
IBM GLOBAL SERVICES

IBM
Aug. 9 - 13, 2004

Chicago, IL

© IBM Corporation 2004

Technical Conference
xSeries

O10

Matilde L. Valdez

Linux Startup and Shutdown Part 1 of 2

Objectives

After completing this unit, you should be able to:

Describe the Linux startup flow

Configure autostarting services

Boot Linux in single-user mode

Perform a proper shutdown of a Linux system

Linux Startup Flow
power on

BIOS

Linux kernel
and initrd

init

system ready

boot loader

Hardware boot

Software boot

Low level initialization of
important hardware (disk,
cpu, vga adapter...)

Usually GRUB or LILO

Full initialization of all
hardware

Runs boot scripts and starts
system services

...Have a lot of fun

Notes:

Basic Input Output System
Checks memory and hardware (POST)

Loads options from non-volatile memory
Memory timings
Order of boot devices

Checks for boot devices
Floppy disks
CD-ROM
Hard disks

Loads Master Boot Record of boot device and executes it

Notes:

Every Intel PC has a Basic Input Output System, or BIOS for short. This is a little program which is stored in an EEPROM
(Electrical Erasable Programmable Read Only Memory, sometimes also called non-volatile memory) on your
motherboard. It is the first program that runs once the power is switched on. It does a number of basic tasks:

• It checks the memory
• It loads various options from non-volatile memory, for instance memory timing parameters, IRQ assignment to devices,
and the order of boot devices. These options can be set by the user when pressing Del, F1, F2 or some other key while
the memory is being tested.
• It checks for the availability of boot devices, and
• Loads the Master Boot Record of the first available boot device. This first sector is
stored in memory and executed.
Another thing the BIOS might do is configure (IRQ, DMA, I/O addresses) or disable peripherals (such as serial ports,
parallel ports, network adapters, keyboards, mice and sound cards) that are integrated on the motherboard.

Master Boot Record (MBR)

Size: 512 Bytes (first sector of hd)
addressed by BIOS
Content:

446 bytes program code (to boot
 an operating system)
64 bytes partition table with
max. 4 entries
2 bytes "magic number"

Master Boot Record

Notes:

The Master Boot Record or MBR is the first sector (512 bytes) of the boot device. It contains three things:

• A 446 bytes boot loader program: Software to bootstrap the operating system.
• The partition table: A 64-byte table which describes how the rest of the disk is split up into partitions.
• A 2-bytes magic number, which is used to check whether this is a valid MBR.

On systems fresh out of the shop, the bootloader is a very simple program which was configured with the MS-DOS
command fdisk /mbr. This program goes through the partition table and looks for a partition that is marked "active".
The program then loads the first sector of this partition and starts it. This concept is known as chain-loading.

When using Linux, the MBR is traditionally set up by the Linux Loader (LILO). It is a little more elaborate than the usual
MBR, in that it can prompt the user for the operating system to load, and any options to pass to that operating system.
Then, it loads the selected operating system, passing the options as it starts it.

Newer Linux distributions may use GRUB instead of LILO. GRUB is far more flexible than LILO, since it allows you to
alter the configuration from the boot prompt. It is also versatile enough to boot other UNIX operating systems that can
run on PC hardware, such as GNU/Hurd, *BSD and so forth. It also supports chain-loading of Windows operating
systems, and supports hiding partitions, so that you can have multiple Windows operating systems on one disk
simultaneously.

LILO - Linux Loader

MBR

LILO boot
sector

addresses "map" (CHS)

contains the LILO boot
sector (1st stage)

Lilo core
"/boot/boot.b"

LILO 2nd stage - can
localize vmlinuz, initrd
and load them
(CHS)

"/boot/map"

Configuration:
/etc/lilo.conf

addresses LILO core
(CHS) /sbin/lilo

generates /boot/map and
writes its address into
LILO boot sector

Notes:

The Linux Loader (LILO) is the program that configures the MBR. It must be run as root
with the lilo command. It parses the command line options, reads and checks the
configuration file, and configures the MBR accordingly. The default configuration file is
/etc/lilo.conf, but this can be overridden with the -C option. Other important options include:

-v Gives a verbose output.
-v -v Gives a very verbose output. In fact, you can have a total number of eight '-v's,
giving you more and more output, until you literally drown in debug output.
-t Only tests the validity of the config file; does not actually write to the MBR.
-u, -U With this option, lilo restores an older backup copy of the MBR to the MBR on
disk. This backup was made the first time lilo was run and is called
/boot/boot.0300 or /boot/boot.0800.1

It can be used to recover from a mangled MBR for instance, and can be used
for a complete deinstall of Linux.2
For more details, refer to the lilo manual page (man lilo)

GRand Unified Bootloader
(GRUB)

Program stored in MBR (first stage) and in /boot/grub
(1.5th and second stage)

Understands filesystem structure
No need to activate a configuration as with LILO

Configuration file /boot/grub/grub.conf (Red Hat) or
/boot/grub/menu.lst (SuSE)

Installed in MBR with grub-install

When system boots:
Select predefined OS to boot, or
Use command language to boot non-predefined OS
Command language compatible with configuration
file

GRUB additional features:
MD5 encrypted passwords
Hiding/Unhiding partitions

Notes:

GRUB (GRand Unified Boot Loader), as LILO, consists of a number of separate stages:
• The first stage, called stage1 on disk, is usually stored in your MBR.
• The 1.5th stage, called *_stage1_5 (e2fs_stage1_5, fat_stage1_5, minix_stage1_5,
reiserfs_stage1_5, ...) is stored on disk, typically in /boot/grub. Several 1.5th stage files exist, each for a different
filesystem.
This stage is used to add filesystem capabilities to GRUB, so that GRUB is able to use regular filename references
when loading configuration files, kernels and such, instead of disk block locations.

Because of this stage, GRUB is able to read its configuration file directly, and does not need to be configured
beforehand, like LILO.
• The second stage, called stage2. This gives a menu interface which allows you to boot your predefined operating
systems, or enter commands to boot a non-predefined operating system.

If a "splashimage" was included in the GRUB configuration, then the second stage will display the menu in a graphical
mode, with the splash image as background. The GRUB configuration file is typically stored in your /boot filesystem, in
a separate GRUB directory, and called grub.conf (Red Hat) or menu.lst (SuSE). On a regularly booted Linux system,
this file is thus referenced as /boot/grub/grub.conf or /boot/grub/menu.lst. It contains all predefined operating systems
and their options and peculiarities.

To install GRUB, either use the shell script grub-install or start the grub program and use GRUB commands to install
GRUB manually. GRUB has some additional features that make it far more useful than LILO:
• GRUB supports MD5-encrypted passwords to protect normal users from supplying parameters and options to
predefined operating system, or to define their own operating system boot procedure.
• GRUB can perform hiding and unhiding of Windows partitions. This is a requirement for running multiple Windows
operating systems from the same disk.3
• If configured properly, GRUB can be used to boot from the network. This requires the netboot package, and requires
you to set up a DHCP and TFTP server though. Network booting is outside the scope of this course.

GRUB - Grand Unified
Bootloader

MBR

Stage 1
addresses stage1_5
(CHS)

contains stage1

Stage 1_5

filesystem driver, loads
(hd0,3)/grub/stage2

Stage 2

Configuration:
SuSE:

/boot/grub/menu.lst
RedHat:

/boot/grub/grub.conf

loads for example
(hd0,3)/vmlinuz or Windows
via "chainloading"

Notes:

/boot/grub/grub.conf or
/boot/grub/menu.lst

default=0
timeout=10
title Red Hat Linux 9 (2.4.20-8)
 root (hd0,2)
 kernel /vmlinuz-2.4.20-8 ro root=/dev/hda5
 initrd /initrd-2.4.20-8.img
title SuSE Linux 8.2
 kernel (hd0,2)/vmlinuz-2.4.20-4GB-i686 root=/dev/hda6
 initrd (hd0,2)/initrd-2.4.20-4GB-i686
title Windows 95
 unhide (hd0,0)
 hide (hd0,1)
 rootnoverify (hd0,0)
 makeactive
 chainloader +1
title Windows 98
 unhide (hd0,1)
 hide (hd0,0)
 rootnoverify (hd0,1)
 makeactive
 chainloader +1

Notes:

The GRUB configuration file, /boot/grub/grub.conf (Red Hat) or /boot/grub/menu.lst (SuSE), is nothing more than a predefined series of
commands that could just as well have been entered on the GRUB command line. Storing these commands in a file though makes
booting far more convenient... The file starts with a few general configuration options:

default=0 This specifies the default operating system to be started. GRUB also allows you to specify the fallback parameter, which
specifies the operating system to boot in case the default fails.

timeout=10 Timeout before starting the default operating system, in seconds.
When general options are all defined, specific operating systems need to be predefined. For this, the following keywords may be

needed:

title = The title of the operating system, as it shows up in the GRUB boot screen.

root = The root partition of the filesystem. All files that are referenced later on are stored on this filesystem. Specifying root is not
required, but you will have to identify the root partition every time you mention a file instead, as is done with the SuSE stanza.

kernel = The kernel image that is to be loaded, and all options that need to be passed to the kernel. initrd An initial root disk that needs
to be loaded.

unhide = Unhide the partition specified (i.e. change its type so that Windows systems will recognize it).

hide = Hide the partition specified (i.e. change its type so that Windows systems will not recognize it).

rootnoverify =The root of the operating system is the partition specified, but don't try to verify and access this as GRUB does not support the
filesystem type.

makeactive= Mark this partition active in the partition table.

chainloader +1 To boot this operating system, invoke the chainloader, which needs to load the first sector of the specified root partition.

Note that different distributions can and have made extensions to grub, which allow for
instance graphics to be used.

Starting the Kernel
Once the kernel is loaded, it is started by the boot loader

On most architectures (including i386) the kernel is
compressed with a decompress program included

When the kernel starts, it detects all hardware and
switches the CPU to multitasking, multiuser mode

Notes:

When the user selects a Linux operating system in the boot loader, then the boot loader will load the Linux kernel.
Because of space constraints, the Linux kernel is compressed, but has an uncompress program attached to it. Actually, it
looks like a self-decompressing ZIP file in DOS. The uncompress program uncompresses the Linux kernel and puts it into
memory. Then, it starts that kernel proper.

The first thing the kernel does is try to detect all the hardware for which it has support built in. This includes hard disks, serial
devices, mice, graphical adapters, keyboards, network adapters and the like. By far most of these adapters can indeed be
autodetected, but some can't. In that case, their configuration parameters (most notably, IRQ, I/O and DMA levels)
need to be passed to the kernel as boot options. If this is the case, consult the Hardware-HOWTO for details.

Initial RAM Disk (initrd)
An Initial RAM Disk (initrd) is needed if the kernel can't
access the root filesystem without modules (SCSI, LVM,
RAID, ext3, reiser)

The initrd is loaded into memory by the boot loader

The initrd contains a linuxrc script that loads the
modules from the RAM disk, then starts init

Linux Kernel

linuxrc

init

kernel
modules

initrd

no initrd

Notes:

Not all hardware is supported in the core kernel image. In fact, almost all hardware support in Linux today comes in the form
of modules. These modules are pieces of code that are loaded into kernel memory only if required.

This works well, but leads to a minor problem if kernel modules are needed to mount the root filesystem. This can happen,
for instance because:

• The root filesystem sits on a hard disk type for which support was not compiled into the kernel image. This applies mostly to
SCSI
• LVM or RAID was used, and LVM or RAID support was not compiled into the kernel image.
• The root filesystem uses ext3, JFS or ReiserFS as filesystem type, and support for these filesystems was not compiled into
the kernel image.

In these cases, you are going to need an Initial RAM Disk (sometimes also called an Initial Root Disk). This is a file
containing a compressed image of an ext2 filesystem, which in turn contains two things:
• A linuxrc script
• The kernel modules that are needed

The initrd image is loaded into memory by the boot loader, just like the Linux kernel. When the Linux kernel starts, it detects
the presence of the initrd. It then proceeds to uncompress and mount this filesystem as temporary root. The kernels last
direct action is then to start the linuxrc script. The linuxrc script loads all the required modules, mounts the true root
filesystem and thenexecutes a system call pivot_root. This switches the position of the initrd and the true root filesystem.
From that point on, the actual root filesystem is mounted at its correct location, and linuxrc is able to continue the boot
process by starting the /sbin/init program.

init
init is started by the kernel or linuxrc

init reads configuration file /etc/inittab

Decides on default runlevel if no runlevel is given

Runlevels have different meaning:
0: halt
1: single user mode
2: multiuser without NFS
3: full multiuser mode
4: unused
5: multiuser with graphical login
6: reboot

init will start all programs for that runlevel

Note: Once the system has started, you can switch
runlevels with init <runlevel> or telinit <runlevel>

Notes:

/etc/inittab (Red Hat/SuSE)
Default runlevel
id:3:initdefault:

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -t3 -r now

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

Run xdm in runlevel 5
x:5:respawn:/etc/X11/prefdm -nodaemon

The default runlevel is 3

Always run /etc/rc.d/rc.sysinit (RH)
or /etc/init.d/boot (SuSE)

Run /etc/rc.d/rc (RH) or /etc/init.d/rc
(SuSE) with the runlevel as parameter

Trap the three-finger salute

Allow users to log in on six virtual
consoles (Virtual consoles can be
activated with Alt-F1 through Alt-F6)

Start a graphical login prompt (xdm,
kdm or gdm) in runlevel 5

Default runlevel
id:3:initdefault:

System initialization.
si::bootwait:/etc/init.d/boot

l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6

Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -r -t4 now

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty --noclear tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

Red Hat SuSE

Notes:

Starting Services (System V init style)
init

/etc/rc.d/rc3.d/K* stop

/etc/rc.d/rc3.d/S* start

/etc/rc.d/rc 3 (RH)
/etc/init.d/rc 3 (SuSE)

(Symlinks to the actual
start/stop script)

/etc/inittab

ls -l /etc/rc.d/rc3.d
lrwxrwxrwx 1 root root 17 Mar 16 21:17 K10pulse -> ../init.d/pulse
lrwxrwxrwx 1 root root 17 Mar 16 21:17 K10xntpd -> ../init.d/xntpd
lrwxrwxrwx 1 root root 17 Mar 16 21:17 S10network -> ../init.d/network
lrwxrwxrwx 1 root root 17 Mar 16 21:17 S11portmap -> ../init.d/portmap
.
lrwxrwxrwx 1 root root 17 Mar 16 21:11 S99local -> ../rc.local

Notes:

The rc script is a very important script. Although small, it is responsible for starting almost all services that are active in
the runlevel that was specified as parameter.

What this script basically does is the following:
• It changes to the directory /etc/rc.d/rc<runlevel>.d4
• In this directory, it makes a list of all scripts that start with a K, sorts this list on the two
digits after the K, and executes these scripts with the stop parameter.5
• Then, it makes a list of all scripts that start with an S, sorts it, and executes them with
the start parameter.

These scripts are in fact not scripts at all, but are symbolic links to generic scripts in /etc/rc.d/init.d or /etc/init.d.6 Every
server program that is installed on a Linux system is supposed to have a corresponding control script in this directory,
with the same name as that service. By making a symbolic link from /etc/rc.d/rc3.d to that particular script, the
administrator ensures that a particular service is started (or stopped) in a certain runlevel. And by specifying a two-digit
number after the S or K, the administrator can even influence the order in which services are started and stopped.
This scheme was first used in AT&T's system V (five) Unix. That's why it is called the System V init style. It is used,
among others, by Red Hat and SuSE. Other Linux distributions may use other init styles. But for all distributions the
principle holds: init reads the /etc/inittab files and starts all the programs that are listed there. There is never a magic
or secret program or script being started. That means that it doesn't really matter which distribution you use. Take a look
at the /etc/inittab file and read the scripts that are listed here. This will tell you how the system is started.

Configuring Services per
Runlevel

 # chkconfig --list
 acpid 0:off 1:off 2:off 3:off 4:off 5:off 6:off
 atd 0:off 1:off 2:on 3:on 4:off 5:on 6:off
 ...
 # chkconfig acpid on
 # chkconfig --list
 acpid 0:off 1:off 2:on 3:on 4:off 5:on 6:off
 atd 0:off 1:off 2:on 3:on 4:off 5:on 6:off
 ...

Use chkconfig to create the appropriate K- and S- links
for each service.

Notes:

Each of the service scripts includes information for chkconfig listing the default runlevels for which the service should be on or
off, and the default priority. This leads to the following:
• chkconfig <service> off switches the service off for all runlevels
• chkconfig <service> on switches the service on for the runlevels listed in the service script. In most cases, this is runlevels 2
through 5.

If you want chkconfig to work on other runlevels than the default 2 through 5, you can specify this with the --levels <levels>
option. In addition to chkconfig, you can also use your distributions system management tool
(redhat-config-services or yast) to manage these services.

Starting and Stopping Services
Manually

Scripts in init.d directory can be used to start/stop
services manually

On Red Hat, the service command calls this script
On SuSE, rc<service> is a symlink to the init.d script

Default options: start, stop, status, restart

Other options may also be available
redhat# service atd restart
Stopping atd: [OK]
Starting atd: [OK]

suse# rcatd restart
Shutting down service at daemon done

Starting service at daemon done

Notes:

Sometimes it is necessary to have full control over your system, with no users or other programs doing all kinds of
unexpected things. This is possible in Linux, and is called Single-User Mode. For single-user mode, you will need to
specify the single option to the kernel when your system boots. The Linux kernel will then boot as normal, but init will
only run /etc/rc.d/rc.sysinit or /etc/init.d/boot and then start a bash shell. It will not start all the normal services, so users
can't log in over the network.

On a Red Hat system, the single user mode will not even ask for a root password. This is done so that it can be used if
you forgot your root password, and need to set a new one. Obviously, in single user mode the system is not very
useful, except for you. So after your system maintenance, you need to switch back to normal mode (runlevel 3 or 5).
The safest course of action here is to do a full reboot (shutdown -r now).

Booting Linux in Single-User
Mode

Single-User Mode
No networking (so no incoming hackers)
No services being started
No root password being asked (Red Hat)

Very useful for system maintenance

To start from LILO: add "single" parameter to
boot-prompt

To start from GRUB: add "single" to the corresponding
menu entry

When finished:
exit the shell to start the default runlevel, or
shutdown -r now to reboot

LILO
For Linux, type linux, for Windows 95, type win
Boot: linux single

Notes:

Shutting Down a Linux System
DO NOT switch power off to shut down

Use shutdown command or Ctrl-Alt-Delete
Warns users
Stops all running processes
Unmounts filesystems
Does an orderly shutdown
Reboots if necessary

Example:
To reboot: shutdown -r now or reboot
To halt: shutdown -h now or halt

Some Display Managers allow a user to perform a
shutdown as well

Notes:

	Return to Index:

