
Simone Riccetti
La sicurezza nello sviluppo delle applicazioni Web

Security Landscape
Common Vulnerabilities
Analysis Techniques
IBM Secure Software Engineering

Agenda

Web App Vulnerabilities Continue to Dominate
– 50.4% of all vulnerabilities

are Web application
vulnerabilities

– SQL injection and Cross-Site
Scripting are neck and neck
in a race for the top spot

Simple Security Landscape

The Enterprise

The Internet

Port
Scanning

DoS

Known
Web Server

Issues

Pattern-
Based

Attacks

Web Server

Application
Server

Databases

Backend
Server/System

Access Control
And Firewall IDS/IPS

SSL

AV

Custom
Application-Layer

Attacks

VirusTotal
Popular online tool for “testing” whether
AV scanners can detect new malware.

January 3rd, 2008 – Stops “Do not
distribute the sample” option.

First generation of underground “testing”
tools quickly followed…

KIMS – English/Spanish
Requires attacker to install all the AV
products themselves

VirusTotal
Popular online tool for “testing” whether
AV scanners can detect new malware.

January 3rd, 2008 – Stops “Do not
distribute the sample” option.

First generation of underground “testing”
tools quickly followed…

KIMS – English/Spanish
Requires attacker to install all the AV
products themselves

ScanLix
"install & forget" philosophy – just update
from time to time.
… see the different signature files being
updated.
…disadvantage is the limited number of
engines it uses.

ScanLix
"install & forget" philosophy – just update
from time to time.
… see the different signature files being
updated.
…disadvantage is the limited number of
engines it uses.

Security Landscape
Common Vulnerabilities
Analysis Techniques
IBM Secure Software Engineering

Agenda

Stmt = "SELECT * from tUsers where

userid='" + + "' AND

password='" + + "'";

Hacker supplies input that modifies the original SQL statement, for example:
iUserID =

SELECT * from tUsers where

userid=' ' AND password='bar'

es. SQL Injection

' or 1=1 ' or 1=1 ----

SELECT * from tUsers where
userid=‘adish' AND password=‘qqq'

' AND password='bar'

Adi Sharabaniqqqadish1824

NamePasswordUsernameUserID

iUserIDiUserID

iPasswordiPassword

adishadish

qqqqqq

User input is embedded as-is in
predefined SQL statements:

Administrator$#kaoeFor56Admin1

NamePasswordUsernameUserID

Security Landscape
Common Vulnerabilities
Analysis Techniques
IBM Secure Software Engineering

Agenda

General testing techniques

Total PotentialTotal Potential
Security IssuesSecurity Issues

DynamicDynamic
AnalysisAnalysis

StaticStatic
AnalysisAnalysis

•

Environment Configuration Issues
• Patch Level Issues
• Runtime Privileges Issues
•

Authentication Issues
• Protocol Parser/Serializer Issues
• Issues in external 3rd

party

components

• Environment Configuration Issues
• Patch Level Issues
• Runtime Privileges Issues
• Authentication Issues
• Protocol Parser/Serializer Issues
•

Issues in external 3rd

party

components

• Null Pointer Dereference
•

Threading Issues
• Code Quality Issues
• Issues in Dead Code
•

Insecure Crypto Functions
• Issues in Back‐End Application

Code (Multi‐Tier Applications)

• Null Pointer Dereference
• Threading Issues
• Code Quality Issues
• Issues in Dead Code
• Insecure Crypto Functions
•

Issues in Back‐End Application

Code (Multi‐Tier Applications)

• SQL Injection
• Cross Site Scripting
•

HTTP Response Splitting
• OS Commanding
• LDAP Injection
• …

• SQL Injection
• Cross Site Scripting
• HTTP Response Splitting
• OS Commanding
• LDAP Injection
• …

Application Logic IssuesApplication Logic Issues

Runtime Analysis

Runtime Analysis serves as

the “glue”

between Static &

Dynamic Analysis. It helps

correlate results and improve

overall accuracy &

actionability

Runtime Analysis serves as

the “glue”

between Static &

Dynamic Analysis. It helps

correlate results and improve

overall accuracy &

actionability

Security Issues CoverageSecurity Issues Coverage

What is static analysis?

The study of things that are not changing.
Evaluating code without executing it.
Algorithms for analyzing algorithms.
Process of building theoretical models of how an
application works, from its code and binaries, and
looking for weaknesses from these models

IBM and Static Analysis

IBM has been researching static
analysis since the 1970’s
IBM has dozens of publications,
patents in the static analysis field

Mark Wegman, IBM Fellow
Invented SSA (Static Single Assignment)

form back in the 1980’s;
This form is used by virtually all compilers

and static analyzers today.
IBM T.J. Watson Research Center, NY

http://www.watson.ibm.com/

How is this code vulnerable?

How is this code vulnerable? (2)

Generic static analysis process

Source Code Model Perform
Analysis

Results

Security
Knowledge

Taint Analysis – How It Works

Build model
Graph representing all
data-flow and control-flow

Find ENTRY POINTS
All public web-interfaces

Start search from SOURCES
Find where data can flow into

Find if data can flow into SINKS
Cut-off data-flow at SANITIZERS

Models:
#1: Call Graph (CG)
#2: System Dependence Graph (SDG)

Search is done using a

 technique called

 Program Slicing

Taint Analysis Rules

• Groups of sources, sinks, sanitizers determine
issue types

Sources:

Sinks:

XSS SQLi HTTPRSSanitizers:

// ...
String username = request.getParameter("username");
String password = request.getParameter("password");

// ...
String query = "SELECT * from tUsers where " +

"userid='" + username + "' " +
"AND password='" + password + "'";

// ...
ResultSet rs = stmt.executeQuery(query);

User can change executed

 SQL commands

Sink

‐

a potentially

dangerous method

Source

– a method

 returning tainted string

How White Box Scanners Work

// ...

String password = request.getParameter("password");

// ...

"userid='" + username + "' " +
"AND password='" + password + "'";

// ...

String username = request.getParameter("username");

String query = "SELECT …" + username

ResultSet rs = stmt.executeQuery(query);

String username = request.getParameter("username");

String query = "SELECT * from tUsers where " +'

ResultSet rs = stmt.executeQuery(query);

How White Box Scanners Work

// ...
String username = request.getParameter("username");
String password = request.getParameter("password");

// ...
String query = "SELECT * from tUsers where " +

"userid='" + username + "' " +
"AND password='" + password + "'";

// ...
ResultSet rs = stmt.executeQuery(query);

// ...
String username = request.getParameter("username");
String password = request.getParameter("password");

// ...
String query = "SELECT * from tUsers where " +

"userid='" + Encode(username) + "' " +
"AND password='" + Encode(password) + "'";

// ...
ResultSet rs = stmt.executeQuery(query);

Sanitizer:
a method returning
a non‐tainted string

A Common Fix (not the best one...)

Sources:

Sinks:

Sanitizers:

How White Box Scanners Work

The next generation of static analyzer technology
Addresses High False Positive rate of Traditional
Static Analyzers and their configuration requirements
Automatically and statically detects the grammar of a
string at the point of use

public void submitQuery(String userName) {
userName = clean(userName);
String query = "SELECT id FROM users WHERE name = '" +

userName + "'";
execute(query);

}
public String clean(String input) {

return input.replaceAll(";","").replaceAll("'","");
}

public void submitQuery(String userName) {
userName = clean(userName);
String query = "SELECT id FROM users WHERE name = '" +

userName + "'";
execute(query);

}
public String clean(String input) {

return input.replaceAll(";","").replaceAll("'","");
}

input .*

output [~;’]*

IBM’s String Analysis Technology

How It Works

public void submitQuery(String userName) {
userName = clean(userName);
String query = "SELECT id FROM users WHERE name = '" +

userName + "'";
execute(query);

}
public String clean(String input) {

String output = input.replaceAll(";","").replaceAll("'","");
return output;

}

public void submitQuery(String userName) {
userName = clean(userName);
String query = "SELECT id FROM users WHERE name = '" +

userName + "'";
execute(query);

}
public String clean(String input) {

String output = input.replaceAll(";","").replaceAll("'","");
return output;

}

submitQuery

clean

execute
userName = Σ*userName = Σ*

output = {Σ

- {;,'}}*output = {Σ

- {;,'}}*

userName = {Σ

- {;,'}}*userName = {Σ

- {;,'}}*

query = SELECT id FROM users WHERE
name = '{Σ

- {;,'}}*'
query = SELECT id FROM users WHERE
name = '{Σ

- {;,'}}*'

input = Σ*input = Σ*

Advantages of String Analysis
World’s smartest static analyzer

No need to define what the sanitizers are
Understands inline sanitization
Understands validators
Can verify your sanitizers really do what they’re
supposed to

What this means for you
•

Greater accuracy out-of-the-box

•

Less configuration
•

More reliable results

•

Easier to use

IBM Tokyo Research Lab

What is Dynamic Analysis?

Tests the web application while it is running
Also know as Black Box testing, since it doesn’t know
how the internals of the application works
It works by first exploring the application to build its site
model and determine the attack vectors
It then tests the application by injecting calculated faults
into HTTP(S) requests and analyzing the response for
vulnerabilities

Dynamic Analysis

• The following values would be appended to the
username parameter original value in order to test it for
SQL injection
– username=jsmith’
– username=jsmith\’
– username=jsmith;
– username=jsmith having 1=1--
– etc

• The test is validated if it causes a database exception in
the response

• Stage 1: Crawling as an honest user

http://mySite/editProfile.jsp

http://mySite/

http://mySite/login.jsp

http://mySite/feedback.jsp

http://mySite/logout.jsp

How Black-Box Scanners Work

• Stage 1: Crawling as an honest user

http://mySite/editProfile.jsp

http://mySite/

http://mySite/login.jsp

http://mySite/feedback.jsp

http://mySite/logout.jsp

How Black-Box Scanners Work

• Stage 1: Crawling as an honest user
• Stage 2: Testing by tampering requests (ex. HTTP Request)

How Black-Box Scanners Work

• Stage 3: Analyze response of system (ex. HTTP Response)
• Stage 4: Categorization

What is Run Time Analysis

Run Time Analysis gives visibility into the internal
working of an application while Dynamic Analysis is
being performed
Allows pin pointing of problem source code while
performing Dynamic Analysis
Works by monitoring the method invocation during black
box testing

Security Landscape
Common Vulnerabilities
Analysis Techniques
IBM Secure Software Engineering

Agenda

SE goes beyond writing secure code. SE permeates the
entire development process. We are ‘sprinkling’ security
into:

Requirements
Design
Code/coding
Test/testing
Documentation
Serviceability
• Specifically, education to Service and Support teams

What is Secure Engineering?

Software Development Lifecycle

Threat Index
Calculator

Threat
Modeling

Static Code
Analyzer

Fuzzing
Tools

Web App

Scanning

Web App
Scanning

Requirements Design Code Test Release

Penetration

Testing

Threat Modeling

Microsoft TM Tool

Fuzzing

Tools

Open Source

Static Code Analyzers
Rational AppScan

Source
Web App Scanning

Rational AppScan

Standard

AppScan
Standard Ed

(desktop)

IBM Rational AppScan Ecosystem

AppScan
Enterprise user

(web client)
AppScan Build Ed

(scanning agent)

IBM Rational Web Based Training for AppScan

AppScan
Developer Ed

(desktop)

AppScan Ent.
QuickScan
(web client) AppScan Tester Ed

(scanning agent)
(QA clients)

Rational
BuildForge

Rational Quality
Manager

Rational
Application
Developer

Rational
Software
Analyzer

Rational
ClearCase

Rational ClearQuest / Defect Management

AppScan Enterprise / Reporting ConsoleAppScan Enterprise / Reporting Console

CODE
Build security testing into the IDE*

BUILD
Automate Security / Compliance

testing in the Build Process

QA
Security / compliance testing
incorporated into testing &

remediation workflows

SECURITY
Security & Compliance Testing,
oversight, control, policy, audits

White Box +
String Analysis

Black Box +
Runtime
Analysis

Black Box +
Runtime
Analysis

Black BoxBlack Box Black BoxBlack Box

Black BoxBlack Box

Black BoxBlack Box
White Box +

String Analysis

Black Box +
Runtime
Analysis

Black Box +
Runtime
Analysis

Grazie!

	Slide Number 1
	Agenda
	Web App Vulnerabilities Continue to Dominate
	Simple Security Landscape
	Slide Number 5
	Slide Number 6
	Agenda
	es. SQL Injection
	Agenda
	General testing techniques
	Slide Number 11
	What is static analysis?
	IBM and Static Analysis
	How is this code vulnerable?
	How is this code vulnerable? (2)
	Generic static analysis process
	Taint Analysis – How It Works
	Taint Analysis Rules
	How White Box Scanners Work
	How White Box Scanners Work
	A Common Fix (not the best one...)
	How White Box Scanners Work
	IBM’s String Analysis Technology
	How It Works
	Advantages of String Analysis
	What is Dynamic Analysis?
	Dynamic Analysis
	How Black-Box Scanners Work
	How Black-Box Scanners Work
	How Black-Box Scanners Work
	What is Run Time Analysis
	Agenda
	Slide Number 35
	Software Development Lifecycle
	Slide Number 37
	Slide Number 38

