
Configuring Web ApplicationsConfiguring Web ApplicationsConfiguring Web ApplicationsConfiguring Web Applications
Which Access EJBsWhich Access EJBsWhich Access EJBsWhich Access EJBs

(This page intentionally left blank)

Client Access to EJBs

TSO or
Telnet

Session

WAS 4.0 EJB Environment

EJB

z/OS

Fat
Client

Client access used so far in this class ...

Browser
Session

WAS 4.0 EJB Environment

EJB

Web Environment

WebApp

Now we turn our attention to a different form of client: a "WebApp" running in a
"web environment" ...

We used this because it's relatively
easy to set up for initial verification of

WAS environment.

What is this "WebApp" and "web environment" in
WAS 4.01, and how are they configured and used?

A more likely client
environment in the

"real world"

Up to this point in the class, we've used what's called a "fat client" to drive the EJB. We did that
because the fat client is easy to set up and run from the OMVS environment. It validated the WAS
environment, and that was the objective at that point.

Now we turn to Web Applications. Web applications run in a "web environment" and act as a client to
the EJB, just like the "fat client" did.

This presentation will focus on what a WebApp is, how to configure its environment, and how to use
them to act as clients to EJBs.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 20021© 2002, IBM Corporation, Wash. Systems Center

What's a "Web Application"?

Enterprise
JavaBeans

/

/meta-inf

/WEB-INF

/classes

Any other JAR files included with web
application go in this directory

HTML files
JPG/GIF files
JSP files

web.xml (deployment descriptor)

Servlets

/lib

WAR
Web Applications consist of servlets
as well as supporting files such as
HTML files, JPG/GIF and JSP files.

WebApps are packaged in WAR files.
You built one of these in the
previous lab.

WebApps are not EJBs

Web applications are comprised of servlets (executable Java code, written to the Java 2 Standard
Edition servlet specification), as well as static content such as HTML file, and JPG/GIF image files. In
the J2EE world, web applications are packaged in a ZIP-format file called a WAR file (Web ARchive).
This WAR file has within it a "deployment descriptor" called webl.xml that tells the J2EE server about
the webapp contained in the WAR file, and how to run that webapp.

Webapps are not EJBs. EJBs have other requirements that webapps do not. So while both are Java
programs, they are not the same thing.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 20022© 2002, IBM Corporation, Wash. Systems Center

WAS 4.01 Web Containers

HTTP
and
WAS

Fat
Client

daemon

SMS

Naming

IR Appl1

Appl2

WebSphere 4.0

TCP LDAP DB2 WLM RRS DCE CICS IMS

Base Infrastructure

EJB

EJB Container

C
o

n
ta

in
er

S
er

vi
ce

s
fo

r
E

JB
s

Web Container

C
o

n
ta

in
er

S
er

vi
ce

s
fo

r
S

er
vl

et
s/

JS
P

s

Server Instance

webcontainer.conf

SMS EUI

WebApp

Each Server Instance has an EJB
Container and a Web Container

At deployment time, EJBs are deployed
into the EJB Container; WebApps into
Web Conainer

The configuration file for the Web
Container is webcontainer.conf

EAR

As we discussed earlier in this course, each application server instance is supplied with an "EJB
Container" and a "Web Container." These are logical software constructs within the application server,
and they provide the services necessary to support the running of EJBs or WebApps. The purpose of
their existence is to shield the EJB or WebApp from the underlying complexity of the platform, and to
provide a set of common, standardized and defined services to the applications.

When you deploy an application that consists of both EJBs and WebApps (and PolicyIVP has both),
the act of deploying the application will cause the EJBs to be installed in the EJB Container and the
WebApps installed in the Web Container. Right now the WebApp you constructed by hand in the
previous lab is installed in the Web Container and waiting activation.

Both containers are automatically created when you create the application server. The Web Container,
however, requires that you provide a configuration file so the container can "come to life" and provide
Web Services. That configuration file is known as the webcontainer.conf file.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 20023© 2002, IBM Corporation, Wash. Systems Center

The webcontainer.conf File

com.ibm.ws390.wc.config.filename=

/WebSphere390/WAS401/controlinfo/envfile/WSLPLEX/APSRV3S1/webcontainer.conf

Careful! Mistype any part of this (including the
property name to the left of the equal sign) and

it'll result in the default copy of
webcontainer.conf being used!

HFS /WebSphere390/WAS401/controlinfo/envfile/WSLPLEX/APSRV3S1

current.env

trace.settings

jvm.properties

Contains the property settings for the web container

Lots of things in there, but two are of particular importance:

Virtual Host Definition

host.default_host.alias=
Context Root

host.default_host.contextroots=

Used to "bind" an application
to a "virtual host" ... more on

that in a bit

But first, some fundamentals

The webcontainer.conf file supplies the necessary information for the web container to operate.
Each application server instance will have a pointer a webcontainer.conf file. That pointer is made
out of the jvm.properties file, which resides in what is sometimes known as the "private directory"
of the server instance. For instance, the "private directory" for your APSRV3 server's APSRV3S1 server
instance is:

/WebSphere390/WAS401/controlinfo/envfile/WSLPLEX/APSRV3S1

In that directory you'll find the current.env file for the instance, the trace.settings file and the
jvm.properties file. The pointer to the webcontainer.conf file is a property in the
jvm.properties file called com.ibm.ws390.wc.config.filename=. The directory and filename
on the right side of the equal sign of that property is where the web container will go looking for the
configuration file. The example shown above illustrates pointing back to the private directory. This
makes some sense: keep all your configuration files in one place.

WebSphere V4.x supplies a sample copy of the webcontainer.conf file in:

/usr/lpp/WebSphere401/bin

Simply copy that to instance's private directory and make the pointer out of jvm.properties.

The webcontainer.conf file has quite a few properties in it, and in time you will come to understand
what each does. For now, the two most important are the virtual host definitions and the context roots
definitions, which we'll cover over the next few charts. Those are used to "bind applications to virtual
hosts." More on that in a bit. First, it's important to cover some fundamental stuff.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 20024© 2002, IBM Corporation, Wash. Systems Center

Components of the URL

Browser
Session http://wg31.washington.ibm.com:8080/PolicyIVP/PolicyServlet

Host Context Root Servletmapping

Server #3
wg31.washington.ibm.com:8080

WebApp A
/Appl_A

WebApp C
/Appl_C

WebApp D
/Appl_D

Servlet /PolicyServlet

WebApp B
/PolicyIVP

Server #1
www.ibm.com:9101

Server #2
www.wscenter.com

Host value gets it to the proper server
Or virtual host ... more on this in a little bit

Context Root value gets it to the
proper WebApp

You may deploy multiple WebApps into a Server

Servletmapping invokes the particular
servlet inside the WebApp

A WAR file may contain multiple servlets
Servlet /LabServlet

To understand how all of this works, it's important to understand the components of the URL that's
used to invoke a WebApp deployed on WebSphere V4.01. The URL has three basic pieces:

A "host" component -- this is used to help the network and WAS get your request to the right server.
You might very well have multiple servers in your company. This also relates to the virtual host,
which we'll cover in a bit.

A "context root" component -- a WAS 4.x application server may have any number of web
applications deployed into it. The "context root" portion of the URL is used by WAS to route the
URL to the proper WebApp. All WebApps deployed into WAS have a "context root" value set in the
deployment descriptor (XML file) for the application. If you recall, you set the Context Root value in
the previous lab using the AAT tool.

A "servletmapping" component -- a Web Application may have any number of servlets packaged
inside of it. The "servletmapping" portion of the URL is used by WAS to know which of the
potentially many servlets to invoke. The servletmapping value is set in another deployment
descriptor, which we'll illustrate in a few charts.

The URL may have quite a bit more that follows the "servletmapping" portion. These would be parameters
passed into the application. You'll typically see these separated from the rest of the URL with a question
mark (?), and each parameter separated with an ampersand (&).

Note:

The key message is this: the URL must have information in it to help the WAS system route the URL
to the proper servlet for execution. Since you may have multiple servers, multiple webapps in a given
server, and multiple servlets within a webapp, some way to getting the request to the correct servlet is
required.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 20025© 2002, IBM Corporation, Wash. Systems Center

Context Root Setting for WebApp

<module>
<web>

<web-uri>PolicyWebApp.war</web-uri>
<context-root>/PolicyIVP</context-root>

</web>
</module>

EAR application.xml

http://wg31.washington.ibm.com:8080/PolicyIVP/PolicyServlet

WebApp's Context Root
set in AAT

Property set in
application.xml
deployment descriptor

Connects URL to WebApp
in which servlet is
packaged

Not the whole story ... "virtual
hosts" come into play as well.

See next chart.

The "context root" for a WebApp is set in the AAT tool. It falls under the "General" tab of the web
application object under the "Web Apps" folder. The AAT tool will take the value you supply and
generate a portion of the application.xml file (the "deployment descriptor" for the application)
which will assign the context root value to the WAR file in which the web application is packaged.

Take a look at the example shown above. That is an actual clipping from the application.xml file
generated by AAT. The XML portion delimited by the <web> tag provides the WAR file name and the
context root for that WAR file. In the case of the previous lab, the context root value was
/PolicyIVP.

So that's how the context root is set. When a WAS application server starts up, it reads in and knows
about all the web applications deployed into it, and the context roots for each. When a URL is passed
to the application server, the server may then route the request to the proper web application based on
the context root.

But that's not the whole story ... the other half of this equation is the "virtual host" value, which is
explained next.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 20026© 2002, IBM Corporation, Wash. Systems Center

Concept of Virtual Hosts

police.state.md.us 59.1.1.8
fire.state.md.us 59.1.1.8

DNS Entries

http://police.state.md.us/crime/ReportTheft http://fire.state.md.us/safety/seminars

Network

Web Container

Police Dept.
WebApps

Fire Dept.
WebApps

URL for Fire
Webapp

URL for Police
Webapp

You may have multiple hosts
pointing to one server, and wish
to keep applications separated by
host

Virtual hosts allow WAS to isolate
the requests based on the URL
host

This allows WAS to keep
applications separated

Key is "binding" application to
virtual host

Suppose you have two different people on the web, one pointing his browser to the police department
of the State of Maryland, and one pointing her browser to the fire department of the State of Maryland.
Would those two URLs go to different web servers?

Not necessarily. The Domain Name Service (DNS) for the network might point both host names to the
same IP address, which would mean both URLs would flow to the same adapter on the same machine.
When those URLs flowed into the web container, you would want a way to make certain that those
applications written for the police department are only run for URLs that came in with the police
department host name, and those applications written for the fire department isolated to fire
department URLs.

To do this, WAS implements something called a "virtual host." What the virtual host does is provide a
mechanism by which WAS may compare the received URL against a setting in the
webcontainer.conf file, and see whether the application being requested (based on the context
root) is associated with that host. In other words, it provides a way of making sure that police
department applications aren't run accidentally when a fire.state.md.us URL is received.

The key to this is the "binding" of applications to virtual hosts. Binding is nothing more than associating
a context root with a host name. The next chart shows how this is done.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 20027© 2002, IBM Corporation, Wash. Systems Center

Binding Application to a Virtual Host

http://police.state.md.us/crime/ReportTheft

http://fire.state.md.us/safety/seminars

webcontainer.conf

:
host.fire.alias=fire.state.md.us
host.police.alias=police.state.md.us
:

host.fire.contextroots=/safety, /alarms
host.police.contextroots=/crime

Virtual Host Bound Applications

fire.state.md.us /safety
/alarms

police.state.md.us /crime

Police WebApp
Context Root: /crime

Fire WebApp
Context Root: /safety

Fire WebApp
Context Root: /alarms

Deployed WebApps:

http://fire.state.md.us/crime/ReportTheft

Virtual Host/Context Root doesn't match bound application table

Context Root used to bind
application to Virtual Host

If WebApp not bound to
Virtual Host, it can't be
executed

URL must match VH/CR pair
for WAS to consider allowing
WebApp to be run

There's an easier way to do
this ...

Internal
table

maintained
by WAS

Here's where we introduce some of the definitions in the webcontainer.conf file:

host.<name>.alias=<host name[:port]> -- this statement is used to name a URL host value
that you expect to be received by this application server, and to tag this host value with a "name" of
your choosing. This "name" portion is used to connect this statement in the webcontainer.conf
file with other statements in the file that have the same <name> value.

host.<name>.contextroots=<context root> -- this statement is used to name context roots
that will be associated with the host value. What host value? The host value provided on the
alias= statement that has the same <name> value as this statement.

This is best illustrated with an example. Imagine you have three web applications deployed into a
server. The have context roots of /safety, /alarms and /crime. Further, imagine your server will
service both the fire department and the police department. The first two webapps are the fire
department's, and the last webapp is the police departments.

The host.fire.alias=fire.state.md.us statement defines the host value for the fire
department, and ties that value to the string "fire," which is the <name> portion of the statement. The
host.police.alias=police.state.md.us does the same thing, but with a string of "police."

Further down in the webcontainer.conf file you have two more statements. The
host.fire.contextroots= statement defines the context roots of the applications that are
associated with -- or bound -- to the host name specified on the host.fire.alias= statement.
Notice how the <name> value "fire" is the same on both of those statements. That's what ties one
statement to the other. When this application server is started up, WAS will read the context root
values specified in the application.xml files of each deployed application, and match the context
root definition found there with the values found on the contextroots= statements in the

Configuring Web Applications Which Access EJBs

Version Date: March 26, 20028© 2002, IBM Corporation, Wash. Systems Center

webcontainer.conf file. When a match is found, it'll then bind the application to the host name
specified on the alias= statement with the same <name> value. In this example, the police
department's contextroots= statement has one definitions on it: /crime. Of the three applications
deployed into the server, one has a context root definition of /crime. That application matches
matches this statement. WAS then reads backwards on the statement, finds the <name> value of
"police," then goes and looks for the alias= statement with the same <name> value of "police." In
this example, that statement names a host value of police.state.md.us. WAS then binds the
application -- /crime -- to the host value of police.state.md.us. This application has been bound
to the virtual host police.state.md.us.

The fire department's two applications are bound in the same manner. The difference there is the fire
department's contextroots= definition names two values. The fire department has two applications,
each matching with a string found on the contextroots= definition.

WAS builds an internal table that lists all the context root values associated with each virtual host
defined.

Here's what happens next. A URL is received with the police department's host name on it and is
requesting the /crime application. WAS checks it's internal table and finds that sure enough the
virtual host of police.state.md.us is associated with a context root of /crime. That application is
permitted in for execution.

The same would apply to second example URL, which is requesting the /safety application and has
the fire.state.md.us host name on the URL. WAS checks its table and finds that this is
permitted.

The third example illustrates a case that won't work. A URL is received with fire.state.md.us as
the host and an application context root value of /crime. WAS checks its table and finds that this is
an invalid combination. It rejects the request.

So the match is really on the "Virtual Host / Context Root" pair, not just the context root value.

What we've shown you here is how the mechanics of this thing works. Take a deep breath ... there's
an easier way to do this. That's illustrated next.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 20029© 2002, IBM Corporation, Wash. Systems Center

The Context Root "Catch All"

The host name of the HTTP Server your
team is using for this class.

(Note: value in picture is example only; your
actual may be different)

A single forward slash is a "catch all" ...
all web applications deployed in the

server instance will bind to this.

The name "default_host" is
what you'll find in the sample
webcontainer.conf file
supplied with WAS 4.01

webcontainer.conf

host.default_host.alias=wg31.washington.ibm.com
:

:
host.default_host.contextroots=/

Same string

For this class, we can simplify this process quite a bit ...

Let's see some variations on this "Virtual Host / Context Root" theme ...

It turns out there's a way to make this whole thing a lot simpler. The contextroots= definition allows the
use of a single slash, which acts as a universal "catch all." All context roots will match with a single
slash. If you read backwards on the contextroots= definition, you find the <name> value of
default_host. This is what you'll find in the supplied sample webcontainer.conf file you copy
over from the /usr/lpp/WebSphere401/bin directory.

Going up in the webcontainer.conf file you'll find the host.default_host.alias= definition,
and this will tie to the contextroots= definition by virtue of the default_host value for <name>. It
is on this definition that you code the IP host name of your team's system. For this class, that's
wg31.washington.ibm.com.

That's it. All applications you now deploy, regardless of context root value, will bind to your
wg31.washington.ibm.com virtual host. This works perfectly well when you have only one host
name. It's when you start thinking of supporting multiple hosts that you need to worry about which
application binds to which host.

If you only have one host supported by your server, you still need to define a virtual host. You can't get
away with leaving the alias= definition blank.

Note:

Now let's look at a few variations on how this stuff works.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200210© 2002, IBM Corporation, Wash. Systems Center

Virtual Host/Context Root Variations

Binding multiple Context Roots to a Virtual Host:

host.default_host.alias=wg31.washington.ibm.com
:

host.default_host.contextroots=/PolicyIVP,/Sample1,/TestABC

Virtual Host Bound Applications

wg31.washington.ibm.com
/PolicyIVP
/Sample1
/TestABC

Binding Context Root to multiple Virtual Hosts:

host.default_host.alias=wg31.washington.ibm.com,www.wscenter.com
:

host.default_host.contextroots=/PolicyIVP

Virtual Host Bound Applications

wg31.washington.ibm.com /PolicyIVP

www.wscenter.com /PolicyIVP

Comma!

Here we illustrate two common variations on this:

Multiple Context Roots to a Single Virtual Host -- this is the same things as was illustrated earlier
with the fire department's two applications of /safety and /alarms. The contextroots=
definition permits the coding of multiple strings. You separate them with a comma as shown.
Deployed applications that match those values will then be bound to the virtual host of, in this
example, wg31.washington.ibm.com. When the server is started, the "internal table" WAS will
build showing context root to virtual host binding will be as shown.

Context Root to Multiple Virtual Hosts -- this is used when you want to be able to access the same
application, but use different host values. In this example the two virtual host values are
wg31.washington.ibm.com and www.wscenter.com. The internal table WAS builds will show
the application /PolicyIVP bound to both virtual hosts. That means you could come into WAS
with either host name on your URL and be permitted access to the /PolicyIVP application.

You've probably guessed that there's an opportunity to introduce ambiguity into the picture with all
these alias= and contextroots= combinations. You're right. The next chart illustrates how WAS
will sort it all out.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200211© 2002, IBM Corporation, Wash. Systems Center

How WAS Resolves Ambiguity

host.aaa.alias=www.aaa.com
host.bbb.alias=www.bbb.com
host.ccc.alias=www.ccc.com

:
host.aaa.contextroots=/
host.bbb.contextroots=/Pol/*
host.ccc.contextroots=/PolicyIVP

Class WebApp
Context Root: /PolicyIVP

This is a wildcard. You must precede
all uses of a wildcard asterisk with a
slash, as shown.

/Pol/* will allow /PolicyIVP to
bind, as well as /Police as well as
/Polly_want_a_cracker

All three "contextroots=" definitions will
allow WebApp with /PolicyIVP to bind.

Which will WAS choose?

???

Order of binding:

1. Exact match

2. Wildcard match

3. Single slash match

In this example, WAS would bind
WebApp to host www.ccc.com

host.aaa.alias=www.aaa.com
host.bbb.alias=www.bbb.com

:
host.aaa.contextroots=/
host.bbb.contextroots=/

Don't Do This!

Ambiguity that can't be resolved results in
unpredictable bindings. Don't introduce ambiguity
with single-slashes across different hosts, or with

the same contextroots= across different hosts

We've seen how a contextroots= definition can be coded explicitely, and how a single slash can be
a universal catch-all. It turns out that WAS also permits the use of wildcards in the contextroots=
string. The wildcard is the asterisk (*), but in order to use it you must precede the asterisk with a
slash. So the string /Pol/* provides the matching for any context root that starts with /Pol.

In the example above we have three different contextroots= statements, each tying back to a
different virtual host value. The strings on each would permit the context root of /PolicyIVP to
match. To which virtual host will WAS bind the application? The answer is not "all of them." (We saw
earlier how to bind an application to multiple virtual hosts; that was done with a single contextroots=
definition.) WAS doesn't like to match on multiple contextroots= definitions, so it'll choose one. Which
will WAS choose?

It goes in the order shown in the chart above: an exact match first, then any wildcard matching (with a
more explicit wildcard match taking precedence over a less explicit wildcard match), and then finally the
single slash. In this case, WAS would match the application to the explicit coding of /PolicyIVP,
which would bind the application to the www.ccc.com virtual host.

What you want to avoid is what's illustrated in the box in the lower right of the chart. That's where you
have the single slash on multiple contextroots= definitions, with the hope of binding all applications to
the two virtual hosts. This results in unpredictable binding by WAS (if there's a pattern to it, we've not
been able to find it ... it appears random). The message here is this: you have some responsibility to
avoid ambiguity in your webcontainer.conf file.

Let's say you have a match on the virtual host and context root. How does WAS isolate down to the
servlet? With the servletmapping component of the URL, which is discussed next.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200212© 2002, IBM Corporation, Wash. Systems Center

Servletmapping Setting for Servlet

http://wg31.washington.ibm.com:8080/PolicyIVP/PolicyServlet

WAR web.xmlEAR

<servlet>
<servlet-name>Was40Ivp</servlet-name>
<servlet-class>com.ibm.ws390.samples.ivp.servletclient.Was40Ivp</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>Was40Ivp</servlet-name>
<url-pattern>/PolicyServlet</url-pattern>

</servlet-mapping>

Servlet's Servletmapping set in tool used to create webapp
(Studio, WSAD, by hand like we did in lab)

Property set in web.xml deployment descriptor in WAR file

Connects URL to servlet that is to be executed

Final piece of the puzzle is the Servletmapping, which allows WAS to resolve
request to a particular servlet class file and execute that servlet:

PolicyIVP.ear

PolicyWebApp.war

Recall that the third and last component of the URL is the "servletmapping" string. This is used by
WAS to resolve the request down to one of what may be many servlets packaged in the web
application.

The servletmapping value for a servlet is defined in the web.xml file, which is a deployment descriptor
found in the WAR file. This value is coded into the web.xml file by whatever tool you might use to
create the web application, such as WebSphere Studio, or the new WebSphere Application Developer.
(For this class, we simply gave you a completed web.xml file, which you downloaded from the host
and packaged into your hand-constructed WAR file.) Take a look at the chart above, and note where
the XML <url-pattern> tag defines the string that needs to match what's coming in on the URL.
What we need to do is tie that string to an actual Java class file that represents the servlet. That's
done with the <servlet-name> definition. In this example, that value is Was40Ivp. WAS then goes
looking for a <servlet> stanza in the web.xml file with the same <servlet-name> value
("Was40Ivp" in this example), then reads the <servlet-class> value. That specifies the actual
Java class file that is to be executed. In this example, that's a long Java package name.

You've completed the puzzle: host component gets the URL to the proper server; context root (in
combination with the virtual host) resolves the request down to a given web application; servletmapping
resolves the request down to a given servlet class file.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200213© 2002, IBM Corporation, Wash. Systems Center

Initial Verification: Server SYSPRINT

Web Container:Configuration File Name:
/WebSphere390/WAS401/controlinfo/envfile/WSCPLEX/APSRV3S1/webcontainer.conf
:
:

VirtualHost Web Application Context Root Bindings:

/
:
:

VirtualHost Alias List:

wg31.washington.ibm.com:8080
:
:

VirtualHost Bound Web Applications¨:

Web Application Context Root: /PolicyIVP

JNDI name of Web Application EJB: /WSCPLEX/APSRV3/PolicyIVP/...
:
:

SYSPRINT of the Instance
Server Region:

This is telling you what webcontainer.conf file it
will be using. This should be the one you copied

and configured, not the default one.

The "context root" as set in
the webcontainer.conf

The "virtual host" from webcontainer.conf.
This should not read "localhost". If it does,

it's probably picking up the default
webcontainer.conf

The "context root" values indicates
the applications that have been

successfully bound to this virtual
host

A
b

lo
ck

lik
e

th
is

fo
r

ea
ch

vi
rt

u
al

h
o

st

How can you tell if your applications bound to the virtual hosts the way you wished them to? By
inspecting the SYSPRINT of the server region (not control region) of your application server. This will
tell you what's happening when the application server is coming up:

! The first thing that's important is the webcontainer.conf file that's being used by the server.
Look at this very carefully. If you mis-typed anything in the pointer to the file in the
jvm.properties file, WAS will look for but probably to fail to find the (erroneous) reference to the
webcontainer.conf file. It will then fall back and take the default webcontainer.conf file,
which is located in the /usr/lpp/WebSphere401/bin directory. If you see that default copy in
use, it means you've made a mistake in your jvm.properties update. The default
webcontainer.conf won't have your contextroots= and alias= updates, so your
applications won't be bound properly.

! WAS will then report on the applications that are bound to each virtual host specified in the
webcontainer.conf file. You'll see a block of lines similar to what's shown above for each
virtual host you define. In this example, WAS is telling you that /PolicyIVP matched with the
contextroots= value of / (single slash), and that resulted in it being bound to
wg31.washington.ibm.com:8080.

Make it a habit of looking at the SYSPRINT each time you make an update to jvm.properties or
webcontainer.conf. You'll avoid spending hours debugging problems that are really nothing more
than typographic errors.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200214© 2002, IBM Corporation, Wash. Systems Center

First Half Summary

Browser
Session http://wg31.washington.ibm.com:8080/PolicyIVP/PolicyServlet

Virtual Host:
wg31.washington.ibm.com:8080

Virtual Host:
police.state.md.us

Virtual Host:
fire.state.md.us

Lab WebApp
Context Root:
/PolicyIVP

Lab WebApp
Context Root:
/crime

Lab WebApp
Context Root:
/safety

Lab WebApp
Context Root:
/alarms

Servlet /PolicyServlet

Servlet /statistics

Servlet /reports

Servlet /violations

Servlet /service

webcontainer.conf application.xml web.xml

EAR WAR

Matches:
Virtual Host

Matches:
Contextroot

Matches:
Servletmapping

WAS 4.01 Web Container

And here's the summary of the past dozen or so charts:

! A URL has three major components to it: the host portion, the context root portion and the
servletmapping portion.

! The host portion is used to get the URL to the right server, and is what matches up against the
virtual host definition you provide on the host.<name>.alias= statement in
webcontainer.conf.

! The context root portion is used to resolve the request down to one of what may be many web
applications deployed in the server. The context root value for an application is specified in the
AAT, and ends up as a definition in the application.xml deployment descriptor. WAS uses this
context root value to "bind" the application to a virtual host, based on your definitions in the
webcontainer.conf file. If the host portion and context root portion of the URL match the
"bound application" table of WAS, WAS will accept the URL for potential execution.

! The servletmapping portion is used to resolve the request down to one of what may be many
servlets packaged in the web application. The servletmapping value for any given servlet is
specified in the web.xml deployment descriptor for the webapp. The web.xml file is found inside
the WAR file that represents the web application. If the servletmapping portion of the URL matches
a servletmapping string WAS knows about, it'll go in search of the Java class file and load it for
execution.

You have the issue of binding applications to virtual hosts mastered. Now comes the issue of how to
get the URL to the WAS application server in the first place. To do that, you need something in the
picture that will listen for HTTP requests and pull them off the wire. There are two ways to do that, and
each is discussed next.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200215© 2002, IBM Corporation, Wash. Systems Center

Getting the URL to the Web Container

Browser
Session http://wg31.washington.ibm.com:8080/PolicyIVP/PolicyServlet

Something needs to listen for the HTTP protocol
and then pass the request to the Web Container.

Two ways to do this with WAS 4.01 ...

WAS 4.x HTTP Server Plugin WAS 4.01 "Transport Handler"

WAS 4 Server Instance

Web Container

HTTP Server

WAS 4.x
"Plugin"

WebApp

http://wg31.washington.ibm.com:8080/...

WAS 4.01 Server Instance

Web Container

WebApp

http://wg31.washington.ibm.com:8080/...

Trans.
Hand.

= function providing
"HTTP Listener" role

WAS 4.x Plugin is very similar to WAS 3.5
Standard Edition

Has the built-in ability to route requests to WAS
4.x runtime

Has the ability to run servlets inside plugin, just
like WAS 3.5 Standard Edition did

Transport Handler is a new function of the Server
Control Region

Provides native HTTP listener role without
needing HTTP Server in the picture

Function is dedicated to "catching" request and
passing to web container. Not a replacement for
all the HTTP Server functions!

For a URL coming out of a browser to get to the Web Container, something needs to listen for the
HTTP protocol and pull the request off the network. The web container itself can't do that.

There are two ways to do this with WAS 4.01:

! With WAS 4.00 (and continued with WAS 4.01) there is an HTTP Server "plugin" that provides the
ability to catch requests and route them to the web container. This is called a "plugin" because the
code makes use of the HTTP Server's API, and the code is said to "plug in" to the API. The WAS
4.x Plugin is in reality the WAS 3.5 Standard Edition plugin with some added stuff to allow the
plugin to know what servers and applications exist over in the WAS 4.x runtime environment.
Because it still has the WAS 3.5 SE product in it, servlets can still run in this WAS 4.x plugin. That
provides a nice migration path, which will be discussed later.

! With WAS 4.01 there is a new integrated HTTP listening agent known as the "Transport Handler."
It is a function of the WAS 4.x application server itself, and because of that the HTTP Server is no
longer needed. This new function is dedicated to the rather narrow task of catching the HTTP
request and routing it to the web container. As such, it is not a replacement for the IBM HTTP
Server and does not have all the bells and whistles of the HTTP Server.

Let's explore each in turn.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200216© 2002, IBM Corporation, Wash. Systems Center

Configuring the WAS 4.x Plugin

:

ServerInit /<install path>/was400plugin.so:init_exit /usr/lpp/WebSphere401,/etc/wasweb/was.conf

Service /PolicyIVP/* /<install path>/was400plugin.so:service_exit
ServerTerm /<install path>/was400plugin.so:term_exit
:

IBM HTTP Server

WAS 4.x
Plugin

httpd.conf

httpd.envvars

WAS 4.x Runtime

Web Container

WebApp

Application ServerSM Server

900
Knowledge
of all App
Servers

was.conf

RESOLVE_IPNAME=wg31.washington.ibm.com
RESOLVE_PORT=900

To configure connection to SMS:

To configure Plugin's initialization and routing of requests to Plugin:

<install path> = /usr/lpp/WebSphere401/WebServerPlugIn/bin

If you leave this out, it defaults to "localhost" and port 900.
Probably will work, but coding it lessens ambiguity

The configuration of the Plugin involves updating the HTTP Server's httpd.conf and
httpd.envvars files. The Plugin is a piece of code that runs inside the Webserver's address space,
and the configuration is very, very similar to that for the WAS 3.5 Standard Edition code. Three
updates to the httpd.conf file are required:

ServerInit -- this statement is used to instruct the Webserver to initialize the Plugin when the
Webserver itself comes up. You will have only one ServerInit statement for the plugin code. It
has the format as shown in the chart above. Two parameters are coded on the statement: the
WebSphere install root, and the directory and file name for the was.conf configuration file for the
Plugin.

Service -- this statement is used to catch URL requests and pass them from the Webserver realm
into the Plugin. It has a mask, or template, that if matched to a received URL, instructs the
Webserver to pass the entire URL over to the Plugin . You will have been 1 and "n" number of
Service statements; the exact number depends on the number of different URLs you want to
throw over to the Plugin.

ServerTerm -- this statement is used to gracefully shut down the Plugin when the Webserver is
coming down. You will have only one of these statements.

Two updates are required to the httpd.envvars file, and they define the SMS to which the Plugin will
connect and communicate. This connection is necessary because the Plugin needs to understand
what applications are deployed where. The two updates to the httpd.envvars are shown above,
and they simply name the IP host and port on which the SMS is listening. You could leave these
values uncoded and the Plugin would try the default port 900 on "localhost." That would work in this
class, and might work back home. But it's better to simply code them and avoid any ambiguity.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200217© 2002, IBM Corporation, Wash. Systems Center

Will Servlets Still Run in 4.x Plugin?

Yes! They WAS 4.x Plugin is the WAS 3.5 SE
code with some additional function added

(to provide connectivity to WAS 4.x runtime)

If you want to run servlets in the Plugin, code
definitions in was.conf just as you did in
WAS 3.5 SE.

Can you use your WAS 3.5 SE was.conf with
this new Plugin? Yes, with only a minor
change.

IBM HTTP Server

WAS 4.x Plugin
httpd.conf

httpd.envvars

was.conf

WAS 3.5 SE

Add'l Function

host.default_host.alias=wg31.washington.ibm.com
:

deployedwebapp.hello.host=default_host
deployedwebapp.hello.rooturi=/PolicyIVP
deployedwebapp.hello.classpath=/u/team##/servlets
deployedwebapp.hello.documentroot=/u/team##
webapp.hello.servletmapping=/PolicyServlet

http://wg31.washington.ibm.com/PolicyIVP/PolicyServlet

was.conf

If Plugin see's "hit' on virtual
host and rooturi in was.conf,
it'll try to run request locally

Otherwise, it'll check with SMS
and route the request to the
WAS 4.x runtimeIn this example, Plugin will try to run the request locally. If you don't

want it to run locally, remove these definitions from was.conf

We have stated that the WAS 4.x Plugin is a superset of the WAS 3.5 Standard Edition code. The SE
code had the capability to run servlets in the Plugin itself. Can the new WAS 4.x Plugin do the same?
Yes, it can. The WAS 3.5 Standard Edition servlet execution runtime is still part of the Plugin, so
servlet can run inside the plugin just as they did in WAS 3.5. The function is so similar to WAS 3.5's
that the 3.5 was.conf configuration file can be used with the WAS 4.x Plugin with only a minor
one-line change.

The key to whether the Plugin will run a request locally or route it to the WAS 4.x web container is
whether the Plugin see's a "hit" on a virtual host and rooturi definition in the was.conf. (The notion of
virtual hosts in the Plugin is nearly identical to that found in the web container, and "rooturi" is
analogous to the "context root" in the web container.) If the Plugin gets a hit, it'll try to run the request
locally as if the application was deployed in the Plugin itself. The example above shows just such a
case. If no match is found in the was.conf, the Plugin then checks to see if the host and context root
on the URL matches any it knows about in the web container. If so, it'll pass the request over.

If you want to make sure no requests are run locally in the Plugin, remove all your custom definitions
from the was.conf so that all requests are routed to the web container.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200218© 2002, IBM Corporation, Wash. Systems Center

Can The Plugin Be Run All By Itself?

IBM HTTP Server

WAS 4.x
Plugin

httpd.conf

httpd.envvars

WAS 4.x Runtime

Web Container

WebApp

Application ServerSM Server

900
Knowledge
of all App
Servers

was.conf

Not in
sta

lle
d

or co
nfig

ure
d

Yes. This is known as the "simple configuration."

It is essentially the WebSphere 3.5 Standard Edition (SE) environment.

Just servlets and JSPs right now? Use this configuration until you're ready
to use EJBs.

A logical next question is whether you can use the Plugin all by itself, without installing and configuring
the WebSphere 4 runtime environment. The answer is yes ... and the configuration is known as the
"simple" configuration.

If all you have right now is servlets and JSPs, but EJBs are in your project plans, this might be just the
ticket for you. It gives you an opportunity to establish the plugin environment now and run your
servlets. When you want to start running EJBs, you can configure up the WebSphere 4 runtime and
deploy EJBs just like you did throughout this class.

The only real difference between this and the WebSphere Application Server V3.5 product is the
directories in which the code is installed. Beyond that, it's essentially the same thing as WebSphere
V3.5.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200219© 2002, IBM Corporation, Wash. Systems Center

Verifying Plugin-SMS Handshake

http://<host>/webapp/examples/index.html
1. Select "Show server configuration"
2. Scroll one page and select "Application Dispatching Information"

The "virtual host"
definition from the

webcontainer.conf
file

The "context root" definition from
the application.xml

deployment descriptor in EAR file

The JNDI lookup name of the
remote web container for web
application (as registered in

LDAP)

The presence of your webapp in this table means the plugin has communicated
with the web container and has knowledge of your application

"LocalHostDispatch"
means the plugin

thinks it is to run the
application locally

This is a function of the Plugin.
It reports back what the Web
Container says it has bound

How can you easily tell if your Plugin is communicating with the SMS and knows about deployed
applications? It turns out the Plugin comes with a servlet that will report what the SMS has told it. The
servlet is invoked with the URL you see on the chart above, and if you follow the two instructions also
provided above, you'll get a screen that is known as the "Application Dispatching" table.

On the previous page we mentioned removing definitions from the was.conf file to allow all requests to
flow over to the WAS 4.x runtime. The definition for this configuration reporting servlet is an exception.
Leave in place the block of definitions that has a rooturi= value of /webapp/examples.

Note:

What this Application Dispatching table tells you is what applications are available to be executed -- or
"dispatched" -- and where the application is deployed. The column "URL Prefix Pattern" tells you the
"Virtual Host / Context Root" pair and the next column tells you where it will be dispatched. The first
two rows in the table are for the servlet that provides this Application Dispatching report. It's virtual
host is "localhost," which is the default virtual host setting in the default was.conf file. The value of
"LocalHostDispatch" means the Plugin will execute this application in the Plugin itself.

The last line shows an application that's deployed over in the WAS 4.x runtime. The virtual host is
wsc4.washington.ibm.com:8080, and the context root is /PolicyIVP. Where the application will
be dispatched is the JNDI name of the remote web container, which is the web container in your
application server. This is telling you that if a URL comes in with virtual host and context root of
wsc4.washington.ibm.com:8080/PolicyIVP, it'll be passed over to the webcontainer for
execution.

If the Plugin receives a URL that doesn't match any virtual host and context root pairs, it'll simply reject
it. This illustrates the point that requests won't flow over to the WAS 4 web container unless the SMS
has told the plugin that the application is deployed.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200220© 2002, IBM Corporation, Wash. Systems Center

How the 4.01 Transport Handler Works

Control Region Server Region

Application Server

Transport
Handler

TCP/IP

Port
8080

current.env

BBOC_HTTP_PORT=8080

Browser
Session

Built-in function of the Control
Region.

Turn on by providing the
BBOC_HTTP_PORT= property to
the current.env file

Will bind to the specified
TCP port and listen for
HTTP requests

Requests received are then
passed to the Web
Container

http://wg31.ibm.com:8080/PolicyIVP/PolicyServlet

Web
Container

Set this either by direct
edit of file, or using SMS.

See next chart.

May configure any unused port
(even 80). Key is it can't already by

taken by some other process.

One Transport Handler per
application server instance; it

services only the Web Containers
of the attached server regions

Now we'll discuss the other way in which you can get HTTP requests to the web container. It involves
using what's known as the "Transport Handler." The Transport Handler is a built-in function of the
application server control region of WAS 4.01 and above. This won't work if your level of WAS is 4.00.
With the Transport Handler you don't need the IBM HTTP Server at all (though you may still have it in
the configuration if you wish, and we'll talk about that in a bit).

You turn on the function of the Transport Handler by coding an additional environment variable in the
control region's current.env file. That variable is BBOC_HTTP_PORT=, and it defines the TCP port
on which the Transport Handler will listen for HTTP requests. If that port is available (in other words, it
hasn't be grabbed by some other process), the Transport Handler will bind to the port. The port may
be any unused port, including the default HTTP port of 80.

If a URL hits your TCP stack destined for the port on which the Transport Handler is listening, it'll grab
the request, check the virtual host and context root values against what it sees deployed in the web
container of the attached server region, and if it matches, it'll pass the request over to the web
container.

The Transport Handler is a function of the control region. Each application server you define -- and you may
define any number of those -- has its own Transport Hander. The Transport Handler is designed to route
HTTP requests to the Web Container of the server regions of that application server, not the server regions
of other application servers. If you have multiple application servers defined, and each has deployed
webapps, that would mean enabling the Transport Handler of each. With multiple Transport Handlers
defined, you get into the question of whether to use different port numbers or use TCP port sharing. That
topic is beyond the scope of this presentation.

Note:

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200221© 2002, IBM Corporation, Wash. Systems Center

Using SMS to Update Listening Port

Modify, then scroll to the
bottom to find the

"Environment Variable List"

Click! Click!

8080

Set using SMS EUI so that future
conversation activations don't
overwrite your port update

Validate, commit and
activate the conversation

current.env

BBOC_HTTP_PORT=8080

There are two ways in which you may set the BBOC_HTTP_PORT environment variable in the
current.env file: by hand-editing the current.env file and adding the property manually, or by
using the SMS EUI and setting the property there. Hand-editing the file is quick and easy, but the
changes you make will be lost the next time an SMS EUI conversation is activated. So the preferred
method is to set it in the SMS EUI.

The SMS EUI allows environment variables to be set at different "levels" of the system heirarchy: at
the SYSPLEX level (these values cascade down to all the lower-level components, such as servers
and server instances); at the the Server level, or at the Server Instance level. The recommendation is
to set this as the Server level. Here's why:

! If you set the property at the SYSPLEX level, then all application servers will try to bind to the same HTTP
port. There is a way to accomplish port sharing in TCP, but the way TCP/IP routes a received request when
port sharing is in effect is more or less a round-robin approach. If you have multiple application servers all
listening on the same port, that implies all applications are deployed in all application servers. That's
awkward.

! If you set the property at the Server Instance level, that gives you the opportunity to set different ports for the
instances under a given server. The design of Server Instances is that one instance is indistinguishable from
another from the client's perspective. Different port numbers violates that principle.

! Therefore, the recommendation is to set this at the Server Level. That means the value will cascade down to
all the server instances you have configured under the server.

To set the value using the SMS EUI, you create a new conversation, modify the server itself, then scroll
to the bottom of the settings for the server. There you'll find the environment variable list. If you
double click on the open field after the last variable, it'll pop up a dialog box that'll allow you to set the
property name, the level and the value. Then validate, commit and activate the conversation.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200222© 2002, IBM Corporation, Wash. Systems Center

Verifying Tran. Handler is Listening

EZZ2350I MVS TCP/IP NETSTAT CS V2R10 TCPIP NAME: TCPIP1 02:28:47
EZZ2585I User Id Conn Local Socket Foreign Socket State
EZZ2586I ------- ---- ------------ -------------- -----
EZZ2587I APSRV3C 000017FB 0.0.0.0..1089 0.0.0.0..0 Listen

EZZ2587I APSRV3C 000017FC 0.0.0.0..8080 0.0.0.0..0 Listen

EZZ2587I APSRV3C 000017FA 0.0.0.0..1088 0.0.0.0..0 Listen

TSO
Session TSO NETSTAT

BROWSE -- current.env
Command ===>

********************************* Top ******
ENVIRONMENT FILE FROM CONVERSATION
#--
BBOC_HTTP_PORT=8080

The variable is now set in
current.env

Issue the TSO NETSTAT
command to see who's
listening on what TCP ports:

The Transport Handler is part of the Control Region ... look for the UserID for the Control
region, and then check to see if the BBOC_HTTP_PORT port is in "Listen" state

Once you have the Transport Handler configure, you can check to see if has properly bound to the
TCP port by issuing a TSO NETSTAT command. The results show all the processes bound to the
various ports. Look for your ID assigned to your application server control region. This example is
showing APSRV3 bound to port 8080, and it is in Listen mode. All that is a good sign: the control
region is up and the Transport Handler is listening on port 8080.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200223© 2002, IBM Corporation, Wash. Systems Center

Still have to Bind Applications?
WAS 4 Application Server

HTTP Server

WAS 4.x
"Plugin"

Web Container

WebAppVirtual
Host

Virtual
Host WebApp

Virtual
Host WebApp

Server RegionControl Region

Transport
Handler

Binding WebApps to Virtual
Hosts is a Web Container

function

Which "HTTP Catcher" you use
is almost entirely independent

of binding process

Yes. The process of binding WebApps to Virtual Hosts is a function and
requirement of the Web Container. The Web Container doesn't really care which
"HTTP Catcher" you use out front.

You do need to make sure the host (and port) used by whatever "HTTP listener"
you choose to use will match your defined virtual host. See next chart ...

Some may wonder whether or not it is still necessary to bind applications to virtual hosts when the
Transport Handler is in use. The answer is yes. This chart is in the presentation to illustrate a point:
the act of binding applications to virtual hosts is pretty much independent of which of the two HTTP
listening devices you use. However, you do need to be careful in the coding of your virtual hosts when
port numbers other than 80 are in play. The next chart illustrates this.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200224© 2002, IBM Corporation, Wash. Systems Center

Plugin and Tran. Handler at Same Time?
Is this possible? Yes! But you have to be careful about virtual hosts ...

WAS 4 Application Server

HTTP Server

WAS 4.x
"Plugin"

Web Container

/PolicyIVP

Server RegionControl Region

Transport
HandlerBrowser

Session

Port: 8080

Port: 9876

wg31.washington.ibm.com:9876

wg31.washington.ibm.com:8080

http://wg31.washington.ibm.com:9876/PolicyIVP/...

http://wg31.washington.ibm.com:8080/PolicyIVP/...

Both URLs will get the request
to the Web Container

This will execute PolicyIVP

This will not! Application isn't
bound to this virtual host!

Can you bind
application to different

virtual hosts?

Can Plugin and
Transport Handler
share same port?

Can you use
default port 80?

Yes! Yes! Yes!

A question that often comes up is whether the two HTTP listeners -- Plugin and Transport Handler --
can be used at the same time. The answer to that question is yes. However, if the two are listening on
listening on different port numbers, then the virtual hosts you code over in the web container will be
specific to the listener. That means you need to understand which virtual host your application is
bound to. The picture above illustrates this:

! The Plugin is configured and bound to port 8080 and the Transport Handler is configured and
bound to port 9876.

! Because the two are bound to different ports, their virtual hosts will be different, even if they have
the same host name! wg31.washington.ibm.com:9876 for the Transport Handler,
wg31.washington.ibm.com:8080 for the Plugin.

! In the example above, /PolicyIVP is bound to wg31.washington.ibm.com:9876, which is
the virtual host related to the Transport Handler.

! A URL that hits the Transport Handler's port of 9876 will find its way to the Web Container and
/PolicyIVP will be allowed to run: the virtual host and context root match.

! A URL that hits the Plugin's port of 8080 will be rejected: its virtual host / context root pair doesn't
match what the web container is reporting.

There's nothing wrong with this ... it's working as designed. But it does mean you need to be careful,
particularly when you first start out with this stuff, because the scenario pictured above can be
confusing. Can this be made easier by binding your applications to both virtual hosts? Yes. Can the
Transport Handler and the Plugin share the same port? Yes, if you make use of the TCP port sharing
function. Can you use the default HTTP port of 80? Yes!

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200225© 2002, IBM Corporation, Wash. Systems Center

Application Dispatching, Part II

URL Prefix Pattern JNDI Name

www.myhost.com:8080/applPLUG /MYPLEX/MYSERVER/applPLUG/applPLUG_webapp...

www.myhost.com:9191/applTRAN /MYPLEX/MYSERVER/applTRAN/applTRAN_webapp...

localhost:80/ConfigViewer LocalHostDispatch

localhost:80/webapp/examples LocalHostDispatch

This is bound to the plugin

This is bound to the Transport Handler

Plugin Transport
Handler

Web Container

www.myhost.com:8080 applPLUG

www.myhost.com:9191 applTRAN

HTTP Server WAS 4.01 Runtime

Port:
8080

Port:
9191

TCP/IP

"Hey, Web Container! What
do you have over there?

Application
Dispatching is
a function of
the Plugin.

It'll report the bound applications as reported to it by the Web Container.

That holds for applications bound to Plugin virtual host or Transport
Handler virtual host

Let's revisit the issue of the Application Dispatching function of the Plugin. It turns out that function
doesn't give a hoot whether an application over in the web container is bound to its virtual host or
someone else's. The Application Dispatching function will simply ask the web container to report on all
the bound applications. The Application Dispatching function will show them all, including those
applications bound to the Transport Handler, if that's part of the configuration as well.

What this means is this: you can make use of the Plugin's Application Dispatching as a kind of monitor
of the bound applications over in the web container. You don't have to have any application traffic go
through the Plugin, but you can use the Plugin as a window into the web container.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200226© 2002, IBM Corporation, Wash. Systems Center

Firewalls and DMZs

F
I
R
E
W
A
L
L

Plugin

Trans.
Hand.

Web
Container

WAS RuntimeF
I
R
E
W
A
L
L

HTTP Server
"Reverse Proxy"

Configuration
Unsecured

Network

DMZ Secured Network

Recommended Method: "Reverse Proxy" in DMZ

Not Recommended:

Plugin in DMZ

Flow from Plugin to WAS runtime is
RMI/IIOP, and it's difficult to configure
firewalls for IIOP

Plugin must run in MVS image with
running WAS 4.x daemon. That would
imply stretching SYSPLEX into DMZ

Transport Handler in DMZ

Transport Handler runs in Control
Region and services Web Container in
Server Region

Both must run in the same MVS image.
You can't separate the two

Therefore, you can't get Transport
Handler into DMZ without dragging
Application Server region

This is probably the question regarding the HTTP listening function of this WAS 4.x system. Many
people are very interested in how to move the HTTP listener into the DMZ while maintaining the
application server itself back in the secured network.

The recommendation is to configure a "reverse proxy" in the DMZ, probably on a distributed platform
though it could be on a S/390 box, and use it to route requests to either the Plugin or Transport
Handler behind the firewall.

What's not recommend is placing the Plugin or the Transport Handler in the DMZ. Here's why:

! Plugin -- the flow out of the back of the Plugin to the WAS 4.x runtime is RMI/IIOP, and that's a
very difficult protocol to configure a firewall around. Further, the Plugin must be running in an MVS
image with a running copy of the WAS 4.x daemon. And the daemon will be part of your WAS 4.x
SYSPLEX. The only way you could move the Plugin into the DMZ would be to stretch the
SYSPLEX into the DMZ as well. That's generally not something you'd want to do.

! Transport Handler -- the Transport Handler is designed to provide HTTP listening services to the
server regions connected to the control region of the application server. There's no way to
separate the control region from the server regions: they must be in the same MVS image.
Therefore, to drag the Transport Handler into the DMZ implies dragging the server region in as
well.

Therefore, the best way to achieve a DMZ configuration is to use a reverse proxy. The firewall
between the internet and the DMZ could be configured to allow through only HTTP on a given port, and
the firewall between the DMZ and the secured network could be configured to allow through only HTTP
from the reverse proxy's IP address.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200227© 2002, IBM Corporation, Wash. Systems Center

Which to Use and Why?
WAS 4 Application Server

HTTP Server

WAS 4.x
"Plugin"

Web Container

WebApp

WebApp

WebApp

Server RegionControl Region

Transport
HandlerBrowser

Session

Plugin Transport Handler

One HTTP listener to service any
number of application servers

Other HTTP Server functions available
(FRCA caching, CGI execution, etc.)

Additional processing overhead

More complex configuration

Optimized code-path for fast execution

Simple configuration

Strategic direction for WAS 390 HTTP
listener

Provides access to only the server in
which it's configured

Not intended to be replacement of HTTP
Server function

No clear-cut answer ...

Which HTTP listener you use depends somewhat up to what you're looking to do. Both will work, of
course, but the Plugin is a bit more flexible if you have multiple application servers. That's because the
Plugin can service all the application servers in a WAS node, while the Transport Handler is designed
to support only the application server for which the Transport Handler is configured. The Plugin also
has the benefit of all the features of the IBM HTTP Server, such as FRCA cachine and the ability to
execute CGI programs or other GWAPI programs. The Transport Handler, on the other hand, is
designed for speed; its code paths have been optimized to grab HTTP requests and pass them quickly
to the Web Container. The Transport Handler is the strategic direction for HTTP listeners for the WAS
web environment, and there will be enhancements in this arena in the future.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200228© 2002, IBM Corporation, Wash. Systems Center

Overview of the PolicyIVP WebApp

"Policy IVP"

Submit

Policy 1:

Policy 2:

BMP

CMP

WAS 4.0 Runtime

Session

Application Server Instance

Servlet

Web Container EJB Container

CMP

BMP
HTML

JPG/GIF

DB2

<form METHOD=GET ACTION="/PolicyIVP/PolicyServlet">

http://www.host.com/PolicyIVP/cebit.html

HTTP Server

WAS 4.x
"Plugin"

Trans.
Hand.

First
Test

Second
Test

All of that discussion was a prelude to the lab we'll do next. The PolicyIVP application you constructed
in the last lab had as one of its components a webapp called PolicyWebApp. That webapp will act as
the client to the PolicyIVP application. The webapp has a servlet as well as a handful of static files.
One of the static files is called cebit.html, and that's the input page on which you'll specify your two
policy numbers and your choice of BMP or CMP.

To get the initial HTML page you issue a URL like what's shown at the top of the page. That URL must
have the virtual host and context root values for the PolicyIVP application: the Web Container will
serve out the static page, and to get to the application to do that you must have the correct virtual host
and context root pair.

With the HTML page down on your browser, you may then specify the two policy numbers and your
choice of BMP or CMP. In the earlier labs the "fat client" had hard coded values for the policy
numbers, and the shell script you used invoked the fat client twice: once for BMP and then again for
CMP. Here it's your choice.

With the click of the "Submit" button a URL goes back to the server with the context root and
servletmapping string. The policy numbers and BMP/CMP choice go back as hidden variables. The
servlet takes the input, then turns and drives the session. The rest goes just like what we discussed
earlier. The only difference is the client used out front.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200229© 2002, IBM Corporation, Wash. Systems Center

Overview of Lab

HTTP Server APSRV3 Application Server

Control Region Server Region

Web
Container

EJB
Container

Transport
Handler

Plugin
WebApp PolicyIVP

httpd.conf
httpd.envvars
was.conf

current.env webcontainer.conf

PolicyIVP is deployed into APSRV3

PolicyWebApp is deployed into Web Container (needs activating)

In this lab, you will:

Configure Plugin and make sure it initializes

Configure Web Container and make sure PolicyWebApp binds to Virtual Host

Test PolicyWebApp as client to PolicyIVP

Configure Transport Handler, shut down Webserver, and test again

And now it's time to go to lab and make all this stuff work.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200230© 2002, IBM Corporation, Wash. Systems Center

WSC White Paper on WebApps

Go to www.ibm.com/support/techdocs

Click on "White Papers" link

Search for WP100238 under "White Papers"

1.5MB PDF file

100 pages, table of contents, index, lots of pictures

Everything covered here, and more

For much more information on configuring webapps, go get this PDF off the IBM technical support
website.

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200231© 2002, IBM Corporation, Wash. Systems Center

End of Document

Configuring Web Applications Which Access EJBs

Version Date: March 26, 200232© 2002, IBM Corporation, Wash. Systems Center

