

Università e Ricerca aprono la strada a nuovi utilizzi aziendali per dati e informazioni

Roberto Sicconi, Director DeepQA Opportunities, IBM USA Maurizio Lenzerini, Professore Ordinario di Base dei Dati, Università La Sapienza di Roma

Information system architecture enabled by DBMS

Pre-DBMS architecture (need of a unified data storage):

"Ideal information system architecture" with DBMS ('80s):

Actual information system structure

 Distributed, redundant, application-dependent, and mutually incoherent data

Desperate need of a coherent, conceptual, unified view of data

Use Knowledge Representation and Reasoning principles and techniques for a new way of managing data.

- Leave the data where they are
- Build a conceptual specification of the domain of interest, in terms of knowledge structures (semantic transparency)
- Map such knowledge structures to concrete resources (e.g., data sources)
- Express all services over the abstract representation
- Automatically translate knowledge services to data services

Ontology-based data management: architecture IEM 👸

Based on three main components:

- Ontology, used as the conceptual layer to give clients a unified conceptual specification of the domain.
- Data sources, representing external, independent, heterogeneous, storage (or, more generally, computational) structures.
- Mappings, used to semantically link data at the sources to the ontology.

Which languages?

- Which language for the ontology?
- Which language for the mappings?
- Which language for expressing services (i.e., queries) over the ontology?

Challenge: optimal compromise between expressive power and data complexity.

Informed Decision Making: Search vs. Expert Q&A

Different Types of Evidence: Deeper Evidence

Examples from Jeopardy! clues and missing links IEM ()

Edmund Hillary

- This fish was thought to be extinct millions of years ago until one was found off South Africa in 1938
- Category: ENDS IN "TH"
- Answer: coelacanth
- When hit by electrons, a phosphor gives off electromagnetic energy in this form
- Category: General Science
- Answer: light (or photons)
- Secy. Chase just submitted this to me for the third time-guess what, pal. This time I'm accepting it

Mt Everest

He was first

- Category: Lincoln Blogs
- Answer: his resignation

On hearing of the discovery of George Mallory's body, he told reporters he still thinks he was first. Iniorianei

DeepQA: The Technology Behind Watson

Massively Parallel Probabilistic Evidence-Based Architecture

DeepQA generates and scores many hypotheses using an extensible collection of **Natural Language Processing**, **Machine Learning** and **Reasoning Algorithms**. These gather and weigh evidence over both unstructured and structured content to determine the answer with the best confidence.

Semantic technologies for Data Management

Based on the idea that the ontology is the heart of the information system.

- Ontology-based data access and integration
- Ontology-based privacy-aware data access
- Ontology-based data quality
- Ontology-based data restructuring
- Ontology-based data update
- Ontology-based service management

General requirements:

- large data collections
- efficiency at least with respect to size of data (data complexity)

Ontology-based data access and integration

- Which language for the ontology?
 - DL-Lite_{A,id}
- Which language for the mappings?
 - FOL-to-CQ, with object constructors
- Which language for expressing queries over the ontology?
 - Essentially UCQs

Challenge: optimal compromise between expressive power and data complexity.

Ontology-based data access and integration

	lhs	rhs	funct.	Prop. incl.	Data complexity of query answering
0	DL-Lite _{A,id}			\checkmark	in AC ⁰
1	$A \mid \exists P.A$	A	1		NLOGSPACE-hard
2	A	$A \mid \forall P.A$	1	<u>1997 - 1</u>	NLOGSPACE-hard
3	A	$A \mid \exists P.A$	\checkmark		NLOGSPACE-hard
4	$A \mid \exists P.A \mid A_1 \sqcap A_2$	A	1000 C		PTIME-hard
5	$A \mid A_1 \sqcap A_2$	$A \mid \forall P.A$	1	<u>196.0</u> 9	PTIME-hard
6	$A \mid A_1 \sqcap A_2$	$A \mid \exists P.A$	\checkmark		PTIME-hard
7	$A \mid \exists P.A \mid \exists P^A$	$A \mid \exists P$	3251		PTIME-hard
8	$A \mid \exists P \mid \exists P^-$	$A \mid \exists P \mid \exists P^-$	\checkmark	\checkmark	PTIME-hard
9	$A \neg A$	A		<u> </u>	coNP-hard
10	A	$A \mid A_1 \sqcup A_2$	1000 A	1979	coNP-hard
11	$A \mid \forall P.A$	A	<u></u>	<u>1954</u>	coNP-hard

- What can be seen by a user can be formalized by means of a set of views (called authorization views) over the ontology
- The query answering algorithm can ensure that the answer returned to the user can be derived only by the knowledge represented by the authorization views

- Checking the quality of the data sources can be done by comparing the information content of the sources with the ontology
- The quality of query answering can be improved by using logic-based techniques for "repairing" inconsistencies

Ontology-based data restructuring

We can restructure our data by materializing the data according to the ontology

Ontology-based data update

- The idea is that users can express, besides queries, updates over the ontology
- Challenges:
 - What is the semantics of an update expressed over the ontology?
 - How to push the updates from the ontology to the data sources?

Ontology-based service management

The idea is that one can express, besides queries and updates, services over the ontology

Challenges:

- What is the right language to express services?
- How to compare services?
- How to automatically compose services to dynamically devise new services the updates from the ontology to the data sources?

Potential Business Applications

Healthcare / Life Sciences: Diagnostic Assistance, Evidence-Based, Collaborative Medicine

Tech Support: Help-desk, Contact Centers

Enterprise Knowledge Management and Business Intelligence

Government: Improved Information Sharing and Education

Differential Diagnosis with DeepQA

• Capabilities

- Support physicians in the differential diagnosis process
- Address best known sources of diagnostic errors
- Deal with ambiguous, incomplete, conflicting information (both in declared symptoms, observations, findings, ...and in the knowledge sources)
- Leverage both structured (e.g. lab tests, EMR, ontologies) and unstructured (e.g. reports, papers, knowledge bases) data
- Perform statistical analysis of multiple partially overlapping unstructured evidences
- Help identify "red herrings" (anomalies in patient history data (e.g. incorrect lab tests results) that may lead to incorrect conclusions)
- Point to missing information that would help reduce ambiguity and improve the quality of the diagnosis
- Real-time response, except for periodic pre-processing of data sources when updates are made available

DeepQA in Continuous Evidence-Based Diagnostic Analysis

