
SSL: Put Your SSL: Put Your
Data Under Data Under
WrapsWraps

Mary SweatMary Sweat
IBM CorporationIBM Corporation
Washington System CenterWashington System Center

sweatm@us.ibm.comsweatm@us.ibm.com

SSL: IntroductionSSL: Introduction

What is SSLWhat is SSL
SSL stands for Secure Socket LayerSSL stands for Secure Socket Layer
A "de facto" standard protocol developed by A "de facto" standard protocol developed by
Netscape, Inc.Netscape, Inc. (TM)(TM)

GoalGoal
provide communication privacy and reliability provide communication privacy and reliability
between two communicating applicationsbetween two communicating applications

between client/server applications between client/server applications
prevent eavesdropping by supplying encryptionprevent eavesdropping by supplying encryption
prevent tampering by using message integrityprevent tampering by using message integrity
prevent message forgery by using digital certificatesprevent message forgery by using digital certificates

The most common use today for SSL is between a web
browser and a a web server.

The SSL 3.0 Spec is located at
http://home.netscape.com/eng/ssl3/3-SPEC.HTM

SSL: Why Use ItSSL: Why Use It

Any application communicating via a client/server can Any application communicating via a client/server can
use the SSL protocoluse the SSL protocol

application protocol independentapplication protocol independent

IIncrease the security level of communicated data ncrease the security level of communicated data
(beyond what the communication method already (beyond what the communication method already
provides)provides)

Ensure who is communicatingEnsure who is communicating

client and server authenticate each other client and server authenticate each other

Provide secure/private connectionsProvide secure/private connections
client/server negotiate with each other regarding what client/server negotiate with each other regarding what
encryption algorithm and cryptographic keys will be used encryption algorithm and cryptographic keys will be used
no knowledge of each other's codeno knowledge of each other's code
encryption is used after an initial contactencryption is used after an initial contact

Application Data is protected while in transit

A password and user ID could flow in the clear before the
handshake is completed.
Depending on how the application has been written, a URL
may require a userid and password before it has started an
HTTPS session.

SSL: Why Use ItSSL: Why Use It

EfficiencyEfficiency
cryptographic operations can be highly CPU intensivecryptographic operations can be highly CPU intensive
SSL incorporates an optional caching schemeSSL incorporates an optional caching scheme

reduce the number of connections that need to be reduce the number of connections that need to be
established from scratchestablished from scratch
network activity has been reducednetwork activity has been reduced

SSL: FunctionsSSL: Functions
Server

1. provides information and data to the client at the client's
 request
2. decides what data should be protected
3. is usually an application written to provide data services
 outbound
4. has the responsibility to protect its identity (will prove its
 identity via a certificate)

1. initiates the communications
2. generally selects the data to be provided by the Server
3. most are browsers but not necessarily
4. most applications do not care who the clients are
5. can prove its identity by also having a certificate

Client

SSL: ProtocolSSL: Protocol

Record Layer - application data messages

Handshake Layer - exchange cryptographic parameters
cryptographic
algorithms

authentication public key encryption to
generate shared secrets

protocol
version

fragmented encryptedcompressed

SSL is a layered protocol. At each layer, messages may include fields for length, description, content.

Handshake Layer operates on top of the SSL Record Layer. In the Record Layer the data is processed
based on the functions selected in the Handshake Layer.

An SSL session goes through a set of states, starting with an initial, clear-text socket connection.
1. during the handshake process, the server and client can authenticate each other, using
 certificates (certificate will usually contain the certificate format, algorithms used to sign the
 certificate, name of the certificate authority, validity period of certificate, name of user certificate is
 issued for, user's public key, algorithms (such as RSA or DSS). used to generate the key and
 CA's signature)
2 .the client and server negotiate what encryption algorithms and cryptographic keys will be used
3. this is done before any application data is transmitted

Definitions:
 1. Algorithm is the procedure the defines the encryption/decryption process
 2. Encryption - encoding the contents of the message in such a way that hides its
 contents from outsiders (SSL encryption algorithms choices; RC2, RC4, DES or T-DES)

SSL: MessageSSL: Message

Transmitted

fragments data
into manageable blocks

optionally compresses
the data

applies a
MAC

transmits the
results

Received

decrypted verified decompressed reassembled delivered to higher
level clients

Definitions:

1. Hashing - a hash algorithm is processed against the data to be transmitted and a numeric
 value is generated. This value along with packaging information (algorithm used
 etc.) and the data is sent to the receiver. The receiver will run the data through the
 same algorithm used by the sender. If the numeric value is the same as the value
 sent, the receiver knows that the data was not changed or modified during transit.
 Generating the same numeric value for different data is not feasible.
2. MAC - Message Authentication Codes, hash functions with a private key. To create or
 verify the MAC, one must have the key. This is useful for verifying that hashes
 have not been tampered with during transmission.

3 .Digital Signature - is the result of hash data that is encrypted by the senders private key. This
 provides non-repudiation, the proof that only the sender could have sent the
 data because only the sender has access to their private key.

 How Does It Really Work How Does It Really Work

client server

client hello, my cipher
info, etc.
 version of SSL the client will use
 session ID
 random number of 28 bytes
 list of ciphers and compression
 algorithms that the client can
 use and supports
 time and date

server hello, my cipher
info based on client
cipher info, etc.
certificate *
key exchange *
client certificate request *
hello, done message

 version of SSL that is the highest
 supported by the server
 random number of 28 bytes
 time and date
 session ID
 list of ciphers that the server can use
 based on the ciphers sent by the client
 the compression algorithms selected
 from those sent by the client

Handshake

* optional or situation-dependent
 messages that are not always
 sent

The client and server hello messages generate random numbers created by a secure random number generator.
These numbers must be different and will be used later when creating a master key which is used for encrypting the
application data. The client also passes a list of algorithms used to compress data prior to encryption and a CipherSuite
list. Each CipherSuite defines both a key exchange algorithm and a CipherSpec (bulk data encryption algorithm and MAC
algorithm, hash size, etc.)

During the Handshake process, the server processes the client's hello and responds with either a server hello message
or a handshake_failure alert message. A failure occurs if no acceptable cryptographic algorithms are available to the
server. The server selects a CipherSuite and a Compression algorithm from the list supplied by the client.

If the server is to be authenticated, the server sends its certificate immediately following the server hello message.
Certificates are in a sequence chain, ordered by the senders certificate first and the root certificate authority last. The
certificate contains the certificate format info, the server's distinguished name, its public key, algorithms used to
generate the key, validity dates, name of the CA, CA signature and algorithms used to sign the certificate. If the server
has no certificate or the certificate is only used for signing (meaning the certificate can not be used for key distribution)
the server will send it's server key exchange message . This message contains a Key Exchange algorithm (RSA,
Diffie_Hellman or Fortezza), key exchange parameters (public encryption key) , the hash value of these parameters and
the Signature algorithm used. The server may request a certificate from the client at this time.

 You can generate a certificate request which you must then send to a certification authority to be certified. The utilities
available on S/390 are;
 1. use gskkyman utility (provided with base S/390)
 2. use the RACF component
 3. use a certificate from the IBM Vault Registry (AIX, details located at
 www-4.ibm.com/software/security/registry)

How Does It Really Work ...How Does It Really Work ...

client server

certificate *
key exchange
certificate verify *
change cipher spec
(begin new cipher spec)
finished

change cipher spec
finished

Handshake

application data application data

* optional or situation-dependent
 messages that are not always
 sent

The client verifies that the server provided a valid certificate, if one was required, and checks that the
parameters passed by the server are acceptable. If a client certificate was requested and the client has one,
it is sent at this point. If it has none a , a 'no certificate' alert is sent. If the client has a certificate it sends a
list of acceptable certificates ordered with the client certificate first and ending with the root .

The client key exchange message uses the public key exchange algorithm specified in the server's
certificate or key exchange message. If using RSA or Fortezza the client generates a pre_master_secret
key and encrypts it with the server's public key. This public key was supplied in the server certificate or
during the server key exchange. For Diffie-Hellman the pre_master_key is created from a Diffie_Hellman
computation. This encrypted pre_master_key is sent to the server and the server decrypts. Both the client
and the server convert the pre_master_key into the master_secret key using the random generate numbers
created by the client and server earlier in the handshake. This master_secret key is the one use by the
client and server to encrypt application data.

A change cipher spec is sent from client to server to indicate that the new key and algorithms should be
used for future communication. This is followed by a Finished message. This Finished message is the first
message encrypted under the new algorithm so both the client and the server must decrypt this message
and verify that the contents are correct.

OS/390 Support for SSLOS/390 Support for SSL

System SSLSystem SSL
System SSL is part of Cryptographic Services BaseSystem SSL is part of Cryptographic Services Base
element of OS/390element of OS/390
a set of programming APIs for securing socket a set of programming APIs for securing socket
communicationscommunications

10 DLLs, 1 DLL export file, 1 utility program, 2 message10 DLLs, 1 DLL export file, 1 utility program, 2 message
catalogs, 1 header file, and sample codecatalogs, 1 header file, and sample code
HFS install directory: /usr/lpp/gsksslHFS install directory: /usr/lpp/gskssl
PDS DLL repository:<GSKHLQ> SGSKLOADPDS DLL repository:<GSKHLQ> SGSKLOAD

FMIDFMID
HCPT270 BaseHCPT270 Base
JCPT271 Strong cryptoJCPT271 Strong crypto
JCPT272 JapaneseJCPT272 Japanese

The DLLs which implement the APIs are shipped in PDS
form only. This allows them to be called from PDS-based
programs or HFS-based programs.

The purpose of System SSL is to allow you to code your
application with APIs provided rather then you having to
write your application from scratch and code every piece to
conform to the SSL protocol.

The utility program allows you to build your key database file
for storing certificates

Any IBM product that uses SSL may be using System SSL
under the covers.

OS/390 Support for SSLOS/390 Support for SSL

Support consists of five C/C++ callable functions for Support consists of five C/C++ callable functions for
establishing and using SSL socket connectionsestablishing and using SSL socket connections

gsk_initializegsk_initialize
gsk_secure_soc_initgsk_secure_soc_init
gsk_secure_soc_readgsk_secure_soc_read
gsk_secure_soc_writegsk_secure_soc_write
gsk_secure_soc_closegsk_secure_soc_close

All functions are exported from the GSKSSL DLL, All functions are exported from the GSKSSL DLL,
other DLLs are loaded on-demandother DLLs are loaded on-demand

Other utility functions provided:Other utility functions provided:
gsk_get_dn_by_labelgsk_get_dn_by_label
gsk_get_cipher_infogsk_get_cipher_info
gsk_free_memory gsk_free_memory

The SSL programming interfaces used most often are the 5 concerning setting up and using the secure
socket connection. These 5 APIs are the common used for establishing connections.

The other utilities listed here can be used to get some limited information about certificates that are
transferred during the SSL handshake:
 - gsk_get_dn_by_label will get the distinguished name of a certificate identified by
 the given label in the key database
 - gsk_get_cipher_info will return selected information from a client certificate
 - gsk_free_memory should be used to deallocate data that was allocated by the SSL
 APIs and returned to the caller

GSK_INITIALIZE ProcessingGSK_INITIALIZE Processing

Validate SSL version (V3 or V2)Validate SSL version (V3 or V2)
Validate key database passwordValidate key database password
Open key database fileOpen key database file
Initialize System SSL environment for Initialize System SSL environment for
the processthe process

This API must only be used once per process. If called more
than once unpredictable errors could occur.

Sets up the overall System SSL for initializing the
environment for the current process.

GSK_SECURE_SOC_INIT GSK_SECURE_SOC_INIT
ProcessingProcessing

Validate key database entry to be usedValidate key database entry to be used
Validate cipher spec preferenceValidate cipher spec preference
Determine type (client/server) of handshakeDetermine type (client/server) of handshake
to performto perform
Use the descriptor, Use the descriptor, skreadskread and and skwrite skwrite
routines to wait and perform the SSL handshakeroutines to wait and perform the SSL handshake
Cipher spec used for SSL session returnedCipher spec used for SSL session returned
SSL protocol version for session returnedSSL protocol version for session returned
Public/private key operations performed during Public/private key operations performed during
handshakehandshake

This process is very CPU Intensive and some caching is involved.

Initializes the data areas necessary for System SSL to either iniate or accepts a secure socket connection.

This one API covers all the functions performed in the handshake.

GSK_SECURE_SOC_READ,GSK_SECURE_SOC_READ,
WRITE ProcessingWRITE Processing

Bulk data encryption performed during writeBulk data encryption performed during write
Bulk data decryption performed during readBulk data decryption performed during read
Callbacks made to application routines to perform Callbacks made to application routines to perform
actual socket reads/writesactual socket reads/writes
Maximum transmission block of roughly 30KMaximum transmission block of roughly 30K

Applications must supply the read and write routines.

The Web maximum transmission block is 8K.

This API will receive or send data on a secure socket
connection using the application specified read/write
routines.

Key and Certificate ManagementKey and Certificate Management

X.509 Certificates are used by both Client and X.509 Certificates are used by both Client and
Server when securing communications using the Server when securing communications using the
SSL protocolSSL protocol

Client must verify the server's certificateClient must verify the server's certificate

based on the certificate of the Certificatebased on the certificate of the Certificate
Authority (CA) that signed the certificateAuthority (CA) that signed the certificate
 OROR
 based on a self-signed certificate from the server based on a self-signed certificate from the server

Server must verify the client's certificate (if Server must verify the client's certificate (if
requested) is using the certificate of the CA that requested) is using the certificate of the CA that
signed the certificatesigned the certificate

System SSL requires that the server have a certificate - it
can, however, be a self-signed certificate which GSKKYMAN
can create. The client must be able to verify the server's
certificate.

If the certificate is from a CA that is known to the base key
database created by gskkyman, the client's key database
need only be created.

If the server's certificate is a self-signed certificate, the
server's certificate must be imported into the client's key
database (after being exported to a file from the server's key
database).

GSKKYMAN UtilityGSKKYMAN Utility

CA certificates, client, and server CA certificates, client, and server
certificates are stored in a key databasecertificates are stored in a key database
managed by a UNIX shell command-linemanaged by a UNIX shell command-line
utility called gskkymanutility called gskkyman

Key database must be an HFS fileKey database must be an HFS file

GSKKYMAN is also used to formulate certificateGSKKYMAN is also used to formulate certificate
requests and handle certificate request responsesrequests and handle certificate request responses

GSKKYMAN is used by both client and serverGSKKYMAN is used by both client and server
side of System SSL communications (whenside of System SSL communications (when
running OS/390)running OS/390)

To run GSKKYMAN, STEPLIB must be set.

NLSPATH must point to a directory that contains the
message catalogs for the GSKKYMAN utility. These appear
in /usr/lib/nls/msg/C as well as
/usr/lib/nls/msg/En_US.IBM-1047 (and the corresponding
Japanese locale when JCPT272 is installed).

GSKKYMAN Utility UsageGSKKYMAN Utility Usage

 Use gskkyman to;
create a key database file and associate
a password with it

 this will add a number of well-known CA
 certificates to the key database
 (e.g. Verisign, Thawte)
 if these CAs are used for obtaining server
 certificates, then nothing else is required
 on the client side

create a self-signed certificate
 OR
create a certificate request
import a certificate that was sent by a CA

cut and paste into a file
transfer the file to OS/390
use import function to import the certificate
either DER encoded or Base-64 encoded
formats can be used

GSKKYMAN Utility UsageGSKKYMAN Utility Usage

 mark a certificate as the default to be used

 export/import a certificate to/from a transferable
 file format

 base-64 encoded is supported
 DER encoded is supported

 list certificates in a key database

DER - Data Encryption Rules

BER - Binary Encoding Rules

Points to RememberPoints to Remember

SSL is a protocolSSL is a protocol
divided into two layers; handshake and recorddivided into two layers; handshake and record
in the handshake layer authentication occurs for the in the handshake layer authentication occurs for the
server and optionally the clientserver and optionally the client

negotiations of sessions options also take placenegotiations of sessions options also take place

SSL protocol must be implemented by the SSL protocol must be implemented by the
application code wishing to use itapplication code wishing to use it

S/390 products needing SSL, use SSL via a S/390 products needing SSL, use SSL via a
common code interfacecommon code interface

an internal toolkitan internal toolkit
OS/390 Cryptographic Services System SSL OS/390 Cryptographic Services System SSL
componentcomponent

S/390 servers using SSL determine the priority of S/390 servers using SSL determine the priority of
the algorithm used at the record layer.the algorithm used at the record layer.

System SSL Publication is SC24-5877 OS/390 Cryptographic Services System SSL Programming Guide
and Reference

