

$80/defect

During the
BUILD phase

$240/defect

During the
QA/TESTING

phase

$960/defect

Once released
as a product

$7,600/defect
+

Law suits, loss
of customer trust,
damage to brand

80% of development costs are spent
identifying and correcting defects!*

*National Institute of Standards & Technology

Source: GBS Industry standard study

Defect cost derived in assuming it takes 8 hrs to find, fix and repair a defect when found in code and unit test.
Defect FFR cost for other phases calculated by using the multiplier on a blended rate of $80/hr.

© 2011 IBM Corporation114

Software and Systems Engineering | Rational

Solution requirements: advanced security testing +
collaboration & governance through application lifecycle

Dynamic Analysis

� Analysis of a running/
deployed application

� Key requirements
– Threat coverage: WASC,

OWASP Top 10, etc
– Web Services/ SOA
– Web 2.0 & Rich Internet

Applications

Security testing, shared results, assign ownership

Track corrections and integrate with development systems

Advanced Security Assessments

Static Analysis

� Scanning source code for
security issues

� Key requirements
– Application/language support
– Ease of use for non-security

users (developers and build
managers)

Runtime & Hybrid Analysis

� Glass box testing with
runtime analysis

� Automated correlation of
static & dynamic results

� Key requirements
– Precise & Actionable results
– Broad threat coverage

Collaboration & Governance in Application Lifecycle

© 2011 IBM Corporation115

Software and Systems Engineering | Rational

Static Analysis (White
Box testing)

Dynamic Analysis

(Black Box testing)

Runtime Analysis

(Glass Box testing)

Scan input
Scans source code and bytecode for
security and quality issues. Requires
access to source or bytecode

Scans running web applications.
Requires starting point URL, and login
credentials where relevant

Similar to black box to scan running web
applications with an agent installed on
the application

Assessment
techniques

Uses “taint analysis” and pattern
matching techniques to locate issues

Tampering of HTTP messages to
locate application and
infrastructure layer issues

Agent monitors application
performance during a black box
scan for expanding threat
coverage and greater detail

Role in
application
development
lifecycle

Development: Scan code and work
remediation from IDE

Build: Scan nightly or weekly build to
highlight defects for developers to
correct

Security: Define & customize security
best practices for developers; Execute
pre-production scans and audits

Build: Scan as part of build acceptance
tests before releasing build to testing
team

Test: Execute security test scripts as
part of quality plan

Security: Define test scripts for quality
plan; Execute pre-production scans and
audits

Build: Provides added layer of
vulnerability detail that assists
developers with security de-bugging

Security: Expands threat coverage for
hard-to-identify vulnerabilities (including
all OWASP Top 10)

Results &
Output

Results are presented by line of code,
source to sink functions flow

Results are presented as HTTP
messages (exploit requests)

Results are presented as a
combination of HTTP messages
(exploit requests) and the line of
code

Solution Requirements: Static, Dynamic and Runtime Analysis

© 2011 IBM Corporation116

Software and Systems Engineering | Rational

Application Security: Where do I start?

� First time conducting in-house application security assessments

� Most clients start with dynamic testing

– Dynamic analysis (black box testing) allows security groups to assess application risk in both development and
production apps

– Easy to roll out & automate work previously done with outsourced penetration testing

– Select a solution that combines ease of use, advanced security analysis and results that can be shared outside of
security

� Application security testing confined to security team

� For deployments led and executed only by security teams, start with dynamic and later consider
static (white box)

– Dynamic analysis is executed against compiled applications in lab environments, so security teams can control &
execute the application security program

– Select a solution that allows you to share results with development, cover all of your applications in both development
and production, and later scale program with static analysis

� Development & security teams integrate security testing in the SDLC

� Most clients evolve to this level of application security program with various use cases of
dynamic and static analysis that fit their development processes

– Developers execute static analysis from their IDE or at least access static results from IDE

– Build: Static analysis of each build and dynamic analysis before releasing build

– Test: Dynamic testing included in test plan and executed from testing tools

– Security: Conduct advanced dynamic and static testing before launch (benefit from early testing that eliminates the
common security defects like SQL Injection and Cross-Site Scripting

– Select a solution that delivers governance and collaboration while empowering non-security users

© 2011 IBM Corporation117

Software and Systems Engineering | Rational

IBM AppScan: Advanced research drives precise security
testing that integrates with application development lifecycle

�Legacy of Security Innovation

�Advanced testing technologies
– Dynamic Analysis (black box); IBM holds the original

patent for dynamic web app security scans
(US6584569)

– Static Analysis (white box)

– Runtime Analysis (glass box); patent filed 2008

– JavaScript Security Analyzer (static scans of client-
side JavaScript)

�Broad application support
– Web applications

– Packaged applications (SAP)

– Legacy applications (COBOL)

�Broad technology coverage
– Web 2.0 and Rich Internet Applications

– Web Services/ SOA/SOAP

�Governance and Collaboration in
Application Development Lifecycle

�Code
– Scan code, manage work items and remediate

vulnerabilities from the IDE

�Build
– Integrate security testing as a natural extension of

build extension testing

– Find & fix defects before releasing a build

�Test
– Include security testing in quality plan

– Execute basic security test scripts from quality
management platform

�Security
– Build security test scripts for non-security experts

– Focus pre-production audits on most advanced
threats

– Manage test policies and scan permissions

– Collaborate with development to triage findings and
assign ownership

© 2011 IBM Corporation118

Software and Systems Engineering | Rational

AppScan Standard: Desktop solution combines advanced security
testing, broad technology coverage and ease of use

Web Application Assessments for Pen-Testers and Security Practitioners

� Covers all relevant
OWASP & WASC TCv2
threat classes

– SQL Injection
– Cross-Site Scripting
– HTTP Response Splitting
– OS Commanding
– LDAP Injection
– XPath Injection
– Buffer Overflows
– 1000s more

Dynamic Analysis (black box)

� Web Services/ SOA
− SOAP/XML parser issues

(External entities, XML
blowup, etc.)

− Application-layer issues
− Infrastructure issues

� Configure & test
– Scan Expert provides

recommended settings
based on your apps

� Details & guidance to
correct the vulnerability

– Explanation of threat and
recommended fix

Ease of Use

� Integrate with Defect
Tracking Systems

– Rational® ClearQuest
– HP Quality Center

� Compliance & Reporting
– 40+ compliance reports
– Executive-level summaries
– Guidance for development

� Web 2.0 and Rich Internet
Applications

– JavaScript & Ajax
– Adobe Flash & Flex

� Malware analysis
– Scan site with malware

analysis from IBM X-Force
Security Research

Hybrid Technology

� Runtime Analysis (glass
box testing)

– Expanded threat coverage
with less configuration

– Precise results (line of
code) assist remediation

� JavaScript Security
Analyzer

– Static taint analysis of
client-side JavaScript

© 2011 IBM Corporation119

Software and Systems Engineering | Rational

� AppScan Enterprise: Application Security Governance & Risk
Management

AppScan Enterprise

Governance

� Scale security testing
– Assess 1000s of apps
– Engage more testers
– Integrate testing in SDLC

� Control
– Scan permission
– Test policies & templates
– User roles & access control
– Processes & best practices

� Measure and improve
– KPIs
– Trending

Collaboration

� Manage security issue
resolution

– Multi-level reporting
– Issue classification
– Integration with defect

tracking systems

� Traceability
– Security requirements
– Development tasks
– QA test cases

Risk Management

� Visibility of risk and
compliance

– High-level view of
application security risk

– View of non-compliance
issues

� Security intelligence
‒ Metrics
– Correlation of findings

� Mitigate risk
– Virtual WAF patches*
– Fixing security code errors

Application Security Analysis

Dynamic Static Runtime

© 2011 IBM Corporation120

Software and Systems Engineering | Rational

Information
Security

�Schedule and automate assessments

�Manage test policies and scan permissions

�Collaborate with development and QA by publish findings for remediation

�Build protection strategies based on known vulnerabilities

Development &
Build

Automation

�Analyze source code for security issues in applications, projects or files from
IDE or automatically trigger scans in Build system

�Remediate vulnerabilities with details and recommended fixes available in IDE

�Execute source code scans Execute dynamic test of compiled applications to
identify and remediate issues before passing build to QA

Quality
Assurance

�Create security test plans & test scripts in Rational Quality Manager

�Manage open issues via defect tracking systems

Management
�Enterprise-view of application security risk

� Trending and reporting with key performance indicators

Compliance
Officers

�Review compliance reports

�Audit vulnerability resolution

AppScan Enterprise: Security testing and visibility throughout the
SDLC for enterprise-wide application risk management

© 2011 IBM Corporation121

Software and Systems Engineering | Rational

AppScan Enterprise + AppScan Source: Static analysis (white box)
security & quality testing in the collaborative application lifecycle

� Broad Application Support

� Out of the Box for Security Testing

� Code Quality Static Analysis
� Identify code-level quality defects within IDE

� Automate code quality analysis as part of the
build process for centralized software code
scanning

� Key Performance Indicators (KPIs) to help
developers learn best practices

� Languages: Java, C, C++

Source Code Analysis for Security Testing in Development & Build Automation

− Java

− JSP

− C

− C++

− Classic ASP
(VB6)

− COBOL

− SAP ABAP*

− ColdFusion

− Client-Side
JavaScript

− Server-Side
JavaScript

− VBScript

− PL/SQL

− T-SQL

− .NET

• C#

• VB.NET

• ASP.NET

− PHP

− HTML

− Perl

Application Lifecycle Integrations

� Develop
– IDE plug-ins to remediate identified issues

(Source for Remediation)
– Options to scan code locally from IDE

(Source for Developer)

� Build
– Automatically trigger security scans with

each build (Source for Automation)
– Review results from IDE or Security user

& create work items for remediation

� Security

– Source for Security power user creates
SAST scans executed from IDE or in build
automation

– Executes advanced scans in pre-
production security audits

* Requires Virtual Forge CodeProfiler for AppScan Source Edition

© 2011 IBM Corporation122

Software and Systems Engineering | Rational

IBM Rational Appscan portfolio summary

