
IBM Software

Thought Leadership White Paper

October 2011

Delivering value through
best practices
Process support in systems and software development

2 Delivering value through best practices

Executive summary
Our planet gets smarter every day. Worldwide mobile phone
subscriptions reached 3,300,000,000 in 2007. An estimated
35,000,000,000 devices were connected to the Internet at the
end of 2010, and across the globe there exist approximately
1,000,000,000 transistors per person—with the cost of each
transistor averaging one ten-millionth of a cent1.

Smarter products are everywhere: Smart phones, smart cars,
smart medical devices, smart planes and smart power grids.
Furthermore, these products are often interconnected and inter-
dependent, forming “systems of systems” that provide higher
value than any of the individual products could provide on their
own. For example, cars can self-diagnose problems, download
updated software and let the driver know when a visit to the
service center is required. Smart power grids can negotiate with
appliances to deliver the comfort and convenience we require
while reducing energy consumption and costs. And every day we
rely on our smart phones to deliver news, entertainment, social
connectivity, location-based services and more. We truly live on
a smarter planet where intelligent, instrumented and intercon-
nected products are used by everyone, everyday.

Challenges for smarter product
development
But to bring these smarter products to market presents many
challenges. Engineering teams must collaborate across different
disciplines, different organizations, different time zones and
different languages. They must manage complex design
information efficiently and respond to rapidly changing
market and customer demands, evolving interfaces and product
variants. These teams must ensure quality and compliance with
standards and regulatory mandates. And they must do all of
this while delivering on-time and within budget in a highly
competitive world.

To meet these challenges, the leaders of engineering
organizations must capitalize upon smarter development
approaches. This paper examines the opportunities presented by
the deployment of proven practices to systems and software
delivery processes.

Objectives for your development
environment
The challenges of smarter product development reveal clear
business objectives for your development environment. These
objectives include:

● Reducing the cost of your development activity and your
delivered product

● Improving the quality of your delivered product
● Reducing the development time for your delivered product
● Reducing the risk of failure to meet the cost, schedule and

quality requirements for your delivered product
● Increasing the consistency and predictability of

development activities

The relative weighting of these generic factors should be
considered in the context of your development environment.
For example, time-to-market may be the critical driver for a
mass-consumer technology product, whereas quality and stan-
dards compliance might be the key driver for a safety-critical
avionics system. It is therefore important that your development
environment has the flexibility and adaptability to address the
scope of products and systems that the organization will develop.
To ensure sustainable competitiveness, your development envi-
ronment must also support continuous process improvement.

Defining your development environment
A development environment is a combination of people, process
and technology. The development environment is composed of
four main elements:

● The development process—What to do and when to do it
● The development methods—How to do it
● The roles that execute the development methods—

Who does it
● The tools that automate aspects of the development methods

Tools add value to the process by providing automation, infor-
mation management, workflow support and reporting. Tools can
support and enforce the development process, and provide

3IBM Software

governance and “safety nets” to keep people on the right track,
but tools are only one component of the optimal development
environment. A complete solution provides the linking of
tooling and roles through process and methods.

Using practices to optimize your
development environment
Changing the development environment represents a risk in any
development program. Also, a development organization will
typically have existing processes with which any changes should
be integrated. Incremental adoption can minimize the risk of
changes, because your team can assess the value and stability of
each change before making further optimizations.

Incremental adoption requires a modular approach to the
deployment of tooling, processes and methods. It also requires a
holistic approach, which helps you to avoid unnecessary local
optimizations that cannot be reused (and therefore provide less
business value). Practices are a mechanism to help you achieve
the required modularity and reuse.

A practice is a unit of process and method to support one or
more roles in using tooling to achieve a particular objective.

A best practice should:

● Be self-contained—It should provide you with support
for achieving a particular engineering objective without
being a monolithic “super process” that requires an
“all-or-nothing” approach to implementation.

● Define inputs, outputs and interfaces in a clear manner to
other practices and disciplines.

● Define and provide workflow support.
● Integrate with appropriate tooling solutions to automate

workflows—through templates, profiles and tool mentors.
● Provide implementation guidance for practitioners—to aid

training and to support daily workflows.
● Support project management and ongoing optimization—

through automated reporting and metrics measurement.

The benefits of defined practices
Proven practices can provide a number of benefits at both the
operational and business level. These benefits include:

● Reusability. Practices can act as a “corporate memory,”
enabling successful processes to be redeployed for specific
activities within multiple projects.

● Repeatability. Practices can provide a known baseline of
performance which can be used as the basis for iterative
process improvement.

● Improved auditability and simpler regulatory compliance
processes, strengthened through defined deliverables
and reporting.

● Better delivered quality resulting from defined handoffs
between roles and activities enabling automation of
information flows.

● Improved collaboration resulting from clearly defined roles,
work and information flows.

In addition to these primary benefits, the reuse of practices can
also lead to more efficient transfer of personnel and skills
between projects.

Areas for the application of practices in
development projects
The principle of practices can be applied to realize benefits
throughout your development activity. In complex product and
systems development, systems engineering and software develop-
ment are areas which are increasingly critical to project success.

Systems engineering is the process of deriving an optimum
systems architecture and allocation of functionality from initial
stakeholder requirements. Some of the key systems-engineering
activities include:

● The capture, analysis and elaboration of requirements.
● The derivation of candidate system architectures through

approaches such as operational analysis, functional analysis
and use-case analysis.

4 Delivering value through best practices

● The selection of an optimal architecture using techniques such
as trade studies.

● The “hand-off” of systems engineering output information to
detailed design groups.

Software engineering covers the development lifecycle for the
implementation of software components, based upon the specifi-
cations that are “handed off” from your systems engineering
process. Some key software engineering activities include:

● Software requirements analysis and architectural design.
● Software architectural modeling.
● Real-time interaction modeling.
● Detailed software design and implementation.
● Safety and reliability analysis.
● Testing and integration.

Each of these activities is a candidate for implementation
through a practice.

Implement practices intelligently
A practice must be defined before it can be implemented, but
implementation does not end with definition. The medium in
which the practice is defined and distributed is also crucial.
Simply writing down the process and methods that make up a
practice is likely to lead to “shelfware”—practices which are
either not followed or are applied inconsistently. It is critical that
practices become the basis of workflows for the development
team rather than being seen as an “add-on” to the development
effort or as the cause of additional cost or complexity.

Appropriate development tooling can be used to facilitate the
adoption of practices. Elements of tooling which are useful in
this context include:

● A means to author, adapt, maintain and deploy practices.
● A means to automate workflows and information flows—

especially throughout large and distributed teams.
● Automation tools for engineering processes.
● Reporting and measurement tools.

To work effectively, these categories of tooling must be inte-
grated to permit the transfer of information in a way that is
efficient and error-free. For example, the published form of the
practices should be able to interact with your workflow and
engineering automation tooling, and your reporting and meas-
urement tools should be able to extract information from
workflow and engineering tools.

Interaction may take different forms over different tooling inter-
faces. Of particular value for practice implementation are:

● Context-specific linkage between automation and workflow
tooling and the published processes and methods.
– This linkage helps users to move efficiently between process

documentation and the enactment tools.
● Tool mentors—which can provide in-context, on-demand

training and guidance to facilitate rapid skills acquisition for
new team members.

The IBM Rational solution for systems and
software engineering
The IBM® Rational® solution for systems and software
engineering provides collaborative, integrated systems
engineering and embedded software development capabilities.
These capabilities help your organization to build the systems,
technology-enabled products and services that encourage success
in today’s competitive marketplace. This IBM solution comprises
a combination of world-class practices and tools on an open inte-
gration platform that help unite mechanical, electronic and
software disciplines, assisting you in your efforts to accelerate
delivery and to improve quality.

Platform architecture
Figure 1 shows the core capabilities of the IBM Rational solu-
tion for systems and software engineering. This solution is built
upon IBM Jazz™, the IBM initiative to transform systems and
software delivery by making it more collaborative, productive
and transparent.

5IBM Software

Jazz is an open platform that is designed to improve the delivery
lifecycle by breaking down the walls between different develop-
ment activities and the tools that support them. The Jazz
Integration Architecture incorporates specifications defined by
the Open Services for Lifecycle Collaboration (OSLC) project,
an independent, multivendor effort to define a set of protocols
for sharing information between tools and vendors. Tools may
be either built upon the Jazz platform or integrated with Jazz
using OSLC specifications.

QUALITY MANAGEMENT
Achieve “quality by design” with an

integrated, automated testing process
Rational Quality Manager

ARCHITECTURE & DESIGN
Use modeling to validate requirements, architecture

and design throughout the development process
Rational Rhapsody

REQUIREMENTS MANAGEMENT
Manage all system requirements

with full traceability across the lifecycle
Rational DOORS

COLLABORATION, PLANNING & CHANGE MANAGEMENT
Collaborate across diverse engineering disciplines and development teams

Rational Team Concert

Open Services for Lifecycle Collaboration

Figure 1: The IBM Rational solution for systems and software engineering

Solution components
The IBM Rational solution for systems and software engineering
offers a core set of capabilities which span key activities
of the systems and software engineering lifecycle. These
capabilities include:

Requirements management to help you to elicit, engineer,
document and trace requirements throughout the lifecycle.
This helps your stakeholders to specify their needs and helps the
project performance to deliver against those needs. The
through-lifecycle traceability provided by IBM Rational require-
ments management helps your teams to remain focused as
change occurs during development.

6 Delivering value through best practices

Architecture modeling and model-driven development to
enable teams to validate requirements, to visually derive and
define architectures and to create robust real-time and embed-
ded software designs. Execution of models enables the early veri-
fication of architectures and software designs, improving quality
and reducing time and costs by avoiding late-stage rework.

Quality management capabilities to help your teams to achieve
“quality by design” through a collaborative approach to quality
planning, the ability to test traceability to requirements, automa-
tion of tests and a smart, integrated defect management process.

Collaboration, workflow and change management functions
of this IBM solution to help diverse and distributed development
teams to work together efficiently and effectively. To help
improve your ability to integrate planning and execution, auto-
mate workflows and manage change throughout the lifecycle.

In addition to these core capabilities, the IBM Rational solution
for systems and software engineering is extensible to meet the
requirements of different industries, development approaches,
regulatory and compliance standards. Extensibility may be real-
ized through additional IBM offerings and through third party
offerings that use OSLC interfaces.

IBM Practice Library
In addition to the tooling components of this solution,
IBM offers a practice library which comprises a set of loosely
coupled, ready-to-deploy practices. These practices are defined
using a standard language that is developed specifically for
systems and software process descriptions. The solution provides
process authoring, adaption, deployment and management
capabilities to support the customization of practices to your
organization’s needs. The architecture of the library is designed
to simplify the composition of the overall development process,
using practices and existing process elements to meet your busi-
ness and operational objectives.

IBM practices address a particular aspect of the development
process and can be adapted independently of other practices,
which permits incremental adoption and process improvement.

The IBM practices define not only what to do but also how to
do it and who should do it. Once configured, the development
process can be deployed to your project team in the form of a
richly linked website. With IBM Rational tooling, each practice
includes tool configuration assets to align tool behavior with
the practice methods. Together with practice guidance that can
be accessed in-context from the practitioner tools, this
IBM solution provides on-demand assistance when and where
it is required.

The IBM Practice Library covers both systems engineering and
real-time and embedded software engineering. Each practice
provides a proven starting point which can be adopted as it exists
or configured further to meet the requirements of a particular
development context. As practices are adapted to meet the
requirements of your development organization, the practices
can be added to the library for reuse on future projects.

The systems engineering practices currently available in the
IBM Practice Library include:

● Elaborate draft systems requirements specification (SRS)
● Detailed use-case requirements analysis
● Build and validate use-cases
● Architectural analysis—key system functions
● Architectural analysis—operation based
● Architectural trade study
● Architecture design—use case based
● Architectural design—operation based
● Joint realization

The currently available real-time and embedded software
engineering practices include:

● High-fidelity modeling
● Real-time architectural design
● Real-time collaborative (“mechanistic”) design
● Real-time detailed design
● Model-based testing
● Safety and reliability analysis

7IBM Software

In addition to the core practices, the IBM Practice Library also
includes industry-specific practices to cover safety-critical and
other standards such as DO-178B for the aerospace industry and
ISO 26262 for the automotive industry.

Metrics, measurement and reporting
As each practice is deployed, its performance should be assessed;
this assessment helps to ensure that process improvement objec-
tives are met. Each practice defines the relevant metrics that
enable such measurements. Measurement capabilities within the
Rational solution for systems and software engineering use the
Jazz Integration Architecture to automatically extract metric data
from various solution components to facilitate this assessment.

Execs., Managers
& Practitioners

STEER

Executives
& Managers

ASSESS
Managers

& Practitioners

ACT

ReportAutomateCollaborate

Measure and trend practice
adoption, project and product

metrics and business outcomes.

Deploy collaborative application
lifecycle management practices

and tools.

Identify relevant business objectives
and associated practices.

Establish roadmap for
incremental improvement.

Figure 2: The IBM approach to incremental, measured process improvement

These measurement capabilities can support continuous
improvement of practices. Figure 2 illustrates the “assess,
act, steer” approach that forms the foundation of the
IBM incremental and measured improvement philosophy.

Automated measurement and reporting can also deliver other
benefits within the lifecycle, improving project management by
providing real-time “dashboards” of crucial project parameters
and helping to meet compliance and governance requirements
by automating many document production processes. By making
measurement and documentation an automated by-product of
the process, both efficiency and quality can be improved through
the elimination of time consuming and error-prone manual
data-gathering and reporting activities.

Please Recycle

Professional services
It is true that proven practices and tools are crucial to improved
delivery, yet each project has its own unique requirements and
constraints. Realizing improvements at minimum risk therefore
requires efficient assessment, adaption and deployment.
IBM provides packaged professional services to help you to
assess your needs based upon your organization’s business and
operational objectives. The IBM team helps define a solution
roadmap for incremental, measured improvement of your
systems and software delivery processes. IBM professional
services can then work with you to adapt, deploy and validate
the solution.

Conclusion
This paper has examined the opportunities for deploying proven
practices to systems and software delivery processes. As delivery
organizations face a “perfect storm” of rising complexity, increas-
ing cost pressures, compressed development timescales and
increased expectations of quality, businesses can no longer rely
on “piecemeal” changes to delivery processes.

Practices provide a robust and flexible solution to these chal-
lenges which form the basis of a modular approach to deploying
tooling and process solutions. By linking customizable practices,
tooling and measures of effectiveness it is possible to derive a
highly adaptable solution that can be deployed at minimum risk
through an incremental, measured approach.

The IBM Rational solution for systems and software engineering
combines world-class tooling capabilities with a broad practice
library and deployment services to deliver solutions that can be
tailored to meet the business and operational needs of complex
systems development organizations.

For more information
To learn more about the IBM Rational solution for systems and
software engineering please contact your IBM marketing repre-
sentative or IBM Business Partner, or visit the following page:
ibm.com/software/rational/workbench/systems

© Copyright IBM Corporation 2011
Route 100
Somers, NY 10589 U.S.A.

Produced in the United States of America
October 2011
All Rights Reserved

IBM, the IBM logo, ibm.com, Jazz, and Rational are trademarks of
International Business Machines Corporation in the United States,
other countries or both. If these and other IBM trademarked terms are
marked on their first occurrence in this information with a trademark symbol
(® or ™), these symbols indicate U.S. registered or common law trademarks
owned by IBM at the time this information was published. Such trademarks
may also be registered or common law trademarks in other countries.
A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at ibm.com/legal/copytrade.shtml

Other company, product or service names may be trademarks or service
marks of others.

1 See Cisco technology predictions, http://www.cisco.com/web/about/ac79/

docs/Top_25_Predictions_121409rev.pdf

RAW14275-USEN-00

http://www.ibm.com/legal/copytrade.shtml
http://www.cisco.com/web/about/ac79/docs/Top_25_Predictions_121409rev.pdf
http://www.cisco.com/web/about/ac79/docs/Top_25_Predictions_121409rev.pdf
http://www.ibm.com/software/rational/workbench/systems

	Untitled
	Delivering value throughbest practices
	Process support in systems and software
	Executive summary
	Challenges for smarter productdevelopmen
	Objectives for your developmentenvironme
	Deﬁning your development environment
	Using practices to optimize yourdevelopm
	The beneﬁts of deﬁned practices
	Areas for the application of practices i
	Implement practices intelligently
	The IBMRational solution for systems and
	Platform architecture
	Solution components
	IBMPractice Library
	Metrics, measurement and reporting
	Professional services
	Conclusion
	For more information

