

Solving Sysplex Questions with zCP3000

Gretchen Frye

Session ID: zCP3K_plex

June 2015, Gaithersburg, MD

Trademarks

The following are trademarks of the International Business Machi nes Corporation in the United States and/or other countries.

AIX*	IBM i*	POWER7*	PureSystems	Tivoli*
BladeCenter*	IBM logo*	Power Systems	Storwize*	WebSphere *
DB2*	Informix*	PowerVM	System Storage*	zEnterprise*
Easy TIER*	PartnerWorld *	PureApplication	System x*	
IBM*	Power*	PureFlex	System z*	

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are e ither registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Windows Server and the Windows logo are trademarks of the Microsoft group of countries.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

* Other product and service names might be trademarks of IBM or other companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the a mount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation ar e presented as illustrations of the manner in which some custom ers have used IBM products and the results they may have achieve d. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this docu ment in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non -IBM products. Questions on the capabilities of non -IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Agenda

Use zCP3000 to look at sysplex questions:

- Collect the right data for a study
- Understand it, and identify current problem areas
- Model a new hardware configuration
- Maybe shared ICF and Thin Interrupt?
- z13 Link Migration Considerations
- Link consolidation on InfiniBand and ICA
- Sysplex Aggregation Pricing eligibility

This session is *not* covering:

- Sysplex concepts -> see the replay of Gene Sale's excellent session
- zCP3000 basic knowledge please see the last page for reference urls

Collecting Model Input Data

Plan the Study

- Any current performance concerns?
- Which CFs matter, and which don't?
- Should the study include overview information?
- Are any partitions currently sharing channel paths?
- Are *all* of the mainframes (z/OS and CF) co-located? Is the distance changing?
- If there is a standalone CF, what type of machine is it on, what type of engines is the CF using and how many, and is it sharing?

Collecting Model Input Data

Capture the *right* period of time,

representative of what you want to do.

- Collect 1 week, maybe 2 if variability is not well understood.
- Assume 24x7 unless proven otherwise
- All members of "production" sysplexes
- If doing link consolidation, useful to include Test/Dev sysplexes.
- CPUMF (SMF 113) helps get the workload characterization right.
- All partitions that belong together as a production group
- Sysplex Aggregation Pricing reports require data for all sysplex members

Too Much Data!

- 2015 Techline testcase: 25 sysids @ 13.7MB average 342 MB of input data
- Use 64-bit CPSJAVA
- Collect one week, not two
- Shut down everything else.
- Increase max java heap size
 SET JAVA_OPTS="-Xms2G –Xmx6G" (in your C:\cpstools\zCP3000 64-bit dir, then cpstoolstart to start zCP3000)
- Once data loaded, delete I/O, then save 3PA
- Delete uninteresting intervals, then save 3PA
- Ask <u>CPSTOOLS@US.IBM.COM</u> for help

IBM.

Agenda

Use zCP3000 to look at sysplex questions:

- Collect the right data for a study
- Learn about the data, identify current problem areas
- Modelling a new hardware configuration
- Using shared ICF and Thin Interrupt
- z13 Link Migration Considerations
- Link consolidation on InfiniBand and ICA
- Sysplex Aggregation Pricing eligibility

zCP3000 "modes"

IBM

Nov 2014 major changes in zCP3000

As of Nov 2014, use QM mode, not CP mode for sysplex

Why? Heisenberg's uncertainty principle : you can measure this, or you can measure that, but not both at the same time.

Sysplex modelling function moves to QM mode, so that it can:

- Recalculate service time when the CF moves to a different speed engine.
- Change the dispatch mode to/from dedicated, dyndisp = Off/On/Thin
- Can make multiple configuration changes and still see before vs after.

Unchanged from CP mode:

- Service time recalculation for a cf link type change or distance change.
- Projected service time when moving from dedicated to thin interrupt.

Understand the Collected Model Data

View->Physical

CF23 and its connections to PLEXIO sysplex members are highlighted at left.

Select a study interval

Select a study interval

The default is 90th % of

- All shifts
- All intervals
- All CPCs
- GCP used

Select a study interval

Keep

- All shifts
- All intervals
- All CPCs •

Change this:

- **Uncheck CP** •
- Check ICF •
- **Reselect 90%** •

Look at Collected Model Data

Incomplete Configuration Information

- Red Triangles flag things that you need to fix.
- InfiniBand links are flagged until you refine the type.
- Standalone CFs will often need further definition.

Looking at Collected Model Data

We know this config is not right.

We do not have SMF for this machine. This is all we know about CF25:

- CFTYPE="2097-E12"
- CFNCPS="01"
- SR="59644"
- Plus, we know it must be sharing ICF/GCP resource with *someone*.
- But we don't even know this is ICF.

This could be an empty ICF partition on another CEC (check the SR#).

Or, this CEC contains another CF.

Or, this CF uses GCP, which it is sharing w/ z/OS sysplex members, or z/VM-Linux, or whatever.

(This config needs editing.)

🧏 Define	CPC CFSR	59644	1					X	
<u>F</u> ile									
		Super	visor:	LPAR	•				
Interval	Processor	GCPs	zAAPs	zllPs	ICFs	IFLs	PwrSav	Change	
6/12/12 14:	2097-E12	0.0	0.0	0.0	1.0	0.0			*
6/12/12 15:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 07:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 08:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 09:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 10:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 11:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 12:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 13:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 14:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 15:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 16:	2097-E12	0.0	0.0	0.0	1.0	0.0			-
Na CtIP	Cate Cat	Т Тур	e No Pa	ark V	Vei V	Veig	CapMi	nCMax	С
CF CFCC	CFCC Defa	a ICF	1.0		1	0.0%		0.0 (0.0
						Can	cel	A <u>p</u> ply	

zCP3000 CF Analysis

IBM.

Fix the CF Link Types

• InfiniBand links come in looking alike, and the distance is not known:

Partition	Sysid:	SubChannels:	CF Links:	Link Type:						
MN1_PRODM	0151	56	8	IC						
MN2_PRODM2	2151	56	8	CIB						
MN1_PRODM3	3151	56	8	IC						
MN2_PRODM4	4151	56	8	CIB						
MN1_PRODM5	5151	56	8	IC						
MN2_PRODM6	6151	56	8	CIB						
MN2_CMC1	CMC1	56	CIB							
MN2_CMC3	CMC3	56	56 8 C							
MN1_CMC4	CMC4	56	IC							
MN1_PRODMK1	PRK1	56	8	IC						
CF Study Interval 5/28	CF Study Interval 5/28/13 11:00 Link Quick Fix									
Structure	Туре		Size	Reqs/sec						
DSNDM0G_GBP0	CACH		445	7						
DOUDUGO ODDIO	01011		110,000,1							

• Why? To model changes, you must understand what you are changing from.

Edit Inv Invalid CF CF name CECID Machine t.	Links for ICFOMA0 CPC887F 2827-713	of for ICFC	MA01	L					
Select CP	C, distance C:	e, and ther	linktyr Cf	De PC88	35F7 - 282	7-706	•		
Km Distan	ce: CPC88	7F7 to CPC	.88.	0.0					
Valid types	s for CPC8	85F7 @ 0.0)km IFI	IFB3-12x 💌					
Click on re	ow to chan	ge the link	iFE type	33-1 33-1	2x x				
CPC	Partition	Sysids	Sul	0-12 0 1 v	*				
CPC88	CMCA	CMCA		XI-C		-070			
CPC88	FIRA	FIRA	28		4	CIB	0		
CPC88	FD0D	FD0D	28		4	CIB	0		
				Res	et /	Apply	Cancel		

Sysplex Topology Report

The PLXEXP sysplex for this configuration is comprised of 9 z/OS systems and 3 coupling facilities, residing on 3 different processors.

Processor	Partition Type	ID	(#) Link Type	
	CF	ARIELOF	(5) IFB3-1x (4) IC	
	SYS	EXP3	(4) IFB-1x (5) IFB3-1x (4) IC	
CPC66827 2827-723	SYS	COM1	(4) IFB-1x (5) IFB3-1x (4) IC	
	SYS	TC02	(4) IFB-1x (5) IFB3-1x (4) IC	
	SYS	EXP5	(4) IFB-1x (5) IFB3-1x (4) IC	
CFSRFE033 2098-E10	CF	DIONE0F	(4) IFB-1x	
	CF	CASIO0F	(5) IFB3-1x (4) IC	
	SYS	EXP4	(4) IFB-1x (5) IFB3-1x (4) IC	
CBC67720	SYS	COM2	(4) IFB-1x (5) IFB3-1x (4) IC	
2827-722			(4) IFB-1x	

Graph PLEX1007 on the Logical Sysplex Window

IBM

CF Health Check

A single report giving a summary view of several key performance metrics.

WARNING (RED) is a strong indication of a problem.

indicates a potential problem.

OK (GREEN) means that the analysis didn't find a problem.

Red or Yellow means that we think you should look further at this area. It does not mean there *is* a problem.

Graph CF1000 on the CF Window

Health Check Analysis for CF25 **CF Processo** Warning Caution Пок

© 2015 IBM Corporation

Structures

- Partition Utilization
- Effective Engines >= 1*
- Current Technology?
- Dynamic CF Dispatch*
- * Special logic for Thin Interrupt

CF Processor

CF Health Check - Structures

Lock Contention

Lock Requests that had to wait Fix in the Application.

False Lock Contention

2 locks hash to the same index Increase the Structure size.

Graph CF1000 on the CF Window

CF Health Check Analysis : zCP3000 Graph and Text: CF1000

File Action

There were 157 structures in CF21. Looking at data from all intervals, the busiest structure was IXC2, a LIST type structure, with an average rate of 2,148.01 requests per second. Requests from all 157 structures totaled 7,125.75 per second, on average. Approximately 5% of all requests to IXC2 were from system SYE1. The table below shows some general information about activity to different structure types on the CF21 coupling facility.

	Structures	Average Req/sec
LOCK	11	2,745.1
LIST	90	3,841.4
CACH	56	539.2
A11	157	7,125.8

Structures Rule 1 - Lock Contention - Caution

The table below shows information about lock structures. At least one lock structure had an interval where Lock Contention exceeded 2.0%. High Lock Contention can result in an increase in utilization and reduction in throughput. If the total request number is trivial, high Lock Contention percentage is not a problem. Otherwise, you may want to check the other applications that are running on the systems. In some cases, batch applications that share the databases with online applications hold locks for a much longer time. The time that the lock is held by the batch program can be shortened by taking more frequent checkpoints.

Structures	Туре	Average Req/sec	Lock Contention	False Lock Contention
DB2P_LOCK1	LOCK	1,932.3	1.84%	0.21%
IGWLOCK00	LOCK	0.2	16.05%	0.54%
DB2R_LOCK1	LOCK	0.9	1.73%	0.35%
IRLMLOCK	LOCK	453.7	0.02%	0.00%
DLILOCKR	LOCK	0.0	0.00%	0.00%
DB2T_LOCK1	LOCK	82.5	0.39%	0.12%
DB2E_LOCK1	LOCK	3.6	0.55%	0.12%
ISGLOCK	LOCK	271.9	1.88%	0.48%
DB2V_LOCK1	LOCK	0.2	1.20%	0.22%
DLILOCKE	LOCK	0.0	0.00%	0.00%
DLILOCK	LOCK	0.0	0.00%	0.00%

CF Health Check - Subchannels

Subchannel Utilization

should be very low (<10%)

Sync -> Async Conversion

z/OS looked at the onramp and decided to go with Plan B.

Subchannels Offline

there is a sustained pattern of path busy.

Delayed Requests

more than 10.0% of requests were delayed

SubChannel Busy

Path busy at the hardware link level.

Graph CF1000 on the CF Window

IBM

Service Time

From when z/OS issues a CF request to when the return is recognized by z/OS.

- Host Hardware
- Link Latency
- Data Transfer
- CF Busy

Does not include queue time.

Service Time

- z/OS wants to run all requests synchronously (except for XCF).
- Insufficient bandwidth or slow service will cause it to convert to async.
- Therefore, except for IXC requests and distances>1km, all async requests should be viewed as a lack of resource.
- Service Time graphs available from the CF window, the Link window, and the Structure detail window.

Identify key coupling links

Suppose there are 2 plexes, with 5 CFs and 20 z/OS members.

- Given the objectives of the study, which CFs are important?
- Sort the links by request rate (CF window, click on column header)
- Look at the CF Structures Report to see which links are busiest for the busiest (aka most important) structures.
- If anything shows up yellow in the Subchannels part of the CF Health Check, it's worth looking at.

CF Structures Report

- Use to identify the busiest structures.
- Use to identify the key CF links for the busiest structures.

In your customer deliverable

- focus on critical applications
- focus on identified problems
- otherwise, use this to identify important structures and links.

Service Time for Important Structures

- Pick a busy structure.
- Note which links are busiest.
- Are most requests running synchronously?
- Are they getting good service time?
- The IC links to SYSA and the ICB-4 links to SYSB are adequate to the current demand.

				A	nalysis
ysplex Name	ISPLEXP		Structure I	Name IMSP	IRLM
F Name	PRODCF1 Dup	lex Secondary	Structure 1	Type LOCK	c
tudy Interval	2013 04 02 11	-	0 % of CE Litil	ization 0.0%	
ituuy intervar	2013-04-02 11			1201011 0.070	
	SYSA	SYSB	SYSY	SYS	7
F Link Type	IC	ICB-4	IC	ICB-4	
Requests per S	Second SYSA	SYSB	SYSY	SYSZ	
Average	60,717.1	38,007.6	0.0	0.0	
Maximum	159,181.9	78,851.6	0.0	0.0	
Study Interval	88,759.9	44,899.0	0.0	0.0	-
-					
Asynchronous	SYSA	SYSB	SYSY	SYSZ	
Average	0.3	2.6	0.0	0.0	
Maximum	24.1	79.3	0.0	0.0	
Study Interval	0.2	0.2	0.0	0.0	-
Service Time (I	microseconds) 	evev	<u>9762</u>	
Average	4.5	9.9	0.0	0.0	
Maximum	6.9	12.0	0.0	0.0	
Study Interval	5.4	9.8	0.0	0.0	-
Acypebropous	SYSA	SYSB	SYSY	SYSZ	
Asynchronous	60.3	65.8	0.0	0.0	
Average	636.2	1,847.5	0.0	0.0	
Average Maximum	000.2			0.0	
Average Maximum Study Interval	56.4	49.4	0.0	0.0	

IEM

Sysplex Graph Recommendations

Probably in every study

- zCP3000 main view : Topology
- Sysplex Logical window : Sysplex Topology, Link Summary
- For each CF : CF Summary, CF Health Check, CF Migration Summary report

PA Mode PA and QM Mode QM only

Look for areas of interest

- Thin Interrupt Effect
- CF Structures Table
- CF Link Topology

- CF Link Summary, Link Migration Comparison
- Service Time for Synchronous Structures
- Request Rate by System over Time
- Request Rate by Request Type and System

Drill down in areas of interest

- CF Logical Utilization over Time
- Advanced CF (shared ICF)
- Subchannel Busy
- Synchronous Service Time (Link)

- Lock Contention % of Requests
- Synchronous Intensity
- Delayed Requests
- Busiest Structures with Queue Time

Agenda

Use zCP3000 to look at sysplex questions:

- Collect the right data for a study
- Learn about the data, identify current problem areas
- Modelling a new hardware configuration
- Using shared ICF and Thin Interrupt
- z13 Link Migration Considerations
- Link consolidation on InfiniBand and ICA
- Sysplex Aggregation Pricing eligibility

Modeling configuration changes

- CF utilization changes w/ the speed of the CPC or alt.
- zCP3000 calculates new service times for config changes
 - For each structure, link, and sys
 - Additional adjustment based on current service time (the crappiness factor).
 - Recalc Sync/async on the new service time.
- Service time recalc is triggered in QM mode when:
 - Linktype or distance changes
 - CF machine type changes via drag and drop
 - CF Dispatch mode changes
- The current configuration must be understood:
 - Link types
 - Link distance
 - Shared channel paths
 - CF model, engine type, and LPAR weight

Coupling Links

Responsiveness depends on

- Type of Request
- Amount of data being carried*
- How request will be executed (sync or async)
- Simplex or Duplex
- Path busy or anticipated path busy (queued request)
- Link latency
- Link speed
- Link distance
- CF speed and responsiveness
- z/OS speed

Service time does not include queue time.

-> see CF Health Check, Subchannels, Delayed Requests

Sysplex Overhead is dependent on

- How request will be executed (sync or async)
- Service Time, for synchronous requests

* (not measured)

So lets model a new z13...

Collect data for all sysplex members (and maybe dev/test).

Fully define the sysplex in it's current state in PA mode.

- What *type* of IFB links: IFB3, IFB-12x, or IFB-1x?
- Link distance, if it will be changing
- Identify link any chpids shared by z/OS partitions.
- For standalone CFs : model, engine type, and LPAR weight
- Add hardware feature codes, if possible.
- Maybe generate some reports, like the Health Checks for key SYS and CF

Save then go to QM mode.

- Add a new z13
- Move partitions to the new CPC
- Define engines and lpars of the new z13
- Upgrade link types
- Change dispatch mode

- \rightarrow service time recalc

Look at the CF Migration Report \rightarrow

CF Migration Summary Report

Before and after comparison of:

- CF configuration summary, CF link utilizations
- Configuration summary for all CFs and z/OS members of the sysplex

	Sysplex PLXEXP Configuration After Migration										
	CECID	Model	Partition	SCP Level	Logical Engines	Relative Weight	Engine Type				
DIONE0F	newZ13	2964-701	DIONE0F	16	1	Dedicated Engines	ICF				
COM1	CPC66827	2827-723	ARIEL43	ZV011300	2	1.6%	GCP				

• Key Structures

				Configurat	ion Before	Migration	Configuration After Migrati		
Structures	Туре	Duplexed?	Reqs/sec	04 S	Servi	ce Time	04 C	Servic	e Time
				%Sync	Sync	Async	%Sync	Sync	Async
DB2DS0E_LOCK1	LOCK	No	27,508.9	96.1%	15.8	47.5	100.0%	14.2	٥
CQSTMSGQ	LIST	No	13,318.3	88.7%	21.4	57.0	88.7%	24.6	44.8
ISGLOCK	LOCK	No	9,700.3	99.9%	15.3	56.1	100.0%	14.2	٥
IXCLST01	LIST	No	5,071.4	0.0%	-	61.7	0.0%	-	56.5
DB2DS0S_LOCK1	LOCK	No	2,285.5	98.1%	15.1	44.3	100.0%	14.3	٥

Graph CFQ100 on the CF Window (QM only)

Change the CF machine type

Step 1 – add the new machine

Change the CF machine type

Step 2 – move some partitions there

Change the CF machine type

Step 3 – define real engines and partitions

🔚 Define	Define CPC newCec												
<u>F</u> ile	<u>F</u> ile												
Supervisor: LPAR 💌 🗖 Zaap On Ziip													
Interva	al	F	Processor	GCPs	zaap	s	zIIPs	ICFs	IFLs	PwrSa	av Cha	ange	
4/1/13 10:00		282	7-H20	1.0		0.0	0.0	1.0	0 0 0			~	
4/1/13 11:00		282	7-H20	1.0		0.0	0.0	0.	Fi <u>e</u> ld to Er	nd 📃		~	
4/1/13 12:00		282	7-H20	1.0		0.0	0.0	0.0	Row to Er	nd 🗌			
4/1/13 13:00		282	7-H20	1.0		0.0	0.0	0	All Field				
4/1/13 14:00		282	7-H20	1.0		0.0	0.0	0.	All <u>F</u> ielu				
4/1/13 15:00		282	7-H20	1.0		0.0	0.0	0.0	<u>A</u> ll Row				-
Name	CtIPg	jm	Workload	Wkld Type	Туре	No	Weight	Weight%	Cap	Abs Cap	MinCap	MaxCa	ар
PRODCF2	CFCC		CFCC	Default	ICF	1.0	90	0.09	6		1252.8	1392	2.0
TESTCF2	CFCC		CFCC	Default	ICF	1.0	10	0.09	6		139.2	1392	2.0
										Са	incel	Apply	
Change the CF machine type

If necessary, upgrade the coupling links.

DIONE0F: Coupli	ing Facility QM S	ummary)
View Action					<u>A</u> nalysis	\triangleright
CF Name: Sysplex Name:	DIONE0F PLXEXP					
CF Machine Type: CF Level:	2964- 16 Graph	Selection	V			
Lpar Utilization Engines	(1)(CI CFQ100	Coupling Facility St CF Migration Sumn	immary nary			
Relative Share	50.0% CF1026	Structure Execution	Time	us Execution	(w/Alts)	
Effective #engines: CFCC Busy	1.8 8.4% CF1028	Thin Interrupt Effect	on Synchrono	ous Service Ti	me (w/Alts)	
Partition SYSID:	Re	<u> </u>	Sel <u>A</u> ll	Doc All	<u>S</u> how (<u>D</u> K
CPC66827 COM1 CPC67730 COM2	817.6 608.4	28 4 28 4	IFB-1x IFB-1x	0.0	3.1%	
CPC66827 EXP3	12,325.2	28 4	IFB-1x	0.0	3.1%	

Otherwise, you're done, generate a CF Migration Summary for each major CF.

CF Coupling – Relative Link Speed in zCP3000

zCP3000 Name	Link type	Link latency (mics)	Link speed (Mbs/sec)	Supported on
ISC3	ISC3	12	200	z13,zBC12,zEC12,z114,z196,z10,z9,z990,z890,z900,z800
IFB-1x	IFB 1X	10	400	z13,zBC12,zEC12,z114,z196,z10
IFB-12x	IFB 12X – z9	8	600	z9
IFB-12x	IFB 12X	8	1000	z13,zBC12,zEC12,z114,z196,z10
ICB4	ICB4	4	1500	z10,z9,z990,z890
IFB3-12x	IFB3 12X – z114	3.5	2500	z114
IC	IC-z10 BC	1	3200	z10-BC
IFB3-12x	IFB3 12x – zBC12	3.5	4000	zBC12
IC	IC-z9 BC	1	4000	z9
IFB3-12x	IFB3 12X	3.5	5000	z13zEC12,z196
ICA	CS5	3.5	5000	z13
IC	IC-z9 EC	1	5000	z9
IC	IC-z114	1	6500	z114
IC	IC-zBC12	1	7100	zBC12
IC	IC-z10 EC	1	7500	z10
IC	IC-z13	1	8500	z13
IC	IC-z196	1	8900	z196
IC	IC-zEC12	1	9400	zEC12

Coupling Links

To model a link type change:

(estimate new service time)

- Must be in QM Quick Migration Mode (CP Mode is being phased out)
- One CF-SYS set of links at a time
- If CEC model change also, do that first.

Change the Coupling Links

Double click a link on the CF window to look at the link detail.

Use the "Upgrade" button to model a new link type.

🗿 DIONE0F : CON	11 : Edit CF Link T	уре		_ 🗆 🗙
				<u>A</u> nalysis
Sysp	lex Name PLXEXP		Machine Type	
	SYSID COM1		2827-723	
	CF Name DIONE0F		2964-701	
CE Stur	iv Interval 2015-01-	19 10:00:00 00:15:		
or stat	2010-01-	10 10:00:00 00:10:]	
Link Configuration			Shared Links	
	Configuration Bef	Current	Chpids O Ada <u>p</u> te	rs
Machine Type	2098-Z01	2964-701		
Link Type	IFB-1x	IFB-1x 🔻	Shared-L Chpids	SYSID
Minimum adapters	2	2		COM1
minimum adapters	2	2	4 1 1 1 1 1	EXP3
Chpids	4	4 -	4	EXP5
Subchannels	28	28		
Distance(km)	0.0	0.0		
	CF		28.5% Current 13.3%	
	Sysid		15.5% 15.4%	
	Subchannel		2.3% 2.3%	
	Requests/se	ec B	efore Current	
	Asvnc		222.94 81.8 594.63 735.77	
	Total		817.57 817.57	
	Service Time (u	usec) B	efore Current	
	Sync		20.3 15.1	
	Average		78.73 75.76	
			lingrade Link Edit C	
				Аррлу

Change the Coupling Links

Changing the Coupling Links

We already changed the CF machine type. Now we're changing the link type.

Utilization	Before		Current	Estimated
CF	28.5%		13.3%	13.3%
Sysid	15.5%		15.4%	15.5%
Subchannel	2.3%		2.3%	0.2%
Requests/sec	Before		Current	Estimated
Sync	222.94		81.8	225.03
Async	594.63		735.77	592.54
Total	817.57		817.57	817.57
	Defere	_	Ourrant	Estimated
Service Time (usec)	Belore		Current	Estimated
Sync	20.3		15.1	8.49
Async	100.64		82.5	79.24
Average	78.73		75.76	59.77

CF Link Migration Comparison

Service Time (usec)	Before	Current	Estimated	
Sync	20.3	15.1	8.49	
Async	100.64	82.5	79.24	
Average	78.73	75.76	59.77	

		G ()	06 Samaharana		Service Time (usec)				
		Structure Type	Requests/sec	90.Synci	ironous	Synchr	onous	Asynchi	ronous
D	uplex	-77-		Before	After	Before	After	Before	After
IXCLST01		LIST	592.5	0.0%	0.0%	0.0	0.0	100.5	79.2
ISTGENERIC		LIST	143.0	98.6%	100.0%	22.0	9.2	156.9	29.4
ISGLOCK		LOCK	78.1	100.0%	100.0%	17.1	7.2	0.0	27.5
IRRXCF00_P001		CACH	3.7	96.7%	100.0%	23.9	9.8	122.4	30.1
OPERLOG		LIST	0.2	95.0%	100.0%	29.1	9.2	68.2	29.4
Total/Weight	ted Av	erage	817.6	27.3%	27.5%	20.3	8.5	100.6	79.2

- The Total/Weighted Average will agree w/ the Request Activity Summary on the Link Window.
- All structures have better sync service time, and better yet, more requests will run synchronously.
- Ie, currently 3.3% of IRRXCF00_P001 requests run asynchronously w/ a service time of 122.4 microseconds. After the z13 and IFB3 migration, those 3.3% will run synchronously w/ a service time of 9.8 mics.

Graph CFQL001 on the CF Link Window (QM only)

Heuristic Sync->Async Conversion

Approximate Threshold for Conversion

 zOS keeps a table of observed CF service times for each structure. 	z/OS Host	Microseconds
 Depending on the estimated efficiency 	z9-EC 2094-702	36.92
tradeoff, it may convert any synchronous	z9-BC 2096-Z01	44.65
operation to asynchronous.	z10-EC 2097-702	26.00
 Conversion is done *before* the request 	z10-BC 2098-Z01	31.27
is ever launched.	z196 2817-702	26.00
 Requests converted this way are async 	z114 2818-Z01	26.45
from the start. They do not count as a	zEC-12 2827-702	26.00
"changed" request.	zBC-12 2828-Z01	26.00
• With 10 mics added per km distance, anything over 2km will certainly be asvnc.	z13 2964-702	26.00

Table 1. The meaning of "slow"

Note: This is **COMPLETELY DIFFERENT** from subchannel busy sync->async conversions.

Agenda

Use zCP3000 to look at sysplex questions:

- Collect the right data for a study
- Learn about the data, identify current problem areas
- Modelling a new hardware configuration
- Using shared ICF and Thin Interrupt
- z13 Link Migration Considerations
- Link consolidation on InfiniBand and ICA
- Sysplex Aggregation Pricing eligibility

Effective number of engines

IBM

Calculated as:

(CF Busy + CF wait) Interval time

When EFFCP < Defined CPs

Shared Engines*

*Probably.

If effcp>90%, it could be LP mgmt.

🔚 Define	CPC CFSR	59644	-	-	r.			X	
<u>F</u> ile									
		Super	visor:	LPAR	•				
Interval	Processor	GCPs	zAAPs	zllPs	ICFs	IFLs	PwrSav	Change	
6/12/12 14:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/12/12 15:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 07:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 08:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 09:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 10:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 11:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 12:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 13:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 14:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 15:	2097-E12	0.0	0.0	0.0	1.0	0.0			
6/13/12 16:	2097-E12	0.0	0.0	0.0	1.0	0.0			-
Na CtIP CF CFCC	Cate Cat CFCC Defa	T Type a ICF	e No Pa 1.0	ark V	Vei V 1	Veig 0.0%	Cap Mi	nCMax(0.0 (C 0.0
Something else is using some of that ICF (Or GCP)									

Shared vs Dedicated CF Engines

Why is this still so important?

- •Typically low CF utilization
- Newer engines are usually faster
- Need to stay within one generation of z/OS hardware

→ hard to justify dedicated engines

Enhanced Methods for sharing CF engines

IBM

Dynamic ICF Expansionz10 and below only

allows a CF partition to have *both* shared and dedicated ICF engines.

Dynamic CF Dispatch (for the test/dev CF)

CF gives up control of the processor when there is no more work to do.

Thin Interrupt(for test/dev and maybe some prod)link hardware generates an interrupt when something arrives in the link bufferPR/SM can quickly dispatch a shared engine CF with new work,

and the CF will drop when work is done.

Testcase : the effect of losing Dynamic ICF Expansion

before : 1 dedicated and one share ICF in production, one shared ICF in non production on z10 **after :** 2 shared ICFs in for production, one shared ICF for non-production on z196

The effect of sharing ICF engines

"Regular" Sharing

Both CF1 and CF2 have DYNDISP=OFF (default setting)

Dynamic CF Dispatch

CF1 has DYNDISP=OFF & CF2 has DYNDISP=ON

Thin Interrupt

IBM

Both CF1 and CF2 have DYNDISP=THININTERRUPT

Impact of Thin Interrupt

Average Asynchronous Service Time by Coupling Facility

* Frank Kyne, Share Session 15602: The Skinny on Coupling Thin Interrupts

Shared vs Dedicated CF Engines

The Bottom Line is

Dedicated engines are still recommended

for production workloads for best responsiveness, reliability, and availability.

If the CF is always dispatched, it's always looking for new work. Interrupts would not provide any response time benefit.

If ICF resource will be shared,

• All sharing CFs should set DYNDISP=THININTERRUPT

• LPAR weights & engines can be used to give more to the needy.

So how can zCP3000 help?

- Can identify service issues due to
 - shared CF engine in current configuration
 - old technology, or too great a difference
- Can identify issues that more/faster ICF won't fix
 - Lock contention
 - Subchannel busy
 - Poor service time due to slow links
- CF1027 report to compare service time dedicated vs Thin Interrupt.
- More changes zCP300 in 2015 to
 - CF Dispatch modelling (not just dedicated -> Thin)
 - z/OS effect of Thin Interrupt

Dedicated -> Thin Interrupt

View Action	Analysis
CF Name: CASIO0F Sysplex Name: PLXEXP CF Machine Type: 2827-722 CF Level: 19 Lpar Utilization 13.6% Engines (1) ICF	Peer Name: ARIELOF CF Machine Type: 2827-723
Dynamic Dispatch Off (Polling) Relative Share Dedicated Engines	CF1014 Coupling Facility Summary CFQ100 CF Migration Summary CF1010 CF Structures Table
	CE1026 Structure Execution Time CE1027 Thin Interrupt Effect on Synchronous Execution CE1028 Thin Interrupt Effect on Synchronous Service Time

Favorites

Sel All

Thin Interrupt performance for sync will be similar, a little bit worse for dedicated. Doc All

CF1027 Effect of Thin Interrupt

Table 1. Synchronous Service Time (microseconds)							
Staature	Dealer	Current Configuration	Thin Interrupt				
Structure	Duplex	2827-722	2827-722				
DB2DS0E_GBP4	*	13.0	16.4				
DB2DS0E_GBP2	*	11.0	14.6				
DB2DS0E_GBP10	*	13.2	15.6				
DB2DS0E_GBP49	*	11.6	15.8				
DB2DS0E_GBP8	*	9.9	14.3				

Agenda

Use zCP3000 to look at sysplex questions:

- Collect the right data for a study
- Learn about the data, identify current problem areas
- Modelling a new hardware configuration
- Using shared ICF and Thin Interrupt
- z13 Link Migration Considerations
- Link consolidation on InfiniBand and ICA
- Sysplex Aggregation Pricing eligibility

Coupling Link Connectivity

	Max Supported Coupling Links								
	z13	zEC12	zBC12*	z196	z114*	z10	z9		
IC	32	32	32	32	32	32	32		
ISC-3	n/a	48	32	48	48	48	48		
ICA SR	32	n/a	n/a	n/a	n/a	n/a	n/a		
HCA3-O LR (1x)	64	64	32	48	32	n/a	n/a		
HCA3-O (12x)	32	32	16	32	16	n/a	n/a		
HCA2-O LR (1x)	n/a	32	12	32	12	32	n/a		
HCA2-O (12x)	n/a	32	16	32	16	32	n/a		
HCA1-O (12x)	n/a	n/a	n/a	n/a	n/a	n/a	16		
Max ext Links	*	104	72	104	72	64	64		
Max chpids	256	128	128	128	128	64	64		

Link = Port, 1, 2 or 4 ports per adapter

Coupling Link Configuration

	Fanout	Max Adapters (Features)	Ports per Adapter	Recommended chpids/adapter
ICA SR (z13)	PCle	16	2	8
HCA3-O LR (1x)	GX++	16	4	8
HCA3-O (12x)	GX++	16	2	8
HCA2-OIR(1x)	GX++	16	2	8
	GXII	16	2	0
HCA2-0 (12X)	GX++	10	2	ð
ISC-3 (zEC12)		48	1	1

In zCP3000, link = CHPID

z13 Link Migration problem

zEC12 / z196 Book

Configuring the same number of IFB coupling links on z13 as on z196/zEC12 may require additional CPC drawers

Is this an actual problem?

Use eConfig to determine the current installed adapters.

Define a new z13, then configure adapters.

zCP3000 will tell you how many books on the new machine.

Hardware Feature Codes							
CPC66827							
	4 Book	(S	Chpids	Chpids			
FC#	Adapter	LinkType	2827-H	89	Normal	Max	
0172	ICA	ICA	0		0	0	
0171	HCA3-O	IFB-12x	2	- 4 - 1	16	32	
0170	HCA3-O LR	IFB-1x	2	*	16	32	
0163	HCA2-O	IFB-12x	0	* *	0	0	
0168	HCA2-O LR	IFB-1x	0	*	0	0	
0162	HCA2-C	Ficon	0	*	0	0	
0167	HCA1-O	IFB-12x	0	*. *	0	0	
3393	ICB-4	ICB-4	0	*. *	0	0	
0217	ISC-3	ISC-3	0	14. 14.	0	0	
0218	ISC-3	ISC-3	0	14. 14.	0	0	
Cancel Apply							

Analysis							
new713							
2 Drawers Choids					Chpids		
FC#	Adapter	LinkType	2964-N	63	Normal	Max	
0172	ICA	ICA	0	*	0	0	
0171	HCA3-O	IFB-12x	3	*	24	48	
0170	HCA3-O LR	IFB-1x	2	*	16	32	
0163	HCA2-O	IFB-12x	0	* - *	0	0	
0168	HCA2-O LR	IFB-1x	0	* *	0	0	
0162	HCA2-C	Ficon	0	*	0	0	
0167	HCA1-O	IFB-12x	0	- A- - W-	0	0	
3393	ICB-4	ICB-4	0	*	0	0	
0217	ISC-3	ISC-3	0	*	0	0	
0218	ISC-3	ISC-3	0	* - * -	0	0	
Cancel Apply							

What if it is a problem?

- Adopt the new ICA coupling link for z13-z13 links.
- Prioritize GX++ slots for 1x distance coupling
- Eliminate FICON Express8 (also uses GX++)
- Eliminate or consolidate Infiniband links
 4 chpids per port for 12x,
 8 chpids across 4 ports

Agenda

Use zCP3000 to look at sysplex questions:

- Collect the right data for a study
- Learn about the data, identify current problem areas
- Modelling a new hardware configuration
- Using shared ICF and Thin Interrupt
- z13 Link Migration Considerations
- Link consolidation on InfiniBand and ICA
- Sysplex Aggregation Pricing eligibility

CF Link Consolidation

Prior to InfiniBand and ICA

- One link = one chpid = one feature
- A link could be shared because the chpid could be shared, between members of the same sysplex on the same mainframe, going to the same CF

With InfiniBand and ICA

- The physical link can carry multiple chpids
- Chpids can be from the same sysplex or a different one
- Each chpid can still be shared by partitions on the same mainframe going to the same destination CF

zCP3000 Terminology

- Link = channel path (chpid)
- Adapter = the physical path

IFB-1x : 8-16 chpids on 4 ports on HCA2-O LR or HCA3-O LR

IFB-12x : 8-16 chpids across 2 ports on HCA2-O or HCA3-O

IFB3 : max 4 chpids per port(2) on HCA3-O

CF Link Consolidation

- Typically multiple physical ICB4 or ISC3 links/adapters/chpids
- Often chpids are shared between 2-3 partitions
- Meaning you really have (chpids/partitions) number of ICB4 links.
- Minimum two HCA2-O or HCA3-O adapters
- Meaning that each machine will have 16-32 channels paths
- IFB3 is a protocol, not an adapter, requiring
 - HCA3-O adapter types on both ends
 - Maximum 4 chpids per port

IBM recommends

- One for one replacement of non-IFB chpids with IFB chpids
- Many to one replacement of non-IFB adapters with IFB adapters

Incomplete Configuration Information

Red Triangles mean something is not fully understood.

- Currently, all InfiniBand chpids come in with channel type "CIB".
- Correct the current link definitions before proceeding:
 - Link type
 - Shared CHPIDs?
 - Distance, for remote CFs
- With CFCC 18, RMF will be able to differentiate various IFB link types and Detect if CIB link running "degraded"

* Not yet supported in zCP3000 *

Sysplex CF Link Summary Report

Summary of Links by CEC

Processor ID	Link Type:	Defined Links	Configured CHPIDS	Minimum Adapters	Minimum Recommended Adapters
CPC7C9P5	IC	4	8	n/a	n/a
CFC/C8B5	ICB-4	8	8	8	8
CPC7CRC5	IC	4	8	n/a	n/a
	ICB-4	8	8	8	8

CEC Summary

Processor CPC7C8B5 SR# 7C8B5							
Partition	CF/SYSID	Sysplex	OpSys	CF Links			
PROD1	SYSA	ISPLEXP	-/05.1.11.0	(2) IC			
			2031.11.0	(2) ICB-4			
PRODUCTI	PRODCF1	ISPLEXP	CECC Lauri 16	(4) IC			
RODEFI			CFCC Level 10	(4) ICB-4			
PROD3	SYSY	ISPLEXP	-051110	(2) IC			
			2031.11.0	(2) ICB-4			

Graph PLEX1008 on the Logical Sysplex Window

Shared Channel Paths

IOCP Definition of a shared cf link:

```
CHPID PATH=(CSS(0),F4),
SHARED,
PARTITION=((SYSA,SYSB),(=)),
PCHID=101,
TYPE=CFP
```


Multiple CHPIDs on a single InfiniBand Link

- This InfiniBand link carries 2 unshared chpids.
- Because the chpids are unshared, you should not see subchannel busy here.
- It connects a port on an HCA2-O adapter on CEC1 to a port on an HCA2-O adapter on CEC2. There is room for up to 6 more chpids on this cable.

Shared Chpids and Shared HCA3-O Adapters

CF3

- This InfiniBand link carries 4 chpids. You still have room to define up to 4 more on this port. There is also a 2nd port for each HCA2-O adapter, not shown.
- SYSA has one chpid each to CF1 and CF2; SYSA partition is not sharing these chpids with any other z/OS system on CEC1. The CF1 partition sees 1 chpid, and the CF2 partition sees 1 chpid.
- SYSB and SYSC each have one chpid defined to CF3. SYSB and SYSC each have 2 chpids to CF3, but they are shared. CF3 sees 2 chpids.

- •2 or more partitions on the same CEC
- talking to the same CF on another CEC
- same sysplex
- using the same chpid
- same type (ISC3, ICB4, IFB)

CHPID PATH=(CSS(0),F4),SHARED, PARTITION=((DEVJ,DEV1,DEV2),(=)), PCHID=101,TYPE=CFP
Defining Shared Channel Paths

🥌 CF05 : P1DF	F : Edit	CF Lin	k Type							3
<u>H</u> elp									<u>A</u> nalysis	
Sysplex Name PLEX01			Machine Type							
	Sysid	P1DF		2097-732						
	CF Name	CF05		2097-732						
CF Stud	y Interval	2010-06	5-16 11:00:00 01:							
Link Configuration	I				Shared Links					_
		Current			۲	CHPID	O Adapte	r		
Link Type	InfiniB	and-12x			Shared Links	Chpi	ds 6	Sys P1F		
Minimum # FCs		2					6	P2D)F	
Chpids		6							=	=
Subchannels		42								
Distance(km)		0							•	-
C	upling Ea	Utiliz	ation	+	32.3%					
Sv	sid	ionity.		+	56.1%					
Subchannel			1			5.5%	6			
Requests/sec			Current							
Sync			148.73							
Async			+			31,047.7	2			
lotal					51,190.44	의				
Service Time (usec)			Current							
Asvnc			+			74.0	7			
				-	Redefine Cur	rent Link	Cano	el	A <u>p</u> ply	

- CP3000 does not know if a link is shared.
- You *may* be able to tell from the CF HealthCheck.
- Shared Links table lists the partitions that could possibly share these 6 chpids.
- CF linktype must be fully defined and must match exactly.

Sysplex Lab2 ISC3 - zCP3000 PA Overview		Ŝ
File Edit View Action Help Analy	sis	
CEC7B92 PRD PRD2 PRD6 0 PRD7 PRDA CD1D 0 C1DF INT1 PRDD 0 SUP3 CF06 CF05 CF01 CF04		-
		•
EDF data for the sysplex master gathering system is missing.		

- 2 or more partitions on the same *pair* of CECs
- talking to any CF on either CEC
- same sysplex, or not
- using different chpids
- which run through the same IFB pipeline.

🥌 CF05 : P1DI	F : Edit	CF Lin	k Type						X
<u>H</u> elp								<u>A</u> nalys	is
Syspl	Sysplex Name PLEX01		Machine Typ]			
Sysid P1DF			2097-732						
CF Name CF05		2097-732							
CF Study Interval 2010-06-16 11:00:00 01:									
Link Configuratior	۱			Shared Li	nks				
Current					<u>ြ L</u> og	gical 🖲	<u>P</u> hysical		
Link Type	InfiniBa	and-12x		Shared	Chpids	Sysid	CF Name	Sysplex	
					6	P1DF	CF05	PLEX01	
Minimum # FCs		2			6	P4DF	CF04	PLEX02	
Choide		6			6	PADE	CF01	PLEX02	
Cripius		0			6	P6DF	CF04 CE01	PLEX02	
Subchannels		42			6	P7DF	CF01	PLEX02	
					6	P3DF	CF06	PLEX01	1
Distance(km)		0			6	P2DF	CF05	PLEX01	-
						BEBE	0500	BLEWAA	
		Utiliza	ation		Currer	nt			
Coupling Facility			32.3%						
Sysid							56.1%		
Subchannel						99	9990.0%		
Requests/sec		Current							
Sync						148.73			
Async					3	1,047.75			
					3	1,190.48			
Service Time (usec)		Current							
Sync					54.06				
Async						14.1			
				Redef	ine Current	Link	Cancel	Appl	v

- InfiniBand only
- Shared Links table lists the sysplex members and CFs on these 2 CECs that could run on the same physical InfiniBand feature.
- *NO* performance implications.

 P2DF could be *both* logical share and physical share.

🧏 CF05 : P1DF	: Edit CF	Link Ty	/pe	ters						
<u>H</u> elp								<u>A</u> nalys	is	
Sysple	Sysplex Name PLEX01			Machine Typ	pe				1	
	Sysid	P1DF		2097-732						
CF Name CF05		2097-701								
CF Study	CF Study Interval 2010-06-16 11:00:00 0									
Link Configuration			Shared Links							
Current				🔾 Chi	oids 🔍	Ada <u>p</u> ters				
Link Type	1	FB-12x		Shared-P	Chpids	Sysid	CF Name	Sysplex		
Minimum eden		7			6	P1DF	CF05	PLEX01		
Minimum adap		/			6	PADE	CF04 CF01	PLEX02		
Chpids		6			6	P8DF	CF04	PLEX02		
					6	P6DF	CF01	PLEX02		
Subchannels		42			6	P7DF	CF01	PLEX02		
Distance(km)		0.0			6	P3DF P2DF	CF06 CE05	PLEX01		
						1201	0100	TEENOT		
Utilization					Curre	ent				
Cou	pling Fac	ility		32.3%						
Sysid					56.1%					
Subchannel					5.5%					
Requests/sec		Current								
Sync		148./3								
Total		31,196.48								
Service Time (usec)		Current								
Sync		54.06								
Asyr	Async					74.7				
		Redefine	Current L	ink	<u>C</u> ancel	Appl	/			

• 54 chpids running on 54 ISC3 links...

Replace with

 54 chpids running on 7 IFB adapters.

A CF04

Agenda

Use zCP3000 to look at sysplex questions:

- Collect the right data for a study
- Learn about the data, identify current problem areas
- Modelling a new hardware configuration
- Using shared ICF and Thin Interrupt
- z13 Link Migration Considerations
- Link consolidation on InfiniBand and ICA
- Sysplex Aggregation Pricing eligibility

Sysplex Aggregation Pricing

Be a hero

Show your customer how to save money on software licensing fees.

Sysplex Aggregation Pricing

Graph PLEX1005 on the Logical Sysplex Window

Reference Slides

IBM z Systems The innovation continues

Sysplex Graph Recommendations

Probably in every study

- zCP3000 main view : Topology
- Sysplex Logical window : Sysplex Topology, Link Summary
- For each CF : CF Summary, CF Health Check, CF Migration Summary report

PA Mode PA and QM Mode QM only

Look for areas of interest

- Thin Interrupt Effect
- CF Structures Table
- CF Link Topology

- CF Link Summary, Link Migration Comparison
- Service Time for Synchronous Structures
- Request Rate by System over Time
- Request Rate by Request Type and System

Drill down in areas of interest

- CF Logical Utilization over Time
- Advanced CF (shared ICF)
- Subchannel Busy
- Delayed Requests

- Synchronous Service Time (Link)
- Lock Contention % of Requests
- Synchronous Intensity
- Busiest Structures with Queue Time

Index to recommended Graphs

zCP3000 main view

INV1012 Topology

zCP3000 sysplex view

- PLEX1007 Sysplex Topology
- PLEX1008 CF Link Summary
- PLEX1005 Sysplex Aggregation

CF Window

- CF1014 CF Summary
- CF1000 Health Check Analysis
- 2100 CF Migration Summary report 027 Thin Interrupt Effect
- ٠
- CE1010 Structures Table
- CF1001 Logical Utilization over Time CF1020 Advanced CF Utilization •

- CF1020 Advanced Of Officiation CF1017 Subchannel Busy CF1015 Delayed Requests CF1012 Service Time for Synchronous Structures CF1009 Request Rate by System over Time CF1004 Request Rate by Request Type and System CF1016 Busiest Structures with Queue Time

Structure Window

- STR1015 Lock Contention %
- STR1017 Synchronous Intensity

CF Link Window

- CFL005 CF Link Topology
- CFL001 CF Link Summary
- CFQL001 Link Migration Comparison
- CFL012 Synchronous Service Time

Need help?

Engage Global Techline

Techline System Design & Configuration

CPS Tools for System z Capacity Plan	Geography North America Go!		
Capac IBM S Group The <u>S</u> discer that i To en	tity Planning Support (CPS) tools are used ystem z processors. These tools are fre is to discuss issues, ask questions, and o izing and TCO Analysis Tools page lists in the total costs of ownership. The Fit Fo t will be running.	Request Submission Image: Technical Sales Request Generator Image: Technical Sales Request Generator Image: Several restricted access Image: Technical Sales Request Generator Image: Several restricted access Image: Technical Sales Request Generator Image: Several restricted access Image: Technical Sales Request Generator Image: Technical Sales Request Genet	
Program WebPage	Download	User's Guide	
z <u>SOFTCAP</u> v4.3d	Download 07/23/2013	Download 07/23/2013	
<u>zPCR</u> v8.4a	Download 09/23/2013	Download 07/23/2013	

zMasters slide decks and replays: Will be posted to TechDocs in late June.

15602: The Skinny on Coupling Thin Interrupts https://share.confex.com/share/123/webprogram/Session15602.html

CPSTools Education & Downloads available at:

- **IBM** <u>http://w3.ibm.com/support/americas/wsc/cpsproducts.html</u>
- BPs <u>https://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/tech_PRS1762</u>

Contact: cpstools@us.ibm.com

Thank you! IBM ŝ **IBM z Systems** The innovation continues