
Lab:Lab:Lab:Lab:
Configuring Web ApplicationsConfiguring Web ApplicationsConfiguring Web ApplicationsConfiguring Web Applications

(This page intentionally left blank)

Reference: Initial State of the Environment
The initial configuration structure looks like this:

/etc

/wasweb

httpd.conf

httpd.envvars

/var

/wasweb

/imw_logs

/(root)

Webserver's
configuration

file

Webserver's
environment
variables file

Webserver's
log directory

Webserver
Started Task

SYS1.PROCLIB(WASWEB) Webserver's
start

procedure

Listens on port 80

The surrogate userid is
WASGUST

Verify that the Webserver Comes Up
As an initial test, start the webserver and make sure you can reach the default home
page:

! Start the webserver with proc WASWEB (already in SYS1.PROCLIB)

! http://<host name>

You should get a page that looks like this:

! Stop the webserver.

Lab: Configuring Web Applications

Version Date: April 11, 20021© 2002, IBM Corporation, Wash. Systems Center

Configure the WAS 4.01 Plugin
This process involves updating the httpd.conf file to tell the webserver to initialize the
plugin, the httpd.envvars file to give the webserver some knowledge of the
environment, and creating a was.conf file for use by the plugin.

Update httpd.conf file

! Locate the string WAS directives in the file, then comment out the Service
statement that immediately follows it. See "Reference: Initial State of the
Environment" on page 1 for an indication of where the httpd.conf file resides.

! Add the following, being careful with spelling and case:

ServerInit /usr/lpp/WebSphere401/WebServerPlugIn/bin/was400plugin.so:init_exit

/usr/lpp/WebSphere401,/etc/wasweb/was.conf

Service /webapp/examples/* /usr/lpp/WebSphere401/WebServerPlugIn/bin/was400plugin.so:service_exit
Service /PolicyIVP/* /usr/lpp/WebSphere401/WebServerPlugIn/bin/was400plugin.so:service_exit

ServerTerm /usr/lpp/WebSphere401/WebServerPlugIn/bin/was400plugin.so:term_exit

Separated by a space(ServerInit statement must be contained on one line)

Update httpd.envvars file

! Add a JAVA_HOME variable and set its value to the location where the JDK 1.3
libraries reside (/usr/lpp/java2/J1.3). See "Reference: Initial State of the
Environment" on page 1 for information on where the httpd.envvars file
resides.

! Add the WAS 4.01 plugin's message catalog to the NLSPATH variable:
/usr/lpp/WebSphere401/WebServerPlugIn/msg/%L/%N

! Provide the following two variables to give the plugin knowledge of the naming
server:

RESOLVE_IPNAME=WG31.WASHINGTON.IBM.COM
RESOLVE_PORT=900

! Save the file.

Create log directory and work directory for WAS 4.0 plugin

The plugin has a logging facility that may prove useful, and it's best to have the
WAS 4.01 plugin write those logs to an HFS directory. In addition, you need to
provide the WAS 4.01 plugin needs a "scratch" directory in which to do some work.

! Create the directory /var/wasweb/work and give it permissions 777

! Create the directory /var/wasweb/was_logs and give it permissions 777

Create and update the was.conf file

At the present time no was.conf file exists in your /etc/wasweb directory. You
need to provide one because on the ServerInit statement in httpd.conf, the
second parameter on the statement points to /etc/wasweb/was.conf. If the
plugin can't find the was.conf file explicitely named on the ServerInit, it'll fail to
initialize.

! Copy the supplied default was.conf file:

Lab: Configuring Web Applications

Version Date: April 11, 20022© 2002, IBM Corporation, Wash. Systems Center

/etc/wasweb/was.confTo:

/usr/lpp/WebSphere401/WebServerPlugIn/properties/was.confFrom:

! Edit the file and make the following two updates:

" Add the directory /var/wasweb/was_logs to the
appserver.logdirectory statement.

" Add the directory /var/wasweb/work to the
appserver.workingdirectory statement.

! Save the file.

Restart the webserver and verify the plugin initialized

! Start the webserver.

! Now browse the SYSOUT of the WASWEB started task and find the following string:

:-)

Yes, that's a "smiley face", and that's an indication that the plugin initialized okay.
The plugin sometimes takes a few moments to initialize, and may not be up even
though the webserver is operational. Give it a few moments and try again if you
don't see it initially.

If you still can't find the smiley face, search on the "frowny face" :-(. The
webserver will throw that message if something prevented the plugin from
initializing. Common causes for plugin initialization failure:

" JAVA_HOME variable in httpd.envvars not set correctly.

" Mistyped directory or file name on ServerInit statement in httpd.conf.
Check for case problems.

" Second parameter on ServerInit statement points to was.conf file and
directory that does not exist.

! Once you've verified the smiley face, issue the following URL from your browser:

http://<host>/webapp/examples/index.html

You should see a screen that looks something like this:

Lab: Configuring Web Applications

Version Date: April 11, 20023© 2002, IBM Corporation, Wash. Systems Center

If you receive this, it is an indication that your URL was successfully mapped
over to the WAS 4.01 plugin using the Service statements in httpd.conf.
But beware, at this point you have not exercised the WAS 4.01 Runtime. This
screen came out of the plugin locally, and no interaction with the WAS 4.01
runtime has yet taken place.

! Browse the httpd.conf file and find the Service statement that would be
matched when a URL of:

http://<host>/webapp/examples/index.html

is received. Do you see how a URL mapping to the /webapp/examples/*
mask gets mapped to the was400plugin.so:service_exit routine?

! Now browse the was.conf file and find the deployedwebapp statements (at
the bottom) and note the statement with rooturi=/webapp/examples. This
block of statements (deployedwebapp and webapp) is what defines the
plugin's local verification program.

Because these definitions exist in the was.conf file, the request received was
processed locally, rather than being passed over to the WAS 4.01 Runtime.

Web Container Setup
The web container is actually created when the server instance is created, but it doesn't
"come to life" until the webcontainer.conf file is brought into play.

Do the following:

! Locate the private directory for your application server instance. This is the directory
in which the server instance's current.env file resides. Write the directory here:

__

Start at /WebSphere390/WAS401 and work your way down from there.Hint:

Lab: Configuring Web Applications

Version Date: April 11, 20024© 2002, IBM Corporation, Wash. Systems Center

! The sample webcontainer.conf file is located in the
/usr/lpp/WebSphere401/bin directory. Copy the file over to the private
directory of your server instance and make sure it has permission 644 and an
owning ID of WASSMSS.

! Edit the jvm.properties file in the server instance's private directory and point to
the webcontainer.conf file you just copied into the directory. The statement that
defines the web container's configuration file is this:

com.ibm.ws390.wc.config.filename=

Code the full path and file name of the webcontainer.conf file.

! Edit the webcontainer.conf file and update to properties in the file:

host.default_host.alias=wg31.washington.ibm.com

host.default_host.contextroots=/

That's it ... the web container has its configuration file and the virtual host and
contextroots are configured in the most basic fashion. Now you need to test to see if
the IVP you deployed earlier works.

Before you do that, you need to refresh your environment:

! Stop the application server control region

! Stop WASWEB

! Start the control region

! Start WASWEB

! Review the SYSPRINT of the server region and insure the proper
webcontainer.conf file was used, and the /PolicyIVP application was bound
to your virtual host.

! Invoke the /webapp/examples/showCfg application and make sure the PolicyIVP
application appears in the appropriate format.

Test the IVP
Get the PolicyIVP HTML Front Page

! Issue the URL:

http://wg31.washington.ibm.com/PolicyIVP/cebit.html

You should receive a screen that looks like this:

Lab: Configuring Web Applications

Version Date: April 11, 20025© 2002, IBM Corporation, Wash. Systems Center

If you receive this screen, it means the link between the plugin and the WAS
4.01 runtime has been exercised, and the PolicyIVP web application components
have been properly deployed into the web container. At this point, however, no
RMI/IIOP flows to EJBs have occurred. This is just a static HTML page that
WAS 4.01 has served out.

Drive the EJB

! With your browser still at this HTML screen, view the source of the HTML. Find
the line that starts <form METHOD=GET ACTION=... . What is the "action" that
will take place when the "submit" button is clicked?"

__

! Provide a number in the input box "Policy Number 1" and a number in the input
box "Policy Number 2", select either CMP or BMP and then click "Submit". If
things are working properly, you should see an output page that looks like this:

Lab: Configuring Web Applications

Version Date: April 11, 20026© 2002, IBM Corporation, Wash. Systems Center

Arbitrary numbers
entered on the front

HTML page

"CMP" radio button
chosen on front

HTML page

Indication of success

Getting this screen means the HTML submit button flow drove the servlet in the
web container, which in turn invoked an RMI/IIOP flow to the session bean,
which then invoked the method on the CMP or BMP bean, which then put the
information you entered into the database. Once done, the servlet formatted the
HTML and sent the results to your browser.

Configure the Transport Handler
The objective here is to configure the Transport Handler to bind to port 80 and to
make use of the existing virtual host and context settings in the
webcontainer.conf file.

We are going to have the Transport Handler bind to port 80. That means for this to
work you must shut down the Webserver (both can't bind to 80 at the same time).
Doing so will make certain that you are actually using the Transport Handler: with the
Webserver shut down, the browser will have only one way to get to PolicyIVP, and
that's through the Transport Handler.

Note:

! Stop the Webserver.

! Start the SMS EUI tool. Create a new conversation, locate the APSRV3 server

! Modify the server, and locate the "Environment Variable List." Double-click on
the first empty cell after the last "SPX" (SYSPLEX) level variable in the list:

Double-click on first open cell

Lab: Configuring Web Applications

Version Date: April 11, 20027© 2002, IBM Corporation, Wash. Systems Center

! Set the variable as BBOC_HTTP_PORT, the level as Server (which should be
what it shows by default because you're modifying the server), and set the value
as 80:

1
Set variable

Name80

2

Set the value

3

Click "OK"

! Save the changes, then validate, commit and activate the conversation.

! After the conversation has been activated, browse the current.env file and
make sure the BBOC_HTTP_PORT variable has been set.

! Activating a conversation would have restarted your server. Check to see if the
APSRV3 server is started. If not, start it.

! Issue the NETSTAT command from the TSO Option 6 panel and see if the
APSRV3C ID has hold of port 80.

! Clear your browser's cache, then issue the URL:

http://wg31.washington.ibm.com/PolicyIVP/cebit.html

Do you get the front page of the PolicyIVP application?

! Set the policy and BMP/CMP values and drive the application again.

End of Document

Lab: Configuring Web Applications

Version Date: April 11, 20028© 2002, IBM Corporation, Wash. Systems Center

