
J2EE Architecture OverviewJ2EE Architecture OverviewJ2EE Architecture OverviewJ2EE Architecture Overview

(This page intentionally left blank)

The Challenge ...
Your assignment: write a Java application that provides enterprise-strength functionality

Without the benefit of other software products, this would be a lot of work. The
code would probably not port to other platforms, and the code you wrote probably
wouldn't be re-used much.

Code to Maintain a
Directory of Other
Objects and their

Methods

Code to Provide
Access to Objects
and their Methods

Code to Handle
Authentication and

Access Control
Security Issues

Code to Manage
Transaction
Commit or
Rollback

Workload
Management Code

if Scalability
Desired

Database Access
Code

However, you'll
end up focusing
on these issues

in order to
provide

enterprise
strength

Primary Business
Logic

Presentation Logic

This is what you
want to focus on...

The genesis of the J2EE architecture was the dilemma Java programmers faced when they looked to
write code that was more than relatively simply servlet and JSP solutions. When the functional
requirements of the solution being considered included things often associated with enterprise-wide
solutions, the Java developer was faced with the daunting challenge of constructing a great deal of
infrastructure code -- or "plumbing" as it is often referred to as -- rather than focusing on the core
business logic and presentation logic of the solution.

Like every other programming environment in the past, the answer to this dilemma is to have the
server platform vendor provide that "plumbing" as an underlying set of services of the platform. The
problem in the past has always been that each vendor implemented it differently, forcing the application
developers to choose a platform and be thereafter locked to that platform.

The Java programming environment's most significant benefit is the "write once, run anywhere" aspect
of its architecture. This is achieved through a standard specification of what each vendor who supplies
a Java platform must provide to be Java compliant. With such a standard in place, developers could
be assured that their code could be portable across platforms.

The common things that come into play when considering an enterprise application are shown above.
So the challenge was to come up with a way to insure vendors could implement that plumbing
according to a standard.

J2EE Architecture Overview

Version Date: December 27, 20011© 2002, IBM Corporation, Wash. Systems Center

The Vision and Result

Primary Business
Logic Presentation Logic

The Vision:
Come up with a standardized specification for a server platform that provides those services
needed by an enterprise application. Application developers then code their solution using the
services provided by the platform.

Database
Access

Transaction
Mgt.

Remote
Method

Invocation
Directory Security

Workload
Mgt. !!!

Access to Services (APIs and Deployment Values)

Services Provided by Platform

You focus on your
business logic and
presentation needs

The Result:

Sun, in cooperation with industry leaders including IBM, defined the "Java 2 Enterprise
Edition" ("J2EE") specification. This specification defines the functions a J2EE platform
must provide, the structure of the application code to take advantage of the platform,
and the API used by the application code to invoke the functions.

Given the nature of the problem illustrated on the previous page, the vision was to come up with a
standardized specification -- not a product, but a written set of rules and guidelines by which server
platform vendors would guide the development of their offering -- which provided a server with the
necessary services which would be accessible through standard APIs. The application developers
could then focus on the primary business and presentation logic of their solution, and rely on the
services provided with the platform. They would access those services in a standardized way, which
would insure their applications would not be locked to a particular vendor's platform.

The result was the "Java 2 Enterprise Edition" (J2EE) specification. This specification was developed
by Sun in conjunction with other software leaders in the industry. The specification itself is not a
product; it is a published set of functions and interfaces that must be part of a server platform before it
can be called a "J2EE Server." The specification also imposes some structure on the way in which the
developers code their solutions.

As mentioned in the previous paragraph, the specification was just a stack of paper. It required
vendors to take the specification and build an actual J2EE server. IBM did just that for the z/Series
platform ...

J2EE Architecture Overview

Version Date: December 27, 20012© 2002, IBM Corporation, Wash. Systems Center

IBM's Implementation on z/OS

HTTP
and

WAS

Fat
Client

daemon

SMS

Naming

IR Appl1

Appl2

WebSphere 4.0

TCP LDAP DB2 WLM RRS DCE CICS IMS

Base Infrastructure

WebSphere Application Server
Version 4.01 for z/OS and OS/390 is
IBM's implementation of the J2EE
specification for the z/OS platform

J2EE
Specification

IBM
Developers

+ =

You'll be seeing this picture many more
times in this course. It is the logical
representation of the WAS 4.01 structure
on z/OS.

It'll be described in detail in the next
presentation.

IBM developers took the J2EE specification and developed an IBM product called "WebSphere
Application Server Version 4.01 for z/OS and OS/390." That product, known in shorthand as WAS390
or WAS 4.01, is the physical implementation of the J2EE specification.

The diagram to the right of the equal sign in the chart above is the logical layout of the physical
implementation on the z/Series platform. You will see this picture quite a bit throughout this class. The
picture represents the base infrastructure components required by WAS 4.01, as well as the address
space regions that make up the WAS 4.01 "runtime environment." What each box in that diagram
means and how it all relates to one another will be presented in the next section of this class.

The key message here is that the specification comes to life only when a vendor implements the
functions and interfaces spelled out in the specification. IBM has done that for the z/Series platform
(and for the AIX and Intel servers as well). The product is compliant to the J2EE specification to the
applications deployed on the platform; the "gears and wheels" under the cover that makes it all go
consists of many different IBM products tied together into a working system.

Now let's look at the J2EE architecture itself.

J2EE Architecture Overview

Version Date: December 27, 20013© 2002, IBM Corporation, Wash. Systems Center

Basics of J2EE Architecture

This a logical
representation

Platform and Container Services
JDBC, Directory, Transaction, etc.

C
o

n
n

ec
to

rs

EJB Container

EJB
Appl.

Deployed into Container

Web Container

Web
Appl.

Deployed into Container

J2EE Server

Information
Systems (DB2,

CICS, IMS,
MQSeries, etc.)

Clients

Servlet JSP

HTML
GIF/JPG

Web Components

EJB EJB

EJB

EJB Components

The starting point for this discussion is a brief discussion of the two kinds of "components" that go into
a J2EE solution:

! Web Components -- standard Web stuff you're probably already familiar with: Servlets, JSPs,
HTML page and image files.

! EJB Components -- An EJB is a special kind of Java program. EJB stands for "Enterprise
JavaBeans" and they make up the primary building blocks of the application logic and data. We
have a few more charts on what an EJB is, so for now just know that such a thing as an EJB exists.

These components are "deployed into" the J2EE server for execution. The act of "deploying" an
application and its components involves using the tools associated with the platform. We'll cover that
later in this presentation (at a conceptual level), and then in more detail in a later presentation.

The components are deployed into what are known as containers within the J2EE server. Containers
are logical things within the J2EE server -- they are software structures but not actual MVS started
tasks or anything you can easily put your fingers on. But they serve to provide a standardized
execution environment for the components, and they insulate or shield the components from the
underlying complexity of the server platform. There are two kinds of containers: Web Containers (for
web components, naturally), and EJB Containers for EJBs.

To drive the components you need a client to the server portion of this equation. Clients are software
programs that are written to understand how to locate, communicate and execute the methods of the
EJBs in the solution. Clients can exist in several different forms in several different environments, and
those variations are covered in a later chart.

J2EE Architecture Overview

Version Date: December 27, 20014© 2002, IBM Corporation, Wash. Systems Center

Underneath the components and the containers in which they run exists the services available for use.
These services are defined in the J2EE specification and are accessible through standard interfaces.
How the vendor chose to implement the service is up to them as long as the behavior is according to
the specification and the interface as seen by the components is standard.

Most J2EE applications will require data that resides in backend systems outside the J2EE server
environment. These backend systems are things like CICS, IMS and DB2. To access those backend
systems another part of the J2EE specification is brought into play: connectors. Connectors provide
a way for EJBs to access these backend systems in a standardized way. We'll cover these connectors
in concept later in this presentation, and then in much greater detail later in this class.

What's presented in this chart is a logical layout of the J2EE structure. The physical layout of the WAS
V4.0 runtime environment looks different and will be covered in the next presentation.

Let's go a bit deeper, starting with the clients ...

J2EE Architecture Overview

Version Date: December 27, 20015© 2002, IBM Corporation, Wash. Systems Center

Clients

EJB

EJB

EJB

EJB

J2EE Server

Browser

Applet

Web Server

JSP

Servlet

Java
Application

"Client"

"Client"

Clients to EJBs have certain
requirements: how to locate the

EJB and how to communicate with
them. You can't just point a

browser at an EJB.

As mentioned earlier, a client is needed to make things happen on the server side of this equation.
Clients are software programs that are programmed to know how to look up (using the Java Native
Directory Interface -- JNDI) the location of the EJBs, and how to communicate with the EJBs. Clients
are not just browsers; a browser can't talk directly with an EJB. For a browser (or applet, for that
matter) to drive an EJB, they must go through either a servlet or JSP. If that's the method of access,
the "client" is actually the servlet or JSP.

If the client is a Java program, it's often referred to as a "fat client" because the client has this
additional function to know how to interact with the EJB. A fat client can reside and execute in a
number of different places: in the OMVS environment on S/390, either on the same box as the WAS
4.0 runtime or another MVS machine; on another distributed platform like AIX or Windows2000, or
even running in a DOS environment.

For this class we'll be using a "fat client" for some of the labs to verify things work properly, and web
clients (servlets) in other labs.

J2EE Architecture Overview

Version Date: December 27, 20016© 2002, IBM Corporation, Wash. Systems Center

Web Components
J2SE -- "Standard Edition" Platform Specification

These are the standard web components you may already be familiar
with. They can be run and served from the J2EE platform as well.

HTTP
Server

Static
Files

(HTML,
JPG/GIF)

Dynamic
Output
(JSP)

Application
Code

(Servlet)

HTTP Protocol

Browser

HTTP
and
WAS

Fat
Client

daemon

SMS

Naming

IR Appl1

Appl2

WebSphere 4.0

TCP LDAP DB2 WLM RRS DCE CICS IMS

Base Infrastructure

Run in WebSphere
V4.01 Runtime

Run in WebSphere
V3.5 Standard

Edition Platform

WAS 3.5

or

Now let's talk about web components. They consist of static files (HTML, JPG, GIF), files used to
generate dynamic HTML (JSP), and application code in the form of servlets. These web components
are not new to WAS 4.01: they've been around for a few years.

The key here is this: these web components may be run on the WebSphere Application Server
Standard Edition (WAS 3.5) platform (which is a "plugin" to the Webserver on the S/390 box), or they
may be run inside the J2EE Server. When web components are deployed into the web container of a
J2EE server, the web container provides an execution environment that adheres to the Java 2
Standard Edition (J2SE) specification just like the WAS 3.5 runtime provides. This means your
servlets and JSPs do not need to be rewritten (provided the Servlet and JSP specification levels of
your components comply with what the web container provides, which is Servlet spec 2.2 and JSP
spec .91, 1.0 and 1.1).

Standard stuff ... and the point is this: just because we have a new server environment (a "J2EE"
server), it doesn't mean the work you've invested in servlets and JSPs and HTML is wasted. That
investment can be deployed again in the J2EE environment. More on how to do this later in the class.

J2EE Architecture Overview

Version Date: December 27, 20017© 2002, IBM Corporation, Wash. Systems Center

Enterprise Javabean (EJB) Components
In order to be considered an EJB and to run on a J2EE server, the program must
abide by certain standards:

Here's how EJB's are categorized:

J2EE
Specification

Standard EJB
Classes

EJB

Method Method

The specification requires that at
a minimum certain methods be
implemented

You may add more to meet
your business needs

The specification requires that
the services provided by the
platform be utilized

You can't just "roll your own"
and still be an "EJB"

Written in Java

Session Beans

Enterprise Javabean

Stateless Session
Bean

Stateful Session
Bean

Container Managed
Persistence (CMP)

Bean Managed
Persistence (BMP)

Entity Beans

EJBs are Java programs, and they are used in the J2EE environment to provide the implementation of
the business logic and the representation of the business data. They are Java programs, yes, but they
are special in that they must be written to certain standards about how they are structured and how
they behave. The specification calls for EJBs to include (or extend) certain key standard EJB classes,
and the EJBs must implement certain methods so the instances of the object can be created,
managed, and removed. The EJBs must also make use of the underlying services provided by the
platform. A developer can't write their own special handling of these services and deploy it into a J2EE
environment and call it an EJB. (There's an exception to this, and it has to do with managing the
permanent "persistence" of data in a data source. The standard allows some flexibility there.)

EJBs come in several different flavors, and the chart above shows the way they are organized. We'll
cover each of those in the next several charts.

J2EE Architecture Overview

Version Date: December 27, 20018© 2002, IBM Corporation, Wash. Systems Center

Session Beans

J2EE Server

Client

Session
Bean

Stateless Session Beans Stateful Session Beans

Session

Time=1

Session
Ten

seconds
later

Session
One

minute
after that

Each time the
person connects to
the Session bean,
the information
contained by the
bean is the same.

The "state" of the
information is not
maintained between
connections

Person my not get
same instance of
object on return
clicks

It is stateless

Adds item
to shopping
cart

Session

Time=1

Session
Ten

seconds
later

Item=Book
Price=$14.95

Session
One

minute
after that

Item=Book
Price=$14.95

Information
provided by the
client to the bean is
maintained in the
bean.

Each return click
results in client
using the same
instance of object

The "state" of the
information is kept
between
connections

It is stateful

A "session bean" is Java code that maintains non-permanent
information about an EJB client.

A bank application example might be "LoanApprover" bean,
"CarLoanCreator" bean, "Deposit" bean, "Payment" bean --
activities related to a banking application.

A J2EE application might consist of several different session
beans.

One category of EJBs is what's called a "Session Bean." The name is somewhat misleading in that the
purpose of the bean is not just to control the session between client and server. Session beans will
typically contain business logic for various pieces of your overall application solution. The key to
understanding session beans is to realize that the data held in the beans is non-permanent. The data
is held in memory, but not written out to a database (Entity Beans serve that function, which we discuss
next). If the instance of the object is lost, the person on the other side of the client will have to re-type
the information.

An application solution will consist of perhaps many different session beans, each representing a
different piece of the overall solution. An example would be a bank application which might consist of
several different session beans: a "LoanApprover" session bean that has the logic in it to allow a
person to review and approve a pending bank loan; a "CarLoanCreator" session bean with logic to
allow a person to create a car loan application for a customer; a "Deposit" session bean that allows a
bank teller to initiate and process a deposit; and a "Payment" session bean that contains code to
process a customer's payment of loans, utility bills and municipal taxes.

The non-permanent nature of session beans is what is difficult to grasp at first. How can you possible
execute a deposit action if the deposit information isn't permanent? The key to understanding this is to
accept -- for now; we cover this on the next chart -- that the session bean will invoke the methods on
an "Entity Bean" to handle the "making permanent" the information entered by the client. If a bank
teller was interacting with the "Deposit" session bean and had typed in the customer's bank account
number and deposit amount but had not yet committed the deposit, and a server glitch occurred, they
would need to re-key that information when they got back into the system. The information in the
session bean is non-permanent until an entity bean is brought into play to make the data permanent.

J2EE Architecture Overview

Version Date: December 27, 20019© 2002, IBM Corporation, Wash. Systems Center

There are two types of session beans: stateless session beans and stateful session beans. The
difference between the two is somewhat subtle, and it has to do with whether a person driving some
client code gets the same session bean each time they return to the server with a mouse click. We'll
start with stateful session beans.

! Stateful Session Beans

We said that the data in a session bean is non-permanent, but doesn't mean the data instantly
vaporizes; for stateful session beans the data is maintained (in memory, but maintained
nevertheless) as long as that instance of the bean object exists in the server environment. Imagine
you're working with a "ShoppingCart" session bean, and you're happily clicking on things you want
to buy. The bean is maintaining information on the products you desire, but the information has not
been committed to a database; it's just held in memory for now.

Each time you click on a product to add to your shopping cart, your client is connected back to the
same session bean. (The mechanism by which the client flow knows to get back to that bean is
beyond the scope of this presentation. For now, just trust that the instance of the bean you're
working with has a tag of information which is used to route your next mouse-click flow back to this
copy of the bean, and not someone else's.)

Because the information is maintained in the bean, and because each return trip to the server
results in your connecting to the same instance of the bean, it is said that bean maintains its state,
or it is stateful. The shopping cart concept is often used to illustrate this, but that concept is
somewhat clumsy in that most shopping cart implementations in the real world do maintain the
information in a database. But we hope the concept of the data being maintained across time is
apparent.

Without going into too much detail, other considerations come into play when the duration of time
between mouse clicks gets longer and longer. Various connection timeout values will expire if, for
example, you add a product to your shopping cart and then go take a four hour nap. In that case the
instance of the bean would be removed and your data would be lost.

Note:

! Stateless Session Beans

Imagine a scenario where a business activity is very short and very simple. The simple bank
deposit example is a good one to work with. The teller invokes the "Deposit" function of their client
system, and all they enter is the bank account number and amount of the deposit and then hit
"enter." If the bank customer then walks away from the teller session and 30 seconds later another
customer walks up to make a deposit, the teller will again invoke the "Deposit" function. Will the
teller be connected back to the same session bean? Does it matter?

The answer is "probably not" to the first question, and "no" to the second. The nature of the
deposit activity -- from the session bean's perspective; remember, a whole bunch more goes on
behind the scenes after the session bean passes the deposit information along to the entity bean
for permanent storage in the database, but the session bean isn't involved with that -- is very short
lived. The data entered by the teller -- account number and deposit amount -- is passed in by the
client, the session bean is activated, the data is received and passed back to an entity bean, and
the need for the session bean to maintain that data is over. The session bean can be removed, or
set back into a pool for some other teller to come in and use.

Because the data is not maintained between connections, the state of the session bean is
considered to be reset after each use. It is therefore considered to be a stateless session bean.

Several references to "Entity Beans" have been made in that description of session beans. Let us now
go look at those.

J2EE Architecture Overview

Version Date: December 27, 200110© 2002, IBM Corporation, Wash. Systems Center

Entity Beans
J2EE Server

Session
Bean

Entity
Bean Data

Source

An "Entity Bean" is Java code that represents a piece
of "permanent" data, such as a row from a database
table.

Entity Beans interact with a data source that physically
stores the data; this is "persistence"

Entity Beans are typically accessed and acted upon by
Session Beans

Container Managed Persistence
(CMP)

Bean Managed Persistence
(BMP)

Entity
Bean

EJB Container

Container Services

API

"Handle this
for me, okay?"

"Sure, that's
my job."

The low-level work required to connect to the data
source and store or retrieve the information is
handled by the Container. The Bean simply calls
the API and asks for the service.

Entity
Bean

EJB Container

Container Services

API

"I'll take care of
this myself"

"zzzzz..."

The application developer writes the code in the
Bean to manage the persistence, including SQL
statements. Use only when you have compelling
reason to override container services.

Persistor
Code

An "Entity Bean" is Java code that represents permanent data, and that data is made permanent by it
being stored in some storage system like a relational database or other backend system. A typical way
of thinking of these things is to consider a row from a database table, which has, let's say, three fields
with a customer's name, bank account number, and current balance. The entity bean's responsibility is
to hold that information, and to make sure the data it has in its variables is synchronized with the
information committed to the database. In the previous chart's description we talked about a stateless
session bean interacting with an entity bean and passing deposit information. The session bean
invoke the "create" method of the an entity bean, which would create an instance of the entity bean to
hold the customer's balance information. Upon receiving the deposit amount, the entity bean would
update the balance value which is then written to the database.

These examples are intentionally simple in nature to get across a point. In a real banking application more
than just an update to the balance variable would take place. For example, the deposit amount, along with
the date and time and probably the branch location would be captured as well so that a transaction history
could be maintained.

Note:

There are two kinds of entity beans: Container Managed Persistence (CMP) entity beans and Bean
Managed Persistence (CMP) entity beans. The difference between the two is who does the grunt work
to get the data into or out of the database.

In a CMP bean, the application developer writes his or her code to ask the "container" (the logical
structure inside the J2EE environment and in which the EJB is running) to handle that work. That is
one of the "services" the container provides. The application developer doesn't code the bean to
manage the persistence, they code the bean to have the container manage the persistence. Hence
the name Container Managed Persistence (CMP). The code that handles the interaction with the data
source is called the "persistor code," and it is generated by the tools (VisualAge or the AAT tool in the

J2EE Architecture Overview

Version Date: December 27, 200111© 2002, IBM Corporation, Wash. Systems Center

case of WAS 4.0). The application developer doesn't even have to code any SQL; the container
(which has been provided information about the database tables and fields to which the bean's data
variables are associated by the person who "deployed" the application into the container) does the SQL
grunt work under the covers.

In the case of a BMP bean, the application developer has chosen to code that grunt work into the logic
of the bean itself. This is permitted by the J2EE specification because the designers of that
specification knew the container couldn't be given infinite flexibility for all issues of persistence. If the
bean is coded as a BMP, the container will step back and let the bean do the hard work, providing
other services to the bean but not managing the persistence of the data as closely as would be the
case with a CMP.

J2EE Architecture Overview

Version Date: December 27, 200112© 2002, IBM Corporation, Wash. Systems Center

Structure of Session and Entity Beans

Bean
Class

Remote
Interface

Home
Interface

Primary
Key Class

EJBObject
Class

EJBHome
Class

ORB, stub and
skeleton
classes

Bean
Class

Remote
Interface

Home
Interface

EJBObject
Class

EJBHome
Class

ORB, stub and
skeleton
classes

Session
Bean

These classes are created or implemented by
the development tool or application assembly

tool, depending on which you choose to use to
create these classes

Clients use this
interface to create

or remove an
instance of the

object

Clients access the
methods of the Bean

Class through the
remote interface

Entity
Bean

The Bean Class contains the
data for the bean, and
includes the developer

implemented methods used
to access the data.

A Primary Key class is
only used for Entity
Beans. They allow a
specific instance of a

bean object to be
located and used

Here's where the discussion gets a little deeper into the makeup of the bean itself. This level of detail
is being presented because some of the concept here will serve you later when the issues of the
"naming server," "JNDI," "LDAP" and application assembly and deployment come into play.

! Bean Class

This is the Java code written by the application developer. Interestingly, the methods and
interfaces of this code are not exposed to the clients (the "Remote Interface" serves that role). The
bean class contains the business logic the developer has written as part of the total application
solution.

! Home Interface

The Home Interface is used by clients to locate, create and remove instances of the object. When
a client wishes to invoke the various methods of the bean class, it'll use the "remote interface." The
"home interface" is used to manage what's called the "life cycle" of the object: its creation, its
in-use state, and its removal. Information about the interface is provided by the deployer of the
application; the actual class file that implements the interface is called the EJBObject class, and
that class file is generated by the deployment tools when the application is deployed.

! Remote Interface

The Remote Interface is used by clients when they want to get at the methods coded into the bean
class held inside the EJB. Clients never directly access methods of a bean class. Like the home
interface, information about the remote interface is provided by the deployer of the application and
the actual class file that implements the interface (EJBHome class) is generated by the deployment
tools.

J2EE Architecture Overview

Version Date: December 27, 200113© 2002, IBM Corporation, Wash. Systems Center

! Primary Key Class

This class is unique to entity beans. It provides a unique identifier for the instance of the entity
bean object. Remember that entity beans represent data, such as a person's bank information and
balance. One instance of the bean object might be for "Mr. Jones' account" and another instance
of the bean object is "Ms. Smith's account." Something has to keep them separated, and the
primary key serves this function. In the case of a bank account record like this, the account
number (presumably unique) would probably serve as the primary key information contained in the
Primary Key Class.

! EJBObject Class

Earlier we stated that information about the remote interface is provided by the deployer of the
application, but the actual class file (the honest-to-gosh compiled bytecode for the interface) is
generated by either VisualAge for Java (as an example of a development tool) or by the application
assembly tool The EJBObject Class is that the actual class file that implements the functions of the
"remote interface."

! EJBHome Class

This is the compiled Java class file that implements the functions of the "home interface." Like the
EJBObject Class, this is generated by the development or application assembly tool.

! ORB, stub and skeleton classes (and finder helper and persistor classes for entity beans)

Finally, the development tools generate a handful of other class files that comlete the EJB picture.
The ORB is the "Object Request Broker," and is code used when one object wishes to
communicate with another object. The stub and skeleton classes are needed for Remote Method
Invocation (RMI -- the ability to drive a method of an object when that object resides in a different
execution environment). The finder helper and persistor classes are implemented for entity beans
to aid in the locating of specific entity beans and to help with the interaction with the persistance
service.

J2EE Architecture Overview

Version Date: December 27, 200114© 2002, IBM Corporation, Wash. Systems Center

EJB and Web Containers

Standard APIs to the underlying
platform services

To
o

ls
to

u
n

d
erstan

d
th

e
d

ep
lo

ym
en

t
d

escrip
to

r
file

fo
rm

ats

EJB
Application

EJB Container

Standard APIs to the underlying
platform services

Web
Application

Web Container
J2EE Server

Containers are logical structures in your J2EE server.

Each J2EE Server will have two containers: "EJB" and "Web"

Your EJB Applications and Web Applications are deployed into containers

You'll learn later that these are created for you at "Server Instance Creation"

To
o

ls
to

u
n

d
er

st
an

d
th

e
d

ep
lo

ym
en

t
d

es
cr

ip
to

r
fi

le
fo

rm
at

s

Java Virtual Machine (the Java Runtime Environment -- JRE)

The EJB and Web components discussed earlier are deployed into, and run inside, things called
"container." These containers are logical structures within the J2EE server, not "things" you can put
your finger on. These containers provide the execution environment for the components, and they
shield, or insulate, the underlying platform implementation from the components.

There are two kinds of containers: "EJB Containers" and "Web Containers." The type of component
that runs in each is implied by the name. Any given J2EE server has one of each. The creation of the
containers is something done for you when you create the J2EE server; however, there is additional
configuration of the containers that you do after the server has been created.

These containers provide three primary things to the components inside them:

! A Java Runtime Environment (JRE)

EJB components and Web components are quite different from one another, but both require a
Java environment to execute. The specification says each container must have a JRE so Java
programs may run.

The chart above shows a single box representing the JVM spanning both containers. That's because
both containers are going to share the same JVM. There is one JVM per J2EE application server, and
that one JVM is controlled by a single jvm.properties file. Therefore, you can tune your JVM down
to the application server level, but not down to the container or application level. If you have an
application that requires a unique JVM environment, you may define a separate application server for
the application and then tune that server's jvm.properties file specific to the application. More on how
to do that later.

Note:

J2EE Architecture Overview

Version Date: December 27, 200115© 2002, IBM Corporation, Wash. Systems Center

! Standard APIs

Developers of the components require a standard environment to write code against, otherwise
they would have to code differently for each vendor's J2EE implementation. The specification calls
for the interfaces to the underyling services be according to the standards. Developers can be
assured that if they write code to the standard interface, their code will run on any vendor's J2EE
platform.

! Tools to Understand the Deployment Descriptors

Applications are deployed into the containers with files called "deployment descriptors." These are
XML-based files that contain information about how the application is to behave and run. The
containers have the ability to read and understand the deployment descriptors. This provides those
who deploy the applications the ability to focus on a standard process for creating and coding these
XML files, without regard to the platform in which the application will be deployed.

J2EE Architecture Overview

Version Date: December 27, 200116© 2002, IBM Corporation, Wash. Systems Center

Platform and Container Services

Deployment Service
Provides services to deploy applications into runtime and generate required additional
class files

Security Service
Provides authentication and authorization services for EJBs

Workload Management
Provides the ability to scale the solution by running the running multiple instances of
the server.

Persistence Service
Provides services that will make permanent (write to DB) the values of entity bean
values

Naming Service
Provides a directory service so that objects and their methods can be recorded and
retrieved programmatically

Transaction Service
Provides a way to identify components of an application as belonging to a transaction,
and a way to treat the collection of activities as an atomic unit, including rollback

Platform and Container Services

EJB Container Web Container

EJB
Appl.

Web
Appl.

Deployed into Container Deployed into Container

J2EE Server

WAS 4.0
Code

RACF

WLM

DB2

LDAP

RRS

WAS 4.01 code plus
other S/390 products
used to provide these
services

This presentation has made many references to the "underlying services of the J2EE server." These
services are part of the J2EE specification, and any vendor looking to implement the specification into
a real product (as IBM did with WAS 4.01 for z/OS and OS/390) must implement the services. The
services are shown and described above.

Now, the specification does not say how the services are to be implemented, only that they be provided
and access to them be through standard interfaces. The gears and wheels under the interfaces may
be implemented in any manner the vendor feels works to their advantage. The developers of WAS
4.01 for z/OS and OS/390 took a look at the services and decided many of them can be implemented
using existing OS/390 products. That is why, as this class goes on, you'll see these other products
brought into play while creating servers and deploying applications.

The physical structure of the WAS 4.01 structure will be presented in the next presentation. For now,
just be aware that the services have standard interfaces, but IBM has used existing components, in
conjunction with new WAS 4.01 code, to implement the services.

J2EE Architecture Overview

Version Date: December 27, 200117© 2002, IBM Corporation, Wash. Systems Center

Connectors

EJB
Resource
Adapter

The "Connector"

S
tan

d
ard

A
P

I

J2EE Server

Standard J2EE Platform Services
(Transaction, Security, etc.)

"EIS"
Enterprise

Information
System

Client

The "Resource Adapter" is provided by backend
system vendors (like IBM). You deploy it into
your J2EE Server much like other applications

Outside the
realm of the
J2EE Server

Example:
CICS

The Connector Architecture provides a standard way to access traditional
backend systems such as CICS and others. Vendors supply a "Resource Adapter"
which deploys into J2EE server. You code your EJBs to access API of connector,
and it does the "behind the scenes" work.

The designers of the J2EE specification provided a standard service for access to relational databases
(this is the JDBC service). However, they also knew that a great deal of important data is stored in
other backend systems other than relational database systems. These other systems, known as
"Enterprise Information Systems" (EIS), are things like CICS, IMS, SAP, etc. The designers did not
want to make access to every known EIS a requirement for every instance of a J2EE server, so they
provided an architecture that defines something called a "Resource Adapter." These adapters, or
"connectors," are software components deployed into your enviornment much like other applications,
but their purpose is to provide access to the EIS.

The connector has a standard API on the J2EE-side of the picture. This allows developers of J2EE
components the ability to write to a known set of standards, and be confident their code will be portable
to other platforms if required. On the "backend" of the connector is code that does whatever is
necessary to make connections to the EIS in question. In addition, the connectors make use of the
standard services of the J2EE platform for things like transaction management and scalability.

Vendors of the EIS will be the ones who write and deliver the connectors. If you have a J2EE server
installed at your location and you have an EIS such as CICS to which you need to connect, you acquire
the connector from IBM and deploy it into your environment. If later you decide you wish to give J2EE
components access to, say, a PeopleSoft server, and the folks at PeopleSoft have a connector
available, you would deploy that connector.

The subject of connectors will be explored in greater detail later in this class.

J2EE Architecture Overview

Version Date: December 27, 200118© 2002, IBM Corporation, Wash. Systems Center

Application Assembly and Deployment

JARClass
Files

EJB #1

Class
Files

EJB #n

Class
Files

Deployment
Descriptor
(XML File)

Web Application(s)

+

HTML JPG
GIF JSP

JAR

WAR

Application
Descriptor
(XML File)

EAR

JAR

JAR

WAR

J2EE Server

The Deployment Descriptors are
read during deployment and server
startup to tell the Server about how
to handle the application.

Deployment
Descriptor
(XML File)

+

Deployment
Descriptor
(XML File)

+

We have described two kinds of components in the J2EE world: EJB components and Web
components. Some number of components make up an "application," and the act of installing these
applications on your J2EE server is known as "deploying" the application.

The J2EE specification defines the structure of the packaging for the application. The packaging
involves different files and files called "deployment descriptors." Let's look at how this fits together:

! Packaging EJBs

EJBs are Java programs with a requirment to adhere to certain standards as described earlier in
this presentation. Java programs -- and EJBs -- are typically developed using a development tool
like IBM's VisualAge for Java. When the EJB is fully developed, the packaging for it is something
known as a JAR file. JAR files have a ZIP format and contain the various class files required by the
EJB (see "Structure of Session and Entity Beans").

JAR files contain EJBs, but JAR files themselves can't be deployed into the J2EE server. The
JARs need to be incorporated into another file type called an "EAR File." That's described in a bit.

! Packaging Web Applications

Web applications consist of not only Java class files, but other static components like HTML pages,
JSP pages and GIF/JPG image files. Web applications are often generated with a tool such as
IBM's WebSphere Studio. When the application is ready to go, the files are placed in a WAR file.
WAR stands for "Web ARchive." WAR files have a ZIP format just like JAR files, but contain web
applications and not just Java class files. The WAR file has a "deployment descriptor" XML file as
well. That deployment descriptor is read at deployment time and at server startup time to provide
the server with knowledge of how to handle the web application.

J2EE Architecture Overview

Version Date: December 27, 200119© 2002, IBM Corporation, Wash. Systems Center

WAR files can't be deployed directly into a J2EE server, just like JAR files can't. You need to
package the WAR (and JARs) into an "EAR File."

! Packaging J2EE Applications

When you have the JARs and WARs ready to go, you bundle them up into what's called an EAR
file. EAR files are ZIP format files as well, and they too have a "deployment descriptor" XML file.
The tool used to generate EAR files for the WAS 4.0 for z/OS platform is called the "Application
Assembly Tool" (AAT), and it will create the EAR file as well as generate class files described in the
chart "Structure of Session and Entity Beans" earlier in this presentation. The output from the AAT
is a file with an extension of EAR, and that file is what you deploy into the J2EE environment.

The act of deploying the application into the J2EE environment involves using the management
interface tool of the J2EE server platform. In that process you will point to the EAR file to be deployed,
provide a few bits of additional information, then tell the tool to deploy it into the server. That process
will be discussed in greater detail later in this course.

J2EE Architecture Overview

Version Date: December 27, 200120© 2002, IBM Corporation, Wash. Systems Center

Activities and Roles

Systems Management of the Overall Environment

Establis
h

Infra
stru

cture

Bootstra
p and

Verify
Enviro

nment

Deploy

Applicatio
n

Maintain

Applicatio
n

Plan
Application

Develop
Application

Assemble

Applic
atio

n

Create
Server

Instance

Area of primary
focus for this

class

The J2EE specification also defines various "roles" that people will perform as part of the overall
operation of your server environment. This picture expands on those defined roles and includes the
activities related to seting up the environment, as well as maintaining it.

! Establish Infrastructure

For the WAS 4.01 for z/OS environment, the establishment of the infrastructure involves not only
installing the product, but running through a series of jobs that defines things like the WLM
application enviornments, RRS log steams, RACF definitions, DB2 table creation, etc.

! Bootstrap and Verify Environment

Once the infrastructure is in place, the WAS 4.01 environment needs to be initialized. This process
is called "bootstrapping the server," and that involves running several jobs that populates the DB2
tables and LDAP naming space with information about the server. Once "bootstrapped" the
environment is ready for the creation of server instances.

! Create Server Instance

The WAS 4.01 environment supports the creation and running of multiple server "instances"
(comprised of a "control region" and some number of "server regions" ... more on this later).
Applications are deployed into server instances, so at least one needs to be created. This involves
using the "Systems Management End User Interface" (a PC-based graphical tool supplied with the
product that connects to the Systems Management server region and allows you to execute
functions on the S/390 box from your PC) to set the definitions for a server instance, and then
running a few jobs to create RACF IDs and WLM application environment in support of the server
instance.

J2EE Architecture Overview

Version Date: December 27, 200121© 2002, IBM Corporation, Wash. Systems Center

! Assemble Application

The act of assembling the application involves taking the various piece-parts of the application and
packaging them up in to the EAR file. The tool you use to do this is the Application Assembly Tool,
a PC-based application provided with the WAS 4.01 product. Once the EAR file is created, the
next step is "deploying" the application.

! Deploy Application

Deploying the application involves taking the EAR file, bringing it into the Systems Management
End User Interface, and then having the Systems Management tool FTP the EAR file up to the
S/390 box and performing the steps it does to put the application into the HFS, update the DB2
tables and register the application in the LDAP naming space. All that sounds complicated, but
much of it is done by the tool and server and requires little more than clicking of the mouse.

! Maintain Application

Once an application is deployed and is in operation, the standard efforts to maintain the application
come into play. This phase has little to do specifically with the J2EE environment, and more to do
with what has traditionally been the activities involved with maintaining an application: monitoring
its operation, performing problem determination and developing fixes as needed, maintaing some
kind of change-control mechanism for the application, fielding suggestions and complaints from the
users, and performing periodic maintenance.

! Plan Application

When a J2EE application is still in the planning phase, the application designers and developers
get together and architect the application, mapping out the sources of input data, the structure of
saved data, the flow of the user-interface environment, and the flow of the internal logic. This
requires some knowledge of the EJB development environment, but is not so much platform
dependent.

! Develop Application

At some point the developers have to put their heads down and start coding.

! Systems Management of the Overall Environment

When all is said and done, you'll have a S/390 environment running this new thing called WAS 4.01
for z/OS and OS/390. It'll also have all the other things you've grown accustomed to maintaining:
RACF, DB2, CICS, etc., etc. This phase involves things like backup and recovery planning,
maintenance planning, resource usage monitoring, etc. All the things you have done for years with
your S/390 system continues when the WAS 4.01 server is also part of the mix.

End of Document

J2EE Architecture Overview

Version Date: December 27, 200122© 2002, IBM Corporation, Wash. Systems Center

