
How Samsung
Applies Model Based Design,
Simulation and Verification for Smart
Home Appliances
Min Kwang Lee
S/W Engineer, Samsung Electronics
Minkwang.lee@samsung.com

Agenda

Overview of Samsung Electronics

Background

Case Study

Demo

Wrap Up

Samsung Electronics – Product Portfolio

About Samsung Electronics
- Digital Appliances Division

Provide convenient solutions for everyday lives.
• Refrigerator
• Washing Machine
• Air-Conditioner
• Cooking Appliances
• Vacuum Cleaner

Highly popular in U.S. market
• Ranked No.1 in market share of French door refrigerator

• 36.7% (2010), *Source: NPD 2010
• Ranked No.1 in market share of Drum W/M

• 19.3% (2H, 2010), *Source: NPD 2010
• Top brand power of home appliances

*Source: J.D Power 2010

Agenda

Overview of Samsung Electronics

Background

Case Study

Demo

Wrap Up

The Problem Domain – Drum Washing Machine

Small rom size

Two Microcontrollers (Main controller + UI Panel)

Single task(No operating system)

C language

Complicated requirements
• Based on progress table for each course
• Dynamic response to changes(ex. Temperature, water level)
• Need to handle to unpredictable events(ex. Key press, door

open, power down)
• But, Suitable for state behavior modeling

Frequent change of requirements

Lots of derived models

Background – S/W Design Phase Challenges

Hard to maintain consistency between design and source-code

Need a way to validate s/w design after frequent change

Target test takes too long

Hard to set test condition for test case

Application Layer
• Low reusability of source code
• Need structural design based on commonality and variability

Use several software design tools

Lack of unified representation

Need a paradigm shift from conventional code-centric to model driven
development

Agenda

Overview of Samsung Electronics

Background

Case Study

Demo

Wrap Up

Samsung’s Approach

Objective
• Productivity & Quality Improvement by Validating Model and Using Code

Generation

Select application layer as modeling scope

Identify commonality and variability based on feature modeling

Port MicroC framework

Use IBM Rational Rhapsody for application layer modeling
• Focus on state chart modeling of file class
• Set up development environment to validate models on host pc and target
• Use auto generated code without any further modification
• Conduct feasibility study first
• Minimize reverse engineering of legacy code

IBM Rational Rhapsody Framework

MicroC eXecution Framework (MXF)
• Optimized for embedded systems
• No-OS (mainloop) adaptors

Issues Encountered during the framework porting phase
• Rhapsody task should be included in Main task of washing machine system

• Had to eliminate “while(1)” in RiCOSMainTask mainloop
• Had to minimize Framework size (11 K)

Host PcHost Pc Washing Machine TargetWashing Machine Target
Window OSWindow OS System Layer (Main loop)System Layer (Main loop)

Adaptor Layer Adaptor Layer Adaptor Layer Adaptor Layer

Model Model Source Code(Target Build)Source Code(Target Build)

MXF (MicroC eXecution Framework)

State chart/Object diagram code generation
Event driven core & Event Generate Macro(CGEN)
Timer Event & Timer Macro(TM)
Animation: Full and Target Monitoring
Trigger Operation

State chart/Object diagram code generation
Event driven core & Event Generate Macro(CGEN)
Timer Event & Timer Macro(TM)
Animation: Full and Target Monitoring
Trigger Operation

UsedUsed

Network Ports & Port Interface
Active Object Execution
Container classes such as Map, Collection, List
Dynamic memory allocation

Network Ports & Port Interface
Active Object Execution
Container classes such as Map, Collection, List
Dynamic memory allocation

Unused or UnsupportedUnused or Unsupported

Environment for Target Monitoring

Issue
• Limited number of serial port

• Share the port by protocol definition (header + length + data + checksum)
• Retransmit target monitoring data from Host Pc using TCP/IP

SubPCBSerialPortMainPCB SerialPort

OutBug TCP_IP

SerialPort

RhapsodyModelTCP_IP

1. Display 정정

1. Display 정정
2. 디디디 정정
3. Target Monitoring 정정

1. Display 정정
2. 디디디 정정
3. Target Monitoring 정정

3. Target Monitoring 정정

1. Display data
2. Debugging data
3. Target Monitoring data

1. Display data

1. Display data
2. Debugging data
3. Target Monitoring data

3. Target Monitoring data

Structural modeling

Feature Modeling
• Analysis Mandatory/Alternative/Optional Feature
• Variation point

Create feature table

Create variation point table

Object identification

Object interaction

State Chart Modeling – Washing Machine Behavior

More than 180 states indentified for WM Behavior
• Status(Ready, Running, Pause, Etc)
• All of the WM’s progresses and steps

Issues Encountered during state chart modeling phase
• Guard condition is checked when event occurs only
• Need to check a guard condition more frequently or at a more regular interval than

whenever an event occurs
• Had to create a polling mechanism

State Chart Modeling – Example

Example of the software requirement specification
• 3.1.01 …
• 3.1.32. If door is still in open condition after one minute has elapsed since A mode

entry, warning beep would be played at every five seconds for following one minute,
then at every 2 seconds for next 1 minute. If door is closed during 2 minutes, door
lock would be set and B mode would be started

• There are lots of statements excluding progress table

From conventional code-centric to state chart modeling

A

A_STATE_1

A_STATE_2

A_STATE_2_1

tm(5*ONE_SECOND)/
PlayBell(WARNING);

A_STATE_2_2

tm(2*ONE_SECOND)/
PlayBell(WARNING);

[ChkOneMinute()]

tm(60*ONE_SECOND)

END_A

tm(2*60*ONE_SECOND)

B

evDoorClose/
SetDoorLock();

tm(60*ONE_SECOND)

tm(5*ONE_SECOND)/
PlayBell(WARNING);

tm(2*ONE_SECOND)/
PlayBell(WARNING);

[ChkOneMinute()]

tm(2*60*ONE_SECOND)

evDoorClose/
SetDoorLock();

…
if(…)

if(…)
else(…)

else(…)
if(timeflag)

timeflagcount++
switch(…)

case :
… Easy, fast and fun

No longer struggle with
convoluted if-else
statement and time flags

Model Validation

Model should be validated

Conditions for model validation
• Model should be built
• Model should be executable
• Event could be generated
• Virtual device could be controlled

How to validate the Washing Machine Model
• Device layer for simulation
• UI prototype using IBM Rational Rhapsody’s UI panel diagram

Model Validation – Device layer for Simulation

Application Layer

Device Abstraction Layer
hides the implementation and
device dependent details by
providing an abstract
interface

Real SETs UI Prototype

Device layer implementation
for real targets or simulator

MID

DAL_Interface
<<interface>>

<<Realization>>

DeviceLayer

<<Realization>>

DeviceLayer

<<Realization>><<Realization>>

<<Usage>>

AppLayer

AppCommon AppVar

Progress table

ComModule

<<Usage>>

Device Layer for real targets Device Layer for simulation

Device Abstraction Layer
hides the implementation and
device dependent details by
providing an abstract
interface

Device layer implementation
for real targets or
UI prototype

Model Validation – UI Prototype

Start/Pause

CWCCW

삶삶

이이

타타

이불

표표

디버버버

버에에에

버에에에

통통통

울/란란란

소소 /쾌쾌

디버버버버

TEMP

도

BUBLLE

PREWASH

WATER ADD RECENT

LAUNDARYADD

RESERVE

RINSE SPIN DRY

에 분

WM Rhapsody Simulation

Progress

회

NonFreeze

DOOR OPEN

DOOR CLOSE

ReserveLedReserveLed

ChlidLock

WaterLevelWaterLevel

HotValveHotValve

ColdValveColdValve

DrainerDrainer

PreValvePreValve

DuctTempDuctTemp
IsDoorLockIsDoorLock IsDoorOpenIsDoorOpen

WaterTempWaterTemp

Device Control

RemainTimeRemainTime

WeightWeight

Control internal
temperature

Control water
temperature

Control water level

Control door

Display valve and
drainer condition

UI PANEL

Control weight

UI for user panel and device control(including sensors) for simulation

Transform Model to Target

MID

DAL_Interface
<<interface>>MicroC_Framework

<<Realization>>

DeviceLayer
<<Realization>>

AppLayer

AppVar

AppLayer

AppVar

Component Library

Standard Requirement
Configuration
Progress table
Key list
…

Product Requirement
Configuration
Progress table
Key list
…

Simulation on Host PC

AppLayer

Auto Generated Code

DeviceLayer

MID

DAL_Interface
<<interface>>

MicroC_Framework

HAL

Target

Target build

Comparison Auto generated code
with legacy code

Cyclomatic Complexity
• Measure the control flow complexity of a program
• Cyclomatic Complexity is related to understandability and maintainability.
• Recommended average value of cyclo. complexities : Less than or equal to 5

[Code-centric] [Model- driven]

49% improvement

Environment for Automated Test

Serial TX/RX

Autotest DirectorAutotest Director

Internal TCP/IP Auto Test Connect

AUTO TEST CLOSE

TestConductor

Dependency –
Event
Generate

Dependency –
UI Result

Test

TestConductor

Excel File-test case

Excel File - Test Report

Test conductor

Outbug
Real Target

Simulator

Agenda

Overview of Samsung Electronics

Background

Case Study

Demo

Wrap Up

www.ibm/software/rational

Agenda

Overview of Samsung Electronics

Background

Case Study

Demo

Wrap Up

Results & Beneficial Effects

Set up IBM Rational Rhapsody development environment for washing
machine software
• Framework porting
• Target monitoring
• UI prototype and simulation
• Automated test

Models which meet requirements have been designed, validated on
simulation mode and real target

IBM Rational Rhapsody generated 70% of the total code

Consistency between design and implementation

Rhapsody has significantly improved productivity

Results & Beneficial Effects (cont.)

Applications on IBM Rational Rhapsody MicroC Framework
• Reduce complexity

• We replaced flag based complex conventional timer with framework ‘s simple
tm() macro

• We substituted complex if-else statements with event-driven state charts which
enhanced readability and visibility

Application Layer Simulation with fast prototyping
• Animated debugging
• Ability to run the model on the host PC, then test it and debug it logically without

real target
• Simulated time with ONE_SECOND macro could make simulation faster than real

environments
• Test condition could be set very easily and fast

Lessons Learned

Minimize reverse engineering

Play ping pong first
• Port the framework to your real target

Need a deep understanding regarding many properties of rhapsody
• particularly properties related to code generation

Rhapsody is not a magic

Training is essential

www.ibm/software/rational

© Copyright IBM Corporation 2011. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express
or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of,
creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these
materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. IBM, the IBM logo,
Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines Corporation, in the United States, other countries or both.
Other company, product, or service names may be trademarks or service marks of others.

www.ibm/software/rational

