Innovate2011

The Premier Software and Product Delivery Event

cgb Software. Everyware.

Why MbSE?

Streamlining the Development of Complex
Systems

Hans-Peter Hoffmann, Ph.D.
Chief Systems Methodologist
IBM Rational Software
hoffmape @us.ibm.com

What is Model-based Systems Engineering?

« Model-based Systems Engineering (MbSE) is a structured a
pproach for the development of complex systems across the
mechanical, electrical, electronic and software disciplines

— Helps ensure that all requirements are fulfilled; that functio
nal behaviors are realized while non-functional constraints
are met

— Employs models as the primary artifacts throughout the sy
stems development lifecycle

— Facilitates improved communication among stakeholders o
n a systems development team

— Provides a disciplined way to manage complexity through a
bstraction

&9

|I1n0vate2011 cg:_')» Software. Everyware.

Complex systems are everywhere

Aerospace and Defense

e.g.

Flight control
Weapons

Navigation

Guidance
Communications
Autonomous systems

Automotive

e.g.

Power train

Safety

Entertainment

Comfort and convenience
Instrumentation
Communications

Innovate2011

Electronics ...

e.g.

Medical

Industrial

Consumer
Transport
Telecommunications

\.:";'-."_-
11, il
il

[IG]
ol

@b Software. Everyware.

Agenda *

&9
iyt
{1y

(6]
[lun]

= Model-based systems engineering in a model-driven development lifecycle
= Essential SysML artifacts of the Rational MbSE approach

= Task flow in Rational Harmony™ for Systems Engineering

= Deploying MbSE with Rational® Rhapsody®

= Documentation of Rational Harmony™ for Systems Engineering

|I1l10\fa1:e2011 4“,39 Software. Everyware,

Document driven development of embedded systems
The “Throw-it-over-the-Fence” approach

€
Ml

™
Tl

nduced | _ _ N Costs of (]
nduced | e, Increase requirements / design stability through Design {fosnl]
Errors Tee, alidation prior to implementation Changes

«
G
.
",
e
.,
ey,

Time

System
Acceptance

Requirements

A EWSTES

System
Requirements
Specification

R

Sy;tems . (Sub-)System
Analysis & Design Integration & Test

HW/SW
Requirements — o\ o e e s
Specification

Module

S e Integration & Test

SW Design

el eeraran, e I S ==
Specification H — =31 = 7 : g%

SW Implementation

& Unit Test

|nl10\fat32011 4‘:39 Software. Everyware,

Integrated system / embedded software development
Design iterations in the “V” development lifecycle

2]
lp
Change Request {1y

(6]
[lun]

—

AN
Stakeholder H

Requirements
Requirements
Analysis

Systems

Engineering
System
Validation

Plan System
Acceptance

Scenarios (ConOps)

Embedded RT

Test Development

System Functional Scenarios

Analysis

»
'

System
Verification
(Sub-)System

Design Synthesis pr—— ‘
gn sy Integration & Test

System
Architecture
Baseline

Procedure

Module

Analysis & Design Integration & Test

HW
Analysis & Design

“+— Model / Requirements Repository

HW Component
Verification

SW Implementation

& Unit Test
HW Build

|I1l10\fa1:e2011 4“,;:) Software. Everyware,

Integrated system / software development process
Model-driven development of embedded systems

Change Request

3

| |1|||1-|
Jia-

Ili e
(i)
|]|

Stakeholder
Requirements

|

Requirements Models,
System Use Cases Model

Requirements
Analysis

Executable
Use Case Model(s)

Architectural Analysis Model(s),
System Architecture Model

System

Baseline

Software
Implementation
Model

System Functional
Analysis

Design Synthesis

Architecture —

Harmony™ for

Systems
Engineering

Scenarios (ConOps)

Test
Scenarios

v

———>
——

Analysis & Design s

SW Implementation

& Unit Test

“— Model / Requirements Repository *

System

Validation

Plan System
Acceptance

System

Verification

Plan

(Sub-)System
Integration & Test

Harmony™ for
Embedded RT
Development

Procedure

Integration & Test

*) Configuration Controlled Knowledge
of the System Under Development:
e Requirements Documentation
e Requirements Traceability

Innovate2011

e Design Documentation
e Test Definitions

4‘:39 Software. Everyware,

Rational Workbench for Systems and Software Engineeri
Built on a core solution set

Iy ll
i
(]
|]|

Use modeling to validate requirements, architecture
and design throughout the development process

> Rational <
‘ Rhapsody ‘
Rational : 1 j Rational
DOORS ‘l ‘ Quality Manager
Manage all system requirements Rational Achieve “quality by design”
with full traceability across Team Concert with an integrated, automated
the lifecycle testing process

ilaborate across diverse engineel.. _
disciplines and development teams

COLLABORATE AUTOMATE REPORT

Rational Workbench for Systems and Software Engineerind

|nn0\rat62011 Q& Software. Everyware,

Integrated system / software development process
Domains involved in the different phases of the model-driven development

€

Il]lllﬂ
i

Ili e
(i)
|]|

Systems Engineering
Software Engineering

Electrical/Mechanical Engineering

Test Engineering

Change Request

Systems
Engineering

Stakeholder
Requirements

B

Requirements
Analysis

System

Validation

Plan System
Acceptance

Scenarios (ConOps)

Embedded RT

Test Development

System Functional Scenarios

Analysis
System
Verification
Plan -
Design Synthesis prmm— LN (Sub-)System
Integration & Test
Co

System
Architecture
Baseline

Procedure

Module

Analysis & Design M Integration & Test

HW
Analysis & Design

“— Model / Requirements Repository

HW Component
Verification

SW Implementation

& Unit Test
HW Build

|nl10\fat32011 4‘:39 Software. Everyware,

Agenda *

&9
iyt
{1y

(6]
[lun]

= Model-based systems engineering in a model-driven development lifecycle
= Essential SysML artifacts of the Rational MbSE approach

= Task flow in Rational Harmony™ for Systems Engineering

= Deploying MbSE with Rational® Rhapsody®

= Documentation of Rational Harmony™ for Systems Engineering

|I1l10\fa1:e2011 4“,39 Software. Everyware,

SysML artifacts in Rational Harmony ™ for Systems
&

Engineering

Capturing the static view

Defines structural elements
(Blocks) and their relationship

«block »
1 1
Sub

1 1
A2 /
«block »

\

1 1 itsSub
«block » «block » 1 «Actor » 1 «block »
SS_ A SS B itsAl itsSS A
pAL
psuD pAL pSS_B.
1 «Actor » 1 «block »
itsA2 itsSS B
pA2
psub pA2 pSs_A /
<
o
O

Innovate2011

Tyl
i
(6]

Defines the realization
of system structure

~

«Attribute»
mass

«Attribute»

acceleration

«ConstraintProperty,ConstraintBlock»
itsNewtonL aw: NewtonL aw
force = mass* acceleration
«Attribute»
force

mass:Kg
force:Newtons

acceletation: M eter sPer Sec* 2

J

Defines the parametric relationship
between system properties

Q& Software. Everyware.

Capturing system behavior in a model-based approach
Example: Creating an executable use case model

s
(0]
|]|

Defines functional flow
\ (“Storyboard”) of the Use Case

« Defines system scope

 Groups requirements
into Use Cases
(“Table of Contents”)

Defines interactions
with the environment

_

Aggregates AD- and SD-info
and adds state-based behavior

|I1n0\fate2011 @: Software. Everyware,

Agenda *

&9
iyt
{1y

(6]
[lun]

= Model-based systems engineering in a model-driven development lifecycle
= Essential SysML artifacts of the Rational MbSE approach

= Task flow in Rational Harmony™ for Systems Engineering

= Deploying MbSE with Rational® Rhapsody®

= Documentation of Rational Harmony™ for Systems Engineering

|I1l10\fa1:e2011 4“,39 Software. Everyware,

Key objectives of the
Rational Harmony ™ for Systems Engineering workflow

Change Request

Stakeholder
Requirements

B

Requirements
Analysis

Harmony™ for
Systems Engineering

= Identify / derive required system functionality
Scenarios (ConOps)‘

= |dentify associated system states and

Tesl operational modes

System Functional Scenarios
Analysis

Allocate required system functionality to a
system architecture taking into account

DSl SIS non-functional aspects of the requirements

-«—

System Architecture

Baseline ~

Innovate2011

€
gl
Ili e
(IR}
|]|

4‘:39 Software. Everyware,

Rational Harmony ™ for Systems Engineering
Requirements analysis

]
Llyguil
T
]
||n|||

Requirements Analysis Task Flow

[System Use Cases defined1
Stakeholder

Requirements

- p—

Stakeholder Requirements | — []]

[else]

Analyze/Refine

Stakeholder Requirements Stakeholder Regs

N N Stakeholder
SRS Requirements
(Draft) Specification

Generate Link

In the requirements analysis phase, the focus System Reqs i
Is on the analysis of the process inputs.

System Requirements Requirements Analysis
System Use Cases Model

A A

System Use Case(s)

. . System
Stakeholder requirements are translated into system Requirements
requirements that define Specification (Draft)

Define
- what the system must do System Use Case

(functional requirements) and s
- how well it must pel'fOI'm Functional / Performance

g 0 . Regs to System Use Case
(quality of service requirements).

Model / Requirements Repository

Once the requirements are sufficiently
understood they are grouped into Use Cases.

: Prioritize and Group
Links providing traceability System Use Cases <
to original requirements

O

[Next Use Case]

|I1n0vate2011 4“,39 Software. Everyware,

Rational Harmony ™ for Systems Engineering

System functional analysis

<

Stakeholder Requirements |—

Stakeholder Requirements

v

A A

System Requirements

System Use Cases Model

pdated System Requirements

A A A A

U
Executable Use Case Model(s)
UC Activity Diagram(s) (Black-Box)

UC Scenarios (Black-Box)

AN
SRS
(Draft)

System Use Case(s)

System Functional Analysis
(Use Case-Based)

SRS
(Baseline)
System Operations

System Functional Analysis Task Flow

£y |

!

[
”ll:”

New / Derived Reqs

Define
Use Case Model Context

Define
UC Functional Flow

Derive UC Scenarios
from UC Functional Flow
v

Document Define

Ports and Interfaces

Derive UC State-Based Behavior
from UC BB-AD and BB-SDs

Verify / Validate UC Model
trough Model Execution

In the system functional analysis phase, the focus
is on the translation of the functional requirements
into a coherent description of system operations.

[Rainy Day Analysis]
Extend UC Model

Model / Requirements Repository

Each use case of an iteration is translated into a
model and the underlying requirements verified and
validated through model execution.

w.r.t. Error/Fail Behavior

Link
UC Block Properties to Reqs

Links providing traceability
to original requirements

Update
Draft System ReqSpec

®

|I1n0vate2011 4“,39 Software. Everyware,

Rational Harmony ™ for Systems Engineering
Design synthesis

5
1|||;:!'!

< —

~ Stakeholder Requirements | =—

Stakeholder Requirements

System Requirements Requirements Analysis
Use Cases Model

SRS
(Draft)

A A

System Use Case(s)

Updated System Requirements System Functional Analysis
Executable Use Case Model(s) (Use Case-Based) SRS

UC Scenarios (Black-Box) (Baseline)

A A A

System Operations

Design Synthesis

Architectural Analysis
Architectural Design

In the design synthesis phase, the focus is on the
development of a system architecture capable of
performing the required operations within the limits of
the prescribed performance constraints.

Model / Requirements Repository

inks providing traceability
iginal requirements

|I1n0\fat62011 Q& Software. Everyware,

Design synthesis
Architectural analysis

Architectural
A EWATES

Updated System Requirements

Executable Use Case Model(s)

1

i

1

1

1

T — - AN

i UC Activity Diagram(s) (Black-Box) SRS
i UC Scenarios (Black-Box) (Baseline)
i

i

|

A A A A

System Operations

on-Functional System Requirements

Design Synthesis

A

Architectural Analysis
rchitectural Analysis Model(s) (Trade Study)

N
Updated System Requirements
A

Architectural Concept

Architectural

Design

Model / Requirements Repository
A

Links providing traceability
to original requirements

The objective the architectural analysis phase is to
elaborate the optimum design concept based upon a set of
criteria (e.g. Measures of Effectiveness, MoEs) that are
weighted ac ing to their relative importance.

Innovate2011

Design Synthesis Task Flo

Elaborate Architectural Concept
(Trade Study) f,:i

4“,39 Software. Everyware,

Design synthesis
Architectural analysis

Design Synthesis Task Flow

Architectural
Analysis

- Elaborate Architectural Concept
(Trade Study) %9
Iy II!!

. ji
Use Case Realization [My

T
()
I |]|
Define Parts of
Decomposition Hierarchy

Allocate System-Level
Operations to Parts

Updated System Requirements

Executable Use Case Model(s)

UC Activity Diagram(s) (Black-Box) SRS
UC Scenarios (Black-Box) (Baseline)

System Operations

A A A A

Non-Functional System Requirements

Design Synthesis

[Next Level of
Decomposition]

A

Updated System Requirements - :
Architectural Analysis

- - Derive
Architectural Analysis Model(s) (Trade Study) White-Box Sequence Diagrams
Architectural Concept
o . Architectural ;

UC Activity Diagram(s) (Black-Box)]] . Define
> | Architectural Design Design Ports and Interfaces
L Realized Use Case Model(s) « UC Realization
"1 Scenarios (White-Box) e Integrated UC Realization Define
< Leaf Blocks State-Based Behavior

Model / Requirements Repository
A

Verify Realized UC Model

!
'
]
0
' Integrated System Architecture Model
'
1
' through Model Execution

Links providing traceability
to original requirements Allocate & Link

Non-Functional Requirements

The focus of the architectural design phase is on the allocation of
the functional requirements (= system operations) and non-functional
requirements to an architectural structure.

Create / Update
System Architecture Model [Next

The architectural design is performed incrementally for each use case Use Case]
of an iteration by ggansitioning from the black-box view to the white-box Verify Collaboration
. . through Model Execution
use case realization. [else]

|I1n0vate2011 cg:_')» Software. Everyware.

Rational Harmony ™ for Systems Engineering

&9

Hygeall
= i Tl
Stakeholder Requirements | — Next Iteration ”:":“

Stakeholder Requirements

System Requirements Requirements Analysis

A A

SRS
(Draft)

System Use Cases Model
System Use Case(s)

A A

Updated System Requirements

System Functional Analysis
(Use Case-Based)

Executable Use Case Model(s)
UC Activity Diagram(s) (Black-Box)
UC Scenarios (Black-Box)

SRS
(Baseline)

A A

System Operations

Non-Functional System Requirements

Design Synthesis

A

Updated System Requirements : .
Architectural Analysis

Architectural Analysis Model(s) (Trade Study)

A

Architectural Concept

UC Activity Diagram(s) (Black-Box)

Model / Requirements Repository

Architectural Design

A

Realized Use Case Model(s) e UC Realization

Scenarios (White-Box) ¢ Integrated UC Realization

Integrated System Architecture Model \

A

A

)/

' J\ /L Logical ICDs
Links providing traceability HW/SW HW/SW Req Specs

original requirements Development incl. Test Scenarios

|nn0vate2011 4“,39 Software. Everyware,

Systems engineering handoff to the
subsequent system development

iyl
JI: e
{IR)
]|

In a model-driven development the key artifact of the handoff from systems
engineering to the subsequent system development is the baselined
executable model.

This model is the repository from which specification documents (e.g.
HW/SW requirements specifications, ICDs, ...) are generated.

Scope and content of the hand-off is dependent on the characteristics of the
project and the organizational structure systems engineering is embedded.

|I1n0\fate2011 @: Software. Everyware,

Systems engineering handoff to the
subsequent system development

3]
:imaii

(1]
The hand-off packages typically are composed of baselined ew

executable CI model(s) which contain

= The definition of allocated operations including their links to
the

associated system functional and performance
requirements

= The definition of the associated state-based behavior,
captured

in a statechart diagram
= The allocated and linked non-functional requirements

= The definition of ports and logical interfaces

= Test scenarios, derived from system-level use case
scenarios

|I1l10\fa1:e2011 4‘:39 Software. Everyware,

Agenda *

&9
g
{1y

(6]
[lun]

= Model-based systems engineering in a model-driven development lifecycle
= Essential SysML artifacts of the Rational MbSE approach

= Task flow in Rational Harmony™ for Systems Engineering

= Deploying MbSE with Rational® Rhapsody®

= Documentation of Rational Harmony™ for Systems Engineering

|I‘Il10\fa1:e2011 4‘:39 Software. Everyware,

Deploying model-based systems engineering
Project specific model-based Systems Engineering Handbook

l|||||l|
l|_| ||||
Table of Conens | " I
4241 Architectural Analysis Package. I u |
4242 Architectural Design Package]|
4258 System-Level Definitions
43 Configuration Management.
431 Strategy Tahleof Conrants
4311 Requi nts Model
4312 Black-Box Use Case Model Table of Contents

4313 White-Box Use Case Model
4.3.1.4 Integrated System Architecture Modsd ...
432 Mode Integration
4.32.1 Sharng Model Elements between Models....

1 Introducti

N Scope.

2 Document Ovenview
g:; ﬁ;ﬁ%& 2 Model-based Sy Engineering
Identifying nwor derived Requirements, 2.1 Modgl»hased Systems Engineering in a Mo_del«drivm System Development]
Setting up th t 22 =Project= Model-based Systems Engineering Workflow.....................]
Loading the DOORS Module into Gat 1 MDSE_Workﬂow Over_viaw
Importing Requirements into the Rraapsad/ Model 2 Requirements Analysis
Setting up Traceability 3 a'stz_am Fan‘tlona_aJ Analysi
Exporting SRO Information 4 Architectural Design
R itory Files used by Gats 2.2.41 UseGaseR 1

2.2.42 Integrated Use Case R 1

IBM Software Group | Rational software

8.1 Strategy. =
" . 31 Essential SysML Artifacts

3.2 Service Request-Dnven Modeling
i; EMDSD?’;;C’ﬂOtI; I(;nmlg'tulaip i PR 33 General Guidelines and Drawing COMVENEONS, . or oo]
sage of Activi art Information in the OrkAOW.................] 3.4 sML Diagram Guideines
AJ Guidgine: Logical Decomposition of a Use Case Black-Box Activity Dla.gram. 3.4.1 SYUSE c,:gg[)\agram
A4 Guideline: Derving a Statechart Diagram 3411 Elements and Artifacts
A5 Rhspsody SE-Toolkit (Overview) 3412 Cuiddines and Drawing GOMentions....................ccccoorereecernienn) < PrO -ect Name -
Application Notes 3413 MNaming Convention
List of A 342 Block Definition Diagram. j
3421 Elements and Artifacts

3422 Guideines and Drawing Conventions.............cocooioieninnnn H H
433 Raming Comvemanan Model-Based Systems Engineering
343 Intemal Block Diagram.
3431 Elements and Artifacts
3432 Guiddines and Drawing Corwentions HandbOOk
3433 MNaming Convention
344 Activity Diagram
3441 Elements and Artifacts
3442 Guiddines and Drawing Corwentions
3443 MNaming Convention
345 Sequence Diagram | Release/Revision | Release/Revision Date |
3451 Elements and Artifacts
3452 Guiddines and Drawing Corventions | | |
3453 MNaming Convention
348 Statechart Diagram
3.46.1 Elements and Artifacts
3482 Guiddines and Drawing Corwentions
3483 Maming Convention:
35 Profiles
4 Model
4.1 Organization.
42 Rhapsody Project Structure.
421 Project Structure Overview
hiodelBased rems Enginssring Handbaook 422 Requirements Analysis Package
= e 423 Fulsn:l\unal m:arysisygack ag:g
42.4 Design Synthesis

Model-Based Systems Enghesring Handbodk

|nn0\rat32011 @: Software. Everyware,

ModeFbased Systems Engineering

2.2 Model-based Systems Engineering Workflow %9
The model-based systems engineering workflow applied in the xxxo Hygeall
project is a specialization of the Harmony/SE workflow outlined in the ||1I'I'=;i
previous chapter. This chapter outlines the details of the MbSE gl
workflow. It starts with a general overview. Then, for each phase the ||a"|i|
associated tasks and associated work products are described in detail. |Jsms]]

221 MbSE Workflow Overview

Fig. 2.2-1 provides an overview of the MbSE workflow. It shows for each
of the SE phases the generated models together with the associated
Rhapsody projects. How the different projects are managed from the
configuration point of view will be detailed in section 4.

Reguirements Analysis

Stakeholder Requirements

Define frank Rhapsody Project:
Sy stem-Level Use Cases <Project>_RA

e e MbSE Handbook

System Functional Analysis

C‘“wma] gy o Standardizing the MbSE workflow
and Rhapsody tool usage

Mext Use Case

[nil

Realize
Use Case Model

Rhapsody Project:

Architectural Design
:| Uc<Nr=_AD

White-Box Use Case Model

Refactor T

[11
Create j update . = Rhapsody Project:
e
I

Inte grated System A rchitectu re Model

Fig. 2.2-1 Model-based Systems Engineering Workflow in the
soaxx Project

The MbSE workflow is use case based. It starts with the definition of the
system use cases. They are listed in the requirements package of the
Rhapsody project <ProjecNamet>_RA (ref. Section 4). The system use
cases are ranked according to their importance for the development of

Model-Based Systems Enginesring Handbook Pags 9

|nl10\fat62011 4‘:39 Software. Everyware,

The Alternative: MbSE Handbook in RMC

= €& Modeling Guidelines

= © Model Management

= & Reguirements Management
= mDocumentation

= & Appendix

Search this Site’

-
ysiems Engineering > Model-based Systems Engineering I—

Model-Base

Capability Pattern: Model-based Systems Engineering comBl &

&z, Provides an overview of the MbSE workflow It shows for each of the SE phases the
= generated models together with the associated Rhapsody projects.

Work Breakdown Structure
— Description

The MbSE workflow is use case based. It staris with the definition of the sysiem use cases. They are
listed in the requirements package of the Rhapsody project _RA - The system use cases are ranked
according to their importance for the development of the system architecture. Each of these system
use cases defines the increment of the SE workflow iteration.

In the subsequent functional analysis phase the chosen system use case is transformed into an
executable use case model. The modeling is performed in a separate Rhapsody project (Uc_FA).

QOutput of the functional analysis phase is the baselined verified/validated executable Black-Box Use _|
Case Model

The first step in the architectural design phase is the realization of the Black-Box Use Case Model.
The realization is performed in a separate Rhapsody project (Uc_AD). Based on design decisions —
optionally elaborated in a tfrade study — and dependent on the hand-off to the subsequent
development, the use case model is decomposed, and system-level operations then are allocated to
the relevant subsystems/ subsystem components. The collaboration of the decomposed subsystems
is verified through model execution. Output of the use case realization is the baselined White-Box
Use Case Model.

The final task in the architectural design phase is the creation/update of the Integrated System
Architecture Model (Rhapsody project _IA). This model is the aggregate of the baselined realized
use case models. In order to comply with the chosen standardized architectural structure of the
Integrated System Architecture, the White-Box Use Case Model needs to be refactored accordingly
(ref_section 2.2 4.2) prior to its integration. The correctness and completeness of the updated
Integrated System Architecture Model may be verified through model execution. The baselined
Integrated System Architecture Model is the key artifact of the hand-off to the subsequent system
development. It is the repository from which specification documents (HW/SW Requirements
Specifications. ICDs ...} are generated.

The outlined workflow is repeated for all system use cases.

i Back to top |

Done

E

Innovate2011

= Workflow

ll

“'I""

II: e

()

|]|

Stakeholder Requiremants Requirements Analysis
Bhapsady Projgct
Define and Rank System- e

Level Use Cases

System-Level Use Cases

System Functional Analysis

Rhapaoady Projct
Build Execuiable Use Ue=Nr=_Fa

Casze Black Bow
Black-Box Use Case Model

[ZE Architectural Design
Nl Ahapsody Projgct
Realize Use-Case Model Ug<Nr=_AD

Whits-Box Use Cass Model

Refactor White-Box
Use Case

White-Box Use Case Footprint Model

E—r-\— Rhapsady Progect
Creale or Update <Project=_I4
System Architecture

Hext Use Case

Integrated System Archieciure Mods!

@: Software. Everyware.

MbSE Handbook

Standardizing the usage of the modeling language

&9
gl
{1y
(FIE]}
|]|
L g e S R N AL i o oy e B 2 11 P e L e p et o s s) Ty \
3 Modeling GUIdeliNeS...... ..o _ e N S — _
3.1 Essential SysML Artifactsccoooviiiiniiiieeeeees j '
3.2 Service Request-Driven Modeling Approach............. H =) ey
3.3 General Guidelines and Drawing Conventions.......... b S e B
34 SysML Diagram Guidelines ... { el e
3.4.1 Use Case Diagram....................oooo. f EE T)
3.4.1.1 Elements and Artifacts { R
3.4.1.2 Guidelines and Drawing Conventions_... T || e B |
3.4.1.3 Naming Conventions......................occoo....... i =)]
3.4.2 Block Definition Diagram............cooiiieiiiiiien. J | ——
3.4.2.1 Elements and Artifacts 1 LL_—, N
3.4.2.2 Guidelines and Drawing Conventions \- -,
3.4.2.3 Naming Conventions..............coooviiiiii.
3.43 Internal Block Diagram............cccoooiiiiiiiiiiiie.
3.4.3.1 Elements and Artifacts ...
3.4.3.2 Guidelines and Drawing Conventions]
3.4.3.3 Naming Conventions...............ccoooiiiiiin..
344 Activity Diagram { ™
3441 Elements and Artifacts ...
3.4.4.2 Guidelines and Drawing Conventions
3.4.43 Naming Conventions............cccoovimiei...
3.4.5 Sequence Diagramcoooooiimiiiiiiiieieeeee
3.4.51 Elements and Artifacts ...
3.4.5.2 Guidelines and Drawing Conventions
3.4.5.3 Naming Conventionsccoooooiiiiis
346 Statechart Diagram ...
3.4.6.1 Elements and Artifacts ...
3.4.6.2 Guidelines and Drawing Conventions
3.4.6.3 Naming Conventions..............coooviiiiiin...
3.5 Profiles ...
[0 gt om0 S ot b s
S

|nl10\fat62011 4‘:39 Software. Everyware,

=== Deploying model-based systems engineering

Stakeholder

me Managing the modeling activities: Project plan

nk ‘ a
1l JI nill
h

., System I
J Requirements | |]
Specification (Draft)

LU |

Ut
Define
System Use Case ALLL

|]|

Functional / Performance
Reqsto System Use Case

fiextuse case) . Wi w2 W3 W4 W5 We W7 Wsa W9 W10
Prontzs anaGrour DN Task Name ‘ Duration ‘
& 1 |= Requirements Analysis 2 days
2 Define Use Case 1 day
T T T 3 Allocate Regs to Use Case 1 day
1 4 |= System Functional Analysis 21 days
5 Create Black-Box Activity Diagram 10 days
6 Review & Update Black-Box Activity Diagram 3 days
T Derive Use Case Black-Box Sequence Diagrams 2 days
_ = 8 Define System-Level Ports & Interfaces 1 day
9 Create Use Case Statechart 2 days
® i UG Saan e s 10 V&V Use Case Model through Model Execution 2 days
11 Link Model Properties to Requirements 1 day
12 Black-Box Use Case Model Baseline 0 days
13 |= Architectural Design 21 days
14 Define System Architectural Structure (BDD, IBD) 1 day
15 Create White-Box Activity Diagram 4 days
16 Review White-Box Activity Diagram 2 days
7 Derive Use Case White-Box Sequence Diagrams 3 days
18 Define System Architecture Ports & Interfaces 1 day
19 Create Subsystem Components Statechart 3 days
20 Werify Realized Use Case Model through Model Execution 2 days
21 Allocate & Link Mon-functional Requirements 1 day
22 Realized Use Case Model Baseline 0 days
23 Generate Report 2 days
24 Merge Realized UC Model in Integrated System Architecture Model 2 days
25 Integrated System Architecture Model Baseline 0 days

|I1l10\fa1:e2011 4‘:39 Software. Everyware,

Agenda *

&9
iyt
{1y

(6]
[lun]

= Model-based systems engineering in a model-driven development lifecycle
= Essential SysML artifacts of the Rational MbSE approach

= Task flow in Rational Harmony™ for Systems Engineering

= Deploying MbSE with Rational® Rhapsody®

= Documentation of Rational Harmony™ for Systems Engineering

|I1l10\fa1:e2011 4“,39 Software. Everyware,

Rational Harmony ™ for Systems Engineering Deskbook
Rational Rhapsody® tool focused documentation

&
Iy ull
||l|lu|

(I8
|]|

February 2011

Systems Engineering Best Practices with the Rational
Solution for Systems and Software Engineering

Deskbook Rrelease 3.1.2

Model-Based Systems Engineering with Rational Rhapsody and
Rational Harmony for Systems Engineering

Hans-Peter Hoffmann, Ph.D.
Chief Systems Methodologist

heffmape@us.ibm.com

2011 IBM Corporation

(e I | | et | [vovrvarer | [T -w
7
e,
1 44 D95|gn Synth95|s
4.41 Architectural Analysis (Trade- OffAnaIySB)
. 4411 Definition of Key System Functions. ..
b n 4412 Definition of Candidate Solutions ..
% N 4413 Definition of Assessment Criteria ...
ements inta 4.4.1.4 Agsigning YWeights to Assessment Criteri
4415 Definition of a Whility Curve for each Criterion . o
S Ak 4416 Assighing Measures of Effectiveness (MoE) to each Saolution
[4417 Determination of Solution...........
4.4.2 Architectural Design . e
the system 4,421 Security System Decumpusmun
ated in the mn g 4,422 Graphical Allocation of Operations .
mﬁﬁ a"g = 4423 Faormalizing the Allocation of Operations..
Lol J;';gm] 4424 Allocation of Mon-functional Requirements
muirements. 4.4.3 Detailed Architectural Design.........
FMEA), and 4.4.3.1 Decamposition of Black- Box Use Case Scenarios...
4432 Definition of Ports and Interfaces ..
Ad-off to the N 4433 Definition of State-hased Behavior .
4434 "éystem Archltecture Mndel Verlﬁcahnn al
- . . . e
18 Software p -
2r manual or 7z
-

oces
sonfigl

book

Innovate2011

2

FUNDAMENTALS OF HARMONY FOR SYSTEMS ENGINEERING
21
22

Integrated Systerns / Ermbedded Software Development Process Harmony.................
Model-Driven Systems Engineering Process.

Requirements Analysis
Systern Functional Analysis
Design Synthesis
Architectural Analysis (Trade Study)
Architectural Design
Detailed Architectural Design.
Systems Engineering Hand-Off

1
2
3

Essential SysML Artifacts of Model-Driven Systems Engineering

Requirements Diagram ...
Structure Diagrams.
Block Definition Diagrarm.
Internal Block Diagram
Pararmetric Diagram .
Elehavior Diagrams....
Use Case Diagram
Activity Diagram..
Sequence Diagrarm ..
Statechart Diagram
Artifact Relationships at the Requirements Analysis / Functional Analysis Level

0 p b 1o a0 o L0 00
""‘LUpJpJpJU-‘UJUJL\J'\J“

Seryice RequestDriven Modeling Approas

¥ Software. Everyware,

Rational Systems Engineering Practices captured in RMC

Method Composer

El ey
= =5

=

" ®
-~ Systems Delivery b

=1 S SE Practices
[“Elaborate Draft System
~ Requirments Specification
“Detailed Use-Case
~ Requirements Analysis
" Build and Validate Use
~ Cases
%Y Architectural Analysis - Key
~ System Functions
%Y Architectural Analysis -
~ Operation Based
“PTrade Study - Weighted
~ Objectives Method
%Y Architectural Design -
~ Operation Based
%Y Architectural Design -
~ Use-Case Based
%“¥ Joint Realization
= = SE Lifecycle
=% SE Overview
% SE - Use-case focused
% SE - Operation focused
= SE Workflows
=] = SE Artifacts
= Requirements
= Architecture
= Traceability
= External
£ = SE Roles
& Requirements Engineer
£ System Architect
& Stakeholder
“’Release Info

hd

-

Search this|
Site|

SE Practices - Introduction

SE Practices - Introduction

€y
Illiﬂ!-!

&f} A short description of the Systems Engineering practices.

= Main Description

Introduction

The new systems engineering practices reflect the vast experience accumulated by the IBIM Rational
consultants during various Systems Engineering engagements in a number of different industries. This
process guidance covers an area starting from stakeholder needs and finishing with a hand-off to the
systems development groups of the System Architecture baseline. These practices could be combined in
different ways and could play as part of different types of lifecycles. One example is the traditional V/
lifecycle shown below where the SE practices are part of the front-end domain (see red arrow).

System Changes

Stakeholder % Systems
Engineering
s Practices

Analysis

System
Architecture -~
Baseline

Requirements

System Functicnal
Analysis

-

Scenarios (ConOps)

Test
Scenarios

Design Synthesis pPa———

-

sw
Analysis & Design

system
Validation

Plan System

Acceptance

(Sub-)System
Integration & Test

Procedure

Module
Integration & Test

<*— Model / Requirements Repository

SW Imple mentation

& Unit Test

el

@

Innovate2011

Q& Software. Everyware.

Why MbSE?

Experiences summary

&9

60% Reduction in time to develop a specification iyl

{1y
» Due to improved clear up rate of issues fe

» Improved communication

» Models act as means of negotiating understanding between customer and supplie
r

Improved understanding of interfaces between contractors

» Interfaces particularly complex as the boundary between the interfacing systems
was not on the perceived physical boundary of the systems

Improvements in HW/SW of 60% less errors
» Due to better understanding of requirements
» Tying the model and code together

Use of a General Systems Architecture (library of reference models) has resulted in
a reduction of 75% of the time taken to do initial bid work

» 1 year to 3 months
» Leads to reduced bid costs
» Rapid response to bids

|I1n0\fa1:e2011 4“,39 Software. Everyware,

Change Request

Stakeholder
Requirements

Harmony™ for
Systems

/ Engineering

B

System
A Validation
. Scenarios (ConOps) Pl tdatl
Requirements > an System
Analysis Acceptance
Test
System Functional Scellarios
Analysis
System
Verification

(Sub-)System

Design Synthesis p— /
gn sy Integration & Test

“— Model / Requirements Repository

Next Iteration or System Harmony™ for
Change Request Architecture = Bfocecule Embedded RT
Stakeholder Requirements | — Baseline Development
Analysis & Design i
Stakeholder Requirements Y J Integration & Test
| System Requirements Requirements Analysis SRS
" | Use Cases Model (Draft) SW Implementation

& Unit Test

System Use Case(s)

A A

Updated System Requirements System Functional Analysis
Executable Use Case Model(s) (Use Case-Based) SRS

- (Baseline)
UC Scenarios (Black-Box)

System Operations

Non-Functional System Requirements

Design Synthesis

Updated System Requirements . .
Architectural Analysis

(Trade Study)

A

Architectural Analysis Model(s)
Architectural Concept

UC Activity Diagram(s) (Black-Box)

Architectural Design

Model / Requirements Repository

Rational Harmony ™ for
Systems Engineering

Realized Use Case Model(s) « UC Realization

e Integrated UC Realization

Scenarios (White-Box)

System Architecture Model

Logical ICDs

HW/SW Req Specs
incl. Test Scenarios

HW/SW
Links providing traceability Development
to original requirements

|nn0vate2011 4“,39 Software. Everyware,

Backup

Innovate2011

€y
Tyl
i
(K]
| |||||||

Q& Software. Everyware.

Case study

Derivation of a use case scenario from a use case black-box activity diagram

ggult
), r-—-—~— T T T T - ||Hii;i

Uc1ControlEntryBlackBoxView

Ucl_Scl) ||:“:“

|]|
AccessPoint Camera

Camera Uc_Uc1ControlEntry

=

T e

[First Request] «MessageAction»
>

"| takePicture

Ucl_Scl (Nominal Scenario)
Preconditions:
SecuritySystem Configured

[ScFailCount==3]

[flagSecurityCardFailure D

A

reqReadSecurityCard()

readSecurityCard()

c
SRR g

reqTakeSnapshot()

/ validateSecurityCard(Card

dis?layCardStatus(CardSta

%)

SRR S R s

us)
[CardStatus Valid]

[Timeout BiometricScan]
»(@

=

t Bs

<_ SecurityCard Valid

scanBiometricData()

]

authenticateBiometricDatal

P

dis?layAuthenticationStatu uthentication

Io%EntryDataO

BiometricData Authenticated

[else]
[l
scanBiometricData

authenticateBiometricData)

) I

[displayAuthemicationStatus)

[else]

[BsFailCount==3] ’f

[fl agBiometricScanFailur

reqScanBiometricDat

thenticationS!

~

us)

Admin A

SR

atus)

[else]) .)
[BiometricData Authenticated]

logEntryData

AccessPoint

reqUnlockAccessPoint()

[L]
resetAlarm

AccessPoint

«MessageAction»
unlockAccesspoint

[Timeout Unlocked]

«MessageAction»
lockAccesspoint

Innovate2011

SRR LA AN R AN AN N RN

dunlocked evAccessPointUnloc!

0

R

reqLockAccessPoint()

evAccessPointLoc /1()
7

e

4‘:39 Software. Everyware,

Case study
Model verification and validation through model execution
(Rational Rhapsody tool) &

a “ l“l
UclControlEntryCtil itsUser Ucl_ControlEntry itsAccessPoint itsCamera I,",;I

Q—>| WaitForEntryRequest |4_
L J A |

| ProcessingSecurityCardData |

reqReadSecurityCard/ reqReadSecurityCard() | é
readSecurityCard{); readSecurityCard () Eﬁ/
reqTakeSnapshot to pCamera é
“

¥ | reqTakeSnapshot() E/’//

Z

| FaillTimes o, | = valid)

SRR

¢ [CardStatus=="Valid"]

| ProcessingBiometricData | Valid)

Authenticated BsTimeout Failed3Times o

fdisableUserAccount():
loghAccountDatad):

reqScanBiometricData()

scanBiometricData()

| authenticateBiometricData(Au enticationStatu§:= Authenticated)

B R,

R R R R

| reqProcessAlert("User Access Disabled™} to pAdmin

¥ ' .
- - - | d|spIayAuthentlcatlonStatus(AﬁthenticationStatf& = Authenticated)

[WaitForResetAlarm] UnlockingAndLockingAccessPoint i 5///

N i /

i Z

UnlockingAndLockingAccessPoint reqResetAlarm/ : reqUnlockAccessPoint() é

o resetAlarm{; | reqUnlockfccessPoint to pAccessPoint : //, tm(1000)
i |
| evAccessPointLo cked ». A ‘ evAccessPointUnlocked()

UnlockingAccessPoint

evAccessPointUnlocked

Animated Statechart Diagram AccessPointUnlocked
(Uc1ControlEntry) tm{t_Unlocked)
| reqLockAccessPoint to pAccessPoint

¥ Animated Sequence Diagram (Uc1Sc1)

[LockingAccessPoint]

s 1

W\\f\?\

]

|nl10\rat62011 4‘:39 Software. Everyware,

Case study — Ucl (Control Entry) realization
Allocation of system-level operations to parts (subsystems)

e]
s

s -

CardReader_Entry

SecSysController

FingerprintScanner

BDD_SecuritySystem)
@)

User

Admin

CardReader_Entry

«block»
Security System

E1 1;

«block» B
SecSysController

Camera

AccessPoint

FingerprintScanner

Chosen system architecture captured
in a Block Definition Diagram

User
[1]
readSecurityCard

displayCardStatus

&

Camera

(FrstRequest] [<atessagedctions |

takePicture

validateSecurityCard

[CardStatus==Pass]

[Timeout
BiometricScan]

CdisableBiometricScan

&

»(enableBiometricScan
T\

[else]

C flagSecurityCardFailure)

[else]
Admin

disableUserAccount

tData

logAccoun

Admin

[
«MessageAction»
resetAlarm

]

[ScFailCount==3]

A

C flagBiometricScanFailure)

[BsFailCount<3] scanBiometricData

«MessageAction»

»| disableBiometricScan)
é (authenticateBiometricData)

retAuthentication |

A +——

lelse] [BiometricData

Authenticated]

logEntryData

AccessPoint
«MessageAction»

unlockAccesspoint

AccessPoint

[Timeout Unlocked]

«MessageAction»

lockAccesspoint

é

(displayAuthenticationStatus)

—»C disableBiometricScan)

&

Innovate2011

UclControlEntry White-Box Activity Diagram

4‘:39 Software. Everyware,

Case study

Integrated System Architecture

verification through
model execution

BDD_SecuritySystem J
«block»

1. Security System

User Camera

Admin AccessPoint

1 1

S

CardReader_Entry CardReaderExit

«block» =3
SecSysController

FingerprintScanner

Animated Sequence Diagram (Uc1, Uc2 Nominal Flows)

IA_Scl)
:User :CardReader :CardReader :Fingerprint :SecSysController :AccessPoint :Camera
Exit Entry Scanner

Entry é reqReadSecurityCard() ‘ ‘ Z Z
Z readSecurltyCar 0 Z Z
. | j | . /
Z rquaIldateSecu ityCard() é Z
% reqTakeSnapsho %
% eSecurit d(CardStatus = \éﬁd)
% %
é reqDisplayCardStatus(ardStatus = Valid) é
Z reqEnableBiome: é Z
Z 7
7 7 /
7 7 7
Z ‘ us = VaIi%) Z Z
% % %
7 7 7
7 / /
Z ‘ enabIeBiometrics%anO Z Z
7 7 7
Z reqScanBiometrigData() Z Z
% % %
Z scanBiometricDatiO Z Z
/ 7 .
Z ‘ ‘ authenticateBiometricData(Authenticéonstatus = Auth%ticated)
7 7 7
Z displayAuthenticat onStatus(Authentl tlonStatus = Aut jnticated)
7 7
Z ‘ ‘ retAuthentication tatus(Authentlcatl tatus = Authent/ ted)
7 7 7
é reqDisablleBiometricScan é é
7 7 7
/ logEntryData() / /
z _ .
Z reqUnIockAccessgnlnto Z
. \ \ . .
Z disableBiometricScan() Z Z
. % .
7 V 7
Z ‘ ‘ evAccerPointUnlockedO Z Z
% % %
Z ‘ ‘ ‘ reqLockAccessPét() Z
7 7
é evAccessPointLocked é é
. 7 %
/ | | | «—— 7 /

Exit é reqReadSecurityAZard() ! ! ! % é
4 . %
Z readSecurityCard(k ‘ ‘ Z Z
% % %
é reqValidateSecurityCard() é é
/ / .
7 % /
Z validateSecurityCafd(CardStatus = \éid)
. % %
g ? é

. Z ’ quUnIockAcces-s/ int() _ B Z/ -

Innovate2011

4‘;39 Software. Everyware,

Iy ull
i
[
|]|

www.ibm/software/rational

© Copyright IBM Corporation 2011. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express
or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of,
creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these
materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabllities referenced in these materials may
change at any time at IBM'’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. IBM, the IBM logo,
Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines Corporation, in the United States, other countries or both.
Other company, product, or service names may be trademarks or service marks of others.

|I1n0\fat62011 Q& Software. Everyware,

||||||||

C::O Software. Everyware.

mnovateztm & sottwaze T

	Why MbSE?�Streamlining the Development of Complex Systems

