

Session S02

Nortel GbESM Customer Scenarios

B. Scott Lorditch – Nortel Networks

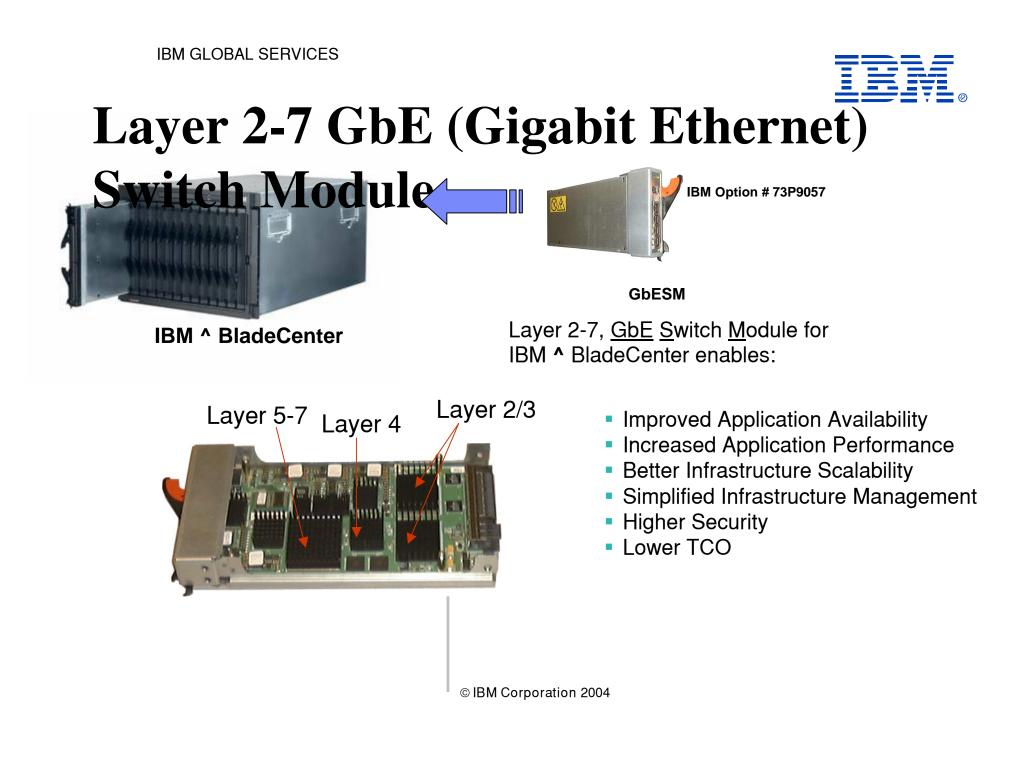
IBM @serverxSeries

Technical Conference

Aug. 9 - 13, 2004

Chicago, IL

© IBM Corporation 2004


Agenda

Review key features of the Nortel GbESM

- Commonly required functions
- Other functions that differentiate the GbESM

Present selected customer case studies

- Customer names are not included on slides
- Industry
- Software to be used
- Switch functions planned to put to use
- Decision factor what made them choose to buy
- Other interesting aspects of the deal

Commonly required functions

- Virtually all customers required these
 - Port aggregation
 - External physical ports treated as one logical pipe
 - "Etherchannel"
 - Multiple VLAN support on a port
 - "VLAN tagging" 802.1Q

Other switch products also offer these functions

- They are not differentiators

Key functional differentiators

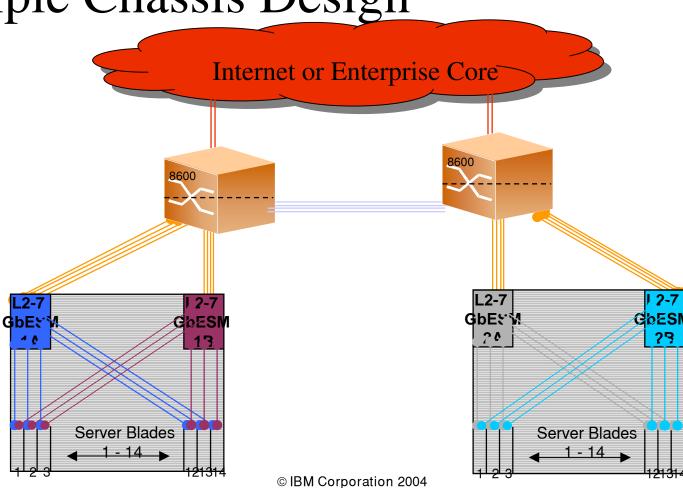
- These are the functions which can the GbESM offers which other Blade Center switch modules do not
- A quick list:
 - Switching integration Layer 2 and Layer 3
 - Traffic filtering for security
 - Support for High Availability designs
 - Server Load Balancing Layer 4-7 switching
 - Multiple Spanning Tree support
 - Available on Cisco but not on D-Link switch module

Layer 2/Layer 3 switching • The Nortel GbESM provides wire speed L2/L3

- The Nortel GbESM provides wire speed L2/L3 switching
- Layer 2 switching uses hardware addresses
 - Most commonly Ethernet MAC address on network card
 - Broadcasts are sent to all ports of a Layer 2 switch

Layer 3 switching uses IP (or similar) addresses

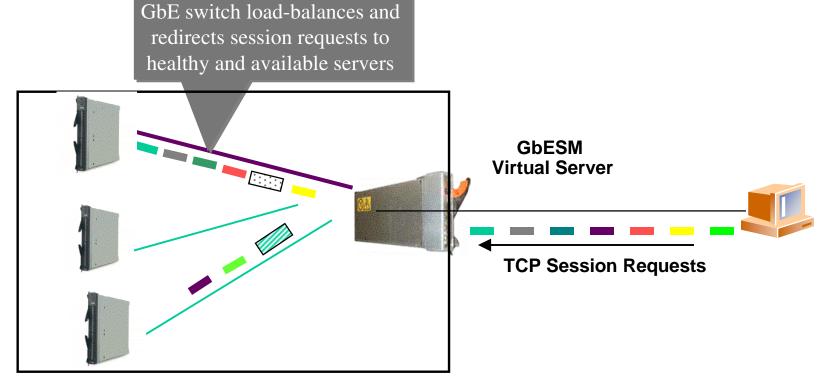
- Broadcasts are not forwarded from one VLAN to another by default
- Each VLAN corresponds to one IP subnet
 - Occasionally more than one subnet
- Layer 3 switching routes traffic between subnets/VLANs
 - The device that traditionally does this is a "router"



Traffic Filtering for Security

- Traffic can be forwarded or dropped based upon
 - IP address ranges (source/destination) and/or
 - Application (IP port) and/or
 - other parameters
- Filters allow network administrators to implement policies
 - Which users can access which applications
 - Which servers can make what type of requests of other servers (such as in Websphere)
 - Which management stations (such as IBM Director, RDM) can manage which servers

Support for High Availability – Multiple Chassis Design



Support for High Availability designs where:

- One switch module backs up another and takes over if it should fail - or lose all upstream connectivity
- One Blade Center chassis backs up another and takes over application(s) which run on it if it should fail
- One server blade can back up one (or more) others and take over application(s) which run on it if it should fail
- These capabilities can be used together to make a very survivable design
- Failover can take less than a second

Server Load Balancing

- » Reduced application response time
- » Increased application reliability
- » Increased efficiency for computing resources
- » Increased application scalability

 $\ensuremath{\textcircled{}^{\circ}}$ IBM Corporation 2004

Server Load Balancing – Layer 4-7

Switching an application are spread over multiple servers which all run that application

- This enables the application to support more requests than a single server can
- If server(s) fail the remaining servers continue to handle requests

Supported applications include

- IIS, Apache, WebSphere web servers
- Websphere application servers
- E-mail servers
- Citrix
- And many others

© IBM Corporation 2004

Multiple Spanning Tree support

- Spanning tree ensures that there are no Layer 2 loops in the network
- Multiple Spanning Tree is needed to allow multiple VLANs to function in a complex Layer 2 topology

Customer Scenarios

© IBM Corporation 2004

Cellular Phone provider

- Software:
 - Homegrown usage metering application
 - 50 web based applications, online FAQ and customer service

Functions:

- Layer 2/3 switching plus Network Address Translation
- Filtering and security
- High Availability

Decision factors

- Customer wanted filtering to ensure an intruder could not use one server blade to attack all of the others
- HA functionality

Regional hospital chain

Software

- Windows front end to mainframe application using 3270 "screen scraping"
 - The application enables Doctors and Nurses to enter patient information
- Functions
 - Server Load Balancing Layer 4
 - High Availability switch redundancy
 - Layer 3 switching (routing)
- Decision factor
 - Combination of SLB and redundancy allowed them to rearchitect the application to remove the "gateway" to the mainframe which was a single point of failure

Securities brokerage

Software

- Kronos timekeeping application package

Functions

- Switching and routing
- Server load balancing

Decision factor

- Customer wanted to grow their Kronos environment

Interesting note – the customer is located in Perth, Australia

Managed services – hosting

Software

- Various software packages
- Windows and Linux O/S

Functions

- L2, L3 switching
- High availability

Decision factor

 High availability standard design for customers of the hosting provider

Financial Institutions

Multiple customers with similar requirements

Software: Web based applications

- Several Linux / Apache implementations
- Windows / IIS
- Citrix
- Clustering
- Home grown apps

Financial Institutions (cont'd)

Key functions

- L2 or L2/L3 switching
- Some using SLB
- Multiple Spanning tree support

Decision factors

- Overall depth of functionality
- L2/L3 integration
- Quality of tech support
- Performance
- One customer had a hard requirement for multiple Spanning tree support

Telecom / Hosting provider

Software: Multiple architectures

- Linux, Solaris
- Apache
- Web Logic

Key functions

- L2/L3 switching
- Multiple Spanning tree

Decision factors

- Pricing
- Overall depth of functionality
- L2/3 integration
- Performance

University

Software

- Web based application built on PeopleSoft

Key functions

- L2-7 switching including Load Balancing (SLB)

Decision factor

 The customer had a problem implementing SLB with a competing product which they solved using the Nortel switch

Automobile Manufacturer

Software

- Factory floor applications
- Red Hat Linux
- IBM Director

Key functions

- L2/3 switching initially
- Planning for future SLB implementation

Decision factor

- Support for SLB for their custom applications

Summary

- Few customers required all of the available functions
- Some functions were commonly required
 - Layer 3 switching (routing)
 - Load Balancing (SLB)
 - High Availability support