
Finding and Collecting Availability Measurement Data

January 2002

Mike Bonett
IBM Corporation, Enterprise Systems Management Technology Support

Advanced Technical Support, Gaithersburg, MD
bonett@us.ibm.com

This document describes various data sources, provided by operating system platforms and network
protocols, that contain availability information for workloads and components. It also identifies
monitoring techniques and products that can also produce and/or report availability measurement data.
The intent is to eliminate or reduce manual efforts in gathering information on and reporting the
availability of systems, networks, and end-to-end applications.

© IBM 2002

© IBM 2002

Finding and Collecting Availability Measurement Data 1

55
Using Heartbeats for availability monitoring
and measurement .

53Heartbeat .
51Overview .
51Monitoring Methods .

49Event Management Products .

47Getting data from traps .
44Traps .

42Getting Data From Alerts .
39Alerts .

36AIX Messages .
35OS/400 Messages .
34Overview .
34

IBM Communications Server SNA
Messages .

33VM and z/VM .
31z/OS and OS/390 Messages .
30Messages .

29Application Logs .
29OS/2 .
28Netware .
26Windows NT/2000 .
25UNIX and LINUX .
24OS/400 .
23MONITOR .
23Programmable Operator (PROP). .
23z/VM and VM/ESA .
22Getting data from SMF .
18

Systems Management Facilities (SMF)
Records .

17SYSLOG/OPERLOG .
17OS/390 and z/OS .
17Event Logging Facilities .

15Data Sources Overview .

12Getting Started .

9The Environment .

9Introduction .

7Acknowledgements .

6Trademarks .

© IBM 2002

Finding and Collecting Availability Measurement Data 2

71
Tivoli NetView Performance Monitor for IP
(NPM/IP) .

71Tivoli NetView Performance Monitor (NPM) .
70Tivoli NetView for z/OS and OS/390 .
69Tivoli NetView (AIX ,NT/2000 platforms) .
69Tivoli Enterprise Console (TEC) .
69Tivoli Distributed Monitoring .
68Tivoli Business Systems Manager (TBSM) .
68

Tivoli Application Performance Management
(TAPM) .

68Teleprocessing Network Simulator (TPNS). .
68

System Manager for AS/400 and Managed
System Services for AS/400 .

67
System Automation for OS/390 (SA for
OS/390) .

67IBM Director .
67

IBM Communications Server (AIX, Windows
NT/2000, OS/2 Warp, Linux) .

67CICSPlex System Manager (CICSPlex SM) .
66AS/400 Management Central .
66Example Products .
65

Data Capture and Monitoring
Products .

64
Using Custom Monitoring Agents for
availability monitoring and measurement .

64Custom monitoring agents .
62

Using User Simulation for availability
monitoring and measurement .

62User Simulation .
61

Using Remote Commands for availability
monitoring and measurement .

60RUNCMD (Tivoli NetView for OS/390) .
60

Remote Command Service (Windows NT,
Windows 2000) .

60SBMRMTCMD (iSeries and AS/400) .
59RMTCMD (Tivoli NetView for OS/390) .
59ROUTE (z/OS and OS/390 Sysplex) .
59REXEC (TCP/IP) .
59Remote Commands .
57

Using PING for availability monitoring and
measurement .

56PING .

© IBM 2002

Finding and Collecting Availability Measurement Data 3

98
Example Java Servlet “UpTime”
Heartbeat Program .

96Sample Shell Script Heartbeat Program .
94Sample REXX Heartbeat Program .
93AIX Error Log messages .
92OS/400 Messages .
91

z/OS and OS/390 Communications
Server Messages .

90z/VM Messages .
89z/OS and OS/390 Messages .
88Appendix .

86Summary .

81Application Example .
79

Data Source and Monitoring Technique
Selection Guidelines .

79Putting It All Together .

78Tivoli Service Desk for OS/390 (INFOMAN) .
78

Tivoli NetView for OS/390 Automated
Operations Network (AON) component .

78Tivoli Decision Support .
78Tivoli Decision Support for OS/390 .
77Reporting Products - Examples .
76Data Accessibility .
75

Applying Reporting Logic Against the
Formatted Data .

74
Creating a Common Record Layout of
the Captured Data .

74Reporting .

72Product Mappings .
72Tivoli Web Services Manager (TWSM) .
71Tivoli Web Component Manager (TWCM). .

© IBM 2002

Finding and Collecting Availability Measurement Data 4

Preface

The information contained in this document has not been submitted to any formal IBM test and is distributed
on an "as is" basis without any warranty either expressed or implied. The use of this information or the
implementation of any of these techniques is a customer responsibility and depends on the customer's
ability to evaluate and integrate them into the customer's operational environment. While each item may
have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make
these available in all countries in which IBM operates. Any reference to an IBM licensed program in this
publication is not intended to state or imply that only IBM's program may be used. Any functionally
equivalent program can be used instead.

The information in this document concerning non-IBM products was obtained from the suppliers of those
products or from their published announcements. IBM has not tested these products and cannot confirm the
accuracy of performance, compatibility, or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

The information in this publication is not intended as the specification of any programming interfaces.

Questions or comments about this publication should be sent via via the Internet to bonett@us.ibm.com.

© IBM 2002

Finding and Collecting Availability Measurement Data 5

Trademarks
The following are trademarks and registered trademarks of the IBM Corporation or Tivoli Systems:
w ACF/VTAM™
w AIX®
w AS/400 ®
w CICS ™
w DB2 ®
w IBM ®
w IMS/ESA ®
w NetView ®
w OS/2 ®
w OS/390 ™
w PS/2 ®
w RS/6000 ®
w S/390 ™
w System/390 ™
w Tivoli ™
w VTAM ™
w z/OS ™

The following are trademarks and registered trademarks of the respective companies:
w Netware ™ (Novell, Inc.)
w Omegamon ™ (Candle Corporation)
w Omegaview ™ (Candle Corporation)
w Windows ™(Microsoft Corporation)
w Windows 2000 ™(Microsoft Corporation)
w Windows NT ™(MicrosoftCorporation)

Any other company or product names are trademarks or registered trademarks of that respective
company.

© IBM 2002

Finding and Collecting Availability Measurement Data 6

Acknowledgements

Many thanks to the following individuals who, over the years, have provided valuable experience, information,
feedback and sanity checks related to the contents of this document:
w John Bishop
w Bob Campenni
w Linda Cook
w Bob Gelinas
w Allen Gilbert
w Pete Gordon
w Randy Greene
w Rich Grimaldi
w Carl Kindstedt
w Eric Klein
w Kevin Miller
w Mark Nixon
w Doug Orlando
w Dave Petersen
w M. Watanabe

© IBM 2002

Finding and Collecting Availability Measurement Data 7

© IBM 2002

Finding and Collecting Availability Measurement Data 8

Introduction

Availability Management is the process of ensuring that all components (hardware, software, etc.) that
are supporting essential business applications and processes are active and in a state to allow:

� users to access the applications.
� applications to access and manipulate information on behalf of the users.

This document focuses on the measurement aspect of availability management. It identifies data
sources - either provided from system or network components, or created by using specific monitoring
techniques - from which information can be captured and used to determine the availability of
components in the information technology (I/T) environment. Complex applications require multiple
application, network, and database platforms to work to together to provide proper application
functions. Multiple sources of data will be required to determine the true availability of these
applications, and the information from these sources will have to be gathered together and related in the
proper manner.

The process and technical aspects of identifying and collecting availability data in an efficient manner will
be covered. These activities are a subset of the overall process of availability management. Other tasks
must also be in place to carry out full availability management, so that effective improvements can be
evaluated and implemented. The details of those other activities are beyond the scope of this document;
however, as the saying goes, “if you cannot measure it, you cannot manage it”. Measuring availability is
critical to the overall availability management process, and this document will provide guidelines and
methods for effectively finding and collecting data so that availability can be measured.

The Environment

Business systems, or applications, that are supported by the (I/T) infrastructure are increasingly
complex. No longer are they centralized on a single physical platform, and accessed through just one or
two connecting devices. Today, the components that support applications:

� Span multiple hardware platforms
� Are connected using multiple networking devices and protocols
� Use multiple types of middleware (databases, message queues, Web Servers, “legacy” transaction

systems, and so forth)

At the same time that these applications are using more infrastructure elements, their importance to the
business is increasing. Application downtime, or outages, can mean the loss of thousands, or millions, of
dollars per hour. Outages also damage business reputation, can result in government or legal action,
and generate unwanted publicity. Managing application availability is required to reduce or eliminate
these exposures.

© IBM 2002 Introduction

Finding and Collecting Availability Measurement Data 9

Availability Management consists of many tasks. These include:

� Determining the type and level of availability that must be provided.
� Designing the infrastructure and management processes to support availability.
� Monitoring and measuring availability to determine real time status and long term trends.
� Talking actions to correct exposures, or improve the current level availability.

Measuring availability is required for many reasons. Once application service levels - which include
when the application must be available for use - are established, there must be a way to measure the
actual service level being achieved. If outages occur, their location and length must be known to
determine the impact, and to start investigating methods to reduce or eliminate the outage from
reoccurring.

Because applications can span the entire I/T infrastructure, availability measurements must be taken all
across that infrastructure. If only one or 2 components are measured, this information will not reflect the
true state of the application. If only the end user perspective is measured, it will not reflect the reasons
end users are encountering problems. Availability measurements must be “end-to-end” - they must
account for the following “generic” application structure:

� Users use applications to manipulate data.
� Connections must exist:
� Between the users and the application.
� Between the application and the data.

� The entire path must be available to achieve end-to-end application availability.
� Identifying where availability is being affected must occur to begin improving availability.

This paper covers methods of finding and collecting availability measurement data across the I/T
infrastructure. It highlights a subset of the end-to-end availability steps that are fully documented in the
white paper “Measuring End-to-End Availability: How To Get Started” (available at
http://www.ibm.com/support/techdocs, or directly from the author). The steps are:

1. Creating a generic model to assist in identify the end-to-end components that support an
application.

2. Determining the relationships among the components that will affect how their measurement data will
be used.

3. Identifying and selecting the sources of availability data for the components.
4. Merging and analyzing the data to derive end-to-end availability measurements.
5. Identifying the location and impact of outages in the end-to-end path.

This paper covers step 3 in detail. It identifies the availability data sources to investigate for components.
The applicable sources for a particular component will vary, but they will fall into two categories:

© IBM 2002 Introduction

Finding and Collecting Availability Measurement Data 10

1. Event sources, which are produced by operating systems, network protocols, and systems
management software.

2. Monitoring techniques, which can be written using scripting languages, or implemented using
operating system or system management software functions.

While manual availability measurements can (and are still being) used, there are better reasons for using
these the data sources:

� The number of components that will have to be measured will overwhelm manual collection efforts.
� The accuracy of the measurements will come into question. It is not unusual for these measurements

to be based on perception or guesses, instead of hard facts.

All of the data sources identified in this paper can be accessed using automated techniques. For
purposes of this paper, “automation” means any operating system, network, or product function that can
be triggered based on a timer or event, can access data or issue a command, and can manipulate the
accessed data or command response. For each data source the paper will describe the role automation
can play to efficiently collect the desired information.

© IBM 2002 Introduction

Finding and Collecting Availability Measurement Data 11

Getting Started

Finding and collecting availability data cannot begin until the following questions are answered:

� What components do I measure?
� For each component, what data has to be collected?

Consider the following I/T infrastructure. It supports an application with multiple middleware
components, and is spread across S/390, LAN, WAN, and distributed environments:

1 2
1

2

3
4

5
6

7
8

9

1 0
1 1

Router

Router

Firewall Firewall

Load
Balancer

Load
Balancer

Web Content
Server

Web Content
Server

Database
Server

Web Servers
Database Servers

User

Router WAN
Backbone

This type of application structure encompasses
� Distributed application logic, residing in both the S/390 and distributed application platform

environments
� Distributed data, residing in multiple locations
� Networking and middleware protocols support the information flow across the components

If all hardware and software components identified in this picture are measured, there are at least 30
elements to consider. That is a difficult starting point, especially when trying to establish relationships
among the different components, and where to collect data from for each component. Attempting to
measure a large number of components without a structured approach can easily lead to collecting lots
of meaningless data that does not show the impact beyond just an individual component.

It is much easier to start with a subset of components, and then expand as needed. The best way to
identify a subset of components is to start with a model. This is useful for several reasons:
� A model can be applied consistently to multiple application environments.
� A model ensures that all of the key components of an application are identified.
� A model allows for grouping of components; these groups can sometimes be treated as a single

component, which helps simplify the data collection and measurement process.

© IBM 2002 Getting Started

Finding and Collecting Availability Measurement Data 12

More information on using a model when measuring availability is documented in the Measuring
End-to-End Availability: How To Get Started white paper. The model in that paper defines the
following component categories:
� User Platform (components that support the users as part of the application flow)
� User-Application Path (components that connect the users to the Application Platform(s))
� Application Platform (hardware and operating systems that support Application Subsystems and

Application Logic required by the application)
� Application Subsystem (middleware that provides services used by the application logic)
� Application (the application logic itself)
� Application-Data Path (components connecting the Application Platform(s) to the application data)
� Data Platform (physical and logical components that provide data access for the application)

Experience has shown that it is best to start out with between three and 10 components types, that are
located across the key infrastructure areas of an application - the user location, application logic, data,
and connections.

Once the components are identified, measurement information must be collected. This is an area where
starting simple will make the effort much easier. Only four data elements are needed for each
component. A data source for a component must provide all of them:

1. A component identifier that uniquely identifies this component. This can be a name based on a
protocol (e.g. TCP/IP host name or IP address), or a name based on a configuration definition.

2. The component status that is being reported. This can be anything that, for measurement purposes,
can be mapped to a "UP" or "DOWN" state for the component. For example, A data source can
report that a performance threshold has been exceeded. The result is very poor throughput or
response time for the application due to the components’ performance. . This can be mapped to a
"DOWN" state, if so desired.

3. The date and time that the reported status occurred. These may have to be normalized if the data
sources being used are located in different time zones.

4. The status change identifier. This is the specific event or monitoring activity that reported the status
change. It can be an event ID, message ID, event source, name of the monitoring software, etc.

From these data elements availability measurements for a component can be derived. For example, the
following table shows data elements for 3 different components:

PING2001-04-10-15:00UpRouter_Interface_1
syslog2001-04-10-13:00DownUNIX_Database_1
PING2001-04-10-12:30DownRouter_Interface_1
IEF403I2001-04-10-08:00UpS390_Address_Space_1

Status IdentifierDate/Time
(YYYY-MM-DD-HH:MM)

StatusComponent ID

© IBM 2002 Getting Started

Finding and Collecting Availability Measurement Data 13

IEF450I2001-04-10-22:00DownS390_Address_Space_1
syslog2001-04-10-16:30UpUNIX_Database_1

The availability of each component for that day can be calculated:

� S390_Address_Space_1: SYSLOG messages indicated its status. The component was up for 14
hours (8 AM - 10 PM) and down for 10 hours (midnight- 8AM and 10PM-midnight).

� Router_Interface_1: The IP address was PINGed to determine its status. The component was up
for 21.5 hours (midnight - 12:30 PM and 3PM-midnight) and down for 2.5 hours
(12:30PM-3PM).

� UNIX_Database_1: messages in the UNIX syslog indicated its status. The component was up for
20.5 hours (midnight - 1 PM and 4:30 PM - midnight) and down for 3.5 hours (1 PM - 4:30 PM).

A given component, can have multiple sources for this data. The more protocols (system or network) a
component participates in, the more different data sources will have to be considered. The component
will be represented in each data source. A component that:
� Is defined as a network gateway
� Is directly attached to an operating system platform
� Communicates to components using both SNA and TCP/IP protocol
� Is connected to multiple LAN segments

 can be represented in various data sources as:
� An operating system I/O device
� One or more LAN MAC addresses
� An SNA resource
� A TCP/IP node

There will be redundant information when using multiple data sources. Correlating and filtering the data
using manual methods is a difficult, if not impossible, task. Automated techniques can be applied to
accomplish this. Automation can either identify and discard redundant information, or correlate
information for a component from multiple sources - to provide an accurate view of component status.

In general, automation is necessary, once the components and relevant data sources have been
identified, to obtain data from the event sources, analyze it, and produce availability measurements. The
benefits of using automation include:

� Implementing policies for monitoring and collecting data for specific components can be done in a
consistent fashion.

� Human errors can be reduced or eliminated from the availability data gathering process.
� Automation can interface (either directly or by integration with other products) to all points of the

application infrastructure.
� Data collection, filtering, and formatting for input to the availability measurement process can be

simplified.

© IBM 2002 Getting Started

Finding and Collecting Availability Measurement Data 14

Using automation in this process increases the accuracy of the data, while reducing the complexity and
effort to collect and analyze the data.

© IBM 2002 Getting Started

Finding and Collecting Availability Measurement Data 15

Data Sources Overview

Component availability data will be found in two sets of data sources:

1. Event Sources

Event Sources are where events are placed from operating systems, networking protocols, and
management products. Functions that detect component status changes write information to the
event source, where it can be extracted for various uses. The event sources that are commonly used
are:

a. Logs
b. Messages
c. SNA alerts
d. TCP/IP traps
e. Event management products

These event sources have common characteristics:

� Some level of programming will be required to extract the desired events
� The desired events can be captured in real time (when they are written), or extracted later,

post-processing. Deciding on when to capture the events depends on the real time availability
reporting requirement. If current, up to the minute reports are needed, then real time capture will
have to be done. The disadvantage is that this requires more of a programming and processing
effort. If daily, weekly, or monthly periodic reports are needed, it will be easier to extract the
data on a daily basis.

� Filtering to obtain the desired events is required. These event sources contain many, many
events, and only a small subset of them are needed for availability measurements. Determining
which specific events to capture will require the use of event source documentation, component
documentation, or working with component experts with knowledge of events related to the
components. This can be to most time consuming task in the process.

2. Monitoring Techniques

Event sources will not always contain the desired data. Availability information made be needed in
real time, and the event source for a component may not provide that. Or, the event source may
contain events indicating when the component status changed to “down”, but does not contain
events showing when the component status changed to “up”. For these and other situations, a
monitoring technique, which checks the component periodically, can provide the desired
information. The possible techniques are:

a. Heartbeat routines

© IBM 2002 Data Sources Overview

Finding and Collecting Availability Measurement Data 16

b. PING commands
c. Remote command execution
d. User simulation
e. Custom monitoring agents

Any one of these monitoring techniques can be used to capture the availability status of a
component; each returns a different type or level of information, which will be covered in more
detail later in this paper. These techniques can be implemented using standalone programs, but this
is not necessary if performance monitoring automation of the component state is already occurring.
The necessary information may already be available from these sources, in which case it is just a
matter of extracting what is needed.

The monitoring techniques have common characteristics:
a. They are invoked and scheduled using automation. This can be the automation function inherent

in an operating system, or an automation function in a product. The monitoring can be triggered
on a regular schedule (e.g. Every 5 minutes), or triggered by an event. For example, an event
indicating a component status of “down” can be detected by automation and trigger a
monitoring technique that monitors the state of the component.

b. The monitoring response must be captured for validation. The response is normally text or a
return code. The automation function that invoked the monitoring technique must be able to
capture this response and determine the component state based on the response.

c. There is a tradeoff between the monitoring frequency and monitoring overhead. The shorter the
monitoring period, the more overhead is incurred. Monitoring a component once a minute uses
more system and bandwidth resources than monitoring a component once every 15 minutes.
However, this may be necessary when real time information on a component is required. The
size of the data used in monitoring technique can be a minimal amount, to lessen the overhead.

There is no one single source or monitoring technique that is “best”. The benefits and drawbacks of
each one must be understood, to determine how well they fit within an environment.

© IBM 2002 Data Sources Overview

Finding and Collecting Availability Measurement Data 17

Event Logging Facilities

Most operating systems and application subsystems log performance and status events to provide an
audit and accounting trail of resource usage. Some of these events provide information on the availability
of the operating system, subsystems, applications, and attached components.

This section gives an overview of the event logging functions that exist in the z/OS and OS/390, UNIX
(including LINUX), Windows NT/2000, OS/400, Netware, and OS/2 environments. Examples of
application logs will also be given. Examples of the data from logs that can be used are given where
possible. The latest documentation on the operating system, or the application that uses the logging
facilities, should be consulted for the most up to date information.

The following considerations apply when obtaining data from the logging facilities:
� Some platforms maintain separate performance/event and message logs. Availability data can be

found in both.
� The information logged may not always be in "text file" format. That is, the information may be

recorded in a binary record structure instead of text messages. The operating system platforms
provide either documentation of the record structure, or functions to read the binary information and
store it as a text file, or both.

� The operating system or application subsystem may only log errors. While this can indicate a
workload or component outage, no information is logged that identifies when the workload or
component became available. Additional software functions (provided by the application, a
resource monitor, resource manager, or developed by the installation) may be required to get the
"end of outage" information into the log.

� The logging facilities provide identification of availability status "after the fact". The log information is
usually provided after the event has occurred and not in real time. Some platforms provide functions
that allow the capturing of information as it is written to the log. In general, if real time information
capture is desired, some of the other sources described in this book in other chapters will be easier
to use.

� Subsystems and applications can contain their own logging functions and store performance/event
information separate from the platform logging information. This can be useful to determine the
availability of resources "internal" to the subsystem (transactions, data files, etc.).

Any additional considerations specific to a particular operating system will be identified in its sections.

OS/390 and z/OS

OS/390 and z/OS logs information to the SYSLOG/OPERLOG and Systems Management Facilities
(SMF) records; both contain availability related data for OS/390 address spaces and components.

SYSLOG/OPERLOG

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 18

The SYSLOG contains text messages issued from both operating system functions and applications
running on the platform that choose to use the SYSLOG facility. The OPERLOG can be used, in a
parallel sysplex environment, to merge the SYSLOGs from the images in the sysplex into a single log
stream. (the OPERLOG is in binary format, but the information can be converted to SYSLOG text
format using a utility).

The SYSLOG contains message events that indicate when resources running on, or attached to, the
platform changed state. It is normally offloaded to a file when it is full. This file can be processed by a
user program to extract the desired information. The Messages section of this white paper provides
additional detail about messages and the information they contain.

Systems Management Facilities (SMF) Records

OS/390 systems produce SMF records to record system and workload related information that can be
used for a variety of purposes. Many installation use products or locally written programs to analyze
data in SMF records for billing, performance, auditing, etc.

Many different SMF record types can be produced; parameters in SYS1.PARMLIB member
SMFPRMxx control which ones are actually created by the operating system or subsystems. Several of
these records indicate the availability status of components such as:
� Address spaces
� Jobs
� JES components
� Attached I/O devices
� SNA network sessions

Each SMF record has a record type; in some cases there are multiple subtypes for a record type.
The following table<> <>shows some of SMF record types that can be used as a source of data to
indicate the availability status of a component.

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 19

Subtype 1 can be used to
obtain the time an address
space started. Subtype 5
can be used to determine
when the job ended (either
normal or abnormal
termination).

Note: Address space
start/end times can also be
obtained from OS/390
messages
IEF403I,$HASP373,
IEF404I,$HASP395,and
IEF450I.

Contains address space
start/termination
information (NOTE:
consolidates information
found in SMF record
types 4 and 5; type 30
records are recommended
to be used for this data)

Available or
unavailable

Address space 30(X'1E')

This record is written as
the result of a VARY
OFFLINE operator
command.

Indicates date/time device
was varied offline

Unavailable I/O device 11(X'0B')

This record is written as
the result of a VARY
ONLINE operator
command.

Indicates date/time device
was varied online

Available I/O device 9(X'09')

By obtaining date/time that
the record preceding the
IPL record was written
(from the SMFxDTE and
SMFxTME fields), the
time the system incurred an
outage can be estimated
and the outage length can
be calculated.

Indicates date/time of
operating system IPL

Available OS/390 or z/OS
operating system

0(X'00')

Comments Info State Component(s) Record
Type

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 20

This record contains
NetView hardware
monitor events, including
alerts, that have passed
through the recording filters
and are stored in the
hardware monitor
database. For details on
alerts see the "SNA Alerts"
section of this document.

Contains SNA events and
alerts

Available or
unavailable

SNA defined
components

37(X'25')

Comments Info State Component(s) Record
Type

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 21

Contains date/time JES2
or JES3 was started

Available JES2 or JES3
address space

43(X'2B')

This record is created by
the session monitor
component of NetView
and will be logged to SMF
with the proper NetView
definitions.
� Subtype 2 can be used

to obtain session end
time

� Subtype 3 can be used
to obtain session start
time

� Subtype 5 can be used
to obtain session start
and end times. This
record is created when
a session ends before
NetView can write the
subtype 3 (session
start) record. The
record will also
provide the primary
and secondary SNA
information for the
session - resource
name, resource PU,
PU subarea, and
domain.

Note: The Tivoli Decision
Support for OS/390
products uses these
records to produce session
availability reports.

indicates SNA session
start/end times

Available or
unavailable

SNA sessions
(LU-LU,
SSCP-PU,
SSCP-LU,
SSCP-SSCP)

39(X'27')

Comments Info State Component(s) Record
Type

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 22

This record is created as
the result of operator
commands to stop the line.

Contains date/time line
was stopped/signed
off/logged off

Unavailable JES2 SNA lines 53(X'35')

This record is created as
the result of operator
commands to start the line.

Contains date/time line
was started/signed
on/logged on

Available JES2 SNA lines 52(X'34')

This record is created as
the result of operator
commands to stop the line.

Contains date/time line
was stopped/sign
off/logged off

Unavailable. JES2 BSC lines
or JES3
BSC/SNA lines

48(X'30)'

This record is created as
the result of operator
commands to start the line.

Contains date/time line
was started/signed
on/logged

Available JES2 BSC lines
or JES3
BSC/SNA lines

47(X'2F')

This record may not
always be written; it
depends on how JES
ended. For some abnormal
terminations the JES
address space may not be
able to write this record.

Contains date/time JES2
was withdrawn or JES3
was stopped

Unavailable JES2 or JES3
address space

45(X'2D')

Comments Info State Component(s) Record
Type

For details on SMF record formats and producing and saving SMF records, refer to the publication
Systems Management Facilities (SMF), GC28-1628.

Getting data from SMF

To use SMF as a source of component availability data, the following must be considered:
� The record types that contain status information must be included in the appropriate SMFPRMxx

member of SYS1.PARMLIB that is active, or else they will not be recorded. installation uses
� SMF records are most easily processed after they are dumped from the SMF dataset(s) to a

sequential dataset. However, real time (as the record is created) access to the data can be obtained
by customizing SMF exit IEFU83, which receives control before each record is written to the SMF
data set.

� Once dumped to a sequential file, the SMF records can be processed by any programming
language. The record layouts and fields are described in the SMF manual. For example, an analysis

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 23

program to determine and validate what record types are being written and their contents can be
used prior to implementing a data gathering process.

� Macros are provided to allow other products to create SMF record types and write them to the
dataset; these records may also be sources of data.

� SMF normally runs whenever the operating system is running. Automation is recommended for
offloading the active SMF dataset when it is full, to avoid the loss of records. When this is done, the
only time records are not written are during an operating system outage. In this manner SMF also
acts as a "heartbeat" to verify if the system was up at a particular time, or to determine the true
length of a system outage.

z/VM and VM/ESA

VM logs information via the Programmable Operator (PROP) and the MONITOR functions.

Programmable Operator (PROP)

The PROP virtual machine is normally set up to receive VM system messages. These messages can be
logged to a CMS file in plain text, which can them be processed by user programs. The n VM
Messages section of this document provides additional detail about PROP, VM messages, and
examples of message contents.

MONITOR

The MONITOR function generates records that contain information about the performance and status
of the VM environment. The MONITOR command is used to control which type of records are
recorded and the frequency. The records are stored in a saved segment; virtual machines can connect to
the CP *MONITOR System Service to retrieve and process the records.

The records are stored in a binary structured format; the layout of each record is documented in the
MONITOR LIST1403 file supplied with VM/ESA and z/VM. The records are grouped into "domains"
that correspond to areas of system interest for which performance or event data is collected. The
following table summarizes the key monitor records that can be used as a source of data to indicate the
availability status of a component.

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 24

Written when an
I/O device is
detached from a
virtual machine.

unavailable Virtual Machine 6
(MRIODTDD)

6 (I/O)

Written when an
I/O device is
attached to a virtual
machine.

Available I/O device 5
(MRIODATD)

6 (I/O)

Written when an
I/O device is varied
offline.

Unavailable Attached I/O
device

2
(MRIODVOF)

6 (I/O)

Written when an
I/O device is varied
online.

Available Attached I/O
device

1
(MRIODVON)

6 (I/O)

Written when a
virtual machine is
logged off.

Unavailable Virtual Machine 2
(MRUSELOF)

4 (USER)

Written when a
virtual machine is
logged on.

Available Virtual Machine 1
(MRUSELON)

4 (USER)

Description State Component Record
Number
(NAME)

Domain

VM monitor records

For details on CP Monitor and the Monitor records, refer to the publications
VM/ESA: Performance (SC24-5642) or z/VM: Performance (SC24-5292).

OS/400

The OS/400 history log (QHST) logs system information (system, subsystem, job information, device
status) and messages from the QHST message queue. Information sent to the queue are written by the
system to the current log version physical file. The log is stored in a database file. If the current log file
fills up, a new one is created and becomes the current log file for recording information.

The records in the log file have a structured format with three main sections:
� System date and time
� Record number (a 2-byte field).
� Message data

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 25

 User programs can process the QHST log files to extract data that indicates the availability of the
system, jobs, and I/O devices. The OS/400 Messages section of this white paper provides additional
detail about OS/400 messages and the types of availability information they contain.

Note:
For details on the OS/400 history log, refer to the AS/400 Workload Management Guide (SC21-8078).

UNIX and LINUX

Variations of the UNIX operating system run on many different operating system platforms. The
common ones in the market include:
w AIX (IBM)
w Solaris (Sun Microsystems)
w HP-UX (Hewlett-Packard)

On the z/OS and OS/390 operating systems, UNIX System Services (USS) is available for running
UNIX applications under these operating systems.

Linux, a popular derivative of the UNIX operating system, comes in many distributions. The common
ones used today include:
� Red Hat
� SuSE
� Caldera
� TurboLinux

Each variation has added extensions to the “base” UNIX operating system functions for optimized
execution on the respective hardware platforms, and to provide unique capabilities in the market. This
paper will not discuss all of the extensions for all of the variations. The AIX Messages section covers
some of the enhanced functions in AIX that can provide availability information.

All versions of UNIX and LINUX support a syslog function. The syslog is where system messages on
the status of hardware and software resources are sent. Information written to the syslog can be
directed to any UNIX output device, such as:
� A physical terminal
� A file
� A printer
� The null device (/dev/null) - i.e., it is discarded

Event information is written to the syslog in plain text with no "formal" structure (other than a date and
time stamp). The actual content and structure are determined by the operating system function or
application that is writing to the syslog. Sometimes this information indicates the availability status of a
component. The syslog must be captured to a file for processing to extract that information..

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 26

It is also possible, through the use of UNIX commands such as tail, to capture information as it is
written to the syslog. This is done if the information has to be sent to a process that requires the
information in real time.

Documentation for syslog messages is scattered, and usually found among the application
documentation. Those wishing to use the syslog as a source of availability data will have to analyze, for
the desired platforms, the type and content of messages being written to the syslog, by both the
operating system and applications.

Windows NT/2000

Windows NT and Windows 2000 platforms contain a central event logging function to record status
information from the operating system and applications. These events can include the status of attached
devices, applications, and network connections. They are recorded in three files - the system log,
application log, and security log.

The event log contain records that are in a structured binary format. These records contain the following
information:

Date The date the event occurred.

Time The time (local) the event occurred.

User The user ID active when the event occurred. This may or may not be reported depending
on the type of event.

Computer The name of the computer where the event occurred.

Event ID A number identifying the particular event type.

Source The software function that logged the event. This can be a system function, a driver, or
an application.

Type The Event classification: Success, Information, Warning, Error or Failure. Success or
Failure types only appear in the security log; the other types occur in both the system
and application log.

Category Classification of the event by the event source (primarily used in the audit log).

Data An optional field containing binary data displayed as bytes or words. This optional field
is not kept if the record is exported to a text file.

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 27

Many types of events are recorded in the event log; these are documented in the Windows NT and
Windows 2000 Resource Kits (CDROM help file and database). Applications can also record events
to the logs. For example, the NT and 2000 Resource Kits provide the LOGEVENT command, which
can be used by batch files to create an event and place it in the application log.

The event logs can be exported to a text file so that the information can be processed by other
programs. There are various utilities that can do this.

The uptime command, available with Windows NT Service Pack 4 and later, and Windows 2000,
reads the event logs to measure the operating system availability; certain customization is required for it
to record this information accurately (the Heartbeat section of this paper has more details).

The following table shows examples of recorded events recorded that indicate changes in he availability
status of a component.

A new process has been
created (also contains detailed
process identification
information).

Available Application Detailed
Tracking

Security 592

(Appears to be the last event
written to the log before NT
shuts down).

Unavailable Operating
system
functions

System
Event

Event 8033

Windows has started.AvailableOperating
System

NoneEvent6009

Records the date and time of
the previous shutdown, if it
was abnormal.

UnavailableOperating
System

NoneEvent6008

The Eventlog has stooped (a
good indication that Windows
is shutting down).

UnavailableOperating
System

NoneEvent6006

The Eventlog has started (a
good indication that
applications are about to be
started).

Available Operating
system
functions

None Event 6005

Windows is shutting down. Unavailable Operating
System

System
Event

Security 513

Windows is starting up. Available Operating
System

System
Event

Security 512

Description Status Component Category LogEvent ID

Windows NT Events

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 28

A process has ended (also
contains process identification
information).

Unavailable Application Detailed
Tracking

Security 593

Description Status Component Category LogEvent ID

Windows NT Events

The Resource Kits for Windows NT and Windows 2000 also contain detailed information on events,
and provide a CDROM with useful tools and information.

Netware

Netware Servers log events to a log file in text format; this file can be viewed or printed using Netware
utilities. Information written to a Netware 3.11 (or later) server console can be logged to a file using the
CONLOG command; this allows console information to be saved so that any availability related
information can be extracted at a later time. CONLOG will record messages related to errors, Novell
Directory Services (NDS) messages, load/unload of Netware Loadable Modules (NLMs), and
RCONSOLE connections and disconnections.

Netware 4.x provides an additional audit logging capability , the AUDITCON utility. AUDITCON can
be used to audit and log specific events; these can be filtered by event type, user, file/directory, or
volume. AUDITCON logs are stored in binary format. Report files can be generated from the audit log
files to allow user programs to extract the desired availability information.

 The following table shows some of the event numbers and types AUDITCON reports, which can
indicate a change in the availability status of a component.

Unavailable Server disk mountA_EVENT_VOLUME_DISMOUNT 56

Available Server disk
volume

A_EVENT_VOLUME_MOUNT 55

Available Server A_EVENT_UP_SERVER 50

Unavailable Server A_EVENT_DOWN_SERVER 18

Status Component(s) Event Name Event
Number

Netware AUDITCON Events

Further details on AUDITCON can be found in the Netware - Auditing The Network
documentation.

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 29

OS/2 (WARP)

First Failure Support Technology/2 (FFST/2) ships with many OS/2 applications. It provides a common
message and error logging facility. Messages from applications that support FFST/2 are logged and can
be viewed, printed, or saved in a file in text format using the message log formatter utility provided with
FFST/2.

Applications that do not have "built-in" FFST/2 support can use this common message logging facility
via APIs or a command line program.

If OS/2 LAN Server or Warp Server is installed, the AUDIT function can record the status of users
connecting to/disconnecting from the domain, and usage of shared devices. This information can be
useful when measuring the availability of OS/2 LAN Server resources and public applications. The audit
information can be directed to a text file to allow user programs to process and extract the desired
information.

Application Logs

Applications may provide their own event log, specific to the resources used by or provided from the
application. Information in these logs can be used to measure the application availability, or the
availability of a specific application component.

For example, Web Servers record access activity in their access log. This can provide availability
information on resources such as pages, images, or servlets that users request. It can also be used to
calculate the Web Server availability (this will be discussed further in the Heartbeat section of this
paper).

© IBM 2002 Event Logging Facilities

Finding and Collecting Availability Measurement Data 30

Messages

Messages are events indicating that something has happened, and are usually meant to be seen by a
human being. Operating systems and applications produce messages regarding the status of resources
they control.

Messages are in a readable text format. The ones relevant for availability purposes will include:
� A timestamp (date and time)
� A component identifier
� Status information (“up”, “down”, “started”, “abended”, “error”, etc.)

Messages have two destinations:

1. A display screen. This can be a “system” console, where messages are centralized across a system.
It can also be an “application” display, where messages specific to the application are displayed
(this might not be the application itself; it can also be an management application that is monitoring
the application).

2. A log, which has been described in the preceding section.

Messages sent to a log can be processed as has been described earlier. Messages sent only to a display
screen can be processed in several ways:

1. An automation product may be able to directly receive the messages.
2. An automation product may be able to “screen scrape” the display to capture the message.

Both of these methods can require more work than simply processing a log. The advantage is that the
messages can be captured as soon as they occur. This allows availability measurements to be provided
in real time, updated as soon as events occur.

The various operating system platforms have different methods of providing access to system and
application messages; these methods will be covered in this section. Regardless of the platform, these
considerations will apply:

� Some type of automation function, either provided by the operating system or a separate product,
can be used to capture the message data and extract the relevant information.

� If the message is not written to the log, the automation function can write it. This supports
“centralizing” processing to extract availability information.

� Many more messages are produced than are needed. System and application message
documentation will have to be reviewed to determine which messages to capture for availability
measurement purposes.

© IBM 2002 Messages

Finding and Collecting Availability Measurement Data 31

z/OS and OS/390 Messages

OS/390 messages are created when programs use operating system facilities to create WTO/WTOR
(Write To Operator/Write To Operator with Reply) requests. Messages can be issued by operating
system functions, subsystems, or application programs. Certain messages contain information on the
availability status of:
� Platform hardware components
� Operating system components
� Subsystems
� Subsystem components
� Application programs
� Attached I/O devices

After a message is issued, it is processed by several functions:

� Message Processing Facility (MPF)
The MPF can influence how a message is handled. This includes display suppression, handling
action messages, making the message eligible to be automated, and invoking an installation exit.

� Subsystem Interface (SSI)
After MPF processing, the SSI broadcasts the message to all active subsystems, which can
determine what action should be taken. Automated console operations products normally attach to
the SSI as a subsystem so that they can access the messages and determine if additional actions
should be taken.

� Multiple Console Support (MCS) and Extended Multiple Console Support (EMCS)
After broadcast on the SSI the message is passed to MCS/EMCS, and displayed at all consoles
with a matching message routing code. These consoles can be physical consoles or "logical"
consoles (associated with a software task such as NetView or a TSO user ID).

� Hardcopy log
The final step taken is having the message written to the "hardcopy" log. In reality, this is usually the
system log data set - SYSLOG or (if enable in a parallel sysplex) OPERLOG..

There is a message ID associated with every message. Examples of the message IDs used for
availability measurement purposes include the following:

A unit of work (job/started task) has abended.IEF450I
A unit of work (job/started task) has ended.IEF404I
A unit of work (job/started task) is starting.IEF403I
The IPL is complete and the operating system can now start processing work.IEA389I

The system is being IPLed. The time between this message and the preceding
message indicates how long the platform has been down.

IEA371I

© IBM 2002 Messages

Finding and Collecting Availability Measurement Data 32

In addition to the system level messages, applications running under z/OS or OS/390 can issue
messages that indicate their specific availability. For example, here are some of the messages issued by
the IBM HTTP Server on OS/390 that indicate its availability:

The HTTP Server has stopped processing requests and has begun to shutdown.IMW3540I

The HTTP Server successfully restarted, and can begin processing URL requests
again.

IMW3538I
The HTTP Server is terminating but will restart (triggered by an operator request).IMW3537I
The HTTP Server is ready to processing URL requests.IMW3536I

The Appendix lists examples of common z/OS and OS/390 messages, the components about which
the message is reporting, and the availability state indicated by the message.

Many messages can be used to develop availability measurements for the z/OS or OS/390 platform and
attached components. The messages to use that best indicate the status of a particular component have
to be identified. If the messages are written to the SYSLOG/OPERLOG, a program can be written to
analyze the SYSLOG/OPERLOG and determine which "availability status messages" appear most
frequently, and therefore are to be used to create measurements.

If a subsystem or application issues messages that are not normally written to the SYSLOG, more work
has to be done to direct the message to the SSI or MCS/EMCS. Some subsystems (such as IMS and
CICS) provide exits to allow messages internal to the subsystem to be directed to the SSI and EMCS,
where they can be processed by MPF and automation. Other subsystems may require certain
initialization parameters to be specified to send messages to the SSI or MCS/EMCS.

Automation functions efficiently filter the desired messages. They interface to the SSI or to EMCS to
monitor the message traffic. All messages contain a date and time stamp, information on the source of
the message, and within the message text the name or location (I/O address) of the component.
Automation can monitor the message contents and extract the desired information in real time. The
SYSLOG can also be used to extract the desired message information if post-incident or historical
collection is desired.

Additional steps may be needed to derive the component ID. For example, most messages refer to an
I/O devices by its unit address. This has to be correlated with other information to obtain, for example,
the volume serial of a DASD device. Access to configuration information, especially if it can be done by
the automation that collects the availability data, is needed to correlate and provide this level of
information.

For details on OS/390 message syntax and contents, refer to the z/OS and OS/390 Messages manuals
for the appropriate release of z/OS or OS/390, and supported products, that are being used.

© IBM 2002 Messages

Finding and Collecting Availability Measurement Data 33

VM and z/VM

Messages in the VM environment are issued by operating system components (CP, CMS, IUCV, for
example) as well as by virtual machines. Certain messages contain information on the availability status
of:
� Platform hardware components
� Operating system components
� Virtual machines
� Virtual machine components
� Real devices
� Virtual devices

VM has a single "system operator" virtual machine where system messages are sent. Messages from
other virtual machines can be routed to it, if this is required.

The Programmable Operator Facility (PROP) is provided by VM to assist in handling messages in the
VM environment. PROP would normally be run in the system operator virtual machine to intercept
messages sent to that virtual machine. It can also receive messages sent to that virtual machine’s console
from another virtual machine by other means (CP SMSG, NetView, etc). PROP can log the messages
into a file and can take actions based on a message entry in the active routing table (including
suppression, logging, programmed response) or route the message to a logical operator - which can be
an automation program (for example, NetView).

The Appendix lists some of the VM CP messages, affected components and the indicated availability
status.

Many messages that can be used to measure availability of various VM platform and attached
components. Messages specific to resources within a virtual machine will also have to be considered.
Additional work may be needed to get messages within a virtual machine directed to the CP system
operator, or to PROP. Some virtual machines subsystems will need certain
parameters defined for this to take place.

The messages that best indicate the availability status of a component will have to be selected.
The message can be either a VM system message or a message issued by a virtual machine. PROP can
log messages it receives into a CMS file. This file can be analyzed to determine which "availability status
messages" tend to appear most frequently, and therefore are to be used to indicate the state of a
component.

Automation functions can provide some efficiency for filtering the desired messages. They interface to
PROP (so that PROP can route messages to them) to see the message traffic. All messages contain a
date and time stamp, information on the source of the message, and within the message text the name or
location (I/O address) of the component. Automation can monitor the message contents and extract the

© IBM 2002 Messages

Finding and Collecting Availability Measurement Data 34

desired information in real time. The message log file created by PROP can be processed for
post-incident or historical data collection.

Additional steps may be needed to derive the component ID. For example, most messages refer to an
I/O devices by its unit address. This has to be correlated with other information to obtain, for example,
the volume serial of a DASD device. Access to configuration information, especially if it can be done by
the automation that collects the availability data, is needed to correlate and provide this level of
information..

For details on the topics discussed in this section, please refer to the following manuals for the release of
VM/ESA or z/VM that is being used:
� Planning and Administration
� System Messages and Codes
� CP Command and Utility Reference

IBM Communications Server SNA Messages

The IBM Communications Server produces messages for both the SNA and IP functions on S/390.
This section focuses on VTAM messages related to components that participate in the SNA network.

Devices are logically defined as SNA network physical and logical units (PUs and LUs). These units
represent hardware components, applications, and users:

� Components such as gateways and cluster controllers are usually defined as physical unit nodes.
� Applications and users are usually defined as logical unit nodes (an end user intelligent workstation

can be defined as a physical unit, with each possible SNA session connection as a logical unit).
� Connections can be defined as lines (physical), cross-domain (logical) or inter-network paths

(logical).

Unsolicited VTAM messages - messages that indicate an unexpected change in the state of a
component - go to the defined primary program operator application program (PPO). This is normally
Tivoli NetView for OS/390, or an equivalent product. This is defined in the NetView VTAM APPL
definition, and allows NetView to received these messages. If NetView (or its equivalent) is not active,
the messages will flow to the normal message facility for the operating system..

IBM Communications Server uses the message facilities of the operating system, so the same
considerations for using messages on the appropriate platform apply. Automation products that interface
to the message stream via NetView or (if unsolicited messages flow to the operating system) the
operating system message interface (SSI or Extended Consoles for OS/390, PROP for VM, OCCF
for VSE) can capture and filter the desired messages. The messages contain the information needed for
availability measurements - a time stamp, and message text containing a component identifier and

© IBM 2002 Messages

Finding and Collecting Availability Measurement Data 35

availability status. Automation products can extract the required availability information from these
messages.

Communications Server will also generate or forward SNA alerts to NetView to report component
status changes. Information from both alerts and messages may be needed to provider complete status
information. NetView can capture both sources of information, so it is a good candidate for use in
collecting these message/alert indicators. NetView can invoke real time processing, or log the
information for post-incident or historical processing.

Status information collected by NetView can also be reflected in NetView's Resource Object Data
Manager (RODM); this is another function that could be used to get availability status information.

The Appendix identifies some Communications Server messages, affected components, and the
indicated availability status. For details on message syntax and contents, refer to the IBM
Communications Server or VTAM Messages manuals for the appropriate release of Communications
Server or VTAM that is being used.

OS/400 Messages

Messages in the OS/400 operating system flow between users or programs using message queues.
Each user, program (represented as a batch or interactive job) and display station has an associated
message queue; messages are that are sent to a user or display are directed to the appropriate message
queue, where they can be displayed on a terminal or processed by a program.

The system operator queue (for system messages or messages directed to the operator) is named
QSYSOPR. Optionally, a message queue named QSYSMSG can be created; certain messages will be
directed to it instead of, or in addition to, the QSYSOPR message queue.

Certain OS/400 messages contain availability status information for:

� Operating system components
� Subsystems
� Jobs
� Files
� I/O devices
� Network components (links, controllers, workstations)

OS/400 CL programming can be implemented to monitor message queues, including QSYSOPR and
QSYSMSG. When messages are received, the program can take actions (reply to a message, invoke a
program, execute a command, forward a message, etc.) based on the message attributes. For example,
a program could be invoked to record the availability status of a component when a particular message
containing or indicating that information occurs.

© IBM 2002 Messages

Finding and Collecting Availability Measurement Data 36

The QHST history log contains information on system events. It logs a high-level trace of system
activities such as system, subsystem and job information, device status, and system operator messages.
All messages written to the QSYSOPR message queue go to QHST. The QHST log can be processed
to determine which messages occur that should be used to indicate component availability status, or
processed as a source of availability data, either through online commands or by writing it to a file and
extracting information from the file.
.
When dealing with multiple systems, the OS/400 operating system can convert messages to SNA alerts
and forward them to a focal point. Availability monitoring and data collection could be consolidated by
having the appropriate messages sent as alerts to the focal point, where they could be processed. Many
messages are shipped as "alertable"; additional messages can also be defined to create alerts if they
occur.

The Appendix identifies examples of OS/400 messages that are useful for availability measurements.
For more details on OS/400 messages and syntax, please refer to manuals for the appropriate OS/400
release, such as:

� AS/400 Basic System Operation, Administration, and Problem Handling (SC41-5206-04)
� AS/400 System Operation (SC41-4203)
� OS/400 CL Programming (SC41-5721)
� OS/400 Workload Management (SC41-5306)

AIX Messages

Messages in the AIX environment are issued by operating system components and applications. Some
messages contain availability information for:

� AIX operating system and components
� Attached I/O devices
� Network interfaces
� Subsystems
� Processes

Messages are directed to, and can be found in, two locations:
1. System log (syslog)

This is the “traditional” method of logging messages in UNIX operating systems Messages from the
operating system or applications, using either the syslog() function or the logger command, can be
directed to one or more files based on:
� Message source - function or product process that sent message
� Message priority (emergency, alert, critical, error, warning, notice, information, or debug)

Normally messages sent will go to the system console (represented by the /dev/console file); the
output from the console device is called the syslog.

© IBM 2002 Messages

Finding and Collecting Availability Measurement Data 37

2. Error log
System error messages are logged in the AIX error log (/dev/error file). Error logging is normally
enabled when the system is initialized. Commands are provided to clear the error log or to generate
error reports from the data. Errors are classified by:
� Error ID
� Timestamp
� Error type (PERM, TEMP, PERF, PEND, UNKN)
� Error Class (hardware, software, created by a command message)
� Resource Name
� Resource Type
� Resource Class

Detailed description and product information will also be included in the logged information..

Information from the two sources can be consolidated in various ways. For example:

1. Syslog messages can be sent to the error log by specifying it as one of the destination files for all or

certain sources of and/or severity level messages.
2. Error log messages can be sent to the error log by creating an error notification object that will send

the message to the syslog using the logger command. The object can be customized to send all or
only certain classes of messages.

Syslog messages can be processed directly from the file that they have been written to. If they are being
sent to the console, the swcons command can direct the console output (syslog) to a file. This file can
then be processed to extract the appropriate information.

The errpt command reads the error log and puts the data into a readable file that can be processed to
extract the appropriate information.

If real-time data capture is desired, automation functions can be used to accomplish this:
� For the error log, create an error notification object with an associated method (a program or

command language script). When an error log message is created, the object will be invoked and
the message will be passed to the program/script, which can examine the message contents and take
appropriate actions. For example, this can be used to send an SNMP trap whenever a particular
type of error occurs.

� For error log messages, have desired messages made "alertable" via the errupdate command.
Alertable errors are presented as SNA alerts to SNA network management software (such as
Tivoli NetView for OS/390, assuming there is a properly configured connection from the AIX
platform to NetView).

� For the syslog, have a program monitor the file the desired messages are be written to and take
appropriate analysis and action(s) as message lines are received.

© IBM 2002 Messages

Finding and Collecting Availability Measurement Data 38

The Appendix contains some of AIX error log messages that contain component and status information
useful for availability measurements. For details on AIX messages, syslog, and error log, refer to the
manuals for the appropriate level of AIX, including:
� AIX General Programming Concepts
� AIX System Management Guide
� AIX Problem Solving Guide and Reference

© IBM 2002 Messages

Finding and Collecting Availability Measurement Data 39

Alerts

The Systems Network Architecture (SNA) communications protocol contains SNA Management
Services Units. and Network Management Vector Transports (NMVTs) that are commonly
known as alerts. They are notifications sent to report a change in a SNA component. Generated alerts
can indicate component availability status changes, and provide availability measurement information.
The types of components reported on include:
� Applications known to Communications Server via LU definitions
� SNA network devices (communicators controllers, lines, cluster controllers, etc.)
� Gateway devices that communicate between SNA and non- SNA entities
� Software that issues SNA alerts (applications, performance monitors, network management

software, etc.)

An alert is a notification from a component to an SNA network management product that some aspect
of a component has changed. Tivoli NetView for OS/390 is commonly used as the SNA management
product that receives alerts. For the AS/400 and e-server iSeries platforms, the OS/400 operating
system contains network definition and management functions that include sending and receiving SNA
alerts.

The alert may be viewed as good, bad, or indifferent by the installation. The notification is unsolicited
(meaning it occurs without anything querying for it) and "one way" (meaning it cannot be directly replied
to). Since alerts may be caused by all sorts of conditions, many more alerts are generated than are
actually needed to determine the availability of SNA components in the environment.

For S/390 networks, the path an alert takes from the component to the management product (which is
also called the alert focal point) shown in the following picture:

© IBM 2002 Alerts

Finding and Collecting Availability Measurement Data 40

SNA Components

OS/390

Communications
Server NetView for OS/390

SNA
Network

1

2

3

DisplayProcess Discard

4

1. A component, or software that manages the component, generates an alert (based on the
component and software alerts can be created for specific situations).

2. The alert goes to Communications Server (VTAM).
3. Communications Server (VTAM) sends the alert to the Alert Receiver focal point (usually

NetView).
4. The alert focal point takes action on the alert. The action can be:
� Discarding it
� Displaying it on an operator terminal (for NetView, on the NetView Hardware Monitor)
� Logging to a log file (For OS/390, to SMF record type 37(X'25'))
� Invoking automated actions or procedures (for NetView, via the NetView Automation Table)

An address space running on the same OS/390 image as the NetView program can issue alerts directly
to the NetView address space using the NetView Program-to-Program Interface (PPI).

For iSeries and AS/400 networks, the alert flow is similar, except that the alert generation and focal
point functions are part of the OS/400 operating system (no separate SNA protocol product or
NetView is needed). An OS/400 can be the focal point for any SNA alerts in the network, and can log
them in a database. Alerts can also be forwarded to and received from Tivoli NetView for OS/390.

An alert contains one major vector and one or more subvectors; each subvector may have several
subfields .The contents of these vectors, subvectors, and subfields can be checked and used by the
NetView automation table. There are also NetView programming functions, usable in NetView REXX
or CLIST language automation routines, to access the alert contents.

Valid values for the vectors and fields are documented in the SNA FORMATS manual. Products can
provide their own alerts, and installations can implement customized alerts as well. The major vector
types that may contain component availability information are:

X'0000' Alert (most alerts use this major vector)
X'0001' Link problem
X'0002' Resolution alert (a problem has been resolved)

The subvectors to be examined are:
X'05' This is a usually a list of the resources from the component having the problem up

through the network that sent the alert to NetView. The information includes:
� Resources names - the SNA network names (PU, LU, line etc. From

configuration information).
� Resource type codes - codes that indicate what type of component this is

(line, controller, adapter, etc.). NetView supplies a table (which can be
updated) that is used to associate resource type codes with generic component
descriptions.

© IBM 2002 Alerts

Finding and Collecting Availability Measurement Data 41

X'10' Identifies one or more products. It usually contains information about the product the
alert occurred on. It may contain inventory type information such as machine type,
serial number, etc.

X'51' If the alert is for a LAN attached component, this subvector contains information on
the LAN link connection (adapter address, ring/bus identifier, bridge identifier, etc.).

X'92' Contains detailed alert information:
w A code indicating the event type:

x Permanent loss of availability
x temporary loss of availability
x performance impacted
x permanently affected resource
x impending problem
x unknown
x Bypassed
x redundancy lost

w The Alert ID (4 bytes)
w A description code (documented in the SNA Formats manual; installations can

add additional codes). Categories include:
x Hardware
x Software
x Communications
x Performance
x Congestion
x Microcode
x Operator
x Specification
x Intervention Required
x Notification
x Security
x Undetermined

X'93' Probable Cause Code(s) that denotes possible causes of the event.
X'94' Probable User Cause Code(s) that denotes probable user actions that may have

been taken that caused the error, and recommended actions to take to try to resolve
the problem.

X'95' Probable Install Cause Code(s) that denotes probable causes of the problem due to
install activities (initial installation or setup of the component).

X'96' Probable Failure Cause Code(s) that denotes condition(s) that have resulted in the
failure of a resource, and recommended actions to take to resolve the problem.

Action(s) invoked for an alert will vary based on the contents of the alert, and how the installation
chooses to handle/filter alerts based on those contents.
Here is an example of an alert, as displayed on Tivoli NetView for OS/390:

© IBM 2002 Alerts

Finding and Collecting Availability Measurement Data 42

HCBNV BONETT
 +--------+
 DOMAIN | PHON |
 +--------+

DATE/TIME: RECORDED - 12/06 15:10

 EVENT TYPE: UNKNOWN

 DESCRIPTION: SOFTWARE PROGRAM ABNORMALLY TERMINATED

 PROBABLE CAUSES:
 APPLICATION PROGRAM

 APPLICATION PROGRAM TEXT:
 TEST ALERT
UNIQUE ALERT IDENTIFIER: PRODUCT ID - 5642010 ALERT ID - 03728157

 NMVT - 41038D 0000000000
 MAJOR VECTOR 0000 - 004F 0000
 SUBVECTOR 92
0B920000 12200003 728157
 SUBVECTOR 10
1010000D 110E0A00 40F5F6F4 F2F0F1F0
 SUBVECTOR 93
04931001
 SUBVECTOR 31
15310201 02110321 110C30E3 C5E2E340 C1D3C5D9 E3
 SUBVECTOR 03
11030301 09C2D6D5 C5E3E340 40D7C8D6 D5
 SUBVECTOR 97
06970481 1012

Getting Data From Alerts

Using automation, such as NetView (or a product that interfaces with NetView), is the best option for
capturing availability data. However, analysis of the alerts that can be generated for a component is
required to identify the ones that carry meaningful availability information. Both standard alerts
(document in the SNA Formats manual) and custom alerts (documented in the individual component
manuals) exist.

Once the desired alerts are determined, the following actions on the S/390 platform are necessary to
obtain availability information:
� Define the NetView alert filters so that the desired alerts are passed to the automation table.

Filtering is based on a combination of alert event type and the component generating the alert.

© IBM 2002 Alerts

Finding and Collecting Availability Measurement Data 43

� Define the NetView automation table to check for values in specific subvectors and subfields of an
alert, to determine when automation routines are to be invoked to access the information contained
in the alert. This is necessary if further data examination or analysis has to occur.

� If availability data collection automation is being done outside of NetView, NetView can act as an
"agent" to convert the alert data to a format the outside automation function work with (message,
global variable, object repository, TCP/IP trap, etc.).

For the AS/400 environment, the actions to take include the following:
� Messages sent to the QSYSOPR message queue or the QHST history log can be converted into

alerts. A subset of OS/400 messages are predefined to be "alertable"; any message can be defined
to be alertable by updating a parameter in the message description.

� At the remote site where the alert is generated, or at the focal point, the alerts can be filtered so that
only the desired ones are processed.

� Alerts can be directed to a data queue; a program can monitor the data queue and take action when
an alert arrives, thus allowing further processing and/or automation based on the detailed contents of
an alert.

Is it very possible that alerts will not be generated when problem conditions return to normal. For
example, an alert may be generated when a component outage or severe performance problem occurs.
When the component returns to an available, or normal, state, no alert is generated. Addressing these
situations requires using a monitoring technique (discussed in the “Monitoring Techniques” chapter” in
the following manner:
1. When the alert that indicates an outage is received, an automation routine invokes the desired

monitoring technique.
2. When the monitoring technique determines that the component has returned to the normal state, it

records that information to a log file or a message and then stops monitoring the component. This
avoids unnecessary monitoring overhead.

For further details on alert syntax, and using automation to detect and process alerts, use the following
manuals:
� SNA Formats
� Tivoli NetView Automation Guide (for the appropriate Tivoli NetView software level)

© IBM 2002 Alerts

Finding and Collecting Availability Measurement Data 44

Traps

TCP/IP traps can be used when the components that are being monitored support Transmission Control
Protocol/Internet Protocol, and have an SNMP agent. These components include:

� UNIX based application platforms (AIX, Linux, HP-UX, Solaris, etc.).
� Application platforms that support TCP/IP (including z/OS, OS/390, VM, z/VM, AS/400,

Windows platforms, OS/2, and Netware).
� Devices that interconnect TCP/IP components and networks (switches, bridges, routers, etc.).
� Gateway devices that communicate between TCP/IP and non-TCP/IP environments.
� Software that can interface with SNMP to issue traps.

The Simple Network Management Protocol (SNMP) is used to support the management of TCP/IP
networks. The major components of SNMP consists of the following:

� Managed Node: a component in the TCP/IP network that needs to be monitored/controlled. Each
managed node must have a TCP/IP network address, and run an SNMP agent software that
receives, processes, and sends SNMP requests and notifications. A single physical component can
have multiple TCP/IP network addresses, both physical (multiple physical interfaces) and logical
(multiple addresses per physical interface).

� Management Information Base (MIB): a MIB is required for SNMP management. It is a set
of objects (with a standard naming method) that represent component information or status (for
example, number of hard drives or current CPU utilization). An SNMP agent has a default MIB;
components can also have component-specific MIBs. The MIB contains both object and trap
definitions.

� Management Station: a platform that runs SNMP manager software (such as Tivoli NetView or
HP OpenView) to processes management information from SNMP agents on the managed nodes.

� Management Protocol: the communication between the management station and the managed
node, to obtain information about, or change some attribute of, the managed node. There are 3
major functions supported by the management protocol:
� GET the value of one or more MIB variables. The management station must be authenticated

by the managed station before information is returned.
� SET the value of one or more MIB variables. This results in a change of state in the managed

node - assuming (for security reasons) that the SNMP agent software on managed platform
allows MIB variable changes to physically change the managed node.

� TRAP: this is an unsolicited notification from the managed node to the management station that
something has changed on the managed node.

The follow figure depicts the communication flow when using SNMP:

© IBM 2002 Traps

Finding and Collecting Availability Measurement Data 45

1. Each component in the IP network to be managed has a SNMP agent and MIB.
2. The SNMP Manager software issues GET/SET commands to retrieve monitored information, or to

set a monitored object value (which in turn may cause some physical change in the component).
3. When certain conditions occur, the SNMP agent sends a TRAP to the SNMP Manager (a trap can

be sent to multiple SNMP Managers).
4. The SNMP Manager can process the trap (for example, store it, or, if it has automation, invoke an

action such as running a program), display it on its console, or discard it.

A TCP/IP trap is very analogous to an SNA Alert, and can be used as a source of availability data for
TCP/IP components. the easiest way to work with traps is via the SNMP management software that is
used to monitor and capture traps.

Some management stations can convert a trap into an alert. This is useful if:
� There is an SNA network.
� Tivoli NetView is installed on a S/390 system.
� S/390 automation is being used to collect availability data.

This is one way to consolidate availability data.

A trap contains the following values:

The TCP/IP network address that generated the trap.agent-address

The MIB object ID assigned to the vendor implementing the
agent. This MIB variable uniquely identifies the agent.

enterprise

© IBM 2002 Traps

Finding and Collecting Availability Measurement Data 46

Operating System Platform
SNMP Manager

TCP/IP
Network

2 3

DisplayProcess Discard

4

IP Components

1

SNMP
Agent

SNMP
Agent

SNMP
Agent

MIB MIB

MIB

SET
GET

TRAP

A of name=value pairs, where ‘name’ is a MIB object and ‘valu
is the object’s value, that is included in the trap information. Th
allows enterprise-specific traps to send MIB data as part of the
trap.

variable-bindings

Elapsed times (hundredths of seconds) from the time the agent
was last initialized to the time the trap was generated.

time-stamp

May contain more information about what caused the trap. For
example, for enterprise-specific traps this can contain a number to
uniquely identify this defined trap.

specific-trap

A number from 0-6 that indicates trap type:
� 0: The SNMP agent is reinitializing and may be resetting MIB

variables.
� 1: The SNMP agent is reinitializing but MIB variable values

are not being changed.
� 2: The SNMP agent has detected a linkdown condition. A

network interface monitored by this agent has been disabled.
� 3: The SNMP agent has detected a linkup condition. A

network interface monitored by this agent has been enabled.
� 4:. The SNMP agent received a message that could not be
� authenticated.
� 5: If the agent is running on a platform that is also running the

exterior gateway protocol (a TCP/IP protocol used for
routing information between groups of networks and
gateways), it has detected the loss of a neighboring platform
that is also running EGP.

� 6: The SNMP agent has issued an enterprise-specific trap.
This is a trap defined specific to this component type (usuall
by the component vendor).

generic-trap

Enterprise specific traps are defined in the component MIB. Here is an example trap definition:

enterprise3174StatusCodeChange TRAP-TYPE
 ENTERPRISE ibm3174EnterpriseTrap
 VARIABLES { gen3174SscChanges }
 DESCRIPTION
 " The enterprise3174StatusCodeChange trap indicates
 that the 3174's system status code has changed.
 This could be any addition or removal of system status.
 The table gen3174SscTable contains the current status
 codes in the system status queue.
 Note: this trap is generated only at the end of each
 time period where the value of gen3174SscChanges is
 different from the previous period."
 ::= 1

© IBM 2002 Traps

Finding and Collecting Availability Measurement Data 47

RFC1215 can be used to determine what all the fields mean. The key items here are:
� This is an enterprise-specific trap, since the ENTERPRISE section contains a specific identifier

(MIB object).
� The specific trap type is 1.
� The variable-bindings list will contain the object ID represented by ‘gen3174SscChanges’ (defined

elsewhere in the MIB) and the values associated with that object.

Generic-trap types 2,3, and 6 can be used to indicate the change in the availability status of a
component. Trap type 6 will require further investigation, to determine which of these enterprise-specific
traps contain relevant availability information. Be aware that the SNMP agent periodically polls the
network interfaces (based on values that can be customized) to determine their status - which means
that some traps may not be generated at the time the status actually occurs.

Getting data from traps

Almost all TCP/IP operating system and component implementations include, as part of the TCP/IP
application suite, SNMP agent software. Some may include SNMP management software, but these
are more likely found incorporated into vendor products that support SNMP management.
Theoretically, almost any point on the TCP/IP network can be the management station, or one of
several management stations. Placement of the management station will depend upon SNMP traffic
volume and trap processing requirements. The choice of the appropriate platform depends on various
technical, performance, political, and financial considerations that are far beyond the scope of this
document).

Use TCP/IP network management software products to gather and analyze information from a trap.
The potential traps that could be issued for a component can be determined from the MIB for that
component. Some management software products may also provide a ‘command-line” program that
can generate a trap, useful when using a monitoring technique (described in the ‘Monitoring Techniques’
chapter) on a component.

Once the desired traps are identified, one (or more) management stations should be defined to receive
the trap. Trap transmission is "connectionless'; that is, once the agent sends the trap, nothing comes
back to indicate that a managing system has received it. Since it is an unsolicited notification, the
management station has nothing to indicate that a trap may be arriving. This should be taken into
consideration when planning where the traps will be received.

After the trap is received by the managing station, the SNMP Manager should have the capability to do
one or more of the following:
� Record the status in a file or database, either directly, or, have enough automation capability to start

a local program when a particular type of trap is received that saves the appropriate information.
This allows later collection or processing of the data to measure and report availability, either on the
SNMP manager platform or at another location the information can be forwarded to.

© IBM 2002 Traps

Finding and Collecting Availability Measurement Data 48

� Convert the trap into an alert, if a SNA network exists and it is desired to do so. The management
software should have access to service point functions (either directly or interfacing to another
product) that allow the conversion from a trap to an alert that is forwarded into the SNA network
(an example is Tivoli NetView on AIX interfacing with Tivoli NetView for OS/390 to accomplish
this task).

Is it very possible that, as in the case with alerts, traps will not be generated when problem conditions
return to normal. A trap may be generated when a component outage or severe performance problem
occurs. When the component returns to an available, or normal, state, no trap is generated. Addressing
these situations requires using a monitoring technique (discussed in the “Monitoring Techniques”
chapter) in the following manner:
1. When the trap that indicates an outage is received, an automation routine invokes the desired

monitoring technique.
2. When the monitoring technique determines that the component has returned to the normal state, it

records that information to a log file or a message, or generates a unique trap on its on, and then
stops monitoring the component. This avoids unnecessary monitoring overhead.

© IBM 2002 Traps

Finding and Collecting Availability Measurement Data 49

Event Management Products

Event Management products can provide an easier path for using the data sources that have been
described, or can create their own data sources for availability events. These products are able to:
� Access log, message, alert and trap data sources, to extract the desired information.
� Provide agents, or use other products as agents, to create new event sources.
� Filter information coming from the event sources, so that only the data relevant for what is being

measured is obtained.
� Correlate events coming from multiple sources, which may reflect status on the same component, to

eliminate redundant information.
� Invoke automation, triggered by events or by a schedule, to invoke monitoring techniques against

resources.
� Store captured data in a format that is easily accessible from other programs, particularly reporting

programs.

Products providing these functions are very useful in collecting availability data. The more data sources
they can access, the better they can help consolidate data for a variety of components. Their agents, or
interfaces to other products, can create new event sources. They reduce or eliminate the amount of
“custom coding” necessary to access information in the event sources. They can create, or feed, a
repository against which measurement reports can be run; they may even have enough automation
function to extract the “raw” data from the event source and format it in a consistent manner for
reporting, regardless of where the data originated.

Examples of these products from IBM include:

� Tivoli Enterprise Console (TEC)
Tivoli Enterprise Console provides adapters to capture events from a variety of sources, such as:
� Log files
� Traps (via SNMP Managers such as Tivoli NetView or HP OpenView)
� Tivoli Distributed Monitoring events
� OS/390 messages and SNA alerts (via Tivoli NetView for OS/390)
� Tivoli Management products for specific applications (DB2, WebSphere, Web Services,

Notes, Oracle, etc.)
� Third party products
TEC also provides the automation to correlate, store, and extract specific data from these sources.

� Tivoli NetView for OS/390
Tivoli NetView for OS/390 captures events from:
� z/OS and OS/390 messages
� SNA alerts
� Traps
� 3270 applications (via screen scraping)

© IBM 2002 Event Management Products

Finding and Collecting Availability Measurement Data 50

� TEC events (via Tivoli Enterprise Console)
 Tivoli NetView for OS/390 also provides the automation to correlate, store, and extract specific
data from these sources.

� IBM Director
 IBM Director provides agents to capture availability and performance events from Intel
 workstations, and the automation to store and extract data from these events.

There are also products from other vendors that can perform these functions.

© IBM 2002 Event Management Products

Finding and Collecting Availability Measurement Data 51

Monitoring Methods

Overview

There will be times when the data sources described in the earlier sections of this white paper will not
provide the availability information needed to create measurements. When those sources are not
adequate, monitoring of the component to detect availability status will be required.

An active monitoring method or technique can be used to capture this status. This does not need to be a
separate task if performance monitoring or automation of the component state is already occurring. The
necessary information may already be available from this activity; it is just a matter of extracting what is
needed.

This section discuss the monitoring methods that can be used. They vary in complexity; in general, the
more complex a method is to implement, the more detailed, specific measurement data it can provide.
The monitoring methods that will be covered are:
� Heartbeats
� PINGs
� Remote command execution
� End user simulation
� Custom monitoring agents

These methods will be covered from a “standalone” implementation standpoint. However, these
functions may also be part of existing or planned management or monitoring software for an particular
environment.

All of the methods are used in a similar manner, as shown in the following diagram:

1. The monitoring method is invoked and sends a request to the monitored resource.
2. The monitored resource returns a response to the monitoring function.

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 52

Monitoring
Function

Monitored
Resource

1. Send a monitoring request

2. Receive response

3. Determine
Availability Status 4. Record

information

3. Based on receiving or not receiving a response, or the content of a received response, the
monitoring function determines the availability status of the resource.

4. The monitoring function records the status in a repository.

Common considerations when implementing any of these techniques include the following:
� The technique must be invoked or scheduled using automation functions (provided by the operation

system platform or a product). This provides consistent usage and eliminates human errors from the
process.

� The response returned from a monitoring request must be captured for validation. Ideally the
automation function that invoked the monitoring provides functions to analyze whatever data is
returned, if that is needed to determine availability status.

� There is a tradeoff between monitoring interval size and monitoring overhead. The smaller the
monitoring interval, the more accurate measurements will be, and the more quickly a status change
can be discovered. However, this uses more “overhead” than a larger monitoring interval.
Components that are very critical to the availability of an application should be monitored often,
perhaps once or twice a minute.

� The technique can be used in conjunction with message/alert/trap events, when a verification of
“return to normal” state is needed. This is most efficiently done by having the event that indicates a
“down” or “problem” state trigger automation invoking the appropriate monitoring technique. The
technique runs at a regular interval, sending requests to and checking the responses (or lack of
response) from the resource. When the technique receives a response that indicates normal
operation, it records this (as an event), and stops monitoring.

� Products already installed in the environment may already contain these monitoring functions. While
most are easy to program in one’s favorite complied or interpreted language, there is no reason to
duplicate the effort if the function already exists in a product.

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 53

Heartbeat

A heartbeat is perhaps the simplest type of monitoring technique to implement. It is a function that runs
continuously and periodically records or reports the status of the component on which it executes. As
long as it is running and able to record heartbeats, the component is available The heartbeat function
must always be started when the component is started, and is only stopped when the component is
stopped. This ensures an accurate reflection of the component’s availability.

The heartbeat can report status (a “pulse”, so to speak) in two ways:

1. Local - recorded in data storage on the component (e.g. log file).
2. Remote - sent to another component, or monitoring function running elsewhere, and recorded there.

Availability reporting normally uses a metric of minutes. The heartbeat reporting interval must be no
greater than a minute to best support this metric

When a component restarts after an outage, the time of the last recorded pulse indicates when that
outage occurred. Calculating the time between that record pulse, and the time the heartbeat program
starts, provides an outage measurement length. For example, when a component starts, the heartbeat
function determines that the current time is 16:00, and the time the last pulse was recorded was 14:00.
Therefore, the outage length was 2 hours, or 120 minutes.

Clustered environments, such as Parallel Sysplex or Highly Available Clustered Multiprocessing
(HACMP) use a heartbeat function among the systems that participate in the cluster. The heartbeat is
used to indicate to other cluster members that the system is still running. If a system’s heartbeat is
missing after a certain interval, the other members will assume that system is no longer operating, and
will invoke actions to ensure the work supported by the cluster continues to run with minimal or no
interruption.

A heartbeat program is best used when the component can do the following:

� Automatically start programs or defined functions after it is started.
� Invoke the heartbeat function as one of the first functions that is started after the platform starts it

processing.
� Record the heartbeat pulse to a file or other storage medium on the local platform, or send real time

output to a remote operating system platform.

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 54

Appendix A lists examples of “roll your own” heartbeat functions using REXX, a shell script, and a
Java servlet, that can be implemented on any platform that supports that programming language. Each of
these programs does the following:
1. When started, retrieves the last recorded pulse.
2. Calculates the outage length, or stores the outage start and stop times for processing by another
program to for outage calculation.
3. Records a heartbeat in a local file every minute.

In addition, certain platforms may have a heartbeat function built in. For example, Windows NT
(Service Pack 4 and later) and Windows 2000 have a program called uptime. This program enables a
heartbeat function that records status to the registry, and calculates the platform availability using that
heartbeat. Here is an example of output from the uptime command:

 Total Reboots: 235
 Mean Time Between Reboots: 3.39 days
 Total Bluescreens: 1
 Total Application Failures: 0

Since 7/26/01:

 System Availability: 85.3382%
 Total Uptime: 124d 4h:14m:35s
 Total Downtime: 21d 8h:1m:43s
 Total Reboots: 30
 Mean Time Between Reboots: 4.85 days
 Total Bluescreens: 0
 Total Application Failures: 0

Certain operating system platforms and application subsystems provide “indirect” heartbeat functions. If
there is a function that continuously, at least once a minute, records information to data storage with a
time stamp, and is always running when the platform runs, it can be used to determine platform or
application subsystem. availability. Any gaps of information greater than 1 minute indicate that an
outage has occurred. Examples:

� On z/OS and OS/390, the SYSLOG and SMF are normally always being written to while the
operating system is running. By processing these records, and looking for intervals of greater than
one minute where no records were being recorded, operating system availability can be determined.

� Web Servers record incoming requests in a log. If a Web Server regularly receives multiple requests
per minute, any periods that show no requests for more than a minute are likely indicators of a Web
Server (or web server platform) outage. By processing the log and looking for these gaps in the
recorded activity, outage times and availability of the web server can be calculated.

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 55

Using Heartbeats for availability monitoring and measurement

When using a heartbeat function, there are several considerations to keep in mind:
� heartbeats indicate the ability for the platform to execute. They do not indicate if specific functions

needed by an application are running, or their responsiveness (Depending on how the function is
implemented it may be possible to modify it to provide this function).

� Actions to calculate the availability must be taken.. A heartbeat recorded locally must be retrieved
and processed. A heartbeat sent remotely must be captured and stored to use in subsequent
calculations.

� If an indirect heartbeat is created, the mechanism that records the information used for the indirect
heartbeat must always be running.

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 56

PING

A ping checks the status of a component from a remote location. It is a simple function that tries to get
any response from the monitored component. The response, regardless of the contents, indicates that
the monitored component is function.

A PING function is usually incorporated within a communications protocol. The most well known of
these is the TCP/IP PING function. Almost every operating system platform and networking device
communicates using TCP/IP, so this function is well suited to use in availability monitoring. Other ping
functions exist in other protocols. For example, APING is a program found in Advanced Peer-to-Peer
Networking (APPN) environments. APING allows one APPN node to determine if another APPN
node is active.

An availability monitoring technique using PING follows these steps:

1. The monitoring function issues the PING to the monitored resource (it may set the numbers of pings
to send, the data size of the ping request, the amount of time to wait before a timeout occurs, etc.).

2. The monitoring function waits for the responses to return.
3. If responses are received before the timeout value, the monitoring function assumes that the

component is active. It may also set a criteria, such as:
a. The percentage of ping requests that must be returned for the component to be considered

available
b. The response time that the request(s) must be received in for the component to be considered

available.
If the criteria are met, the component is considered available; otherwise, it is not available.

4. If no responses are returned - they all time out - the component is considered unavailable.

The following example shows the PING command being issued from a Windows NT desktop, to
monitor a LINUX system. It will send 10 requests, with a time out threshold of 3 seconds (3000
milliseconds):

H:\>ping -n 10 -w 3000 hslsuse

Pinging hslsuse [9.82.131.240] with 32 bytes of data:

Reply from 9.82.131.240: bytes=32 time=20ms TTL=253
Reply from 9.82.131.240: bytes=32 time=10ms TTL=253
Reply from 9.82.131.240: bytes=32 time=10ms TTL=253
Reply from 9.82.131.240: bytes=32 time=11ms TTL=253
Reply from 9.82.131.240: bytes=32 time=10ms TTL=253
Reply from 9.82.131.240: bytes=32 time=10ms TTL=253
Reply from 9.82.131.240: bytes=32 time=10ms TTL=253
Reply from 9.82.131.240: bytes=32 time=10ms TTL=253
Reply from 9.82.131.240: bytes=32 time=20ms TTL=253
Reply from 9.82.131.240: bytes=32 time=10ms TTL=253

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 57

All ping requests were responded to, with response times varying from 10 to 20 milliseconds. If a
resource is not available, the response would look as follows:

H:\>ping -a -n 10 -w 3000 sms-tm390

Pinging smts-tm390 [9.82.131.251] with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Request timed out.

The ping requests were never returned, or the timeout threshold was reached before they could be
returned, so the component is considered unavailable.

Using PING for availability monitoring and measurement

When using a ping function, there are several considerations to keep in mind:

� It can indicate that the component is active and able to communicate using the protocol that issued
the ping. It may not indicate that the specific application is active. The TCP/IP PING function will
show if a platform is active and running TCP/IP, but will not show that a web server function on that
platform is active. Getting that level of information requires a customized ping function (either
roll-your-own or contained within a management product) that, for example, will also send a request
to the port used by the application, and determine if a response was received back from that port.

� A ping timeout can mean one of two things:
1. The component is unavailable
2. Another component in the path between the monitoring function and the path is unavailable.

The following diagram shows a monitoring function running on an application platform that monitors
a network component:

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 58

Router

Monitored
Server

Monitoring
Platform

Network
Segment

Network
Segment

If the monitoring platform pings the monitored server and the ping timeouts, either the server is
down, or the router - the major component between the monitoring platform and the monitored
server - is down. The availability monitoring must understand the networking topology to take
appropriate actions to ensure accurate measurements. In this example, if the monitoring detects the
server is down, it should also check the router status, to determine where the actual unavailability is
occurring.

� Programs that use this monitoring technique must be able to capture the information returned by a
ping function, and analyze the contents. This is especially true if the availability criteria includes
attributes such as percentage of successful pings, or the response time of the ping requests. A
program that is part of an automation function is the best way to implement this requirement.

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 59

Remote Commands

A remote command extends the monitoring performed by a ping by issuing a specific command (or set
of commands) and looking for a particular set of responses to be returned. This is similar to "PING" in
that a command is issued from one platform and a response received, but is more powerful because the
command(s) can be requests for information (such as "show all programs that are executing”) or
requests that an action be taken (such as "stop function X”).

Remote commands provide the capability monitor both platform/device availability and specific resource
availability, for a resource related to that platform or device that can be monitored or controlled by
commands.

Remote command monitoring can be implemented in two ways:
1. Commands are sent directly from the monitoring function to the monitored component.
2. Commands are sent to an intermediate location, which is connected to the monitored component.

The command runs at this location, but can gather information form the connected monitored
component.

Remote commands require software on each platform to support command transmission, receipt and
execution, and response transmission. Commands used for availability monitoring purposes must be
non-interactive, line mode commands. That is, the command is issued, one or more command response
lines are returned, and the command ends. The command response (depending on how remote
execution is implemented) can be captured in some fashion (within variables in a command procedure,
return code, written to a file, etc.) so that further processing actions can be taken based on the
command results.

Examples of remote command functions are described in the following paragraphs.

REXEC (TCP/IP)

The TCP/IP rexec function sends a command from one TCP/IP platform to another, with the response
being returned to the originating TCP/IP platform. The originating system must be running a REXEC
client program, and the destination platform must be running a REXEC server.

ROUTE (z/OS and OS/390 Sysplex)

Within a sysplex the ROUTE command sends a command from one sysplex image to another. Any
command that can be entered on a z/OS or OS/390 console can be used. This includes both commands
related to the operating system and commands for applications running in z/OS or OS/390.

RMTCMD (Tivoli NetView for OS/390)

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 60

The NetView RMTCMD command sends a command from one z/OS or OS/390 image to another;
the two images do not have to be in a sysplex but both must be running NetView, have a network
connection (SNA or, if running Tivoli NetView V1R4 or later, TCP/IP) between them, and have the
appropriate NetView definitions that enable NetView-to-NetView communication. Any NetView,
network, or operating system/subsystem command can be sent, and the response is returned to the
NetView operator or command procedure that issued the command.

SBMRMTCMD (iSeries and AS/400)

The iSeries and AS/400 Distributed Data Management (DDM) function provides a Submit Remote
Command (SMBRMTCMD) function to send commands to another iSeries or AS/400 system.
APPC/APPN is the protocol used to send the command(s) and return the command response(s).

Remote Command Service (Windows NT, Windows 2000)

The Windows NT Server and Windows 2000 Server resource kits provide a set of programs called the
remote command service. This allows the sending of commands from one NT or 2000 system for
executing on another. The monitored system must be running the server portion of the remote command
service.

RUNCMD (Tivoli NetView for OS/390)

The RUNCMD function of Tivoli NetView on the S/390 platform (z/OS, OS/390, VM, VSE)
provides a way to send commands from NetView to network connected non-S/390 components and
receive responses. This supports monitoring the status of many different
types of components and platforms.

The following is a picture of the major RUNCMD components:

SNA Gateway

Service Point

Operating SystemNetwork

NETVIEW
COMM
SERVER

� NetView - for the RUNCMD processor

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 61

� SNA gateway - for the SNA networking protocol between NetView and the Service Point
� Service Point - the main interface between NetView/SNA and the non-SNA platform. The

application:
� accepts the RUNCMD request from the SNA Network
� interfaces with the local platform to perform the appropriate actions to carry out the request
� returns the command response to the SNA network via the SNA gateway

The SNA Gateway and Service Point Application functions can be separate products or contained in a
single product. Examples of products that support RUNCMD include:

� IBM Communications Server
� AIX NetView Service Point
� NetView Remote Operations Manager/Agent for AS/400
� Netware for SAA
� Ciscoworks Blue Native Service Point
� Microsoft SNA Server

A NetView automation procedure can issue a RUNCMD request that contains a command unique to a
Cisco router. The Ciscoworks service point function executes the command on the router, and returns
the result to NetView. The automation procedure can examine the response to this command and
determine what further actions have to be taken.

Using Remote Commands for availability monitoring and measurement

When using remote commands, there are several considerations to keep in mind:

� Remote commands go further than PINGs; they can verify that specific workloads are running, and
are able to respond to commands.

� Command security issues are critical. Sending the wrong type of commands to a component can
inadvertently increase unavailability for that component. If a remote command process is used, it
must meet the appropriate security standards that are in place.

� Any remote command function implemented should be part of automation, or should be able to be
invoked by automation, so that results can be efficiently captured, analyzed, and used in the
availability measurement process.

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 62

User Simulation

The best way to determine the availability of an application from a business perspective is to determine if
it performing exactly as the user expects. This is done by implementing user simulation monitoring.
This technique uses software functions to simulate user interactions with an application function.

� A program (or 'script', as it is commonly called) interacts directly with the application. This can be
done in several ways:

� If the application provides an application programming interface (API), the program can directly
invoke application calls via the API.

� If the application has a 3270 interface, the program can use functions such as the Enhanced High
Level Language Application Programming Interface (EHLLAPI) to issue key strokes to the
application and perform “screen scraping” to capture text from the application.

� If the application can be accessed using a browser, a Java program can invoke methods that can
access the application URL, invoke URL or HTTP requests, and capture the response.

� If the application has a graphical interface, products exist that can record a sequence of mouse
clicks and/or keystrokes against the application, and then play them back at regular intervals.

The simulation program performs functions such as:
� Signing on to the application
� Entering one or more application-specific commands
� Determining if information was returned within a specified interval
� Validating any information that is returned

User simulation can measure application availability and response time as an application user
would see it. It will provide more detailed information that the other monitoring techniques, but is also
more difficult to implement, since it must be set up for each application function to be measured.

Using a programmed script is more difficult than the other monitoring techniques because of the amount
of maintenance that is required to maintain its accuracy. Any change in the application - such as screen
layout, web page design, or URL changes - will likely require that the script be updated. However, if
changes in the monitored application are synchronized with simulation program, user simulation will
continue to provide very accurate results and availability information from the perspective of the
application user.

The program or script runs on a workstation that is best located at or as close to the physical
location of end users. While the simulation usually can be implemented using automation software
running on the same platform as the application it is monitoring, this method will not accurately identify
bottlenecks or problems in the path between the users and the application. Wherever it runs, it can
either capture the information and immediately forward the relevant information to a central location, or
store it on the workstation for later uploading to or retrieval into a common repository.

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 63

Using User Simulation for availability monitoring and measurement

� If a programming language is used, it must support the available methods for accessing the
applications as described above. The most common languages used for this are C/C++, REXX,
and Java. All run on a variety of operating system platforms. C /C++ and REXX can directly use
EHLLAPI functions (provided by a communications program such as IBM Communications
Server). Java provides methods that can be used to programmatically access and use web based
applications, and both C/C++ and REXX support socket level programming that can be used to do
the same..

� There are products that support designing and implementing user simulation functions without the
need for programming. Many of these are categorized as “Application Test” or “Stress Test”
products. They should, at a minimum, be able to:
� Create or interface to an emulated user application session, or use APIs that provide access to

the application across a network.
� Support sending keystrokes and pointing device clicks to the emulated session, or API calls to

the application.
� Scan for or capture data displayed in the emulated session (known as "screen scraping"), or

capture the application responses from the API calls.
� Time the interval between the last user keystroke/click or API input call and the application

response.
� Store a recording of the interactions so that they can be executed at regular intervals (by the

product itself, or by a program or script invoked by a platform automation function).
� When user simulation determines that either the application has not responded within the desired

interval, two situations may have occurred:
1. The application is unavailable
2. Another component in the path between the monitoring function and the application is

unavailable.
User simulation by itself will not be able to narrow it down to a particular component. Its
measurements must be correlated with other availability measurements, described earlier in this
paper, to determine what component(s) are causing the problem. This identifies the component(s)
that are the cause of the applications unavailability.

� The workstations where the user simulation functions are running must be as highly available
themselves as possible. They should be dedicated for monitoring and measurement purposes. They
should be placed within the network topology to give the perspective of different groups of users. If
users reside in multiple geographic sites, each site should have at least one user simulation
workstation; monitoring in this fashion will identify availability exposures that are unique to a
particular site.

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 64

Custom Monitoring Agents

Many management and monitoring products provide agents - code that runs on the monitored hardware
or interfaces to the monitored software - that can be used to provide the status of the monitored
component. These custom monitoring agents connect to the managing software,
which usually runs on a separate physical operating system platform.

The monitoring agents implement one or more of the monitoring techniques described earlier in this
section. They may be implemented using open protocols, or using proprietary methods
specific to the monitor or management software product.

The agent reports status to the management portion of the software. The availability status notification
can be done in two ways:
1. Direct: the agent has the ability to explicitly report to the manager when a function in the monitored

component changes status. The agent generates a notification (message, alert, trap, or proprietary
datastream) to the managing software.

2. Indirect: The agent does not explicitly notify the manager of availability status. The manager expects
to hear from the agent at some regular interval (for example, the agent is providing performance
information about the monitored product). If the agent reports but has no data, or doesn't report at
all, the manager can use this as an indication that the component is no longer available until it starts
receiving data again. The managing software may record these status changes in a file, or create a
notification (message, alert, or trap) that other software can detect.

Using Custom Monitoring Agents for availability monitoring and measurement

Considerations for using custom monitoring agents depend upon the type of monitoring the agent
supports. The agent will implement at least one of the heartbeat, ping, remote command, or user
simulation monitoring techniques; whichever are implemented will have the considerations as described
earlier in this section for that technique.

The greatest hindrance to using monitoring agents is lack of skills on or knowledge about the agent - or
management software that uses the agent - in terms of its use within the availability management process.
The most important activity of a measurement project can be investigating the management software and
associated agents already deployed in the installation for availability functions. The following questions
are useful in determining if the management software and associated agents can be used to monitor and
measure availability:
� Is the agent fully enabled on the components it is monitoring?
� Does the agent provide status notification to management software?
� Do the status notifications indicate the availability state of the component?
� Can this status notification be captured by or forwarded to other software for consolidation?
� Can the status notification be reported in log, message, alert, or trap format?
� Can the agent interface to management software that can support many different types of agents?

© IBM 2002 Monitoring Methods

Finding and Collecting Availability Measurement Data 65

Data Capture and Monitoring Products

An installation can, as outlined in the preceding sections, implement their own routines for capturing
availability data, either from data sources or by writing monitoring techniques. However, there are many
products than can be used to produce, capture, and collect availability data for I/T components. In most
cases these products use a subset of the system functions and
monitoring methods that have been described earlier in this document. Some products also provide
additional functions that can be used to capture availability information.

The variety of technologies used in modern applications makes it almost impossible to find a single
product that can capture all required data from all sources on all components. With the number of
components, the number of protocols, and the different technologies , one product will not have all the
functions to interface to every type of component that has to be measured.

There will be products that can “aggregate” availability event information from other products. Instead
of trying to capture information for each component, these “aggregation” products will interface to many
products that management or monitor specific components, and can extract the desired availability
information from them. They can act as "consolidation points"; that is, other products can forward
component availability information to them, and they can consolidate
or aggregate the information into a single view or repository.

Products containing data capture functions will fall into five major categories:
1. Event Management. These products provide ability to capture "events" - an event being anything

to indicate the change in status of a particular resource- from multiple sources. The events can be
captured from the sources described earlier in this paper - logs, messages, alerts, and traps. The
event management product can also provide agents to capture events from additional sources. Since
availability status events are a subset of all events, these products can be an excellent source of
availability status information. Event management products can also provide automation to extract
the desired information from the event and store the information in an appropriate repository for
further analysis and reporting.

2. Automation. These products can interface to the message flow of the platform they execute on,
and may be able to integrate with a network manager to capture alert, trap, or other network
information. Some products focus on remote console access/automation by using a workstation to
directly connect to the console port of a component, and running software on the workstation that
can capture information from the console and take a programmed action. The products may also
have data manipulation functions to extract the required availability information and format it to be
processed by a report generator program, or feed the data directly into a database.

3. Performance Monitoring. A component must be available before its performance can be
measured. Performance monitors report on the performance health of the component, as well as
performance problems the component encounters that may be causing delays that are causing
unavailability to users, or which may be to a component unavailable state. The absence of

© IBM 2002 Data Capture and Monitoring Products

Finding and Collecting Availability Measurement Data 66

performance data from a component (or some aspect of the component) can be an indication that
the component (or some aspect of the component) is unavailable.

4. Application Monitoring and Management. These products focus on the management of specific
applications, or application response time. They provide agents that interface with the application
(or are even incorporated into the application code directly) to monitor and control its health. They
can provide application availability, performance, and response time information. In some cases the
products can forward this information to automation or enterprise management products.

5. Enterprise (Systems and Network) Management. The "management" aspect as related to
availability means "what is used to monitor the state of this resource, and what is used to control it
(change its state)?" A management product that performs these functions can capture the changes
that have occurred, so that both current and historical availability data is accessible. These products
many contain some or all of Event Management, Automation, Performance Monitoring, and
Application Monitoring functions.

Most installations have at least one (and usually more than one) product that falls into one or more of
these categories, and which can be potentially used as part of this process. Further investigation of the
usefulness of product must include considerations such as:
� The ease of use of the availability-related functions.
� The capability to provide availability related information real time, and /or from a log or file.
� The ease of integrating the product within an automated process for monitoring, collecting, and

reporting availability information.
� The skills needed to implement the functions, and the commitment of the installation to build and

maintain skills on the product for the long term.

Example Products

The products mentioned in this section are listed to illustrate the type of capabilities that exist. This is
not meant to be a complete list. They are included to provide guidance for those unsure of the type of
products that should be considered. For every product mentioned there may be several others that
provide similar capabilities.

Only the product functions relating to availability monitoring or data capturing are described. Covering
all the functions a product provides is beyond the scope of this document. All of the products have
general information documents that can be obtained from IBM or Tivoli.

AS/400 Management Central

AS/400 Management Central is part of the OS/400 operating system (V4R3 and later) that extends the
iSeries and AS/400 Operations Navigator function to manage multiple iSeries and/or AS/400 systems
using TCP/IP. It provides these availability data capture and monitoring related functions:
� Allows remote commands to be issued to AS/400 systems to determine their status.

© IBM 2002 Data Capture and Monitoring Products

Finding and Collecting Availability Measurement Data 67

� Monitors system performance for iSeries and AS/400 systems, and allows thresholds to be set that,
when exceeded, can log the event, and do the same when the threshold returns to normal.

� Thresholds can invoke commands when they are exceeded or return to normal, such as sending an
alert or trap.

CICSPlex System Manager (CICSPlex SM)

CICSPlex SM is part of the CICS Transaction Server product. It provides a "single point of control"
for multiple CICS address spaces across multiple z/OS, OS/390 , VSE, and distributed platforms. It
contains a system availability monitoring function that detects when a CICS address space becomes
unavailable (due to stall, shutdown, address space/transaction dump, MAXTASKS, etc). Notification
when these conditions occur, or when an existing condition returns to normal, can be done via a
message or alert.

IBM Communications Server (AIX, Windows NT/2000, OS/2 Warp, Linux)

The IBM Communications Server product provides SNA gateway server functions that include
a NetView Service Point application. It can accept RUNCMD invocations from Tivoli NetView
for OS/390 for execution on the Communications Server platform (or attached clients), and return the
results of the commands to NetView. It can also issue alerts to NetView for certain server or client
workstation status changes.

IBM Director

IBM Director is a workstation management product provided with IBM Netfinity xSeries Servers. It
provides the following availability data related functions:
� Logging or sending alerts on status changes such as system and application startup and shutdown.

Alerts that are logged can be exported to a text file for processing.
� Receiving events from managed workstations running the Universalbility Management Services

(UMS) agent. These events can then be sent as traps to any SNMP manager.
� A heartbeat function to detect workstation availability status changes.
� Sending remote commands to managed workstations for execution.
� Setting threshold for a variety of status and performance monitors, which can be set to trigger

automated actions.

System Automation for OS/390 (SA for OS/390)

SA for OS/390 is an automation product that runs within the Tivoli NetView for OS/390 environment.
It provides automation and control of z/OS and OS/390 software and hardware components, primarily
address spaces, ESCON devices, and hardware. For the components it automates it will issue status

© IBM 2002 Data Capture and Monitoring Products

Finding and Collecting Availability Measurement Data 68

messages, which can be captured from the SYSLOG or from automation routines, so that the
appropriate availability information can be captured.

System Manager for AS/400 and Managed System Services for AS/400

These products provide automation and performance monitoring for stand alone or SNA interconnected
AS/400s. The availability related data functions include:
� Issuing messages or alerts based on performance exceptions from one or more connected AS/400

systems. These can be issued both when the exception(s) occur and when the exception condition
returns to normal.

� Sending remote commands to AS/400 systems.
� Providing customer monitoring through Managed System Services for AS/400 functions.

Teleprocessing Network Simulator (TPNS)

TPNS runs on z/OS or OS/390 and it used to develop scripts that perform user simulation against
application functions. These scripts can be used to verify if the application is available; the application
status can be recorded for future retrieval and processing.

Tivoli Application Performance Management (TAPM)

TAPM provides availability and performance measurement at the application transaction level. It can be
used to implement user simulation monitoring. The availability data related functions include:
� The Application Response Measurement (ARM) API to monitor application response time and

availability.
� Tools to monitor availability and response time of client server and web based applications.
� An agent that captures the monitoring output, logs the results, and sends a notification to Tivoli

Enterprise Console and Tivoli Distributed Monitoring.

Tivoli Business Systems Manager (TBSM)

TBSM monitors and controls components in the z/OS, OS/390, and distributed environments. It can
interface directly to availability data sources (such as z/OS and OS/390 SMF logs and console
messages), and integrate with products that perform event management and performance monitoring
(such as Tivoli NetView, Tivoli Enterprise Console, and Omegamon Monitors) to obtain availability
related information. TBSM can also issue commands against any monitored component.

TBSM can interface with a large number of data sources and management products, and can aggregate
the events and show components from a hierarchical (physical connectivity) view, and a business
system (application connectivity) view. The events and views are stored in a database. Because it can

© IBM 2002 Data Capture and Monitoring Products

Finding and Collecting Availability Measurement Data 69

build business views and store the related event information in a repository, it can provide real time
views and long term reports on both component and application availability.

Tivoli Distributed Monitoring

Tivoli Distributed Monitoring provides monitoring and automated notification for resources
on various application platforms. The availability data related functions include:
� Agents that reside on the monitored platforms to check system, resource, and application-specific

performance or thresholds.
� Logging events, or sending events to Tivoli Enterprise Console, when the availability status of a

monitored system, resource, or application changes is threatened or changes.
� Taking a predefined action , such as running a command, based on a defined threshold.
� Support for monitoring agents that are developed by the installation.

Tivoli Enterprise Console (TEC)

TEC is an event management and automation product for capturing and correlating system and network
events. The availability data capture related functions include:
� Capturing and correlating status events from a variety of sources, such as:
� Distributed System and Network management products (Tivoli NetView, HP OpenView BMC

Command Post, etc.).
� Tivoli Distributed Monitoring
� Log files
� Tivoli Manager for... Products
� SNMP traps
� Tivoli NetView for OS/390

� Correlating events from these sources to better determine which outage events are causes and
which are symptoms of other outages.

� Invoking programs against the captured availability information, to transform the data into a common
format for report processing.

� An automation engine to carry out automated actions based on a notification or a set of notifications
received.

� Integration with Tivoli NetView for z/OS and OS/390. TEC can send events to NetView, and
NetView can send messages and alerts to TEC.

Tivoli NetView (AIX ,NT/2000 platforms)

Tivoli NetView, running on AIX, NT, or 2000 platforms, provides network management of TCP/IP
resources. It monitors IP resources, IP network topology, and is a SNMP Manager. Its availability data
capture functions include:

© IBM 2002 Data Capture and Monitoring Products

Finding and Collecting Availability Measurement Data 70

� Providing event automation for traps received from TCP/IP SNMP components in the network.
The product can invoke programs or command procedures based on the content of a trap.

� Invoking programs or procedures to process captured information into a desired format and store
results in a log or file for later processing..

� Providing two-way communication with Tivoli NetView for OS/390:
� Sends Tivoli NetView on OS/390 TCP/IP topology status information.
� Interfaces with the AIX NetView Service Point product to accept RUNCMD UNIX or

TCP/IP command invocation from Tivoli NetView on OS/390, execute them, and return the
result.

� Providing an application platform and APIs to support applications and provide management
(including monitoring/capture of availability information) for non-SNMP managed components for
both UNIX and non-UNIX environments.

The NetView Mid-Level Manager component of Tivoli NetView provides detailed performance
exception and event forwarding/consolidation for SNMP components and AIX, SUN, HP, and NCR
UNIX environments:
� Notifications can invoke command/automated responses.
� Notifications can be forward as traps to Tivoli NetView.

Tivoli NetView for z/OS and OS/390

Tivoli NetView for z/OS and OS/390 provides Enterprise Management, Automation, and Event
Management and Correlation for the z/OS and OS/390 platforms, including network connecting SNA,
APPN, and TCP/IP components.

Note: The NetView products for VM and VSE have been stabilized to the NetView for MVS
V2R3 level of functions. For the iSeries and AS/400 platforms, a lot of the NetView function
is built into the OS/400 operating system; these functions can be used to managed
interconnected iSeries and AS/400s systems, and devices that are attached to them (local or
remote).

The availability related data functions of Tivoli NetView for z/OS and OS/390 include:
� Automation for system messages and SNA alerts; availability status indicators from these sources

can be captured and analyzed by automation procedures.
� SNMP management functions to receive SNMP traps and, optionally, convert them to SNA alerts.
� Converting SNA alerts to SNMP traps.
� The RMTCMD function to execute remote commands on another network connected NetView

z/OS or OS/390 platform.
� The RUNCMD function to execute commands on a non-SNA platform, via a Service Point

application.
� Automation procedures that can process information into a desired format and store it:

© IBM 2002 Data Capture and Monitoring Products

Finding and Collecting Availability Measurement Data 71

� In a file for later processing.
� Directly into a problem management/help desk product, as Tivoli Information Management, via

the NetView Bridge function.
� In its Resource Object Data Manager (RODM), which can contain object representation of

components that other products can access and use for various purposes, including availability
status.

� In a DB2 database for later processing.
� APIs such as the NetView Program-to-Program interface (PPI) to allow further integration with

other applications.
� Integration with Tivoli Enterprise Console (TEC). TEC can send events to NetView, and NetView

can send messages and alerts to TEC.

Tivoli NetView Performance Monitor (NPM)

NPM provides performance monitoring of SNA and TN3270 TCP/IP sessions into a z/OS or OS/390
host. The availability data capture functions it provides includes:
� Setting performance or availability thresholds against the resources it monitors. When these

thresholds are exceeded (or when exceeded thresholds return to normal), NPM can create an event
and log it in its repository, or generate an console message or SNA alert that can be captured and
analyzed by an automation product.

� Recording information on SNA session start/stop times (including LU 6.2 sessions).
� Interfacing with NetView and LAN Network Manager to analyze token ring segment and utilization

statistics, and generating alerts when performance exceptions are detected.

Tivoli NetView Performance Monitor for IP (NPM/IP)

NPM/IP provides performance monitoring of TCP/IP sessions (TELNET, FTP, HTTP, etc.) into the
z/OS or OS/390 TCP/IP stack, and of remote TCP/IP components from z/OS or OS/390. It can set
performance or availability thresholds against the monitored monitors. When these
thresholds are exceeded, NPM/IP can create an event and log it in its repository, or generate a
console message that can be captured and analyzed by an automation product.

Tivoli Web Component Manager (TWCM)

TWCM provides availability and performance monitoring of Web Server components, primarily the
HTTP Server and associated Application Server, such as WebSphere Application Server. The
availability data capture functions include:

� Monitoring the HTTP Server and Application Server functions and generating events when their
availability changes.

© IBM 2002 Data Capture and Monitoring Products

Finding and Collecting Availability Measurement Data 72

� Monitoring HTTP Server and Application Server performance attributes against defined thresholds.,
and generating events when those thresholds are violated, or when violated thresholds return to
normal.

� Forwarding events to the Tivoli Enterprise Console.

Tivoli Web Services Manager (TWSM)

TWSM provides availability and performance monitoring of Web Server applications. The monitoring is
done outside of the web server, so any web server platform can be monitored. The availability data
capture functions include:

� Monitoring web server pages to detect broken links and missing pages, which can indicate
availability problems.

� Monitoring web server end user response time against defined thresholds.
� Providing user simulation functions to issue web application transactions and capture the transaction

availability and response time information, and compare it against defined thresholds.
� Generating events to Tivoli Enterprise Console when thresholds are exceeded, and when they return

to normal.

Product Mappings

The following table lists the products described in the previous section and, for each product,
identifies the specific data source or monitoring technique the product supports or interfaces with. This
type of table is useful to build when evaluating products being considered for this task; it can easily show
the scope a product can be used within the process of finding and collecting availability measurement
data.

© IBM 2002 Data Capture and Monitoring Products

Finding and Collecting Availability Measurement Data 73

Product Logs Messages
(sends or
detects)

Alerts (sends or
receives)

Traps
(sends or
receives)

Heartbeat PING Remote
 commands

RUNCMDS (sends or
responds to)

User
simulation

Custom
monitoring
agents

AS/400
Management
Central

Yes Both Yes

CICSPlex SM Sends Sends Yes Yes Yes

IBM Comm
Server

Sends Responds

Microsoft SNA
Server

Sends Responds

Netware for SAA Sends Sends Responds

IBM Director Yes Sends Yes Yes Yes

Omegaview Sends Yes
System
Manager for
AS/400

Yes Both Yes Yes

TPNS Yes

Tivoli
Application
Performance
Mgmt

Yes Yes Yes Yes

Tivoli Business
Systems
Manager

Yes Detects receives
(via TEC)

Yes

Tivoli Distributed
Monitoring

Yes Sends Yes Yes

Tivoli Enterprise
Console

Yes Both Receives Event Adapters

Tivoli NetView Yes Sends Both Yes Yes Yes Responds (via AIX
Service Point)

Yes

Tivoli NetView
for OS/390

Yes Both Both Yes Yes Yes Sends

Tivoli NetView
Performance
Monitor

Yes Sends Sends

Tivoli NetView
Performance
Monitor for IP

Yes Sends Yes

Tivoli Web
Component
Manager

Yes Sends (to
TEC)

Sends (via TEC) Yes Yes Yes

Tivoli Web
Services
Manager

Yes sends (via TEC) sends (via
TEC)

Yes Yes Yes Yes

© IBM 2002 Data Capture and Monitoring Products

Finding and Collecting Availability Measurement Data 74

Reporting

Once the availability data has been captured, two steps have to be done:
1. The data must be formatted into a common record layout, regardless of where it was captured.
2. Reporting logic must be applied against this data to create the desired reports.

Creating a Common Record Layout of the Captured Data

A common layout was described earlier in this paper:

1. A component identifier that uniquely identifies this component.
2. The component status that is being reported. This can be anything that, for measurement purposes,

can be mapped to a "UP" or "DOWN" state for the component.
3. The date and time that the reported status occurred.
4. The status change identifier.

Each availability status event captured should have this information (or, the information can be provided
by the mechanism that captured the event - an automation product, for example). Programming logic is
then applied to extract the appropriate information and place it in the above layout.

Here are two examples of the process:

Example 1: The component is a z/OS or OS/390 sysplex image. It is considered available within the
sysplex when the following message appears in the SYSLOG:

01219 01:22:16.97 IXC418I SYSTEM SYSA IS NOW ACTIVE IN SYSPLEX PRODPLEX

The information to be extracted is:
� The component name (SYSA)
� The component status (since the IXC418I means it is available, the status will be “UP”)
� The date and time the reported status occurred (01219 is cycle date 219 in 2001, which is August

7th).
� The status change identifier (The message ID, IXC418I)

An automation product that captures the message when it is issued, or a program that scans the
SYSLOG for this message, then extracts the information so that the common layout is:

20010812 0122 SYSA UP IXC418I

The programming logic has reordered the fields to the sequence date-time-component ID - availability
status - status change identifier. It has also reformatted the date and time values to formats that are
easier for report processing.

© IBM 2002 Reporting

Finding and Collecting Availability Measurement Data 75

Example 2: The component is a HTTP Server running on a Linux platform with a host name of
HASL13. It is monitored by sending a remote command to it (ps -ef | grep httpd). If the HTTP server
process is up, the following response is expected (as one line)

root 640 1 0 2001 ? 00:00:03 /opt/IBMHTTPServer/bin/httpd
-f /opt/IBMHTTPServer/conf/httpd.conf

The information needed for the common layout is not directly contained in the response. Much of it will
have to be derived:
� The component name (to uniquely identify this process, the name hasl13.httpd.80 is assigned).
� The component status (since the command response indicates the httpd process it is running, the

status will be “UP”).
� The date and time the reported status occurred (the date and time the remote command request

was issued will be used).
� The status change identifier (the host name of the platform where the monitoring is running is

HASL02, so the identifier name assigned will be hasl02.rmcd).

The function performing the remote command monitoring would derive the additional information
needed, and either create the common format, or write the information to a file, where it can later be
processed into the common format. In either case, the end result appears as:

20010812 0122 hasl13.httpd.80 UP hasl02.ping

The goal of using a common layout is the make all availability status information, regardless of the
source, have the same format and fields. This allows efficient report processing of the data.

Once in a common record layout, the data can be stored in a repository of choice. This can be a
sequential file, a relational database, or a reporting program repository.

Applying Reporting Logic Against the Formatted Data

A number of options exist for creating reports from the data. They range from custom programs, to
spreadsheets, to SQL queries, to reporting products. Which is used depends upon the skills in an
installation and long term usage of the report. In the short term a program or spreadsheet may be able to
produce reports quickly, but as reporting needs changed and more flexibility is needed
(such as correlating availability data with other data), a reporting product, or report function within a
product, may be a better option.

Reporting products provide functions to combine and manipulate the data to produce meaningful
reports. Some specialized systems management products contain a a reporting function that may be
flexible enough to use for this purpose. One of advantage of using a reporting product is that multiple
types of data from multiple processes can be kept in a single repository. This allows,

© IBM 2002 Reporting

Finding and Collecting Availability Measurement Data 76

in addition to component and application availability reporting, any trends with other
management data (such as problem, performance, or change) can be investigated.

Other products may produce availability reports for specific environments. For example, a product may
only provide availability reports for SNA network components.

Availability reporting software can run on any operating system platform. When the information to be
processed is not created on the same platform, procedures must be established to move the information
to the platform with the reporting software, or allow remote data access from the platform where the
reports are being created. Additional products may be required to do this.

Depending on the types of reports desired, the reporting function may have to do further data
transformations beyond the common format described above. For example, suppose the availability
data for a component has been formatted into this common format:

20010306 1700 COMPONENT_ID_1 DOWN * SOURCE_A
20010306 1800 COMPONENT_ID_1 UP * SOURCE_A
20010309 1530 COMPONENT_ID_1 DOWN * SOURCE_A
20010309 1610 COMPONENT_ID_1 UP * SOURCE_A

This format is sufficient to provide a report for the component over a particular time range.

Suppose a report is needed to show the amount of available or unavailable minutes for the component
on a daily basis. Transforming the data into the following format will enable that type of report to be
produced:

20010306 COMPONENT_ID_1 UP 0000 1659 1020
20010306 COMPONENT_ID_1 DOWN 1700 1759 60
20010306 COMPONENT_ID_1 UP 1800 2359 360
20010307 COMPONENT_ID_1 UP 0000 2359 1440
20010308 COMPONENT_ID_1 UP 0000 2359 1440
20010309 COMPONENT_ID_1 UP 0000 1529 930
20010309 COMPONENT_ID_1 DOWN 1530 1609 40
20010309 COMPONENT_ID_1 UP 1610 2359 470

The transformation has created a record for each component available and unavailable period for each
day, and the length of that status period. Using this format an availability report for a particular day, or
range of days can be created.

Data Accessibility

It is easy to look at measuring and reporting on availability as an isolated task. However, availability is
influenced by, and influences, other processes such as problem management, change management,
performance management, configuration management, etc. The data available from those processes can
shed more light on why the current availability is where it is and, if necessary, where efforts to improve

© IBM 2002 Reporting

Finding and Collecting Availability Measurement Data 77

availability can be focused. Therefore, availability measurement data should not be isolated from data
created by other systems management processes. The data captured by the methods discussed in this
document will be primarily component names and outage start/stop times. Information such as outage
status (who is working on it or who has been notified) and outage root cause have to be obtained from
other processes.. This moves the availability measurement process beyond simply reporting availability
to analyzing trends and identifying actions to take to avoid or minimize outages (which is why availability
is managed in the first place).

Placing this data alongside of problem, change, and performance data in the same logical repository
allows information from these processes to be correlated show cross-impacts such as:
� outage categories and root causes
� performance trends and the resulting availability impact
� change activity and the resulting availability impact
This will better identify activities to address both short and long term availability improvement actions. It
is more difficult to do when the measuring and reporting of availability is implemented as a separate,
isolated process.

Reporting Products - Examples

Selecting a product for reporting availability measurements is influenced by the following:
� The existing use of the product for reporting systems management information.
� The programmability of the product to analyze and manipulate data.
� The ease of producing reports from different sources of data at the desired frequency. Some basic

reports include:
� Component and application availability for a time interval
� Availability interrupts within a time interval
� Component availability impact on application availability for a time interval

� The usefulness of "canned" availability reports provided by the product.
� The ability to create both individual component reports and end-to-end availability reports

(availability that is derived from the status of multiple components).
� The flexibility of data interchange with other systems management processes, to get a view of what

actions are impacting availability, and the impact of availability on business functions.

Spreadsheets and relational database products are also options for creating reports. These require
programming skills in the spreadsheet macro language or SQL to create the reports. In addition,
external programs may have to be written to perform any needed data transformations before importing
the data into a spreadsheet or relational database.

The following products are examples of what can be used to get started with reporting availability. This
is not an exhaustive list. It is presented as a guide to illustrate the type of products and offerings that are
available and that should be investigated. It also does not cover the full range and breath of individual

© IBM 2002 Reporting

Finding and Collecting Availability Measurement Data 78

product functions, but highlights how the product can be used to provide availability measurement
reports.

Tivoli Decision Support for OS/390

Tivoli Decision Support for OS/390 (previous names were Performance Reporter for MVS
and Enterprise Performance Data Manager) is a data analysis and reporting product. It
collects data from availability sources (SMF, logs, output from other products, files, etc.) and stores it in
a DB2 repository, where data elements can be related together to generate various historical and trend
reports (performance, problems, accounting, etc). Many types of canned reports, including component
availability reports (using data from systems, networks,
or user-created sources) are provided. It also provides programming function to create
installation-specific reports.

Tivoli Decision Support

Tivoli Decision Support interfaces to many of the Tivoli management products to produce various
reports on the resources those products manage. Information from these products can be integrated
with data from external sources to produce various reports, including availability related reports. Guides
are provided for creating availability reports from Tivoli Enterprise Console event data.

Tivoli NetView for OS/390 Automated Operations Network (AON) component

AON can produce availability reports on the network components it is monitoring and automating.

Tivoli Service Desk for OS/390 (INFOMAN)

Tivoli Service Desk for OS/390 (INFOMAN) supports Problem, Change and Configuration
Management processes. Based on the type and content of problem information being collected,
availability reports can be developed using the Tivoli Service Desk for OS/390 reporting functions.

© IBM 2002 Reporting

Finding and Collecting Availability Measurement Data 79

Putting It All Together

The preceding sections have identified many data sources and monitoring techniques for obtaining
component availability data. However, a frame of reference is still needed to understand how to apply
this to realistic environments. There is no single "right" answer for
how to go about doing this, but the guidelines and examples in this chapter will provide information that
can be built upon to address specific environments.

The more components that are monitored, the better a true picture of availability, particularly
end-to-end availability, can be determined. It is helpful to understand the types of components should
be monitored, and where they are "logically" located, so that an appropriate data collection or
monitoring technique can be used. The white paper “Measuring End-to-End Availability: How To
Get Started”, covers the overall method in greater detail. The foundation to establish includes the
following:
� Use the premise that users use applications to manipulate data. Applications can only do what is

requested of the users, and the users cannot get to the requested data without the application.
� Paths must exist between the users and the application components, and the application and data

components. These paths themselves are made up of components, which must be monitored to
ensure that the paths are working as desired.

� Take the application view of the environment - that is, do not look at measuring all of the
components, because that will seem overwhelming.. Look first at the critical applications, and then
at the key components those critical applications require.

Data Source and Monitoring Technique Selection Guidelines

The following diagram depicts a simple generic model that can be applied to any application
environment. The model categories help identify the components that provide application availability to
end users and data availability to applications (The details of this model, and the overall steps to for
measuring end-to-end availability - for which finding and collecting data is one step - will not be
covered here. This information is contained in the "Measuring End-To-End Availability: How To
Get Started" white paper). Each component will map to one or one of the seven categories that are
depicted here:

© IBM 2002 Putting It All Together

Finding and Collecting Availability Measurement Data 80

User

Platform

Data

Platform

Application

Platform

Application

Subsystem

Application

User-Application
Path

Application-Data
Path

For each category, certain data sources and monitoring techniques will be more applicable to others.
The following table depicts this on a scale of 1 to 4:

Model Area Logs Msgs Alerts Traps Heartbeat PING Remote
Cmds

RUN-
CMD

User
Sim.

Custom
Monitoring

End User
Platform

3 3 1 1 2 1 2 2 1 1

User to
Application
Path

2 2 1 1 4 2 3 3 4 3

Application
Platform

1 1 3 3 1 1 2 2 2 4

Application
Subsystem

1 1 3 3 3 2 1 1 2 2

Application 4 3 2 2 3 3 1 1 1 1

Application to
Data Path

2 1 1 2 4 2 3 3 4 3

Data Platform 2 1 1 2 4 3 2 2 4 3

The table recommends the appropriateness of a data source or monitoring technique (columns) for
components mapped to the model categories (rows), relative to other techniques. The numbers should
be interpreted as follows:

� 1: This is a very likely source of availability data, and should be investigated.
� 2: This is a somewhat likely source of availability data.
� 3: This is a unlikely source of data; it is possible, but may require a lot of effort.
� 4: This is a very unlikely source of availability data; it should only be tried if nothing in a higher

ranked source of data for the component can be found.

© IBM 2002 Putting It All Together

Finding and Collecting Availability Measurement Data 81

The table is a guide, showing the relative merit or ease of using a particular source or monitoring
technique for components within a particular model category. With enough effort almost any source
could be used for any component. The table numbers can change based on the context of the
environment they are applied to - in other words, your mileage may vary.

An installation can access the data sources or use the monitoring techniques via the functions provided in
the appropriate operating system or network protocol. Or, they can investigate
monitoring and management products, since these are likely to contain the monitoring methods and
provide access to the data sources.

Application Example

The following diagram depicts the end-to-end components that support an application flow commonly
seen today - e-business, or the integration of web and classic I/T technologies to build or enhance
business applications:

12
1

2

3

4
5

6
7

8

9

10

11

Router1

Router2

Firewall1 Firewall2

Load
Balancer2

Load
Balancer1

Web Content
Server1

Web Content
Server2 DB2

Database
Server

Users

Internet

Web
Application
Server

1. The users access the application through the internet.
2. Router1 and Router2 connect to the internet.
3. Firewall1 acts as a secure barrier between the internet and the demilitarized zone (DMZ), where the

web content servers are.
4. Load Balancer1 and Load Balancer2 spread the user requests among the Web content servers.
5. Web Content Server1 and Server2 receive the user requests and provide static HTTP content.

Dynamic content is obtained by connecting to Web Application Servers running in z/OS parallel
sysplex.

6. Firewall2 acts as a secure barrier between the DMZ and the Trusted intranet.
7. The Web Application Server runs in multiple address spaces in the parallel sysplex. As long as one

image in the sysplex is running, the Application server can receive requests from the Web Content
Servers, and retrieve information from the DB2 database.

© IBM 2002 Putting It All Together

Finding and Collecting Availability Measurement Data 82

8. The DB2 database subsystem runs in data sharing mode in the sysplex. As long as one image in the
sysplex is running, the DB2 database can receive requests from the Web Application Server, and
provide the appropriate data.

9. The communications protocol used across the application is TCP/IP.

The application components span multiple operating systems and the network. The management
products in use in this environment are:
� Tivoli NetView for OS/390, running Systems Automation for OS/390, for automation and event

management of the parallel sysplex.
� Tivoli NetView, to monitor the network IP resources.
� Tivoli Enterprise Console (TEC), with Tivoli Distributed Monitoring (DM), to monitor the

distributed operating system platform resources.

Using these products, and customized monitoring techniques, the following table describes how
availability information for each of the major components is collected:

Tivoli DM will monitor the
load balancer application
(process), and forward
status changes to TEC.

Tivoli DM process
monitoring

User-Application
Path

Load Balancer1,
Load Balancer2
Applications

NetView will monitor the
load balancer platforms
and forward status traps
to TEC.

PINGsUser-Application
Path

Load Balancer1, Load
Balancer2 Platforms

Tivoli DM will monitor the
firewall application
(process), and forward
status changes to TEC.

Tivoli DM process
monitoring

User-Application
Path

Firewall1 Application

NetView will monitor the
firewall platform and
forward status traps to
TEC.

PINGsUser-Application
Path

Firewall1 Platform

NetView will monitor the
routers and forward status
traps to TEC.

SNMP trapsUser-Application
Path

Router1, Router2

DetailsSource or
Technique

Model CategoryComponent

© IBM 2002 Putting It All Together

Finding and Collecting Availability Measurement Data 83

Tivoli DM will monitor the
firewall application
(process), and forward
status changes to TEC.

Tivoli DM process
monitoring

Application-Data
Path

Firewall2 Application

NetView will monitor the
firewall platform and
forward status traps to
TEC.

PINGsApplication-Data
Path

Firewall2 Platform

Tivoli NetView on
OS/390 will issue a
command to the servlet at
1 minute intervals; the
command response (or
lack of one) will indicate if
the Servlet is available or
unavailable). The results
will be placed into the
data repository.

User SimulationApplicationServlet on Web Content
Servers

Tivoli DM will monitor the
HTTP Server process,
and forward status
changes to TEC.

Tivoli DM process
monitoring

Application
Subsystem

HTTP Servers on Web
Content Servers

A Heartbeat program
running on the platform
will record startup and
shutdown times in a file.
The file will be uploaded
daily into the data
repository.

HeartbeatApplication PlatformWeb Content Server1,
Web Content Server2
platforms

DetailsSource or
Technique

Model CategoryComponent

© IBM 2002 Putting It All Together

Finding and Collecting Availability Measurement Data 84

System Automation for
OS/390 is automating the
startup and shutdown of
the DB2 subsystem; its
status messages will be
saved and the availability
information extracted and
placed into the data
repository.

MessagesData PlatformDB2 subsystem (Address
Spaces)

Tivoli NetView on
OS/390 will issue a
command to the servlet at
1 minute intervals; the
command response (or
lack of one) will indicate if
the Servlet is available or
unavailable). The results
will be placed into the
data repository.

Remote CommandApplicationServlets on Web
Application Server

System Automation for
OS/390 is automating the
startup and shutdown of
the Web Application
Server. SA for OS/390
status messages will be
saved and the availability
information extracted and
placed into the data
repository.

MessagesApplication
Subsystem

Web Application Server
Address Spaces

The SYSLOG will be
processed daily to collect
the messages that show
when the sysplex was
available (at least 1
system active) or
unavailable (no systems
active). The process will
calculate the availability
times and store the
information in the data
repository.

Logs (SYSLOG)Application PlatformParallel Sysplex

DetailsSource or
Technique

Model CategoryComponent

© IBM 2002 Putting It All Together

Finding and Collecting Availability Measurement Data 85

Tivoli NetView on
OS/390 will issue a
command to DB2
requesting the status of
the database at 1 minute
intervals; the command
response (or lack of one)
will indicate if the
database is available or
unavailable. The results
will be placed into the
data repository.

Remote CommandData PlatformDB2 Database

DetailsSource or
Technique

Model CategoryComponent

Functions to create the formatted data layout to run reports can be implemented in two ways:
1. Before the information is sent to the repository. In this example, these functions would reside
� At the TEC, for the availability status events it receives.
� At Tivoli NetView for OS/390, for the messages and remote commands it issues.
� On the parallel sysplex, when the SYSLOG is processed.
� On the Web Content Servers, where the Heartbeats run.

2. Where the data repository is. The repository would receive the data as forward to it, and functions
would then create the common layout, taking into consideration where the data was sent from.

Once the data was in a common format, the reporting function of choice could be used to create
availability reports.

© IBM 2002 Putting It All Together

Finding and Collecting Availability Measurement Data 86

Summary

There are many existing sources of data, produced by systems, networks, and monitoring techniques,
that can be used to determine the availability of individual components. Putting individual component
availability measurements together will provide the ability to accurately measure end-to-end availability -
the availability experienced by application users.

It is not impossible to collect this data, but careful planning data collection is needed. The use of
automation will provide great benefits when collecting information from a wide range of sources, and will
eliminate much of the manual drudgery and potential errors associated with collecting the data.

No single product will do everything; some products will help aggregate data source collection or
monitoring from many sources. Again, careful planning is needed to identify the applications, the key
components, the tools or techniques to measure them, the products to use. and the process to gather,
relate, and report the measurements. Customization of products and data will be required.

This process does not normally require investment in additional products . From the authors'
experience, most installations already have all or nearly all the products they need to start collecting the
data. However, the product functions needed may not be enabled, are not accessible by the
organization that would have to use them, or have not been taught to the organization. These issues must
be addressed before collection can begin. At times, due to these issues, the installation has elected to
invest in additional software primarily for the purpose of collecting availability data.

The measurements based on the collected data may show lower availability than what was reported
before. This happens because:
� Previous manual measurements were not capturing all of the outage incidents accurately.
� With additional components being measured, true overall availability will be less that individual

component availability.

For example, suppose an application requires three key components. Each component reports
availability of 98%. In the simplest scenario (components are completely independent of each other, and
no backup/redundant components exist), availability of the application would be 94.1%. If the
application availability measurement was previously based on a single component, the new measurement
will be lower... but more accurate. In addition, the focus is on improving availability. Accurate
measurements will accurately identify where improvement actions are needed. They will be better suited
for the availability management process, to assist in identifying and addressing causes of unavailability.

Finally, this is only one - and not the only - action to take to move closer to improving availability.
Finding and collecting availability data is a subset with Availability Management. Identifying sources
of component data, collecting the data, and reporting the measurements does not, by itself, improve
availability (as stated above, it may show availability to be worse than it was thought to be). However, it
will provide valuable information for guiding and focusing on

© IBM 2002 Putting It All Together

Finding and Collecting Availability Measurement Data 87

where availability improvements are needed, as well as reveal the effectiveness of actions taken to
improve availability.

© IBM 2002 Putting It All Together

Finding and Collecting Availability Measurement Data 88

Appendix

The following examples are contained in this section:

� z/OS and OS/390 system and subsystem messages
� z/VM Messages
� Communications Server Messages
� OS/400 Messages
� AIX Messages
� Sample REXX heartbeat program
� Sample UNIX shell script heartbeat program
� Sample Java Servlet heartbeat program

The messages are not meant to be an exhaustive list, but to illustrate the type of availability information
that is available. Always check the messages documentation for the
version of the operating system or product being used, for the most accurate and detailed information.

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 89

z/OS and OS/390 Messages

The device is offline and cannot be used.UnavailableDeviceIEE303I
The device is online and can be used.AvailableDeviceIEE302I

The HTTP Server has been shut down.UnavailableHTTP Server
address space

IMW3541I

The HTTP Server is ready to process requests.AvailableHTTP Server
address space

IMW3536I
A DB2 subsystem has been shut down.UnavailableDB2 subsystemDSN3104I

A DB2 subsystem is ready to process application
requests

AvailableDB2 subsystemDSNR007I

An IMS control region abends. UnavailableIMS control
reigon address
space

DFS629I

An IMS control region is ready to being
processing requests.

AvailableIMS control
reigon address
space

DFS994I

A CICS address space has been shut downUnavailableCICS address
space

DFHKE1799

A CICS address space is ready to process
commands.

AvailableCICS address
space

DFHSI1517
An address space has abended.UnavailableAddress spaceIEF450I
An address space has ended.UnavailableAddress spaceIEF404I
An address space is startedAvailableAddress spaceIEF403I
Ian image has been removed from the sysplex.UnavailableSysplex imageIXC105I
An image is being removed from the sysplex.UnavailableSysplex imageIXC101I
An image joins the sysplex.AvailableSysplex imageIXC418I

The operating system is ready to being executing
workloads.

AvailableOperating
System

IEE389I

The system has started to IPL. The time stamp of
the preceding messages are a good indication of
when the system became unavailable.

AvailablePlatformIEA371I
DescriptionStateComponentMessage ID

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 90

z/VM Messages

The system has been shut down.UnavailableOperating
System

HCP961W

The virtual machine has loaded a
disabled wait state PSW and has
stopped processing.

UnavailableVirtual machineHCP450W

Device AAA has been detached from
virtual machine BBB (CCC is the user,
if done by someone other than the
operator).

UnavailableReal or virtual
device

AAA DETACHED
BBB BY CCC

Device AAA has been attached to
virtual machine BBB (CCC is the user,
if done by someone other than the
operator).

AvailableReal or virtual
device

AAA ATTACHED
TO BBB BY CCC

Device AAA is offline.UnavailableDeviceAAA VARIED
OFFLINE

Device AAA is online. AvailableDeviceAAA Varied
ONLINE

Virtual machine AAA is no longer
active; AAA was its CP console.

UnavailableVirtual MachineAAA LOGOFF AS
BBB

Virtual machine AAA is active; BBB is
its CP console.

AvailableVirtual MachineAAA LOGON AS
BBB

DescriptionStatusComponentMessage

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 91

z/OS and OS/390 Communications Server Messages

Depending on the contents of the
message text, this indicates when
the connection to the PU was
established or terminated.

Available or
Unavailable

SNA switched PU node
(including LAN attached SNA
gateways)

IST590I
TCP/IP is ready for processing.AvailableTCP/IP address spaceEZB6473I
VTAM is terminating. UnavailableVTAM address spaceIST133I
VTAM is ready for processing.AvailableVTAM address spaceIST020I

The network node is no longer
active.

UnavailableSNA nodeIST105I

The network resource is
available

AvailableSNA nodeIST093I
DescriptionStatusComponentMessage ID

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 92

OS/400 Messages

Device is not available for
use.

UnavailableDeviceCPF6783

Device is available for
use.

AvailableDeviceCPF6784

Communications is active
and sessions can be
established using the link.

UnavailableCommunications LinkCPI593D

Communications is active
and sessions can be
established using the link.

AvailableCommunications LinkCPF5909

A controller (SNA PU)
has failed; the system will
try to re-establish contact
to the controller.

UnavailableController, workstation
(SNA PU)

CPI5935

A session has been
established with the
controller or workstation.

AvailableController, workstation
(SNA PU)

CPF5908

A subsystem has ended
and is no longer available
to support jobs.

UnavailableSubsystemCPF0927

A job has completed
processing.

UnavailableJobCPF1164

A job has started
processing.

AvailableJobCPF1124

Operating system IPL has
completed; work cannow
be processed.

AvailableOperating systemCPF0934
DescriptionStatusComponentMessage ID

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 93

AIX Error Log messages

The platform is unable to
communicate across an
Ethernet LAN segment.

UnavailableEthernet LAN
segment

DB3E3DFD CSMA/CSD
LAN
COMMUNICATIONS
LOST

A problem was encountered
during a disk read/write/seek
operation.

UnavailableDisk fileA668F553 DISK
OPERATION ERROR

A volume that was previously
inactive is now active and can
be used.

AvailableDisk volume9359F226 Physical volume
is now active

The system has been shut
down.

UnavailableApplication
Platform

2BFA76F6 System
shutdown by user

An error has been received on
a communications link; the link

UnavailableCommunications
link

22E93753 LINK ERROR

An active process has ended
due to an error.

UnavailableProcess0F27AAE5 SOFTWARE
PROGRAM
ABNORMALLY
TERMINATED

DescriptionStatusComponentMessage

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 94

Sample REXX Heartbeat Program

This program is an example of how heartbeat monitoring can be implemented for any platform that
supports REXX.

/* EXEC TO CREATE SYSTEM HEARTBEAT TO TRACK REAL TIME STATUS

 SYNTAX: HBEAT SYSID TMINS TTYPE TSLOG AVADSN

 * SYSID = SYSTEM ID (EXAMPLE: FOR MVS WE USE SMF ID)
 * TMINS = FREQUENCY OF WRITING TIMESTAMPS
 * TTYPE = "IPL" - IF STARTED AFTER SYSTEM IPL
 "AUTO" - IF STARTED BY AUTOMATION
 BLANK - PROBABLY STARTED MANUALLY
 * TSLOG = Name of "last timestamp" file
 (ON z/OS or OS/390, DD Name of "last timestamp" file)
 * AVADSN = Drive and directory to keep log files
 (On z/OS or OS/390, DD Name of availability log file)

 USAGE: THIS PROGRAM, ONCE STARTED, ALWAYS RUNS OR UNTIL A PLATFORM
 OUTAGE. THE PLATFORM SHOULD AUTOMATICALLY START THIS PROGRAM.
*/
ARG SYSID TMINS TTYPE TSLOG AVADSN .

if right(AVADSN,1) <> '\' then AVADSN=AVADSN||'\'
AVADSN = AVADSN||"av"||left(date('S'),6)||".log"

say "starting TIMESTMP on" sysid
DO FOREVER

 /*** STEP 1: create current date/time stamp: sysid yymmdd hhmm ***/

 TEMPSTAMP = TIME
 NEWDATE=DATE('S')
 NEWTIME=LEFT(SPACE(TRANSLATE(TIME(),' ',':'),0),4)
 CTS = SYSID newdate newtime

 /*** STEP 2: read old timestamp and update timestamp log
 with new timestamp ***/

 OLDTS=Linein(TSLOG)
 Y=lineout(TSLOG,CTS,1)
 Z=lineout(TSLOG)

 /*** STEP 3: If ttype = IPL or AUTO, update availability log
 with new timestamp ***/

 if (ttype = "IPL") | (ttype= "AUTO") then do
 avarec.1=left(word(oldts,1),40) "DOWN" word(oldts,2) word(oldts,3),
 "* HEARTBEAT_PROGRAM"
 avarec.2=left(sysid,40) left(ttype,4) newdate newtime "* HEARTBEAT_PROGRAM"

 X=lineout(AVADSN,avarec.1)
 Y=lineout(AVADSN,avarec.2)
 Z=lineout(AVADSN)

 ttype = ttype||"FLAGOFF"
 end

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 95

 /*** STEP 5: wait for TMINS minutes before continuing loop ***/

 /*** NOTE: For Windows NT/2000, segment wait time to allow for
 shutdown interrupt ***/

 sleeptime = tmins*60
 sleep_segment = sleeptime / 5 /* Allow shutdown check every five seconds */
 do j = 1 to sleep_segment
 call SysSleep 5
 end

END
EXIT 0

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 96

Sample Shell Script Heartbeat Program

This shell script is an example of how heartbeat monitoring can be implemented for any UNIX based
platform, including LINUX.

#!/bin/ksh
#
HEARTBEAT availability monitoring program from the UNIX environment

Syntax: hearbeat system_name interval start_type timestamp_file avail_file
#
echo script name: $0
if [[$# -ne 5]]
then
 echo SYNTAX: hearbeart system_name beat_interval start_type timestamp_file
availability_file
 exit 1
fi
scriptname=$0
sysname=$1
interval=$2
start_type=$3
tstamp_file=$4
ava_file=$5
echo
temp1=`date`
logger Starting HEARTBEART on $sysname at $temp1
#

#
while true
do
##
curdate=`date +%Y%m%d`
newtime=`date +%H%M`
newts=$curdate" "$newtime" "$sysname
#echo time: $newtime
##
If timestamp file exists, read it and write out new timestamp
##
test -r $tstamp_file && read oldts < $tstamp_file
echo $newts > $tstamp_file
#echo old time stamp: $oldts
##
If type = IPL or AUTO, update availability log with both old (down)
and new (UP) Timestamp
##
if [$start_type = "IPL"]
then
 set -- $oldts
 outtype1="DOWN"
 outtype2="UP"
 printf "%-10s %-5s %-9s %-6s\n" $sysname $outtype1 $1 $2 >> $ava_file
 printf "%-10s %-5s %-9s %-6s\n" $sysname $start_type $curdate $newtime >> $ava_file
 start_type=$start_type"FLAGOFF"
fi
##
Now pause for beat_interval (convert to seconds)
##

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 97

let beat_interval_secs="$interval * 60"
sleep $beat_interval_secs
temp1=`date`
done

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 98

Example Java Servlet “UpTime” Heartbeat Program

This is an example of how heartbeat monitoring can be implemented for any Web Server that supports a
Java servlets via a servlet engine . The servlet engine (which can be part of a bigger application server
product, such as IBM WebSphere Application Server) is normally started and shut down when the
associated HTTP Server is started and shut down. This servlet code would be loaded at servlet engine
startup. It will log the time that it started. HTTP requests to the server that invoke the servlet return the
length of time the server has been running since it was last started. When the servlet engine shuts down,
it will log the time of the shutdown.

/*UPTIME SERVLET - Does the following:

 - When loaded, writes a message to the System Log
 - When invoked, returns the amount of time since loaded (if loaded at
 WAS startup, this is the amount of time WAS has been active
 - When destroyed, writes a message to the System Log. If only destroyed
 when WAS stops, indicated that WAS is down
*/

import java.io.*;
import java.util.*;
import java.text.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class UpTime extends HttpServlet
{
 long StartupTime;
 Date startdate;
 DateFormat df;

 public void init(ServletConfig config) throws ServletException
 {

 /* Get and save the current date and time */
 super.init(config);
 df = new SimpleDateFormat("yyyy.MM.dd HH:mm");
 StartupTime=System.currentTimeMillis();
 startdate = new Date(StartupTime);

 /* Write a message indicating the servlet engine start */

 try
 {

 System.out.println("Servlet engine active at " + df.format(startdate));
 }
 catch(Exception e)
 {
 System.out.println("UpTime init error: " + e.getMessage());
 }
 }

 public void doGet(HttpServletRequest req, HttpServletResponse res) throws
ServletException, IOException
 {

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 99

 /* Respond to each request with the time stamp of the servlet engine
initialization
 and the length of time it has been running */

 long Ctime, Dtime, htime, mtime, stime;

 Ctime = System.currentTimeMillis();
 Dtime = Ctime - StartupTime;
 htime = Dtime / 3600000;
 mtime = (Dtime - (htime * 3600000)) / 60000;
 stime = (Dtime - ((htime * 3600000) + (mtime *60000))) / 1000;

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

 out.println("<HTML><BODY><P>");
 out.println("Servlet engine started at: " + df.format(startdate));
 out.println("<P>");
 out.println("Servlet engine uptime(ms): " + Dtime);
 out.println("<P>");
 out.println("Servlet engine uptime(h:m:s): " + htime +":"+ mtime + ":" +stime);
 out.println("</BODY></HTML>");
 }

 public void doPost(HttpServletRequest req, HttpServletResponse res) throws
ServletException, IOException
 {
 doGet(req,res);
 }

 public void destroy()
 {

 /* This is only destroyed when the Servlet engine is stopped. Log the time
 of the stoppage. */

 Date stopdate = new Date(System.currentTimeMillis());

 try
 {
 System.out.println("Servlet engine stopping at " + df.format(stopdate));
 }
 catch(Exception e)
 {
 System.out.println("UpTime destroy error: " + e.getMessage());
 }
 }

}

© IBM 2002 Appendix

Finding and Collecting Availability Measurement Data 100

