
WebSphere Application Server V4.01 for zOS and OS/390WebSphere Application Server V4.01 for zOS and OS/390WebSphere Application Server V4.01 for zOS and OS/390WebSphere Application Server V4.01 for zOS and OS/390

Enabling the SOAP Enabling the SOAP Enabling the SOAP Enabling the SOAP IVPIVPIVPIVP

This document can be found on the web at:
www.ibm.com/support/techdocs

Search for document number WP100241 under the category of "White Papers"

IBM Washington Systems CenterIBM Washington Systems CenterIBM Washington Systems CenterIBM Washington Systems Center

Donald C. Bagwell
301-240-3016

dbagwell@us.ibm.com

Many thanks to Duncan Elliott for his assistance in helping me understand
how to run the SoapIVP program.

Table of Contents

13Index .
12Document Change History .
12Driving the Application and Verifying SOAP Services .
11Activity: update your OMVS environment profile .
10Activity: set permissions on shell script to permit execution .
9Activity: extract EJBAdderIVP.sh shell script from JAR file .
9Activity: copy SoapIVPClients.jar file from installation directory .
9Readying the SOAP Client Code Shell Script .
8Background: binding SoapIVP to a virtual host .
8Background: The J2EE web container configuration .
7Activity: if you're using the HTTP Server and Plugin .
7Background: The HTTP listener .
7Readying the Web Application Environment .
6Activity: validate, commit and activate the conversation .
4Activity: set JNDI properties for bean and webapp .
3Activity: Start SMEUI, create conversation and select EAR file .
3Activity: FTP EAR file to workstation .
3Deploying the Application into the J2EE Server .
2High-Level Overview of Process .
2Background: the SoapIVP client code that calls the service .
1Background: the SoapIVP web application .
1Background: the SoapIVP "AdderService" .
1Background: the overall picture .
1An Overview of the SoapIVP Provided with WAS 4.01 .

WAS 4.01 -- Enabling the SOAP IVP

(This page intentionally left blank)

WAS 4.01 -- Enabling the SOAP IVP

An Overview of the SoapIVP Provided with WAS 4.01
The SoapIVP application supplied with WebSphere V4.01 for zOS and OS/390 is a very simple
application that takes as input hard-coded numbers (the integers 2 and 3) and adds them together
to provide an answer of 5. A stunning leap forward in web services? Hardly. But it does fill its
purpose of verifying that the SOAP support provided in WAS 4.01 does in fact work.

The verification program is provided in the form of an EAR file called SoapIVP.ear. It's location in
the HFS is /<install root>/samples/SoapIVP.ear, where /<install root> is the
location where WebSphere is installed on your system.

Depending on the maintenance level of your system, the SoapIVP.ear file may not be a "resolved"
file, which means you would have to run it through AAT before deploying it. APAR PQ53989 identifies
this issue and the PTF for that APAR will provide a resolved EAR file. Trying to deploy the unresolved
EAR file will result in an error.

Note:

Background: the overall picture

The SoapIVP application looks like this:

EAR SoapIVP.ear

WebApp

Message Router
Servlet

RPC Router
Servlet

EJB

"AdderService"

J2EE Server

Client

"EJBAdderTest"

OMVS

Request: 2 + 3 ?

Answer: 5

JAR EJBAdderIVP.jar

Overall picture of SoapIVP application

The SoapIVP.ear file contains both a web application and an EJB. The web application
consists of two servlets, both of which are standard SOAP servlets required of any web service:
the Message Router servlet and the RPC (remote procedure call) Router servlet. This web
application receives the request from the client and routes it to the EJB that represents the
"service." The EJB is known as "AdderService" and simply takes whatever two numbers it
receives and adds them together.

Background: the SoapIVP "AdderService"

This is a stateless session bean that simply adds together the two integers you pass it. At this
time the only kind of bean that's supported for SOAP services is a stateless session bean.

Background: the SoapIVP web application

This web application was generated by the tool used to create SOAP web services. (That tool
is called SoapEAREnabler, and is supplied in the /bin directory of WebSphere 4.01. This
document won't go into using that tool because it's not needed to run the SoapIVP.ear
application. Someone has already run SoapEarEnabler and the result was the SoapIVP.ear
file with all the SOAP parts inside.)

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 1 -© 2001, IBM Corporation, Wash. Systems Center

This web application has within it two servlets: one is called the messagerouter and the other
is called rpcrouter. Together they provide the way in which someone across the web may
ask for and receive the services of an EJB -- the AdderService EJB in this case.

Background: the SoapIVP client code that calls the service

The client code is a single Java class file called ejbaddertest.class, and it is executed out
of the OMVS environment. This client provides the two integer values to be added (they are
hard coded as "2" and "3") and then constructs the SOAP request to be sent. A shell script
called EJBAdderIVP.sh is provided that sets the required CLASSPATH values and then
invokes the ejbaddertest program. You invoke the shell script and pass it the host IP name
of the system on which the web service is installed.

It's interesting to note that a web browser may not be used as a client directly accessing this
web service. That's because a web browser will issue an HTTP "get", and the web service is
expecting a "post" operation.

High-Level Overview of Process

Deploy EAR file
into J2EE Server

Ready Webapp
Environment

Prepare Client
Code Shell Script Test Application

A B C D

Schematic overview of verification process

A. The EAR file is supplied in the following location in the HFS:

/<install root>/samples/SoapIVP.ear

Download that to your workstation and use the SMEUI tool to deploy the application into a J2EE
server, setting the bean's JNDI path to /soapivp/ and JNDI name to AdderService. The
web application's JNDI information is set to the default.

See "Deploying the Application into the J2EE Server" on page 3 for more details.

B. Insure that the J2EE server's webcontainer.conf is configured, and that the context root for
the application (/SoapIVP) can bind to a virtual host. If you're using the HTTP Server as the
listening agent, add a Service /soapivp/* statement to the httpd.conf file.

See "Readying the Web Application Environment" on page 7 for more details.

C. Extract the client code shell script and provide your OMVS environment with JAVA_HOME and
WAS_HOME variables.

See "Readying the SOAP Client Code Shell Script" on page 9 for more details.

D. Run the shell script and pass in as a parameter the virtual host (and port, if other than 80) to
which the application is bound.

See "Driving the Application and Verifying SOAP Services" on page 12 for more details.

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 2 -© 2001, IBM Corporation, Wash. Systems Center

Deploying the Application into the J2EE Server
The SoapIVP.ear file supplied with the product is ready to deploy using the Systems
Management End User Interface (SMEUI) tool. It contains one EJB and one web application.

Activity: FTP EAR file to workstation

Do following:

! FTP to your workstation the SoapIVP.ear file. It is located at the following HFS location:

/<install_root>/samples/SoapIVP.ear

Make certain to FTP in binary format.

Depending on the maintenance level of your system, the SoapIVP.ear file may be in a
"resolved" EAR file, which means you will have to run it through the AAT tool prior to deploying
the application. If you try to deploy an unresolved EAR file, you'll get an error. APAR PQ53989
addresses this issue.

Note:

Activity: Start SMEUI, create conversation and select EAR file

! Start the SMEUI and create a new conversation.

Make sure you're using the level of SMEUI that is shipped with WAS 4.01. Earlier versions of
the tool will not work with WAS 4.01. It should be at least Version 4.01.006. If the version you
have is back level from that, install the newer code by downloading the install executable from
the HFS:

/<install_root>/bin/bboninst.exe

Note:

! Expand the tree and locate the J2EE server into which you wish to deploy the SoapIVP
application.

! Right-click on the J2EE server name, then select Install J2EE Application. The next panel
looks like this:

The EAR file and its location
on your workstation

The host to which the EAR will be
deployed. This will be filled in for you
with the host name you specified when

you started the SMEUI tool.

Click on "OK" to start the
deployment process

Specifying the SoapIVP.ear for deployment

! After clicking "OK" on the previous panel, you will get the following message:

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 3 -© 2001, IBM Corporation, Wash. Systems Center

Message indicating application shouldn't be deployed into multiple-region servers

Don't worry: just click on "OK" to get by this.

This pops up because one of the XML deployment descriptors in the EAR file defines the
activation policy for this EJB as "once." (Look inside the soapivpejb.jar file that's inside
the SoapIVP.ear file. The file websphere390xdd.xml has a tag of:

<activation>once</activation>

That means you shouldn't have copies of this running in different regions of the same
server. Different servers is okay, but recall that WAS 4 allows multiple server regions of a
given server to be started by WLM based on the workload its sees. You may very well have
defined your WLM application environment with "support a single server region only" (which
would prevent multiple regions from starting), but the SMEUI tool doesn't know that. So it
issues this message.

This message also applies to multiple instances of the same server (also known as
"replicated servers). So for applications defined as <activation>once</activation>,
you should not deploy into servers defined with mulitple instances.

For the purposes of this SoapIVP application, don't worry about this message. You won't be
driving enough workload against this to make a difference. Just be aware of why this
message pops up.

Explain:

Activity: set JNDI properties for bean and webapp

! The next panel that pops up will show the contents of the EAR file:

The "AdderService" bean

The front-end SOAP web
application

Two beans -- EJB and webapp -- in the SoapIVP.ear file

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 4 -© 2001, IBM Corporation, Wash. Systems Center

! Set the AdderService bean's JNDI path and JNDI name as illustrated here:

Select the AdderService
bean, then click on the

EJB tab

1

Set the JNDI Path to
/soapivp/

2

Set the JNDI Name to
AdderService

3

Green check-marks on
the tabs and beans

indicate the references
have been resolved and
the bean is ready to be

deployed

JNDI Path and Name for the AdderService bean

It's important to set these values the way it is shown here. The client code you'll use to verify
this has these values hard-coded. If you set these values to something different, it won't work.

Note:

! Now set the web application's JNDI information:

Select the soap_WebApp
bean, then click on the

EJB tab

1

Click on "Set Default"
button to set both Path
and Name automatically

2

All the tabs and all the
folders and beans should
have green check-marks.

Now click on "OK"

3

Default JNDI Path and Name set for the web application

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 5 -© 2001, IBM Corporation, Wash. Systems Center

Activity: validate, commit and activate the conversation

The EAR file should now be deployed into the server. You can verify that by expanding the
J2EE server and looking under "J2EE Applications":

Example of
the Server

The
application

The beans

SMEUI tool's view of the environment after EAR has been deployed into server

! Now you have to do the standard Validate, Commit and Activate of the conversation.

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 6 -© 2001, IBM Corporation, Wash. Systems Center

Readying the Web Application Environment
For this SoapIVP web service to work successfully after deploying the code, three things must be in
place:

1. An HTTP listener must be ready to accept the request from the client

2. The J2EE web container for the server in which SoapIVP is deployed must be configured

3. The SoapIVP application must be successfully bound to a virtual host in the web container

This document will touch on each conceptually, but the actual checklist of configuration activities
can be found in the following document:

An extensive write-up on configuring web applications in the WAS 4.0 and 4.01
environment can be found on the web at:

www.ibm.com/support/techdocs

Search for document number WP100238 under the category of "White Papers"

Other Documentation:

Background: The HTTP listener

Some form of HTTP listener needs to be part of the configuration. For WAS 4.01, that HTTP
listener may be in the form of the IBM HTTP Server configured with the WAS 4.01 "plugin"
code, or it may be the new WAS 4.01 "Transport Handler" function, which is an HTTP listener
integrated into the J2EE server itself:

J2EE Server

Transport
Handler

Web
Container

SoapIVP
Webapp

EJB
Container

SoapIVP
EJB

HTTP Server

WAS 4.0
Plugin

SoapIVP
Client

The SOAP client will gain access to the SOAP Service through the HTTP Server and the
Plugin code, or through the new Transport Handler.

Choice of either HTTP Server+plugin or new Transport Handler

Both HTTP listeners will work equally well in testing the SoapIVP application. If you're
unfamiliar with either HTTP listener, I would recommend you consult the WP100238 document
referenced on page 7. That document provides background information as well as step-by-step
configuration information.

Activity: if you're using the HTTP Server and Plugin

This short section does not apply to the Transport Handler. It only applies when you're using
the IBM HTTP Server with the WAS 4.01 plugin as your HTTP "catcher."

Note:

! If you are using the IBM HTTP Server and WAS 4.0 Plugin method of accessing the
SoapIVP web application, you must add the following Service statement to your
httpd.conf file:

Service /soapivp/* /usr/lpp/WebSphere/WebServerPlugIn...

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 7 -© 2001, IBM Corporation, Wash. Systems Center

This will allow the request to be mapped over to the plugin code and then routed to the
webapp environment in the J2EE server.

! Make certain the Userid directive specifies a value that does not require user-supplied
authentication. Typically this would be a surrogate ID such as PUBLIC:

Userid PUBLIC

The client code that is used (ejbaddertest.class) is going to issue an HTTP POST to
the HTTP webserver. If the webserver is coded with Userid %%CLIENT%%, the
webserver will return a request for user login. The client code is fairly simple code and
wasn't written to handle this. It will fail with the following message returned to your OMVS
or Telnet screen:

Exception in thread "main" SOAPException:
faultCode=SOAP-ENV:Client; msg=Failed to encode mime multipart:
java.io.UnsupportedEncodingException: IBM-1047;
targetException=java.io.IOException:

To avoid this, you need to allow the POST to be processed without that "please login"
request coming back from the webserver.

Why?

If you don't have a surrogate ID defined and you just want a way to test this in a
quick-and-dirty way, you may code Userid %%SERVER%%. This will run the request under
the userid of the webserver process, and no "please login" panel will be issued.

Coding Userid %%SERVER%% is a huge security exposure, and you would never code that
for actual production use. But if your test system is properly isolated and you promise to
remove this coding after you verify SoapIVP, then you may use it.

Note:

Background: The J2EE web container configuration

The web application that is part of the SoapIVP.ear file is deployed into what's known as the
"web container" of the J2EE server. For that web application to be properly recognized, the
web container needs to be configured with a webcontainer.conf file. It is based on
definitions in the webcontainer.conf file that applications -- including SoapIVP -- are bound
to virtual hosts. Without being bound to a virtual host, you'll never be able to access and test
the SoapIVP application.

For more information on configuring the web container, see the document WP100238, which
can be obtained at the website listed on page 7.

Background: binding SoapIVP to a virtual host

The webcontainer.conf provides a way for an application to be bound to a "virtual host."
This is important because in order to run the application, the host specified on the URL coming
in from the browser must match the "virtual host" to which the application is bound.

The document WP100238, which can be obtained off the web at the location specified on page
7, provides an extensive write-up on what a virtual host is, and how you bind applications to
virtual hosts.

The SoapIVP web application has a "context root" value of /soapivp. Therefore, your
webcontainer.conf file must have a contextroots= definition that allows the context root
of /soapivp to bind to a virtual host

Why is this mentioned in this document? Because the virtual host to which the application is
bound is what you'll need to specify as a parameter when you invoke the OMVS shell script to
test the application. Provide a parameter that's different from the virtual host, and the test will
fail. (See "Driving the Application and Verifying SOAP Services" on page 12 for information on
invoking the shell script).

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 8 -© 2001, IBM Corporation, Wash. Systems Center

Readying the SOAP Client Code Shell Script
With the SoapIVP.ear file deployed into the server and the application successfully bound to a
virtual host, you're ready to prepare the client code. It's tempting to think it's as easy as pointing a
browser at the HTTP listener, but that won't work. The SOAP webapp doesn't accept HTTP "Get"
requests, which is what browsers send. So the client code is a Java application that is run from the
OMVS environment. That will send a properly formatted HTTP request to the SoapIVP webapp,
which will then drive the service.

Activity: copy SoapIVPClients.jar file from installation directory

The Java class file that represents the client code is kept in a JAR file in the /samples
directory of the WebSphere V4 installation root. That file also contains the shell script that's
used to invoke the client code.

! Copy the following file:

/<user directory>/SoapIVPClients.jarTo:

/<WAS installation root>/samples/SoapIVPClients.jarFrom:

The <user directory> is one you may safely write into without worrying about disturbing
installation files. For example, /u/bagwell/SoapIVP was the one I used when testing
this.

Activity: extract EJBAdderIVP.sh shell script from JAR file

Your interest here is the EJBAdderIVP.sh shell script, which is buried deep within the JAR
file. The contents of the JAR file look like this:

com

ibm

soap

soapivpclients

ejbadder

scripts

JAR
SoapIVPClients.jar

ejbaddertest.class

EJBAdderIVP.sh
This is the shell script
which will be used to
drive the client code.

You need to get
it out of the JAR
file to use it

Contents of the SoapIVPClients.jar file supplied with WAS 4.01

When you "explode" the entire JAR file, the directories contained within the JAR will be created
in the HFS as well. But even if you want to extract one file (which is what you want to do), the
directories that come before the file will be created in the HFS. That's not a problem, but it is a
bit of a nuisance.

Do the following:

! Go into the OMVS shell of OS/390 (or access the system via Telnet)

! Change directories to the user directory in which you copied the SoapIVPClients.jar
file.

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 9 -© 2001, IBM Corporation, Wash. Systems Center

! Issue the following command:

jar -xvf SoapIVPClients.jar com/ibm/soap/soapivpclients/scripts/EJBAdderIVP.sh

If this fails with the message with an indication that the command "jar" is not found, then you'll
probably have to update your PATH environment variable to point to the Java /bin directory
(which is where the jar command resides). Find out where Java is installed on your system.
Typically it's at a place like /usr/lpp/java2/J1.3, or something like that. Then, from your
OMVS prompt, issue the following command:

export PATH=$PATH:/usr/lpp/java2/J1.3/bin

Then try the jar command again.

Note:

! If the command worked, you should have a directory structure that looks like this:

com

ibm

soap

soapivpclients

scripts

HFS

EJBAdderIVP.sh

/<user directory>

Why not extract the
client Java code?
That's explained next.

Q:

Directory structure after EJBAdderIVP.sh shell script extracted from JAR file

The reason I don't have you extract the Java client code (the actual ejbaddertest.class
file) is because the shell script is set up to look for that in the /samples directory of the
installation root for WAS. Here's the CLASSPATH update in shell script that points to that:

CP=$WAS_HOME/samples/SoapIVPClients.jar

You could have extracted the class file as well as the shell script, but it wouldn't be
used by the shell script. The shell script would go back to the JAR file that's in the
/samples directory. To use the extracted class file would have meant updating the
shell script to change the CLASSPATH entry. That's an unnecessary extra step.
Rather than introduce that extra layer of complexity, I'm having you extract just the
shell script and then allow it to go get the class file out of the supplied JAR in the
/samples directory.

Note:

Activity: set permissions on shell script to permit execution

After extracting the EJBAdderIVP.sh shell script from the JAR file, the permissions on the
JAR file will be 644, which doesn't permit anybody to execute the script. Therefore, you'll need
to change the permissions so the "execute bit" is on:

! Go into the OMVS (or Telnet) environment

! If you're not already there, change directories to the directory in which the
EJBAdderIVP.sh file is stored. See the previous picture for that location.

! Issue the command chmod 755 EJBAdderIVP.sh

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 10 -© 2001, IBM Corporation, Wash. Systems Center

Activity: update your OMVS environment profile

For the shell script EJBAdderIVP.sh to work, two OMVS environment variables need to be
set:

Needs to be set to the root directory in which WebSphere V4.01 is installed on your
system. A typical location might be /usr/lpp/WebSphere

WAS_HOME

Needs to be set to the directory in which the Java JDK is installed on your system. A
typical location might be /usr/lpp/java2/J1.3

JAVA_HOME

Do the following:

! Go into the OMVS shell (or Telnet) and issue the following two commands:

echo $JAVA_HOME
echo $WAS_HOME

! If the response received for each "echo" command indicated the variables are already set
and set correctly, then skip to "Driving the Application and Verifying SOAP Services" on
page 12. Otherwise, continue.

! If a .profile file exists in your userid's home directory, then edit that file; otherwise,
create the file (note the "dot" at the beginning of that name).

! Code the following two lines into the .profile file:

export JAVA_HOME=$JAVA_HOME:/usr/lpp/java2/J1.3

export WAS_HOME=$WAS_HOME:/usr/lpp/WebSphere

The directory values in italics in the example above should be set to the directories in which
Java and WebSphere are installed on your system.

Note:

! Exit the OMVS environment and re-enter. This will cause the new .profile to be executed.

! Issue the two "echo" commands again to verify the variables have been set:

echo $JAVA_HOME
echo $WAS_HOME

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 11 -© 2001, IBM Corporation, Wash. Systems Center

Driving the Application and Verifying SOAP Services
You are now ready to invoke the shell script and drive the service. Do the following:

! Make sure J2EE server in which the SoapIVP.ear file was deployed is started.

! If the HTTP access you are using is the IBM HTTP Server (as opposed to the WAS 4.01
Transport Handler), then make sure the HTTP Server is started.

If you are using the Transport Handler, you do not need to worry about starting that service. If
configured into the J2EE Server, the Transport Handler starts automatically when the server is
started.

Note:

! Go into the OMVS shell and change directories to:

/<user directory>/com/ibm/soap/soapivpclients/scripts

This is where the EJBAdderIVP.sh shell script resides.

! Issue the command:

./EJBAdderIVP.sh <IP host name of server>[:port]

for example:

./EJBAdderIVP.sh wsc1.washington.ibm.com:8080

The value you provide for <IP host name of server> (and the port designation if you're
using something other than 80) must exactly match -- character for character -- the "virtual
host" to which the SoapIVP application is bound. If the virtual host in the web container is
actually wsc1:8080, then that is what you pass as a parameter to the shell script. Passing a
value that will resolve to the right network adapter is not enough; the received URL must
match the virtual host specification exactly.

Important:

You should see the following:

./EJBAdderIVP.sh wsc1.washington.ibm.com:8888
5
Done

That's it ... you've verified the SOAP services of WAS 4.01. If you deployed this SoapIVP.ear file
into a copy of WAS 4.0 and tried to run it, you would get all sorts of "class not found" error
messages. The fact that it ran in the WAS 4.01 environment proves the service (in the form of
supplied class files) is present.

There's another aspect of this topic that's not explored in this document. That topic is the enabling
of an existing EJB to be a "web service." At the present time you can do that with any stateless
session bean. The "Assembling J2EE Applications" document (SA22-7836-02) goes into detail
on the "SoapEAREnabler" tool, which will provide the necessary piece-parts to "SOAP-ify" a
service.

Document Change History
Check the date in the footer of the document for the version of the document.

Original document.November 14, 2001

Updated with information regarding "UnsupportedEncodingException" when using the
HTTP Server and plugin as your HTTP listening device.

January 9, 2002

WAS 4.01 -- Enabling the SOAP IVP

Wednesday, January 09, 2002- 12 -© 2001, IBM Corporation, Wash. Systems Center

Index

A
activation policy

explanation of info message received, 4
APAR

for unresolved EAR file, 1, 3

B
BBON0889I

message received during deployment, 3
browser

can't use directly with SoapIVP, 2

C
CLASSPATH

reference to client code, 10
client

JAR file that contains client, 9
overview of SoapIVP client, 2
reason why not un-jarred from JAR file, 10

context root
binding to virtual host, 8
of SoapIVP application, 8

conversation
activating, 6
committing, 6
creating, 3
validating, 6

E
echo command

used to test environment variables, 11
EJBAdderIVP.sh

executing, 12
location after un-jarred, 10
location within JAR file, 9
overview of relationship with client code, 2
setting permission bits, 10
sign of success, 12

ejbaddertest.class
CLASSPATH reference to, 10
client code for SoapIVP, 2
reason why not un-jarred from JAR file, 10

encoding
unsupported exception during testing, 8

environment variables
JAVA_HOME for OMVS environment, 11
WAS_HOME for OMVS environment, 11
where set, 11

H
HTTP listener

relationship to SoapIVP webapp, 7
HTTP server

need for Service statement, 7
httpd.conf

updates for SoapIVP, 7
Userid directive for testing, 8

I
IBM-1047

unsupported encoding exception, 8

J
jar

command used to unpack client JAR file, 10
problem if jar command not found, 8, 10

JAVA_HOME
set for OMVS environment, 11
testing if set properly, 11

JNDI
importance of coding values as directed here, 5
information for session bean, 2, 5
information for webapp, 2, 5

P
permission bits

setting on shell script file, 10
PQ53989

APAR for unresolved EAR file, 1, 3
profile

where OMVS environment variables set, 11
PUBLIC

Userid directive in httpd.conf, 8

R
replicated servers

and restriction using SoapIVP, 4

S
server instances

and restriction using SoapIVP, 4
Service statement

required if using HTTP Server, 7
shell script

used to drive client code, 9
SMEUI

location of installation executable, 3
minimum level required for WAS 4.01, 3

SOAPException
when running SoapIVP, 8

SoapIVP.ear
APAR to fix unresolved EAR, 1, 3
location in HFS, 2, 3
web applications contained within, 1
what's in the file, 1

SoapIVPClients.jar
location in HFS, 9

stateless session bean
JNDI information, 2, 5
SOAP service support, 1
what's in SoapIVP.ear, 1

surrogate ID
used for testing SoapIVP, 8

Systems Management
location of installation executable, 3
minimum level of tool for WAS 4.01, 3

Configuring Web Applications in WAS 4.0

Wednesday, January 09, 2002- 13 -© 2001, IBM Corporation, Wash. Systems Center

T
Techdocs

web location, 7

U
UnsupportedEncoding

exception using HTTP Server, 8
URL

of Techdocs, 7
Userid

httpd.conf value for testing, 8

V
virtual host

binding SoapIVP to, 8

W
WAS_HOME

set for OMVS environment, 11
web application

JNDI information, 2, 5
webcontainer.conf

binding SoapIVP to virutal host, 8
need for one to be configured, 8

WP100238
Configuring Webapps Techdoc, 7

Configuring Web Applications in WAS 4.0

Wednesday, January 09, 2002- 14 -© 2001, IBM Corporation, Wash. Systems Center

(This page intentionally left blank)

Wednesday, January 09, 2002- 15 -© 2001, IBM Corporation, Wash. Systems Center

End of Document

Wednesday, January 09, 2002- 16 -© 2001, IBM Corporation, Wash. Systems Center

