
Report Modernization Utility for z/OS and OS/390

User’s Guide and Reference
Version 1 Release 1

SC19-2726-00

���

Report Modernization Utility for z/OS and OS/390

User’s Guide and Reference
Version 1 Release 1

SC19-2726-00

���

First Edition (March 2009)

This edition applies to Report Modernization Utility for z/OS Version 1 Release 1, Program Number 5697-N44 and
to any subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

The information in this manual was furnished by Foundation Software, Inc.

This publication is available on the Web at:

http:/www.ibm.com/software/awdtools/migration

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation
H150/090
555 Bailey Avenue
San Jose, CA
95141-1003
U.S.A.

or fax your comments from within the U.S.A., to 800-426-7773, or, from outside the U.S.A., to 408-463-2629.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright Foundation Software, Inc. 2009.

All rights reserved. Unauthorized use or disclosure of any part of the system is prohibited. Foundation Software,
Inc. has granted IBM a non-exclusive license to market RMU as Report Modernization Utility.

© Copyright International Business Machines Corporation 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 65.

Contents

About this manual v

Who should use this manual vii

Structure of this manual ix

How to read syntax diagrams xi

Chapter 1. Introducing RMU 1
How does it work? 1
RMU features 1

Chapter 2. Working with RMU 3
Running RMU 3
Distributing output documents 4
Summary of available jobs 5
Summary of file DD Names 5

File descriptions 7
Using the FZHBPARS parser utility 8

Chapter 3. Installation and RMU
options 11
Installation 11

RMU default options (FZHOPTAB) table . . . 11
RMU default library locator table (FZHPROCS) 13
Setting up the z/OS server (UNIX) environment 14
System information 15

Chapter 4. Working with RMU Script . . 17
Basic concepts 17
I/O handling 17
Coding rules 18
Program example 19
Creating CSV documents 21
Creating simple HTML documents 24
Creating HTML1 documents with the control breaks
selection tree 26

Decorating an HTML document 29
Debugging RMU Script programs 30

Chapter 5. RMU Script language
instruction reference. 33
PARM statement. 33
DEFINE statement 34
<object> and </object> tag 35
<style> and </style> tag 35
<docs_top> and </docs_top> tag 36
<docs_end> and </docs_end> tag. 37
<page_top> and </page_top> tag 37
<page_end> and </page_end> tag 38
Assignment statement 38
BYPASS statement 41
CALL statement 42
CONTINUE statement. 42
CONTROL statement 43
DISPLAY statement. 44
DO and END-DO statements 44
EVALUATE and END-EVALUATE statements . . . 45
IF, ELSE, and END-IF statements 47
PERFORM statement 47
PROC/END-PROC statement 48
PROCESS statement 49
STOP statement 49
STRING statement 50
System-defined fields 51
COBOL verbs, statements, and reserved fields . . . 52

. 52

Chapter 6. Messages. 59
RMU compiler-generated messages 59

Notices 65
Trademarks 66

Index 67

© Copyright IBM Corp. 2009 iii

iv Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

About this manual

This manual describes how to use the Report Modernization Utility for z/OS
licensed program.

In the rest of this document, the Report Modernization Utility for z/OS is referred
to as ″RMU″.

© Copyright IBM Corp. 2009 v

vi Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Who should use this manual

This manual is for anyone who wants to convert standard mainframe reports to
HTML or Character Separated Values (CSV) file format.

To use RMU properly, you need to be familiar with:
v Job Control (JCL)
v The RMU script language (RMU Script)
v COBOL compiling procedures

© Copyright IBM Corp. 2009 vii

viii Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Structure of this manual

This manual consists of:
v Chapter 1, “Introducing RMU,” on page 1.

Explains what RMU is and how it works.
v Chapter 2, “Working with RMU,” on page 3.

An overview of the supplied JCL.
v Chapter 3, “Installation and RMU options,” on page 11.

Describes RMU installation and customization.
v Chapter 4, “Working with RMU Script,” on page 17.

Describes in detail how to work with the RMU Script language.
v Chapter 5, “RMU Script language instruction reference,” on page 33.

Describes statements supported by RMU.
v Chapter 6, “Messages,” on page 59.

Provides a list of:
– COBOL compiler generated messages
– RMU runtime error messages
– RMU compiler generated messages

© Copyright IBM Corp. 2009 ix

x Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

How to read syntax diagrams

The syntactical structure of commands described in this document is shown by
means of syntax diagrams.

Figure 1 shows a sample syntax diagram that includes the various notations used
to indicate such things as whether:
v An item is a keyword or a variable.
v An item is required or optional.
v A choice is available.
v A default applies if you do not specify a value.
v You can repeat an item.

Here are some tips for reading and understanding syntax diagrams:

Syntax

�� COMMAND_NAME required_variable
OPTIONAL_KEYWORD=variable

KEYWORD=default_choice

KEYWORD= choice2
choice3

�

� � repeatable_item1
fragment_name optional_choice1

optional_choice2

required_choice1
required_choice2
required_choice3

�

� �

,

repeatable_item2
DEFAULT_KEYWORD

KEYword
��

fragment_name:

DEFAULT_KEYWORD

KEYWORD1
KEYWORD2

�

�

KEYWORD3 KEYWORD4
(variable1)

variable2 variable3
,

(variable4 - variable5)
OPTIONAL_KEYWORD1
OPTIONAL_KEYWORD2
OPTIONAL_KEYWORD3

Figure 1. Sample syntax diagram

© Copyright IBM Corp. 2009 xi

Order of
reading Read the syntax diagrams from left to right, from top to bottom,

following the path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that a statement is continued on the
next line.

The �─── symbol indicates that a statement is continued from the
previous line.

The ───�� symbol indicates the end of a statement.

Keywords Keywords appear in uppercase letters.

�� COMMAND_NAME ��

Sometimes you only need to type the first few letters of a keyword,
The required part of the keyword appears in uppercase letters.

��
DEFAULT_KEYWORD

KEYword
��

In this example, you could type ″KEY″, ″KEYW″, ″KEYWO″,
″KEYWOR″ or ″KEYWORD″.

The abbreviated or whole keyword you enter must be spelled
exactly as shown.

Variables Variables appear in lowercase letters. They represent user-supplied
names or values.

�� required_variable ��

Required
items Required items appear on the horizontal line (the main path).

�� COMMAND_NAME required_variable ��

Optional
items Optional items appear below the main path.

��
OPTIONAL_KEYWORD=variable

��

Choice of
items If you can choose from two or more items, they appear vertically,

in a stack.

If you must choose one of the items, one item of the stack appears
on the main path.

xii Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

�� required_choice1
required_choice2
required_choice3

��

If choosing one of the items is optional, the entire stack appears
below the main path.

��
optional_choice1
optional_choice2

��

If a default value applies when you do not choose any of the
items, the default value appears above the main path.

��
DEFAULT_KEYWORD

KEYWORD1
KEYWORD2

��

Repeatable
items An arrow returning to the left above the main line indicates an

item that can be repeated.

�� � repeatable_item1 ��

If you need to specify a separator character (such as a comma)
between repeatable items, the line with the arrow returning to the
left shows the separator character you must specify.

�� �

,

repeatable_item2 ��

Fragments Where it makes the syntax diagram easier to read, a section or
fragment of the syntax is sometimes shown separately.

��
fragment_name

��

...

fragment_name:

DEFAULT_KEYWORD

KEYWORD1
KEYWORD2

...

How to read syntax diagrams xiii

xiv Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Chapter 1. Introducing RMU

RMU is a stand-alone utility that converts mainframe printer files (reports) to
HTML and CSV files. It runs exclusively on the z/OS® platform.

The purpose of RMU is to provide a comprehensive tool for converting mainframe
reports to an HTML and CSV format which is understood by standard browsers
and spreadsheet software such as IE and EXCEL, without the need to modify
existing programs. Once the reports are converted, they can be published to z/OS
or any other server, or downloaded to a PC platform for local access.

How does it work?
RMU executes on z/OS in background as a batch job. The input and output
environment is controlled by means of JCL. RMU Script is available for massaging
and decorating the input. The output is published directly to the z/OS server, or
written to a file that can be routed or downloaded to any other server or client
platform.

RMU features
The main features within RMU are:
v HTML and CSV documents can be produced from standard reports without

changing the application programs.
v RMU Script is available for decorating HTML documents. The language can:

– Decorate HTML text by means of fonts, CSS, colors, and so on. For example:
- Negative amounts can be turned red.
- The background can simulate 1403 green-striped printer paper.

– Place objects such as pictures and special annotations at specific positions in
the document.

– Be used in interpretive mode or compiled and linked mode.
v Simple HTML documents can be produced (the use of RMU Script is optional).
v HTML documents, with a control breaks tree on the left side and the report

body on the right side, can be produced (the use of RMU Script is required).
v HTML documents can be published to the z/OS server by pointing the JCL to

the z/OS server.
v HTML documents can be created to a disk file and downloaded to any other

platform.
v CSV files can be produced (the use of RMU Script is required).

© Copyright IBM Corp. 2009 1

RMU features

2 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Chapter 2. Working with RMU

This section provides an overview of the JCL supplied with RMU.

Running RMU
RMU can be run as a stand-alone batch utility in three ways:

Running RMU without RMU Script
This is the simplest form. The FZHRMU00 program is run without the
SYSIN for RMU Script. The input report is read and an output
HTML-format document is created without custom decorations. The
background color and turf is supplied by the PARM= (’STYLE=&css,TURF=
&turf’) options on the EXEC statement.
//RUNRMU EXEC PGM=FZHRMU00,PARM=('STYLE=&css,TURF=&turf)')

Where:

&css PDS member containing CSS in FJIDOC0 PDS. This is an
optional parameter.

&turf The background color. Valid values are:

1403-paper Simulate 1403 green-striped printer paper.
This is the default.

NO Create plain solid background color.

Use the supplied FZHRMUJ0 or FZHRMUX0 job located in the
&SYS1.SFZHJCLS library as a template for your own jobs.

Running RMU with compiled RMU Script
In this mode, the FZHRMU00 program is run by invoking a compiled
RMU Script program. The name of the RMU Script program to use and the
style CSS are supplied by the PARM= on the EXEC statement.
//RUNCOMP EXEC PGM=FZHRMU00,PARM=('SCRIPT=&pgmname,STYLE=&css')

Where:

&pgmname The name of the script program. This is a required
parameter.

&css The PDS member containing CSS in FJIDOC0 PDS. Style is
used only if there is no style method coded in the RMU
Script. This is an optional parameter.

The SYSIN for the Script source must not be coded in the JCL.

The &pgmname, RMU SCRIPT, must have been previously compiled and
linked by means of the FZHRMU01 compiler.

Use the supplied FZHLINKJ job located in the &SYS1.SFZHJCLS library as
a template to compile and link RMU Script programs.

Use the supplied FZHRMUJ1 or FZHRMUX1 job located in the
&SYS1.SFZHJCLS library as a template to run the compiled RMU Script
program.

© Copyright IBM Corp. 2009 3

Running RMU with RMU Script in ″link and go″ mode
In this mode, the FZHRMU00 program compiles and links RMU Script
pointed to by the SYSIN and then runs it. SYSIN can be a flat file, a PDS
or PDSE member, or an inline source. The background style can be
supplied by the PARM= on the EXEC statement.
//RUNCOMP EXEC PGM=FZHRMU00,PARM=(STYLE=&css)

Where:

&css PDS member containing CSS in FJIDOC0 PDS. Style is
used if there is no style method coded in the RMU Script.
This is an optional parameter.

The SYSIN is required.

″PARM LINK (&NAME)″ must not be specified on the PARM statement in
the RMU Script program.

Use the supplied FZHRMUJ2 or FZHRMUX2 job located in the
&SYS1.SFZHJCLS library as a template to run as ″link and go″.

Distributing output documents
RMU can publish the output documents to the z/OS server (UNIX®), or to a
regular z/OS flat variable-length file.

When documents are published to a regular z/OS variable-length file, the file must
be downloaded to a PC (or another server) for access.
v When you create simple HTML format, download the output file as an ASCII

text file with an extension of .htm. The downloaded file can be opened with IE
or any other compatible browser.

v When you create HTML1 format, download the output as a binary file and run
the FZHBPARS Java™ parser to build the required directories. See “Using the
FZHBPARS parser utility” on page 8 for detailed steps.

v When you create a CSV file, download the output file as an ASCII text file with
an extension of .csv. The downloaded file then can be imported into any
spreadsheet software.

When documents are published to the z/OS server, the z/OS UNIX environment
must be established and enabled. A root directory on the z/OS UNIX system must
be established for each user. Coordinate access to the UNIX environment with your
z/OS system administrator.

RMU determines where to send the output by checking for the existence of the
name FJUNIX0 DD in the JCL. PATH= on the FJUNIX0 definition must point to the
root directory showing where to write the documents.

If the name FJUNIX0 DD exists in the JCL, RMU assumes that the HTML
documents are being sent to a z/OS UNIX System. If the name FJUNIX0 DD does
not exist, RMU creates a flat file on z/OS.

Note: UNIX files are handled by the FZHUNIX1 RMU program. This program is
dynamically loaded at end of job when combining the output. UNIX is
case-sensitive. That is, commands, directory, and file names must by typed
exactly as defined on the UNIX system.

Running RMU

4 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

When publishing to the z/OS server, RMU must comply with the code set (ASCII
or EBCDIC) defined for each document type on the UNIX system. The code set is
obtained from the UNIX file, httpd.conf.

Note: The layout of the UNIX file, httpd.conf, is beyond the scope of this
document. Consult with your z/OS system administrator for the location of
this file.

The httpd.conf file is pointed to by the FJCONFG DD name in the JCL. It can be a
z/OS PDS member or a file in the UNIX directory.

If the FJCONFG DD name is not in the JCL, ASCII is assumed for HTML and CSV
files, and binary code for gif files.

For a list of available job templates in the &SYS1.SFZHJCLS library, see “Summary
of available jobs.”

For a list of files needed in the JCL, see “Summary of file DD Names.”

Summary of available jobs
These jobs are available:

RMU Script compiler job (FZHRMU01 program):
FZHLINKJ Compile and link RMU Script program.

Jobs to use when the output documents are to be kept on z/OS for downloading
to a PC (or other non-z/OS server):

FZHRMUJ0 Run RMU without the RMU Script program.
FZHRMUJ1 Run the compiled RMU Script program.
FZHRMUJ2 Run RMU Script as a ″link and go″ job.

Jobs to be used when output documents are to be distributed to the z/OS server
(UNIX on z/OS):

FZHRMUX0 Run RMU without the RMU Script program.
FZHRMUX1 Run the compiled RMU Script program.
FZHRMUX2 Run RMU Script as a ″link and go″ job.

Summary of file DD Names
These files are required when running RMU without the RMU Script program:

Table 1. Files required when running RMU without the RMU Script

File Required or optional

FJIRPT0 Required

FJORPT0 Required

FJIDOC0 Optional

SYSOUT Required

These files are required when compiling RMU Script:

Table 2. Files required when when compiling RMU Script

File Required or optional

COBLIST Optional

Distributing output documents

Chapter 2. Working with RMU 5

Table 2. Files required when when compiling RMU Script (continued)

File Required or optional

FJSVC99 Optional

LKEDMAP Optional

RMULIST Optional

RMUERR1 Optional

SYSLMOD Required

SYSIN Required

These files are required when running RMU with compiled RMU Script:

Table 3. Files required when running RMU with compiled RMU script

File Required or optional

FJIRPT0 Required

FJORPT0 Required

FJIDOC0 Optional

FJSVC99 Optional

SYSOUT Required

These files are required when running RMU in ″link and go″ mode:

Table 4. Files required when running RMU in ″link and go″ mode

File Required or optional

COBLIST Optional

FJIRPT0 Required

FJORPT0 Required

FJIDOC0 Optional

FJSVC99 Optional

LKEDMAP Optional

RMULIST Optional

RMUERR1 Optional

SYSOUT Required

SYSIN Required

These are additional files needed when publishing to z/OS UNIX:

Table 5. Additional files needed when publishing to z/OS UNIX

File Required or optional

FJUNIX0 Required

FJDMAP0 Optional

STDERR Optional

STDOUT Optional

FJCONFG Optional

Summary of file DD Names

6 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

File descriptions
COBLIST

Output COBOL compiler listing.

RECFM=FBA, LRECL=133.

This file is created when compiling RMU Script and the COBOL option is
coded on the PARM in the RMU Script program. This is an optional file.
The default is SYSOUT=*.

FJCONFG
Optional z/OS UNIX configuration file for determining the code set for file
types. The file is used when publishing the document to the z/OS UNIX
server. It can be a z/OS PDS member, or a file in the UNIX directory. If
FJCONFG is not in the JCL, ASCII is assumed for HTML and CSV files,
and binary code for gif files.

FJDMAP0
Output list of files published to the z/OS server (z/OS UNIX).

RECFM=VB, LRECL=4096

This is an optional file. The default is SYSOUT=*.

FJIDOC0
Input file where HTML templates and CSS files are located.

RECFM=VB, LRECL=4096

This is an optional file. The default is &SYS1.SFZHDOCS PDS. If you are
creating custom CSS files, place the FJIDOC0 DD name in the JCL.
Concatenate &SYS1.SFZHDOCS first, followed by your own data set
names.

FJIRPT0
The input report (report to be converted).

This can be an FBA/VBA or an FB/VB file. Maximum LRECL=512
(including cc).

The first byte must be a valid ANSI print control character.

FJORPT0
The output report (HTML or CSV document).

RECFM=VB, LRECL=4096

When distributing to z/OS UNIX, this file is used as a work file. When
creating a z/OS flat file, this file must be downloaded to a PC (or another
server). The HTML1 format output must be parsed with the FZHBPARS
parser utility. For details, see “Using the FZHBPARS parser utility” on
page 8.

FJSVC99
This is an optional DD name for turning SVC99 messages ON or OFF. This
is a dummy temporary file used to control RMU’s dynamic allocator
messages. If supplied, it must be coded as follows:
//FJSVC99 DD DSN=&&FJSVC99(&svc99),DISP=NEW

Where:

&svc99
Can have one of the values: MSGOFF, MSGALL, or MSGTXT.

Summary of file DD Names

Chapter 2. Working with RMU 7

FJUNIX0
z/OS UNIX path (directory on z/OS UNIX showing where to publish the
output). This is an HFS file. The maximum buffer length is 4096. The
specified path must exist on z/OS UNIX with read and write permissions.
When publishing to z/OS UNIX, RMU uses this path as the base directory
into which all other created subdirectories and files are placed.

FJUNIX1
z/OS UNIX HFS file internally allocated by RMU. The files are
dynamically allocated by RMU. Do not code this file in the JCL.

LKEDMAP
Link Edit map from the link step.

RECFM=FBA, LRECL=133

This file is created when compiling RMU Script and the LKED option is
coded on the PARM in the RMU Script program. This is an optional file.
The default is SYSOUT=*.

RMULIST
RMU Script compiler listing.

RECFM=FBA, LRECL=133

This file is produced by the RMU Script compiler. This is an optional file.
The default is SYSOUT=*.

RMUERR1
RMU Script compiler errors.

RECFM=FBA, LRECL=133

This file is produced by the RMU Script compiler. This is an optional file.
The default is SYSOUT=*.

STDERR
Standard z/OS UNIX error file. When publishing to z/OS UNIX, potential
UNIX errors are written to this file. The default is STDERR in the home
directory on z/OS UNIX.

STDOUT
Standard z/OS UNIX messages file. When publishing to z/OS UNIX,
standard UNIX messages are written to this file. The default is STDOUT in
the home directory on z/OS UNIX.

SYSIN
SYSIN of the RMU Script program.

RECFM=F, LRECL=80

This is an optional file. If present, the use of the RMU script compiler is
assumed.

SYSOUT
Standard SYSOUT file for runtime messages required by every job.

Using the FZHBPARS parser utility
For the HTML1 option, RMU generates a binary format file that contains several
HTML, gif, and CSS documents. The downloaded file must be parsed with the
Java program, FZHBPARS, before it can be viewed with a browser.

To install the parser program FZHBPARS:

Summary of file DD Names

8 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

1. On your PC or a server, create a directory for the RMU documents.
This is an example of a Windows® command line to create a directory called
RMUDOCS:
md rmudocs

2. Download from the mainframe (in binary format with no LF/CR)
&SYS1.SFZHDOCS(fzhbpars) into the created directory:
c:\rmudocs\fzhbpars.class

To view an HTML1 document on your PC or a server, perform these tasks:
1. Make sure that Java VM is installed and running.
2. Download the HTML1 document file from the mainframe (in binary format, no

LF/CR) into a directory (assume the rmudocs directory).
3. Switch to the rmudocs directory:

cd\rmudocs

4. Enter on the command line:
java fzhbpars &src &dest

Where:
&src The downloaded HTML1 document file.
&dest The target directory for the HTML1 documents.
For example (assuming the file name htmlfil1.bin):
java fzhbpars htmlfil1.bin htmlfil1

At completion, all HTML documents are created in the c:\rmudocs\htmlfil1\r001
directory (drive c: assumed). To view from your default browser, click on the
c:\rmudocs\htmlfil1\r001\index.htm file. Alternatively, you can open your
browser and enter in the URL:
file:///C:/rmudocs/htmlfil1/r001/index.htm

When you click on index.htm, a selection tree on the left and the report body on
the right side of the screen is displayed. When you click on FJORPT0.htm, the
report body is displayed on the screen.

Using the FZHBPARS parser utility

Chapter 2. Working with RMU 9

10 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Chapter 3. Installation and RMU options

This section describes RMU installation and customization.

Installation
RMU is installed using SMP/E. Refer to the Program Directory (GI10-8807-00) for
installation instructions.

RMU consists of these six libraries:
&SYS1.SFZHAMAC Assembler (BAL) macros.
&SYS1.SFZHASRC BAL programs source.
&SYS1.SFZHDOCS HTML templates and CSS files.
&SYS1.SFZHJCLS JCL library with test programs.
&SYS1.SFZHLOAD Load library.
&SYS1.SFZHPROC PROC Library.

At installation, perform the tasks as described in these sections:
v “RMU default options (FZHOPTAB) table.”
v “RMU default library locator table (FZHPROCS)” on page 13.
v “Setting up the z/OS server (UNIX) environment” on page 14.
v “System information” on page 15.

On completion, tailor and test these jobs located in the &SYS1.SFZHJCLS library:
FZHLINKJ Compile and link the RMU Script program.
FZHRMUJ0 Run RMU without the Script program.
FZHRMUJ1 Run the compiled Script program.
FZHRMUJ2 Run RMU Script as a ″link and go″ job.
FZHDELCJ Copy the test report with print control characters expanded.

If you are distributing HTML reports to the z/OS server (UNIX server on z/OS),
tailor and test these jobs:
FZHRMUX0 Run RMU without the Script program.
FZHRMUX1 Run the compiled Script program.
FZHRMUX2 Run RMU Script as a ″link and go″ job.

Installation is successful if all jobs run to a normal end of job.

For instructions on how to use RMU for general users, see Chapter 2, “Working
with RMU,” on page 3.

RMU default options (FZHOPTAB) table
The RMU default options are located in the FZHOPTAB table. The source code for
the table is located in the &SYS1.SFZHASRC library.

Users in the United States can use the table as shipped on the product tape.

Users outside the United States should adjust the currency and the decimal
character by means of the CURRENCY= and the DECIMAL= parameters
respectively.

© Copyright IBM Corp. 2009 11

To assemble and link the table, use the FZHASMOJ job located in the
&SYS1.SFZHJCLS library. You may need to tailor the job name and system
libraries.

Figure 2 shows a copy of FZHOPTAB distributed with RMU:

Explanation:

TYPE=E Macro type. Do not change.

OPSYS=MVS Operating system. Do not change.

COMPANY=’FOUNDATION SOFTWARE INC.’
Your company name up to 30 characters long.

RELEASE=V1R1.00
Software release. Do not change.

RELDATE=02/01/09
Software release date. Do not change

RMULIST=YES
Default RMU Script compiler LIST option:
YES Print RMU Script listing.
NO Do not print RMU Script listing.

COBLIST=YES
Default COBOL compiler LIST option:
YES Print COBOL listing.

LKEDLST=YES
Default Link LIST option:
YES Print Link listing.
NO Do not print Link listing.

DECIMAL=PERIOD
Default character for decimal point:
PERIOD Use period (.).
COMMA Use comma (,).

FZHOPTAB FSMACRMU TYPE=E, .E = GENERATE NUCLEUS X
OPSYS=MVS, .OPERATING SYSTEM MVS X
COMPANY='FOUNDATION SOFTWARE INC.', X
DISTNUM=RMU02139, .DISTRIBUTION ID FOR RMULIST X
RELEASE=V1R1.00, .SOFTWARE RELEASE VERS,REL,MOD X
RELDATE=02/01/09, .SOFTWARE RELEASE DATE X
RMULIST=YES, .TRANSLATOR DEFAULT LIST OPTION X
COBLIST=YES, .COBOL COMPILER DEFAULT LIST X
LKEDLST=YES, .LINK STEP LIST OPTION X
DECIMAL=PERIOD, .PERIOD/COMMA X
CURRENCY=$, .CURRENCY SYMBOL X
CSVCHAR=',', .DEFAULT CSV CHARACTER X
ERRLIMT=128, .ERROR LIMIT COUNTER X
TURF=1403-PAPER, .TURF NO/1403-PAPER X
LINESIZE=512, .MAXIMUM REPORT LINE SIZE (INCL CC) X
PAGESIZE=66, .MAXIMUM LINES PER PAGE (1 - 99) X
MAXSIZE=32767, .MAX FIELD LENGTH ALLOWED VIA DEFINE X
FORMAT=HTML .DEFAULT FORMAT HTML/HTML1/CSV

END FZHOPTAB

Figure 2. Copy of FZHOPTAB distributed with RMU

Installation

12 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

CURRENCY=$
Default currency symbol. The currency symbol must be a single
character acceptable by COBOL.

CSVCHAR=’,’ Default separator character for CSV files. You can change this to a
character of your own choosing.

ERRLIMT=128
Error limit for the RMU Script compiler. The RMU Script compiler
terminates after reaching the number of errors specified by this
parameter.

TURF=1403-PAPER
Default background 1403-PAPER decorating option:
1403-PAPER Generate HTML with stripes to simulate 1403

printer paper.
NO Do not generate simulated 1403 printer paper.

LINESIZE=512
Maximum input reports line size (including print control
character). This parameter is reserved for future use. Do not
change.

PAGESIZE=66 Maximum input report lines per page. Do not change.

MAXSIZE=32767
Maximum RMU field size allowed. This size applies to the
DEFINE statement in RMU Script. The maximum is 32,767. Do not
change.

FORMAT=HTML
Default output format:
HTML Produce a simple HTML report.
HTML1 Produce a HTML report with a selection tree on

the left side by control break fields. RMU Script is
required unless no control breaks are needed.

CSV Produce a CSV file. Refer to the CSVCHAR=
parameter for the default character to be used.

RMU default library locator table (FZHPROCS)
RMU is compiled with the FZHRMU01 program.

FZHRMU01:
v Is invoked directly from JCL when the RMU Script program is to be compiled

and linked only.
v Is invoked indirectly from the FZHRMU00 program when performing ″link and

go″.
v Invokes and performs these tasks as a single step:

– Converts RMU Script source to z/OS COBOL by means of the FZHRMUS1
utility.

– Compiles the generated COBOL by means of z/OS Enterprise COBOL.
– Links the compiled program.

To activate the FZHRMU01 program, perform these steps:
1. Tailor FZH#PROC, located in &SYS1.SFZHJCLS. This proc is read by the

FZHRMU01 program. It contains all the information and steps needed to
simulate the single step process.

Installation

Chapter 3. Installation and RMU options 13

To tailor, follow the comments embedded in the proc. You will probably need
to change these parameters: TWORK=, CWORK=, MODEL=, and COBLIB=.
You may have to change other parameters, depending on your requirements.
Verify the entire proc for potential changes.
If you comment out a keyword, you must also comment out all references to it.
The SYSPRDD=&DDname option can be changed to redirect COBOL listings to
a different DDname.
The default COBOL internal printer is set to FJSYSPR. This DD name is
internally allocated and used by Migration Utility. Do not code it in the JCL.
While testing, you can change SVC99=MSGOFF in FZH#PROC to one of these
options:
MSGOFF Disable dynamic allocator tracing.
MSGON Display JES messages.
MSGALL Display input text and JES messages.
MSGSER Display messages of a serious nature only.
MSGTXT Display input text only.
Use these options to trace FZH#PROC and the dynamic allocation problems
that might arise during testing. For production use, SVC99=MSGOFF is
recommended to avoid excessive console messages.

Note: Messages can be controlled by placing this statement in the JCL:
//FJSVC99 DD DSN=&&FJSVC99(&SVC99),DISP=NEW

Where: &SVC99 is one of the previously listed options.
2. Change the FZHPROCS table, located in &SYS1.SFZHASRC.

You must change this program to point to the RMU libraries installed on your
system. Change the PROCLIB0 constant to point to the PDS where FZH#PROC
from step #1 is located. Change the PRODUCT0 constant to the high-level
qualifier of the Migration Utility libraries.
Assemble and link the FZHPROCS program using the FZHASMPJ job located
in the &SYS1.SFZHJCLS library. This program must be linked into the RMU
&SYS1.SFZHLOAD library.

Note: FZHRMU01 loads FZHPROCS to locate the FZH#PROC member and to
acquire a replacement for the &SYS1 symbol located in FZH#PROC. The
information in FZHPROCS must always point to proper libraries. This
means that if you rename or move your RMU libraries, you must also
adjust the information in FZHPROCS accordingly.

Setting up the z/OS server (UNIX) environment
RMU can automatically publish the output documents to the z/OS server (UNIX)
or to a regular z/OS variable-length flat file.

To publish to the z/OS server, the z/OS UNIX environment must be established
and enabled. A root directory on the z/OS UNIX system must be established for
each user. Coordinate access to UNIX environment with your z/OS system
administrator.

RMU determines where to send the output by checking for the existence of the
FJUNIX0 DD name in the JCL. The PATH= parameter on the FJUNIX0 definition
points to the root directory showing where to write the documents.

Installation

14 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

If FJUNIX0 exists, RMU assumes that the HTML documents are being sent to the
z/OS UNIX System. If FJUNIX0 does not exist, RMU creates a flat file on z/OS.

Note: UNIX files are handled by the FZHUNIX1 RMU program. This program is
dynamically loaded at end of job when combining the output. UNIX is
case-sensitive. That is, commands, directory, and file names must by typed
exactly as defined on the UNIX system.

When publishing to the z/OS server, RMU must comply with the code set (ASCII
or EBCDIC) defined for each document type on the UNIX system. The code set is
obtained from the UNIX file, httpd.conf.

httpd.conf is pointed to by the FJCONFG DD name in the JCL. It can be a z/OS
PDS member, or a file in the UNIX directory.

If FJCONFG is not in the JCL, ASCII is assumed for HTML and CSV files, and
binary code for gif files.

These job examples located in &SYS1.SFZHJCLS can be used as templates to build
custom jobs for publishing to z/OS UNIX:

FZHRMUX0
FZHRMUX1
FZHRMUX2

System information
These jobs and JCL are distributed in the &SYS1.SFZHJCLS library:
FZH#READ RMU system information.
FZH#PROC RMU Script compiler proc.
FZHASMOJ JCL to assemble the RMU options table.
FZHASMPJ JCL to assemble the RMU default proc location.
FZHDELCJ Utility to expand the report print control characters.
FZHLINKJ Job to compile and link RMU Script programs.
FZHRMUJ0 Job to run the FZHRMU00 utility (without Script program).
FZHRMUJ1 Job to run the FZHRMU00 utility with compiled script.
FZHRMUJ2 Job to run the FZHRMU00 utility with Script compile and ″link

and go″.
FZHRMUX0 Job to run the FZHRMU00 utility (without Script program).

Distributes to z/OS UNIX.
FZHRMUX1 Job to run the FZHRMU00 utility with compiled script. Distributes

to z/OS UNIX.
FZHRMUX2 Job to run the FZHRMU00 utility with script compile, ″link and

go″. Distributes to z/OS UNIX.
FZHTEST0 RMU Script example. Compile and link only.
FZHTEST1 RMU Script example. Compile, ″link and go″.
FZHTEST2 RMU Script example. Compile, ″link and go″.
FZHTEST3 RMU Script example. Compile, ″link and go″.
FZHTEST4 RMU Script example. Compile, ″link and go″.
FZHRPT00 Demo report file.

These procs are distributed in the &SYS1.SFZHPROC library:
Proc to compile and Link RMU Script.
Proc to compile, ″link and go″, z/OS UNIX output.
Proc to compile, ″link and go″, z/OS file output.
Proc to run compiled script, z/OS UNIX output.
Proc to run compiled script, z/OS file output.

Installation

Chapter 3. Installation and RMU options 15

These members are distributed in the &SYS1.SFZHDOCS library:
FZHBPARS Java program for parsing HTML docs on PC platform.
FZHRMUL0 RMU logo gif file.
FZHMINUS Minus sign symbol.
FZHPAGES Page break symbol.
FZHPLUS0 Plus sign symbol.
FZHRARRW Arrow symbol.
FZHSTOP0 Stop symbol.
FZHEBASE HTML template.
FZHEBCSS Base CSS templates.
FZHEINDX JavaScript tree index.
FZHELOAD JavaScript tree load.
FZHEPCSS Tree CSS templates.

This BAL source is distributed in &SYS1.SFZHASRC:
FZHOPTAB RMU options table.
FZHPROCS RMU default proc locator.

This assembler macro is distributed in &SYS1.SFZHAMAC:
FSMACRMU RMU Assembler macros needed for FZHOPTAB.

These modules are distributed in the &SYS1.SFZHLOAD library:
FZHATTCH RMU internal use. Task attach module.
FZHCPYRT RMU internal use. Copyright information.
FZHCSV00 CSV file I/O module.
FZHCVDAT RMU internal use. Date retrieval module.
FZHDDCPY RMU internal use. Dynamic allocator submodules.
FZHDELCC Utility program to expand report print control characters.
FZHDYNCV RMU internal use. EBCDIC/ASCII code conversion module.
FZHGJOB0 RMU internal use. Get job information.
FZHGOPT0 RMU internal use. Dynamic allocator submodules.
FZHGPRM0 RMU internal use. PARM retrieval from EXEC statement.
FZHGUSER RMU internal use. Registration module.
FZHHTML0 RMU internal use. HTML formatter module.
FZHHTML1 RMU internal use. HTML1 formatter module.
FZHJCL00 RMU internal use. Installation JCL tailoring utility.
FZHJCL01 RMU internal use. Installation JCL tailoring utility.
FZHMVSC0 RMU internal use. Console I/O module.
FZHMVSC1 RMU internal use. Console I/O module.
FZHOPTAB RMU options table. Prepared by the installer.
FZHPROCS RMU default proc locator. Prepared by the installer.
FZHRMUB1 RMU internal use. COBOL skeleton.
FZHRMUSP RMU internal use. I/O module for RMU listing.
FZHRMUS1 RMU internal use. RMU script compiler submodule.
FZHRMUS2 RMU internal use. RMU script compiler submodule.
FZHRMUS3 RMU internal use. RMU script compiler module.
FZHRMUW1 RMU internal use. COBOL and RMU reserved words.
FZHRMU00 RMU main utility for ″link and go″ or run without RMU script.
FZHRMU01 RMU Script compiler one step driver.
FZHSRC00 RMU developers tool.
FZHSTAE0 RMU compiler abend interrupt handler.
FZHSVC99 Dynamic Allocator program (SVC99 handler).
FZHTEST0 RMU compiled script test program.
FZHUNIX0 RMU internal use. Z/OS UNIX interface module.
FZHUNIX1 RMU internal use. Z/OS UNIX interface module.

Installation

16 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Chapter 4. Working with RMU Script

This section describes in detail how to work with the RMU Script language

Basic concepts
RMU Script consists of RMU Script language statements (collectively a script
program) that manipulate the input and formats the output document.

The script program is prepared with the ISPF editor in a PDS, as a regular text file.
The program must be compiled with the RMU Script compiler and linked as a load
module, or linked and executed (run as ″link and go″), depending on the JCL used.

The RMU Script compiler translates script statements to COBOL; therefore a z/OS
COBOL or LE COBOL compiler is required.

An RMU Script program consists of 10 optional sections as shown here. You must
supply at least one section to make it a valid program.

Environment section The PARM statement with its options. If coded,
PARM must be the first statement in the program.

Working Storage section Defines the fields and variables used in the
Activity section.

<style> section Defines the Cascaded Style Sheets (color, fonts, and
so on).

<object> section Defines the images to be inserted in the output
document.

<docs_top> section Defines the images and text to be inserted at the
top of output document.

<docs_end> section Defines the images and text to be inserted at the
bottom of output document.

<page_top> section Defines the images and text to be inserted at the
top of each page in the output document.

<page_end> section Defines the images and text to be inserted at the
bottom of each page in the output document.

Activity section Contains the language statements that filter the
input and construct the output documents.

Control section Defines control breaks for HTML1 format
documents.

I/O handling
Files cannot be defined in RMU Script. I/O is completely concealed from you. One
input report and one output document are assumed.

RMU Script activity statements operate on the page buffer. RMU reads in one
report page at the time. In this way, all lines on a single page can be accessed as a
single resource. Each page contains up to 66 lines. The activity statements are
executed from top to bottom as coded in the program.

© Copyright IBM Corp. 2009 17

The report page begins with Channel 1. That is, a ″1″ in the first position is
Channel 1. If there are more than 66 lines on each page, the remaining lines are
drained to the output document unchanged. The activity logic is not applied to the
remaining lines.

Information on each line is accessed by explicitly coding the line number with
substring notation. For example, LINE1 is line 1, LINE2 is line 2 ... LINE66 is line
66. This example evaluates line 1 starting in position 3 for 5 bytes:
IF LINE1 (3: 5) = 'abcde'

If the line number is not specified, then a subscript named IDX is used to subscript
the lines. IDX is a reserved variable, but it can be assigned to a desired line
number to be accessed.

Note: The input report must be a valid printer file with the print control character
in position 1. RMU expands print control characters to compensate for the
blank lines that would normally be seen on a printed report. Therefore,
when referring to a specific line by number, the line number is as according
to the expanded report.

These are recognized control characters:
1 Channel 1.
(blank) Space 1.
0 Space 2.
- Space 3.
+ Suppress space (for RMU, this is the same as space 1).

When coding a Script program, run the FZHDELCJ utility to expand the report
control characters. This will help to identify the line numbers of interest. The
FZHDELCJ JCL is located in the &SYS1.SFZHJCLS library.

Coding rules
These coding rules apply:
v RMU Script statements can be placed anywhere between columns 1 and 72.

Only one statement is allowed on a line. Statements are followed by respective
arguments.

v The arguments are separated by one or more spaces.
v Lines that begin with an asterisk (*) are treated as comments.
v Comments can be imbedded anywhere in the program.
v Alphanumeric constant values (literal) are enclosed in quotes. For example:

'abcd'

v A hex literal is coded by placing an X before the hex constant. For example:
X'1234'

v A hex literal must contain a combination of valid hex characters: 0–9, A–F.
v Numeric constant values are coded as numbers with a leading plus or minus

sign and, if necessary, a decimal point. Numbers without a sign are treated as
positive numbers. For example, -123.55 is a negative number.

I/O handling

18 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Program example
The program shown in Figure 3 reads in the FZHRPT00 test report located in the
&SYS1.SFZHJCLS library and produces an HTML1-format document with a control
breaks tree on the left side and the report body on the right side of the screen.

The background of the output document simulates 1403 printer paper.

A page break image, fzhpages.gif, is inserted at the top of each page.

When LINE8-LINE55 contains ’DDDD’ in position 24 for 4, the value is made red
(.em1). When LINE8-LINE55 contains ’EBEE’ in position 24 for 4, the value is
made blue (.em2).

Figure 4 on page 20 shows a screen print of the generated HTML1 document:

PARM LIST COBOL LKED FORMAT HTML1 TURF 1403-paper |Environment
|Section

* This program converts a report to RMU HTML1 format. * |Comments
* Some decorating is inserted via styles and objects. *
*** |Working
DEFINE COMPANY W 2 A |Storage
DEFINE BRANCH W 5 A |Section
DEFINE OFFICER W 4 A
<style> |

.em1 {color: red;} |Style

.em2 {color: blue;} |Section
</style> |
<page_top> |page_top
<IMAGE SRC="images/fzhpages.gif"> |Section
</page_top> |

|
IF (LINE5 (2: 7) = 'COMPANY') |
AND (LINE5 (13: 6) = 'BRANCH') |
AND (LINE8 (4: 2) IS NUMERIC) |Activity

COMPANY = LINE8 (4: 2) |
BRANCH = LINE8 (14: 3) |
OFFICER = LINE8 (24: 4) |
EVALUATE LINE8-LINE55 (24: 4) |Section

WHEN 'DDDD' |
LINE (24: 4) = .em1 |

WHEN 'EBEE' |
LINE (24: 4) = .em2 |

END-EVALUATE |
END-IF |
CONTROL COMPANY BRANCH OFFICER |Control

|Section

Figure 3. Example of RMU script program to produce an HTML1 format document

Program example

Chapter 4. Working with RMU Script 19

Figure 4. Screen print of the generated HTML1 document

Program example

20 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Creating CSV documents
When creating a CSV document, extraneous information such as page titles, field
headings, and control break annotations must be removed from the input.

Additionally, you may want to remove float characters from the numeric fields and
re-arrange the sign such that the spreadsheet program can intelligently format
numeric cells.

Finally, you need to insert a special character between each field to delineate
columns for import.

RMU provides methods and statements specifically designed to make these tasks
simple.
v To create a CSV file, code FORMAT CSV='&chr' on the PARM statement where:

&chr is the separator character to be placed between the fields.
v Use these RMU methods in the assign statement to format column values:

.ETEXT For alphanumeric fields.

.ENUM1 For numeric and numeric edited fields.
v Use PAGE-COUNT and LINE-COUNT to determine the page properties.
v Use the BYPASS statement to remove a specific line or a range of lines.
v Use the IDX subscript to control a DO loop for a specific number of lines.

The line is selected for output if at least one method is applied, otherwise the line
is bypassed.

Note: CSS (color, fonts, and so on) and images cannot be applied to a CSV file.

The RMU Script program shown in Figure 5 on page 22 creates a CSV file from the
FZHRPT00 report located in &SYS1.SFZHJCLS. The source code is FZHTEST4
located in the &SYS1.SFZHJCLS library.

Creating CSV documents

Chapter 4. Working with RMU Script 21

Figure 6 on page 23 shows the first few records created by the program in Figure 5:

PARM LIST COBOL LKED FORMAT CSV=':' DECIMAL (PERIOD) CURRENCY($)

* This program converts test report to RMU CSV file format. *
* *
* The program demonstrates how to trim un-needed report lines and *
* strings from a report. The output is a CSV file ready for import *
* into a Spreadsheet. *
* *
* The trimming is done via the .ETEXT and .ENUM1 RMU methods *

IF (PAGE-COUNT > 1)
* REPORT TITLES ARE BYPASSED ON ALL BUT FIRST PAGE.

BYPASS LINE1-LINE7
ELSE
* PRESERVE THE FIRST PAGE TITLE LINES FOR spreadsheet

LINE1 (2: 80) = .ETEXT
IDX = 1
DO 6 TIMES

IDX = (IDX + 1)
LINE (02: 07) = .ETEXT
LINE (13: 06) = .ETEXT
LINE (23: 07) = .ETEXT
LINE (34: 14) = .ETEXT
LINE (52: 06) = .ETEXT
LINE (62: 10) = .ETEXT

END-DO
END-IF
IDX = 7

* Line 8 to LINE-COUNT are detail lines on every page
DO WHILE (IDX < LINE-COUNT)

IDX = (IDX + 1)
* get rid of Control break and FINAL lines

IF (LINE (2: 5) = 'FINAL')
OR (LINE (2: 6) = 'FILEIN')
OR (LINE (24: 4) = SPACES)

BYPASS LINE
ELSE

* construct a row of character separated values
LINE (02: 07) = .ETEXT
LINE (13: 06) = .ETEXT
LINE (23: 07) = .ETEXT
LINE (34: 14) = .ENUM1
LINE (52: 06) = .ENUM1
LINE (62: 10) = .ENUM1

END-IF
END-DO

Figure 5. Example of RMU script program to create a CSV file

Creating CSV documents

22 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

4/08/08 COMPANY= 10 THIS IS A TEST REPORT-1 PAGE 1
: : : : : :
: : : : : :
: : : : : :

COMPANY : BRANCH : OFFICER : : : :
C : NUMBER : NUMBER : WAGE : RATE : BONUS :

: : : : : :
10 : 001 : DDDD : 57500.00 : 10.900 : 6267 :

: : EBEE : 60000.00 : 11.000 : 6600 :
: : EBEE : 60000.00 : 11.000 : 6600 :
: : EBEE : 60000.00 : 11.000 : 6600 :
: : EBEE : 60000.00 : 11.000 : 6600 :
: : EBEE : 60000.00 : 11.000 : 6600 :

Figure 6. Records created by the example program shown

Creating CSV documents

Chapter 4. Working with RMU Script 23

Creating simple HTML documents
A simple-HTML format document can be created without the use of RMU Script.
To do this, use the FZHRMUJ0 JCL located in the &SYS1.SFZHJCLS library.

You can create a simple HTML document with special decorating if needed, such
as special colors, fonts and images, as outlined in this section:
v Code FORMAT HTML on the PARM statement.
v Optionally, code <style>, <object>, <docs_top>, < docs_end>, <page_top> and

<page_end> sections to define decorating. Use <style> and <object> methods to
decorate text. You do so by assigning method names to line text in the Activity
section.

Note: Images are not automatically included in the output document; therefore,
if images are used, they must be available on the server where you place
the document.

v Use PAGE-COUNT and LINE-COUNT to determine the page properties.
v Use the BYPASS statement to remove a specific line or a range of lines.
v Use the IDX subscript to control a DO loop for a specific number of lines.
v Use the EVALUATE statement to loop through a range of lines when a specific

location on multiple lines is to be decorated with different methods.

The RMU Script program shown in Figure 7 creates a simple HTML document
from the FZHRPT00 report located in the &SYS1.SFZHJCLS library. The source
code is in FZHTEST1 located in the &SYS1.SFZHJCLS library.

Figure 8 on page 25 shows a screen print of the generated HTML document:

PARM LIST COBOL LKED FORMAT HTML turf 1403-paper

* This program converts test report to RMU HTML format. *
* Some decorating is inserted via style and object methods. *

<style>
.em1 {color: red; font-weight: normal;}
.em2 {color: blue;}
.em3 {color: orange;}

</style>
<page_top>
<IMAGE SRC="images/fzhpages.gif">
</page_top>
IDX = 1
IF (LINE5 (2: 7) = 'COMPANY')
AND (LINE5 (13: 6) = 'BRANCH')
AND (LINE8 (4: 2) IS NUMERIC)

EVALUATE LINE8-LINE55 (24: 4)
WHEN 'ZZZZ'

LINE (1: 80) = .EM1
WHEN 'EBEE'

LINE (24: 4) = .EM2
WHEN OTHER

LINE (24: 4) = .EM3
END-EVALUATE

END-IF

Figure 7. Example of RMU script program to create a simple HTML document

Creating simple HTML documents

24 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Figure 8. Screen print of the generated HTML1 document

Creating simple HTML documents

Chapter 4. Working with RMU Script 25

Creating HTML1 documents with the control breaks selection tree
To create an HTML1-format document with special decorating such as special
colors, fonts and images, create an RMU Script as outlined in this section:
v Code FORMAT HTML1 on the PARM statement.
v Use the DEFINE statement to define working storage fields for control breaks

and other needs.
v Optionally, code <style>, <object>, <docs_top>, <docs_end>, <page_top> and

<page_end> sections to define decorating. Use <style> and <object> methods to
decorate text. To do this, you assign method names to line text in the Activity
section.

Note: Images are automatically included in the output document if located in
the FJIDOC0 library.

v Optionally use PAGE-COUNT and LINE-COUNT to determine the page
properties.

v Optionally use the BYPASS statement to remove a specific line or a range of
lines.

v Optionally use the IDX subscript to control a DO loop for a specific number of
lines.

v Optionally use the EVALUATE statement to loop through a range of lines when
a specific location on multiple lines is to be decorated with different methods.

v Use the CONTROL statement to declare control break fields. Note that this is a
required statement.

Control break fields must be carefully populated from the supplied information in
each page. You will probably have to test lines for certain values, such as field
titles to make sure that the correct values are used. See Figure 9 on page 27.

The program shown in Figure 9 on page 27 reads in the FZHRPT00 test report
located in the &SYS1.SFZHJCLS library and produces an HTML1 format document
with a control breaks tree on the left side and the report body on the right side of
the screen. The source code is in FZHTEST2 located in the &SYS1.SFZHJCLS
library.

The background of the output document simulates 1403 printer paper. A page
break image, fzhpages.gif, is inserted at the top of each page.

When LINE8-LINE55 contains ’DDDD’ in position 24 for 4, the value is made red
(.em1). When LINE8-LINE55 contains ’EBEE’ in position 24 for 4, the value is
made blue (.em2).

Creating HTML1 documents with the control breaks selection tree

26 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Figure 10 on page 28 shows a screen print of the generated HTML1 document:

PARM LIST COBOL LKED FORMAT HTML1 TURF 1403-paper

* This program converts a report to RMU HTML1 format. *
* Some decorating is inserted via styles and objects. *

DEFINE COMPANY W 2 A
DEFINE BRANCH W 5 A
DEFINE OFFICER W 4 A
<style>

.em1 {color: red;}

.em2 {color: blue;}
</style>
<page_top>
<IMAGE SRC="images/fzhpages.gif">
</page_top>
IF (LINE5 (2: 7) = 'COMPANY')
AND (LINE5 (13: 6) = 'BRANCH')
AND (LINE8 (4: 2) IS NUMERIC)

COMPANY = LINE8 (4: 2)
BRANCH = LINE8 (14: 3)
OFFICER = LINE8 (24: 4)
EVALUATE LINE8-LINE55 (24: 4)

WHEN 'DDDD'
LINE (24: 4) = .em1

WHEN 'EBEE'
LINE (24: 4) = .em2

END-EVALUATE
END-IF
CONTROL COMPANY BRANCH OFFICER

Figure 9. Example of RMU script program to produce an HTML1 format document

Creating HTML1 documents with the control breaks selection tree

Chapter 4. Working with RMU Script 27

Figure 10. Screen print of the generated HTML1 document

Creating HTML1 documents with the control breaks selection tree

28 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Decorating an HTML document
The output document can be decorated in three ways:
v Images and special text can be created at the top of the document, the bottom

of the document, the top of each page, and the bottom of each page.

File types recognized as images by RMU files are: JPG, TIF, PSD, PDD, BMP,
PNG, and GIF.
To do this, you code valid HTML between these tags:

<docs_top> </docs_top>
This optional section defines the images and text to be inserted at the
top of the document.

<docs_end> </docs_end>
This optional section defines the images and text to be inserted at the
bottom of the document.

<page_top> </page_top>
This optional section defines the images and text to be inserted at the
top of each page.

<page_end> </page_end>
This optional section defines the images and text to be inserted at the
bottom of each page.

RMU uses <pre> and </pre> HTML tags to preserve the original document
format, including spacing and blank lines. These tags tell HTML to leave the text
pre-set as it is. Therefore when coding text, you can type the text without the
special tags, or you can put the text between the </pre> and <pre> tags to
resume standard default HTML formatting.
This example shows both lines at the top of the document:
<docs_top>

RMU generated document
as of 11/15/2008

</docs_top>

This example shows text as a single line at the top of the document:
<docs_top>

</pre>
RMU generated document
as of 11/15/2008
<pre>

</docs_top>

Images included in the HTML text placed between the tags are automatically
resolved by RMU if they exist in the FJIDOC0 library.
For example, the code shown here causes the xyzimag1 and gif file to be
included in the document from the FJIDOC0 file because of
SRC=″images/xyzimag1.gif″:
<docs_top>

<IMAGE SRC="images/xyzimag1.gif">
RMU generated document as of 11/15/2008

</docs_top>

RMU does not validate any information included between the tags. Errors are
discovered when you browse the document.
These images are available in the &SYS1.SFZHDOCS library:
FZHMINUS Minus sign.
FZHPAGES Page break line.
FZHPLUS0 Plus sign.
FZHRARRW Arrow.

Decorating an HTML document

Chapter 4. Working with RMU Script 29

FZHRMUL0 RMU logo.
FZHSTOP0 Stop sign.

v Special fonts and colors can be applied to line text conditionally.

The best way of doing this is to declare styles (CSS) in the <style> section and
then assign the styles to the text in question on each line.
You can choose to highlight special text. For example, title lines can be made a
different color, negative amounts can be turned red, and so on.
Changing the font size is not recommended as it may cause text alignment
problems.

Note: When declaring a style in the <style> section, the style parameters are not
validated. Errors are discovered when you browse the document.

In this example, the DDDD value on line 8 through line 55 starting in position
24 is made red and EBEE is made blue:
<style>

.em1 {color: red;}

.em2 {color: blue;}
</style>
EVALUATE LINE8-LINE55 (24: 4)

WHEN 'DDDD'
LINE (24: 4) = .em1

WHEN 'EBEE'
LINE (24: 4) = .em2

END-EVALUATE

Likewise, the IF statement can be used to do the same.
v Simulated 1403 printer paper background turf is the default.

The turf can be turned off by specifying TURF NO on the PARM statement at the
top of the script program. The default background color will be as defined for
the body in the FZHEBCSS member located in the &SYS1.SFZHDOCS library.
You can override the default by adding your own body CSS in the <style>
section.
Example:
PARM TURF NO
<style>

body {color: black; Background-color: white; font-size: &size%;}
</style>

Debugging RMU Script programs
RMU generates COBOL programs that are compiled with standard IBM® COBOL,
therefore any runtime problems that you experience are as for any other non-RMU
COBOL programs.

Compile RMU Script with the PROCESS LIST,MAP COBOL options. A PROCESS
statement can be placed before the PARM statement. Note that multiple PROCESS
statements can be coded.

The RMU-generated COBOL contains statement sequence numbers in columns 1 to
6.

There are 3 types of sequence numbers:
#nnnnn Statement is generated according to the nnnnn RMU script

statement number.
#BASE Statement is generated from the COBOL skeleton.

Decorating an HTML document

30 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

#EOF Statement is generated after the last RMU Script statement is
processed.

COBOL runtime problems fall into one of these categories:
v File I/O errors

File problems such as wrong LRECL, or no DD in the JCL. RMU intercepts I/O
errors and issues an appropriate message. Look at the console and SYSOUT
messages for more information.

v Environmental errors and ABENDs

Errors associated with such things as JCL issues, RACF®/security problems, and
memory problems. Such problems are intercepted and logged by the operating
system. In most instances, the job is canceled by the operating system with an
appropriate message. Look at the console and SYSOUT messages for more
information.

v Program check interrupts

Processing problems such as an addressing exception, data exception, or
specification exception.

To locate the RMU Script program statement in error:
1. If you have a COBOL debugger, use the debugger report to find the COBOL

statement in error.
2. If you do not have a debugger:
v In the Log or Dump file, find the hex offset of the PSW in your program as

displayed by the Operating System.
v Perform a find on the offset address in your COBOL compiler listing

(expanded Assembler listing).
v The COBOL source statement or line number can be found in the area before

the offset.
v Look at the COBOL listing identified by the line number in error.

3. The RMU Script statement number is in columns 1-6.
v If #nnnnn is shown, this is the RMU Script statement in error.
v If ’#EOF’ or ’#BASE’ is shown, look backward at statement numbers until

you find a #nnnnn or a paragraph name (whichever you find first).
v For a paragraph name, trace back to the perform statement to locate the

routine that invoked it, then repeat the previous step.
4. Determine the cause of the program check interrupt from the located statement.

If a protection exception occurred, check for bad subscripts. If a data exception
occurred, check for non-numeric data in arithmetic operations.

Debugging RMU Script programs

Chapter 4. Working with RMU Script 31

Debugging RMU Script programs

32 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Chapter 5. RMU Script language instruction reference

This section lists program instructions, syntax, further explanation, and examples,
for each instruction supported by RMU.

PARM statement
The PARM statement defines the RMU Script language compiler options. These
options override the defaults in the FZHOPTAB options table.

Syntax

Syntax

�� PARM
LINK &name FORMAT &format TURF 1403-paper

NO

�

�
LIST
NOLIST

COBOL
NOCOBOL

NOLKED
LKED

DECIMAL &decimal
�

�
$

CURRENCY ¤cy

��

Note: Options are coded on the same line following the PARM keyword. If all
options do not fit on a single line, multiple PARM lines can be coded as
needed.

Parameters
&name Program name 1 to 8 characters long. The name must be a valid

COBOL program name. The default is NONAME.

&format Type of output. Valid values are:
HTML0 Output is simple HTML format.
HTML1 Output is HTML format with a directory of control

break fields on the left.
CSV=’&char’ Output is a CSV file, where &char is the value

separator character for CSV files.

1403-paper Simulate green-striped 1403 printer paper background.

NO Use gray background color.

&decimal Decimal point character. Valid values are:
PERIOD Use ’.’ for decimal point.
COMMA Use ’,’ for decimal point.

¤cy Character to be used as currency symbol.

© Copyright IBM Corp. 2009 33

Examples
PARM LIST COBOL LKED FORMAT HTML1 TURF 1403-paper
PARM LINK FZHTEST0 LIST COBOL LKED FORMAT HTML1 TURF 1403-paper

DEFINE statement
The DEFINE statement defines the RMU Script program variables and field names
to be used within the program.

Syntax

Syntax

�� DEFINE &field W &length &type
VALUE &value

��

Parameters
&field Variable name 1 to 16 characters long. The name must begin with

an alpha character. The name can be composed of letters, numbers,
and a minus sign (’-’).

Example of valid names:
WS-BALANCE
WS-AMOUNT

&length Field length in bytes. Maximum length for N fields is 18.
Maximum length for P fields is 9. Maximum length for alpha fields
is 32767.

&type Field type. Valid values are:
N Unsigned numeric display integer.
A Alphanumeric.
B Signed binary integer, 2- or 4-byte binary integer.
P Signed packed decimal number.

&value Initial value. An alpha value must be enclosed in quotes. a numeric
value must not exceed the field length.

These reserved values can be coded:
SPACES or SPACE

ZEROS or ZEROES or ZERO

LOW-VALUES or LOW-VALUE

HIGH-VALUES or HIGH-VALUE

Programming notes
RMU does not support decimal places at this time.

Examples of field definitions
DEFINE WX-WORK W 10 A
DEFINE WX-NUM W 5 N
DEFINE WX-PACK W 5 P
DEFINE WX-BIN2 W 2 B
DEFINE WX-BIN4 W 4 B

PARM statement

34 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

DEFINE WS-WORK W 10 A VALUE 'ABCDEF'
DEFINE WS-NUM W 5 N VALUE 12345
DEFINE WS-PACK W 5 P VALUE +123456789
DEFINE WS-BIN2 W 2 B VALUE 1234
DEFINE WS-BIN4 W 4 B VALUE 123456789

<object> and </object> tag
The <object> tag declares the beginning of object and image definitions to be
inserted in the output document. The object section begins with the <object> tag
and terminates with the </object> tag. One or more images can be declared
between the tags.
<object>

.im&mod {<IMAGE SRC="images/&image.gif">}

...
</object>

Parameters
&mod Image name modifier. The name is composed of .im&mod. For

example, when &mod is ″g1″, the name is .img1. This name is
referenced in the assign statement within the RMU Script program.

&image The image file name as found in the FJIDOC0 library. For example,
fzhpages and fzhplus0 are gif files located in the
&SYS1.SFZHDOCS default FJIDOC0 library. To declare these two
gif files for use in an RMU Script program, use the code:
<object>

.img1 {<IMAGE SRC="images/fzhpages.gif">}

.img2 {<IMAGE SRC="images/fzhplus0.gif">}
</object>

Programming notes
When the output is directed to z/OS UNIX, images are copied from the
&SYS1.SFZHDOCS file in binary format to the r001\images directory.

When the output is directed to the z/OS flat file for download to a PC or a server,
images are included in the download document and parsed on the target PC or
server with the FZHBPARS Java utility.

Images are assigned to a specific location in the document. Unresolved images are
ignored.

Example:
LINE1 (10: 0) = .img1

Inserts img1 before position 10 on line 1.

<style> and </style> tag
The <style> tag declares the beginning of Cascaded Style Sheets (CSS) to be
applied to the output text. The style section begins with the <style> tag and
terminates with the </style> tag. One or more styles can be declared between the
tags.

There are three distinct styles that can be declared:

DEFINE statement

Chapter 5. RMU Script language instruction reference 35

v Style for document body.
v Colors for .turf1 and .turf2 alternated to simulate 1403 green-striped printer

paper.
v Styles for highlighting and decorating text (element styles).
<style>

body {color: &color; Background-color: &color; font-size: &size%;}
.turf1 {Background-color: &color}
.turf2 {Background-color: &color}
.em&n {color: &color;}

...
</style>

Parameters
&color A valid HTML color.

&size Font size as an absolute size or percentage.

&n Element name modifier.

Programming notes
All styles are optional.

Body and Element styles can include any combination of values acceptable to
HTML. The content enclosed in { } is not validated by MU, therefore special care
must be taken to make sure that the specified options are correct. Once defined,
the body style is automatically applied to the document body.

.turf1 and .turf2 are special element styles for simulating 1403 printer paper. Color
is the only acceptable option. These options are used automatically when the
1403-paper option is in effect. .turf1 and .turf2 colors are alternated to simulate
1403 printer paper.

.em&n styles are for decorating report text. Once defined, .em&n styles can be
assigned to specific fields in the document. For example, negative amounts can be
turned red and so on. One or more element styles can be defined.

Examples
<style>

body {color: green; Background-color: light-gray; font-size: 100%;}
.turf1 {Background-color: ccfff1}
.turf2 {Background-color: 99fff1}
.em1 {color: red;}
.em2 {color: blue;}

</style>

<docs_top> and </docs_top> tag
The <docs_top> tag declares the beginning of the text and the images to be
inserted at the top of the output document. The docs_top section begins with the
<docs_top> tag and terminates with the </docs_top> tag.

You must code valid HTML strings between the tags. The content between the tags
is placed at the top of the document without validation. Errors are not discovered
until the document is browsed.

<style> and </style> tag

36 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

<docs_top>

...
</docs_top>

Parameters
None.

Programming notes
Images included in the HTML text placed between the tags are automatically
resolved by RMU if they exist in FJIDOC0 library.

For example, the code shown here causes the xyzimag1 and xyzimag2 gif files to
be included in the document from the FJIDOC0 file:
<docs_top>

<IMAGE SRC="images/xyzimag1.gif">
<IMAGE SRC="images/xyzimag2.gif">

</docs_top>

<docs_end> and </docs_end> tag
The <docs_end> tag declares the beginning of the text and images to be inserted at
the bottom of the output document. The docs_end section begins with the
<docs_end> tag and terminates with the </docs_end> tag.

You must code valid HTML strings between the tags. The content between the tags
is placed at the bottom of the document without validation. Errors are not
discovered until the document is browsed.
<docs_end>

...
</docs_end>

Parameters
None.

Programming notes
Images included in the HTML text placed between the tags are automatically
resolved by RMU if they exist in FJIDOC0 library.

For example, the code shown here causes the xyzimag1 and xyzimag2 gif files to
be included in the document from the FJIDOC0 file:
<docs_end>

<IMAGE SRC="images/xyzimag1.gif">
<IMAGE SRC="images/xyzimag2.gif">

</docs_end>

<page_top> and </page_top> tag
The <page_top> tag declares the beginning of the text and images to be inserted at
the top of each page in the output document. The page_top section begins with the
< page_top> tag and terminates with the </page_top> tag.

You must code valid HTML strings between the tags. The content between the tags
is placed at the top of each page in the document without validation. Errors are
not discovered until the document is browsed.

<docs_top> and </docs_top> tag

Chapter 5. RMU Script language instruction reference 37

<page_top>

...
</page_top>

Parameters
None.

Programming notes
Images included in the HTML text placed between the tags are automatically
resolved by RMU if they exist in FJIDOC0 library.

For example, the code shown here causes the xyzimag1 and xyzimag2 gif files to
be included in the document from the FJIDOC0 file:
<page_top>

<IMAGE SRC="images/xyzimag1.gif">
<IMAGE SRC="images/xyzimag2.gif">

</page_top>

<page_end> and </page_end> tag
The <page_end> tag declares the beginning of the text and images to be inserted at
the bottom of each page in the output document. The page_end section begins
with the <page_end> tag and terminates with the </page_end> tag.

You must code valid HTML strings between the tags. The content between the tags
is placed at the bottom of each page in the document without validation. Errors
are not discovered until the document is browsed.
<page_end>

...
</page_end>

Parameters
None.

Programming notes
Images included in the HTML text placed between the tags are automatically
resolved by RMU if they exist in FJIDOC0 library.

For example, the code shown here causes the xyzimag1 and xyzimag2 gif files to
be included in the document from the FJIDOC0 file:
<page_end>

<IMAGE SRC="images/xyzimag1.gif">
<IMAGE SRC="images/xyzimag2.gif">

</page_end>

Assignment statement
The assignment statement assigns a value to a field. The value can be another
field, a literal, a style, a method, an image, or an arithmetic expression.

There are four types of assignment statements:

Normal assignment
Assigns field values and arithmetic outcomes to a field.

<page_top> and </page_top> tag

38 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Style assignment to a line or a part of a line
Assigns fonts and colors (CSS) for decorating line text. The style to be
inserted must be defined in the <style> section.

Method assignment to line text (columns) when creating CSV files
De-edits numeric values and prepares line text for spreadsheet use.

Object assignment to a line or line text
Inserts objects (images) in a specific position on the report line. The objects
to be inserted must be defined in the <object> section.

Format 1 Assignment

Syntax

�� &recfield
(&start:&length)

= �

� &sendfield
(&start:&length)

&sendlit
(&start:&length)

(&formula)

��

Parameters:

&recfield Specifies the field name to which the value will be
assigned.

&start Starting position.

&length Length to be moved.

equal sign (=) Indicates assignment.

&sendfield Sending field (field to be copied).

&sendlit Sending value can be a literal. An alphanumeric
literal must be enclosed in quotes.

&formula Arithmetic expression. It can contain arithmetic
operators (+, -, *, /). The outcome of the calculation
is placed in the &recfield.

Examples:
WS-COMPANY = LINE5 (5: 4)
WS-COMPANY = '1234'
WS-COMPANY = '1234567890 (3:4)
WS-INTEGER = (WS-INTEGER + 1)

Format 2 Assignment

Syntax

�� &line
(&start:&length)

= &style ��

Parameters:

Assignment statement

Chapter 5. RMU Script language instruction reference 39

&line Specifies the line to which the value will be
assigned.

&start Starting position.

&length Text length &style applies to.

equal sign (=) Indicates assignment.

&style A style name as declared in the <style> section.

Example:
LINE10 (15:6) = .em1

Format 3 Assignment

Syntax

�� &line
(&start:&length)

= .ETEXT
.ENUM1

��

Parameters:

&line Specifies the line to which the value will be
assigned.

equal sign (=) Indicates assignment.

&start Starting position.

&length Text length &style applies to.

.ETEXT Create plain text field.

.ENUM1 De-edit numeric field.

Examples:
LINE10 (15:6) = .ETEXT
LINE10 (15:6) = .ENUM1

Format 4 Assignment

Syntax

�� &line
(&start:0)

= &image ��

Parameters:

&line Specifies the line to which the value will be
assigned.

equal sign (=) Indicates assignment.

&start Starting position. It can be:
v An absolute number.
v A numeric field.
v The word ″BEFORE″ for placing the image

before the line.

Assignment statement

40 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

&image An image name as declared in the <object> section.

Programming notes:

v An image can be inserted before a line or on a line before text.
Use the (BEFORE: 0) substring notation to place the image
before a line.

v Images placed on a line before text push the line text to the right
and may cause column alignment problems.

Examples:

This example places .imag1 on line 10 before position 15:
LINE10 (15: 0) = .imag1

This example places .imag1 before line 5:
LINE5 (BEFORE: 0) = .imag1

BYPASS statement
The BYPASS statement tags specific lines or a range of lines for deletion. That is,
the bypassed lines are excluded from the output document.

Syntax

�� BYPASS LINE
&LINEn
&LINEn1 &LINEn2

��

Parameters
LINE The line number contained in the IDX subscript is bypassed.

&LINEn Line number to bypass.

&LINEn1 Low line number of range of lines to bypass.

&LINEn2 High line number of range of lines to bypass.

Examples
This example bypasses line 2:
IDX = 2
BYPASS LINE

This example bypasses line 4:
BYPASS LINE4

This example bypasses line 1 through line 10:
BYPASS LINE1-LINE10

Programming notes
The BYPASS statement is convenient for stripping unneeded report lines from the
output document, especially when creating CSV files. For example, running page
titles and field headings are not needed in a spreadsheet. Report title lines and
heading lines can be conditionally or unconditionally excluded from the output
CSV file.

Assignment statement

Chapter 5. RMU Script language instruction reference 41

The use of BYPASS is not limited to CSV format files. It can also be used to bypass
report lines when creating HTML and HTML1 format documents.

CALL statement
The CALL statement makes a call to a user-written program. The user-written
program can be written in COBOL, BAL, or any other language that honors
standard linkage conventions.

Syntax

Syntax

�� CALL &program USING � &field ��

Parameters
&program The program name. This can be:

v A hard-coded program name enclosed in quotes. In this case, it
is a static call. That is, the program is included from the SYSLIB
at link time.

v A field name that contains the program name. In this case, it is a
dynamic call. The program must exist in the JOBLIB/STEPLIB at
run time.

&field Field name as declared in the Library section.

Programming notes
CALL &program USING &field must be coded on a single line. Additional fields can
be coded on the same line or subsequent lines.

CONTINUE statement
The CONTINUE statement is used in combination with the IF statement. It alters
the processing logic to after the END-IF statement.

Syntax

Syntax

�� CONTINUE ��

Parameters
None.

BYPASS statement

42 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Examples
IF LINE1 (3: 4) = '1234'

CONTINUE
ELSE

processing statements
END-IF

CONTROL statement
The CONTROL statement declares control break fields for an HTML1 format
document. A selection tree is built on the left side of HTML1 format document in
the hierarchy specified on the CONTROL statement.

There are two CONTROL statement formats:

Format 1 Use this format when all fields can be listed on a single line.

Syntax

�� CONTROL � &field ��

Format 2 Use this format when fields cannot be listed on a single line. The
list begins with an open parenthesis and ends with a closed
parenthesis. The list can span over multiple lines.

Syntax

�� CONTROL �(&field) ��

Parameters
&field Field name as declared in the Library section.

Programming notes
Reports normally consist of title lines, field headings, detail lines, and control break
totals. That is, reports follow a hierarchy as enforced in the programs that create
them.

To create a selection tree such that you can navigate directly to a specific page
where a new control starts, you must first define fields and variables to hold
control break information.

Then, in the Activity section, the fields are populated by control field values from
specific positions in the page lines. When populating fields, care must be taken to
use the correct position and length where a control break value is printed. This is
usually achieved by testing for a specific literal or data type in specific locations on
one or more lines of each page.

CONTINUE statement

Chapter 5. RMU Script language instruction reference 43

Finally, control breaks are declared by the CONTROL statement. The first listed
field is the highest break, followed by the subsequent fields as secondary breaks.

Examples
DEFINE COMPANY W 2 A
DEFINE BRANCH W 5 A
DEFINE OFFICER W 4 A
IF (LINE5 (2: 7) = 'COMPANY')
AND (LINE5 (13: 6) = 'BRANCH')
AND (LINE8 (4: 2) IS NUMERIC)

COMPANY = LINE8 (4: 2)
BRANCH = LINE8 (14: 3)
OFFICER = LINE8 (24: 4)

END-IF
CONTROL COMPANY BRANCH OFFICER

DISPLAY statement
The DISPLAY statement prints fields, lines, or a literal to SYSOUT.

Syntax

Syntax

�� DISPLAY &field
(&start:&length)

��

Parameters
&field Field name, literal, or line.

&start Starting position.

&length Text length.

Examples
DISPLAY 'COMPANY: ' COMPANY 'BRANCH: ' LINE1 (5: 4)

Programming notes
DISPLAY fields can be listed on multiple lines as needed. All packed decimal and
binary fields are converted to numeric display format. The sign is not removed.

DO and END-DO statements
The DO and END-DO statements define the scope of repetitive program logic.

CONTROL statement

44 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Syntax

Syntax

�� DO WHILE &condition activity-statements
UNTIL

&count TIMES

END-DO ��

Parameters
WHILE Evaluates the condition expression, &condition, at the top of a

group of statements.

UNTIL Evaluates the condition expression, &condition, at the bottom of a
group of statements.

&condition Specifies the condition expression for the continuous execution of
the loop. See “IF, ELSE, and END-IF statements” on page 47 for the
conditional expression syntax.

&count The loop counter or limit. The maximum value is 2147483647.
&count must be a numeric field or a positive number.

END-DO Terminates the DO statement.

Programming notes
For DO WHILE, the truth value of the conditional expression, &condition,
determines whether statements bound by the DO and END-DO pair are to be
executed. When the conditional expression is true, the statements are executed.
When the conditional expression is false, the processing continues with the next
statement following the END-DO.

For DO UNTIL, the statements bound by the DO and END-DO pair are executed.
The truth value of the conditional expression, &condition (evaluated at the end of
the statements), determines whether statements bound by the DO and END-DO
pair are to be executed again. When the conditional expression is true, the
statements are executed again. When the conditional expression is false, the
processing continues with the next statement following the END-DO.

For DO &count TIMES, the statements bound by the DO and END-DO pair are
executed &count times unconditionally.

Examples
DEFINE WS-COUNT W B 2 VALUE ZERO
DO UNTIL (WS-COUNT = 6)

WS-COUNT= (WS-COUNT + 1)
DISPLAY 'LOOP COUNT OF 6'

END-DO
DO 6 TIMES

DISPLAY 'LOOP COUNT OF 6'
END-DO

EVALUATE and END-EVALUATE statements
The EVALUATE statement provides an elegant way of testing for values.

DO and END-DO statements

Chapter 5. RMU Script language instruction reference 45

Syntax

Syntax

�� EVALUATE &field
linex liney (&start:&length)

�

� � WHEN &condition activity statements �

� WHEN OTHER activity statements END-EVALUATE ��

Parameters
&field The field name to be evaluated.

linex-liney Range of lines to evaluate, where linex is the low line number and
liney is the high line number. linex must be greater than zero and
less or equal to liney. liney must be greater than zero and less or
equal to LINE-COUNT.

&start Starting position.

&length Text length.

&condition Value to be tested for. It must be a literal or a field with the same
data type as &field.

OTHER Must be the last statement after a series of tests. The statements
following OTHER are executed only when all previous tests fail.

END-EVALUATE
Terminates the EVALUATE statement.

Programming notes
When a line range is specified, the reserved field IDX is initialized to linex and
EVALUATE statements are processed in a loop incrementing IDX by 1 until all
lines in the specified range are tested. Up to 8 nested EVALUATE statements are
permitted.

Examples
EVALUATE LINE8-LINE55 (24: 4)

WHEN 'DDDD'
LINE (24: 4) = .EM1

WHEN 'EBEE'
LINE (24: 4) = .EM2

WHEN OTHER
LINE (24: 4) = .EM3

END-EVALUATE

EVALUATE and END-EVALUATE statements

46 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

IF, ELSE, and END-IF statements
The IF statement conditionally controls execution of the statements bound by the
IF and END-IF statements.

Syntax

Syntax

�� IF (&expression) statements_1
ELSE statements_2

END-IF ��

Parameters
&expression Conditional expression. It can contain AND, OR, and arithmetic

terms.

statements_1 The statements executed if &expression is evaluated to be true.

statements_2 The statements executed if &expression is evaluated to be false. If
ELSE is not specified, then no statements are executed.

END-IF Terminates the logic associated with the previous IF statement.

Programming notes
&expression must be enclosed in parentheses. Multiple expressions can be coded,
each starting on a separate line and connected with an AND or an OR logical
operator.

Examples
IF (LINE5 (2: 7) = 'COMPANY')
AND (LINE5 (13: 6) = 'BRANCH')
AND (LINE8 (4: 2) IS NUMERIC)

COMPANY = LINE8 (4: 2)
BRANCH = LINE8 (14: 3)
EVALUATE LINE8-LINE55 (24: 4)

WHEN 'DDDD'
LINE (24: 4) = .em1

WHEN 'EBEE'
LINE (24: 4) = .em2

END-EVALUATE
END-IF

PERFORM statement
The PERFORM statement performs the specified procedure.

Syntax

Syntax

�� PERFORM &procname ��

IF, ELSE, and END-IF statements

Chapter 5. RMU Script language instruction reference 47

Parameters
&procname Procedure name 1 to 30 characters long. The name can consist of

letters, numbers and hyphens. The procedure must be declared at
the bottom of the program.

Programming notes
For additional information, see “PROC/END-PROC statement.”

PROC/END-PROC statement
The PROC and END-PROC statements are used to declare the beginning and the
end of a procedure in the Activity section.

Syntax

Syntax

�� &procname. PROC activity statements END-PROC ��

Parameters
&procname Procedure name 1 to 30 characters long. The name can consist of

letters, numbers and hyphens. The first character and the last
character must be a letter or a number.

Programming notes
Procedures are declared at the bottom of the script program. One or more
procedures can be coded.

Procedures are invoked by means of the PERFORM statement as needed.

Procedures should be used for repetitive logic to make the script program
manageable.

RMU does not support the GOTO statement. Therefore procedures must be written
in a straight top-to-bottom design.

Examples
PERFORM A0001-DECORATE

A0001-DECORATE. PROC
IF (LINE5 (2: 7) = 'COMPANY')
AND (LINE5 (13: 6) = 'BRANCH')
AND (LINE8 (4: 2) IS NUMERIC)

EVALUATE LINE8-LINE55 (24: 4)
WHEN 'DDDD'

LINE (24: 4) = .em1
WHEN 'EBEE'

LINE (24: 4) = .em2
END-EVALUATE

END-IF
END-PROC

PERFORM statement

48 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

PROCESS statement
The PROCESS statement controls COBOL compiler options.

Syntax

Syntax

�� PROCESS � &option ��

Parameters
&option COBOL compiler PROCESS (CBL) option.

Programming notes
PROCESS statements are placed before the PARM statement at the top of the
program. Options are separated by a comma (,). Options can be coded up to
position 64, but multiple PROCESS statements can be coded as needed.

Options are not validated by RMU. Incorrect options will cause the COBOL
compiler to fail.

Refer to the IBM COBOL Reference manual for valid options.

Examples
PROCESS LIST,OPTIMIZE
PROCESS OUTDD(SYSPRINT)

STOP statement
The STOP statement terminates the job.

Syntax

Syntax

�� STOP
EXECUTE

��

Programming notes
STOP terminates processing with RETURN-CODE set by the RMU Script logic.

STOP EXECUTE terminates processing with RETURN-CODE set to 16, unless
RETURN-CODE was set to a non-zero value before the STOP EXECUTE was
issued.

PROCESS statement

Chapter 5. RMU Script language instruction reference 49

STRING statement
The STRING statement concatenates the contents of fields and literal values into a
target field.

Syntax

Syntax

�� STRING � &field DELIMITED BY SIZE
&literal &char

�

� INTO &target
WITH POINTER &pointer

END-STRING ��

Parameters
&field Field name to string.
&literal Literal to string. Must be enclosed in quotes.
&char A literal enclosed in quotes or a valid field name. The field name,

if coded, must be an alphanumeric or display numeric type. The
value of &field or &literal is strung into &target up to the &char
delimiter. If &char is not found, the entire content is strung.

&target An alphanumeric field name into which the concatenated strings
are placed. The field must be long enough to accommodate all
sending strings.

&pointer A numeric field indicating the starting position in &target. If used,
this field must be initialized to the starting position before the
STRING statement.

At completion, this field contains the number of characters in the
&target field placed by the STRING statement.

Programming notes
Multiple fields or literal values can be specified. &pointer, if used, is used as the
starting position in the &target. For example, placing 5 in the pointer tells STRING
statement to append values starting at position 5.

If the resulting string is longer than &target, the extraneous characters are ignored.

Examples
Assume that the following fields are defined:
DEFINE WSTRING W 50 A
DEFINE WCOUNT W 4 B
DEFINE WVALUE1 W 10 A VALUE 'THIS PAYS '
DEFINE WVALUE2 W 15 A VALUE 'BILLS.'

Assume that LINE8 (4: 3) contains ’10 ’.

Case 1:

STRING statement

50 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

STRING WVALUE1 DELIMITED BY SIZE
'UTILITY ' DELIMITED BY SIZE
LINE8 (4: 3) DELIMITED BY ' '
' BILLS' DELIMITED BY SIZE

INTO WSTRING
END-STRING

At execution, WSTRING contains: ″THIS PAYS UTILITY 10 BILLS″.

Case 2:
WSTRING = 'PAYMENT INFORMATION: '
WCOUNT = 22
STRING WVALUE1 DELIMITED BY SIZE

'UTILITY ' DELIMITED BY SIZE
LINE8 (4: 3) DELIMITED BY ' '
' BILLS' DELIMITED BY SIZE

INTO WSTRING WITH POINTER WCOUNT
END-STRING

At execution, WSTRING contains: ″PAYMENT INFORMATION: THIS PAYS
UTILITY 10 BILLS″

System-defined fields
Fields available to programmers:

IDX A 4-byte binary integer used as a subscript when LINE is coded in
an argument without a substring.

Also, IDX is used as a subscript in the EVALUATE statement when
evaluating a range of lines for a value.

I The same as IDX.

IDX2 A 4-byte binary integer used as a work subscript for the BYPASS
statement when bypassing a range of lines. This field is for RMU
internal use only.

I2 The same as IDX2.

LINE General purpose name for accessing lines within a page. When
coded, the IDX subscript must contain a valid line number within
the page buffer.

LINE-COUNT Contains the number of lines in the current page.

LINE1 thru LINE66
References specific lines within a page.

PAGE-COUNT
A 4-byte binary integer containing the current page being
processed. This field should not be confused with the actual page
number that may be shown on report titles.

RETURN-CODE
A 4-byte binary integer used as the job return code.

SYSDATE or SYSDATE-E
An 8-byte alpha field representing the current date as
YY/MM/DD.

SYSDATE-9 A 6-byte numeric field representing the current date as YYMMDD.

STRING statement

Chapter 5. RMU Script language instruction reference 51

SYSDATE-LONG or SYSDATE-LONG-E
A 10-byte alpha field representing the current date as
CCYY/MM/DD.

SYSDATE-LONG-9
An 8-byte numeric field representing the current date as
CCYYMMDD.

SYSTIME An 8-byte alpha field representing the current time as HH.MM.SS.

SYSTIME-9 A 6-byte numeric field representing the current time as HHMMSS.

COBOL verbs, statements, and reserved fields
These words cannot be used as field names in RMU Script:

ABEND-MESSAGE
ABEND-REQUEST
ACCEPT
ACCESS
ACCUM
ACQUIRE
ADD
ADDRESS
ADVANCING
AFTER
ALL
ALLOWING
ALPHABET
ALPHABETIC-HIGHER
ALPHABETIC-LOWER
ALPHABETIC
ALPHANUMERIC-EDITED
ALPHANUMERIC
ALSO
ALTER
ALTERNATE
AND
ANY
APPLY
ARE
AREA-VALUE
AREA
AREAS
ARITHMETIC
ASCENDING
ASSIGN
AT
AUTHOR
AUTO-SKIP
AUTO
AUTOMATIC
B-AND
B-EXOR
B-LESS

B-NOT
B-OR
BACKGROUND-COLOR
BACKGROUND-COLOUR
BACKWARD
BASIS
BEEP
BEFORE
BEGINNING
BELL
BINARY
BIT
BITS
BLANK
BLINK
BLOCK
BOOLEAN
BOTTOM
BY
CALL
CANCEL
CBL
CD
CF
CH
CHAIN
CHAINING
CHANGED
CHARACTER
CHARACTERS
CH1
CH10
CH11
CH12
CH2
CH3
CH4
CH5
CH6

System-defined fields

52 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

CH7
CH8
CH9
CLASS
CLOCK-UNITS
CLOSE
COBOL
CODE-SET
CODE
COL
COLLATING
COLOR
COLUMN
COM-REG
COMMA
COMMAND-LINE
COMMIT
COMMITMENT
COMMON
COMMUNICATION
COMP-X
COMP-0
COMP-1
COMP-2
COMP-3
COMP-4
COMP-5
COMP-6
COMP-7
COMP-8
COMP-9
COMP
COMPUTATIONAL-X
COMPUTATIONAL-0
COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3
COMPUTATIONAL-4
COMPUTATIONAL-5
COMPUTATIONAL-6
COMPUTATIONAL-7
COMPUTATIONAL-8
COMPUTATIONAL-9
COMPUTATIONAL
COMPUTE
CON
CONFIGURATION
CONNECT
CONSOLE
CONTAINED
CONTAINS
CONTENT
CONTINUE
CONTROL-AREA
CONTROL
CONTROLS

CONVERTING
COPY
CORR
CORRESPONDING
COUNT
CREATE
CRT-UNDER
CRT
CTLFOOT
CURRENCY
CURRENT
CURSOR
CYCLE
DATA
DATE-COMPILED
DATE-WRITTEN
DATE
DAY-OF-WEEK
DAY
DB-ACCESS-CONTROL-KEY
DB-DATA-NAME
DB-EXCEPTION
DB-FORMAT-NAME
DB-RECORD-NAME
DB-SET-NAME
DB-STATUS
DB
DBCS
DE
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB3
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DEFAULT
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DESTINATION
DETAIL
DISABLE
DISCONNECT
DISK
DISPLAY-1
DISPLAY-2
DISPLAY-3
DISPLAY-4
DISPLAY-5
DISPLAY-6

COBOL verbs, statements, and reserved fields

Chapter 5. RMU Script language instruction reference 53

DISPLAY-7
DISPLAY-8
DISPLAY-9
DISPLAY
DIVIDE
DIVISION
DOWN
DROP
DUPLICATE
DUPLICATES
DYNAMIC
EGCS
EGI
EJECT
ELSE
EMI
EMPTY-CHECK
EMPTY
ENABLE
END-ACCEPT
END-ADD
END-CALL
END-COMPUTE
END-DELETE
END-DISABLE
END-DIVIDE
END-ENABLE
END-EVALUATE
END-IF
END-MULTIPLY
END-OF-PAGE
END-PERFORM
END-READ
END-RECEIVE
END-RECORD
END-RETURN
END-REWRITE
END-SEARCH
END-SEND
END-START
END-STRING
END-SUBTRACT
END-TRANSCEIVE
END-UNSTRING
END-WRITE
END
ENDG
ENDING
ENTER
ENTRY
ENVIRONMENT
EOP
EQ
EQUAL
EQUALS
ERASE

ERROR
ESCAPE
ESI
EVALUATE
EVERY
EXACT
EXCEEDS
EXCEPTION
EXCESS-3
EXCLUSIVE
EXEC
EXECUTE
EXHIBIT
EXIT
EXTEND
EXTERNAL
EXTERNALLY-DESCRIBED-KEY
FALSE
FD
FETCH
FILE-CONTROL
FILE-ID
FILE
FILLER
FINAL
FIND
FINISH
FIRST
FIXED
FOOTING
FOR
FOREGROUND-COLOR
FOREGROUND-COLOUR
FORM
FORMAT
FREE
FROM
FULL
FUNCTION
GENERATE
GET
GIVING
GLOBAL
GO
GOBACK
GREATER
GROUP
HDR
HEADER
HIGH-VALUE
HIGH-VALUES
HIGHLIGHT
I-O-CONTROL
I-O
ID
IDENTIFICATION

COBOL verbs, statements, and reserved fields

54 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

IDW01
IDW02
IDW03
IDW04
IDW05
IDW06
IDW07
IDW08
IF
IN
INDEX-1
INDEX-2
INDEX-3
INDEX-4
INDEX-5
INDEX-6
INDEX-7
INDEX-8
INDEX-9
INDEX
INDEXED
INDIC
INDICATE
INDICATOR
INDICATORS
INITIAL
INITIALIZE
INITIATE
INPUT-OUTPUT
INPUT
INSERT
INSPECT
INSTALLATION
INTO
INVALID
IS
IW-FAKE-INDEX
IW-PENGI-PAGE
IW-RETURN-CODE
IW-WORK-INDEX
JAPANESE
JUST
JUSTIFIED
KANJI
KEEP
KEPT
KEY
KEYBOARD
LAST
LBEL
LD
LEADING
LEFT-JUSTIFY
LEFT
LENGTH-CHECK
LENGTH

LESS
LIKE
LIMIT
LIMITS
LINAGE-COUNTER
LINAGE
LINE-COUNTER
LINES
LINKAGE
LIT
LOCALLY
LOCK
LOW-VALUE
LOW-VALUES
MANUAL
MASK
MEMBER
MEMORY
MERGE
MESSAGE
MODE
MODIFIED
MODIFY
MODULES
MORE-LABELS
MOVE
MULTIPLE
MULTIPLY
NATIVE
NEGATIVE
NEXT
NO-ECHO
NO
NONE
NORMAL
NOT
NULL
NULLS
NUMBER
NUMERIC-EDITED
NUMERIC
OBJECT-COMPUTER
OBJECT
OBJECT
OCCURS
OF
OFF
OMITTED
ON
ONLY
OPEN
OPTIONAL
OR
ORDER
ORGANIZATION
OTHER

COBOL verbs, statements, and reserved fields

Chapter 5. RMU Script language instruction reference 55

OUTPUT
OVERFLOW
OWNER
PACKED-DECIMAL
PADDING
PAGE-COUNTER
PAGE
PAGEFOOT
PALETTE
PARAGRAPH
PARM-LENGTH
PARM-REGISTER-9
PARM-REGISTER
PASSWORD
PENGI-CODES
PENGI-CODE0
PENGI-STATUS
PERFORM
PF
PH
PIC
PICTURE
PLUS
POINTER
POS
POSITION
POSITIVE
PRESENT
PREVIOUS
PRINT-SWITCH
PRINTER-1
PRINTER
PRINTING
PRIOR
PROCEDURE
PROCEDURES
PROCEED
PROCESS
PROCESSING
PROGRAM-DATE
PROGRAM-ID
PROGRAM-INFO-TABLE
PROGRAM-NAME
PROGRAM-OPSYS
PROGRAM-TIME
PROGRAM-TYPE
PROGRAM
PROMPT
PROTECTED
PURGE
QUEUE
QUOTE
QUOTES
RANDOM
RANGE
RC-ABEND00

RC-ABRCODE
RC-BOOLEAN
RC-CHKOVF0
RC-COBSTAT
RC-DATESWP
RC-HEXSTR0
RC-HEXSTR1
RC-REPCHR0
RC
RD
READ
READY
REALM
RECEIVE
RECONNECT
RECORD-NAME
RECORD
RECORDING
RECORDS
REDEFINES
REEL
REFERENCE
REFERENCES
RELATION
RELATIVE
RELEASE
RELOAD
REMAINDER
REMOVAL
RENAMES
REPEATED
REPLACE
REPLACING
REPORT
REPORTING
REPORTS
REQUIRED
RERUN
RESERVE
RESET
RETAINING
RETRIEVAL
RETURN
REVERSE-VIDEO
REVERSED
REWIND
REWRITE
RF
RH
RIGHT-JUSTIFY
RIGHT
ROLLBACK
ROLLING
ROUNDED
RUN
SAME

COBOL verbs, statements, and reserved fields

56 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

SCREEN
SD
SEARCH
SECTION
SECURE
SECURITY
SEGMENT-LIMIT
SEGMENT
SEL
SELECT
SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SERVICE
SESSION-ID
SET
SHARED
SHIFT-IN
SHIFT-OUT
SIGN
SIZE
SKIP1
SKIP2
SKIP3
SORT-CONTROL
SORT-CORE-SIZE
SORT-FILE-SIZE
SORT-MERGE
SORT-MESSAGE
SORT-MODE-SIZE
SORT-RETURN
SORT
SOURCE-COMPUTER
SOURCE
SPACE-FILL
SPACE
SPACES
SPECIAL-NAMES
STANDARD-1
STANDARD-2
STANDARD-3
STANDARD-4
STANDARD
START
STARTING
STATUS
STOP
STORE
STRING
STYLE
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUB-SCHEMA

SUBFILE
SUBPROGRAM
SUBTRACT
SUM
SUPPRESS
SWITCH-1
SWITCH-2
SWITCH-3
SWITCH-4
SWITCH-5
SWITCH-6
SWITCH-7
SWITCH-8
SWITCH
SYMBOLIC
SYNC
SYNCHRONIZED
TABLE
TALLY
TALLYING
TAPE
TENANT
TERMINAL
TERMINATE
TEST
TEXT
THAN
THEN
THROUGH
THRU
TIME
TIMEOUT
TIMES
TITLE
TO
TOP
TRACE
TRAILING-SIGN
TRAILING
TRANSACTION
TRANSCEIVE
TRUE
TYPE
UNDERLINE
UNEQUAL
UNIT
UNLOCK
UNSTRING
UNTIL
UP
UPDATE
UPON
USAGE-MODE
USAGE
USE
USER

COBOL verbs, statements, and reserved fields

Chapter 5. RMU Script language instruction reference 57

USING
VAL
VALID
VALIDATE
VALUE
VALUES
VARCHAR
VARIABLE
VARYING
WAIT
WHEN-COMPILED
WHEN
WITH
WITHIN
WORDS
WORKING-STORAGE
WRITE-ONLY
WRITE
ZERO-FILL
ZERO
ZEROES
ZEROS

COBOL verbs, statements, and reserved fields

58 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Chapter 6. Messages

There are three types of messages that you can encounter when using RMU:

COBOL compiler-generated messages
RMU converts Script programs to COBOL and then compiles the generated
COBOL with a standard LE or z/OS COBOL compiler. COBOL ’I’ and ’W’
level errors are acceptable. ’E’ level errors are serious errors and should be
reported to IBM for correction as they can be due to RMU
compiler-generated statements.

These messages are generated by the COBOL compiler and are beyond the
scope of this document.

RMU runtime error messages
Runtime messages are self-explanatory. File open errors are common due
to improper or missing DD names.

For an explanation of runtime messages, refer to z/OS MVS System
Messages.

RMU compiler-generated messages (listed in this chapter)
RMU compiler-generated messages consist of three parts: A 7-digit message
number followed by a comma, a 2-digit condition code and the message
text. A condition code of 00 is an advisory message. A condition code of 12
is an error.

RMU compiler-generated messages

RMU0-01,00 AUTO COPY OF IMAGES IGNORED.

Explanation: <object> section was declared for HTML
format document. This is an MNOTE statement.
MNOTE is informational only.

User response: The images declared (if any) in the
section will not be automatically included in the
document.

This means that all images used in the document must
exist in the &home/images directory on the server
where the document is downloaded.

RMU0-01,12 UNPAIRED PARENTHESES ON
STATEMENT

Explanation: String was coded with unpaired
parentheses.

User response: Code string inside a paired
parentheses, example (string).

RMU0-01,12 UNPAIRED QUOTES ON TEXT
STATEMENT

Explanation: A quoted string is missing end quote.

User response: Add the quote as needed.

RMU0-02,12 STATEMENTS ARE CODED BEYOND
COL 71

Explanation: Text was found beyond column 71.

User response: Correct the problem.

RMU0-03,12 UNPAIRED END-IF/END-DO/
EVALUATE STATEMENT

Explanation: A scope terminator is missing. For IF
statement, there is no matching END-IF. For DO
statement there is no matching END-DO. For
EVALUATE statement there is no matching
END-EVALUATE.

User response: Add the required scope terminator.

RMU0-04,12 ″ELSE″ IS OUT OF SEQUENCE

Explanation: ELSE was placed on inappropriate line.

User response: Correct the problem.

RMU0-05,12 ″CONTINUE″ IS OUT OF SEQUENCE

Explanation: CONTINUE statement is out of
sequence.

User response: Correct the problem.

© Copyright IBM Corp. 2009 59

RMU0-06,12 INCOMPLETE STATEMENT

Explanation: Statement requires more arguments.

User response: Complete the statement as required.

RMU0-07,12 LINE IS ILLEGAL (USE LINE1-LINE66)

Explanation: The variable name is not allowed. It
conflicts with the reserved LINEnn names.

User response: Use the correct name.

RMU0-08,12 TARGET FIELD NAME EXCEEDS 16
CHRS

Explanation: The field name is longer than 16
characters.

User response: Reduce the field name down to 16
characters or less.

RMU0-09,12 UNDEFINED VARIABLE

Explanation: Variable is not defined and it is not a
reserved field.

User response: Correct the problem.

RMU0-10,12 ILLEGAL NAME

Explanation: The name is illegal as coded.

User response: Refer to DEFINE statement for
variable naming rules.

RMU0-11,12 ILLEGAL SUBSTRING EXPRESSION

Explanation: The substring is illegal as coded.

User response: Correct the erroneous substring.

RMU0-12,12 IF ARGUMENTS ARE REQUIRED

Explanation: IF statement is not followed by
arguments.

User response: Complete the IF statement.

RMU0-13,12 ARGS NOT ENCLOSED IN
PARENTHESES

Explanation: IF arguments are coded without
parentheses.

User response: IF arguments must be enclosed in
parentheses.

RMU0-14,12 SUB START+LENGTH EXCEEDS
MAXIMUM

Explanation: The start position plus the length
exceeds field capacity.

User response: Correct the substring values such that
the sum of start position plus the length does not
exceed the field length.

RMU0-15,12 DUPLICATE FIELD NAME

Explanation: The field name has been previously
defined or it conflicts with a reserved field name.

User response: Use a different name.

RMU0-16,12 INVALID LENGTH OR EXCEEDS
MAXIMUM

Explanation: The field length is invalid or it exceeds
maximum allowed length.

User response: Correct the length as follows: Binary
field can be 2 or 4 bytes Packed decimal field can be up
to 9 bytes Display numeric field can be up 18 bytes.
Alpha field can be up to 32,767 bytes.

RMU0-17,12 TYPE NOT A, N, B OR P

Explanation: Unknown field type.

User response: Code the correct type.

RMU0-18,12 STATEMENT CONTAINS EXTRA
ARGUMENTS

Explanation: Extraneous arguments have been
detected.

User response: Remove the extraneous arguments.

RMU0-19,12 VALUE IS ILLEGAL AS WRITTEN

Explanation: Field value cannot be resolved as
written.

User response: Correct the syntax.

RMU0-20,12 VALUE EXCEEDS FIELD CAPACITY

Explanation: The specified value exceeds field
capacity.

User response: Reduce the value to fit the field size.

RMU0-21,12 STATEMENT IS OUT OF SEQUENCE

Explanation: Statement is out of sequence.

User response: Put statements in the correct order
according to RMU syntax rules.

RMU0-22,12 &EXPRESS ILLEGAL EXPRESSION

Explanation: Expression is illegal as written.

User response: Correct erroneous expression.

RMU compiler-generated messages

60 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

RMU0-23,12 EXCEEDS 2048 NESTED IF
STATEMENTS

Explanation: The maximum number of nested IF
statements has been exceeded.

User response: Reduce the number of IF statements.
Simplify the tests.

RMU0-24,12 NAME IS INVALID OR EXCEEDS 16
CHRS

Explanation: The field name is longer than 16
characters.

User response: Reduce the field name down to 16
characters or less.

RMU0-25,12 &parm INVALID OPTION

Explanation: &parm is unknown option.

User response: Use the correct option.

RMU0-26,12 &var VARIABLE IS NOT NUMERIC
TYPE

Explanation: Non-numeric variable used in substring.

User response: Use a numeric value or a numeric
variable.

RMU0-27,12 INVALID ″DO″ STATEMENT SYNTAX

Explanation: The DO statement is illegal as written.

User response: Correct the statement according to DO
statement rules.

RMU0-28,12 ″TIMES″ NOT FOUND

Explanation: Incomplete DO &nn statement.

User response: Correct the statement according to DO
&nn TIMES rules.

RMU0-29,12 ″W″ IS MISSING IN DEFINE
STATEMENT

Explanation: DEFINE is improper. ″W″ following the
field name is required.

User response: Correct the erroneous statement.

RMU0-30,12 &var INCOMPATIBLE VARIABLE TYPE

Explanation: The &var type is not compatible with the
IF argument type.

User response: Correct the erroneous argument.

RMU0-30,12 &var INCOMPATIBLE VARIABLE TYPE

Explanation: The &var type is not compatible with the
WHEN argument type.

User response: Correct the erroneous argument.

RMU0-31,12 ″LINE″ CANNOT BE A TARGET FIELD

Explanation: LINE is improperly used as a target in
ASSIGN statement.

User response: Correct the statement. LINE can be a
target of an object or a style only. LINE content cannot
be altered by RMU.

RMU0-32,12 LITERAL EXCEEDS 60 CHARACTERS

Explanation: Literal is too long.

User response: Reduce the literal size.

RMU0-33,12 INVALID ASSIGN STATEMENT
SYNTAX

Explanation: Assign statement is not valid as written.

User response: Correct the statement to comply with
the ASSIGN statement rules.

RMU0-34,12 SUBSTRING NOT VALID FOR P,B
TYPE

Explanation: A substring was coded for a Packed
decimal or a Binary field.

User response: Remove the substring.

RMU0-35,12 RECURSIVE USE OF ″&word″

Explanation: The &word section was previously
declared.

User response: Remove the extraneous section.

RMU0-36,12 &word : ILLEGAL NUMBER/
ARGUMENT

Explanation: Argument is illegal as written.

User response: Write the correct argument.

RMU0-37,12 NAME EXCEEDS 8 CHARACTERS

Explanation: Style or Object name exceeds 8
characters.

User response: Reduce the name down to 8
characters. Note that period is included as part of the
name.

RMU compiler-generated messages

Chapter 6. Messages 61

RMU0-38,12 ARGUMENT IS OUT OF SEQUENCE

Explanation: The argument is out of sequence.

User response: Style and Object arguments are written
in pairs as .&name {...}. Correct the erroneous
arguments.

RMU0-39,12 OBJECT USE, SUBSTRING LENGTH
NOT 0

Explanation: The length in substring is not zero.

User response: When an object is used as source in
assign, the length in the target substring must be zero.

RMU0-40,12 &name DUPLICATE OBJECT NAME

Explanation: The &name was previously declared.

User response: Use a unique name.

RMU0-41,12 &name UNDEFINED OBJECT NAME

Explanation: The &name is undefined.

User response: Use a defined &name from the Style
or Object section.

RMU0-42,12 ″TURF″ IS ILLEGAL IN THIS
CONTEXT

Explanation: Illegal use of .turf1 or .turf2.

User response: Correct the erroneous statement.

RMU0-43,12 ZERO START IN SUBSTRING IS
ILLEGAL

Explanation: Zero value was used as start position in
target field of Assign statement.

User response: Correct the erroneous start value.

RMU0-44,12 SYNTAX UNSUPPORTED FOR CSV
FORMAT

Explanation: An object or a style name was used as
source in Assign statement for CSV document.

User response: CSV documents cannot be decorated
with fonts and images. Remove the statement.

RMU0-45,12 </&tag> TAG IS MISSING

Explanation: No matching end tag was located for
<&tag> section.

User response: Insert the correct </&tag> to complete
the <&tag> section.

RMU0-46,12 LITERAL FOUND IN CALL
PARAMETERS

Explanation: Alphanumeric (quoted) or numeric literal
was detected in the call parameters. Literal is not
allowed in the CALL parameters.

User response: Remove erroneous parameter. Define a
field in the library section with appropriate value and
use the field name in the parameter list.

RMU0-47,12 PROCESS STRING EXCEEDS 64
CHARS

Explanation: Parameters on the PROCESS statement
span beyond column 64.

User response: Limit PROCESS statement to less than
65 characters. Code multiple PROCESS statements back
to back to accommodate your options.

RMU0-42,12 ″TURF″ IS ILLEGAL IN THIS
CONTEXT

Explanation: .turf is being assigned to a LINE text.

User response: .turf is a special style that can be
declared on the PARM statement. When coded, the
option is applied to the entire document.
Remove/correct improper statement.

RMU0-43,12 ZERO START IN SUBSTRING IS
ILLEGAL

Explanation: Zero was used for substring start
position.

User response: Code the correct start position.

RMU0-44,12 SYNTAX UNSUPPORTED FOR CSV
FORMAT

Explanation: A style or and object was coded in
assign statement.

User response: Style and objects cannot be assigned to
text in CSV files. Remove erroneous statements.

RMU0-45,12 </XXXX-XXX> TAG IS MISSING

Explanation: A matching end tag is not coded for the
tag option in effect.

User response: Code the end tag in the appropriate
place.

RMU0-46,12 LITERAL FOUND IN CALL
PARAMETERS

Explanation: Literal was coded on CALL statement.

User response: Define a field in Library section with
the needed value and use the field name instead.

RMU compiler-generated messages

62 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

RMU0-47,12 PROCESS STRING EXCEEDS 64
CHARS

Explanation: COBOL PROCESS exceeds 64 characters.

User response: Code options using multiple PROCESS
statement back to back.

RMU0-48,12 EXCEEDS EIGHT(8) EVALUATE NESTS

Explanation: Maximum nested EVALUATE statements
exceeded.

User response: Reduce the number of nested
EVALUATE statements. If you need to code more than
8 nested EVALUATE statements, write a procedure and
use PERFORM to invoke the procedure name.

RMU0-49,12 UNPAIRED END-EVALUATE
STATEMENT

Explanation: END-EVALUATE was not coded.

User response: Add END-EVALUATE to appropriate
place.

RMU0-50,12 DUPLICATE PROC NAME

Explanation: Procedure name was previously defined.

User response: Use a unique procedure name.

RMU0-51,12 ″&proc″ UNDEFINED PROC NAME

Explanation: The ″&proc″ procedure name is not
defined.

User response: Correct the spelling of your proc
name.

RMU0-52,12 INVALID PROC NAME

Explanation: Procedure name contains invalid
characters.

User response: Correct the name. You can use letters,
numbers and hyphens. The first character and the last
character must be a letter or a number.

RMU0-53,12 END-PROC IS OUT OF SEQUENCE

Explanation: END-PROC was placed without the
PROC statement before it, or END-PROC was placed in
the middle of a statement that requires a scope
terminator, i.e., IF/DO or EVALUATE.

User response: Correct the problem.

RMU0-54,12 PROC NAME EXCEEDS 30
CHARACTERS

Explanation: Procedure name is more than 30
characters long.

User response: Reduce the name to 30 characters or
less.

RMU0-55,12 PROC PERFORM WOULD CAUSE A
LOOP

Explanation: perform &procname was placed in a
proc where &procname is the procedure name where
PERFORM was placed.

User response: Correct &procname or remove
PERFORM statement in error.

RMU0-56,12 END-PROC IS MISSING

Explanation: End of script program is reached with a
proc without a matching END-PROC statement.

User response: Add END-PROC as required.

RMU0-57,12 ILLEGAL CHARACTER AFTER
END-STRING

Explanation: The END-STRING statement is followed
by extraneous characters.

User response: Remove the extraneous characters.

RMU0-58,12 ″DELIMITED″ OPTION IS MISSING

Explanation: Improper STRING statement syntax.

User response: Refer to STRING statement for the
correct syntax in this manual.

RMU compiler-generated messages

Chapter 6. Messages 63

64 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2009 65

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information”, http://www.ibm.com/legal/copytrade.shtml.

66 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Index

Special characters
.ENUM1, parameter, assignment

statement 40
.ETEXT, parameter, assignment

statement 40
<docs_end> statement 37
<docs> statement 36
<object> statement 35
<page_end> statement 38
<page_top> statement 37
<style> statement 35
&char, parameter

PARM statement 33
STRING statement 50

&color, parameter, <style> statement 36
&condition, parameter

DO statement 45
EVALUATE statement 46

&count, parameter, DO statement 45
&css parameter 3, 4
¤cy, parameter, PARM

statement 33
&decimal, parameter, PARM

statement 33
&expression, parameter, IF statement 47
&field, parameter

CALL statement 42
CONTROL statement 43
DEFINE statement 34
DISPLAY statement 44
EVALUATE statement 46
STRING statement 50

&format, parameter, PARM statement 33
&formula, parameter, assignment

statement 39
&image, parameter

<object> statement 35
assignment statement 41

&length, parameter
assignment statement 39, 40
DEFINE statement 34
DISPLAY statement 44
EVALUATE statement 46

&line, parameter, assignment
statement 40

&LINEn, parameter, BYPASS
statement 41

&literal, parameter, STRING
statement 50

&mod, parameter, <object> statement 35
&n, parameter, <style> statement 36
&name, parameter

PARM statement 33
&option, parameter,PROCESS

statement 49
&pointer, parameter, STRING

statement 50
&procname, parameter

PERFORM statement 48
PROC statement 48

&program, parameter, CALL
statement 42

&recfield, parameter, assignment
statement 39

&sendfield, parameter, assignment
statement 39

&size, parameter, <style> statement 36
&start, parameter

assignment statement 39, 40
DISPLAY statement 44
EVALUATE statement 46

&style, parameter, assignment
statement 40

&svc99, FJSVC99 file 7, 14
&sys1 symbol 14
&SYS1.SFZHAMAC library 11, 16
&SYS1.SFZHASRC library 11, 14, 16
&SYS1.SFZHDOCS library 7, 9, 11, 16,

30, 35
&SYS1.SFZHJCLS library 3, 4, 5, 11, 12,

13, 14, 15, 18, 19, 21, 24, 26, 29
&SYS1.SFZHLOAD library 11, 14
&SYS1.SFZHPROC library 11, 15
&target, parameter, STRING

statement 50
&type, parameter, DEFINE statement 34
&value, parameter, DEFINE

statement 34
#BASE, sequence number type 30
#EOF, sequence number type 31
#nnnnn, sequence number type 30
= (equal sign), assignment statement 39,

40

Numerics
1403 paper 1, 19, 26, 30
1403-paper option 3, 13, 36
1403-paper parameter, PARM

statement 36
1403-paper, parameter, PARM

statement 33

A
A, parameter, DEFINE statement 34
ABEND-MESSAGE

See RMU Script, invalid field names
ABEND-REQUEST

See RMU Script, invalid field names
ABENDs 31
ACCEPT

See RMU Script, invalid field names
ACCESS

See RMU Script, invalid field names
ACCUM

See RMU Script, invalid field names
ACQUIRE

See RMU Script, invalid field names

ADD
See RMU Script, invalid field names

ADDRESS
See RMU Script, invalid field names

ADVANCING
See RMU Script, invalid field names

AFTER
See RMU Script, invalid field names

ALL
See RMU Script, invalid field names

ALLOWING
See RMU Script, invalid field names

ALPHABET
See RMU Script, invalid field names

ALPHABETIC
See RMU Script, invalid field names

ALPHABETIC-HIGHER
See RMU Script, invalid field names

ALPHABETIC-LOWER
See RMU Script, invalid field names

ALPHANUMERIC
See RMU Script, invalid field names

ALPHANUMERIC-EDITED
See RMU Script, invalid field names

ALSO
See RMU Script, invalid field names

ALTER
See RMU Script, invalid field names

ALTERNATE
See RMU Script, invalid field names

AND
See RMU Script, invalid field names

ANY
See RMU Script, invalid field names

APPLY
See RMU Script, invalid field names

ARE
See RMU Script, invalid field names

AREA
See RMU Script, invalid field names

AREA-VALUE
See RMU Script, invalid field names

AREAS
See RMU Script, invalid field names

ARITHMETIC
See RMU Script, invalid field names

ASCENDING
See RMU Script, invalid field names

ASCII 4, 5, 7, 15, 16
ASSIGN

See RMU Script, invalid field names
assignment statement 38
AT

See RMU Script, invalid field names
AUTHOR

See RMU Script, invalid field names
AUTO

See RMU Script, invalid field names
AUTO-SKIP

See RMU Script, invalid field names

© Copyright IBM Corp. 2009 67

AUTOMATIC
See RMU Script, invalid field names

B
B-AND

See RMU Script, invalid field names
B-EXOR

See RMU Script, invalid field names
B-LESS

See RMU Script, invalid field names
B-NOT

See RMU Script, invalid field names
B-OR

See RMU Script, invalid field names
B, parameter, DEFINE statement 34
background color

defining 3, 30
overriding 30

BACKGROUND-COLOR
See RMU Script, invalid field names

BACKGROUND-COLOUR
See RMU Script, invalid field names

BACKWARD
See RMU Script, invalid field names

BASIS
See RMU Script, invalid field names

BEEP
See RMU Script, invalid field names

BEFORE
See RMU Script, invalid field names

BEGINNING
See RMU Script, invalid field names

BELL
See RMU Script, invalid field names

BINARY
See RMU Script, invalid field names

BIT
See RMU Script, invalid field names

BITS
See RMU Script, invalid field names

BLANK
See RMU Script, invalid field names

BLINK
See RMU Script, invalid field names

BLOCK
See RMU Script, invalid field names

BOOLEAN
See RMU Script, invalid field names

BOTTOM
See RMU Script, invalid field names

BY
See RMU Script, invalid field names

BYPASS statement 21, 24, 26, 41

C
CALL

See also RMU Script, invalid field
names

field name 52, 53
statement 42

CANCEL
See RMU Script, invalid field names

Cascaded Style Sheets
See CSS

CBL
See RMU Script, invalid field names

CD
See RMU Script, invalid field names

CF
See RMU Script, invalid field names

CH
See RMU Script, invalid field names

CH1
See RMU Script, invalid field names

CH10
See RMU Script, invalid field names

CH11
See RMU Script, invalid field names

CH12
See RMU Script, invalid field names

CH2
See RMU Script, invalid field names

CH3
See RMU Script, invalid field names

CH4
See RMU Script, invalid field names

CH5
See RMU Script, invalid field names

CH6
See RMU Script, invalid field names

CH7
See RMU Script, invalid field names

CH8
See RMU Script, invalid field names

CH9
See RMU Script, invalid field names

CHAIN
See RMU Script, invalid field names

CHAINING
See RMU Script, invalid field names

CHANGED
See RMU Script, invalid field names

CHARACTER
See RMU Script, invalid field names

Character Separated Values
See CSV

CHARACTERS
See RMU Script, invalid field names

characters, control 18
CLASS

See RMU Script, invalid field names
CLOCK-UNITS

See RMU Script, invalid field names
CLOSE

See RMU Script, invalid field names
COBLIB parameter 14
COBLIST

file, description 7
file, required when compiling 5
link and go mode 6

COBOL
See also RMU Script, invalid field

names
#BASE statement 30
compiler

generated messages 59
options 49
PROCESS (CBL) option 49
requirement for 17

currency symbol 13
debugger 31

COBOL (continued)
default

compiler LIST option 12
printer 14

FZHRMUS1 utility 13
listings, redirecting 14
option, COBLIST file 7
reserved

fields 52
words 16

runtime problems 30, 31
skeleton 16
statement sequence numbers 30
statements 52
verbs 52

CODE
See RMU Script, invalid field names

code set (ASCII or EBCDIC) 15
CODE-SET

See RMU Script, invalid field names
coding, RMU Script 18
COL

See RMU Script, invalid field names
COLLATING

See RMU Script, invalid field names
COLOR

See RMU Script, invalid field names
color, background 3
COLUMN

See RMU Script, invalid field names
column values, formatting 21
COM-REG

See RMU Script, invalid field names
COMMA

See RMU Script, invalid field names
COMMA, parameter, PARM

statement 33
COMMAND-LINE

See RMU Script, invalid field names
commands

reading syntax diagrams xi
COMMIT

See RMU Script, invalid field names
COMMITMENT

See RMU Script, invalid field names
COMMON

See RMU Script, invalid field names
COMMUNICATION

See RMU Script, invalid field names
COMP

See RMU Script, invalid field names
COMP-0

See RMU Script, invalid field names
COMP-1

See RMU Script, invalid field names
COMP-2

See RMU Script, invalid field names
COMP-3

See RMU Script, invalid field names
COMP-4

See RMU Script, invalid field names
COMP-5

See RMU Script, invalid field names
COMP-6

See RMU Script, invalid field names
COMP-7

See RMU Script, invalid field names

68 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

COMP-8
See RMU Script, invalid field names

COMP-9
See RMU Script, invalid field names

COMP-X
See RMU Script, invalid field names

COMPUTATIONAL
See RMU Script, invalid field names

COMPUTATIONAL-0
See RMU Script, invalid field names

COMPUTATIONAL-1
See RMU Script, invalid field names

COMPUTATIONAL-2
See RMU Script, invalid field names

COMPUTATIONAL-3
See RMU Script, invalid field names

COMPUTATIONAL-4
See RMU Script, invalid field names

COMPUTATIONAL-5
See RMU Script, invalid field names

COMPUTATIONAL-6
See RMU Script, invalid field names

COMPUTATIONAL-7
See RMU Script, invalid field names

COMPUTATIONAL-8
See RMU Script, invalid field names

COMPUTATIONAL-9
See RMU Script, invalid field names

COMPUTATIONAL-X
See RMU Script, invalid field names

COMPUTE
See RMU Script, invalid field names

CON
See RMU Script, invalid field names

CONFIGURATION
See RMU Script, invalid field names

CONNECT
See RMU Script, invalid field names

CONSOLE
See RMU Script, invalid field names

constants
PROCLIB0 14
PRODUCT0 14

CONTAINED
See RMU Script, invalid field names

CONTAINS
See RMU Script, invalid field names

CONTENT
See RMU Script, invalid field names

CONTINUE
See also RMU Script, invalid field

names
field name 53
statement 42

control
break

annotations, removing 21
fields, populating 26
selection tree 26

characters 18
CONTROL

See also RMU Script, invalid field
names

field name 53
statement 43

CONTROL statement 26

CONTROL-AREA
See RMU Script, invalid field names

CONTROLS
See RMU Script, invalid field names

CONVERTING
See RMU Script, invalid field names

COPY
See RMU Script, invalid field names

CORR
See RMU Script, invalid field names

CORRESPONDING
See RMU Script, invalid field names

COUNT
See RMU Script, invalid field names

CREATE
See RMU Script, invalid field names

CRT
See RMU Script, invalid field names

CRT-UNDER
See RMU Script, invalid field names

CSS
<style> tag 35
&css parameter 3
&SYS1.SFZHDOCS library 11
applying to CSV file 21
assignment statement 39
base templates 16
FJIDOC0 file 7
FZHBPARS parser utility 8
PARM statement 3
style section 30
tree templates 16

CSV
applying CSS, images 21
assignment statement 39
BYPASS statement 41
CSVCHAR parameter 13
default separator character 13
distributing output documents 4
document, creating 21
example, RMU script program 22
files 5
FJCONFG

file description 7
not in JCL 15

FJORPT0, file description 7
FZHCSV00, I/O module 16
introduction to RMU 1
parameter, PARM statement 33

CSVCHAR parameter 13
CTLFOOT

See RMU Script, invalid field names
CURRENCY

parameter 11
currency symbol 13
CURRENT

See RMU Script, invalid field names
CURSOR

See RMU Script, invalid field names
custom jobs, publishing to z/OS

UNIX 15
CWORK parameter 14
CYCLE

See RMU Script, invalid field names

D
DATA

See RMU Script, invalid field names
DATE

See RMU Script, invalid field names
DATE-COMPILED

See RMU Script, invalid field names
DATE-WRITTEN

See RMU Script, invalid field names
DAY

See RMU Script, invalid field names
DAY-OF-WEEK

See RMU Script, invalid field names
DB

See RMU Script, invalid field names
DB-ACCESS-CONTROL-KEY

See RMU Script, invalid field names
DB-DATA-NAME

See RMU Script, invalid field names
DB-EXCEPTION

See RMU Script, invalid field names
DB-FORMAT-NAME

See RMU Script, invalid field names
DB-RECORD-NAME

See RMU Script, invalid field names
DB-SET-NAME

See RMU Script, invalid field names
DB-STATUS

See RMU Script, invalid field names
DBCS

See RMU Script, invalid field names
DD names

FJCONFG 5, 15
FJSYSPR 14
FJUNIX0 4, 14
summary 5

DE
See RMU Script, invalid field names

DEBUG-CONTENTS
See RMU Script, invalid field names

DEBUG-ITEM
See RMU Script, invalid field names

DEBUG-LINE
See RMU Script, invalid field names

DEBUG-NAME
See RMU Script, invalid field names

DEBUG-SUB-1
See RMU Script, invalid field names

DEBUG-SUB-2
See RMU Script, invalid field names

DEBUG-SUB3
See RMU Script, invalid field names

debugger, COBOL 31
DEBUGGING

See RMU Script, invalid field names
debugging, RMU Script programs 30
DECIMAL parameter 11
DECIMAL-POINT

See RMU Script, invalid field names
DECLARATIVES

See RMU Script, invalid field names
decorating

file types 29
HTML document 29
HTML-format document 24
HTML1-format document 26

Index 69

default
library locator table 13
options table 11

DEFAULT
See RMU Script, invalid field names

DEFINE statement 26, 34
DELETE

See RMU Script, invalid field names
DELIMITED

See RMU Script, invalid field names
DELIMITER

See RMU Script, invalid field names
DEPENDING

See RMU Script, invalid field names
DESCENDING

See RMU Script, invalid field names
DESTINATION

See RMU Script, invalid field names
DETAIL

See RMU Script, invalid field names
directories, UNIX 5
DISABLE

See RMU Script, invalid field names
DISCONNECT

See RMU Script, invalid field names
DISK

See RMU Script, invalid field names
DISPLAY

See RMU Script, invalid field names
DISPLAY statement 44
DISPLAY-1

See RMU Script, invalid field names
DISPLAY-2

See RMU Script, invalid field names
DISPLAY-3

See RMU Script, invalid field names
DISPLAY-4

See RMU Script, invalid field names
DISPLAY-5

See RMU Script, invalid field names
DISPLAY-6

See RMU Script, invalid field names
DISPLAY-7

See RMU Script, invalid field names
DISPLAY-8

See RMU Script, invalid field names
DISPLAY-9

See RMU Script, invalid field names
distributing, output documents 4
DIVIDE

See RMU Script, invalid field names
DIVISION

See RMU Script, invalid field names
DO

loop, controlling 21
statement 44

docs statement 36
docs_end statement 37
DOWN

See RMU Script, invalid field names
downloading to a PC 5
DROP

See RMU Script, invalid field names
DUPLICATE

See RMU Script, invalid field names
DUPLICATES

See RMU Script, invalid field names

DYNAMIC
See RMU Script, invalid field names

E
EBCDIC 5, 15, 16
EGCS

See RMU Script, invalid field names
EGI

See RMU Script, invalid field names
EJECT

See RMU Script, invalid field names
ELSE

See RMU Script, invalid field names
ELSE statement 47
EMI

See RMU Script, invalid field names
EMPTY

See RMU Script, invalid field names
EMPTY-CHECK

See RMU Script, invalid field names
ENABLE

See RMU Script, invalid field names
END

See RMU Script, invalid field names
END-ACCEPT

See RMU Script, invalid field names
END-ADD

See RMU Script, invalid field names
END-CALL

See RMU Script, invalid field names
END-COMPUTE

See RMU Script, invalid field names
END-DELETE

See RMU Script, invalid field names
END-DISABLE

See RMU Script, invalid field names
END-DIVIDE

See RMU Script, invalid field names
END-DO statement 44
END-ENABLE

See RMU Script, invalid field names
END-EVALUATE

See RMU Script, invalid field names
END-EVALUATE statement 45
END-IF

See also RMU Script, invalid field
names

field name 54
statement 47

END-MULTIPLY
See RMU Script, invalid field names

END-OF-PAGE
See RMU Script, invalid field names

END-PERFORM
See RMU Script, invalid field names

END-PROC statement 48
END-READ

See RMU Script, invalid field names
END-RECEIVE

See RMU Script, invalid field names
END-RECORD

See RMU Script, invalid field names
END-RETURN

See RMU Script, invalid field names
END-REWRITE

See RMU Script, invalid field names

END-SEARCH
See RMU Script, invalid field names

END-SEND
See RMU Script, invalid field names

END-START
See RMU Script, invalid field names

END-STRING
See RMU Script, invalid field names

END-SUBTRACT
See RMU Script, invalid field names

END-TRANSCEIVE
See RMU Script, invalid field names

END-UNSTRING
See RMU Script, invalid field names

END-WRITE
See RMU Script, invalid field names

ENDG
See RMU Script, invalid field names

ENDING
See RMU Script, invalid field names

ENTER
See RMU Script, invalid field names

ENTRY
See RMU Script, invalid field names

ENUM1, formatting column values 21
ENVIRONMENT

See RMU Script, invalid field names
environmental errors 31
environments, UNIX 4
EOP

See RMU Script, invalid field names
EQ

See RMU Script, invalid field names
EQUAL

See RMU Script, invalid field names
EQUALS

See RMU Script, invalid field names
ERASE

See RMU Script, invalid field names
ERROR

See RMU Script, invalid field names
ESCAPE

See RMU Script, invalid field names
ESI

See RMU Script, invalid field names
ETEXT, formatting column values 21
EVALUATE

See also RMU Script, invalid field
names

field name 54
statement 24

EVALUATE statement 26, 45
EVERY

See RMU Script, invalid field names
EXACT

See RMU Script, invalid field names
example, RMU Script 19
EXCEEDS

See RMU Script, invalid field names
EXCEPTION

See RMU Script, invalid field names
EXCESS-3

See RMU Script, invalid field names
EXCLUSIVE

See RMU Script, invalid field names
EXEC

See RMU Script, invalid field names

70 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

EXECUTE
See RMU Script, invalid field names

EXHIBIT
See RMU Script, invalid field names

EXIT
See RMU Script, invalid field names

EXTEND
See RMU Script, invalid field names

EXTERNAL
See RMU Script, invalid field names

EXTERNALLY-DESCRIBED-KEY
See RMU Script, invalid field names

F
FALSE

See RMU Script, invalid field names
FD

See RMU Script, invalid field names
features, RMU 1
FETCH

See RMU Script, invalid field names
field headings, removing 21
FILE

See RMU Script, invalid field names
file I/O errors 31
FILE-CONTROL

See RMU Script, invalid field names
FILE-ID

See RMU Script, invalid field names
files

COBLIST 5, 6
CSV 5
descriptions 7
FJCONFG 6
FJDMAP0 6
FJIDOC0 5, 6
FJIRPT0 5, 6
FJORPT0 5, 6
FJSVC99 6
FJUNIX0 6
gif 5, 7, 8, 15, 16, 19, 26, 29, 35, 37,

38
LKEDMAP 6
required

compiling RMU Script 5
publishing to z/OS UNIX 6
running RMU in ″link and go″

mode 6
running RMU with compiled RMU

Script 6
running RMU without RMU Script

program 5
RMUERR1 6
RMULIST 6
STDERR 6
STDOUT 6
SYSIN 6
SYSLMOD 6
SYSOUT 5, 6
UNIX 4

FILLER
See RMU Script, invalid field names

FINAL
See RMU Script, invalid field names

FIND
See RMU Script, invalid field names

FINISH
See RMU Script, invalid field names

FIRST
See RMU Script, invalid field names

FIXED
See RMU Script, invalid field names

FJCONFG
file description 7
publishing to z/OS UNIX 6

FJCONFG DD 15
FJCONFG, pointing to httpd.conf file 5
FJDMAP0 6
FJDMAP0, file description 7
FJIDOC0

file description 7
library 26
link and go mode 4, 6
running RMU 3
running with compiled RMU

Script 3, 6
running without RMU Script 5

FJIRPT0
file description 7
link and go mode 6
running with compiled RMU

Script 6
running without RMU Script 5

FJORPT0
file description 7
link and go mode 6
running with compiled RMU

Script 6
running without RMU Script 5

FJSVC99
file description 7
link and go mode 6
required when compiling 6
running with compiled RMU

Script 6
FJSYSPR, DD name 14
FJUNIX0

file description 8
publishing to z/OS UNIX 6
sending output 4, 14

FJUNIX1, file description 8
float characters, removing 21
font size, changing 30
FOOTING

See RMU Script, invalid field names
FOR

See RMU Script, invalid field names
FOREGROUND-COLOR

See RMU Script, invalid field names
FOREGROUND-COLOUR

See RMU Script, invalid field names
FORM

See RMU Script, invalid field names
FORMAT

See RMU Script, invalid field names
formats

HTML 4
HTML1 4

formatting column values 21
fragments, syntax diagrams xi
FREE

See RMU Script, invalid field names

FROM
See RMU Script, invalid field names

FULL
See RMU Script, invalid field names

FUNCTION
See RMU Script, invalid field names

FZH#PROC
locating 14
tailoring 13

FZH#PROC, &SYS1.SFZHJCLS
library 15

FZH#READ, &SYS1.SFZHJCLS
library 15

FZHASMOJ 12
FZHASMPJ 14
FZHBPARS 4, 8
FZHDELCJ 11, 18
FZHEBCSS 30
FZHLINKJ 3, 5, 11
FZHOPTAB 11, 12
FZHPROCS 13, 14
FZHRMU00 3
FZHRMU00 program 3, 4, 13
FZHRMU01 3
FZHRMU01 program 5, 13
FZHRMUJ0 3, 5, 11, 24
FZHRMUJ1 3, 5, 11
FZHRMUJ2 4, 5, 11
FZHRMUS1 13
FZHRMUX0 3, 5, 11, 15
FZHRMUX1 3, 5, 11, 15
FZHRMUX2 4, 5, 11, 15
FZHUNIX1 4, 15

G
GENERATE

See RMU Script, invalid field names
GET

See RMU Script, invalid field names
gif files 5, 7, 8, 15, 16, 19, 26, 29, 35, 37,

38
GIVING

See RMU Script, invalid field names
GLOBAL

See RMU Script, invalid field names
GO

See RMU Script, invalid field names
GOBACK

See RMU Script, invalid field names
GREATER

See RMU Script, invalid field names
GROUP

See RMU Script, invalid field names

H
HDR

See RMU Script, invalid field names
HEADER

See RMU Script, invalid field names
HIGH-VALUE

See also RMU Script, invalid field
names

field name 54
parameter, DEFINE statement 34

Index 71

HIGH-VALUES
See also RMU Script, invalid field

names
field name 54
parameter, DEFINE statement 34

HIGHLIGHT
See RMU Script, invalid field names

how RMU works 1
HTML

document
creating 24
decorating 29

format 4
HTML0, parameter, PARM statement 33
HTML1

document, creating 26
format 4
option 8
parameter, PARM statement 33

httpd.conf 5

I
I-O

See RMU Script, invalid field names
I-O-CONTROL

See RMU Script, invalid field names
I, system-defined field, description 51
I/O, RMU Script 17
I2, system-defined field, description 51
ID

See RMU Script, invalid field names
IDENTIFICATION

See RMU Script, invalid field names
IDW01

See RMU Script, invalid field names
IDW02

See RMU Script, invalid field names
IDW03

See RMU Script, invalid field names
IDW04

See RMU Script, invalid field names
IDW05

See RMU Script, invalid field names
IDW06

See RMU Script, invalid field names
IDW07

See RMU Script, invalid field names
IDW08

See RMU Script, invalid field names
IDX

subscript
BYPASS statement 41
control breaks selection tree 26
creating CSV documents 21
creating simple HTML

documents 24
description 51
EVALUATE statement 46
I/O handling 18

system-defined field, description 51
IDX2, system-defined field,

description 51
IF

See also RMU Script, invalid field
names

field name 55

IF (continued)
statement 47

IN
See RMU Script, invalid field names

INDEX
See RMU Script, invalid field names

INDEX-1
See RMU Script, invalid field names

INDEX-2
See RMU Script, invalid field names

INDEX-3
See RMU Script, invalid field names

INDEX-4
See RMU Script, invalid field names

INDEX-5
See RMU Script, invalid field names

INDEX-6
See RMU Script, invalid field names

INDEX-7
See RMU Script, invalid field names

INDEX-8
See RMU Script, invalid field names

INDEX-9
See RMU Script, invalid field names

INDEXED
See RMU Script, invalid field names

INDIC
See RMU Script, invalid field names

INDICATE
See RMU Script, invalid field names

INDICATOR
See RMU Script, invalid field names

INDICATORS
See RMU Script, invalid field names

INITIAL
See RMU Script, invalid field names

INITIALIZE
See RMU Script, invalid field names

INITIATE
See RMU Script, invalid field names

INPUT
See RMU Script, invalid field names

INPUT-OUTPUT
See RMU Script, invalid field names

INSERT
See RMU Script, invalid field names

INSPECT
See RMU Script, invalid field names

INSTALLATION
See RMU Script, invalid field names

installation, RMU 11
INTO

See RMU Script, invalid field names
introduction, RMU 1
INVALID

See RMU Script, invalid field names
IS

See RMU Script, invalid field names
IW-FAKE-INDEX

See RMU Script, invalid field names
IW-PENGI-PAGE

See RMU Script, invalid field names
IW-RETURN-CODE

See RMU Script, invalid field names
IW-WORK-INDEX

See RMU Script, invalid field names

J
JAPANESE

See RMU Script, invalid field names
Java 4, 8, 9, 16
JCL, supplied with RMU 3
jobs

available 5
FZHASMOJ 12
FZHASMPJ 14
FZHLINKJ 3
FZHRMUJ0 3, 5
FZHRMUJ1 3, 5
FZHRMUJ2 4, 5
FZHRMUX0 3, 15
FZHRMUX1 3, 15
FZHRMUX2 4, 15

JUST
See RMU Script, invalid field names

JUSTIFIED
See RMU Script, invalid field names

K
KANJI

See RMU Script, invalid field names
KEEP

See RMU Script, invalid field names
KEPT

See RMU Script, invalid field names
KEY

See RMU Script, invalid field names
KEYBOARD

See RMU Script, invalid field names
keywords, syntax diagrams xi

L
LAST

See RMU Script, invalid field names
LBEL

See RMU Script, invalid field names
LD

See RMU Script, invalid field names
LEADING

See RMU Script, invalid field names
LEFT

See RMU Script, invalid field names
LEFT-JUSTIFY

See RMU Script, invalid field names
LENGTH

See RMU Script, invalid field names
LENGTH-CHECK

See RMU Script, invalid field names
LESS

See RMU Script, invalid field names
libraries

&SYS1.SFZHAMAC 16
&SYS1.SFZHASRC 11, 14, 16
&SYS1.SFZHDOCS 7, 9, 16, 30, 35
&SYS1.SFZHJCLS 3, 4, 5, 11, 12, 13,

14, 15, 18, 19, 21, 24, 26, 29
&SYS1.SFZHLOAD 14
&SYS1.SFZHPROC 15
FJIDOC0 26

library
jobs 15

72 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

library (continued)
locator table, default 13

LIKE
See RMU Script, invalid field names

LIMIT
See RMU Script, invalid field names

LIMITS
See RMU Script, invalid field names

LINAGE
See RMU Script, invalid field names

LINAGE-COUNTER
See RMU Script, invalid field names

LINE
parameter, BYPASS statement 41
system-defined field, description 51

line number 18
LINE-COUNT

determining page properties 21
EVALUATE statement 46
parameter 24, 26
system-defined field, description 51

LINE-COUNTER
See RMU Script, invalid field names

LINE1 thru LINE66, system-defined field,
description 51

LINES
See RMU Script, invalid field names

linex, parameter, EVALUATE
statement 46

link and go
FZHRMU00 16
FZHRMU00 program 13
FZHRMU00 utility 15
FZHRMUJ2 5
FZHRMUJ2 job 11
FZHRMUJ2, FZHRMUX2 jobs 4
FZHRMUX2 job 5, 11
FZHTEST0 15
FZHTEST1 15
FZHTEST2 15
FZHTEST3 15
FZHTEST4 15
required files 6
RMU default library locator table

(FZHPROCS) 13
RMU Script, basic concepts 17
running RMU 4

LINKAGE
See RMU Script, invalid field names

LIST option 12
LIT

See RMU Script, invalid field names
LKED option 8
LKEDMAP

file 6
file description 8
required when compiling 6

LOCALLY
See RMU Script, invalid field names

locating statement in error 31
LOCK

See RMU Script, invalid field names
LOW-VALUE

See also RMU Script, invalid field
names

field name 55
parameter, DEFINE statement 34

LOW-VALUES
See also RMU Script, invalid field

names
field name 55
parameter, DEFINE statement 34

M
MANUAL

See RMU Script, invalid field names
manual, structure ix
MASK

See RMU Script, invalid field names
MEMBER

See RMU Script, invalid field names
members

FZH#PROC 14
FZHEBCSS 30

MEMORY
See RMU Script, invalid field names

MERGE
See RMU Script, invalid field names

MESSAGE
See RMU Script, invalid field names

messages 59
Migration Utility

DD name, FJSYSPR 14
libraries 14

MODE
See RMU Script, invalid field names

MODEL parameter 14
MODIFIED

See RMU Script, invalid field names
MODIFY

See RMU Script, invalid field names
MODULES

See RMU Script, invalid field names
MORE-LABELS

See RMU Script, invalid field names
MOVE

See RMU Script, invalid field names
MSGALL option 14
MSGOFF option 14
MSGON option 14
MSGSER option 14
MSGTXT option 14
MULTIPLE

See RMU Script, invalid field names
MULTIPLY

See RMU Script, invalid field names

N
N, parameter, DEFINE statement 34
NATIVE

See RMU Script, invalid field names
NEGATIVE

See RMU Script, invalid field names
NEXT

See RMU Script, invalid field names
NIX

directory 5
environment 4
files 4

NO
See also RMU Script, invalid field

names
parameter, PARM statement 33
TURF option 3

NO-ECHO
See RMU Script, invalid field names

NONAME, default value, PARM
statement 33

NONE
See RMU Script, invalid field names

NORMAL
See RMU Script, invalid field names

NOT
See RMU Script, invalid field names

Notices 65
NULL

See RMU Script, invalid field names
NULLS

See RMU Script, invalid field names
NUMBER

See RMU Script, invalid field names
NUMERIC

See RMU Script, invalid field names
NUMERIC-EDITED

See RMU Script, invalid field names

O
OBJECT

See RMU Script, invalid field names
object statement 35
OBJECT-COMPUTER

See RMU Script, invalid field names
OCCURS

See RMU Script, invalid field names
OF

See RMU Script, invalid field names
OFF

See RMU Script, invalid field names
OMITTED

See RMU Script, invalid field names
ON

See RMU Script, invalid field names
ONLY

See RMU Script, invalid field names
OPEN

See RMU Script, invalid field names
OPTIONAL

See RMU Script, invalid field names
options

1403-paper 3, 33, 36
COBOL 7
COBOL compiler PROCESS (CBL) 49
HTML1 8
LIST 12
LKED 8
MSGALL 14
MSGOFF 14
MSGON 14
MSGSER 14
MSGTXT 14
NO (TURF option) 3
STYLE 3
SYSPRDD=&DDname 14
table, RMU 11
TURF 3

Index 73

OR
See RMU Script, invalid field names

ORDER
See RMU Script, invalid field names

ORGANIZATION
See RMU Script, invalid field names

OTHER
See also RMU Script, invalid field

names
field name 55
parameter, EVALUATE statement 46

OUTPUT
See RMU Script, invalid field names

output documents, distributing 4
OVERFLOW

See RMU Script, invalid field names
OWNER

See RMU Script, invalid field names

P
P, parameter, DEFINE statement 34
PACKED-DECIMAL

See RMU Script, invalid field names
PADDING

See RMU Script, invalid field names
page

properties, determining 21
titles, removing 21

PAGE
See RMU Script, invalid field names

page_end statement 38
page_top statement 37
PAGE-COUNT

determining page properties 21
parameter 24, 26
system-defined field, description 51

PAGE-COUNTER
See RMU Script, invalid field names

PAGEFOOT
See RMU Script, invalid field names

PALETTE
See RMU Script, invalid field names

PARAGRAPH
See RMU Script, invalid field names

parameters
.ENUM1 40
.ETEXT 40
&char 33, 50
&color 36
&condition 45, 46
&count 45
&css 3, 4
¤cy 33
&decimal 33
&expression 47
&field 34, 42, 43, 44, 46, 50
&format 33
&formula 39
&HTML0 33
&image 35, 41
&length 34, 39, 40, 44, 46
&line 40
&LINEn 41
&literal 50
&mod 35
&n 36

parameters (continued)
&name 33
&option 49
&pointer 50
&procname 48
&program 42
&recfield 39
&sendfield 39
&size 36
&start 39, 40, 44, 46
&style 40
&target 50
&type 34
&value 34
1403-paper 33, 36
A 34
B 34
COBLIB 14
COMMA 33
CSVCHAR 13
CURRENCY 11
CWORK 14
DECIMAL 11
HIGH-VALUE 34
HIGH-VALUES 34
HTML1 33
LINE 41
LINE-COUNT 24, 26
linex 46
LOW-VALUE 34
LOW-VALUES 34
MODEL 14
N 34
NO 33
OTHER 46
P 34
PAGE-COUNT 24, 26
PATH 14
PERIOD 33
SPACE 34
SPACES 34
statements_1 47
statements_2 47
SVC99 14
TURF NO 30
TWORK 14
UNTIL 45
WHILE 45
ZERO 34
ZEROES 34

PARM statement 24, 26, 33
PARM-LENGTH

See RMU Script, invalid field names
PARM-REGISTER

See RMU Script, invalid field names
PARM-REGISTER-9

See RMU Script, invalid field names
PASSWORD

See RMU Script, invalid field names
PATH parameter 14
PCs, downloading to 5
PDS

FJIDOC0 3, 4
PENGI-CODE0

See RMU Script, invalid field names
PENGI-CODES

See RMU Script, invalid field names

PENGI-STATUS
See RMU Script, invalid field names

PERFORM
See also RMU Script, invalid field

names
field name 56
statement 47

PERIOD, parameter, PARM statement 33
PF

See RMU Script, invalid field names
PH

See RMU Script, invalid field names
PIC

See RMU Script, invalid field names
PICTURE

See RMU Script, invalid field names
PLUS

See RMU Script, invalid field names
POINTER

See RMU Script, invalid field names
POS

See RMU Script, invalid field names
POSITION

See RMU Script, invalid field names
POSITIVE

See RMU Script, invalid field names
PRESENT

See RMU Script, invalid field names
PREVIOUS

See RMU Script, invalid field names
print control character 18
PRINT-SWITCH

See RMU Script, invalid field names
PRINTER

See RMU Script, invalid field names
PRINTER-1

See RMU Script, invalid field names
printer, internal 14
PRINTING

See RMU Script, invalid field names
PRIOR

See RMU Script, invalid field names
problems, runtime 31
PROC statement 48
PROCEDURE

See RMU Script, invalid field names
PROCEDURES

See RMU Script, invalid field names
PROCEED

See RMU Script, invalid field names
PROCESS

See RMU Script, invalid field names
PROCESS statement 49
PROCESSING

See RMU Script, invalid field names
PROCLIB0 constant 14
PRODUCT0 constant 14
PROGRAM

See RMU Script, invalid field names
program check interrupts 31
Program Directory 11
PROGRAM-DATE

See RMU Script, invalid field names
PROGRAM-ID

See RMU Script, invalid field names
PROGRAM-INFO-TABLE

See RMU Script, invalid field names

74 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

PROGRAM-NAME
See RMU Script, invalid field names

PROGRAM-OPSYS
See RMU Script, invalid field names

PROGRAM-TIME
See RMU Script, invalid field names

PROGRAM-TYPE
See RMU Script, invalid field names

programs
FZHBPARS 8
FZHLINKJ 5
FZHPROCS 14
FZHRMU00 3, 4, 13
FZHRMU01 3, 5, 13
FZHUNIX1 4, 15

PROMPT
See RMU Script, invalid field names

PROTECTED
See RMU Script, invalid field names

PURGE
See RMU Script, invalid field names

Q
QUEUE

See RMU Script, invalid field names
QUOTE

See RMU Script, invalid field names
QUOTES

See RMU Script, invalid field names

R
RANDOM

See RMU Script, invalid field names
RANGE

See RMU Script, invalid field names
RC

See RMU Script, invalid field names
RC-ABEND00

See RMU Script, invalid field names
RC-ABRCODE

See RMU Script, invalid field names
RC-BOOLEAN

See RMU Script, invalid field names
RC-CHKOVF0

See RMU Script, invalid field names
RC-COBSTAT

See RMU Script, invalid field names
RC-DATESWP

See RMU Script, invalid field names
RC-HEXSTR0

See RMU Script, invalid field names
RC-HEXSTR1

See RMU Script, invalid field names
RC-REPCHR0

See RMU Script, invalid field names
RD

See RMU Script, invalid field names
READ

See RMU Script, invalid field names
READY

See RMU Script, invalid field names
REALM

See RMU Script, invalid field names

RECEIVE
See RMU Script, invalid field names

RECONNECT
See RMU Script, invalid field names

RECORD
See RMU Script, invalid field names

RECORD-NAME
See RMU Script, invalid field names

RECORDING
See RMU Script, invalid field names

RECORDS
See RMU Script, invalid field names

REDEFINES
See RMU Script, invalid field names

REEL
See RMU Script, invalid field names

REFERENCE
See RMU Script, invalid field names

REFERENCES
See RMU Script, invalid field names

RELATION
See RMU Script, invalid field names

RELATIVE
See RMU Script, invalid field names

RELEASE
See RMU Script, invalid field names

RELOAD
See RMU Script, invalid field names

REMAINDER
See RMU Script, invalid field names

REMOVAL
See RMU Script, invalid field names

removing lines 21
RENAMES

See RMU Script, invalid field names
repeatable items, syntax diagrams xi
REPEATED

See RMU Script, invalid field names
REPLACE

See RMU Script, invalid field names
REPLACING

See RMU Script, invalid field names
REPORT

See RMU Script, invalid field names
REPORTING

See RMU Script, invalid field names
REPORTS

See RMU Script, invalid field names
REQUIRED

See RMU Script, invalid field names
RERUN

See RMU Script, invalid field names
RESERVE

See RMU Script, invalid field names
reserved

fields, COBOL 52
RESET

See RMU Script, invalid field names
RETAINING

See RMU Script, invalid field names
RETRIEVAL

See RMU Script, invalid field names
RETURN

See RMU Script, invalid field names
RETURN-CODE

STOP statement 49
system-defined field, description 51

REVERSE-VIDEO
See RMU Script, invalid field names

REVERSED
See RMU Script, invalid field names

REWIND
See RMU Script, invalid field names

REWRITE
See RMU Script, invalid field names

RF
See RMU Script, invalid field names

RH
See RMU Script, invalid field names

RIGHT
See RMU Script, invalid field names

RIGHT-JUSTIFY
See RMU Script, invalid field names

RMU
compiler generated messages 59
default

library locator table 13
options table 11

features 1
how it works 1
installation 11
introduction 1
libraries 11
messages

compiler generated 59
runtime, error 59

reserved words 16
running

in link and go mode 6
JCL, supplied with RMU 3
with compiled RMU Script 6
without RMU Script program 5

runtime error messages 59
sections, description 17
ways of running 3
working with 3

RMU Script
available jobs 5
coding rules 18
compile and link 5
compiler jobs 5
compiling, required files 5
concepts 17
CSV document 21
debugging 30
example 19
HTML document

creating simple 24
creating with control breaks

selection tree 26
HTML document, decorating 29
I/O 17
invalid field names 52
language instruction reference 33
working with 17

RMUERR1
file description 8
link and go 6
required when compiling 6

RMULIST
description 8
link and go 6
required when compiling 6

Index 75

ROLLBACK
See RMU Script, invalid field names

ROLLING
See RMU Script, invalid field names

ROUNDED
See RMU Script, invalid field names

RUN
See RMU Script, invalid field names

runtime problems 31

S
SAME

See RMU Script, invalid field names
SCREEN

See RMU Script, invalid field names
SD

See RMU Script, invalid field names
SEARCH

See RMU Script, invalid field names
SECTION

See RMU Script, invalid field names
sections, RMU 17
SECURE

See RMU Script, invalid field names
SECURITY

See RMU Script, invalid field names
SEGMENT

See RMU Script, invalid field names
SEGMENT-LIMIT

See RMU Script, invalid field names
SEL

See RMU Script, invalid field names
SELECT

See RMU Script, invalid field names
SEND

See RMU Script, invalid field names
SENTENCE

See RMU Script, invalid field names
SEPARATE

See RMU Script, invalid field names
SEQUENCE

See RMU Script, invalid field names
sequence numbers, types 30
SEQUENTIAL

See RMU Script, invalid field names
SERVICE

See RMU Script, invalid field names
SESSION-ID

See RMU Script, invalid field names
SET

See RMU Script, invalid field names
SHARED

See RMU Script, invalid field names
SHIFT-IN

See RMU Script, invalid field names
SHIFT-OUT

See RMU Script, invalid field names
SIGN

See RMU Script, invalid field names
SIZE

See RMU Script, invalid field names
SKIP1

See RMU Script, invalid field names
SKIP2

See RMU Script, invalid field names

SKIP3
See RMU Script, invalid field names

SMP/E 11
SORT

See RMU Script, invalid field names
SORT-CONTROL

See RMU Script, invalid field names
SORT-CORE-SIZE

See RMU Script, invalid field names
SORT-FILE-SIZE

See RMU Script, invalid field names
SORT-MERGE

See RMU Script, invalid field names
SORT-MESSAGE

See RMU Script, invalid field names
SORT-MODE-SIZE

See RMU Script, invalid field names
SORT-RETURN

See RMU Script, invalid field names
SOURCE

See RMU Script, invalid field names
SOURCE-COMPUTER

See RMU Script, invalid field names
SPACE

See also RMU Script, invalid field
names

field name 57
parameter, DEFINE statement 34

SPACE-FILL
See RMU Script, invalid field names

SPACES
See also RMU Script, invalid field

names
field name 57
parameter, DEFINE statement 34

SPECIAL-NAMES
See RMU Script, invalid field names

STANDARD
See RMU Script, invalid field names

STANDARD-1
See RMU Script, invalid field names

STANDARD-2
See RMU Script, invalid field names

STANDARD-3
See RMU Script, invalid field names

STANDARD-4
See RMU Script, invalid field names

START
See RMU Script, invalid field names

STARTING
See RMU Script, invalid field names

statement sequence numbers 30
statements

<docs> 36
<object> 35
<page_end> 38
<page_top> 37
<style> 35
assignment 38
BYPASS 21, 24, 26, 41
CALL 42
COBOL 52
CONTINUE 42
CONTROL 26, 43
DEFINE 26, 34
DISPLAY 44
DO 44

statements (continued)
docs_end 37
ELSE 47
END-DO 44
END-EVALUATE 45
END-IF 47
END-PROC 48
EVALUATE 24, 26, 45
IF 47
PARM 24, 26, 33
PERFORM 47
PROC 48
PROCESS 49
STOP 49
STRING 50

statements_1, parameter, IF statement 47
statements_2, parameter, IF statement 47
STATUS

See RMU Script, invalid field names
STDERR

file description 8
publishing to z/OS UNIX 6

STDOUT
file description 8
publishing to z/OS UNIX 6

STOP
See RMU Script, invalid field names

STOP statement 49
STORE

See RMU Script, invalid field names
STRING

See also RMU Script, invalid field
names

field name 57
statement 50

STYLE
See also RMU Script, invalid field

names
field name 57
option 3

style statement 35
SUB-QUEUE-1

See RMU Script, invalid field names
SUB-QUEUE-2

See RMU Script, invalid field names
SUB-QUEUE-3

See RMU Script, invalid field names
SUB-SCHEMA

See RMU Script, invalid field names
SUBFILE

See RMU Script, invalid field names
SUBPROGRAM

See RMU Script, invalid field names
SUBTRACT

See RMU Script, invalid field names
SUM

See RMU Script, invalid field names
SUPPRESS

See RMU Script, invalid field names
SVC99 parameter 14
SWITCH

See RMU Script, invalid field names
SWITCH-1

See RMU Script, invalid field names
SWITCH-2

See RMU Script, invalid field names

76 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

SWITCH-3
See RMU Script, invalid field names

SWITCH-4
See RMU Script, invalid field names

SWITCH-5
See RMU Script, invalid field names

SWITCH-6
See RMU Script, invalid field names

SWITCH-7
See RMU Script, invalid field names

SWITCH-8
See RMU Script, invalid field names

symbol, &sys1 14
SYMBOLIC

See RMU Script, invalid field names
SYNC

See RMU Script, invalid field names
SYNCHRONIZED

See RMU Script, invalid field names
syntax diagrams, how to read xi
SYSDATE or SYSDATE-E, system-defined

field, description 51
SYSDATE-9, system-defined field,

description 51
SYSDATE-LONG or SYSDATE-LONG-E,

system-defined field, description 52
SYSDATE-LONG-9, system-defined field,

description 52
SYSIN

compiling RMU Script 6
file description 8
link and go 6
link and go mode 4
not coding in JCL 3

SYSLMOD, required when compiling 6
SYSOUT

DISPLAY statement 44
file description 8
link and go 6
running with compiled RMU

Script 6
running without RMU Script 5

SYSPRDD=&DDname option 14
system

defined fields 51
information 15

SYSTIME-9, system-defined field,
description 52

SYSTIME, system-defined field,
description 52

T
TABLE

See RMU Script, invalid field names
table, FZHPROCS 14
TALLY

See RMU Script, invalid field names
TALLYING

See RMU Script, invalid field names
TAPE

See RMU Script, invalid field names
TENANT

See RMU Script, invalid field names
TERMINAL

See RMU Script, invalid field names

TERMINATE
See RMU Script, invalid field names

TEST
See RMU Script, invalid field names

TEXT
See RMU Script, invalid field names

text, highlighting 30
THAN

See RMU Script, invalid field names
THEN

See RMU Script, invalid field names
THROUGH

See RMU Script, invalid field names
THRU

See RMU Script, invalid field names
TIME

See RMU Script, invalid field names
TIMEOUT

See RMU Script, invalid field names
TIMES

See RMU Script, invalid field names
TITLE

See RMU Script, invalid field names
TO

See RMU Script, invalid field names
TOP

See RMU Script, invalid field names
TRACE

See RMU Script, invalid field names
trademarks 66
TRAILING

See RMU Script, invalid field names
TRAILING-SIGN

See RMU Script, invalid field names
TRANSACTION

See RMU Script, invalid field names
TRANSCEIVE

See RMU Script, invalid field names
TRUE

See RMU Script, invalid field names
TURF option 3, 13, 30, 36
TWORK parameter 14
TYPE

See RMU Script, invalid field names

U
UNDERLINE

See RMU Script, invalid field names
UNEQUAL

See RMU Script, invalid field names
UNIT

See RMU Script, invalid field names
UNIX, setting up environment 14
UNLOCK

See RMU Script, invalid field names
UNSTRING

See RMU Script, invalid field names
UNTIL

See also RMU Script, invalid field
names

field name 57
parameter, DO statement 45

UP
See RMU Script, invalid field names

UPDATE
See RMU Script, invalid field names

UPON
See RMU Script, invalid field names

USAGE
See RMU Script, invalid field names

USAGE-MODE
See RMU Script, invalid field names

USE
See RMU Script, invalid field names

USER
See RMU Script, invalid field names

USING
See RMU Script, invalid field names

V
VAL

See RMU Script, invalid field names
VALID

See RMU Script, invalid field names
VALIDATE

See RMU Script, invalid field names
VALUE

See RMU Script, invalid field names
VALUES

See RMU Script, invalid field names
VARCHAR

See RMU Script, invalid field names
VARIABLE

See RMU Script, invalid field names
variables, syntax diagrams xi
VARYING

See RMU Script, invalid field names
verbs, COBOL 52

W
WAIT

See RMU Script, invalid field names
WHEN

See RMU Script, invalid field names
WHEN-COMPILED

See RMU Script, invalid field names
WHILE, parameter, DO statement 45
WITH

See RMU Script, invalid field names
WITHIN

See RMU Script, invalid field names
WORDS

See RMU Script, invalid field names
working with RMU 3
WORKING-STORAGE

See RMU Script, invalid field names
WRITE

See RMU Script, invalid field names
WRITE-ONLY

See RMU Script, invalid field names

Z
z/OS Enterprise COBOL 13
z/OS server

publishing to 14
setting up environment 14

ZERO
See also RMU Script, invalid field

names

Index 77

ZERO (continued)
parameter, DEFINE statement 34

ZERO-FILL
See RMU Script, invalid field names

ZEROES
See also RMU Script, invalid field

names
field name 58
parameter, DEFINE statement 34

ZEROS
See also RMU Script, invalid field

names
field name 58

78 Report Modernization Utility for z/OS and OS/390 V1R1 User’s Guide

Readers’ Comments — We’d Like to Hear from You

Report Modernization Utility for z/OS and OS/390
User’s Guide and Reference
Version 1 Release 1

Publication No. SC19-2726-00

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Send your comments to the address on the reverse side of this form.

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
SC19-2726-00

SC19-2726-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Reader Comments
DTX/E269
555 Bailey Avenue
San Jose, CA
U.S.A. 95141-9989

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5697-N44

Printed in USA

SC19-2726-00

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
R

ep
or

tM
od

er
ni

za
tio

n
U

til
ity

fo
r

z/
O

S
an

d
O

S/
39

0
R

ep
or

tM
od

er
ni

za
tio

n
U

til
ity

fo
r

z/
O

S
an

d
O

S/
39

0
V

1R
1

U
se

r’
s

G
ui

de
Ve

rs
io

n
1

R
el

ea
se

1

	Contents
	About this manual
	Who should use this manual
	Structure of this manual
	How to read syntax diagrams
	Chapter 1. Introducing RMU
	How does it work?
	RMU features

	Chapter 2. Working with RMU
	Running RMU
	Distributing output documents
	Summary of available jobs
	Summary of file DD Names
	File descriptions

	Using the FZHBPARS parser utility

	Chapter 3. Installation and RMU options
	Installation
	RMU default options (FZHOPTAB) table
	RMU default library locator table (FZHPROCS)
	Setting up the z/OS server (UNIX) environment
	System information

	Chapter 4. Working with RMU Script
	Basic concepts
	I/O handling
	Coding rules
	Program example
	Creating CSV documents
	Creating simple HTML documents
	Creating HTML1 documents with the control breaks selection tree
	Decorating an HTML document
	Debugging RMU Script programs

	Chapter 5. RMU Script language instruction reference
	PARM statement
	DEFINE statement
	<object> and </object> tag
	<style> and </style> tag
	<docs_top> and </docs_top> tag
	<docs_end> and </docs_end> tag
	<page_top> and </page_top> tag
	<page_end> and </page_end> tag
	Assignment statement
	BYPASS statement
	CALL statement
	CONTINUE statement
	CONTROL statement
	DISPLAY statement
	DO and END-DO statements
	EVALUATE and END-EVALUATE statements
	IF, ELSE, and END-IF statements
	PERFORM statement
	PROC/END-PROC statement
	PROCESS statement
	STOP statement
	STRING statement
	System-defined fields
	COBOL verbs, statements, and reserved fields
	

	Chapter 6. Messages
	RMU compiler-generated messages

	Notices
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Readers’ Comments — We′d Like to Hear from You

