
Web Enablement Using EJB J2EE Web Enablement Using EJB J2EE Web Enablement Using EJB J2EE Web Enablement Using EJB J2EE 
Technology WorkshopTechnology WorkshopTechnology WorkshopTechnology Workshop



(This page intentionally left blank)



Pushing the Envelope

Static Content
HTML, GIF/JPGs
Fixed; no dynamic content

CGI Programs
First iteration of web programming
Did not scale very well

J2EE Architecture and EJBs
Complete application server model
Defined transaction scope and
two-phase commit
Granular security down to method
level

Servlets and JSPs
Introduction of application server model
Better scaling and performance
Could not participate in two-phase commit
transaction processing
Security down to servlet level only

As application developers
have demanded more of the
web environment, the
technology has been pushed
further and further ...

You are here to explore this new
technology and how it is used on the
zSeries server using WebSphere
Application Server V4.01

In the beginning the web consisted of little more than static content: HTML pages with JPG/GIF
images. It served the purpose of providing information to those on the web, but proved somewhat
labor-intensive and limited. The desire existed to provide users of the website access to dynamically
produced content.

The next phase of this evolution was the introduction of CGI (Common Gateway Interface) programs,
which provided dynamic content by allowing the web request to spawn a background program that
would execute the request and provide dyamically produced HTML output in return. This worked well
enough for relatively small usage, but failed to scale adequately.

Next came "Servlets," which were specially designed Java applications that ran within an "application
server" program. IBM's application server is WebSphere. JSPs are special HTML documents with
small Java programs embedded in them that provide dynamic content for inclusion in the HTML. This
design provided much better scaling and performance.

But application developers, demanding more and more from the web, pushed the servlet architecture
to its limit. One significant shortcoming of the servlet architecture is the fact that servlets can not
participate in a two-phase commit process. Accessing a single backend data store is okay; multiple
data stores is not, unless something else (such as CICS) manages the transaction. Further, the
security model was defined only down to the servlet itself; the security on the individual methods of the
servlet classes could not be defined with differing levels of security.

The next step is a full-fledged enterprise application model. And that model is the "J2EE" model (Java
2 Enterprise Edition) and "EJBs" (Enterprise Java Beans). This architecture provides the definition of
transaction scope, two-phase commit, and a much more granular security model. In this course we'll
cover this and how the J2EE Server itself is implemented on the IBM zSeries server.

Class Introduction and Overview

Version Date: March 26, 20021© 2002, IBM Corporation, Wash. Systems Center



100,000 Foot View

daemon

SMS

Naming

IR Appl1

Appl2

WebSphere Application Server V4.01 for
z/OS and OS/390

TCP LDAP DB2 WLM RRS

Base Infrastructure

z/Series Server

EJB Webapp

Applications

At a very high level what this class is all about is the WebSphere Application Server V4.01 product and
the applications that run within this environment. The picture shown above is one you'll see over and
over in this class because it represents the logical layout of the different components of the system.

Underneath this picture is quite a bit of complexity. But to start with there are a few very basic
concepts that will help frame this class and what it will deliver.

Class Introduction and Overview

Version Date: March 26, 20022© 2002, IBM Corporation, Wash. Systems Center



Bean
Bean

Bean Class

Class

Servlet

Servlet

Application "Assembly"

Application Assembly Tool (AAT)
Bundles the individual files
Allows you to set key properties
Creates "deployment descriptors" (XML files)
Creates the required packaging format
("EAR" format)

Application
Assembly Process

daemon

SMS

Naming

IR Appl1

Appl2

WebSphere Application Server V4.0 for
z/OS and OS/390

TCP LDAP DB2 WLM RRS

Base Infrastructure

z/Series Server

EJB Webapp

Applications

Applications that run in the WAS 4.01 server are different from traditional applications. They must be
packaged in a specific, standard way before they can be introduced to the server environment. This
act of packaging the application is known as "application assembly." There is a tool provided with
WAS 4.0 to assist with this packaging: it is known as the Application Assembly Tool. Assembling an
application involves taking all the various piece-parts of the application, setting properties related to the
application, creating XML files known as "deployment descriptors" (which are XML files that describe
what's in the application and how it is to be run), and finally putting it all into a specifically formatted file
called an EAR file (Enterprise ARchive).

We'll pay particular attention to assembling applications in this class. It is one of the two primary
functions involved with installing applications into the WAS 4.01 environment. (The other is deploying
applications, which we'll talk about next).

Class Introduction and Overview

Version Date: March 26, 20023© 2002, IBM Corporation, Wash. Systems Center



daemon

SMS

Naming

IR Appl1

Appl2

WebSphere Application Server V4.0 for
z/OS and OS/390

TCP LDAP DB2 WLM RRS

Base Infrastructure

z/Series Server

EJB Webapp

Applications

Application "Deployment"

Systems Management Server
End User Interface (SMS EUI)

Takes as input EAR files
Allows you to specify where within
WAS 4.01 application will be
deployed
Deployment properties set

Once you have your application packaged into an EAR file, you are ready to deploy it. Deploying an
application involves more than simply copying the file to the WAS system. Another tool is provided
with the WAS product to assist with this: the Systems Management Server End User Interface. This is
a workstation program that provides a graphical interface to the WAS 4.01 system. When you're ready
to deploy your EAR file, you start what's called a "conversation" with the WAS system, you indicate
where you wish the application to be installed, you set a few additional properties for the application
and then you tell the SMS EUI tool to deploy the application. It then goes off and does a good many
things behind the scenes as part of its deploying of the application.

This is the other major area of focus for this class.

Class Introduction and Overview

Version Date: March 26, 20024© 2002, IBM Corporation, Wash. Systems Center



Who'll Do Those Roles?

Application
Developer

Systems
Programmer

Application
Assembly and
Deployment

The role is still evolving

It will require some knowledge of both the application development as well as
system programming worlds

Different people may do "assembly" and "deployment"

This class was built from the system programmer's perspective.

These roles as "Application Assembler" and "Application Deployer" are relatively new. To perform
those roles, one must know some things about the application as well as some things about the server
environment. In that sense it sits half-way between the traditional roles of developer and systems
programmer. Which of those two will fill that role? It's not certain at this point; the role is still evolving.

Some argue that the role of the application assembly fits closely with the role of the developer, while
deployment is more closely aligned with systems programming. To that end, it is possible that different
people will fill the role of application assembly and deployment. Many organizations prefer to keep
such roles separate within the structure of the company. That's fine: as you'll soon learn, there's a
fairly clean line between assembly and deployment, and different people (or groups) could do each.

We have structured this class more from the perspective of the systems programmer rather than the
application developer. Much of the discussion that'll come in the next three days will focus on S/390
topics that will be more familiar to systems programmers than developers. We have less focus on pure
Java programming issues and more on systems-related issues.

Class Introduction and Overview

Version Date: March 26, 20025© 2002, IBM Corporation, Wash. Systems Center



Agenda

Introduction
J2EE Architecture Overview
WAS 4.01 System Architecture

Discovery Lab
Installation and Configuration Process

ISPF Dialogs Lab
Systems Management EUI Tool and Application Deployment

PolicyIVP Application Deployment
CICS Connector

J2C Connector Lab
JDBC Lab Intro

JDBC EJB Lab
Configuring Web Applications

Webapp Lab
Migration Issues

This is a three day class. The topics to be discussed are shown in order, and the accompanying labs
are shown as well.

Class Introduction and Overview

Version Date: March 26, 20026© 2002, IBM Corporation, Wash. Systems Center



Introductions

Name

Company

Where's home?

A little about your background

What plans for WAS 4.01 do you
have? (don't disclose secrets!)

Now let's go around the room.

Class Introduction and Overview

Version Date: March 26, 20027© 2002, IBM Corporation, Wash. Systems Center



Administrivia

Start and Stop Times Each Day

Breaks/Lunch

Restrooms

Phones and Analog Lines

Smoking

Emergency Procedures

Messages

Any questions?

End of Document

Class Introduction and Overview

Version Date: March 26, 20028© 2002, IBM Corporation, Wash. Systems Center


