
지능형 실시간 제조 환경 통합관리 시스템
구축 방안 및 사례
– WebSphere Real Time 기반
노주환 박사
나무 아이앤씨(I&C)

What’s Real Time Specification for Java?

“JAVA at its Fastest”

“Game Changers”

“It’s for Automation and Controls”

“Java For Embedded Systems”

Then, What does Real Time mean?

Real Time is NOT the same as real fast!

Efficiency & Throughput is important,

but predictability is essential!

To Use Technical Terms…

Temporal Correctness Condition(TCC) of S/W

Real-Time == Determinism == Predictability

Typical TCC : Deadline, Latency, Jitter

Hard Real Time Requirement

Soft Real Time Requirement

Non Real Time Requirement

So What?

Who Cares?

What’s in it for ME?

How is the Real Time System implemented?

• Most of the Real Time/embedded systems are

– developed in C / C++

– C/C++ is more productive than assembly code

– NOT the most productive, error-free languages

• Increasingly difficult to find C/C++ programmers or to retain

them

• Starting to struggle with the maintenance costs of C/C++

applications

Any NEW approaches?

Industry needs a common,

high-level, fully supported, correct,

advanced (Java-based) Real Time

application development platform.

Lo and behold!

• A business advantage over C, C++, Ada

– Robust language: designed to catch many errors at compile time

– Object Oriented: clean modularity, easy extensibility, intrinsic

information hiding

– Safe object references: can’t generate General Protection Fault

or Segmentation Fault

– Concurrency - Threads as first-class constructs

– A wide range of tools, error checking, security

Java - High productivity,

high degree of program correctness

• Java is unsuitable for developing Real Time systems

– Java is Slow (Hmmm…)

– Non-deterministic GC (Stop the World!)

– JIT Compilation – Dynamic class (un)loading

– Inconsistent Memory Allocations

• Java Language Shortcomings

– Java thread scheduling is purposely under-specified

(to allow easy implementation of JVM on as many platform)

– Java provides coarse-grained control over memory allocation,

and it does not provide access to raw memory

– Java does not provide high resolution time, nor access to signals,

e.g. POSIX Signals

Wait, Java is Stochastic!

[To extend] The Java Language Specification

and The Java Virtual Machine Specification

[to provide] an Application Programming interface

that will enable the creation, verification, analysis,

execution, and management of Java threads whose

correctness conditions include timeliness constraints

(also known as Real Time threads)

RTSJ: Chronology of the Specifications

1998
Real Time

Specification

for Java

(JSR-001)

proposal

submitted

Many companies

represented : IBM,

Sun, Ajile, Apogee,

Motorola, Nortel,

QNX, Thales,

TimeSys,

WindRiver

2002
JSR-001

approved by

the Java

Community

Process

TimeSys

Reference

Implementation

2005
RTSJ update

proposal

submitted

(JSR-282)

-Several JSR-1

compliant

products

(Apogee, IBM,

Sun)

-RTGC

Available in

IBM's JVM

2007

RTGC added RTGC added

to Sun's to Sun's

JSR1JSR1--

compliant compliant

JVMJVM

JSRJSR--1 APIs 1 APIs

added to added to

RTGC RTGC

enhanced enhanced

JVMsJVMs

RTSJ: Key Features

• Thread Scheduling & Dispatching

– Priority-preemptive scheduling

• Enhanced Synchronization

– Priority inversion avoidance

• New Memory Management

– Allocation contexts without garbage collection

• Added Asynchronous Event Processing

– Internal events, external “happenings”, and handlers

• Time, Clocks and Timers

• Real Time GC

Satisfies most of the RT-POSIX requirements

RTSJ Analogy: Conventional Systems

• 고속도로는 Metering light을 이용하여 교통량 – throughput – 관리
• 많은 컴퓨터 시스템들은 유사한 방법을 사용하여 서버의 load를
최소화함으로써 Throughput 최적화

"Objective": consistent commute time

Metering Light

RTSJ Analogy: Garbage Collection

Java는 고속도로의 각 차선을 명확히 구분하고 노면관리를 (편리한
개발플랫폼과 생산성제고 환경) 제공하지만 모든 사람들이 반드시 거쳐야
하는 Toll gate (Garbage Collection)가 있고 여기서 비용을 지급하기 위해
대기해야 하는 단점이 있다.

"Objective": consistent commute time

Metering Light

T

O

L

L

T

O

L

L

RTSJ Analogy: Real Time Threads

Real Time Threads는 버스 전용 차선에 비유될 수 (Metering Light에서
대기도 줄어드는) 있고 이를 통해 좀 더 빠르고 편안하게 목적지에 도달하는
것과 같다

그러나 버스 전용 차선도 다른 버스(Threads)와 공유하게 되므로 결국 정체와
지체가 발생하기도 한다 (현실과 달리 RTSJ에서는 버스전용 차선에 Toll
gate을 두기도 하고 아예 제거하는 것도 가능)

Metering Light

RTSJ Analogy: NoHeap RealTime Threads

No-Heap Real Time Threads는 Toll gate는 존재하지도 않는 나만의
개인전용 차선으로 여기서는 지체나 정체 걱정이 없다

RTSJ는 단일 시스템 내에서 NHRT, RTT, java.lang.Threads 를 모두 사용할 수
있도록 지원한다
주의: 여전히 고속도로(시스템)가 효과적으로 수용할 수 있는 자동차 수에는
그 한계가 있다

Metering Light

RTSJ: Memory Model

• Java Heap

• Non Real Time

• Regular Java threads

• Maximized throughput

• RTSJ Scoped Memory

• Soft Real Time

• Realtime Threads

• RTGC

• RTSJ Immortal Memory

• Hard Real Time

• NoHeapRealtime Threads

• Bounded jitter

Take-away:

Real Time & regular Java code는

메모리, state 등 run-time환경정보를

공유하며 이는 이전의 RT환경에서는

불가능했던 것

Data Transfer queues

Immortal Memory

RTSJ : Deployment in the Real Life

Less

Complex

More

Complex
RTGC Realtime Thread Memory Management NHRT Scheduling

RTGC Realtime Thread Memory Management NHRT

RTGC Realtime Thread Memory Management

RTGC Realtime Thread

RTGC

Soft Real Time Hard Real Time

Remember, there is no such thing a free lunch

and designer should consider trade-off!

So, how “deterministic” is

Real Time Java anyway?

19

RTSJ: Lab Tests
Non Real Time GC

Java RTS2.1, RTT/Serial GC/2GP on Solaris/quad-core 2.8Ghz Opteron

Courtesy: SUN

RTSJ: Lab Tests

21

Java RTS2.1, RTT/Serial GC/2GP on Solaris/quad-core 2.8Ghz Opteron

Real Time GC

Courtesy: SUN

RTSJ : Real World – SIP Server

• Carrier-grade blades (HS21XM) running WVE/ND/WAS/WRT

with a client-provided tests

• Using the SIP server that is part of the IBM WebSphere stack

• Real Time Concurrent/Incremental GC

• NO AOT*

*Ahead Of Time Compile

RTSJ : Real World – SIP Server

Peer APeer A Peer BPeer B

Packets sent
ack

Time passes, Garbage Collects

Real System running with Generational GC

Peer APeer A Peer BPeer BNetwork Storm : packets get backed up

GC Occurs,

Processing Stops

No acknowledgement, packets Retransmitted

RTSJ : Real World – SIP Server

Peer APeer A Peer BPeer B

Packets sent
ack

Time passes, Garbage is Collected as it is created.

Peer APeer A Peer BPeer B

Packets sent
ack

Real System running with Real Time Incremental GC

RTSJ : Real World – SIP Server

Real SIP Server Performance Results
Generational GC vs. Real Time Incremental GC

Throughput:

Real Time < Generational

Maximum Latencies:

Real Time: < 100ms

Generational: < 1000ms(1s)

Latencies greater than 50ms:

Real Time: 0.3%

Generational : 50%

� Findings:
• Real Time(Incremental) GC has slightly less throughput than Generational.

However, 98% reduction in standard deviation of GC pause times

• Reduced pause times results in reduced latencies

Weight CheckerWeight CheckerSteamer, Fryer, CoolerSteamer, Fryer, CoolerMixer, RollerMixer, RollerSiloSilo

Production
Tracking
Production
Tracking

? ?

Real Time CTQ & Cost ManagementReal Time CTQ & Cost Management

Empower Operators! (Paperless)

Non-invasive, Real Time, Horizontal

Data Acquisition for IT Systems Required

CTQ: Critical To Quality

Plant floor has all the answers!

Smarter NongShim – Real Time Visibility

BeforeBefore AfterAfter

Defect
Identification

Defect
Identification

Equipment DisplayEquipment Display

Data CollectedData Collected

Data ProcessedData Processed

Shift/Daily ReportsShift/Daily Reports

• Well-managed, proven process. However, time-

consuming manual process prone to human

error resulting in low data reliability.

• Reports to HQ often delayed.

• Difficult, if not infeasible, to use for root cause

analysis and multivariate co-relational analysis

• Well-managed, proven process. However, time-

consuming manual process prone to human

error resulting in low data reliability.

• Reports to HQ often delayed.

• Difficult, if not infeasible, to use for root cause

analysis and multivariate co-relational analysis

weight ▼

weight ▲
Defect

135g[max
]

125g [target weight]

119g[min]

• Paperless, transparent Real Time data acquisition

with click-driven analysis/reporting

• Reduced flour scrap (1g/pack is $0.87M/Yr.

saving, let alone less CO2 emission)

• Higher output (99% of the Theoretical Output)

• Up to 200% faster Time-to-Recover

• Paperless, transparent Real Time data acquisition

with click-driven analysis/reporting

• Reduced flour scrap (1g/pack is $0.87M/Yr.

saving, let alone less CO2 emission)

• Higher output (99% of the Theoretical Output)

• Up to 200% faster Time-to-Recover

Smarter NongShim – Values Delivered

RTSJ References

• Financial Trading/Analytics Systems

– NASDAQ

– Very tight time constraints for Real Time data analysis

– Very fast time to market pushing drive to Java from C

• Network Routers

– Packet routing – tighter timing typically single-digit ms

• Industrial Devices / Automation

– From sub-ms (NHRTs) to single-digit ms (standard Java threads)

– Mitsubishi, Project Blue Wonder (SUN)

– POSCO Mg. Plant

– NongShim Gumi Plant

References

• Military & Aerospace Industry

– BOEING

– NASA

– Air Force Research Laboratory

– DARPA – Autonomous vehicle control

• TELCO & N/W Industry

– CISCO – IP Phones

– Set top Boxes

What’s the catch?

Wait,

• Not a Silver Bullet, but a Sharper Tool

• O/S Support Required!

• The benefits of RTSJ are REAL*, not theoretical

– Architectural Flexibility

– Predictable Solution Development

• High time to dig into RTSJ

• For more information

– Visit www.rtsj.org

– Visit http://www-306.ibm.com/software/webservers/realtime/

RTSJ delivers predictable

performance! * Pun intended

The Catch is…

