An Introduction to Language Environment

zSTSU 2004

Mary Astley

IBM Washington Systems Center Advanced Technical Support

IBM @server zSeries

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

DB2
IBM
IMS
Language Environment
MVS
OS/390
OS/390 C/C++

S/390 VisualAge WebSphere z/OS z/OS.e zSeries

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Why Language Environment?

z/OS LE Compatibility

Upward compatibility

Load modules will run compatibly with an LE level equivalent to or higher than the level used to link them

Object modules can be linked with an LE level equivalent to or higher than the level required by the compiler

Downward compatibility

Ability to develop and link applications with LE on z/OS and execute them on a lower supported levels of z/OS Applications must only use LE functions available on the z/OS system where they will execute

Compatibility with previous run-time libraries

With certain exceptions, LE provides object and load module compatibility for applications generated with pre-LE compilers Load modules generated with these compilers and linked with their run-time libraries will run compatibly with LE Object modules can be linked and run with LE

LE Run-time Environments

With z/OS 1.6 Language Environment run-time has three forms

- ► Base form AMODE 31 / AMODE 24, standard linkage
- ► XPLINK form AMODE 31, XPLINK linkage
- ► 64 bit form AMODE 64, XPLINK linkage

More about linkage...

► Standard linkage

"traditional linkage", upward growing stack

► XPLINK

efficient linkage for subroutine calls in C/C++ programs, downward growing stack

The LE run-time initialized is determined by the entry point and boot strap routines in the main program

- AMODE 24 or AMODE 31 main program Entry point is CEESTART CEEROOTA bootstrap routine for non-XPLINK CEEROOTD bootstrap routine for XPLINK CEEBTRM termination stub CEESG003 C signature CSECT
- AMODE 64 main program Entry point is CELQSTRT CELQBST bootstrap routine CELQTRM termination stub CELQSG03 C signature CSECT

64 bit Run-time Environment

IBM Washington Systems Center

Run-time environment for AMODE 64 programs

Uses 64 bit addresses

Supports data above the 2 GB bar

Code is executed below the 2 GB bar

For C/C++ and LE-enabled assembler programs

Requires

- ► z/Architecture hardware
- z/OS 1.6 Language Environment
- ► z/OS 1.6 C/C++ compiler

Does not support

- ► High level languages other than C and C++
- ► CICS, IMS

LE Libraries

LE libraries used during compile or assembly

Libraries containing C/C++ header files SCEEMAC - Macro library for assembler programs using LE services

LE libraries used during link-edit

Libraries containing static routines which are linked with the application and resolve external references

LE libraries used during program execution

Libraries containing dynamic routines loaded during program execution

Other LE libraries

SCEESAMP - sample macros, usermods, user exits SCEEPROC - procedures to link-edit and run LE programs

Some LE Link-Edit Libraries

Link-edit libraries for non-XPLINK applications

► SCEELKED

Resident routines, including init/term, callable services

► SCEELKEX

Resident routines with case sensitive names & names longer than eight character names

► SCEEOBJ

Resident definitions for UNIX System Services programs

► SCEECPP

Resident definitions for C++ programs

Link-edit libraries for XPLINK applications

► SCEEBIND / SCEEBND2

Resident routines for XPLINK applications

► SCEELIB

Side-decks for LE provided DLLs to resolve references

LE Run-time Libraries

► SCEERUN

Contains the LE run-time libraries

► SCEERUN2

PDSE with run-time routines

Member names in SCEERUN2 and SCEERUN are different

► SCEECICS

Contains COBOL specific CICS run-time programs Included in CICS //DFHRPL DD before SCEERUN

► SCEELPA

Contains reentrant SCEERUN modules which may be included in LPALST for performance benefits

If SCEELPA is in LPALST, then SCEERUN should be in LNKLST

Run-Time Options Overview

- Run-time options provide a method to customize "parameters" used by Language Environment
- LE has three sets of run-time options
 CEEDOPT Batch and IMS (AMODE31 / AMODE24)
 CEECOPT CICS
 CELQDOPT 64 bit run-time options
- These three CSECTs supply the installation defaults for the run-time options
- ► IBM supplies default values for each run-time option
- An installation may change the values specified for the run-time options in these CSECTs

Where to Specify Options

► CEEDOPT / CEECOPT

Installation default run-time options

► CEEROPT

Region run-time options for CICS, LRR users

► CEEUOPT

User run-time options linked with application program

- PLIXOPT string in PL/I source code
- #pragma runopts in C source code
- PARM parameter in JCL _CEE_RUNOPTS environment variable under USS

► CEEDOPT, CEECOPT, CELQDOPT

Must specify all options and suboptions Specify if option is overrideable or nonoverrideable

► CEEUOPT, CELQUOPT

Only need to specify changed options & suboptions

► CEEROPT

Need to specify changed options with all suboptions Specify if option is overrideable or nonoverrideable

► Options specified on CEEXOPT macro

► Samples provided in SCEESAMP library

Options CSECT	Sample Job	Options Member
CEEDOPT	CEEWDOPT	CEEDOPT
CEECOPT	CEEWCOPT	CEECOPT
CELQDOPT	CEEWQDOP	CELQDOPT
CEEUOPT	CEEWUOPT	CEEUOPT
CELQUOPT	CEEWQUOP	CELQUOPT
CEEROPT	CEEWROPT	

CEEDOPT	CSECT CEEXOPT ABPERC=((NONE),OVR),	Х
STACK((1	 28K,128K,ANY,KEEP,512K,128K),OVR)	Х
	END	

CEEUOPT	CSECT	
	CEEXOPT STACK(64K,64K)	
	END	

Reports run-time options in effect
 Request with RPTOPTS(ON) option

LAST WHERE SET column = last place option referenced

- Installation default Value from CEEDOPT, CEECOPT, CELQDOPT
- Default setting Cannot be specified in options module
- Programmer default
 From CEEUOPT, CELQUOPT
 #pragma runopts, PLIXOPT
- Invocation command Specified on PARM= on JCL

Sample Options Report

Options Report for Enclave COBTAB 11/08/04 9:49:56 AM Language Environment V01 R05.00

LAST WHERE SET	OPTION
Installation default	ABPERC(NONE)
Installation default	ABTERMENC(ABEND)
Installation default	NOAIXBLD
Programmer default	ALL31(ON)
Default setting	NOFLOW
Invocation command	HEAP(24576,12288,ANYWHERE,KEEP,8192,4096)
Invocation command	RPTOPTS(ON)
Installation default	RPTSTG(OFF)
Programmer default	SIACK(65536,65536,ANYWHERE,KEEP,524288,1310/2)
Installation default	STORAGE(NONE,NONE,NONE,0)

...

LE Program Model

Process - Collection of resources	Resources Owned • Enclave • LE message file • Shared code & constants
Enclave - Collection of routines main + subroutines	Resources Owned • Thread • Heap • External files • Static data
Thread - Line of execution	Resources Owned • Stack • Condition manager

► Stack Storage

Contains program linkage, condition handling information, C/C++ and PL/I local variables

► Heap Storage

Allocated for user dynamically allocated variables C malloc, PL/I ALLOCATE, COBOL working storage May be allocated and freed using LE services

► Storage is divided into segments

Initial Segment + Increments

Increment

ALL31(OFF)

- Application has AMODE(24) programs
- AMODE switching is performed for calls to LE routines and callable services
- Storage use below the 16 MB line is affected, as AMODE(24) programs can only access this storage

ALL31(ON)

- All application programs are AMODE(31)
- AMODE switching minimized for calls to LE routines No AMODE switching for calls to LE callable services

Heap Storage Run-Time Options

HEAP run-time options specified in CEEDOPT, CEECOPT, CEEROPT, CEEUOPT

- HEAP(init,incr,<u>ANY</u>|BELOW,FREE|<u>KEEP</u>,init24,incr24) Heap storage used by program
- THREADHEAP(init,incr,<u>ANY</u>|BELOW,FREE|<u>KEEP</u>) Thread level heap storage
- ANYHEAP(init,incr,<u>ANY</u>|BELOW,<u>FREE</u>|KEEP) Library heap storage not restricted to below 16 MB
- BELOWHEAP(init,incr,<u>FREE</u>|KEEP) Library heap storage which must be below 16 MB

HEAPPOOLS(ON|OFF,cellsz1,percnt1,...,cellsz12,percnt12) Heap pools is a storage management algorithm to improve the performance of multithreaded C/C++ applications Heap Storage Run-Time Options

HEAP run-time options specified in CELQDOPT, CELQUOPT

HEAP64(init64,incr64,<u>KEEP</u>|FREE,init31,incr31,<u>KEEP</u>|FREE, init24,incr24,KEEP<u>|FREE</u>)

Heap storage in 64 bit run-time

IOHEAP64(init64,incr64,KEEP|<u>FREE</u>,init31,incr31,KEEP|<u>FREE</u>, init24,incr24,KEEP|<u>FREE</u>)

Storage used by run-time when performing I/O for applications

LIBHEAP64(init64,incr64,KEEP|<u>FREE</u>,init31,incr31,KEEP|<u>FREE</u>, init24,incr24,KEEP|<u>FREE</u>)

Heap storage used by LE

HEAPPOOLS64(ON|OFF,cellsz1,cellcnt1,...,cellsz12,cellcnt12) Heap pool storage for C/C++ applications

STACK run-time options specified in CEEDOPT, CEECOPT, CEEROPT, CEEUOPT

- STACK(init,incr,<u>ANY</u>|BELOW,FREE|<u>KEEP</u>,dsinit,dsincr)
 - Allocation of stack storage If ALL31(OFF) must specify BELOW
- THREADSTACK=((ON|<u>OFF</u>,init,incr,<u>ANY</u>|BELOW, FREE|<u>KEEP</u>,dsinit,dsincr)

Allocation of thread stack storage after initial thread

LIBSTACK(init,incr,<u>FREE</u>|KEEP)

Library stack storage below 16 MB

STACK run-time options specified in CELQDOPT, CELQUOPT

STACK64(init,incr,max)

Stack storage in 64 bit run-time Allocated above the 2 GB bar max - specifies maximum stack size

THREADSTACK64(OFF|ON,init,incr,max)

Allocation of thread stack storage after initial thread

- ► Provides report of LE storage usage
- Summarizes stack and heap activity
- ► Provides recommended values

Set run-time option RPTSTG(ON) to request report //RUN_EXEC_PGM=COBTAB,PARM='/RPTSTG(ON)'

Improve performance by reducing number of operating system calls to allocate and free storage

Storage Report for Enclave COBTAB 11/08/04 10:00:02 AM Language Environment V01 R05.00

STACK statistics:	
Initial size:	131072
Increment size:	131072
Maximum used by all concurrent threads:	6192
Largest used by any thread:	6192
Number of segments allocated:	1
Number of segments freed:	0

• • •

HEAP statistics:	
Initial size:	32768
Increment size:	32768
Total heap storage used (sugg. initial size):	1280224
Successful Get Heap requests:	1
Successful Free Heap requests:	0
Number of segments allocated:	2
Number of segments freed:	0

HEAP(init_size,incr_size,...)

init_size and incr_size specify the minimum segment size

Storage Report - Heap(16K,8K)

Storage Report for Enclave COBHEAP 11/08/04 10:09:15 AM Language Environment V01 R05.00

STACK statistics:	
Initial size:	131072
Increment size:	131072
Maximum used by all concurrent threads:	6176
Largest used by any thread:	6176
Number of segments allocated:	1
Number of segments freed:	0

• • •

. . .

HEAP statistics:	
Initial size:	16384
Increment size:	8192
Total heap storage used (sugg. initial size):	163864
Successful Get Heap requests:	25
Successful Free Heap requests:	0
Number of segments allocated:	14
Number of segments freed:	0

Storage Report - Heap(160K,8K)

Storage Report for Enclave COBHEAP 11/08/04 10:12:27 AM Language Environment V01 R05.00

STACK statistics:	
Initial size:	131072
Increment size:	131072
Maximum used by all concurrent threads:	6176
Largest used by any thread:	6176
Number of segments allocated:	1
Number of segments freed:	0

1 6 9 9 4 9
163840
8192
163448
25
0
1
0

• • •

. . .

STORAGE(heap_alloc_value,heap_free_value, dsa_alloc_value,reserve_size)

Storage option controls initial content of storage when it is allocated and freed

If NONE is specified, storage is not initialized

- heap_alloc_value Allocated heap storage initialized to this value
- heap_free_value
 Freed heap storage initialized to this value
- dsa_alloc_value

Stack storage initialized to this value

▶ reserve_size

Storage reserved for out of storage condition

Condition Severity Levels

LE defines a condition as:

Any event requiring the attention of a running application or HLL routine supporting the application Condition is also known as an exception, interrupt, signal, and error

Severity levels and default LE responses:

- 0 Informative message
- 1 Warning message
- 2 Error program terminated
- **3 Severe error program terminated**
- 4 Critical error program terminated

Condition Handling Model

Condition signaled as a result of:

- Hardware detected interrupt, program check
- Operating system abends
- Software generated signals

Condition handling model

- Consistent and predictable condition handling
- Honors each language's error handling semantics
- Flexibility to respond directly to conditions by providing callable services to signal conditions
- Tailor condition handling with a specific routine

Condition Handling Flow

ABTERMENC(RETCODE | <u>ABEND</u>)

Termination behavior with an unhandled condition

- RETCODE to terminate with return code and reason code
- ABEND to terminate with an abend
- Requires TRAP(ON)

TRAP (<u>ON</u> | OFF,NOSPIE | <u>SPIE</u>)

How abends and program interrupts are handled

- ON enables Language Environment condition handlers
- OFF condition handlers are not notified
- SPIE use ESPIE macro to handle program interrupts
- NOSPIE use ESTAE macro to handle program interrupts

TERMTHDACT (MSG|QUIET<u>|TRACE|</u>DUMP|UADUMP| UAONLY|UATRACE|UAIMM,,nnn)

Sets level of information provided for an error condition

- MSG generates a message indicating cause of termination
- QUIET suppresses the message
- TRACE provides message and trace of active routines
- DUMP provides message, trace, and LE dump
- UADUMP provides message, trace, LE dump, and system dump to the SYSUDUMP, SYSMDUMP, or SYSABEND DD
- UAONLY provides system dump
- UATRACE provides message, trace, and system dump
- UAIMM provides system dump of the original abend or program interruption & requires TRAP(ON,NOSPIE)
- nnn amount of storage dumped around each register in CEEDUMP

z/OS Language Environment element Specifying run-time options Storage model and run-time options Condition handling model and run-time options

Publications

LE Product Information - z/OS

z/OS LE Concepts Guide, SA22-7567 z/OS LE Customization, SA22-7564 z/OS LE Programming Guide, SA22-7561 z/OS LE Programming Reference, SA22-7562 z/OS LE Vendor Interfaces, SA22-7568 z/OS LE Run-Time Migration Guide, GA22-7565 z/OS LE Debugging Guide, GA22-7560 z/OS LE Programming Guide for 64-bit Addressing Mode, SA22-7569

LE Website

www.ibm.com/servers/eserver/zseries/zos/le/

