
Why MbSE?
Streamlining the Development of Complex
Systems

Hans-Peter Hoffmann, Ph.D.

Chief Systems Methodologist
IBM Rational Software
hoffmape@us.ibm.com

• Model-based Systems Engineering (MbSE) is a structured a
pproach for the development of complex systems across the
mechanical, electrical, electronic and software disciplines
— Helps ensure that all requirements are fulfilled; that functio

nal behaviors are realized while non-functional constraints
are met

— Employs models as the primary artifacts throughout the sy
stems development lifecycle

— Facilitates improved communication among stakeholders o
n a systems development team

— Provides a disciplined way to manage complexity through a
bstraction

What is Model-based Systems Engineering?

Electronics …Aerospace and Defense Automotive
e.g.
Flight control
Weapons
Navigation
Guidance
Communications
Autonomous systems
…

Complex systems are everywhere

e.g.
Power train
Safety
Entertainment
Comfort and convenience
Instrumentation
Communications
…

e.g.
Medical
Industrial
Consumer
Transport
Telecommunications
...

Model-based systems engineering in a model-driven development lifecycle

Essential SysML artifacts of the Rational MbSE approach

Task flow in Rational Harmony™ for Systems Engineering

Deploying MbSE with Rational® Rhapsody®

Documentation of Rational Harmony™ for Systems Engineering

Agenda

Costs of
Design
Changes

Time

Induced
Errors

Increase requirements / design stability through
validation prior to implementation

Requirements
Analysis

Systems
Analysis & Design

HW/SW
Requirements
Specification

SW Design

SW Implementation
& Unit Test

System
Requirements
Specification

SW Design
Specification

Module
Integration & Test

System
Acceptance

(Sub-)System
Integration & Test

.exe
.doc

Module
Integration & Test

System
Acceptance

(Sub-)System
Integration & Test

.exe
.doc

Document driven development of embedded systems
The “Throw-it-over-the-Fence” approach

HW
Analysis & Design

HW Build

HW Component
Verification

HW
Analysis & Design

HW Build

HW Component
Verification

HW
Analysis & Design

HW
Analysis & Design

HW BuildHW BuildHW Build

HW Component
Verification

HW Component
Verification

HW Component
Verification

Module
Integration & Test

Module
Integration & Test

System
Acceptance

System
Acceptance

SW
Analysis & Design

SW
Analysis & Design

SW Implementation
& Unit Test

SW Implementation
& Unit Test

(Sub-)System
Integration & Test

(Sub-)System
Integration & Test

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

Stakeholder
Requirements

System
Architecture

Baseline

System Functional
Analysis

System Functional
Analysis

Requirements
Analysis

Requirements
Analysis

Embedded RT
Development

System
Validation
Plan

System
Validation
Plan

System
Verification
Plan

System
Verification
Plan

Component
Verification
Procedure

Systems
Engineering

Scenarios (ConOps)

Change Request Change Request

Design SynthesisDesign Synthesis

Test
Scenarios

Integrated system / embedded software development
Design iterations in the “V” development lifecycle

Module
Integration & Test

Module
Integration & Test

System
Acceptance

System
Acceptance

SW
Analysis & Design

SW
Analysis & Design

SW Implementation
& Unit Test

SW Implementation
& Unit Test

(Sub-)System
Integration & Test

(Sub-)System
Integration & Test

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

 *

Stakeholder
Requirements

System
Architecture

Baseline

Software
Implementation

Model

Software
Implementation

Model

System Functional
Analysis

System Functional
Analysis

Executable
Use Case Model(s)

Requirements
Analysis

Requirements
Analysis

Requirements Models,
System Use Cases Model

Harmony™ for
Embedded RT
Development

System
Validation
Plan

System
Validation
Plan

System
Verification
Plan

System
Verification
Plan

Component
Verification
Procedure

Harmony™ for
Systems
Engineering

Scenarios (ConOps)

Change RequestChange Request

Design SynthesisDesign Synthesis

Test
Scenarios

Architectural Analysis Model(s),
System Architecture Model

*) Configuration Controlled Knowledge
of the System Under Development:
• Requirements Documentation
• Requirements Traceability
• Design Documentation
• Test Definitions

*) Configuration Controlled Knowledge
of the System Under Development:
• Requirements Documentation
• Requirements Traceability
• Design Documentation
• Test Definitions

Integrated system / software development process
Model-driven development of embedded systems

8

Collaborate across diverse engineering
disciplines and development teams

Achieve “quality by design”
with an integrated, automated

testing process

Manage all system requirements
with full traceability across

the lifecycle

Use modeling to validate requirements, architecture
and design throughout the development process

Rational
Quality Manager

Rational
Quality Manager

Rational
DOORS
Rational
DOORS

Rational
Rhapsody
Rational

Rhapsody

Rational
Team Concert

Rational
Team Concert

COLLABORATE REPORTAUTOMATECOLLABORATE REPORTAUTOMATE

Rational Workbench for Systems and Software Engineering
Built on a core solution set

Systems Engineering

Test Engineering

Software EngineeringSoftware Engineering

Software EngineeringElectrical/Mechanical Engineering

HW
Analysis & Design

HW Build

HW Component
Verification

HW
Analysis & Design

HW Build

HW Component
Verification

HW
Analysis & Design

HW
Analysis & Design

HW BuildHW BuildHW Build

HW Component
Verification

HW Component
Verification

HW Component
Verification

Module
Integration & Test

Module
Integration & Test

System
Acceptance

System
Acceptance

SW
Analysis & Design

SW
Analysis & Design

SW Implementation
& Unit Test

SW Implementation
& Unit Test

(Sub-)System
Integration & Test

(Sub-)System
Integration & Test

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

Stakeholder
Requirements

System
Architecture

Baseline

System Functional
Analysis

System Functional
Analysis

Requirements
Analysis

Requirements
Analysis

Embedded RT
Development

System
Validation
Plan

System
Validation
Plan

System
Verification
Plan

System
Verification
Plan

Component
Verification
Procedure

Systems
Engineering

Scenarios (ConOps)

Change Request Change Request

Design SynthesisDesign Synthesis

Test
Scenarios

Integrated system / software development process
Domains involved in the different phases of the model-driven development

Model-based systems engineering in a model-driven development lifecycle

Essential SysML artifacts of the Rational MbSE approach

Task flow in Rational Harmony™ for Systems Engineering

Deploying MbSE with Rational® Rhapsody®

Documentation of Rational Harmony™ for Systems Engineering

Agenda

A1 A2

SuD
« block »

SS_A
«block »

11 1

SS_B
« block »

1

1 1 1 1

A1A1 A2

SuD
« block »

SS_A
«block »

1 1

SS_B
« block »

1 11 11 1 1 11 11 1

B
lo

ck
 D

ef
in

iti
on

D

ia
gr

am

Parametric

DiagramIn
te

rn
al

Blo
ck

Diag
ra

m

UML/SysML

itsSuD
1 «block »

itsSS_A
1 «block »

pSS_BpA1

itsSS_B
1 «block »

pSS_ApA2
pA2

pA1
itsA1

1 «Actor »

pSuD

itsA2
1 «Actor »

pSuD

itsSuD
1 «block »

itsSS_A
1 «block »

pSS_BpA1

itsSS_B
1 «block »

pSS_ApA2
pA2

pA1
itsA1

1 «Actor »

pSuD

itsA2
1 «Actor »

pSuD

itsNewtonLaw:NewtonLaw
«ConstraintProperty,ConstraintBlock»

force = mass * acceleration

force:Newtons
mass:Kg

acceletation:MetersPerSec^2

force
«Attribute»mass

«Attribute»

acceleration
«Attribute»

Defines structural elements
(Blocks) and their relationship

Defines the realization
of system structure

Defines the parametric relationship
between system properties

SysML artifacts in Rational Harmony™ for Systems
Engineering
Capturing the static view

UserUser

AdminAdmin AccessPointAccessPoint

CameraCamera

Security System

Uc3ConfigureSecurity
System

Uc2Control Exit

Uc1Control Entry

U
se

 C
as

e
D

ia
gr

am

Seq
uen

ce
 D

iag
ram

StatechartAc
tiv

ity
 D

ia
gr

am

UML/SysML

readSecurityCard

User

validateSecurityCard

[CardStatus Valid][CardStatus Valid]

scanBiometricData

User [else][else]

authenticateBiometricData

[else]

flagBiometricScanFailure

[else]

[else][else]

[else]

flagSecurityCardFailure

[else]

[else][else]

[BiometricData Authenticated]

logEntryData

[BiometricData Authenticated]

[BsFailCount==3]

disableUserAccount

Admin

[BsFailCount==3]

[ScFailCount==3][ScFailCount==3]

displayCardStatus

[Timeout BiometricScan][Timeout BiometricScan]

displayAuthenticationStatus

logAccountData

alarm

unlockAccesspoint

«MessageAction»

AccessPoint

lockAccesspoint

«MessageAction»

AccessPoint [Timeout Unlocked][Timeout Unlocked]resetAlarm

Admin

[else][else]
takePicture

«MessageAction»

Camera

[First Request][First Request]

User CameraAccessPointUc_Uc1ControlEntry

message_0()
readSecurityCard()

message_1()
validateSecurityCard(CardStatus)

displayCardStatus(CardStatus)

message_2()
scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

logEntryData()

message_3()

message_4()

message_5()

message_6()

message_0()
readSecurityCard()

message_1()
validateSecurityCard(CardStatus)

displayCardStatus(CardStatus)

message_2()
scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

logEntryData()

message_3()

message_4()

message_5()

message_6()

Uc1ControlEntryCtrl

WaitForEntryRequest

UnlockingAndLockingAccessPoint

reqTakeSnapshot to pCamera

reqReadSecurityCard/
readSecurityCard();

reqProcessAlert("User Access Disabled") to pAdmin

ProcessingSecurityCardData

Fail3Times

ProcessingBiometricData

Failed3TimesBsTimeoutAuthenticated

[CardStatus=="Valid"]

A

evAccessPointLocked

A

/disableUserAccount();
logAccountData();

A

WaitForResetAlarm

reqResetAlarm/
resetAlarm();

reqReadSecurityCard/
readSecurityCard();

[CardStatus=="Valid"]

evAccessPointLocked

/disableUserAccount();
logAccountData();

reqResetAlarm/
resetAlarm();

• Defines system scope
• Groups requirements
into Use Cases
(“Table of Contents”)

Defines functional flow
(“Storyboard”) of the Use Case

Defines interactions
with the environment

Aggregates AD- and SD-info
and adds state-based behavior

2

3

1

4

Capturing system behavior in a model-based approach
Example: Creating an executable use case model

Model-based systems engineering in a model-driven development lifecycle

Essential SysML artifacts of the Rational MbSE approach

Task flow in Rational Harmony™ for Systems Engineering

Deploying MbSE with Rational® Rhapsody®

Documentation of Rational Harmony™ for Systems Engineering

Agenda

Stakeholder
Requirements

System Architecture
Baseline

System Functional
Analysis

Requirements
Analysis

Scenarios (ConOps)

Design Synthesis

Test
Scenarios

Harmony™ for
Systems Engineering

Change Request

Stakeholder
Requirements

Stakeholder
Requirements

System Architecture
Baseline

System Functional
Analysis

System Functional
Analysis

Requirements
Analysis

Requirements
Analysis

Scenarios (ConOps)

Design SynthesisDesign Synthesis

Test
Scenarios

Harmony™ for
Systems Engineering

Change Request

Identify / derive required system functionality

Identify associated system states and
operational modes

Allocate required system functionality to a
system architecture taking into account
non-functional aspects of the requirements

Key objectives of the
Rational Harmony™ for Systems Engineering workflow

Requirements Analysis

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

System Use Case(s)System Use Case(s)

SRS
(Draft)

Stakeholder Requirements

Stakeholder Requirements

System Requirements
System Use Cases Model

Links providing traceability
to original requirements

In the requirements analysis phase, the focus
is on the analysis of the process inputs.

Stakeholder requirements are translated into system
requirements that define
- what the system must do

(functional requirements) and
- how well it must perform

(quality of service requirements).

Once the requirements are sufficiently
understood they are grouped into Use Cases.

Requirements Analysis Task Flow

Stakeholder
Requirements
Specification

System
Requirements
Specification (Draft)

System
Requirements
Specification (Draft)

Generate
System Reqs

Generate
System Reqs

[Next Use Case]
[else]

Define
System Use Case

Prioritize and Group
System Use Cases

Prioritize and Group
System Use Cases

Link
Stakeholder Reqs

to System Reqs

Link
Stakeholder Reqs

to System Reqs

[else]

[System Use Cases defined]

Link
Functional / Performance
Reqs to System Use Case

Link
Functional / Performance
Reqs to System Use Case

Stakeholder
Requirements

Analyze/Refine
Stakeholder Reqs

Rational Harmony™ for Systems Engineering
Requirements analysis

Links providing traceability
to original requirements

System OperationsSystem Operations

UC Activity Diagram(s) (Black-Box)UC Activity Diagram(s) (Black-Box)
Executable Use Case Model(s)
Updated System Requirements

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

Requirements Analysis

System Use Case(s)

SRS
(Draft)

Requirements Analysis

System Use Case(s)

SRS
(Draft)

Stakeholder Requirements

Stakeholder Requirements

System Requirements
System Use Cases Model

UC Scenarios (Black-Box)UC Scenarios (Black-Box)

System Functional Analysis
(Use Case-Based)

SRS
(Baseline)
SRS
(Baseline)

In the system functional analysis phase, the focus
is on the translation of the functional requirements
into a coherent description of system operations.

Each use case of an iteration is translated into a
model and the underlying requirements verified and
validated through model execution.

System Functional Analysis Task Flow

Define
UC Functional Flow

Derive UC Scenarios
from UC Functional Flow

Derive UC State-Based Behavior
from UC BB-AD and BB-SDs

Verify / Validate UC Model
trough Model Execution

Define
Ports and Interfaces

Define
Use Case Model Context

[Rainy Day Analysis]
[else]

Document
New / Derived Reqs

Link
UC Block Properties to Reqs

Update
Draft System ReqSpec

Extend UC Model
w.r.t. Error/Fail Behavior

Define
UC Functional Flow

Define
UC Functional Flow

Derive UC Scenarios
from UC Functional Flow

Derive UC Scenarios
from UC Functional Flow

Derive UC State-Based Behavior
from UC BB-AD and BB-SDs

Derive UC State-Based Behavior
from UC BB-AD and BB-SDs

Verify / Validate UC Model
trough Model Execution

Verify / Validate UC Model
trough Model Execution

Define
Ports and Interfaces

Define
Ports and Interfaces

Define
Use Case Model Context

Define
Use Case Model Context

[Rainy Day Analysis]
[else]

Document
New / Derived Reqs

Document
New / Derived Reqs

Link
UC Block Properties to Reqs

Link
UC Block Properties to Reqs

Update
Draft System ReqSpec

Update
Draft System ReqSpec

Extend UC Model
w.r.t. Error/Fail Behavior

Extend UC Model
w.r.t. Error/Fail Behavior

Rational Harmony™ for Systems Engineering
System functional analysis

Links providing traceability
to original requirements

Design Synthesis
Architectural Analysis
Architectural Design

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

Stakeholder Requirements

Stakeholder Requirements

System Requirements
Use Cases Model

UC Scenarios (Black-Box)
Executable Use Case Model(s)
Updated System Requirements

System Use Case(s)

Requirements Analysis SRS
(Draft)

System Operations

System Functional Analysis
(Use Case-Based) SRS

(Baseline)
SRS
(Baseline)

In the design synthesis phase, the focus is on the
development of a system architecture capable of
performing the required operations within the limits of
the prescribed performance constraints.

Rational Harmony™ for Systems Engineering
Design synthesis

Non-Functional System Requirements

Links providing traceability
to original requirements

System Operations

Design Synthesis

Architectural Concept

Architectural Analysis
(Trade Study)

Architectural Analysis
(Trade Study)

UC Activity Diagram(s) (Black-Box)UC Activity Diagram(s) (Black-Box)
Executable Use Case Model(s)
Updated System Requirements

Updated System Requirements

Architectural Analysis Model(s)

SRS
(Baseline)UC Scenarios (Black-Box)UC Scenarios (Black-Box)

System Functional Analysis
(Use Case-Based)

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

Architectural
Analysis

Architectural
Design

Design Synthesis Task Flow

Elaborate Architectural Concept
(Trade Study)

Elaborate Architectural Concept
(Trade Study)

The objective the architectural analysis phase is to
elaborate the optimum design concept based upon a set of
criteria (e.g. Measures of Effectiveness, MoEs) that are
weighted according to their relative importance.

Design synthesis
Architectural analysis

Non-Functional System Requirements

Links providing traceability
to original requirements

System Operations

Design Synthesis

Architectural Concept

Architectural Analysis
(Trade Study)

Architectural Analysis
(Trade Study)

UC Activity Diagram(s) (Black-Box)UC Activity Diagram(s) (Black-Box)
Executable Use Case Model(s)
Updated System Requirements

Realized Use Case Model(s)

UC Activity Diagram(s) (Black-Box)

Scenarios (White-Box)

Updated System Requirements

Architectural Analysis Model(s)

Integrated System Architecture Model

Architectural Design
• UC Realization
• Integrated UC Realization

Architectural Design
• UC Realization
• Integrated UC Realization
• UC Realization
• Integrated UC Realization

SRS
(Baseline)UC Scenarios (Black-Box)UC Scenarios (Black-Box)

System Functional Analysis
(Use Case-Based)

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

Architectural
Analysis

Architectural
Design

Design Synthesis Task Flow

[else]

Create / Update
System Architecture Model

Create / Update
System Architecture Model

Verify Collaboration
through Model Execution

Verify Collaboration
through Model Execution

[Next
Use Case]

Elaborate Architectural Concept
(Trade Study)

Elaborate Architectural Concept
(Trade Study)

Define
Ports and Interfaces

Define
Ports and Interfaces

Verify Realized UC Model
through Model Execution
Verify Realized UC Model
through Model Execution

Define
Leaf Blocks State-Based Behavior

Define
Leaf Blocks State-Based Behavior

Allocate & Link
Non-Functional Requirements

Allocate & Link
Non-Functional Requirements

Allocate & Link
Non-Functional Requirements

Use Case Realization

Derive
White-Box Sequence Diagrams

Derive
White-Box Sequence Diagrams

[Next Level of
Decomposition]

Define Parts of
Decomposition Hierarchy

Define Parts of
Decomposition Hierarchy

[else]

Allocate System-Level
Operations to Parts

Allocate System-Level
Operations to Parts

The focus of the architectural design phase is on the allocation of
the functional requirements (= system operations) and non-functional
requirements to an architectural structure.
The architectural design is performed incrementally for each use case
of an iteration by transitioning from the black-box view to the white-box
view – also referred to as use case realization.

Design synthesis
Architectural analysis

Non-Functional System Requirements

Links providing traceability
to original requirements

System OperationsSystem Operations

Requirements Analysis

Design Synthesis

Architectural Concept

Architectural Analysis
(Trade Study)

Architectural Analysis
(Trade Study)

HW/SW
Development

HW/SW Req Specs
incl. Test Scenarios

Logical ICDs
HW/SW Req Specs
incl. Test Scenarios

Logical ICDs

Next Iteration

UC Activity Diagram(s) (Black-Box)UC Activity Diagram(s) (Black-Box)
Executable Use Case Model(s)
Updated System Requirements

Realized Use Case Model(s)

UC Activity Diagram(s) (Black-Box)

Scenarios (White-Box)

Updated System Requirements

Architectural Analysis Model(s)

Integrated System Architecture Model

Architectural Design
• UC Realization
• Integrated UC Realization

Architectural Design
• UC Realization
• Integrated UC Realization
• UC Realization
• Integrated UC Realization

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

System Use Case(s)System Use Case(s)

SRS
(Draft)

SRS
(Baseline)

Stakeholder Requirements

Stakeholder Requirements

System Requirements
System Use Cases Model

UC Scenarios (Black-Box)UC Scenarios (Black-Box)

System Functional Analysis
(Use Case-Based)

Rational Harmony™ for Systems Engineering

In a model-driven development the key artifact of the handoff from systems
engineering to the subsequent system development is the baselined
executable model.

This model is the repository from which specification documents (e.g.
HW/SW requirements specifications, ICDs, …) are generated.

Scope and content of the hand-off is dependent on the characteristics of the
project and the organizational structure systems engineering is embedded.

Systems engineering handoff to the
subsequent system development

The hand-off packages typically are composed of baselined
executable CI model(s) which contain

The definition of allocated operations including their links to
the

associated system functional and performance
requirements

The definition of the associated state-based behavior,
captured

in a statechart diagram

The allocated and linked non-functional requirements

The definition of ports and logical interfaces

Test scenarios, derived from system-level use case
scenarios

Systems engineering handoff to the
subsequent system development

Model-based systems engineering in a model-driven development lifecycle

Essential SysML artifacts of the Rational MbSE approach

Task flow in Rational Harmony™ for Systems Engineering

Deploying MbSE with Rational® Rhapsody®

Documentation of Rational Harmony™ for Systems Engineering

Agenda

Deploying model-based systems engineering
Project specific model-based Systems Engineering Handbook

MbSE Handbook
Standardizing the MbSE workflow
and Rhapsody tool usage

The Alternative: MbSE Handbook in RMC

MbSE Handbook
Standardizing the usage of the modeling language

Deploying model-based systems engineering
Managing the modeling activities: Project plan

Model-based systems engineering in a model-driven development lifecycle

Essential SysML artifacts of the Rational MbSE approach

Task flow in Rational Harmony™ for Systems Engineering

Deploying MbSE with Rational® Rhapsody®

Documentation of Rational Harmony™ for Systems Engineering

Agenda

Rational Harmony™ for Systems Engineering Deskbook
Rational Rhapsody® tool focused documentation

Rational Systems Engineering Practices captured in RMC

• 60% Reduction in time to develop a specification
Due to improved clear up rate of issues
Improved communication
Models act as means of negotiating understanding between customer and supplie
r

• Improved understanding of interfaces between contractors
Interfaces particularly complex as the boundary between the interfacing systems
was not on the perceived physical boundary of the systems

• Improvements in HW/SW of 60% less errors
Due to better understanding of requirements
Tying the model and code together

• Use of a General Systems Architecture (library of reference models) has resulted in
a reduction of 75% of the time taken to do initial bid work

1 year to 3 months
Leads to reduced bid costs
Rapid response to bids

Why MbSE?
Experiences summary

HW/SW
Development

Next Iteration or
Change Request

Links providing traceability
to original requirements

Design Synthesis

Architectural Concept

Architectural Analysis
(Trade Study)

Architectural Analysis
(Trade Study)

Realized Use Case Model(s)

UC Activity Diagram(s) (Black-Box)

Scenarios (White-Box)

System Architecture Model

Updated System Requirements

Non-Functional System Requirements

Architectural Analysis Model(s)

System Functional Analysis
(Use Case-Based)

UC Scenarios (Black-Box)
Executable Use Case Model(s)
Updated System Requirements

System Use Case(s)

Requirements Analysis

Stakeholder Requirements

Stakeholder Requirements

System Requirements
Use Cases Model

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

Architectural Design
• UC Realization
• Integrated UC Realization

Architectural Design
• UC Realization
• Integrated UC Realization

Architectural Design
• UC Realization
• Integrated UC Realization
• UC Realization
• Integrated UC Realization

HW/SW Req Specs
incl. Test Scenarios

Logical ICDs
HW/SW Req Specs
incl. Test Scenarios

Logical ICDs

System Operations

SRS
(Draft)

SRS
(Baseline)

Module
Integration & Test

Module
Integration & Test

System
Acceptance

System
Acceptance

SW
Analysis & Design

SW
Analysis & Design

SW Implementation
& Unit Test

SW Implementation
& Unit Test

(Sub-)System
Integration & Test

(Sub-)System
Integration & Test

M
od

el
 /

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

Stakeholder
Requirements

System
Architecture

Baseline

System Functional
Analysis

System Functional
Analysis

Requirements
Analysis

Requirements
Analysis

Harmony™ for
Embedded RT
Development

System
Validation
Plan

System
Validation
Plan

System
Verification
Plan

System
Verification
Plan

Component
Verification
Procedure

Harmony™ for
Systems
Engineering

Scenarios (ConOps)

Change RequestChange Request

Design SynthesisDesign Synthesis

Test
Scenarios

Rational Harmony™ for
Systems Engineering

Backup

Uc1_Sc1

readSecurityCard()

Uc_Uc1ControlEntry

SecurityCard Valid

BiometricData Authenticated

readSecurityCard()

displayCardStatus(CardStatus)

validateSecurityCard(CardStatus)

t_Bs

t_Unlocked

scanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

logEntryData()

t_Bs

t_Unlocked

scanBiometricData()

logEntryData()

reqUnlockAccessPoint()

AccessPoint

reqUnlockAccessPoint()

evAccessPointUnlocked()

reqLockAccessPoint()
evAccessPointLocked()

evAccessPointUnlocked()

reqLockAccessPoint()
evAccessPointLocked()

reqTakeSnapshot()

Camera

reqTakeSnapshot()

reqReadSecurityCard()

User

reqScanBiometricData()

reqReadSecurityCard()

reqScanBiometricData()

authenticateBiometricData(AuthenticationStatus)

displayAuthenticationStatus(AuthenticationStatus)

displayCardStatus(CardStatus)

validateSecurityCard(CardStatus)

Uc1_Sc1 (Nominal Scenario)
Preconditions:
SecuritySystem Configured

readSecurityCard

User

validateSecurityCard

[CardStatus Valid][CardStatus Valid]

scanBiometricData

User [else][else]

authenticateBiometricData

[else]

flagBiometricScanFailure

[else]

[else][else]

[else]

flagSecurityCardFailure

[else]

[else][else]

[BiometricData Authenticated]

logEntryData

[BiometricData Authenticated]

[BsFailCount==3]

disableUserAccount

Admin

[BsFailCount==3]

[ScFailCount==3][ScFailCount==3]

displayCardStatus

[Timeout BiometricScan][Timeout BiometricScan]

displayAuthenticationStatus

logAccountData

alarm

unlockAccesspoint

«MessageAction»

AccessPoint

[Timeout Unlocked]

lockAccesspoint

«MessageAction»

AccessPoint [Timeout Unlocked]resetAlarm

Admin

[else][else]
takePicture

«MessageAction»

Camera

[First Request][First Request]

Uc1ControlEntryBlackBoxView

Case study
Derivation of a use case scenario from a use case black-box activity diagram

itsUser itsCameraitsAccessPoint

tm(1000)

Uc1_ControlEntry

readSecurityCard()

reqTakeSnapshot()

validateSecurityCard(CardStatus = Valid)

displayCardStatus(CardStatus = Valid)

reqScanBiometricData()

scanBiometricData()

authenticateBiometricData(AuthenticationStatus = Authenticated)

displayAuthenticationStatus(AuthenticationStatus = Authenticated)

evAccessPointUnlocked()

reqReadSecurityCard()

reqUnlockAccessPoint()

Animated Sequence Diagram (Uc1Sc1)

Animated Statechart Diagram
(Uc1ControlEntry)

Case study
Model verification and validation through model execution
(Rational Rhapsody tool)

 FingerprintScanner

enableBiometricScan

disableBiometricScan
[Timeout
BiometricScan]

disableBiometricScan

scanBiometricData

User

[else]

authenticateBiometricData

displayAuthenticationStatus

disableBiometricScan

SecSysController

validateSecurityCard

flagBiometricScanFailure

[BsFailCount<3]

logAccountData

takePicture

«MessageAction»

Camera

[FirstRequest]

[else]

A
[else]

A

[CardStatus==Pass]

flagSecurityCardFailure

[else]

[else]

disableUserAccount

Admin [ScFailCount==3]

retAuthentication

«MessageAction»

resetAlarm

«MessageAction»

Admin

lockAccesspoint

«MessageAction»

AccessPoint [Timeout Unlocked]

unlockAccesspoint

«MessageAction»

AccessPoint

logEntryData

[BiometricData
Authenticated]

CardReader_Entry

readSecurityCard

User

[else]

displayCardStatus

alarm

resetAlarm

FingerprintScanner

enableBiometricScan

disableBiometricScan
[Timeout
BiometricScan]

disableBiometricScan

scanBiometricData

User

[else]

authenticateBiometricData

displayAuthenticationStatus

disableBiometricScan

SecSysController

validateSecurityCard

flagBiometricScanFailure

[BsFailCount<3]

logAccountData

takePicture

«MessageAction»

Camera

[FirstRequest]

[else]

A
[else]

A

[CardStatus==Pass]

flagSecurityCardFailure

[else]

[else]

disableUserAccount

Admin [ScFailCount==3]

retAuthentication

«MessageAction»

resetAlarm

«MessageAction»

Admin

lockAccesspoint

«MessageAction»

AccessPoint [Timeout Unlocked]

unlockAccesspoint

«MessageAction»

AccessPoint

logEntryData

[BiometricData
Authenticated]

CardReader_Entry

readSecurityCard

User

[else]

displayCardStatus

alarm

resetAlarm

FingerprintScanner

enableBiometricScan

disableBiometricScan
[Timeout
BiometricScan]

disableBiometricScan

scanBiometricData

User

[else]

authenticateBiometricData

displayAuthenticationStatus

disableBiometricScan

SecSysController

validateSecurityCard

flagBiometricScanFailure

[BsFailCount<3]

logAccountData

takePicture

«MessageAction»

Camera

[FirstRequest]

[else]

A
[else]

A

[CardStatus==Pass]

flagSecurityCardFailure

[else]

[else]

disableUserAccount

Admin [ScFailCount==3]

retAuthentication

«MessageAction»

resetAlarm

«MessageAction»

Admin

lockAccesspoint

«MessageAction»

AccessPoint [Timeout Unlocked]

unlockAccesspoint

«MessageAction»

AccessPoint

logEntryData

[BiometricData
Authenticated]

CardReader_Entry

readSecurityCard

User

[else]

displayCardStatus

alarm

resetAlarm

FingerprintScanner

enableBiometricScan

disableBiometricScan
[Timeout
BiometricScan]

disableBiometricScan

scanBiometricData

User

[else]

authenticateBiometricData

displayAuthenticationStatus

disableBiometricScan

SecSysController

validateSecurityCard

flagBiometricScanFailure

[BsFailCount<3]

logAccountData

takePicture

«MessageAction»

Camera

[FirstRequest]

[else]

A
[else]

A

[CardStatus==Pass]

flagSecurityCardFailure

[else]

[else]

disableUserAccount

Admin [ScFailCount==3]

retAuthentication

«MessageAction»

resetAlarm

«MessageAction»

Admin

lockAccesspoint

«MessageAction»

AccessPoint [Timeout Unlocked]

unlockAccesspoint

«MessageAction»

AccessPoint

logEntryData

[BiometricData
Authenticated]

CardReader_Entry

readSecurityCard

User

[else]

displayCardStatus

alarm

resetAlarm

[Timeout
BiometricScan]

[else]

[BsFailCount<3]

[FirstRequest]

[else]

[else]

[CardStatus==Pass]

[else]

[else][ScFailCount==3]

[Timeout Unlocked]

[BiometricData
Authenticated]

[else]

Uc1ControlEntry White-Box Activity Diagram

Chosen system architecture captured
in a Block Definition Diagram

Security System
«block»

FingerprintScanner

1

FingerprintScanner

11

CardReader_Entry

1

CardReader_Entry
1

SecSysController
«block»

1

1

Camera

1

Camera

1 11 1

AccessPointAccessPoint

1 1

User

11

User

1 1

AdminAdmin

1 11 1

BDD_SecuritySystem

Case study – Uc1 (Control Entry) realization
Allocation of system-level operations to parts (subsystems)

:CardReader
Entry

readSecurityCard()

displayCardStatus(CardStatus = Valid)

readSecurityCard()

displayCardStatus(CardStatus = Valid)

:Fingerprint
Scanner

enableBiometricScan()

scanBiometricData()

authenticateBiometricData(AuthenticationStatus = Authenticated)

disableBiometricScan()

displayAuthenticationStatus(AuthenticationStatus = Authenticated)

enableBiometricScan()

scanBiometricData()

authenticateBiometricData(AuthenticationStatus = Authenticated)

displayAuthenticationStatus(AuthenticationStatus = Authenticated)

disableBiometricScan()

:SecSysController

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus = Valid)
reqEnableBiometricScan()

retAuthenticationStatus(AuthenticationStatus = Authenticated)

reqDisableBiometricScan()

validateSecurityCard(CardStatus = Valid)

logEntryData()

validateSecurityCard(CardStatus = Valid)

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus = Valid)
reqEnableBiometricScan()

retAuthenticationStatus(AuthenticationStatus = Authenticated)

reqDisableBiometricScan()

validateSecurityCard(CardStatus = Valid)

logEntryData()

validateSecurityCard(CardStatus = Valid)

reqReadSecurityCard()

:User

reqReadSecurityCard()

reqScanBiometricData()reqScanBiometricData()

reqTakeSnapshot()

:Camera

reqTakeSnapshot()

reqUnlockAccessPoint()

:AccessPoint

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

reqUnlockAccessPoint()

reqUnlockAccessPoint()

evAccessPointUnlocked()

reqLockAccessPoint()

evAccessPointLocked()

reqUnlockAccessPoint()

reqReadSecurityCard()

:CardReader
Exit

reqReadSecurityCard()

readSecurityCard()

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus = Valid)

readSecurityCard()

reqValidateSecurityCard()

reqDisplayCardStatus(CardStatus = Valid)

 Exit Exit

 Entry Entry

Animated Sequence Diagram (Uc1, Uc2 Nominal Flows)

IA_Sc1

Security System
«block»

FingerprintScanner

1

FingerprintScanner

1

1

CardReader_EntryCardReader_Entry

1

1 SecSysController
«block»

1

1

CameraCamera

1

1 11 1

AccessPointAccessPoint

1 1

1

UserUser

1

1 1

AdminAdmin

1 11 1

1

CardReaderExitCardReaderExit

1

BDD_SecuritySystem

Case study
Integrated System Architecture
verification through
model execution

© Copyright IBM Corporation 2011. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express
or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of,
creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these
materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. IBM, the IBM logo,
Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines Corporation, in the United States, other countries or both.
Other company, product, or service names may be trademarks or service marks of others.

www.ibm/software/rational

	Why MbSE?�Streamlining the Development of Complex Systems

