
WSADMIN

Scripting Interface

IBM Americas Advanced Technical Support -- Washington Systems Center
Gaithersburg, MD, USA

(This page intentionally left blank)

Presentation Based on White Paper

If you're interested in going deeper
still, refer to white paper WP100421
on the "Techdocs" website

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100421

This presentation won't go into
nearly as much detail; rather it'll
pick up the key points.

If you want more detail, pull the
white paper off Techdocs.

Includes a ZIP file with dozens of exercises.

To set your minds at ease, this presentation is based on a far more detailed and comprehensive white
paper on the WSADMIN topic. That white paper is available at the URL you see on the chart above.
The white paper is in the form of a "primer," which is meant to be a step-by-step instruction, or tutorial,
on the topic. Included with the white paper is a ZIP file with dozens of exercises to help you see how
WSADMIN scripting is done.

So as we go through this presentation, do not worry if all the details are not present ... the white paper
has plenty of details.

Session Z5039

Version Date: September 22, 20041IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

What WSADMIN is NOT

WSADMIN is not a keyboard activity record-and-playback mechanism.

WebSphere
Application
Server for

z/OS

WebSphere
Admin

ConsoleTap! Click!

Click!

Tap!

Tap! Tap!

Recording of the
keystrokes, mouse
movements and
mouse clicks.

A common question is whether it's possible to record
Admin Console work and use it to create a WSADMIN
script.

The answer is "no" ... but that's not necessarily a bad
thing. As you'll see, many WSADMIN commands are far
simpler than the steps you'd take in the Admin Console
to achieve the same thing.

Some, however, are more complex. It's a tradeoff.

What is
WSADMIN?

We'll start by dispelling with a misunderstanding many have regarding WSADMIN. What WSADMIN is
not is a keyboard recorder/playback mechanism. Many people ask if it's possible to "record" the things
done on the Admin Console and use that as a WSADMIN script. The answer is "no" because
WSADMIN is fundamentally not about "playing back" something. WSADMIN is really more of a
programming interface.

As the chart indicates, this is not necessarily a bad thing. Capture-and-playback tools can be quite
confusing at times. WSADMIN can be very simple for certain things (though, admittedly, difficult for
others).

So what exactly is WSADMIN?

Session Z5039

Version Date: September 22, 20042IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WSADMIN is Scripting Interface

WSADMIN
Client

WebSphere
Application
Server for

z/OS

Scripting
Interface

$AdminApp list

adminconsole
filetransfer
My_IVT_Application
SuperSnoop
 :
 :

WSADMIN is an interface to WebSphere that allows commands issued to modify
some aspect of the runtime environment:

What sort of things can be accomplished?
Install or uninstall applications
Modify an existing application
Start or stop servers
Initiate node synchronization
Create new servers, clusters, virtual hosts, etc.

Very simple example of
a WSADMIN command

Without realizing
it, you may have
already used
WSADMIN ...

What WSADMIN is is a programming interface into WebSphere Application Server. Commands
executed against this interface may then modify some aspect of the runtime environment. There's
quite a few things you can do with WSADMIN, as the chart indicates. An example of a very simple
WSADMIN command is the one on the chart:
$AdminApp list

Which will then list out all the applications installed in the cell.

There's quite a bit more we have yet to explain, such as how to execute that command, and what cell it
acts against to list out the applications. That's coming.

Note:

The chances are good that if you built a WebSphere for z/OS environment, you've used WSADMIN.

Session Z5039

Version Date: September 22, 20043IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

You've Probably Used WSADMIN

//INST1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 /wasv5config/g5cell+
 /AppServer+
 /bin/wsadmin.sh -conntype none +
 -c '$AdminApp install +
 /wasv5config/g5cell+
 /AppServer+
 /installableApps/adminconsole.ear +
 {-appname adminconsole +
 -MapRolesToUsers {{"administrator" ...
 {"monitor" No No G5ADMIN G5CFG} +
 {"operator" No No G5ADMIN G5CFG} +
 {"configurator" No No G5ADMIN G5CFG}} +
 -server g5sr01c +
 -node g5nodec +
 -cell g5cellc +
 -copy.sessionmgr.servername +
 g5sr01c}' +
 1> /tmp/bbowiapp_26921.out +
 2> /tmp/bbowiapp_26921.err
/*

CNTL

BBOWIAPP When configuring WebSphere
initially, the BBOWIAPP job
installed the Admin Console
into your new server using
WSADMIN

Some interesting things:
Server wasn't up when you
installed application
Simple BPXBATCH
invocation of wsadmin.sh
shell script
WSADMIN command and
its attributes/options
contained in the JCL

We'll explore all of these
things in this presentation.

BPXBATCH
invocation of
shell script

Submitted before you started
the server ... don't need server
running to install applications

WSADMIN
command,

attributes and
options

The BBOWIAPP job -- one of the customized jobs generated by the ISPF dialogs -- installs the Admin
Console into the newly created server. That job has within it a really good example of WSADMIN at
work. Some things of note:

When you ran BBOWIAPP (or BBODIAPP for the Deployment Manager), your server was not up.
Yet the application was installed anyway. This helps illustrate the point that a server does not need
to be up and running to install an application. For that matter, it's possible for every server in an
environment to be down and yet still install an application. How? WSADMIN knows enough about
the configuration repository environment to make changes directly to it without requiring a server to
be operational.

The way BBOWIAPP invoked WSADMIN was through BPXBATCH. This helps illustrate a key point
about WSADMIN: in it's "native" form it's a shell script. That means it can be invoked from OMVS
or a Telnet session or in JCL as BBOWIAPP does it.

BBOWIAPP uses the $AdminApp object and install method to install a file called
adminconole.ear. What follows is a long string of options to the install method. Not all the
options are required for every application you install -- the -MapRolesToUser option is fairly
complex and not something you'll probably do when you're first working with WSADMIN.

We have a world of WSADMIN commands to explore ... that's coming in a bit.

Session Z5039

Version Date: September 22, 20044IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WSADMIN "Client"
To exercise the scripting interface you use the WSADMIN client. On z/OS the
client comes in the form of a shell script:

This is the bare-bones basics of it. There are a lot of variations on how this is
done, which we'll cover. For now, understand three key points:

WSADMIN client is shell script

WSADMIN commands passed into client

Client operates against WebSphere
Where can you run client?

WebSphere
Application
Server for

z/OS

Scripting
Interface

wsadmin.sh

WSADMIN
Client

WSADMIN
Commands

Network Deployment: ../DeploymentManager/bin directory
BaseApp: ../AppServer/bin directory

The first key building block to this thing is the WSADMIN "client." The client is the wsadmin.sh shell
script. It is this shell script which accepts the commands you program, and it is this shell script which
acts against the interface of the WebSphere runtime environment.

There are actually multiple copies of the shell script found in the HFS. There's a copy under the
/DeploymentManager/bin directory, and there's a copy under the /AppServer/bin directory for
each application server.

Where can you run this client? That's covered next.

Session Z5039

Version Date: September 22, 20045IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Where You May Run Client

WebSphere
Application
Server for

z/OS

Scripting
InterfaceWSADMIN

Client

MVS Image or LPAR

OMVS or
Telnet

wsadmin.sh

On z/OS System:

Windows
Command

Prompt

WSADMIN
Client

wsadmin.bat

From Distributed Platform
(for example, Windows)

WSADMIN is provided on all WebSphere Application Server platforms. So it's
possible to run the WSADMIN client in different places:

Factors:
Must use -conntype SOAP
Target server process must be up
When security on then need to coordinate certificates

Next: two "modes"
of operation ...

It turns out that WSADMIN is provided on all platforms where WebSphere Application Server runs --
both z/OS and the distributed platforms. It turns out further that you may actually run the WSADMIN
client anywhere ... but if you run it on a distributed box there are some restrictions.

What kind of restrictions? We'll go over them in a bit. For now, simply know this: if you invoke
WSADMIN on a distributed platform and you want to make changes to the configuration repository on
the z/OS box, then you need to go across the network. That means something on the z/OS box needs to
be there to receive the requests and act upon them. That "something" is a running server process ... for
example, the Deployment Manager. What that means is you must use -conntype SOAP (we've not yet
talked about that, but will). The key point is this: only when you invoke WSADMIN on the z/OS box can
you operate directly against the configuration repository. Invoke WSADMIn on another box and you have
to come across the network.

Note:

To understand this better we need to explain the two "mode" of operation: local and remote.

Session Z5039

Version Date: September 22, 20046IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

"Local" Mode vs. "Remote" Mode

OMVS or
Telnet

"Remote" Mode -- Connect via SOAP to server; let server modify configuration files

Windows
Command

Prompt

WSADMIN
Client

wsadmin.bat
CR SR

Deployment
Manager

HFS

WSADMIN
Client

wsadmin.sh

MVS Image or LPAR

SOAP

SOAP

Distributed Platform
WebSphere

CR SR

Deployment
Manager

HFS

WSADMIN
Client

wsadmin.sh

MVS Image or LPAR

OMVS or
Telnet

Direct Manipulation of
Configuration Files

Server not
running

"Local" Mode --
WSADMIN changes
configuration files
directly

WSADMIN must run on z/OS
BBOWIAPP did this
Some functions not available
($AdminControl)

For this to work, the server process (DMGR in this case) must be running

There are two basic "modes" in which WSADMIN may run: "local" and "remote." The difference is
whether the client -- the shell script -- operates directly against the configuration repository (local) or
connects to a server process (remote).

Remote

Remote mode operations is where you instruct the WSADMIN client to issue SOAP messages to a
server process, and allow that server process to manipulate the configuration repository. It may
seem like that method is only applicable to distributed platform boxes, but in truth you can use remote
mode even when invoking the WSADMIN shell script on the z/OS box.

Why would you want to do that? Two reasons: you invoke wsadmin.sh on one system in a Sysplex
but you want to affect a configuration repository on another system; and because the $AdminControl
object of WSADMIN is only available in remote mode.

Note:

In either case the shell script will issue a SOAP message and aim it at the SOAP port of the server
process you designate.

Local

Here is where you invoke the shell script and inform it that it will be operating directly against the
configuration repository. No SOAP messages are sent; no network communications are involved.

This mode has some limitations:

Session Z5039

Version Date: September 22, 20047IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

You can't run in local mode on a distributed box and expect to update a configuration repository
on the z/OS box. Local mode can only be accomplished when the configuration repository and
the shell script client reside on the same system.

What about network mapped drives and things like that? Here's the rule of thumb: if the
configuration files appear to be "local," then you can use local mode. If you use a network mapped
drive to make a distant repository "appear" local, that's good enough for WSADMIN.

Note:

Much of the $AdminControl functionality is not available to you if you invoke in local mode.

The BBOWIAPP job used "local" mode to install the Administrative Application. It had to ... the server
wasn't yet running, so it had no server process to send SOAP messages to even if it wanted to. But
local allowed it to "install" the application -- add directories and files to the HFS and update key XML
files to reflect the new application -- even when the server was down.

There are some things to be aware of when operating in local and remote mode ...

Session Z5039

Version Date: September 22, 20048IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

When "Local" vs. "Remote"

If Deployment Manager (or AppServer if BaseApp) is available, connect to
it ("Remote"). If server process not available, then use "Local."

Rule of
Thumb:

CR SR

Deployment
Manager

HFS

WSADMIN
Client

wsadmin.sh

MVS Image or LPAR

OMVS or
Telnet

Direct
Manipulation of
Configuration
Files

Admin
Console Admin

Application
changing files

If you come in "remote," the server running the administrative service can handle
(to some degree) two different forces working against the configuration repository.
But it has to know about WSADMIN doing it, and it can't if WSADMIN is operating in
"local" mode.

Generally speaking, even in remote mode
you should avoid having the Admin
Console working against repository at the
same time WSADMIN is doing it.

Avoid this

Why? Admin Console will detect
change in underlying repository.
Changes you made must then
either:

Be discarded
Overwrite WSADMIN changes

It can be very confusing.

"...to some degree..." -- Some configuration
buffering does occur. Based on timing, it's
possible changes in one environment won't be
"seen" in the other.

There's a rule of thumb you should employ when considering whether to use "local" or "remote" mode.
It is this:

If the Deployment Manager server is up and running (or application server for BaseApp configuration),
then you should use "remote" mode and connect to the server using -conntype SOAP. In
particular, what you want to avoid is the case where someone is using the Admin Console to make
changes to the configuration at the same time someone else is using WSADMIN in "local" mode to
directly change the configuration repository. The reason for this is because the Admin Console will
have no idea that WSADMIN is working on stuff beneathe the covers. Two things may happen:

WSADMIN's changes may fail if the configuration has been changed by the person operating the
Admin Console, or

The person at the Admin Console may be alerted to the fact that the underlying configuration has
changed. The Admin Console will then ask the user what they want to do: overwrite changes in
repository or discard changes made in the Admin Console.

In either case it's a very disconcerting message to receive.

When you connect to the server's SOAP port using -conntype SOAP, you at least give the
administrative management function of the running server process some degree of coordination. But
you should be careful even in this mode ... having both forces working against the configuration can
result in problems, so in general you should not have both operating at the same time.

Session Z5039

Version Date: September 22, 20049IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

On z/OS, Run Under "WAS Admin ID"
In order to have access to the configuration directory structure, wsadmin.sh must
run under the authority of the "WebSphere Administrator ID"

If Telnet or OMVS:

EZYTE27I login: USER1

EZYTE28I user1 Password: xxxxxxxx

 :

 :

USER1:/u/user1-> su g5admin

Enter the password for g5admin: xxxxxxxx

USER1:/u/user1-> cd /wasv5config/g5cell/DeploymentManager/bin

USER1:/wasv5config/g5cell/DeploymentManager/bin-> ./wsadmin.sh ...

Switch users to the
WebSphere Admin ID

If JCL

//WSADMIN JOB (ACCTNO,ROOM),'USER1',
// USER=G5ADMIN,PASSWORD=xxxxxxxx
//************************************
//INST1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 /wasv5config/g5cell+
 /DeploymentManager/bin/wsadmin.sh ...

Provide authority
via JOB card Any UID=0 ID? It'll work,

but it may affect file
ownership. Better to use
WAS Admin ID.

This is different from the
issue of authentication
when "Global Security"
enabled. More on that at
end of presentation.

When running WSADMIN on the z/OS box (as opposed to invoking it on a remote platform), you
should take care to make sure the process runs under the authority of the "WebSphere Administrator
ID" of the cell against which you'll work. This is to give the WSADMIN process sufficient authority to
read and write into the directories.

A UID=0 ID would work -- it would have sufficient authority -- but you run the risk of modifying a file
ownership, which may cause problems later. Better to use the "WebSphere Admin ID."

Note:

How you accomplish this depends on how you invoke WSADMIN:

Via Telnet or OMVS -- the thing to do here is "switch user" to the WebSphere Admin ID prior to
invoking WSADMIN. That will provide the shell script with the proper authority to do its work.

Via JCL -- here you simply make sure that the job itself runs under the WebSphere Admin ID
authority.

Be careful -- this is not the same thing as authenticating the WSADMIN client to the SOAP port when
global security is enabled for the server. We'll cover that topic later. Here what we're referring to is
simply the authority to access files and directories.

Session Z5039

Version Date: September 22, 200410IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Network Deployment vs. BaseApp

CR SR

Deployment
Manager

CR

Node Agent AppServer

CR SR

AppServer

CR SR

CR

Daemon

MVS Image or LPAR

In a Network Deployment configuration,
there are many different SOAP ports to
which WSADMIN could connect:

Connect to Deployment
Manager. That'll then update
"master configuration"

Rule of
Thumb:

AppServer

CR SRCR

Daemon

MVS Image or LPAR

A Base Application Server node
has only the application server,
so that's what you'd connect to in
"Remote" mode:

Message:
If ND, connect to DMGR

When it comes to basics of WSADMIN,
Network Deployment or BaseApp are
essentially the same

Going forward in this presentation we'll
assume ND

Let's stay on the topic of connecting via the -conntype SOAP option, and explore what server
processes we have available to us.

Network Deployment Configuration

In a ND configuration we have several server processes that have SOAP ports: the Deployment
Manager, all Node Agents, and each application server.

Even though all those server types have SOAP ports, you should only connect to the Deployment
Manager's port. The other servers will permit you to connect, but the functionality will be limited.
Only the Deployment Manager has the full range of administrative capabilities, and only the
Deployment Manager has the "master configuration" under its control.

Base Application Server Node Configuration

There's only one SOAP port available: the application server.

There are some key messages this chart is trying to deliver:

If Network Deployment, connect to the Deployment Manager

If there's a good reason to connect to one of the other server types when the Deployment Manager is
available, we've not heard of it.

Note:

When it comes to discussing WSADMIN, there's really little difference between an ND configuration
and a BaseApp (except for things like synchronizing nodes). So we're going to assume that from
this point forward we're talking about an ND configuration, unless explicitely stated otherwise.

Session Z5039

Version Date: September 22, 200411IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Other Files To Be Aware Of

Where WSADMIN client-side
tracing will go by default

Location specified in wsadmin.properties
and you may change it if you wish

Update needed if
security enabled:

Need to set
com.ibm.SOAP.securityEnabled
property from "false" to "true"
May need to change pointer to
keyring where CA certificate stored

Key things in here:
Tracing on/off switch
"temp" file location
Default script type (Jacl vs. Jython)
tracing file output directory and file

WSADMIN shell script
This is what you invoke either from
OMVS/Telnet or within JCL

/<DM mount point>
HFS

/DeploymentManager
/bin

wsadmin.sh

/logs

/properties

wsadmin.traceout

soap.client.props

wsadmin.properties

Comparable
directory structure
under /AppServer

if BaseApp
configuration

Besides the shell script itself, there are some other files you should be aware of in the HFS heirarchy:

wsadmin.sh -- the shell script itself

wsadmin.traceout -- this file is where tracing will go by default. The location of the tracing
directory and file is specified in the wsadmin.properties file. By default it'll be this file. The
amount of tracing is determined in the wsadmin.properties file as well.

soap.client.props -- this file comes into play if you're looking to access the SOAP port when
global security is enabled.

wsadmin.properties -- this file has a bunch of things in it, but most importantly the four things
shown on the chart above.

This directory structure is found on all the platforms, so you should not think this is just a z/OS thing.
All the platforms utilize the same WSADMIN architecture.

Session Z5039

Version Date: September 22, 200412IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

What About Security?

Do you have Global Security enabled?

Some things do change:
Need to pass -user and -password in on
invocation of remote WSADMIN
Need to make sure WSADMIN has access to
keyring with proper CA certificate
If WSADMIN on distributed platform, you'll need
to make sure trust file there has CA certificate

More on this at end of presentation

Key Message: scripting itself is not affected when
security enabled -- only access to scripting
interface

This has no impact when
WSADMIN run in "local" mode

If you enable the "global security" function of the WebSphere Application Server runtime environment,
that affects the ability of WSADMIN to gain access to the runtime. We're going to cover this topic in
more detail at the end of this presentation, but a few notes are worthwhile right here:

Enabling global security has no impact on WSADMIN when WSADMIN running in "local" mode. Global
security is going to impact the ability to access services through the SOAP port. Running in "local"
mode means WSADMIN is operating against the configuration HFS directly. There's no SOAP port
being accessed. In fact, the server doesn't even need to be up for "local" mode to work.
When global security is enabled, it'll mean you have to pass in -user and -password on the
command used when connecting to the SOAP port.

There is a way to code this userid and password in the soap.client.props properties file
located in the /properties directory. If you do that, then you don't have to pass -user and
-password on the invocation.

Remember that this provides a way to authenticate the WSADMIN client to the SOAP port. This
is something different from running the process under the WebSphere Admin ID -- that was done
to provide read/write access to the HFS. Keep separate access/authentication separate from
read/write permissions. They're two different things.

Notes:

Because SSL is invovled with global security being enabled, the topic of "keyrings" and "certificates"
comes into play. To enable the SSL handshake it is important to make sure that WSADMIN has in its
keyring the proper CA certificate. If you're running WSADMIN on a distributed machine then it involves
exporting that CA certificate from WebSphere's keyring and importing it into the trustfile on the
distributed playform.

This whole "global security" thing involves authentication and access into the "front door" of WebSphere.
Once inside, the scripting is the same as when global security is disabled. In other words: the same.

Session Z5039

Version Date: September 22, 200413IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Syntax of WSADMIN Invocation

Used to indicate
WSADMIN commands
follow. We illustrate
that in a few charts.

wsadmin
 [-h(elp)]
 [-?]
 [-c <command>]
 [-p <properties_file_name>]
 [-profile <profile_script_name>]
 [-f <script_file_name>]
 [-javaoption java_option]
 [-lang language]
 [-wsadmin_classpath classpath]
 [-conntype
 SOAP
 [-host host_name]
 [-port port_number]
 [-user userid]
 [-password password] |
 RMI
 [-host host_name]
 [-port port_number]
 [-user userid]
 [-password password] |
 JMS <jms parms> |
 NONE
]
 [script parameters]

./wsadmin.sh -?

Used to point to a file in
which the commands are
held. We illustrate that

after -c switch.

Used to indicate the type of
connection -- "Remote"
(-conntype SOAP) or

"Local" (-conntype NONE)

Used to tell
WSADMIN that
script file is in
EBCDIC rather

than default
ASCII

Note: if connecting via
SOAP and global

security is enabled,
provide the

WebSphere Admin ID
and password on the

invocation.

Finally we get to the point where we can show the command syntax used to invoke WSADMIN. We
know that the client comes in the form of a shell script. The shell script accepts parameters, one of
which is -?, which provides the syntax shown here.

The -c swtich is what's used to pass WSADMIN commands "inline" with the invocation of the shell
script. The alternative way to process commands is in a seperate file, which is done with the -f
switch.

The -f switch points to a file that contains the WSADMIN commands. When your command set is
long and complicated, this is the way to go. Short commands are easily done with the -c switch.

The -javaoption switch is needed when invoking WSADMIN on the z/OS system and the file
you're pointing to is in EBCDIC. WSADMIN by default assumes an ASCII file, and the
-javaoption switch is used to indicate the EBCDIC file encoding.

The -conntype switch is used to indicate if the mode is "local" (value of NONE) or remote (value of
SOAP). If -conntype SOAP, then additional parameters are needed, such as -host and -port
to indicate what SOAP port to connect to, and -user and -password if global security is enabled
on that SOAP port.

So, for example, a command to invoke WSADMIN might look like this:
./wsadmin.sh -conntype SOAP -host www.myhost.com -port 9200 -c '$AdminApp list'

That would imply "remote" mode, connected to port 9200 on host www.myhost.com, and issue the
command $AdminApp list.

Session Z5039

Version Date: September 22, 200414IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Four WSADMIN Program "Objects"

WebSphere
Application
Server for

z/OS

Scripting
Interface

$AdminApp

$AdminConfig

$Help

$AdminControl

OMVS,
Telnet, JCL

All WSADMIN
activities are

accomplished by
driving these four

objects.

Each has many different "methods," attributes and options:

$AdminApp install /u/user1/MyIVT.ear {-server G5SR01C -node G5NODEC}

$AdminApp uninstall My_IVT_Application

Object Method Attribute Options

More examples coming

Good deal of the learning
curve is discovering the
syntax of these methods

Let's start to explore the command set of WSADMIN. At the heart of it are four "objects" -- in other
words, four primary commands. (The term "objects" is technically accurate, as the WSADMIN scripting
interface is object-oriented.)

$AdminApp -- This object is used to affect applications, such as installing them, modifying them, or
removing them from the configuration.

$AdminConfig -- This object is used to affect the configuration, such as creating new servers or
cluster, or modifying the attributes of a configuration object.

$AdminControl -- This object is used to control the objects, such as starting or stopping servers
or applications. This object is limited in function when in "local" mode.

$Help -- This object is used to provide online help.

Each object has a bunch of "methods" that are used to tell WSADMIN exactly what you're doing.
Those methods in turn have "attributes," which provide more detail about what action is desired.
Finally, "options" on the attributes provide the finest level of detail. A command may have just the
object and a method (for example, $AdminApp list), the object, method and attribute ($AdminApp
uninstall My_IVT_Application), or object, method, attribute and options (example shown at the
bottom of the chart above).

We'll have lots more examples later in this presentation, plus the WP100421 white paper has dozens
and dozens of examples.

Session Z5039

Version Date: September 22, 200415IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

"Inline" Commands

All three of these are more or
less the same thing

Great for relatively simple
things, such as:

listing installed applications

uninstalling an application

installing an application with a small set
of options

Exploring the "help" option -- getting
information about an option, etc.

But as the input gets more
complex, you want to keep
things in a separate file ...

./wsadmin.sh

 :

WASX7029I: For help, enter: "$Help help"

wsadmin> $AdminApp list

Telnet,
OMVS

Interactively at WSADMIN prompt

./wsadmin.sh -c '$AdminApp list'
Telnet,
OMVS

Passed in as parameter on shell script invocation

BPXBATCH SH +
 /wasv5config/g5cell+
 /AppServer+
 /bin/wsadmin.sh +
 -c '$AdminApp list +
 :
/*

JCL

Parameter for shell script, but processed in JCL

Let's show a couple of ways you could provide the commands just illustrated on the previous chart
"inline" when invoking WSADMIN. (By "inline" we mean not in a separate file pointed to by the -f
switch.) The chart above illustrates three different ways the simple $AdminApp list command could be
passed in:

Interactively -- if you invoke WSADMIN and do not provide -c or -f, it will provide a WSADMIN
command prompt at which commands can be entered.

With -c switch -- here the wsadmin.sh shell script is invoked, and the -c switch is used to
indicate that a command is following. WSADMIN will come up, execute the command, and then
stop.

In JCL -- the example here is essentially the same as the previous one, except that WSADMIN is
invoked with BPXBATCH out of JCL.

All of those are essentially the same thing ... the only difference is how WSADMIN is invoked.Note:

Issuing command "inline" like this has its purpose -- its great for relatively simple things. But as the
command set gets more complex, you'll find yourself wanting to put things in a separate file.

Session Z5039

Version Date: September 22, 200416IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Files Containing Script
It's called a "scripting interface" because scripting languages like "Jacl" and
"Jython" can be used to drive the WSADMIN commands:

Script processing allows:
passing in parameters
logic tests (if-then-else)
built-in functions (count, length, string, etc.)
error checking and handling

Notes:

"Jacl" is Java-based version of "Tcl"
scripting language

"Jacl" is default script-type expected

Support for "Jython" in WebSphere
for z/OS Version 5.1

../bin/-> ./wsadmin.sh -conntype none -f /u/user1/install.jaclTelnet,
OMVS

set ear "/u/user1/MyIVT.ear"
set node "g5nodec"
set server "g5sr01c"
--
set options [list -node $node -server $server]
--
$AdminApp install $ear $options
$AdminConfig save

install.jacl

Fairly simple
script ... not
a lot of fancy
stuff going
on here ...

The -f switch of WSADMIN will allow you to point to a separate file containing commands. The -f
switch takes as a parameter the path and file name of the file containing the commands. By default,
WSADMIN expects to see a scripting language known as "Jacl."

"Jacl" is a form of the older "Tcl" language. WSADMIN also supports "Jython," which is a more
"object-oriented" language. That support was made available with WAS V5.1.

Note:

The chart above illustrates an example of a script file used to install an application. It's a relatively
simple script file ... the sample scripts in the InfoCenter are much more complicated than this. We'll
analyze this script in a few charts. For now, simply understand that the -f switch points to the file, and
the file contains script used to install the application.

Session Z5039

Version Date: September 22, 200417IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WSADMIN Expects ASCII Script File

Be aware that WSADMIN client on z/OS expects -- by default -- for script files to be
in ASCII encoding:

../bin/-> ./wsadmin.sh -conntype none -f /u/user1/install.jaclTelnet,
OMVS

HFS
install.jacl

Since you haven't told
me otherwise, I'll assume

the file is in ASCII

You're free to store the
files in ASCII in the HFS

It works just fine when
you do

If file is really in EBCDIC and WSADMIN expects ASCII, it'll fail. But there is a way
to tell WSADMIN that the file is in EBCDIC:

./wsadmin.sh -javaoption -Dscript.encoding=Cp1047 -conntype none -f /u/user1/install.jacl

The -javaoption switch is
used to pass in the type of
encoding used by the script file

One quick note about using a separate script file with WSADMIN. By default, WSADMIN expects that
file to be in ASCII. On a distributed platform box that would be the default encoding for files. But on
z/OS, the default encoding for files in the HFS is EBCDIC. Therefore, you have two options:

1. Create the script files on your workstation and then upload them to the z/OS HFS in binary mode
so they hit the HFS as an ASCII file. Then simply point to them with the -f switch and WSADMIN is
happy.

Of course, it makes editing those files on the z/OS box a bit more cumbersome. But there are ASCII
editors for files resident on z/OS HFS.

Note:

2. Use the -javaoptions switch to indicate to WSADMIN that the file pointed to by the -f switch is
an EBCDIC file. The parameter supplied on the -javaoption swtich will be
-Dscript.encoding=Cp1047.

Then you can have the file in the HFS in EBCDIC, and use the standard editor to make minor
modifications as needed.

There's an issue with square bracket encoding you need to be aware of. See WP100421 for details.Note:

Session Z5039

Version Date: September 22, 200418IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The $AdminApp Object

edit

editInteractive

export

exportDDL

help

install

installInteractive

list

listModules

options

publishWSDL

taskInfo

uninstall

updateAccessIDs

deleteUserAndGroupEntries

$AdminApp help $AdminApp help install

WASX7096I: Method: install

 Arguments: filename, options

 Description: Installs the application in the file
 specified by "filename" using the options specified
 by "options." All required information must be
 supplied in the options string; no prompting is
 performed.

 The AdminApp "options" command may be used to get a
 list of all possible options for a given ear file.
 The AdminApp "help" command may be used to get more
 information about each particular option.

$AdminApp install /u/user1/MyIVT.ear {-node g5nodec -server g5sr01c}

Object Method Filename Options

How can you know what
options are valid?Simple Example:

Let's look at the $AdminApp object. It has a number of methods associated with it, and you can see
those methods by using the help method. That'll spit back a list of the methods on the object. (All
four objects -- $AdminApp, $AdminConfig, $AdminControl and even $Help --have a help
method, by the way.) Further, you can use the help method to give you information on any of the other
methods. The chart shown an example of this ... help is used to give information about the install
method.

The example shows how this pieces together:

$AdminApp is the object

install is the method

We see from the help that the syntax of the install method that two parameters are passed in:
the filename of the EAR file being installed, and any options

The chart shows an option list of:
{-node g5nodec -server g5sr01c}

Where in the world did that come from? How can we know what options are valid for a given EAR file?
We can use the options method ...

Session Z5039

Version Date: September 22, 200419IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

$AdminApp Options

$AdminApp options /u/user1/MyIVT.ear EAR Deployment Descriptors

WASX7112I: The following tasks are valid for "/u/user1/MyIVT.ear"
BindJndiForEJBNonMessageBinding
MapEJBRefToEJB
MapWebModToVH
MapModulesToServers
 :
server
cluster
cell
node
 :
appname
verbose
contextroot
 :
defaultbinding.force
defaultbinding.strategy.file

The options method of $AdminApp can be used to list back the tasks (or options)
that are valid for a given EAR file:

You can use help to list back general
information on each of these:
$AdminApp help appname

WASX7232I: "appname" option; use this option to specify
the name of the application. The default is to use the
display name of the application.

The InfoCenter is helpful in determining syntax
of these options.

Let's look at a simple example and start the
discussion on Jacl scripting

Two shown
on the

previous
chart

The options method can be used to interrogate an EAR file and have it tell you what options are
applicable. The syntax is fairly simple and is shown in the chart above.

Where would you issue this command? This gets back to the topic of "inline" commands. Here's a good
example of simple, ad-hoc type of command where invoking WSADMIN in "local" mode (no SOAP
connection) and getting a command prompt would be handy. If all you're doing is exploring the help
function for various things, this'll work just fine.

Note:

What happens when you do this is this: WSADMIN will rummage around in the XML files of the EAR
file and determine what's in the EAR. Then it'll display back the options that apply to the EAR.

Not all the options are required ... this is just a list of what may be used with that particular EAR file.Note:

Here's where the WebSphere Application Server InfoCenter comes in real handy. There's a wealth of
examples in there, and the whole thing is searchable. We would strongly encourage you to make use
of the InfoCenter for specific coding examples for the methods of WSADMIN.

Let's now turn to Jacl scripting in particluar. There are some fundamental things that you must know to
do this stuff.

Session Z5039

Version Date: September 22, 200420IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Jacl Scripting Basics

set ear "/u/user1/MyIVT.ear"
set node "g5nodec"
set server "g5sr01c"
--
set options [list -node $node -server $server]
--
$AdminApp install $ear $options
$AdminConfig save

$AdminApp install /u/user1/MyIVT.ear {-node g5nodec -server g5sr01c}

Object Method Filename Options

install.jacl

Simply setting variables with
values for EAR file location and

name, node and server

Using Jacl list
function to create

the options,
including the

enclosing braces.

Variables node and server,
set earlier, included here with

substitution -- $var_name

More variable
substitution, including

options list

=

Use of $AdminConfig save
to save to the master

configuration

Now simply point to this file either on command line or from JCL. Change
variables to install different application or install into different server ...

Let's show how simple $AdminApp command can be coded in Jacl:

Let's take a closer look at what's going on inside this Jacl script file. At the top of the chart you see the
command we're looking to code inside the file. Below is Jacl that shows how that command could be
coded more flexibly.

You could simply code the exact same string in the file. You don't have to use the variables and other
things we're showing you here. But the power of Jacl script is in the variables, logic, etc.

Note:

It sets three variables at the top of the file: ear, node and server. Those will be options needed
on the install method, and rather than hard-code those values down in the command, we'll set them
as variables at the top. That'll allow changes to made more easily.

The Jacl list function is used to construct a special kind of variable. The variables for the node
and server are used in the construction of this special variable. A "list" variable -- in this case we're
creating a variable called options that'll be a list variable -- is one where the elements in the
variable are delineated and easily extractable, unlike a string variable which is just a stream of
characters. We'll see more of the list function later.

The $AdminApp install command is contructed, with the EAR file and options being passed in
as variables.

Finally, the $AdminConfig save command is executed to save the changes.

Next we'll explore passing parameters into the Jacl script. This will make it even more flexible.

Session Z5039

Version Date: September 22, 200421IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Passing Arguments into Jacl Script

Pointer to Jacl FileShell Script Parameters Passed Into Script

./wsadmin.sh ... -f /u/user1/install.jacl g5nodec g5sr01c /u/user1/MyIVT.ear

g5nodec g5sr01c /u/user1/MyIVT.earSpecial variable $argv

set node [lindex $argv 0]
set server [lindex $argv 1]
set ear [lindex $argv 2]
--
set options [list -node $node -server $server]
--
$AdminApp install $ear $options
$AdminConfig save

Jacl function lindex
parses elements out

of a list. It has a
zero-offset.

Variables
same as
before

Jacl script is now "generic" and can be used to install any EAR file into any
server ... simply by passing in parameters.

Here we have something very similar to what we had on the previous chart. But there's a difference:
on the invocation of the wsadmin.sh shell script, we're passing in parameters after the -f switch and
the file we're pointing to. When we do that, those values are passed into the Jacl script as parameters.

Go back to the chart titled, "Syntax of WSADMIN Invocation" and look at the very bottom of the syntax
chart. You see the following: [script parameters]. The three strings that follow the Jacl script file
on the invocation line -- g5nodec, g5sr01c and /u/user1/MyIVT.ear ... separated by spaces -- are
passed in as parameters.

Note:

How do we handle those parameters? First you must understand that once inside the Jacl script, those
parameters are held inside a special variable (a "list" variable, by the way) called $argv. So all we
need to do is parse those parameters out and then use them elsewhere in the Jacl. We do that with a
Jacl function called lindex. lindex parses out based on an offset number. Jacl list functions have a
zero offset, so the first parameter in the list is parsed out with a 0.

Once parsed out, what do you do with the parameters? Place them into other variables, which have
the same names we used before. From there the script is exactly the same. But the Jacl script is now
generic ... you can use it to install a simple application into any server on any node.

The script above does not do any error checking for validity of the passed-in parameters
The script above does not do any checking for the validity of the sequence of the parameters
The script above does not synchronize the changes to the nodes, which is necessary in a Network
Deployment configuration

All those things are possible, just not shown in this example. See WP100421.

Notes:

Session Z5039

Version Date: September 22, 200422IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Nested Options
Some options have their own options ... which means it becomes necessary to
nest option lists inside of other options:

{-Opt1 -Opt2 {{a b c} {d e f}} -Opt3}

Inner
List #1

Inner
List #2

Argument list for
"-Opt2". Outer

braces "group up"
the inner lists.

Outer-most braces "group up" the options for the
install method of $AdminApp

Simplified Schematic Diagram:

 :
{-appname adminconsole
 -MapRolesToUsers {
 {"administrator" No No G5ADMIN G5CFG}
 {"monitor" No No G5ADMIN G5CFG}
 {"operator" No No G5ADMIN G5CFG}
 {"configurator" No No G5ADMIN G5CFG}
 }
-server dmgr
-node g5dm
-cell g5cell
}
 :

BBODIAPP
(Installs Admin Console into DMGR)

This is one of the most challenging aspects of WSADMIN and Jacl -- understanding
exact structure of option syntax, and matching up the braces.

set inner_1 [list a b c]
set inner_2 [list d e f]
set Opt2_arg [list $inner_1 $inner_2]
set options [list -Opt1 -Opt2 $Opt2_arg -Opt3]

set options [list -Opt1 -Opt2 [list [list a b c] [list d e f]] -Opt3]

Two ways you can build this with Jacl:

1

2

Build up the nested
lists, starting from the

inner-most and
working outwards Nesting list

functions inside
one another

Now things get a bit more complex. It turns out that some options have their own options. That means
that the Jacl coding needs to nest the options lists. If you look closely at the BBODIAPP job, you'll see
that nested options are occuring. -MapRolesToUsers is an option, and it is supplied with four more
options -- one to define the "administrator" role, one to define the "monitor" role, etc.

Look at the chart to the right of the BBODIAPP example ... it shows a simplified example of a nested
option list. The focus is on the braces -- or "squiggle brackets" -- and how they must match up. When
analyzing these things, it's best to work from the inside and then to the outside:

Look at the center of this ... we have the option -Opt2. It has two option lists, {a b c} and
{d e f}. (This is similar to the actual example of -MapRolesToUsers.) The braces around
those delimit each option list, and then another set of braces are used to delimit all the options lists
for -Opt2.
As we move outward, we see that -Opt1 and -Opt3 do not have option themselves ... they're
simple options that stand all by themselves. But we do need to delimit the extent of the options
overall, which is done with the outer-most braces.

There are three ways you could code that up in Jacl. One is the code the whole string literally, without
any variable substitution. This gets awkward quickly, as it's difficult to break lines in Jacl. The better
way is to construct the string using the list function. Even here we have two approaches:

1. Construct the list step-by-step. This is perhaps the easiest method. Start with the inner-most lists,
build those, then imbed those in outer lists.

2. Nest the list function inside other list functions on the same line. This works, but it can very
quickly get confusing.

Session Z5039

Version Date: September 22, 200423IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

$AdminConfig Object

$AdminConfig help
attributes
checkin
convertToCluster
create
createClusterMember
createDocument
installResourceAdapter
createUsingTemplate
defaults
deleteDocument
existsDocument
extract
getCrossDocumentValidationEnabled
getid
getObjectName
getSaveMode
getValidationLevel
getValidationSeverityResult
hasChanges
help
list
listTemplates
modify
parents
queryChanges
remove

required
reset
save
setCrossDocumentValidationEnabled
setSaveMode
setValidationLevel
show
showall
showAttribute
types
validate

$AdminConfig is used to create, modify or delete things in the configuration. This
object has quite a few methods:

Further, these methods operate against
configuration "types" -- specific
configuration objects such as server,
clusters and many more.

$AdminConfig types
AdminService
Agent
 :
WASQueueConnectionFactory
WASTopic
WASTopicConnectionFactory
WebContainer
WebModuleConfig
WebModuleDeployment
WorkloadManagementServer

When you create or modify part of the configuration,
you'll be working against a "type"

255 Total!

Let's switch to another object -- $AdminConfig. This object is used to affect configuration elements
that are not applications. There's quite a few methods to this object, and using the help function lists
them. But you won't see names there that look like configuration elements ... the names of the
methods are verbs -- things you do to things in the configuration. The target of the configuration
change is something known as a "type". To see all the types that are available you can issue the
command $AdminConfig types. You get a long list ... 255 items long.

There's far too many "types" to cover in this presentation, so we'll focus on one ... VirtualHost.

Session Z5039

Version Date: September 22, 200424IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Exploring VirtualHost Type
First, use attributes method to list out the possible attributes for VirtualHost:

$AdminConfig attributes VirtualHost
"aliases HostAlias*"
"mimeTypes MimeEntry*"
"name String"

$AdminConfig attributes HostAlias
"hostname String"
"port String"

$AdminConfig required VirtualHost
Attribute Type
name String

Next, drill down on the HostAlias type with attributes:

Three attributes:
aliases -- asterisk on "HostAlias" indicates
there's more to this
mimeTypes -- asterisk indicates there's more
name -- no asterisk: this is lowest level. "name"
is attribute, a text string is its value

Two attributes:
hostname -- a string value
port -- a string value

Finally, use required to determine minimum settings:

You can get away with only the "name" attribute. VirtualHost
won't actually work, but WSADMIN will allow it be created.

Let's see example of
actual $AdminConfig
command to create a
new VirtualHost ...

We're focusing on VirtualHost because it's relatively easy to understand. It's as good as any type
to use to demonstrate the way in which you explore and learn more about how to construct your
command structure. We know that the string VirtualHost is a "type" because it's one of the 255 or
so that were spit out when we ran $AdminConfig types.

To determine what attributes are on this configuration type, we use the attributes method of
$AdminConfig.

Again, this where operating in "local" mode from a WSADMIN command prompt proves useful ... it's
quick, interactive, and great for drilling down to find information like this.

Note:

This method will take as an argument the "type" you want information on. So in the example shown in
the chart, we provide VirtualHost. What comes back is a three item list:

aliases HostAlias* -- the attribute is aliases, and the asterisk after "HostAlias" is telling you
that there are more attributes under this. In other words, "HostAlias" is not itself an attribute, but is
comprised of lower-level attributes. We'll drill for those in a bit.

mimeTypes MimeEntry* -- the attribute is mimeTypes and again, "MimeEntry" with the asterisk
is telling us there's more under this.

name String -- the attribute is name and "String" is a key word with no asterisk. That means
name is a low-level attribute and has as its value a simple string of characters.

To drill down under HostAlias we once again use the attributes method. It turns out that
HostAlias is itself a "type," and therefore it has its own attributes. Doing this yields two attributes --

Session Z5039

Version Date: September 22, 200425IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

hostname and port -- both with values of String. That means hostname and port are low level
attributes and string implies the value is a string of characters.

That's a lot of information. What happens if all you want to know is what the absolute minimum is
required to create a VirtualHost type? You use the required method. That yields only those
attributes that are required to create the configuration type.

Be careful ... as the chart implies, just because you can create a configuration type doesn't mean that
configuration type is then fully usable and functional. A virtual host created with simply a name but no
host alias or mimetype will simply not work. You can map an application to it, but if you try to drive that
application it'll fail.

Note:

With this under your belts, let's look at what an actual WSADMIN command to create a virtual host
would look like.

Session Z5039

Version Date: September 22, 200426IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Creating a New Virtual Host
The following shows the syntax of a $AdminConfig command used to create a
new virtual host called New_VH. It'll have one port (8080) with a hostname of " * "

$AdminConfig create VirtualHost <parent>

 {{name New_VH} {aliases {{{port 8080} {hostname *}}}}}

Object Method "Type"

Attributes of the
VirtualHost type

Attributes of the
HostAlias type

String
value

String
value

String
value

Note: we're not creating
any mimeTypes attributes

This will be the cell, but we must
get the "ID" of the cell (which is

more than just the cell long name).
Retriving that is next.

Yes, it would be easier to do this through the Admin Console. One-off things like
this won't be what you use WSADMIN for. Repeatable things ... yes.

This chart illustrates the command used to create a VirtualHost configuration type. What it will do
is create a single VirtuaHost with port 8080 and a hostname of the wildcard value asterisk.

Let's walk through the command:

$AdminConfig is the object

create is the method

VirtualHost is the "type" we're looking to create

<parent> is a special string of characters that uniquely identifies the configuration object to which
this new type will belong. It's unfortunately not as simple as providing the cell long name. We'll
show the format of this and how to retrieve it next.

What follows in the braces is the option list. This is where the notion of "nested options" gets
important. We saw the attributes of the VirtualHost type earlier. We also saw that the
aliases attribute has itself two attributes. Hence, we're going to have to nest. As we mentioned
earlier, the best way to approach this is from the inside working out:

The port attribute is provided along with its "string" value -- the port number 8080. That is
enclosed in braces.

The hostname attribute is provided along with its "string" value -- a single asterisk. That is
enclosed in braces.

To "group up" the port and hostname attributes we enclose those in braces.

Session Z5039

Version Date: September 22, 200427IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Because the aliases attribute might include multiple name/port pairs -- though we don't show
that here, we have to provide another set of braces to indicate that the starting and ending of all
the possible pairs.

We next enclose the aliases attribute in braces.

The name attribute is a peer of aliases. It has only one value -- the name of the
VirtualHost being created. Therefore, name and the string value provided are enclosed in
single braces, but outside the aliases braces.

Finally, we group the whole thing up with one final set of outer braces.

You're probably looking at that and thinking, "Why in the world would I do that if I'm only looking to
create a single virtual host?" That highlights what is an important point: this WSADMIN thing is most
powerful for things done repetitively. One-off configuration changes are probably most easily done
through the Admin Console.

Session Z5039

Version Date: September 22, 200428IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Using getid to Get <parent> Value
The getid method will return the unique "ID" value for a configuration object.
You must supply a "containment path":

set cell_id [$AdminConfig getid /Cell:g5cell/]

g5cell(cells/g5cell:cell.xml#Cell_1)

$AdminConfig create VirtualHost $cell_id ...

"Containment Path"
of the cell long name

set cell "g5cell"
set vh_name "New_VH"
set host1 "*"
set port1 "8081"

set cell_id [$AdminConfig getid /Cell:$cell/]

set name [list "name" $vh_name]
set p1 [list port $port1]
set h1 [list hostname $host1]
set pair1 [list $p1 $h1]
set alias_attrs [list $pair1]
set aliases [list aliases $alias_attrs]
set VH_attrs [list $name $aliases]

$AdminConfig create VirtualHost $cell_id $VH_attrs
$AdminConfig save

Notion of "ID" of configuration
object becomes critical when
$AdminConfig is used to
modify an existing object.

Let's now turn to the
$AdminControl object ...

On the previous chart we saw the create method called for something called a <parent> -- that's the
configuration object under which this new virtual host will be created. What it's looking for a unique
string of characters that, for my test cell called g5cell, was:
g5cell(cells/g5cell:cell.xml#Cell_1)

That's actually a reference to an XML tag inside the file cell.xml. If you were to look inside that file
you'd see a "stanza" of XML labeled with Cell_1, and in that stanza is all sorts of information about the
cell.

Note:

You could simply hand-code that, but there's two problems with that:
It's awkward. The parent string for the cell is simple compared to other configuration parents.
You might not have any idea what XML tag number to use. You can probably be pretty assured
that Cell_1 is the reference to the one and only cell, but what about nodes, where multiple nodes
might be present? Better to use the getid method to extract the information.

The getid method will return the unique ID string for a configuration object if you provide what's know
nas a "containment path" for the object. For the cell long name the containment path is
/Cell:g5cell/. For a server it would be /Server:g5sr01c/.
The best thing to do is to use getid to extract the information, place that information into a variable,
then use the variable on the command to create the virtualhost (or whatever object you're looking to
create). The chart shows the command from the previous chart in Jacl, with variable substitution.

There's quite a bit more to the $AdminConfig object. See WP100421 for more example. Let's now
turn to the $AdminControl object.

Session Z5039

Version Date: September 22, 200429IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The $AdminControl Object

getMBeanInfo_jmx
getNode
getPort
getType
help
invoke_jmx
invoke
isRegistered_jmx
isRegistered
makeObjectName
queryNames_jmx
queryNames
reconnect
setAttribute_jmx
setAttribute
setAttributes_jmx
startServer
stopServer
testConnection
trace

$AdminControl help

The $AdminControl object is useful only in
"Remote" mode where WSADMIN is connected to a
server process
If -conntype NONE used, $AdminControl considerably hobbled

Further, WSADMIN must be connected to a server in
which the Admin Application is running
Possible to connect to Node Agent or AppServer in ND configuration, but
$AdminControl won't work.

Examples:

$AdminControl startServer g5sr01c g5nodec

$AdminControl stopServer g5sr01c g5nodec

A very important $AdminControl method is
invoke ... that's used to synchronize to the
nodes in a Network Deployment configuration ...

The $AdminControl object is used to control the runtime behavior of the object. For example, you
can use it to start or stop servers. But it has some restrictions:

You can't use it when you use -conntype NONE. If WSADMIN isn't connected to a SOAP port,
you'll find that most of the $AdminControl object is restricted.

WSADMIN must be connected to the SOAP port of the server process in which the Admin
Application is running. Here's where we get into the issue of connecting to the DMGR port versus a
Node Agent's port versus a server's port. All are possible, but only the DMGR SOAP port will yield
the ability to control stuff through $AdminControl.

Perhaps the most useful aspect of $AdminControl -- or at least the one you'll likely use the most -- is
the ability to synchronize nodes in a ND configuration. If, for example, you install an application using
$AdminApp and you save it with $AdminConfig save, the application will be installed only in the
"master configuration." If you want to use the application in an application server, you'll need to
"synch" to the node in which that application server belongs. We'll show that next.

Session Z5039

Version Date: September 22, 200430IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Using invoke Method to Sync Nodes

set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]
$AdminControl invoke $var sync

WebSphere:platform=common,cell=g5cell,version=5.0,name=nodeSync,
 mbeanIdentifier=nodeSync,type=NodeSync,node=g5nodec,process=nodeagent

Updates made to the "master configuration" are not usable until they are
"synchronized" to the nodes. This is done with the invoke method:

Synchronizing with a single, specific node

Synchronizing with multiple nodes

set node_ids [$AdminConfig list Node]
foreach node $node_ids {
 set node_name [$AdminConfig showAttribute $node name]
 set nodeSync [$AdminControl completeObjectName type=NodeSync,node=$node_name,*]
 if { !($nodeSync=="") } then {
 $AdminControl invoke $nodeSync sync
 }
}

set c_id [$AdminConfig getid /ServerCluster:g5sr02cluster/]
set c_membs [$AdminConfig list ClusterMember $c_id]
foreach m_id $c_membs {
 set node_name [$AdminConfig showAttribute $m_id nodeName]
 set nodeSync [$AdminControl completeObjectName type=NodeSync,node=$node_name,*]
 set work [$AdminControl invoke $nodeSync sync]
}

All nodes
in a cell:

All nodes
across which
cluster is
defined:

"If" structure checks to make sure node is not
DMGR node. If not, then synchronize.

This gets really complicated really quickly. To synchronize a node you must first extract from
WebSphere the "completeObjectName" of the mBean of the type NodeSync. How do you pull that
information out of WebSphere? You provide a pointer to the node in which you want to synchronize.
So in this case we simply pointed to the node using its long name. The result is a very long string
that's best handled in a variable.

If none of that made any sense, just take it on faith. Honestly, at some point in working with WSADMIN
you'll have to simply accept the examples without fully understanding what's going on. I know I have on
more occasions than I care to admit. ☺

???

To actually synchronize with the node, you use the invoke method of $AdminControl, and you drive
against the "completeObjectName" you captured in the variable, and you pass in the keyword sync.
Provided that the Node Agent is up and running (a critical piece of this), the synchronization will take
place.

Here's the thing you have to understand regarding node synchronization: there's no way to synch to all
the nodes with a single command. You can't do that in WSADMIN, and the Admin Console doesn't do
it with one command. The way it's done is to programmatically synch to each node, one after another.
For this we use the list method of $AdminConfig to list out the nodes, then we cycle through them.
There's two flavors of this:

Synchronizing to all the nodes in a cell. The example of that is shown above. The "if" logic is
testing to see if the node being worked on is the Deployment Manager node. We don't want to try
to synch to it because that operation will yield an error. So we test to see if the

Session Z5039

Version Date: September 22, 200431IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

"completeObjectName" value is not null, and if not null then we synch. (The Deployment
Manager's node will yield a null "completeObjectName" value.)

Synchronizing to only those nodes in a given cluster. Here we use a few methods to extract a list
of node represented in the cluster, then cycle through the list. We don't need to worry about the
Deployment Manager here because we know that a cluster will not have one of its members in the
Deployment Manager node.

Let this information bubble around in your mind a bit. Cut-and-paste this stuff into your Jacl script and
simply make use of it without knowing exactly how it all works. Later you'll start figuring out how to use
the more powerful aspects of this.

Session Z5039

Version Date: September 22, 200432IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

If Global Security Enabled

OMVS or
Telnet

Windows
Command

Prompt

WSADMIN
Client

wsadmin.bat
CR SR

Deployment
Manager

HFS

WSADMIN
Client

wsadmin.sh

MVS Image or LPAR

SOAP

SOAP

Distributed Platform
WebSphere

Affects how you invoke WSADMIN in "remote" mode. ("Local" mode is unaffected
by global security because it doesn't go through server.)

Two things:

Pass -user and -password in on invocation of WSADMIN:
./wsadmin.sh -conntype SOAP ... -port 15510 -user g5admin -password ######

Insure ID under which WSADMIN runs has proper CA Certificate in keyring
Must have CA certificate used to sign default certificate of the DMGR controller ID's keyring

The enablement of "Global Security" is like a big red switch on the wall: turn that switch on and all
sorts of things change. It's no different with WSADMIN.

If you're running WSADMIN in "local" mode you don't have to worry about this. Global Security will only
affect the ability to access and be accepted into the SOAP port. Local mode operations involves no
server process, so it doesn't matter if security is turn on or not. Besides, it's possible to use WSADMIN
in local mode when all the servers are stopped, thus security on or off wouldn't affect WSADMIN.

Note:

What does change is the manner in which you invoke WSADMIN in remote mode. There are two
things you must do:

1. You must pass in a userid and password so the server process owning the SOAP port can
authenticate you. There are two ways to do this:

By passing -user and -password on the invocation command, as shown in the chart

By coding user and password in the soap.client.props file.

2. You must insure that the id under which WSADMIN is running has the "certificate" for the
"Certificate Authority" that signed the default certificate used by the server. This is necessary so
the WSADMIN client can properly determine that the certificate it receives from the server when the
SSL handshake is taking place is valid.

On the next chart we'll focus on the userid and password issue, and then we'll turn our attention to the
keyring/certificate issue.

Session Z5039

Version Date: September 22, 200433IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

User/Password Passed In

BBOO0222I SECJ0305I: Role based authorization check failed for 506
security name <null>, accessId NO_CRED_NO_ACCESS_ID while invoking
method getProcessType on resource Server and module Server.

BBOO0222I SECJ0305I: Role based authorization check failed for 507
security name <plex/ID>, accessId user:<plex/ID> while
invoking method getRepositoryEpoch on resource ConfigRepository and
module ConfigRepository.

No user
passed in

User passed
in, not in

EJBROLE

OMVS or
Telnet

./wsadmin.sh -conntype SOAP -host wsc3.washington.ibm.com

 -port 15510 -user G5ADMIN -password XXXXXXX -f /u/user1/test.jacl

Couple of points:
The userid and password you send in needs to have READ access to the
EJBROLE profile defined for the WebSphere cell

Does not have to be the "WAS Admin ID," but that will by default have access

You can hard-code this into the soap.client.props file and avoid having to
send it in on each command line:
JMX SOAP connector identity
com.ibm.SOAP.loginUserid=G5ADMIN
com.ibm.SOAP.loginPassword=XXXXXX

What userid do you provide to authenticate you to the SOAP port? The "WebSphere Admin ID" will by
default have the proper authorities, but it's not required that you use that ID. What is required is that
the ID/password sent in be a valid RACF ID, and have READ access to the EJBROLE profile defined for
the WebSphere cell. There are four EJBROLE profiles created by default when you run the "Security
Domain" customized jobs: administrator, monitor, configurator and operator. By default
the "WebSphere Admin ID" will have access to all four.

But your personal userid may not have READ access to any of them. So to use your personal ID with
WSADMIN, you'd need to have someone grant you READ access to one of the profiles ("administrator"
gives you full authority).

Things get a little more complicated when the issue "Security Domains" come into the picture. What a
"security domain" provides is a way to qualify the EJBROLE profiles with a string of characters that is
applicable to only one cell. So the administrator profile might be qualified with
G5CELL.administrator, which means that only IDs with READ access to that could get in. You
must know what the profile structure for your cell looks like if you want to grant an ID READ to the
profile.

You don't have to provide the user and password on the invocation of the command ... you can code
those values into the soap.client.props file as shown. It results in the same thing.

What are the error symptoms you can expect? Two cases are represented: when no userid/password
is provide (for example, you simply forgot to provide it), and when the userid passed in does not have
READ to a EJBROLE profile. The erorrs you'll see on the MVS console (if RACF auditing is on) are
shown on the chart.

Session Z5039

Version Date: September 22, 200434IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WSADMIN and CA Certificates

CR SR

Deployment
Manager

Default Certificate
Label: DefaultWASDmgrCert

Issuer: WebSphere CA

Keyring: WASKeyring

Certificate Authority Certificate
Label: WebSphereCA

Issuer: WebSphere CA

WSADMIN
Client

OMVS or
Telnet

ID: G5ADMIN

Certificate Authority Certificate
Label: WebSphereCA

Issuer: WebSphere CA

Nutshell:
The Certificate for the CA who
signed the DMGR's default
certificate must be present in
the keyrings of the client:

Windows
Command

Prompt
WSADMIN

Client

Certificate Authority Certificate
Label: WebSphereCA

Issuer: WebSphere CA

(Keyfile pointed to from the
soap.client.props file)

WSADMIN on z/OS:

WSADMIN on
Distributed:

Error symptom:
WASX7023E: Error creating "SOAP" connection to host "<host>"; exception information:
com.ibm.websphere.management.exception.ConnectorNotAvailableException

Whenever a WSADMIN client connects to the SOAP port when Global Security is enabled, an SSL
connection will be established. In order to establish the SSL connection, the server is going to pass a
"certificate" to the client, and the client will use that certificate to set up the encrypted link. But before
the client can safely use the certificate passed it by the server, it needs to make sure the server is who
it says it is. This is done programmatically by comparing the "signature" on the server's certificate --
put there by a "Certificate Authority" (CA) -- with a copy of that CA's certificate. If the signature on the
server's certificate properly compares to the client's copy of the CA's certificate, then the client can be
reasonably assured that the server's certificate is okay.
In order for all this to work, the client needs to have the CA's certificate in its "keyring." If the CA's
certificate isn't in the client's keyring, the client won't be able to validate the signature on the server's
certificate. You'll get the error shown at the bottom of the chart.
There are two scenarios we need to talk about:

WSADMIN client is on z/OS -- here you're likely to already have the CA's certificate in the client's
keyring because it would have been put there by default when customizing the environment. But
that's only the case if you're running WSADMIN under the same "WebSphere Admin ID" as the
server to which you're connecting. If you're running WSADMIN on a completely different z/OS
system you may not have the CA's certificate in your client's keyring.
WSADMIN client is on distributed platform -- here you're unlikely to have the CA's certificate in the
client's keyring by default. But it is possible to put it there. It involves exporting the CA's certificate
from the RACF database and then bringing it down to the client's system and importing it into the
keyring for the client.

The important point here is the concept: having the CA's certificate in the client's keyring. The steps
needed to put the CA Certificate there is beyond this presentation's scope.

Session Z5039

Version Date: September 22, 200435IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Tracing of the WSADMN Activities

/<DM mount point>
HFS

/DeploymentManager

/logs

/properties

wsadmin.traceout

wsadmin.properties
 :
com.ibm.ws.scripting.traceFile=/DeploymentManager/logs/wsadmin.traceout
 :
#com.ibm.ws.scripting.traceString=com.ibm.*=all=enabled
 :

Default
state: off

Two ways to control tracing:
Static from within properties file
Dynamically with $AdminControl

$AdminControl trace com.ibm.*=all=enabled

$AdminControl trace com.ibm.*=all=disabled

OMVS or
Telnet

There'll come a point when you have to turn on tracing to debug a problem. There are two ways to do
this:

You can un-comment the traceString line in the wsadmin.properties file to enable tracing.
Tracing will then go to the file specified on traceFile.

Even with traceString commented out, some -- but not much -- tracing will still occur.Note:

You can dynamically turn it on or off with the $AdminControl trace function shown.

How to read and make good use of the trace files is a subject well beyond the scope of this
presentation. But if anyone asks you to trace a problem, here's how you'd do it.

End of Document

Session Z5039

Version Date: September 22, 200436IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

