
Introduction to PolicyIVP Introduction to PolicyIVP Introduction to PolicyIVP Introduction to PolicyIVP 
Construction LabConstruction LabConstruction LabConstruction Lab



(This page intentionally left blank)



Overview of PolicyIVP Application

PolicyIVP.ear

SMS EUI
HTTP
and
WAS

Fat
Client

daemon

SMS

Naming

IR Appl1

Appl2

WebSphere 4.0

TCP LDAP DB2 WLM RRS DCE CICS IMS

Base Infrastructure

WAS Runtime Environment

This is what you did in an earlier lab ...

And this is the application you deployed ...

Stateless
Session Bean

CMP Entity
Bean

BMP Entity
Bean

WASASR2 Application Server DB2 V7

BBO.POLICYDO

TableJD
B

C

OMVS

Java Client
Code

(not an EJB)

Utility ClassesUtility Classes

Client-side
Bindings

The "PolicyIVP" application is something shipped with the WAS 4.01 code and is used to verify the
workings of your environment. In an earlier lab you were given the "EAR" file that contained the
PolicyIVP application, and you used the SMS tool to deploy that application into the WASASR2 server in
the WAS 4.01 runtime.

The PolicyIVP application is a relatively simply application consisting of one session bean and two
entity beans:

! Session Bean -- this bean is stateless, meaning that every time a client connects and invokes the
bean, the state of the bean is the same each time. Each client will get a copy of the bean that is
identical to every other client's copy of the bean. Since there's no state, there no need to maintain
any persistence for the session bean. The session bean has no connection to the database; it's
whole function is life is to perform the very limited logic of this application and to drive one of the
entity beans to store or retrieve data.

! CMP Entity Bean -- this bean is used to represent a row from the database table BBO.POLICYDO.
Each row in that table represents a different "policy" (such as an insurance policy of some kind).
The CMP is invoked by the session bean whenever DB access is required and the client has
requested that the CMP bean be used (the client passes a parameter requesting which bean to
use; you'll see that in a few charts). This bean relies on the services of the EJB container to
perform the JDBC connection setup and SQL statement execution. Access to DB2 is via JDBC.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 20021© 2002, IBM Corporation, Wash. Systems Center



! BMP Entity Bean -- this bean is also used to represent a row from BBO.POLICYDO. The
difference between this bean and the CMP bean is that the JDBC connection setup and SQL
statement execution is handled inside the bean. That means the developer of this bean had to
provide that code. Because the bean itself manages the persistence, the name "Bean Managed
Persistence" is applied. Again, just like with CMP, this bean is driven when the client requests that
BMP persistence be used. Access to DB2 is via JDBC.

In addition to those three beans, there are a few other pieces that come into play:

! Client -- the application needs a client to drive the session bean, and this code provides it. The
client code is not part of the EAR file you deployed earlier. It is shipped in one of the WAS HFS
directories, and the shell script you invoked drove the code that was in that directory.

! Utilities -- a handful of utility class files are bundled up into a JAR file called PolicyUtil.jar. These
utility class files are required by the beans to function. They are also required by the client.

! BBO.POLICYDO -- this is a DB2 table we created as part of the setup for this class. It's a very
simple table consisting of just three columns. The application uses this table to maintain
persistence of data entered by the client.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 20022© 2002, IBM Corporation, Wash. Systems Center



High-Level of Application Flow

Client
Code

Session
Bean

"Tran1"
Method

"Tran2"
Method

Entity
Bean

Entity
Bean

PAMOUNT PNUMBER PPREMIUM

11 1111 150

11 7777 300

Table: BBO.POLICYDO

Input:
JNDI name: (name)
Persistence: "bmp"

Policy1=1111
Policy2=7777

Policy2=7777

Entity
Bean

PAMOUNT PNUMBER PPREMIUM

11 1111 150

11 7777 300+88=388

Table: BBO.POLICYDO

"1111"

"7777"

1

2

3

45 6

7

First running with "BMP" Persistence

Entity
Bean

"7777"

8

(Hardcoded numbers are different for CMP; logic
slightly different on second running and beyond)

This chart illustrates what happens when you run the PolicyIVP application. This example illustrates
the first running when "bmp" persistence is chosen.

The hard-coded values used when "cmp" is the parameter passed in are different from "bmp". The logic is
the same, though. Also, if the bean already exists (the row exists in the table) then the application simply
adds a fixed value to the PAMOUNT column and that's it.

Note:

1. Client is invoked and takes as input two values: the JNDI name of the Session bean's home
interface, and either "bmp" or "cmp" as the choice for which type of persistence is requested.

2. In this example "bmp" is chosen. The client code then performs a JNDI lookup of the session bean
and then drives the "tran1" method, passing the fixed values "1111" and "7777" in as Policy
Number 1 and Policy Number 2.

3. The session bean receives the input and turns to drive the BMP entity beans. Since this is the first
running it need to create them, which it does. The creation of the entity beans results in the row
being created in the database table.

4. The PNUMBER column serves as the unique index to that table, and the values 1111 and 7777 are
placed in the column for each row.

5. The fixed value "11" is added to whatever is presently in the PAMOUNT column. On first running the
column is empty, so the result is a value of 11 in the column for each row.

6. The fixed value "150" is inserted into the PPREMIUM column for the first Policy, and "300" inserted
into PPREMIUM for the second Policy. The "tran1" method is now done.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 20023© 2002, IBM Corporation, Wash. Systems Center



7. The client now drives "tran2." It passes in only the second Policy Number, which is 7777. The
entity bean already exists, so the session bean doesn't need to instantiate it.

8. The logic for "tran2" simply has the session bean add the fixed value "88" to the value found in
PPREMIUM column. The result in that column after "tran2" is run is 388.

That is a high-level illustration of the running of this application.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 20024© 2002, IBM Corporation, Wash. Systems Center



Example

Shell
Script

Fat
Client

Session
Bean

PAMOUNT PNUMBER PPREMIUM

11 1111 150

11 7777 300+88=388

33 2222 375

33 8888 450+176=626

Table: BBO.POLICYDO

Session bean's home
interface JNDI name

Fat client's class file
package name

BMP
or

CMP

java -DSESSION_NAME=/WSLPEX...PolicySessionHome com.ibm...TestClient bmp

java -DSESSION_NAME=/WSLPEX...PolicySessionHome com.ibm...TestClient cmp

ejbivp.sh

BMP

BMP

CMP

CMP

Key: 1111

Key: 7777

Key: 2222

Key: 8888

Key Column

For new BMP bean
(CMP same logic, different numbers)

TRAN1:
Set PNUMBER field to values passed in
Add 11 to PAMOUNT field
Set PPREMIUM column to 150 and 300

TRAN2:
Add 88 to second PPREMIUM field

For BMP:
Policy1=1111
Policy2=7777

For CMP:
Policy1=2222
Policy2=8888

Let's run through an example of a single invocation of the shell script:

! The shell script is used to invoke the "fat client" twice: once with a parameter of "bmp" (to invoke
the "bean managed persistence" entity bean function), and once with a parameter of "cmp" (to
invoke the "container managed persistence entity bean function). The format of the shell script's
entry that invokes the fat client is shown in the chart above: first the JNDI home interface of the
session bean to which the fat client will connect is provided as a Java parameter, then the fat client
itself is invoked, and finally the parameter "bmp" or "cmp" is provided.

! The fat client's purpose is rather simple: connect to the session bean, tell the session bean
whether BMP or CMP persistence is desired, pass in two "policy" numbers, and drive the session
bean's "tran1" and "tran2" methods. The fat client has hard-coded policy numbers in it: 1111 and
7777 for BMP, 2222 and 8888 for CMP.

So for the first invocation of the fat client, bean managed persistence (BMP) is requested. The fat
client drives the "tran1" method of the session bean and passes in 1111 and 7777, and upon
completion of that it drives "tran2" and passes in just the second number, 7777.

! On the first invocation with "bmp" requested, the session bean's "tran1" method is driven first with
the numbers 1111 and 7777, and then with "tran2" just 7777 is passed in. For "tran1" the session
bean first checks to see if the BMP bean with key 1111 and 7777 exists, and if not, it creates them.
It sets the policy numbers of 1111 and 7777 as the entity bean's primary key class value (making
them uniquely identifiable). For "tran1" it adds the value 11 to each bean's PAMOUNT value, then
the values 150 to the first bean's PPREMIUM value and 300 to the second bean's PPREMIUM
value. For "tran2" (remember, only the second value 7777 is passed in for "tran2"), the value 88 is
added to the second bean's PPREMIUM. Thus ends the first invocation of the fat client.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 20025© 2002, IBM Corporation, Wash. Systems Center



The logic for the second invocation of the fat client -- with CMP persistence requested, is the same.
The numbers are different, however. The policy numbers passed in are 2222 and 8888, and the
amount added to the PAMOUNT column is 33 rather than 11. The amounts added to the
PPREMIUM column is 375 and 450, and the value added in "tran2" is 176.

When all is said and done, the database table BBO.POLICYDO is left with the values shown in the
chart.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 20026© 2002, IBM Corporation, Wash. Systems Center



The Database Table
What's in BBO.POLICYDO after one successful run of "fat client":

---------+---------+---------+---------+---------+---------+--
PAMOUNT PNUMBER PPREMIUM

---------+---------+---------+---------+---------+---------+--
+0.1100000000000000E+02 1111 +0.1500000000000000E+03
+0.1100000000000000E+02 7777 +0.3880000000000000E+03
+0.3300000000000000E+02 2222 +0.3750000000000000E+03
+0.3300000000000000E+02 8888 +0.6260000000000000E+03

Fat Client drives BMP first
with Policy number values

of "1111" and "7777"

Fat Client drives CMP next
with Policy number values

of "2222" and "8888"

For BMP it sets PAMOUNT value
to 11 for BMP, and 33 for CMP.
First run of fat client results in

initial values shown

PPREMIUM values set:
BMP

Policy 1 = 150
Policy 2 = 300 + 88

CMP
Policy 1 = 375
Policy 2 = 450 + 176

Message: contents of DB represents persistence. Two forms: CMP and
BMP. Fat client used both to get four policy numbers along with payment

amount and premium values into database

PAMOUNT and
PPREMIUM are

"FLOAT" columns

The previous two charts made mention of the database table BBO.POLICYDO. Here's what that table
looks like after one run of the fat client code. The PNUMBER column contains the policy numbers
passed in by client and is the key. Numbers in this column must be unique. The column is defined as
INTEGER. The PAMOUNT (payment amount) and PPREMIUM (policy premium) columns are defined as
FLOAT columns. The statements used to create this table are:

CREATE TABLESPACE POLICYTS
IN BBOMDB01
SEGSIZE 4
LOCKSIZE ROW
CLOSE NO;

CREATE TABLE BBO.POLICYDO
(
PAMOUNT FLOAT NOT NULL ,
PNUMBER INTEGER NOT NULL ,
PPREMIUM FLOAT
, PRIMARY KEY
( PNUMBER ))
IN BBOMDB01.POLICYTS;
CREATE UNIQUE INDEX POLICY01

ON BBO.POLICYDO (PNUMBER ASC)
CLOSE NO;

The fat client drives the sessin bean twice: once for BMP and once for CMP. From this picture you can
see the resulting information in the table. You can also see the evidence of the fixed numbers
employed in the session bean. The purpose of showing you this is to make the application and its
actions "real." The whole EJB thing might be somewhat mysterious, but a real DB2 table is something
for which many will have familiarity.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 20027© 2002, IBM Corporation, Wash. Systems Center



The Client Code

else if (args[0].equals("bmp")) {
System.out.println("*********** bmp bean will be run!");
policyNo1=1111;
policyNo2=7777;

}
else if (args[0].equals("cmp")) {

System.out.println("*********** cmp bean will be run!");
policyNo1=2222;
policyNo2=8888;

System.out.println("Lookup policy session home");
java.lang.Object objHome = ctx.lookup(homeName);
:
:

policySession=home.create()
policySession.tran1(args[0],policyNo1,policyNo2);
:

policySession=home.create()
policySession.tran2(args[0],policyNo2);
:

System.out.println(args[0]+" IVP has completed successfully");

... com.ibm.ws390.samples.ivp.client.TestClient bmp

... com.ibm.ws390.samples.ivp.client.TestClient cmp

ejbivp.sh shell script
Shell script drives the client
code twice: once requesting

BMP, the second time
requesting CMP

Inside the client code the
values for the two policy

numbers are set according to
what persistence type

requested (BMP or CMP)

Lookup of session bean's
home interface performed

(based on parameter passed in from
shell script; detail of that not shown

here)

Finally, it creates an instance of the policySession object and
drives the session bean's "tran1" and "tran2" methods, passing in

the parameters as shown

Now let's take a look at the Java source for the "fat client." This code came straight out of VisualAge
for Java. Not all of the client's source code is represented here; this is just a few snippets.

! You start with what the shell script will send when it invokes the session bean. There are two lines
in that shell script that invoke the bean, so it's actually driven twice. The first time the BMP bean is
requested and the second time the CMP bean is requested.

! In the client's source you'll see where the two policy numbers are being set based on hard-coded
numbers. For BMP the values are 1111 and 7777; for CMP the values are 2222 and 8888.

! A little further down the client does a lookup for the session bean's home interface based on a
variable called "homeName." That variable is set based on the string passed in from the shell
script. That detail is not shown here, but the point is the client must first find the session bean's
home interface before it can create an instance of the bean and drive it.

! Once the session bean is "fluffed up" (an instance created), the bean's "tran1" method is driven
with the choice of BMP or CMP passed in as args[0], and the two policy numbers set earlier
passed in as well.

! After "tran1" is driven, "tran2" is driven, this time with the CMP/BMP choice passed in and just the
second policy number.

If all goes well, you get the message indicating things ran successfully.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 20028© 2002, IBM Corporation, Wash. Systems Center



The Session Bean

if (beanType.equals("bmp")) {
System.out.println("Running a bmp bean");
com.ibm.ws390.samples.ivp.ejb.PolicyBMPHome home= null;
com.ibm.ws390.samples.ivp.ejb.PolicyBMPKey key1 = null, key2 = null;
com.ibm.ws390.samples.ivp.ejb.PolicyBMP policyBean1 = null, policyBean2 = null;
System.out.println("Lookup bmp policy home");
try {
objHome = ctx.lookup("java:comp/env/ejb/ivp.policybmp");

}

System.out.println("Finding bean1 - " + ((new Long(policyNo1)).toString()));
key1 = new com.ibm.ws390.samples.ivp.ejb.PolicyBMPKey(policyNo1);
try {

policyBean1 = home.findByPrimaryKey(key1);
}
catch (javax.ejb.ObjectNotFoundException e) {
try {

System.out.println("Bean1 does not already exist, creating bean1");
policyBean1 = home.create(policyNo1);

}

System.out.println("Adding 11 to the amount for both beans ");
policyBean1.setAmount(policyBean1.getAmount()+11);
policyBean2.setAmount(policyBean2.getAmount()+11);
System.out.println("Setting premium for bean1 to 150");
policyBean1.setPremium(150);
System.out.println("Setting premium for bean2 to 300");
policyBean2.setPremium(300);

This example shows the session bean driving the BMP entity bean. Session bean logic to drive a
CMP bean identical. (This code taken from "tran1" method of "PolicySessionBean" EJB)

Using java:comp to look
up the BMP bean's home
interface. Name shown

here must match what you
set in AAT

Checking to see if a bean
with the same Policy

number exists. If not, it
creates one.

Once the bean has been
located (or created), the

values are updated. This
results in updates to

BBO.POLICYDO table.

Here's what the session bean contains. Again, this is just a snippet from one method of the
PolicySessionBean:

! The client passes in the BMP/CMP parameter and this drives the session bean down a certain
code path. This example is showing the BMP path. Then the session does a java:comp lookup
on the entity bean's home interface. This is worthy of note because the assembly of the application
(using AAT) must set the "reference name" values equal to what's being called out in the code
itself. You'll get a chance to see that in the lab later.

! Once the home interface has been located, the bean checks to see if the request is for a new bean
or one that already exists. If it doesn't exist, the "create" method is driven to create a new instance
of the bean with a key value equal to the policy number passed in. (This example shows only one
policy number check, but in reality the session bean does this twice: one for each policy number
specified by the client).

! Finally, the session adds the fixed value 11 to the PAMOUNT field for each new record (in the case
of a BMP; 33 for a CMP) and then sets the PPREMIUM value to 150 for the first bean and 300 for
the second (again, in the case of a BMP; the CMP has different static values).

The setting of the values in the DB2 table is not done by the session bean. The session bean invokes
the methods of the BMP or CMP entity bean to do that.

Before we look at the entity beans, let's look at this "JNDI lookup" thing.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 20029© 2002, IBM Corporation, Wash. Systems Center



Role of JNDI Names

Client Session
Bean

BMP
Entity

CMP
Entity

JNDI

Lookup
ABC

Return Object

JNDI

Lookup
DEF

Return Object

JNDI Name: ABC

JNDI Name: DEF

JNDI Name: GHI

AAT

Set "ivp.policybmp"
as "EJB Reference"

SMS

Set JNDI names for
components and tie
reference to name

JNDI names are just that: names (not HFS directory pointer)

"Default JNDI Path/Name" button:

/WSLPLEX/WASASR2/PolicyIVP/policybmp_deployed/PolicyBMP/com.ibm...

Override with your own path/name:

/TEAM##/BMP_Bean

Sysplex Server EAR File JAR within EAR Bean Name Home
Interface

Key is JNDI name must be unique
within the JNDI (LDAP) namespace.

Beyond that, name can be pretty
much anything you want

objHome = ctx.lookup
("java:comp/env/ejb/ivp.policybmp");

A symbolic reference
to the actual name
registered in JNDI

namespace

Example: Session
Bean's Source Code

We'll do this in lab!

When one component of a J2EE application needs to make contact with another component, it first
needs access to the target component's "home interface" object. In the picture above, the client will
need access to the home interface of the session bean, and the session bean will need access to the
home interface of the BMP bean and the CMP bean. It gets access to the home interface by doing a
JNDI lookup of the bean's interface. A lookup results in a copy the object being returned to the
requesting component.

To do a lookup, the component doing the lookup needs to know the JNDI name of the target
component. Every EJB component will have a JNDI name associated with it, and JNDI name is
registered in the "JNDI namespace" (which for WAS/390 is implemented using LDAP). Your code
could have the JNDI names hard-coded, but that's not a good practice. Hard-coded references limit
the portability of the code. A better practice is to use a symbolic reference in the code, and that's
what's used in PolicyIVP with the "java:comp" lookup. In this example, the source code for the session
bean looks up the BMP bean with a symbolic reference of "ivp.policybmp."

JNDI doesn't have a clue about "ivp.policybmp" ... it's a symbolic used in the source code only; it is not
registered in JNDI. So what's the connection? When you assemble an application using AAT you
create an "EJB Reference" naming the symbolic used in the code and connecting that to the class
name of the target bean's home interface. But that's only half the story. When you deploy the
application using the SMS EUI, you specify a JNDI name for each component and tie the symbolic to
the JNDI being referenced. When the application is deployed the components are registered into the
JNDI namespace with the JNDI names given, and the application can now use its symbolic lookup and
have it result in a lookup using the real JNDI names.

Is there any magic to the JNDI names you set? Not really. They're just names. The key is they must
be unique within the JNDI namespace. One way to set to the JNDI names is to make use of the

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 200210© 2002, IBM Corporation, Wash. Systems Center



"Default JNDI Path and Name" button of the SMS EUI. That will set a JNDI name for you, and it will
insure uniqueness by structuring a JNDI name with the various components shown in the chart. That's
a perfectly acceptable thing to do, and many people will do just that.

But using the default button is not required, and the path and name does not need to be as complex as
is generated with that button. In the upcoming lab we'll have you set the JNDI path as TEAM## (where
## is your team number) and the JNDI name as the name of the bean (BMP_Bean in this case). You
could make it ever shorter than that: "X". The trouble with really short names is it makes it hard to
insure uniqueness. Typically the JNDI path/name pair will be something longer than a few characters.

One shortcoming of setting your own names -- as opposed to using the default button -- is that the SMS tool
has no way of knowing if the JNDI name you set is already registered in LDAP. If you provide a name that's
already registered, the "naming registration" phase of deployment will fail. You can then change the name
and try again, but that takes time. Consistent use of the "default button" avoids this problem.

Note:

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 200211© 2002, IBM Corporation, Wash. Systems Center



The BMP Bean

try {
if (ds == null) {
ctx = new InitialContext();
try {
ds = (javax.sql.DataSource) ctx.lookup("java:comp/env/jdbc/policy");
}

From getConnection() method of PolicyBMPBean:

conn = getConnection();
pstmt = conn.prepareStatement("update BBO.POLICYDO set PAMOUNT = ?,

PPREMIUM = ? where PNUMBER = ?");
pstmt.setDouble(1, amount);
pstmt.setDouble(2, premium);
pstmt.setInt(3, policyNo);
pstmt.executeUpdate();

From ejbStore() method of PolicyBMPBean:

Using java:comp to look
up the J2EE JDBC

resource. Name shown
here must match what you

set in AAT

Construction of SQL query handled in bean.
Thus, Bean Managed Persistence (BMP)

Here's what the BMP bean is doing (again, just a snippet of the total source code):

! In the case of a BMP, the bean itself is responsible for the management of the persistence.
Therefore, one of the first things it must do is find the datasource to which it'll connect. In this case
the datasource is named jdbc/policy, and a java:comp lookup is used to find it. Here's
another case where the settings you provide in the AAT tool must match what's called out in the
actual code. In the lab that follows you'll set a value for the "reference name" for the BMP
resource, and there you'll name jdbc/policy. Set it different and the bean won't find its
datasource.

! The ejbStore() method is illustrating how an update to the table is being made. First a
connection is established, then the SQL is constructed, the values for the SQL update are set and
then the statement is executed. This is pretty much just like what you'd do in Java code outside the
world of EJBs. Because this is a BMP, the management of the connection and the SQL statements
is the responsibility of the bean itself, which means the developer must make it all happen.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 200212© 2002, IBM Corporation, Wash. Systems Center



The CMP Bean

VisualAge
for Java

"Persistor" classes

J2EE Platform

CMP Bean

EJB Container
Application developer
doesn't code SQL into
logic. They map Java
fields to DB table
columns, and allow the
container to do the JDBC
connection setup and
query execution

Persistor classes are included in
CMP bean's JAR file. At
deployment time, those classes
are made available to the
container

The CMP bean is different. The developer coding up the EJB using VisualAge for Java uses database
mapping tools within the VAJ product to map Java field names to columns in the database.
Information about the database columns is provided (type, whether its a key, etc.). VAJ will then
generate "persistor" classes -- compiled Java code that will perform the connection work to the
datastore. These persistor classes are bundled up in the CMP beans JAR file, but at deployment time
those classes are made available to the EJB container in which the CMP bean is deployed. The bean
doesn't do "get connection" and "SQL statement preparation" work. It simply calls a method related to
the database field it wants to affect, and the underlying container does the work, based on what's in the
persistor classes generated by VAJ.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 200213© 2002, IBM Corporation, Wash. Systems Center



Contents of PolicyIVP.ear File

PolicyIVP.ear

The three beans:
BMP entity bean
CMP entity bean
Stateless session bean

The
client
code

The XML "deployment
descriptor" created by

the AAT tool

The webapp
servlet and
other files

Where did all these files come from? How did the EAR file get generated?

Lab to follow will have you create the EAR

In the earlier lab you were simply given an EAR file. You may have invoked WinZIP® against the EAR
file and seen what's illustrated above. The EAR file is a standardized packaging format for EJBs. It is
a "zip" format file with certain requirements. One such requirement is for a "deployment descriptor" to
be placed in a meta-inf\ directory off the base of the structure. That deployment descriptor is an XML
file, and it contains information about the application contained in the EAR file. The XML file is
generated by the AAT tool at the time the EAR is created.

You see the two entity beans the session beans in their JAR file format. There is also a "webapp" in
this EAR file, and it contains the files for the servlet web application you'll use in a later lab. The client
code is also in the EAR, but when deployed into the J2EE Server it isn't used for anything. To use the
"fat client" you must extract that JAR out of the EAR and copy it into an HFS directory. The client JAR
is in this EAR just so the whole application is contained in one file.

Where did these files come from? A developer generated them up and packaged them into an EAR
file. In the lab that follows you will create this EAR file based on a set of JAR files and WAR file
supplied to you ... it will be just as if an application developer passed his work to you for assembly and
deployment.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 200214© 2002, IBM Corporation, Wash. Systems Center



From VisualAge to JAR Files

VisualAge
for Java

VisualAge
"Repository"

(project database
inside VAJ)

"dat"
file

JAR
file

policycmp_deployed.jar

JAR
file

policybmp_deployed.jar

JAR
file

policysession_deployed.jar

JAR
file

PolicyUtil.jar

JAR
file

PolicyClient.jar

JAR
file

PolicyClientSessionBindings.jar

"export"

JAR files are created by "exporting" code components from VisualAge
for Java. This is something application developers will do.

Ask VAJ to generate "deployed
code." This results in additional

class files for the EJBs being
generated

The first step in this process is to bring up the source code in VisualAge for Java. The way projects
are transported between copies of VAJ is in the form of a "dat" file, which is a file format recognized by
VAJ as mapping to its "repository." The PolicyIVP application's "dat" file is provided with the WAS
product, and is available for downloading and import into a copy of VAJ.

For this lab, we've done this step for you.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 200215© 2002, IBM Corporation, Wash. Systems Center



The WAR File

/

/meta-inf

/WEB-INF

/classes

/lib

Static files, such as HTML
files and GIF/JPG files

web.xml (deployment descriptor)

Servlet class file in this directory

Any other JAR files included with web
application go in this directory

WAR

WAR files are zip-like files that contain web applications. Tools like
WSAD are used to develop webapps and create WAR files. Later unit

describes configuring webapp support for WAS 4.01.

There is also a "WAR" file inside the EAR file. WAR files are Web ARchive files, and they are another
form of standardized zip-file format to contain web applications. Web applications are not EJBs, but
they are Java code in the form of servlets. Web applications also have static components like HTML
and GIF/JPG image files.

The WAR file also has an XML deployment descriptor. For this class we will supply you with that XML
file for download and inclusion in your WAR file.

Tools such as WebSphere Studio or the newer WebSphere Studio Application Developer (WSAD)
have the ability to create Webapps and generate WAR files.

This class has a whole section devoted to the configuration of "web containers" and the deployment of
web applications. For now what you will do is receive a WAR file that we extracted from the EAR file
and include it along with all your JAR files into the new EAR.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 200216© 2002, IBM Corporation, Wash. Systems Center



From JAR/WAR Files to EAR File

JAR
file

policycmp_deployed.jar

JAR
file

policybmp_deployed.jar

JAR
file

policysession_deployed.jar

JAR
file

PolicyUtil.jar

WAR
file

PolicyWebApp.war

AAT

Import into
AAT tool

Set properties
of beans and

webapp in AAT

PolicyIVP.ear

Export EAR
from AAT

As noted earlier, some of
these settings must match
what actual Java code is
calling for

The EAR file you will export will be essentially equivalent to the EAR file we gave
you in earlier lab.

Now you know where the EAR came from: someone in Poughkeepsie coded up
the PolicyIVP application in VAJ, exported to JAR files and used AAT to construct
the EAR.

In the upcoming lab you will construct the EAR file using AAT.

Next comes the act of packaging the various JARs and WARs into an EAR file. You do that by using
the AAT tool that comes with the WAS 4.0 product. The activities related to creating an EAR file are
more than just zipping up the file. You set various properties for the application in the panels of the
AAT tool. Those properties are then placed in the XML deployment descriptor housed in the EAR file.
Some of those properties must match the values from the Java source itself. That's why the packaging
of the EAR file will involve coordination with the developer.

The EAR you'll construct in this lab will be nearly (but not exactly) identical to the sample that ships
with the product. The person who created the EAR that ships with the product will have gone through
the steps you will do in this lab to generate the EAR.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 200217© 2002, IBM Corporation, Wash. Systems Center



Creating a New Application Server

SMS
EUI

Add
Conversation Add Server Add Server

Instance

Add J2EE
Resource for

DB2

Validate,
Commit and

Activate

ISPF Define WLM
Environment

RACF
Definitions

and DB grant

JCL Start
Procedures

Create JVM
properties file

Step 1

Step 2

A B C D E

F G H I

Start Server
and Verify

J

WASDMN

WASSMS

WASNM

WASIR

WASASR2

WebSphere 4.01

APSRV3

The previous labs had you deploy into WASASR2,
which we created as part of class setup

For this lab you'll create a new application server
called APSRV3, and deploy PolicyIVP into it

Why? It's good practice. You could have deployed into WASASR2 again, but
the creation of the server provides you good hands-on for that process.

Once the EAR is packaged the next step is to deploy the application into an application server of your
WAS runtime. Earlier you deployed into the WASASR2 server region, but for this lab we'll have you
create another server region and deploy your code into there. We're doing that to give you the
experience of creating the server regions and to experience the non-GUI tasks (in other words, the
traditional TSO "green screen" tasks) associated with this activity.

We'll have you create the server region first and verify it comes up okay. Then you'll deploy into it.
You could do the two at the same time, but we're making it two separate phases of the lab to keep
things as clear as possible.

The steps you'll walk through in doing this are shown above. It'll involve the use of both the SMS End
User Interface as well as a TSO session.

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 200218© 2002, IBM Corporation, Wash. Systems Center



Lab Overview

Download
Files

Create
EAR File

Create
Server

Instance

Deploy
Application

Test
Application

1 2 3 4 5

Earlier lab had you
do just this portion.

DOS
Prompt AAT SMS EUI

and ISPF SMS EUI OMVS

"Phases"
of lab

outlined
in lab

So here is an overview of the lab you'll do now. It has five "phases" as shown above. The lab handout
has each phase clearly labeled, and you'll walk through the process from front to back. In the earlier
lab when you deployed the supplied sample EAR file you were doing phases 4 and 5. Here you'll do
the other four that preceded it.

The dotted boxes under each phase indicate what environments you'll use to do the tasks.

Good luck!

End of Presentation
(reference page follows)

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 200219© 2002, IBM Corporation, Wash. Systems Center



Server Naming Convention

Note:
The string "xxxx" is an
arbitrary string of your
choosing. It must be
unique for servers
created with this
naming convention.

Control
Region

Server
Region

Server Instance Name: APxxxxSy " "y"=1

Proc: APxxxxC
STARTED: APxxxxC.* ID: APxxxxC

Group: WASCTLG

ID: APxxxxS

Group: APxxxxG

Group: WASCFG1

JCL

Proc: APxxxxS
STARTED: APxxxxS.*

CBIND: CB.BIND.APxxxx

CBIND: CB.APxxxxPermit: ACC(CONTROL)

SOMDOBJS: APxxxx.*.*

SERVER: CB.*.APxxxx

Permit: ACC(READ)

SM
EUI

SM
EUI

SM
EUI

CLASS(LOGSTRM)
Permit: ACC(UPDATE)

Local ID: APxxxxD
Remote ID: APxxxxI

Group: APxxxxP

WLM

Server Instance Name: APxxxxSy " "y"=2

Server Instance Name: APxxxxSy " "y"=n

Server Name: APxxxx

JCL

Message: creating new servers is easier if you
have a naming convention and stick with it

Complex chart?
Yes. Relax ... this
becomes more
clear across time

This chart is provided just as a reference sheet. It illustrates the relationship between the various
components of the new J2EE application server you will create and all the names associated with it.

The new server region you will create will be called APSRV3. It's control region will be called APSRV3C,
and its server region will be called APSRV3S. You'll create one "instance" and it'll be called APSRV3S1.
Do you see the connection between all those names? They are all based on the naming convention of
APxxxx, where AP is a fixed two letter prefix (standing for APplication server), and xxxx being a four
character string of your choosing.

Is there magic in this naming convention? No. But having a naming convention will help you
considerably when it comes time to perform the various WLM, JCL and RACF work necessary to set
up the environment. With a naming convention in place, these other tasks can be done in a more
automated fashion. Without a naming convention, you would have to rely on your brain to keep the
mappings straight in your mind. You have enough things stuffed in there; there's no reason to add to
the confusion.

The picture above looks like a complex chart. It is initially. But as time goes by you will come to see
how the naming convention of APxxxx will tie all the pieces of the puzzle together.

End of Document

Introduction to the PolicyIVP Construction Lab

Version Date: May 9, 200220© 2002, IBM Corporation, Wash. Systems Center


