
WebSphere Application Server V4.01 for zOS and OS/390WebSphere Application Server V4.01 for zOS and OS/390WebSphere Application Server V4.01 for zOS and OS/390WebSphere Application Server V4.01 for zOS and OS/390

Overcoming a Problem RunningOvercoming a Problem RunningOvercoming a Problem RunningOvercoming a Problem Running

Simulated Message Driven BeansSimulated Message Driven BeansSimulated Message Driven BeansSimulated Message Driven Beans

This document can be found on the web at:
www.ibm.com/support/techdocs

Search for document number WP100301 under the category of "White Papers"

Version Date: August 26, 2002

IBM Washington Systems CenterIBM Washington Systems CenterIBM Washington Systems CenterIBM Washington Systems Center

Don Bagwell
IBM Washington Systems Center

301-240-3016
dbagwell@us.ibm.com



Many thanks go to Mike Cox of the IBM Washington Systems Center for
being the driving force behind producing this white paper in the first place,

and providing the technical guidance during development.

The author wishes to thank Renuka Chekkala of IBM for providing the
source code for the sample application. The source was modified in a few
small ways after receiving it from Renuka, so any comments regarding the

application itself should be directed to the author of this white paper.

The author would also like to thank Vaughn Burton of the IBM
Washington Systems Center for his help setting up MQSeries for the

development of this white paper.



Table of Contents

21Document Change History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20Start J2EE server and HTTP server and drive servlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19Load MQ queue using MQClient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19(Optional) Compile MQClient code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18Update application webapp file with pointers to QMGR, Queue and Home of MQSession . . . . . . . . . . . . . .
18Provide appserver.classpath and appserver.libpath pointers to MQSeries in was.conf . . . . . . . . . . . . . . . . .
18FTP client side bindings into classpath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17Cut-and-paste values from was.conf.updates files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17(Optional) Update WebSphere V3.5 to support connection to WebSphere V4 . . . . . . . . . . . . . . . . . . . . . . . .
17Update httpd.conf with new Service statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16Deploy WAR into Plugin using wartowebapp.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15Create WAR file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14Create client-side bindings file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13Deploy MQSession EAR into J2EE server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13Provide MQSeries library updates to CLASSPATH and LIBPATH for J2EE server . . . . . . . . . . . . . . . . . . . .
12Create J2EE Resources for MQSeries resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11Assemble EJB JAR into EAR file using AAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11Create EJB JAR file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10Modify WSAD.bat file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10Unzip file onto workstation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10Step by step: from downloaded files to working application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9How the sample application is packaged for your use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6Redeploy EJB (without servlet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5Deploy Servlet in Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3Generate Client-Side Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2Separate servlet from EJB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2The steps needed to make this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2The Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WP100301 - Simulated Message Driven Beans



(This page intentionally left blank)

WP100301 - Simulated Message Driven Beans



Overview
We have seen a number of cases where customers attempt to construct an test application that
looks like a message driven bean (MDB). The full MDB support is not yet in WebSphere for zOS,
and many customers are looking to gain experience with the technique by coding up a "pseudo"
implementation.

Unfortunately, these customers are running into problems when their servlet clients attempt to drive
the session bean. The basic problem is that a servlet cannot create a client thread which accesses
managed objects. But there is a workaround, and it involves moving the servlet client from the
WebSphere "web container" environment to the WebSphere "Plugin" environment, where the
invocation of the getMessage() method of the session bean will be a remote call.

Background

What these customers are attempting to create is something that looks like this:

Web Container EJB Container

MQSeries

Servlet Session Bean

WebSphere V4 for zOS

Some backend system
(DB2, CICS, SOAP, etc.)

Thread M

Q

1

2

3

4

"Pseudo" implementation of message driven bean

Here's what this picture is illustrating:

! An auto-started servlet which creates a number of threads, usually one thread for each
inbound message queue being monitored. This servlet provides some management
functions, such as the create/delete of a queue-monitoring thread on demand and provide
some information on usage.

! The thread monitors [1] the inbound message queue [Q], and if a message is present it
copies the correlation ID and then invokes [2] the getMessage() method [M] of the
session bean.

! The session bean then uses the correlation ID passed it and then processes [3] the
message on the queue. Typically, the session bean then accesses a backend system [4],
but what and how it accesses that system is not relevant to the problem being discussed in
this paper.

! The bean then returns to the client, and the process starts all over again

This is what the customers are attempting to do. Unfortunately, it won't work because the
servlet can't create a thread that accesses managed objects.

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 1 -© 2002, IBM Corporation, Wash. Systems Center



The Solution
Overview

The solution to this problem involves moving the servlet from the web container environment to
the "Plugin" environment, which runs in the IBM HTTP Server and provides a servlet execution
environment:

Web Container EJB Container

MQSeries

Session Bean

WebSphere V4 for zOS

Some backend system
(DB2, CICS, SOAP, etc.)

M

Q

3

4

IBM HTTP Server

"Plugin"

Servlet

Thread
2

1

Note: web application no
longer in Web Container

Servlet moved to Plugin environment -- provides remote call, which allows this to work

This works because the servlet thread is now remote from the managed object, and can
therefore make the call.

The steps needed to make this work

The basic flow of this process is this:

Separate servlet
from EJB

Generate
client-side
bindings

Deploy servlet
into Plugin

Re-deploy EJB
(without servlet) Test

Flow of steps necessary to allow servlet to call session bean

These steps are discussed in a bit more detail next.

For a far more detailed look at this, see the supplied sample code and the process to deploy it
discussed under "Sample Code" starting on page 8.

Note:

Separate servlet from EJB

If you're presently deploying the whole application (servlet and EJB) into the WebSphere V4
runtime, the web application (servlet) will be packaged inside the EAR file in the form of a WAR
file. That WAR file needs to come out of the EAR so you can deploy the web application into
the Plugin environment. To get ahold of just the WAR file, you have several options:

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 2 -© 2002, IBM Corporation, Wash. Systems Center



! Go back to the development tool (WSAD, for example) and export the WAR file separately

or

! Go back into AAT, select the web application and export just the WAR file

or

! Use a tool such as WinZIP to extract the WAR file from the EAR file

All do the same thing: put a WAR file onto the hard drive of your workstation.

Later you will need to redeploy the EAR file into the WebSphere V4 runtime environment without
the web application as part of the application. Therefore, you may be best served by going into
the AAT, exporting the WAR, then deleting the WAR from the EAR.

Note:

With WAR file in hand, you are almost ready deploy the web application into the Plugin.

Generate Client-Side Bindings

In order for a remote client remote to be able to access an EJB in the WebSphere V4 runtime,
the client must have access to "client side binding" code. When the client code executes, it will
need access to the bindings, and it will look for the binding code in the CLASSPATH.

If your application was developed using VisualAge for Java, that tool provides a handy wizard to
easily generate the bindings. All you need to do is select the session bean, right-mouse-click
and then select "Export " Client Jar..." VisualAge will then generate the necessary files and
package them into a JAR file.

If your application was developed using WebSphere Studio Application Developer (WSAD),
then you have a little more work to do. That tool does not provide a wizard to create the client
side bindings. But it can still be done. The high-level process looks like this:

JAR Session Bean's JAR File

Home Interface class C\:> rmic

Command Prompt

CLASSPATH=
Other classes referenced
by session and session
home classes

Stub classes

JAR Client Side Bindings Jar File

1

2

3

4

Remote Interface class

Overview of the manual client-side bindings creation process when using WSAD

Here's what the numbered blocks refer to:

1. The session bean's Remote Interface Class and Home Class are extracted from the bean's
JAR file and placed in a directory on your workstation hard drive. You can do that by using
the jar command. For example:

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 3 -© 2002, IBM Corporation, Wash. Systems Center



jar -xf PolicySession.jar com\ibm\ws390\samples\ivp\ejb\PolicySession.class

and

jar -xf PolicySession.jar com\ibm\ws390\samples\ivp\ejb\PolicySessionHome.class

This example is illustrating creating the client side bindings for the sample IVP that comes
with WebSphere called "PolicyIVP." In the section of this white paper titled "Sample Code" on
page 8, you will use different file names.

Note:

1. The CLASSPATH for a command prompt session is updated to point to any class files
referenced by the remote interface class or home interface class. There's a handful of
common class files that will always be referenced by the "rmic" process:

javax.ejb.EJBObject
javax.ejb.EJBHome
java.rmi.RemoteException
javax.ejb.CreateException

These are found in the JAR file j2ee.jar which is supplied with WSAD. Update your
command prompt CLASSPATH with the following:

(WSAD install path)\plugins\com.ibm.etools.websphere.runtime\lib\j2ee.jar

There may be other classes referenced by the home and remote interface classes. For
example, the "PolicyIVP" application that comes with WebSphere would also require a
pointer to the PolicyUtil.jar file so it could access the class file:

com.ibm.ws390.samples.ivp.utilities.IVPVerificationException

Your session bean might have different or other class files. The point is, make sure the
command prompt's CLASSPATH points to all the classes being referenced.

2. Next comes the task of running the rmic utility to create the stubs. (The rmic utility comes
with the JDK, much like the jar and javac commands.). In the working directory into
which you extracted the two files in Step 1, issue the following commands:

rmic -iiop -always -d . <package name of remote interface class>

rmic -iiop -always -d . <package name of home interface class>

This will result in the creation of six files in addition to the two you extracted in Step 1:

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 4 -© 2002, IBM Corporation, Wash. Systems Center



C:\<your working directory>

\com

\ibm

\ws390

\samples

\ivp

\ejb

\org

\omg

\stub

\javax

\ejb

PolicySession.class
PolicySessionHome.class
_PolicySession_stub.class
_PolicySessionHome_stub.class

_EJBHome_Stub.class
_EJBObject_Stub.class
_Handle_Stub.class
_HomeHandle_Stub.class

rmic generates all of this

This is a sample illustration of the directory
structures and files if you were doing this with the

"PolicyIVP" application that comes with WebSphere

What the "rmic" utility produces when you invoke it against the Home and Remote Interfaces

3. Finally, all eight of the files illustrated in the previous picture need to be bundled up into a
JAR file. Using the previous picture as an example, the command to bundle the two
package structures up would be:

jar -cf PolicySessionClientBindings.jar com org

Issue this command from the directory in which the session home and remote interface
packages start. In the example above, that would be the "working" directory. The
packages ("com.ibm..." and "org.omg...") begin in that directory.

This JAR file must be accessible on the CLASSPATH of the client, which in this scenario is the
servlet you're moving from the web container to the Plugin environment. Therefore, when you
deploy the servlet into the Plugin environment, make sure to copy this "Client Side Binding" JAR
file into the CLASSPATH as well.

Deploy Servlet in Plugin

Unfortunately, the Plugin doesn't support deploying WAR files directly. Therefore, to deploy a
WAR file into the HTTP Server WebSphere plugin involves using the wartowebapp.sh utility,
which is supplied with the Plugin. This utility does several things:

! It takes the WAR file apart and populates the HFS with the various piece-parts

! It creates a file called was.conf.updates, which includes the deployedwebapp
statements for this application that you simply cut-and-paste into the was.conf file

! It takes the contents of the web.xml file (the deployment descriptor inside the WAR file)
and converts it into the format of XML file the Plugin understands, which is close to the
same format as web.xml, but not exactly.

It's the last bullet that makes using wartowebapp.sh worthwhile. You might be successful
taking the WAR file apart by hand, and you would probably get the deployedwebapp statements
built properly, but converting the web.xml file into the proper "dot-webapp" file would be unlikely.

Note:

Here's a picture illustrating what the wartowebapp.sh utility does:

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 5 -© 2002, IBM Corporation, Wash. Systems Center



/<virtual host name>

/<webapp name>

/servlets

was.conf.updates

/web

<class files>

<webapp name>.webapp

/WEB-INF

<HTML, GIF/JPG and JSPs>

web.xml

WAR Shell
Script

web.xml Shell script:
asks you a series of
questions
builds HFS directory
structure
takes apart WAR file and
populates HFS

The "web.xml" file is
placed in the HFS, but
not used by WAS 3.5

What the "wartowebapp.sh" utility will do with a WAR file

Consult the white paper WP100238 on www.ibm.com/support/techdocs for a more
complete explanation of how to configure the Plugin, and how it handles requests and maps
them to definitions in the was.conf.

Note 1:

Don't forget to place the "Client Side Bindings" JAR file in one of the CLASSPATH directories.
Your webapp will need that to access the session bean.

Note 2:

See "Deploy WAR into Plugin using wartowebapp.sh" on page 16 for an illustration of how to
run the wartowebapp.sh utility.

Redeploy EJB (without servlet)

Your objective in this step is to remove the webapp from the web container environment, and to
do that you must re-deploy the application EAR file (minus the webapp) back into the J2EE
application server in the WebSphere V4 runtime.

You can remove the webapp from the EAR by using the AAT tool. Start the AAT, mark the web
application, and then delete it. Then validate, deploy and export the EAR. That will result in the
a new EAR file being created, minus the webapp. From there, you redeploy the EAR back into
the same J2EE application server. WebSphere will overlay the existing application code with
the new, and thus remove the webapp from the web container.

Is it possible to leave the WAR in the EAR? Technically speaking, yes. But it can get confusing if
you have the same webapp deployed in both the Plugin and the web container. If the Plugin sees
the same "virtual host + context root" pair in both itself and the web container, it'll send the
request to the web container. Therefore, you may end up invoking the webapp in the web
container and not realize it. That would put you right back to square one of this problem. It's
better to remove the webapp from the web container. It's less confusing. That's done by
removing the webapp from the EAR and redeploying the EAR into the server.

If you feel you can't remove the webapp from the EAR, you have two alternatives:

! Prevent the web application from binding to a virtual host in the web container. That's
controlled in the webcontainer.conf file. Without it being properly bound, it can't be
invoked. That'll insure the webapp in the Plugin takes precedence. You can prevent a web
application from binding to a virtual host by removing whatever contextroots= string from
the webcontainer.conf that this webapp's context root matches to. If you are using the
"catch-all" single slash contextroots= value, that means you probably can't avoid having
this webapp bind (removing the single slash would mean no webapps would bind).

???

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 6 -© 2002, IBM Corporation, Wash. Systems Center



! Make sure that the rooturi= value in the was.conf is different from the contextroot=
setting for the webapp in the web container. The confusion comes in when the rooturi=
value of a webapp in the Plugin is the same as the contextroot= for a webapp in the web
container, and they both have the same virtual host value. If you make those two different,
then there's no ambiguity and you can insure the webapp in the Plugin takes precedence.

Test

The final step is, of course, to test your newly deployed application.

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 7 -© 2002, IBM Corporation, Wash. Systems Center



Sample Code
This application is delivered "as is" and is intended to be simply a sample.Note:

What will be described here is a very simple application that can be used to illustrate the points
made earlier in this paper. The sample application looks like this:

My390Servlet

My390Thread

MQSession

getMessage()

MQSeries

MQClient

Plugin Environment WebSphere V4 Runtime Environment

Client Bindings

The sample application

This application was designed to illustrate the process shown above without being overly
complicated. It does not have a lot of error handling function (but enough to get by). Also, the
behavior of this application on the browser screen is pretty sparse. So don't think this is going to
be an exciting browser experience, because it won't be. But it will do what it's supposed to do.

Note:

Each piece of the application is described here:

! My390Servlet -- a relatively simple servlet that receives the HTTP request and then invokes
the "My390Thread" to do the actual processing. My390Servlet will get the values for the
MQSeries Queue Manager, the Queue Name and the JNDI name of the session bean from
the initialization parameters set for the servlet. Those parameters are set in the web.xml
file.

! My390Thread -- this code will receive from My390Servlet the name of the Queue Manager
and Queue Name and then go check MQSeries to see if there are any messages on the
queue. If so, it'll take the JNDI name of the session bean that My390Servlet passed in and
then do a lookup on the MQSession session bean and once found, drive the
getMessage() method of the session bean.

! Client Bindings -- this is the code needed by the client to invoke the session bean when
the client is in a remote environment. Because the servlet is running in the Plugin and not
the web container, it needs this to properly drive the session bean.

! MQSession -- this stateless session bean will pull messages off the MQ queue when the
servlet (or more specifically, when My390Thread) invokes the getMessage() method of
the session bean. The session bean also has a putMessage() method, but My390Thread
doesn't have any code to drive that method.

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 8 -© 2002, IBM Corporation, Wash. Systems Center



! MQClient -- this is a simple standalone Java program that will fill a specified MQ queue with
messages. Use this to "load" the queue prior to running the My390Servlet.

! MQSeries -- for this to work, you must have MQSeries installed. You will need to have at
the ready the Queue Manager name and the Queue name.

How the sample application is packaged for your use

This application has been packaged in three different ways for your use:

EAR WP100301_390_EJB.ear

WP100301_Components.zipZIP

WP100301_WSAD.zipZIP

JAR

WAR

BIND

MQSession.jar -- EJB JAR file

SimMDB_Web.war -- Webapp WAR file

MQSessionClientBindings.jar -- client side bindings

MQClient.java and MQClient.class

MQSession bean

My390Servlet

WSAD workspace
files and

directories

File #1

File #2

File #3

Three different files containing the application in different formats

! WP100301_390_EJB.ear -- This is an EAR file as produced by the 390 AAT tool. If you
wish to deploy this sample application by taking an assembled EAR file apart, use this file.

! WP100301_Components.zip -- This is a ZIP file that contains the piece-parts to the
application. If you don't want to both taking an EAR file apart, you can simply unzip this file
and you'll have the pieces ready to go.

! WP100301_WSAD.zip -- This is a zipped-up WSAD workspace. If you unzip this onto your
workstation hard drive and then invoke WSAD and point to this directory, you'll have the
WSAD environment ready to go.

For the rest of this paper it will be assumed you will use the WSAD workspace. You'll also need
access to the WP100301_Components.zip file to get the Java source for the MQClient
program.

Note:

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 9 -© 2002, IBM Corporation, Wash. Systems Center



Step by step: from downloaded files to working application

Unzip file onto workstation

The file WP100301_WSAD.zip has an internal structure that looks like this:

WP100301_WSAD.zipZIP

WP100301

WSAD.bat

.metadata

SimMDB_EJB

SimMDB_Web

Batch file to start
WSAD and point to

this workspace

WSAD information
about this
workspace

Session Bean
Folder

WebApp Folder

Internal structure of WSAD workspace zip file

By unzipping this, you'll have a WSAD workspace with nothing but this project in it.

Do the following:

# Unzip the file WP100301_WSAD.zip into the C:\ directory on your workstation. It will
create the directory C:\WP100301. Be sure that all sub-directories from the ZIP file are
created as well (it should default to this behavior).

Modify WSAD.bat file

What's this all about? Using a batch file to start WSAD and point to a separate repository is a
nice way of keeping a project cleanly separated from other projects. For anyone who has had
to pause while working in WSAD to get things straight again in their mind, this will make sense.
For those new to WSAD ... just trust that this will makes thing easier.

???

There should be a file called C:\WP100301\WSAD.bat on your workstation. It would have
come out of the WP100301_WSAD.zip file.

# Edit that file and see if the pointer to the executable wsappdev.exe is correct (this is
where WSAD would be installed on your workstation). Correct if necessary.

Rem
Rem start WSAD for this project.
Rem
"C:\Program Files\IBM\Application Developer\wsappdev.exe" -data c:\WP100301

When this batch file is run, it will start WSAD (wsappdev.exe) and use the separate
directory of C:\WP100301 as the place it'll look for its workspace.

# Invoke the batch file and start WSAD. You should see a structure that looks something
like this:

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 10 -© 2002, IBM Corporation, Wash. Systems Center



The Session Bean
Folder

The WebApp
Folder

Initial appearance of SimMDB projects in WSAD

Create EJB JAR file

# Create a work directory on your PC with a name of C:\WP100301_work

# Select the SimMDB_EJB folder in WSAD, right click and select "Export EJB Jar."

# Put the JAR out as C:\WP100301_work\MQSession.jar

Or you can simply extract the file MQSession.jar from the
WP100301_Components.zip file or the SimMDB_390_EJB.ear file supplied with this
white paper.

Note:

Assemble EJB JAR into EAR file using AAT

# Start the WebSphere for zOS "Application Assembly Tool" (AAT)

# Create a new application called SimMDB and import MQSession.jar into the "Session
Beans" folder

# Locate the session bean "MQSession," right-click and select "Modify"

# Click on the "Transactions" tab to show the two container transactions: getMessage
and putMessage.

# Click on the "Modify All..." button and then set the transaction attribute for both to
"Supports":

Set "Transaction Attribute" for both getMessage and putMessage to "Supports"

The bean coming out of WSAD didn't have the transaction attributes set. Unless you set
these values, AAT will not allow the bean to be deployed. A value of "Supports" means
"The method runs in a transaction if a transaction is already running; otherwise, it runs
with no transaction."

Why?

# Save the changes

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 11 -© 2002, IBM Corporation, Wash. Systems Center



# Now select the "SimMDB" application, right click and select "Validate"

# Make sure the "Options" pulldown selection "EJB Deploy" is unchecked (you do not
want AAT to regenerate all the classes)

# Select "SimMDB" again, right click and then "Deploy"

# Select "SimMDB" one last time, right click and select "Export" and put the application out
as an EAR file at location C:\WP100301_work\WP100301_390_EAR.ear

Or you can simply use the file WP100301_390_EAR.ear supplied with this white paper.Note:

You now have an EAR file ready to be deployed to the WebSphere V4 for zOS runtime. But
first you must set up some MQ resources so the application can be properly deployed.

Create J2EE Resources for MQSeries resources

# Log onto the WebSphere V4 Systems Management administrative console (the
"SMSEUI" tool) and create a new conversation.

# Create two J2EE resources with an resource instance under each. The SMSEUI tool
will set most of the values based on the selection you make for "J2EE Resource Type".
The following picture illustrates how you should set the values:

J2EE Resource Type: MQQueueConnectionFactory

J2EE Resource Type: MQQueue

Queue Manager Name: MQW1

Queue Manager Name: MQW1
MQ Queue Name: CB.IMSA.PUT

Note! Values
highlighted in gray
are installation
dependent values.
They are shown here
just for example.

Note! The names
you give it may be
different.

Values for J2EE Resources for MQSeries Queue Manager and Queue

This assumes you have MQSeries installed on your system, and WebSphere for zOS
has been made aware of the new resource. If you don't see
"MQQueueConnectionFactory" in the SMS EUI pulldown menu, then MQ hasn't been
installed into WebSphere. This paper will not detail how to do that.

Note 1:

The values you supply for the "Resource" and "Resource Instance" are arbitrary ... you
may name them anything you like. When you go to deploy the EAR file, the names you
give them -- whatever those names happen to be -- will appear in the pulldown list when
you tie the symbolic resource reference for the bean to the actual resource. For the
sake of this illustration, the names are as shown in the picture above.

Note 2:

The name of your MQSeries Queue Manager and Queue will no doubt be different from
what we're showing in this example. The key point is the Queue Manager must exist,
and the Queue must exist. The far more important values on the chart above are the
"J2EE Resource Type" values shown. Those have to be set as shown in the chart
because those are the values in the bean's deployment descriptors. If you provide
different values (and there are some other values available that are close, but not exactly
the same as those shown here), then when you go to deploy the bean you won't find any
pulldown values available when you tie symbolic reference to actual resource.

Note 3:

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 12 -© 2002, IBM Corporation, Wash. Systems Center



# Save changes, but don't commit the conversation just yet ...

Provide MQSeries library updates to CLASSPATH and LIBPATH for J2EE server

# For the J2EE server into which you plan to deploy the session bean, modify the server
definition, then update the Environment Variable LIBPATH and concatenate the
MQSeries Java lib directory (separate from previous with a colon):

/usr/lpp/mqm/java/lib

# Concatenate the CLASSPATH variable with the following references (separate each with
a colon):

/usr/lpp/mqm/java/lib/com.ibm.mqjms.jar
/usr/lpp/mqm/java/lib/com.ibm.mq.jar

Deploy MQSession EAR into J2EE server

This white paper assumes the J2EE Server has been created and validated. If you're not
certain how to do that, you may wish to consult the white paper WP100277 at
www.ibm.com/support/techdocs. In that paper, under the section titled "Phase 3:
Create Application Server" the steps needed to create a J2EE application server are outlined.

Note:

# Select the J2EE server into which you will install the application, then right-click and
select "Deploy J2EE Application."

# Select the file C:\WP100301_work\SimMDB_390_EJB.ear

# Set the JNDI path and name:

Take the pre-set value for JNDI
path+name, or click on the
"default" button.

Later you will update the value
in the "webapp" XML file to
point to whatever value you set
here.

Setting JNDI path+name for the MQSession bean

# Set the J2EE Resources by clicking on that tab:

MQ_CONN_FACTORY

MQ_QUEUE

J2EE Resource pulldowns should have your Resource and Resource Instance values

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 13 -© 2002, IBM Corporation, Wash. Systems Center



If you don't see a value in the pulldown list, that means the J2EE Resource or Resource
Instance you created a few steps back had a different "J2EE Resource Type" value than
what's in the bean's deployment descriptor. You may need to go back and redefine your
resources.

Note:

# Click on OK to initiate the transfer and installation of the EAR file

# Save all changes, then validate, commit and activate the conversation

# Start the J2EE application server (if WebSphere didn't re-start it automatically) and
insure that "naming registration" was successful and that the session bean is properly
registered in LDAP.

Create client-side bindings file

WSAD does not provide a wizard to produce the client side bindings like VisualAge for Java
did. Therefore, the process is manual:

You may follow these steps to create your own Client Side Bindings file, or you can simply
extract the file MQSessionClientBindings.jar from the WP100301_Components.zip
file supplied with this white paper.

Note:

# Create the directory C:\WP100301_rmic on your workstation

# Copy the MQSession.jar file supplied with the WP100301_Components.zip file into
the C:\WP100301_rmic working directory

If you prefer, you may create your own EJB JAR file from WSAD. Highlight the
SimMDB_EJB project folder, right click and select "Export EJB Jar." Put the file out as
C:\WP100301_rmic\MQSession.jar and it's the same thing as copying the file
provided in the "components" zip file.

Note:

# Go to a command prompt and change directories to C:\WP100301_rmic

# Extract the MQSession.class and MQSessionHome.class files from the ZIP, maintaining
its package structure, with the following commands:

jar -xf MQSession.jar com\rc\wsc\ejb\MQSession.class

jar -xf MQSession.jar com\rc\wsc\ejb\MQSessionHome.class

# Set the CLASSPATH variable to point to the directory containing the class files that "rmic"
will need (issue this as one command):

set CLASSPATH=%CLASSPATH%;C:\Program Files\IBM\Application Developer
\plugins\com.ibm.etools.websphere.runtime\lib\j2ee.jar

# From the C:\WP100301_rmic directory, Issue the following "rmic" commands to
generate the client-side bindings:

rmic -iiop -always -d . com.rc.wsc.ejb.MQSession

rmic -iiop -always -d . com.rc.wsc.ejb.MQSessionHome

Your directory structure should now look like this:

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 14 -© 2002, IBM Corporation, Wash. Systems Center



Four files in the com.rc.wsc.ejb folder

Four files in the org.omg.stub.javax.ejb folder

# The final task is to "jar" both of these directory structures up into a single client-side
bindings file. In the command prompt go to the C:\WP100301_rmic working directory
and issue the following command:

jar -cf MQSessionClientBindings.jar com org

A bit later you see instructions on how to FTP the file up to the 390 box and put it in the
directory named on the deployedwebapp.classpath directive in the was.conf.

Create WAR file

You may follow these steps to create your own WAR file, or you can simply extract the file
SimMDB_Web.war from the WP100301_Components.zip file or the
SimMDB_390_EJB.ear file supplied with this white paper.

Note:

# Go back to WSAD

# Select the SimMDB_Web folder, right click and select "Export War."

# Put the JAR out as C:\WP100301_work\SimMDB_Web.war

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 15 -© 2002, IBM Corporation, Wash. Systems Center



Deploy WAR into Plugin using wartowebapp.sh

# FTP the SimMDB_Web.war file to the S/390 server in binary mode. Assume you put
that into the directory /u/user1.

# Log onto TSO and make sure you have a sufficiently large logon "SIZE" value. This
utility consumes a bunch of memory. For example, 2096128 works.

# Create a "temp" directory somewhere; let's say /u/user1/tmp, and give it permissions
777

# Create a directory into which the WAR file contents will be place: /u/user1/classes
and give it permissions 755

# Go into OMVS and set the WAS_HOME environment variable to:

export WAS_HOME=/usr/lpp/WebSphere401/WebServerPlugIn

# Change to the /usr/lpp/WebSphere401/WebServerPlugIn/bin directory and
issue the following command:

./wartowebapp.sh WAR_FILENAME=/u/user1/SimMDB_Web.war TEMP_DIRECTORY=/u/user1/tmp

# The utility will now ask you a series of questions:

VIRTUAL_HOST_NAME <null to accept: default_host>

This is asking what virtual host defined in the was.conf you wish to use for this web
application. If you use the default default_host, which by default maps to the value
localhost, then just hit enter. Otherwise, type in the virtual host name you want this
webapp to map to.

WEBAPP_NAME <null to accept: SimMDB_Web>

This will be used to determine the value for <name> in the deployedwebapp statement
format of:

deployedwebapp.<name>.classpath=

It can be anything you like (no spaces or periods allowed). By default it takes the name of the
WAR file.

WEBAPP_DESTINATION <null to accept: $was_install_root$/Web...

This is key. It is asking where you want the contents of the WAR file to be placed. By default
the contents are going to get buried deep down the installation directory of the WebSphere
Plugin. Instead, point it back to your /u/user1/classes (or where ever you've put your
files) directory.

WEBAPP_AUTO_RELOAD_INTERVAL <null to accept: 0>

Provide a value, or accept default value of 0.

WEBAPP_PATH <null to accept: /webapp/SimMDB_Web>

This will be the rooturi= value. It will also be what you use on your Service statement.
Set this to /SimMDB_Web (in other words, remove the extraneous /webapp from the
default).

LOCAL_FILE_ENCODING <null to accept: en_US.IBM-1047>

Hit enter to accept the default, or supply a value if you know what you're doing.

If all works, you should see a message saying BUILD SUCCESSFUL, and you will have a
structure that looks something like this in your HFS:

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 16 -© 2002, IBM Corporation, Wash. Systems Center



/default_host

/<webapp name>

/servlets

was.conf.updates

/web

<class files>

<webapp name>.webapp

/WEB-INF

<HTML, GIF/JPG and JSPs>

web.xml

/u/user1/classes

The "web.xml" file is
placed in the HFS, but
not used by WAS 3.5

The converted
web.xml file

The deployedwebapp statement updates
to was.conf. Cut-and-paste these into
was.conf

Update httpd.conf with new Service statement

# You now need to create a Service statement in the httpd.conf that will serve to map a
URL from your browser over to the Plugin. That Service statement should be made
equal to whatever value you provided to the WEBAPP_PATH question from the
wartowebapp.sh utility. In this example, we set that to SimMDB_Web, so your
Service statement should be:

Service /SimMDB_Web/* /usr/lpp/WebSphere...

# Save the file

(Optional) Update WebSphere V3.5 to support connection to WebSphere V4

This is only necessary if the Plugin that you're using is the older WebSphere V3.5. If you're
using the Plugin that comes with WebSphere V4, you don't need to do this. Skip to the next
heading.

Note:

# Update the appserver.classpath property of was.conf and provide the following:

/usr/lpp/WebSphere/lib/ws390crt.jar

# Add a new property to the was.conf file (place all on one line in the file):

appserver.java.extraparm=-Djava.naming.factory.initial=
com.ibm.ws.naming.ldap.WsnLdapInitialContextFactory

# Update the httpd.envvars file and provide the following variables:

RESOLVE_IPNAME=(fully qualified IP hostname of WebSphere)
RESOLVE_PORT=900

All this is necessary to provide WebSphere V3.5 Standard Edition the knowledge of how to
reach the V4 runtime where the EJB resides. The new V4 Plugin has all this built in.

Cut-and-paste values from was.conf.updates files

# Browse the file was.conf.updates, created by the wartowebapp.sh utility

# Copy the contents out of that file

# Paste into was.conf, making sure that no characters far to the right are truncated

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 17 -© 2002, IBM Corporation, Wash. Systems Center



FTP client side bindings into classpath

Back in "Create client-side bindings file" on page 14 you created a file called
MQSessionClientBindings.jar (or you copied the same file supplied in the
WP100301_Components.zip file). Now is the time to make that file available to your
servlet.

# Take a look at the deployedwapp.<app_name>.classpath= property that you
pasted into the was.conf file. Note the directory named on that property.

# FTP the file MQSessionClientBindings.jar in binary mode into the classpath
directory

That file can go into any CLASSPATH directory accessible by the servlet. It's probably best to
put the file into the directory named on the deployedwebapp.<name>.classpath=
statement generated by the wartowebapp.sh utility.

Note:

Provide appserver.classpath and appserver.libpath pointers to MQSeries in was.conf

# Update appserver.libpath in the was.conf with a pointer to the MQSeries Java
"lib" directory:

/usr/lpp/mqm/java/lib/

# Update appserver.classpath in the was.conf with the a pointer to the following
JAR files and directories:

/usr/lpp/mqm/java/lib:
/usr/lpp/mqm/java/lib/com.ibm.mq.jar:
/usr/lpp/mqm/java/lib/com.ibm.mqjms.jar:
/usr/lpp/mqm/java/lib/com.ibm.mqjms.jar:
/usr/lpp/mqm/java/lib/providerutil.jar:
/usr/lpp/ldap/lib/jndi.jar:
/usr/lpp/ldap/lib/ibmjndi.jar

The appserver.classpath property is coded on one line, with entries separated by a
colon. Do not code the references broken across lines as shown here.

Note:

# Save the file

Update application webapp file with pointers to QMGR, Queue and Home of MQSession

The <application_name>.webapp file is found in the directory named on the
deployedwebapp.<name>.classpath= property created by wartowebapp.sh. The
contents of this file are the converted contents of the webapp's web.xml file.

You could make these changes in WSAD prior to generating the WAR file. Changing the
XML file on the 390 box works just as easily.

Note 1:

The values you provide for QMGR_NAME and QUEUE_NAME must match what you provided
for the J2EE Resources back under "Create J2EE Resources for MQSeries resources" on
page 12. In the example provided back on page 12, the Queue Manager name was MQW1,
and the Queue Name was CB.IMSA.PUT.

Note 2:

The value for HOME_NAME must match whatever value you set for the JNDI name of the
MQSession bean when you deployed the EAR file into the J2EE Server. If you took the
preset value of MQSessionHome, then code that. If you clicked on the "default JNDI"
button, then code that whole value on one line here in the XML file. The point is what's
coded here must match what's registered in LDAP. Not sure? Use an LDAP browser to
see, or go into the SMS EUI tool and check the JNDI name for the session bean.

Note 3:

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 18 -© 2002, IBM Corporation, Wash. Systems Center



# Locate the file SimMDB_Web.webapp under the /SimMDB_Web/servlets directory

# Edit the file, and change the following text:
<servlet>

<name>My390Servlet</name>
<code>com.rc.wsc.web390.My390Servlet</code>
<init-parameter>

<name>QMGR_NAME</name>
<value>Your Queue Manager Name Here</value>

</init-parameter>
<init-parameter>

<name>QUEUE_NAME</name>
<value>Your Queue Name Here</value>

</init-parameter>
<init-parameter>

<name>HOME_NAME</name>
<value>JNDI Home Interface Name of Session Bean Here</value>

</init-parameter>
<servlet-path>/My390Servlet</servlet-path>

</servlet>

If you clicked on the "Default JNDI Name" button of the SMS EUI tool, the value you
would code for the JNDI name would be something like this:

/WSLPLEX/WASASR2/WP100301_390_EJB/MQSession/MQSession/com...

Note:

# Save the file

(Optional) Compile MQClient code

The MQClient program will load 100 messages onto your MQ queue. This step is "optional"
because the compiled class file is supplied in the WP100301_Components.zip file. But
just in case you wanted to compile it yourself, here's how you would do that.

# FTP in ascii mode the file MQClient.java to your 390 system. Place in a working
directory such as /u/user1.

# Go into an OMVS session

# Update your OMVS session's CLASSPATH to point to the following directories:

/usr/lpp/mqm/java/lib/com.ibm.mq.jar
/usr/lpp/mqm/java/lib/com.ibm.mqjms.jar

# Compile the code with javac MQClient.java

Or you could simply FTP in binary mode the file MQClient.class found in the
WP100301_Component.zip file

Note:

Load MQ queue using MQClient

# Go into an OMVS session

# Update your OMVS session's CLASSPATH to point to the following directories:

/usr/lpp/mqm/java/lib/com.ibm.mq.jar
/usr/lpp/mqm/java/lib/com.ibm.mqjms.jar
/usr/lpp/mqm/java/lib/providerutil.jar
/usr/lpp/mqm/java/lib
/usr/lpp/ldap/lib/ibmjndi.jar

# Invoke the MQClient program using the following command:

MQClient <Queue Manager> <Queue Name>

For example:

MQClient MQW1 CB.IMSA.PUT

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 19 -© 2002, IBM Corporation, Wash. Systems Center



If the program is able to connect to the Queue Manager and locate the Queue Name, it'll
load the queue with 100 messages. Your OMVS screen will fill up with 100 iterations of
something like this:

:

Putting message : <Mon Aug 19 09:47:59 EDT 2002> of length 28
Message Id as Bytes : ÝB@4c3d33dc
Message Id Length 24
Message Id as String : CSQ MQW1 ½--$¢
Correlation Id : ÝB@4c33f3dc
:

You're now ready to drive the servlet and have the session bean pull the messages off the
queue!

Start J2EE server and HTTP server and drive servlet

# Start the J2EE application server into which the MQSession bean was deployed. If this
is the first time the server has been started since deploying the bean, make sure that
naming registration succeeds for the newly deployed application.

# Start the HTTP Server

# On your browser, enter the URL with the proper rooturi and servletmapping string:

http://<your host>[:port]/SimMDB_Web/My390Servlet

If you get an HTTP Server Error 404, it means you didn't properly code the Service
statement. Go back to "Update httpd.conf with new Service statement" on page 17 and
make sure the Service is coded properly to match this URL. Restart the HTTP Server
and try again.

Note:

You will get a very unfriendly message back even when things are successful.

The less-than-helpful message of success provided by the servlet

If you get this message, things may be okay. The only way to check is to look in the
"ncf" trace.

# Go to the "ncf" trace of the Plugin and scroll to the bottom. The sign of success will be a
string of messages that looks something like this:

My390Thread -- Successful in LookUp
My390Thread -- Successful in obtaining the home
My390Servlet -- Leaving servlet init
My390Thread -- In the run method of My390Thread
My390Thread -- Success! In My390Thread Message off queue was :Mon Aug 19 09:47:50
My390Thread -- Success! In My390Thread Message off queue was :Mon Aug 19 09:47:50
My390Thread -- Success! In My390Thread Message off queue was :Mon Aug 19 09:47:51
:

My390Thread -- Success! In My390Thread Message off queue was :Mon Aug 19 09:47:53
My390Thread -- No messages on queue, so I will take a 3000 millisecond nap
My390Thread -- No messages on queue, so I will take a 3000 millisecond nap

You'll see as many "Success!" messages as you had messages on the queue. Once all
the messages have been stripped off the queue, the thread will go into a 3000

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 20 -© 2002, IBM Corporation, Wash. Systems Center



millisecond loop and then check again. Unless you put more messages on the queue,
the "No messages on queue" notice will repeat forever.

Document Change History
Check the date in the footer of the document for the version of the document.

Original document.August 26, 2002

End of Document

WP100301 - Simulated Message Driven Beans

Monday, August 26, 2002- 21 -© 2002, IBM Corporation, Wash. Systems Center


