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• Model-based Systems Engineering (MbSE) is a structured a
pproach for the development of complex systems across the 
mechanical, electrical, electronic and software disciplines 
— Helps ensure that all requirements are fulfilled; that functio

nal behaviors are realized while non-functional constraints 
are met 

— Employs models as the primary artifacts throughout the sy
stems development lifecycle

— Facilitates improved communication among stakeholders o
n a systems development team

— Provides a disciplined way to manage complexity through a
bstraction

What is Model-based Systems Engineering?



Electronics …Aerospace and Defense Automotive
e.g.
Flight control
Weapons
Navigation
Guidance
Communications
Autonomous systems
…

Complex systems are everywhere

e.g.
Power train
Safety
Entertainment
Comfort and convenience
Instrumentation
Communications
…

e.g.
Medical
Industrial
Consumer
Transport
Telecommunications
...



Model-based systems engineering in a model-driven development lifecycle

Essential SysML artifacts of the Rational MbSE approach

Task flow in Rational Harmony™ for Systems Engineering

Deploying MbSE with Rational® Rhapsody®

Documentation of Rational Harmony™ for Systems Engineering

Agenda
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Document driven development of embedded systems
The “Throw-it-over-the-Fence” approach
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Design iterations in the “V” development lifecycle
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*) Configuration Controlled Knowledge
of the System Under Development: 
• Requirements Documentation
• Requirements Traceability
• Design Documentation
• Test Definitions 

*) Configuration Controlled Knowledge
of the System Under Development: 
• Requirements Documentation
• Requirements Traceability
• Design Documentation
• Test Definitions 

Integrated system / software development process
Model-driven development of embedded systems
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Collaborate across diverse engineering 
disciplines and development teams

Achieve “quality by design”
with an integrated, automated 

testing process

Manage all system requirements 
with full traceability across 

the lifecycle

Use modeling to validate requirements, architecture 
and design throughout the development process

Rational
Quality Manager

Rational
Quality Manager

Rational 
DOORS
Rational 
DOORS

Rational 
Rhapsody
Rational 

Rhapsody

Rational 
Team Concert

Rational 
Team Concert

COLLABORATE REPORTAUTOMATECOLLABORATE REPORTAUTOMATE

Rational Workbench for Systems and Software Engineering
Built on a core solution set
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Domains involved in the different phases of the model-driven development
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Defines structural elements 
(Blocks) and their relationship

Defines the realization 
of system structure

Defines the parametric relationship 
between system properties

SysML artifacts in Rational Harmony™ for Systems 
Engineering 
Capturing the static view
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• Defines system scope
• Groups requirements 
into Use Cases 
(“Table of Contents”)

Defines functional flow 
(“Storyboard”) of the Use Case

Defines interactions 
with the environment

Aggregates AD- and SD-info 
and adds state-based behavior 

2

3

1

4

Capturing system behavior in a model-based approach
Example: Creating an executable use case model
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Identify / derive required system functionality

Identify associated system states and 
operational modes

Allocate required system functionality to a 
system architecture taking into account 
non-functional aspects of the requirements

Key objectives of the 
Rational Harmony™ for Systems Engineering workflow
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System Use Case(s)System Use Case(s)

SRS
(Draft)

Stakeholder Requirements

Stakeholder Requirements

System Requirements 
System Use Cases Model 

Links providing traceability 
to original requirements 

In the requirements analysis phase, the focus 
is on the analysis of the process inputs.

Stakeholder requirements are translated into system 
requirements that define
- what the system must do 

(functional requirements) and 
- how well it must perform 

(quality of service requirements).

Once the requirements are sufficiently 
understood they are grouped into Use Cases.

Requirements Analysis Task Flow

Stakeholder
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Specification 

System
Requirements
Specification (Draft)

System
Requirements
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Generate
System Reqs

Generate
System Reqs

[Next Use Case]
[else]

Define
System Use Case 

Prioritize and Group
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Prioritize and Group
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Link
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to System Reqs

Link
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[else]

[System Use Cases defined]

Link 
Functional / Performance 
Reqs to System Use Case

Link 
Functional / Performance 
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Stakeholder
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Analyze/Refine
Stakeholder Reqs

Rational Harmony™ for Systems Engineering
Requirements analysis



Links providing traceability 
to original requirements 

System OperationsSystem Operations
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Requirements Analysis

System Use Case(s)

SRS
(Draft)

Requirements Analysis

System Use Case(s)

SRS
(Draft)

Stakeholder Requirements

Stakeholder Requirements

System Requirements 
System Use Cases Model 

UC Scenarios (Black-Box)UC Scenarios (Black-Box)

System Functional Analysis
(Use Case-Based)

SRS
(Baseline)
SRS
(Baseline)

In the system functional analysis phase, the focus 
is on the translation of the functional requirements 
into a coherent description of system operations.

Each use case of an iteration is translated into a 
model and the underlying requirements verified and 
validated through model execution. 

System Functional Analysis Task Flow
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Rational Harmony™ for Systems Engineering
System functional analysis 



Links providing traceability 
to original requirements 
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System Use Case(s)

Requirements Analysis SRS
(Draft)

System Operations

System Functional Analysis
(Use Case-Based) SRS

(Baseline)
SRS
(Baseline)

In the design synthesis phase, the focus is on the 
development of a system architecture capable of 
performing the required operations within the limits of 
the prescribed performance constraints.

Rational Harmony™ for Systems Engineering
Design synthesis



Non-Functional System Requirements 

Links providing traceability 
to original requirements 
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Analysis

Architectural 
Design

Design Synthesis Task Flow

Elaborate Architectural Concept 
(Trade Study)

Elaborate Architectural Concept 
(Trade Study)

The objective the architectural analysis phase is to 
elaborate the optimum design concept based upon a set of 
criteria (e.g. Measures of Effectiveness, MoEs) that are 
weighted according to their relative importance.

Design synthesis
Architectural analysis



Non-Functional System Requirements 

Links providing traceability 
to original requirements 
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Design

Design Synthesis Task Flow

[else]

Create / Update
System Architecture Model

Create / Update
System Architecture Model

Verify  Collaboration
through Model Execution 

Verify  Collaboration
through Model Execution 

[Next 
Use Case]

Elaborate Architectural Concept 
(Trade Study)

Elaborate Architectural Concept 
(Trade Study)

Define
Ports and Interfaces

Define
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Verify Realized UC Model
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Define
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Allocate & Link
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Derive 
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Derive 
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Decomposition]

Define Parts of
Decomposition Hierarchy

Define Parts of
Decomposition Hierarchy

[else]

Allocate System-Level 
Operations to Parts

Allocate System-Level 
Operations to Parts

The focus of the architectural design phase is on the allocation of 
the functional requirements (= system operations) and non-functional 
requirements to an architectural structure. 
The architectural design is performed incrementally for each use case 
of an iteration by transitioning from the black-box view to the white-box 
view – also referred to as use case realization.

Design synthesis
Architectural analysis



Non-Functional System Requirements 

Links providing traceability 
to original requirements 

System OperationsSystem Operations
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System Use Cases Model 
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System Functional Analysis
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Rational Harmony™ for Systems Engineering



In a model-driven development the key artifact of the handoff from systems 
engineering to the subsequent system development is the baselined
executable model.  

This model is the repository from which specification documents (e.g. 
HW/SW requirements specifications, ICDs, …) are generated.

Scope and content of the hand-off is dependent on the characteristics of the 
project and the organizational structure systems engineering is embedded.

Systems engineering handoff to the
subsequent system development 



The hand-off packages typically are composed of baselined
executable CI model(s) which contain

The definition of allocated operations including their links to 
the

associated system functional and performance 
requirements

The definition of the associated state-based behavior, 
captured

in a statechart diagram

The allocated and linked non-functional requirements 

The definition of ports and logical interfaces 

Test scenarios, derived from system-level use case 
scenarios

Systems engineering handoff to the
subsequent system development 
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Deploying model-based systems engineering
Project specific model-based Systems Engineering Handbook



MbSE Handbook
Standardizing the MbSE workflow 
and Rhapsody tool usage



The Alternative:  MbSE Handbook in RMC



MbSE Handbook
Standardizing the usage of the modeling language



Deploying model-based systems engineering
Managing the modeling activities: Project plan
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Rational Harmony™ for Systems Engineering Deskbook
Rational Rhapsody® tool focused documentation



Rational Systems Engineering Practices captured in RMC



• 60% Reduction in time to develop a specification
Due to improved clear up rate of issues
Improved communication
Models act as means of negotiating understanding between customer and supplie
r

• Improved understanding of interfaces between contractors
Interfaces particularly complex as the boundary between the interfacing systems 
was not on the perceived physical boundary of the systems

• Improvements in HW/SW of 60% less errors
Due to better understanding of requirements
Tying the model and code together

• Use of a General Systems Architecture (library of reference models) has resulted in 
a reduction of 75% of the time taken to do initial bid work

1 year to 3 months
Leads to reduced bid costs
Rapid response to bids

Why MbSE?
Experiences summary
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Uc1_Sc1

readSecurityCard()

Uc_Uc1ControlEntry

SecurityCard Valid

BiometricData Authenticated

readSecurityCard()

displayCardStatus(CardStatus)

validateSecurityCard(CardStatus)

t_Bs

t_Unlocked

scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

logEntryData()

t_Bs

t_Unlocked

scanBiometricData()

logEntryData()

reqUnlockAccessPoint()

AccessPoint

reqUnlockAccessPoint()

evAccessPointUnlocked()

reqLockAccessPoint()
evAccessPointLocked()

evAccessPointUnlocked()

reqLockAccessPoint()
evAccessPointLocked()

reqTakeSnapshot()

Camera

reqTakeSnapshot()

reqReadSecurityCard()

User

reqScanBiometricData()

reqReadSecurityCard()
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in a Block Definition Diagram
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Case study – Uc1 (Control Entry) realization
Allocation of system-level operations to parts (subsystems)
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