
 IBM Corporation 2002

Rich Lewis
IBM

IMS Advanced Technical Support

The world depends on it

Application Design and

Programming with HALDB

© IBM Corp. 2002 Application Design and Programming with HALDB 1

IMS Version 7 adds High Availability Large Database (HALDB) capabilities. HALDB supports very large databases. By
splitting a database into multiple partitions, HALDB allows it to contain up to 40 terabytes! In spite of this, an application
program continues to see one database. That is, the database is addressed by one PCB.

In general, application programs do not have to be modified when a database is migrated to HALDB. On the other hand,
there are cases where application programs must be changed. Also, an installation may want to take advantage of some
capabilities which may require application changes.

This presentation describes changes that you may need to make or want to make when a database is migrated to HALDB.
Considerations for processing partitions in parallel, processing secondary indexes as databases, initially loading HALDB
databases, handling unavailable partitions, and converting from user partitioning are explained.

IBM Corporation, 2002c

IMS Version 7

The world depends on itTopics

Introduction

Highlights of HALDB

Partitioning

Application Considerations

Initial Loads

Processing Partitions in Parallel

Restricting a PCB to One Partition

Handling Unavailable Partitions

Processing Secondary Indexes as Databases

Converting from User Partitioning

© IBM Corp. 2002 Application Design and Programming with HALDB 2

IBM Corporation, 2002c

IMS Version 7

The world depends on it

Highlights of HALDB

© IBM Corp. 2002 Application Design and Programming with HALDB 3

This section briefly describes the characteristics and benefits of HALDB.

IBM Corporation, 2002c

IMS Version 7

The world depends on it

Large Database

Databases are partitioned

Up to 1001 partitions per database
Partitions have up to 10 data set groups

High Availability Database

Partition independence
Allocation, authorization, reorganization, and recovery are by partition

Simplified and shortened reorganization process
Partitions may be reorganized in parallel
Reorganization of partition does not require changes to secondary indexes or
logically related databases which point to it
Prefix Resolution, Prefix Update, and secondary index rebuilds are eliminated

HALDB (High Availability Large Database)

Up to 10,010 data sets per database!
 Greater than 40 terabytes

© IBM Corp. 2002 Application Design and Programming with HALDB 4

IMS V7 introduces a new capability for full function databases. This is High Availability Large Database (HALDB). HALDB
databases have up to 1001 partitions. Each partition has up to 10 data set groups. This gives HALDB up to 10,010 data
sets per database. Each of these data sets may be up to 4 gigabytes. So, the limit is 40 terabytes per database.

HALDB provides two availability benefits. First, partitions are managed independently. Each partition in a database may be
allocated, authorized, reorganized, and recovered independently. Second, the reorganization of the database is much
faster. First, multiple partitions allow users to reorganize and image copy smaller amounts of data. This takes less time.
The reorganizations may be done in parallel as can the image copies. Second, the reorganization of a partition does not
require utilities to update the pointers in secondary indexes and logically related databases which point to the reorganized
data. Even though the reorganization moves segments, pointers to those segments are not updated by the reorganization
process. Instead, these pointers are updated as needed. This is a "self healing" process. This combination of capabilities
can greatly reduce the windows required for database maintenance. There is no need for utilities such as Prefix Resolution
and Prefix Update to update pointers. There is no need to rebuild secondary indexes. This also reduces the time required
for reorganizations.

IBM Corporation, 2002c

IMS Version 7

The world depends on itHighlights

New database types

PHDAM - partitioned HDAM

PHIDAM - partitioned HIDAM
Index is also partitioned

PSINDEX - partitioned secondary index

Hierarchic structure is maintained

A database record resides in one partition

Partition selection (deciding in which partition a record resides)

By key range or by user exit routine

...

© IBM Corp. 2002 Application Design and Programming with HALDB 5

HALDB introduces three new full function database types, partitioned HDAM (PHDAM), partitioned HIDAM (PHIDAM), and
partitioned secondary index (PSINDEX). As the names imply, these are partitioned versions of the corresponding database
types for non-HALDB databases. PHIDAM includes its index which is also partitioned.

HALDB databases have the same hierarchic structure that is used for other full function databases. A HALDB database
record, which is a root segment and all of its dependents, resides in one partition.

Partitioning may be done either by key range or by a user written exit routine. Either method may be used with each of the
three database types, PHDAM, PHIDAM, and PSINDEX.

IBM Corporation, 2002c

IMS Version 7

The world depends on itHighlights

Logical relationships and secondary indexes are supported

Secondary indexes may be partitioned

Parallel Processing

Reorganizations
Partitions may be reorganized independently
Partitions may be reorganized in parallel

Application processing
Partitions may be processed in parallel

DBRC authorization is by partition (not entire database)

© IBM Corp. 2002 Application Design and Programming with HALDB 6

HALDB has full support of logical relationships and secondary indexes. The secondary indexes may be partitioned.

HALDB provides for the possibility of parallel processing. Partitions of databases may be reorganized with separate jobs.
These jobs may be run in parallel. The capability to reorganize partitions of a database in parallel with multiple jobs can
greatly reduce the time required to reorganize a database. Application processing against different partitions may be done
in parallel. DBRC authorization is by partition, not an entire database. This means that different batch jobs may process
different partitions of the same database without requiring data sharing.

IBM Corporation, 2002c

IMS Version 7

The world depends on itThe Application Programming News

The good news:

In general, application programs do not have to be
changed when databases are migrated to HALDB

The OK news:

You may want to change application programs to take
advantage of new opportunities with HALDB

The not so good news:

You may have to change a small number of application
programs when databases are migrated to HALDB

© IBM Corp. 2002 Application Design and Programming with HALDB 7

For application programming there is a lot of good news. In general, existing application programs do not have to be
changed when a database is migrated to HALDB.

On the other hand, you may want to make some application changes. Since HALDB partitions may be managed and
processed independently, you may want to modify applications to take advantage of this capability.

There are a few cases where existing application programs must be modified when a database is migrated to HALDB. We
will see that these cases are rare. They occur in two situations. First, some program which initially load databases with
logical relationships may have to be changed. Second, some programs which process secondary indexes as if they were
databases, may have to be changed. We will see the exact circumstances in which changes are required.

IBM Corporation, 2002c

IMS Version 7

The world depends on it

Partitioning

© IBM Corp. 2002 Application Design and Programming with HALDB 8

This section describes the ways in which HALDB databases may be partitioned and how partitioning affects the order of
segments in a database.

IBM Corporation, 2002c

IMS Version 7

The world depends on itPartitioning Choices

Two methods of partitioning

Key range

Each partition is assigned a range of root segment keys

Partition Selection Exit routine
The exit routine assigns a root segment to a partition based on its key

0 - 1000 1001 - 2000 2001 - 3000 9001 - 9999

2012
4516
7718

2412
7823
8900

1712
3432
8534

6549
7720
9791

...

...

© IBM Corp. 2002 Application Design and Programming with HALDB 9

HALDB databases may be partitioned using either of two methods. In both methods the key of the root segment is used to
assign a database record (a root segment and all of its dependents) to a partition. Either method may be used with each of
the HALDB database types, PHDAM, PHIDAM, and PSINDEX.

Key range partitioning assigns a range of keys to a partition. For each partition we specify the highest key that may reside
there. In this example, the first partition has a high key of 1000. The second partition has a high key of 2000, etc. So, all
keys from 0 to 1000 will be placed in the first partition. Keys from 1001 to 2000 will be placed in the second partition.

A Partition Selection Exit routine may be used to assign keys to partitions. With this method, an exit routine is specified
for the database. This exit routine makes the partition selection decision for each key. It can use whatever method its
programmer chooses to use. In this example, keys 2012, 4516, and 7718 are assigned to the first partition. Keys 2412,
7823, and 8900 are assigned to the second partition. It is not clear how the exit routine has made these decisions.

IBM Corporation, 2002c

IMS Version 7

The world depends on itPartitioning Choices

Partition Selection Exit routine example:

Assign records by country code which is in the root key

US UK FR CA

Key: 457US7890

Key: 459UK2323

Key: 127FR6767

Key: 127CA6767

© IBM Corp. 2002 Application Design and Programming with HALDB 10

One might use a Partition Selection Exit routine if a low order part of the key has information which is useful in assigning
records to partitions. In this example, the fourth and fifth bytes of the key include a country code. The installation wants to
create a separate partition for each country. The exit routine examines the fourth and fifth bytes of the key and assigns
records based on these bytes.

IBM Corporation, 2002c

IMS Version 7

The world depends on itOrder of Segments in a Partition

PHDAM - Partitioned HDAM

Roots are in random order within a partition

PHIDAM - Partitioned HIDAM

Roots are in sequential order within a partition

PSINDEX - Partitioned Secondary Index

Entries are in sequential order within a partition

© IBM Corp. 2002 Application Design and Programming with HALDB 11

The order of records (root segments) in a partition depends on the database type.

As we would expect, PHDAM records are stored randomly. This depends on the database randomization routine. Each
partition may have its own randomization routine. Typically, we could use DFSHDC40 just as we would use it for a
non-HALDB HDAM database. Sequential processing of a partition will return root segments in a random order. That is,
they will not be in key sequence.

As we would expect, PHIDAM records are stored sequentially within a partition. Sequential processing within a partition will
return PHIDAM root segments in key sequence.

PSINDEX entries are also stored in key sequence. If we process a database using a secondary index processing
sequence, the records will be returned in secondary index key sequence within a secondary index partition.

IBM Corporation, 2002c

IMS Version 7

The world depends on itOrder of Segments in a PHDAM Database

PHDAM with key range partitioning

Keys are sequential between partitions, random within a partition

PHDAM with Partition Selection Exit routine

Keys are not sequential between partitions, random within a partition

874

321

456

1712

1532

1219

2412

2012

2567

9210

9020

9791

...

2012

4516

7718

2412

7823

8900

 874

1712

3432

6549

7720

9791

...

© IBM Corp. 2002 Application Design and Programming with HALDB 12

Let's look at the order of segments in a database, not just within a partition.

If we use key range partitioning with PHDAM, keys are sequential between partitions. This means that the lowest range of
keys will be in the first partition. The next range of keys will be in the second partition, etc. Of course, within any partition
the keys will be in a random order determined by the randomization routine. In this example, keys from 0-1000 are
randomly ordered in the first partition. Keys from 1001 to 2000 are randomly ordered in the second partition, etc.

If we use a Partition Selection Exit routing with PHDAM, the keys are not sequential between partitions. The exit routines
determines which are placed in which partition. Of course, within any partition the keys are in random order. The
randomization routine determines the order.

IBM Corporation, 2002c

IMS Version 7

The world depends on itOrder of Segments in a PHIDAM Database

PHIDAM with key range partitioning

Keys are sequential between partitions, sequential within a partition

PHIDAM with Partition Selection Exit routine

Keys are not sequential between partitions, sequential within a
partition

...
2012

4516

7718

2412

7823

8900

 874

1712

3432

6549

7720

9791

1219

1532

1712

321

456

874

2012

2412

2567

9020

9210

9791

...

© IBM Corp. 2002 Application Design and Programming with HALDB 13

If we use key range partitioning with PHIDAM, keys are sequential between partitions and across partitions. The lowest
range of keys will be in the first partition and they are sequential within the partition. Similarly, the next range of keys will
be in the second partition and they are sequential within the partition. This means that sequential processing of the
database will return the root keys in key sequence. This is the same as the sequential processing of a non-HALDB HIDAM
database.

If we use a Partition Selection Exit routing with PHIDAM, the keys are not sequential between partitions. The exit routines
determines which are placed in which partition. Of course, within any partition the keys are in sequential order.

IBM Corporation, 2002c

IMS Version 7

The world depends on itOrder of Segments in a PSINDEX Database

PSINDEX with key range partitioning

Keys are sequential between partitions, sequential within a partition

PSINDEX with Partition Selection Exit routine

Keys are not sequential between partitions, sequential within a
partition

321

456

874

1219

1532

1712

2012

2412

2567

9020

9210

9791

...

2012

4516

7718

2412

7823

8900

 874

1712

3432

6549

7720

9791

...

© IBM Corp. 2002 Application Design and Programming with HALDB 14

PSINDEX is much like PHIDAM.

If we use key range partitioning with PSINDEX, keys are sequential between partitions and across partitions. The lowest
range of keys will be in the first partition and they are sequential within the partition. Similarly, the next range of keys will
be in the second partition and they are sequential within the partition. This means that using the secondary index as a
processing sequence will result in the retrieval of the records in the indexed database in the secondary index key sequence.
This is like using a non-HALDB secondary index as a processing sequence.

If we use a Partition Selection Exit routine with PSINDEX, the keys are not sequential between partitions. The exit routine
determines which are placed in each partition. Of course, within any partition the keys are in sequential order.

IBM Corporation, 2002c

IMS Version 7

The world depends on itApplication Considerations

Initial loads

Processing Partitions in Parallel

Restricting a PCB to One Partition

Handling Unavailable Partitions

Processing Secondary Indexes as Databases

Converting from User Partitioning

© IBM Corp. 2002 Application Design and Programming with HALDB 15

Now that we have the necessary background information, we can look at the considerations for application design and
coding when we migrate a database to HALDB.

We will look at initial loads of HALDB databases. This includes the required order of records when loading a database, how
to load partitions in parallel, and how to handle logical children. Logical children in HALDB databases cannot be created by
initial load.

We will look at processing partitions in parallel. If we process in parallel, we may need to limit the processing of a program
to a single partition. We will see how to do this.

We will look at how we may handle unavailable partitions and what we must do to process secondary indexes as
databases.

Finally, we will consider the conversion of user partitioned databases. User partitioning is the term to describe the use of
multiple databases as if they were partitions of a database. Many installations have used this technique in the past. We
will see what they have to do when such a set of databases is migrated to a single HALDB database.

IBM Corporation, 2002c

IMS Version 7

The world depends on it

Initial Loads

© IBM Corp. 2002 Application Design and Programming with HALDB 16

This section describes the initial loads of HALDB databases. It does not discuss the migration of a non-HALDB database
to HALDB. Migrations are not covered in this presentation.

IBM Corporation, 2002c

IMS Version 7

The world depends on itInitial Loads

Initial load uses PROCOPT=L or PROCOPT=LS in PCB

Same as non-HALDB databases

Loads of PHDAM roots may be in any key sequence

Could load 874, 1712, 2012, 2412, 4516, 6549, 7718, 7720, ...

Could load 8900, 2012, 7823, 4516, 7718, 2412, 874, 1712, ...

No changes required for load program
If you sort by RAP sequence for faster loads, you will want to sort by RAP
sequence within partitions

2012
4516
7718

2412
7823
8900

 874
1712
3432

6549
7720
9791

...

© IBM Corp. 2002 Application Design and Programming with HALDB 17

Initial loads of HALDB databases use either PROCOPT=L or PROCOPT=LS in the database PCB. This is the same as is
used for non-HALDB databases.

For PHDAM databases, initial load may use PROCOPT=L. There is no requirement for any order of the roots segments.
They may be loaded in any sequence.

This example shows that the roots could be loaded in key sequence. They could be loaded in an arbitrary sequence, such
as 8900, 2012, 7823, etc. Any program that successfully loads an HDAM database may also be used to successfully load
the database after it has been converted to HALDB. There is one exception to this rule. The exception deals with logical
relationships, not the order of the segments. It will be discussed later in this presentation.

Many installations load HDAM databases in RAP sequence. This loads the records in physical sequence in the database.
This is done by sorting the input records into the order that the randomization routine creates. To do the same thing with
PHDAM, one would have to sort the records within each partition. With PHDAM, randomization is done within a partition,
not across partitions. That is, the partition is selected first and then randomization is done.

The IBM High Performance Load tool includes a Physical Sequential Sort for Reload (PSSR) program which will do this sort.
That is, it will sort the records for partitions in RAP sequence. It includes HALDB support to sort records for one partition, a
set of partitions, or all partitions in a database.

IBM Corporation, 2002c

IMS Version 7

The world depends on itInitial Loads

Loads of PHIDAM roots must be in key sequence within a partition

May be in key sequence across the entire database

Could load 874, 1712, 2012, 2412, 4516, 6549, 7718, 7720, ...

This is like HIDAM database order

No changes required for load program

Could load 2012, 4516, 7718, 2412, 7823, 8900, 874, 1712, ...

...
2012
4516
7718

2412
7823
8900

 874
1712
3432

6549
7720
9791

© IBM Corp. 2002 Application Design and Programming with HALDB 18

For PHIDAM databases, initial load must use PROCOPT=LS. The roots must be loaded in key sequence within each
partition. They do not have to be in key sequence across the entire database. Non-HALDB HIDAM requires that roots be
loaded in key sequence across the entire database. This means that the program used to load a HIDAM database may be
used to load a PHIDAM database. On the other hand, a different order of root segments could be used.

This example shows that roots could be loaded in key sequence for the entire database: 874, 1712, 2012, etc. This would
be the order in which a HIDAM database would be loaded.

They also could be loaded in partition sequence: 2012, 4516, 7718, 2412, 7823, etc.

IBM Corporation, 2002c

IMS Version 7

The world depends on itInitial Loads in Parallel

Partitions may be initially loaded in parallel

Separate jobs for each partition

Multiple jobs cannot load records in the same partition

Could make load of database much faster

Current load programs may work without change
Input to program would have to be split by partition

...
2012
4516
7718

2412
7823
8900

 874
1712
3432

6549
7720
9791

Load
program
partition 1

Load
program

partition N

Load
program

partition 3

Load
program

partition 2

© IBM Corp. 2002 Application Design and Programming with HALDB 19

To shorten the time to load a HALDB database, you may want to load the partitions in parallel. You may use separate
concurrently executing jobs to do this. Typically, each job would load a partition. This is not required. The restriction is
that two or more jobs cannot load the same partition.

If there are many jobs, the elapsed time for loading a database could be significantly shortened. The database load would
take only as long as the longest job. If it takes an hour to load of a 20 partition database with one job, loading it with 20
jobs might reasonably take less than 5 minutes.

Programs that currently load an entire database may work without change to load partitions in parallel. This is reasonable if
the input to the program can be split into multiple inputs with one input for each load job.

IBM Corporation, 2002c

IMS Version 7

The world depends on itInitial Loads in Parallel

Non-HALDB process
Step 1 creates file read
by load program

HALDB parallel load process
Step 1 creates a file for each partition

Load program is unchanged

Load
program

Create load
input file

Non-HALDB

Create
multiple load
input files

Load
program

Partition 2

Load
program

Partition 3

Load
program

Partition 1

© IBM Corp. 2002 Application Design and Programming with HALDB 20

This page shows a typical conversion to parallel loads.

For the non-HALDB database, there is an input file that drives the load program. It contains the data to be loaded in the
database.

To convert this process for parallel loads, we only need to split the input file input multiple input files. We need one file for
each partition. For key range partitioning this is very easy. We just create a file for each range of root keys. If we use a
Partition Selection Exit routine, we have to use the same logic that the exit routine uses when we assign a record to a file.

The load program does not have to be changed. We execute multiple instances of it concurrently. The load programs do
not have to "know" which partitions they are loading. They just do the same inserts that they would do for a non-HALDB
database. Since the first programs only reads records for the first partition, it will only write to it. Similarly, the second
program will only read records for the second partition and only write to it, etc.

IBM Corporation, 2002c

IMS Version 7

The world depends on itInitial Loads with Logical Relationships

Logical relationships

Logical children cannot be loaded in HALDB

Attempts to load logical children receive 'LF' status code

They must be added by update programs (PROCOPT=I or A)
Cannot insert logical child without logical parent

LP1

LC2

LP2

LC1

LP - logical parent LC - logical child

DBX DBY

© IBM Corp. 2002 Application Design and Programming with HALDB 21

HALDB supports logical relationships, but it has a restriction when loading databases with logical relationships. An initial
load program cannot insert a logical child segment. That is, logical children cannot be inserted with a PROCOPT of L or
LS. Instead, they must be added by an update program using a PROCOPT of I or A. Attempts to insert a logical child
during initial load will receive an 'LF' status code.

You cannot insert a logical child without its logical parent. If you are using an insert rule of P for the logical parent, the
logical parent must exist before you insert the logical child. If you are using an insert rule or L or V, you may insert the
logical parent with the logical child.

This illustration shows a bidirectional logical relationship. HALDB supports two types of logical relationships: (1)
unidirectional logical relationships and (2) bidirectional logical relationships with physical pairing. HALDB does not support
bidirectional logical relationships with virtual pairing.

In the illustration, LC1 is a logical child pointing to its logical parent LP1. Similarly, LC2 is a logical child pointing to its
logical parent LP2. LC1 and LC2 are paired logical children.

IBM Corporation, 2002c

IMS Version 7

The world depends on itInitial Loads with Logical Relationships

Non-HALDB process:

Step 1: Prereorganization utility

Step 2: Initial load DBX including logical children
Creates work file for logical relationships

Step 3: Initial load DBY including logical children

Creates work file for logical relationships

Step 4: Prefix Resolution utility
Sorts work file records

Step 5: Prefix Update utility
Updates prefixes (pointers and counters) used for logical relationships

LP1

LC2

DBX

LP2

LC1

DBY

LP1

LC2

LP2

LC1

DBX DBY

© IBM Corp. 2002 Application Design and Programming with HALDB 22

This page shows the load process for non-HALDB databases with logical relationships.

Step 1 is the Prereorganization utility. It creates a control data set which is used to control the execution of later steps.

Step 2 is the initial load of database DBX. In includes the insertion of the logical parent segments (LP1) and logical child
segments (LC2). The load creates a work file.

Step 3 is the initial load of database DBY. In includes the insertion of the logical parent segments (LP2) and logical child
segments (LC1). The load creates a work file.

Step 4 is the Prefix Resolution utility. The inputs to the utility are the work files from steps 2 and 3. It also reads the
control data set created in step 1. Prefix Resolution sorts records and resolves logical relationships. It prepares an output
file for step 5.

Step 5 is the Prefix Update utility. It puts pointer information in the logical children, LC1 and LC2, so that they point to their
logical parents. It also puts the correct counter information in the logical parents. The counters contain a count of the
number of pointers pointing to the logical parent.

IBM Corporation, 2002c

IMS Version 7

The world depends on itInitial Loads with Logical Relationships
Initial load programs for HALDB with logical children must be split

Step 1: Initialize DBX partitions with Prereorg.

Step 2: Initialize DBY partitions with Prereorg.

Step3 : Initial load DBX without logical children
This is a modification to the existing load program

Step 4 : Initial load DBY without logical children
This is a modification to the existing load program

Step 5: Insert (PROCOPT=I or A) logical children in DBX or DBY
New program to insert only the logical children in one database

Insert will create paired logical child in other database

LP1

LC2

DBX

LP2

LC1

DBY

LP1

LC2

LP2

LC1

DBX DBY

© IBM Corp. 2002 Application Design and Programming with HALDB 23

This page shows the load process for HALDB databases with logical relationships. There are no work files are used. The
first two steps initialize the partitions in the two databases. This is done by a new function of the Prereorganization utility.

Step 3 is the initial load of database DBX. In includes the insertion of the logical parent segments (LP1) but the logical child
segments (LC2) are not inserted. This could be a modified version of the load program used with the non-HALDB DBX
database. The only modification required is the elimination of the insertions of the logical children. As we will see in step 5,
you may want to make other modifications to this program or the one used in step 4.

Step 4 is the initial load of database DBX. In includes the insertion of the logical parent segments (LP2) but the logical child
segments (LC1) are not inserted. This could be a modified version of the load program used with the non-HALDB DBY
database. The only modification required is the elimination of the insertions of the logical children.

Step 5 creates the logical relationships. It is an update job which inserts the logical children. This would be a new
program. Since the children are paired, they do not have to be inserted twice. The update program inserts one of the pair
and IMS creates the paired logical child. The insertion of the logical children creates the pointers in the logical children and
updates the counters in the logical parents. This program could get its input from either the program used in step 3 or the
program used in step 4. It could use the information that was used to load the logical children in the non-HALDB version of
either database. The information would include both the logical child segments and their position in the database. This
information could be written to a file which could be used by the program in this step.

IBM Corporation, 2002c

IMS Version 7

The world depends on it

Processing Partitions
in Parallel

© IBM Corp. 2002 Application Design and Programming with HALDB 24

This section describes how different partitions may be processed by application programs which execute concurrently.

IBM Corporation, 2002c

IMS Version 7

The world depends on itOnline, Batch, and Data Sharing

Online

All regions or threads have concurrent access to all partitions

Parallel processing is easily done (e.g. BMPs)

Data sharing

All sharing subsystems have concurrent access to all partitions
Subsystems may be online subsystems or batch jobs

Parallel processing is easily done (e.g. DLI batch jobs)

Batch (without data sharing)

Multiple batch jobs may have read authorization for the same partitions

Only one batch job can have update authorization for a partition

Different batch jobs may concurrently update different partitions

© IBM Corp. 2002 Application Design and Programming with HALDB 25

In an online system, all regions and threads in the online system have access to all of the partitions that are available to the
system. This makes parallel processing easy to do. For example, different BMPs could process different partitions. If a
BMP occasionally needed to access data in another partition, it is free to do so.

Data sharing provides flexibility similar to that for online systems. Each subsystem can have concurrent access to all
partitions. For example, different data sharing DLI batch jobs could process different partitions. If a batch job occasionally
needed to access data in another partition, it is free to do so.

Batch jobs (DLI or DBB) which are executed without data sharing are more restricted. DBRC authorizations can limit what
a batch job may do. Multiple batch jobs may have concurrent read authorization to the same partitions. But, only one
batch job may have update authorization for a partition. If it has this update authorization, no other batch job or online
system may have concurrent read or update authorization. Different batch jobs may concurrently update different partitions.
But, they may not access partitions which are authorized for update to another batch job or online system. We will see that
this may limit some parallel processing possibilities.

IBM Corporation, 2002c

IMS Version 7

The world depends on itTwo Styles of Batch Programs

Random and Skip Sequential

Records are accessed by key

Get calls are qualified on keys

Keys are known before calls are made

Program accesses only some of the records in the database

Program may be able to determine the partition before the call is made

Sequential

Records are accessed by Get Next calls

Get calls are not qualified on keys

Keys are not known before calls are made

Program typically accesses all of the records in the database

Program cannot know if the next record is in the same partition

© IBM Corp. 2002 Application Design and Programming with HALDB 26

There are two styles of batch programs that could be used for parallel processing.

The first style uses either random or skip sequential processing. These programs access database records by the keys of
the root segments. Their calls are qualified on these keys. These programs do not access all of the records in a partition.
They access only the records which they request. Before they do a call, it is possible to determine in which partition the
requested record resides.

The second style uses sequential processing. The records are accessed by Get Next calls without qualification on the root
key. These programs attempt to access all of the records in a partition. In some cases, they may not access all records,
but they access all records within a key range. The important characteristic of these programs is that they do not know
which record they will get as the result of a request. They just request the next record in a database. The program does
not know if the requested record is in the same partition as the last record or in a following partition.

IBM Corporation, 2002c

IMS Version 7

The world depends on itRandom or Skip Sequential Within a Partition

Program could be modified to restrict accesses to one partition

Restrict to the set of keys held by the partition

Program

(all keys)

Non-HALDB

Program

(keys for
partition 2)

Partition 2

Program

(keys for
partition 3)

Partition 3Partition 1

Program

(keys for
partition 1)

© IBM Corp. 2002 Application Design and Programming with HALDB 27

The first program style that was mentioned on the last page was random or skip sequential. It is relatively easy to confine
such a program to a partition. It only needs to confine its requests to the records that reside in a partition. If the requests
are coming from an external source, such as a file, we can split the source into multiple sources, one for each partition. If
the requests are generated by the program, it would need to be modified to generate requests for only one partition. In
either case, we can run multiple of these programs concurrently, each one accessing one partition.

These programs could be run as batch jobs without data sharing. Of course, they could be run with data sharing and/or as
BMPs.

IBM Corporation, 2002c

IMS Version 7

The world depends on itSequential Within a Partition

Current program sequentially accesses entire database

Accesses all records by doing GN calls

Begins with unqualified GN
Ends when 'GB' status code is returned (end of database)

Either

Program must be modified to restrict accesses to one partition
Must start with first record in partition
Must recognize the end of the partition

Or

HALDB Control Statement may be used
Restricts a PCB to a single partition

© IBM Corp. 2002 Application Design and Programming with HALDB 28

The second style of processing is sequential. The program typically begins with an unqualified GN call to retrieve the first
record in the database. It continues with these GN calls until it receives a 'GB' status code indicating the end of the
database.

There are two ways to restrict a program of this style to a partition.

First, it may be modified. It must know how to find the first record in the partition. It must be able to recognize when it has
reached the end of its partition. Typically, this is difficult to do. There are several potential problems. For example, the
program is likely to recognize that it has read the last record in a partition when it attempts to read one from the following
partition. It requires DBRC authorization to read the next partition. This could create authorization failures when batch jobs
without data sharing are used. Another example is the use of PHDAM. A special randomizer would have to be used to
ensure that processing began at the first RAP in a partition. For these types of reasons, a modification of existing an
program may be difficult or infeasible.

Second, it may use a HALDB control statement. This statement restricts a PCB to a single partition within a database.
This technique solves the problems that occur with the first technique.

IBM Corporation, 2002c

IMS Version 7

The world depends on it

Restricting a PCB
to One Partition

© IBM Corp. 2002 Application Design and Programming with HALDB 29

This section describes how the HALDB control statement may be used to limit processing to a single partition.

IBM Corporation, 2002c

IMS Version 7

The world depends on itThe HALDB Control Statement

Enhancement to IMS V7 and V8

APAR PQ57313 for IMS V7

APAR PQ58600 for IMS V8

Control statement to limit PCB access to one partition

Batch (DLI or DBB), BMP, or JBP region

Supported with PHDAM, PHIDAM, and PSINDEX

DFSHALDB DD statement:

HALDB PCB=(nnn,pppppppp)

nnn - DBPCB number
pppppppp - partition name

© IBM Corp. 2002 Application Design and Programming with HALDB 30

The HALDB control statement was added to IMS V7 by PQ57313 and to IMS V8 by PQ58600.

The control statement may be used in any type of batch job. This includes "stand alone" batch (DLI or DBB) jobs, BMP
regions, and JBP regions. JBP regions are Java Batch Program regions. They were added to IMS in IMS V7.

The control statement is used to restrict a PCB to one HALDB partition. It may be used with any type of HALDB database.
This includes PHDAM, PHIDAM, and PSINDEX.

The control statement identifies the PCB by its relative order in the PSB's database PCBs. It identifies the partition by its
partition name.

IBM Corporation, 2002c

IMS Version 7

The world depends on itUsing the HALDB Control Statement

Request for first segment in database, returns first segment in
partition

Example:

Unqualified GN call with no previous position

GN request which reaches end of the partition, returns 'GB' status
code

Example:
Unqualified GN call with position on the last database record in the partition

Request for segment in another partition returns 'FM' status code

Example:
Restriction is to partition with keys 1,000,000 to 1,999,999
GU call qualified with 'Root Key = 2,500,000'

© IBM Corp. 2002 Application Design and Programming with HALDB 31

When the control statement is used, a request for the first segment in the database returns the first segment in the
specified partition. For example, a program which begins with an unqualified GN call will receive the first segment in the
partition.

A call which causes IMS to reach the end of the partition will return a 'GB' status code. This is the status code that
normally indicates that the end of the database has been reached.

A call which would cause IMS to look in another partition for the segment returns an 'FM' status code. Examples are get or
insert calls requesting a record which resides in another partition. When the HALDB control statement is not used, there
are other reasons for this status code. They include a return code from a partition selection exit routine which indicates that
there is no partition for the root key. Another reason for 'FM' is an attempt to insert or access a record whose root key is
greater than the highest key defined for any partition when key range partitioning is used. So, the general meaning of the
'FM' status code is that the call attempted to read or insert a database record which has an invalid key.

IBM Corporation, 2002c

IMS Version 7

The world depends on itUsing the HALDB Control Statement
Secondary Index usage

When PCB specifies PROCSEQ,
PSINDEX partition is specified in the control statement
Limitation is to the PSINDEX partition, not to an indexed database partition

When PCB does not specify PROCSEQ,

Database (not sec. index) partition is specified in the control statement
Updates to source segments may cause updates to any PSINDEX partition

PSINDEX DB

Any Partition

Partition A

PSINDEX DB

Any Partition

Partition A

Source

© IBM Corp. 2002 Application Design and Programming with HALDB 32

A HALDB control statement may be used with secondary indexes. It restricts the PCB to either one partition in the
secondary index or one partition in the indexed database.

If the PCB includes a PROCSEQ= parameter, the control statement restricts the PCB to one partition of the secondary
index. This partition may have pointers to multiple partitions in the indexed database. The control statement does not limit
which partitions in the indexed database are accessed.

If the PSB does not include the PROCSEQ= parameter, the control statement restricts the PCB to one database of the
indexed database. Updates to source segments in the indexed database may cause updates to any of the partitions in the
secondary index or indexes.

For these reasons, the presence of secondary indexes will often make it impossible to process partitions in parallel when
data sharing is not used. This is a characteristic of secondary indexes, not the implementation of the HALDB control
statement. This is a result of the fact that the partitioning of an indexed database and the partitioning of its secondary
indexes will usually be on different boundaries.

IBM Corporation, 2002c

IMS Version 7

The world depends on itUsing the HALDB Control Statement

Logical relationship usage

Restricts access to partition in which LC resides

Does not restrict access to partitions in which LPs reside

LC

DBX

LP

LC

DBX

LP

Any PartitionPartition A

Example 2:

LC

LP

DBX DBY

Any PartitionPartition A

Example 1:

© IBM Corp. 2002 Application Design and Programming with HALDB 33

A HALDB control statement may be used with logical relationships. When this is done, it restricts the PCB to one partition
in the database that is first entered by calls. This is the partition which contains the logical child segment. It does not
restrict the PCB to a partition in the database containing the logical parent segments.

In the first example, the call enters database DBX. DBX contains the logical child segments. The logical parents reside in
database DBY. Calls using the PCB may access any partition in DBY,

In the second example, the logical relationship is recursive. This means that the logical child and logical parent segments
reside in the same database. The control statement will limit the processing to the logical children in Partition A, but logical
parents in any partition may be accessed. In this case, the PCB may access any partition in the database.

For these reasons, the presence of logical relationships will often make it impossible to process partitions in parallel when
data sharing is not used. This is a characteristic of logical relationships, not the implementation of the HALDB control
statement. This is a result of the fact that the partitioning of the logically related databases will usually be on different
boundaries or the relationships will be between segments in different partitions of the same database.

IBM Corporation, 2002c

IMS Version 7

The world depends on itUsing the HALDB Control Statement

HALDB control statement may be used with any batch job

DBB, DLI, BMP, or JBP

HALDB control statements may be used for multiple PCBs

One statement per HALDB PCB

Sequential processing

May not require any application program changes

Could require processing to consolidate information, such as reports,
from multiple executions

Random or skip sequential

Probably requires application program changes to handle 'FM' status
code

© IBM Corp. 2002 Application Design and Programming with HALDB 34

HALDB control statements may be used with any type of batch job.

There may be control statements for multiple PCBs, but there can only be one control statement per PCB. This means that
a PCB is restricted to one partition, but different PCBs may be restricted to different partitions.

Some applications which do sequential processing may not require any changes to take advantage of the HALDB control
statement. The control statement will simply limit their processing to a single partition. On the other hand, some changes
may be needed or desired. For example, if the batch program creates a report, the report would now be generated from the
data for only one partition. Multiple executions for different partitions would produce multiple different reports. You might
need to consolidate these reports. Similarly, batch programs which produce output files for subsequent processing would
probably need to have these files consolidated.

Most applications which do random or skip sequential processing will probably need to be modified to take advantage of the
HALDB control statement. Existing programs probably access multiple partitions. When the control statement is used,
attempts to access other partitions will result in 'FM' status codes. The application would almost surely need to be
changed to handle this status code correctly.

IBM Corporation, 2002c

IMS Version 7

The world depends on it

Handling
Unavailable Partitions

© IBM Corp. 2002 Application Design and Programming with HALDB 35

This section describes how application design can handle unavailable partitions.

IBM Corporation, 2002c

IMS Version 7

The world depends on itUnavailable Partitions

Causes of unavailable partitions

Partition stopped in online system
Typically, /DBR or /STOP command has been issued for the partition

Partition authorized to another system without data sharing

Typically, batch job is processing the partition

Partition has flag set in DBRC RECONs

Typically, partition needs to be recovered or image copied

© IBM Corp. 2002 Application Design and Programming with HALDB 36

A partition might be unavailable for multiple reasons.

First, the partition might be stopped in the online system. This is typically the result of a /DBR or /STOP command having
been issued for the partition.

Second, the partition might be authorized to another system and data sharing is not being used. This system's
authorization request would fail. The other system could be a batch job, utility, or online system. Typically, we would
encounter this condition when we are running parallel non-data sharing batch jobs.

Third, a flag in DBRC may be set which prevents authorization of the partition. Examples include the 'recovery needed',
'image copy needed', and 'prohibit further authorization' flags.

IBM Corporation, 2002c

IMS Version 7

The world depends on itOperational Options

Operate as we do with non-HALDB databases

Do not /DBR or /STOP partitions
Issue these commands only for the database

Do not attempt concurrent access to different partitions from different
online systems and batch jobs without data sharing

If any database data set is unavailable, stop all access to database

Do not have to handle unavailable partitions

Use HALDB for:

Large databases

Shortened database maintenance windows

© IBM Corp. 2002 Application Design and Programming with HALDB 37

We can avoid most unavailable partition conditions by operating as we do with non-HALDB databases.

If we do not issue /DBR and /STOP commands for partitions, we avoid this reason for unavailable partitions. We can issue
/DBR and /STOP commands for the HALDB database. This makes the entire database unavailable. This is the same
condition that would exist when these commands are used for non-HALDB databases.

If we do not attempt concurrent access to different partitions from different online systems and batch jobs without using data
sharing, we avoid another reason for unavailable partitions. Instead, only one system or batch job is allowed to access a
HALDB database at any time. This is the same restriction we have with non-HALDB databases. Of course, if we are using
data sharing, we can have concurrent access to HALDB databases just as we have for non-HALDB databases with data
sharing.

If we treat a problem with a partition as if it were a problem with the entire database, we avoid another reason for unavailable
partitions. For example, if we lose a database data set, we can discontinue using the entire database. This is what we
would do with a non-HALDB database. For HALDB, we could discontinue using only the affected partition. This would
make the rest of the database available, but not this partition. Our application design would have to handle this condition.
Instead, we can discontinue using the entire HALDB database. Then, our application design can be the same as it is for
non-HALDB databases.

If we use this option, we still have good reasons for using HALDB. We can have very large databases. We can shorten our
database maintenance windows in which we do reorganizations, non-fuzzy image copies, and other such activities.

IBM Corporation, 2002c

IMS Version 7

The world depends on itOperational Options

Operate differently with HALDB databases

Process partitions in parallel by different systems without data sharing

/DBR or /STOP partitions

If any database data set is unavailable, keep other partitions available

Add INIT STATUSGROUP calls

Add to programs to avoid U3303 ABENDs
Attempts to access unavailable partitions cause U3303 unless this call is issued

Code for 'BA' status code

Must be able to react to different reasons for 'BA'
Attempts to access an unavailable partition result in 'BA' status code
Other conditions may cause 'BA'

React to unavailable partitions, databases, or records

© IBM Corp. 2002 Application Design and Programming with HALDB 38

Our other option is to take further advantage of HALDB. In this case, we can process partitions in parallel with different
non-data sharing systems. We can /DBR or /STOP individual partitions. If we lose a database data set in one partition, we
can continue to use the other partitions.

If we do this, we need to ensure that our applications can handle these potential unavailable partition conditions. They need
to have INIT STATUSGROUP calls to avoid 3303 ABENDs. They must be able to correctly handle 'BA' status codes that
they receive for unavailable partitions. These are in addition to the other reasons that they might receive 'BA' status codes.

IBM Corporation, 2002c

IMS Version 7

The world depends on itDB PCB Status Code Priming

When program is scheduled,

DB PCB status code indicates status of database

'blank blank' - database is available
'NA' - database is not available

'NU' - database is not available for update

INIT DBQUERY call

Restores the DB PCB status code fields to settings at schedule time
Same meanings for 'blank blank', 'NA', and 'NU'

No indication of status of partitions

Database may be available, but some or all partitions may not be
available

Application program does not know which partitions are available

© IBM Corp. 2002 Application Design and Programming with HALDB 39

Before we look at the handling of unavailable partitions, we will look at the priming of the status code field in database
PCBs. This does not change with HALDB.

When a program is scheduled the database PCB status code field indicates the status of the database, but not its
partitions. A 'blank blank' status code indicates that the database is available. An 'NA' indicates that the database is not
available. An 'NU' indicates that the database is available, but not available for update.

The INIT DBQUERY call may be used to get the same information in the status code fields. That is, it restores these fields
to the settings that they had when the application was scheduled.

The important thing to note is that there is no information about the status of individual partitions. A database may be
available, but some or all of its partitions may not be available. This means that a 'blank blank' status code field does not
mean that the partition you might want to access is available. The program is not given a way to determine the status of
partitions.

IBM Corporation, 2002c

IMS Version 7

The world depends on itReasons for 'BA' Status Code

Unavailable partition or database

Stopped due to /DBR, /STOP, or /LOCK command

Not available for update due to /DBD or access intent of RD or RO

DBRC authorization failed
Authorized to another subsystem which is incompatible with this subsystem
or
Flag set in RECONs (Prohibit further authorization, IC Needed, ...)

Unavailable record

Lock held by failed IMS subsystem

Lock held by in-doubt UOW in failed commit manager
CICS, DB2 Stored Procedure, other ODBA connector

© IBM Corp. 2002 Application Design and Programming with HALDB 40

If we issue an INIT STATUSGROUP call, we may receive a 'BA' status code on a database call. There are multiple reasons
that this status code could be received. They come in two categories. The first category is an unavailable partition or
database. The second is an unavailable record.

There are multiple reasons that a partition or database might be unavailable. First, a database or partition required for the
call has been stopped due to a /DBR, /STOP, or /LOCK command. Second, an update call is issued for a database or
partition which cannot be updated. The update is prohibited when a /DBD command has been issued for it or when its
access intent is RO or RD. Third, a partition required for the call cannot be authorized. This could be due to a concurrent
incompatible authorization to another IMS subsystem or due to a flag setting in the RECONs, such as the "prohibit further
authorization" flag or the "image copy needed" flag.

A record may be unavailable to a call because of a lock held for it in a special state. If a lock is held by a failed subsystem,
a call requiring the lock will receive the 'BA' status code. If a lock is held by an in-doubt unit of work which is no longer
connected to IMS, IMS will return a 'BA' status code for a call requiring the lock. The unit of work could be managed by
CICS using DBCTL or by a user of ODBA such as a DB2 stored procedure.

IBM Corporation, 2002c

IMS Version 7

The world depends on it

How can we know which unavailable data condition exists?

Partition Not Available

or

Record Not Available

Unavailable Data Conditions

?
If we get a 'BA' status code, what should we do?

Assume an entire partition is not available?
Assume one record is not available?

© IBM Corp. 2002 Application Design and Programming with HALDB 41

Since there are multiple reasons for unavailable data conditions, how can a program determine which is the cause? If only a
record is unavailable the program probably needs to do something different than it would do if an entire partition were
unavailable. More importantly, how can the program distinguish between reaching the end of a partition and attempting to
access the next partition which is unavailable and reaching an unavailable record with many more records available in the
partition?

That's what we will address next.

IBM Corporation, 2002c

IMS Version 7

The world depends on it

Unqualified GN call after 'BA' for unavailable partition

Retrieves first record in next available partition or gets 'GB' status code

Indicates that a partition was unavailable

Unqualified GN call after 'BA' for unavailable record

Attempts to access same unavailable record

Receives 'BA' status code
Indicates that a record was unavailable

Handling a 'BA' Status Code

Potential problem:

If first call gets 'BA' due to unavailable partition

and

First record in next available partition is unavailable

(lock reject)

Second call (unqualified GN) will get 'BA'

© IBM Corp. 2002 Application Design and Programming with HALDB 42

IMS has special processing for certain calls after a 'BA' status code is received. When the 'BA' is due to an unavailable
partition and the next call using the PCB is an unqualified GN call, IMS retrieves the first record in the next available
partition. If there are no more available partitions, a 'GB' status code is returned for the GN call. One could use this
characteristic to understand if the 'BA' was due to an unavailable partition.

If the 'BA' was due to an unavailable record, that is, one of the lock conditions, a subsequent unqualified GN call would
attempt to access the same record. It would again receive the 'BA' status code. One could use this characteristic to
assume that the 'BA' was due to an unavailable record.

There is a potential problem with this logic. If the first call gets a 'BA' because the partition is unavailable, a subsequent
unqualified GN call could get also get a 'BA' code. It could be due to an unavailable record condition for the first record in
the next available partition. In this case, we might be tempted to think that the two calls tried to access the same
unavailable record. That's not true. The first attempted to access an unavailable partition. The second attempted to access
an unavailable record.

IBM Corporation, 2002c

IMS Version 7

The world depends on itProgramming for 'BA'

What should your application do when a partition is unavailable?

Inform the terminal operator?

Is there a terminal operator?

Quit?

How do you restart the process at the right time?

Skip this partition?

What effect does this have on the application?

Cause this partition to be processed later?

How do you implement this?

?

© IBM Corp. 2002 Application Design and Programming with HALDB 43

If we choose to operate differently with HALDB, programs may encounter unavailable partitions. Of course, the programs
should include INIT STATUSGROUP calls. If they do and if they encounter unavailable partitions, what should they do? The
answer depends on the application design and the application requirements. Some of the options are listed here.

If there is a real human operator who invokes the transaction, the program could merely reply to the operator that the
requested data is not available. This assumes that the program is only invoked by these real operators or that the program
can determine that there is one.

The application program could simply terminate. This could be a reasonable option for batch jobs. In this case, the
program needs to be run to completion later. The application design would have to include a process to restart the program
at the right place when the partition becomes available.

The application program could skip the partition. It could move to the next partition. The application design would have to
be insensitive to the missing data or somehow account for it.

If the partition is skipped, the program may need to process it in a later invocation of the program. The application design
would have include a process to restart the program and process only this partition.

IBM Corporation, 2002c

IMS Version 7

The world depends on it

Processing
Secondary Indexes as

Databases

© IBM Corp. 2002 Application Design and Programming with HALDB 44

This section describes processing of HALDB secondary indexes (PSINDEX) as databases. In some cases, application
programs may need to be changed. In some cases, secondary indexes may be defined so that no application programming
changes are required.

IBM Corporation, 2002c

IMS Version 7

The world depends on itSecondary Indexes

Fields in a secondary index segment:

Search field - key of the secondary index segment

Subsequence field - optional fields to make non-unique keys unique
Copied from source segment
or
System-related unique key created by use of '/SX...' field name
Concatenated key of source segment created by use of /CK...' field name

Duplicate data - optional fields copied from source segment

Concatenated key field - optional field used for symbolic pointing with
non-HALDB

User data - optional fields maintained by user, not IMS
Rarely used

Search Field Subsequence Field
Duplicate
Data Field

Concatenated
Key Field

User Data

© IBM Corp. 2002 Application Design and Programming with HALDB 45

When an application program processes a secondary index as a database, it receives a copy of the secondary index
segment in its IO area. This is a review of the fields that may exist in one of these segments.

The search field is the key of the secondary index. It is composed of one or more fields from the indexed database source
segment.

Subsequence fields are optional. They are used to make the VSAM KSDS key unique. The KSDS key is composed of the
search field and the subsequence field. The search field may not be unique. To make KSDS keys unique, the database
designer uses subsequence fields. There are three types of subsequence fields. First, they may be fields that exist in the
source segment. Second, they may be system generated. These fields use "/SX" as the beginning of their names. For
non-HALDB indexes, system generated fields are the relative byte address (RBA) of the source segment. Since all RBAs
are unique, they are unique. For HALDB indexes, system generated fields are the Indirect List Key (ILK) of the source
segment. Since all ILKs are unique, they are unique. The third type of subsequence field is a concatenated key field. It is
the concatenated key of the source segment. These fields use "/CK" as the beginning of their names.

Duplicate data fields are optional. They are not part of the key of the index. They are fields that are copied for the source
segment. They are used to add data to a secondary index so this data will be available to programs which process the
secondary index as a database.

Concatenated key fields are optional. They are used for symbolic pointing with non-HALDB secondary indexes. When
symbolic pointing is used, the pointer is not in the prefix. Instead, it is this concatenated key field. HALDB never uses
symbolic pointing.

User data fields are optional. They are fields that are maintained by users, not by IMS. These fields are updated by
application programs which process the secondary index as a database. User data fields are rarely used. When a
non-HALDB database is reorganized, secondary indexes with direct pointers must be rebuilt. This is done with utilities.
These utilities do not recreate the user data. This restriction limits the usefulness of user data fields.

IBM Corporation, 2002c

IMS Version 7

The world depends on itProcessing a Secondary Index as a Database

Subsequence field size increased when using /SX

/SX field increased from 4 to 8 bytes for HALDB

KEYLEN in PCB must be increased by 4 bytes
Duplicate data fields and user data are offset by 4 bytes

IO-area must be adjusted

Program I/O Area for Non-HALDB Secondary Index Segment

Search Field
Subsequence
Field with /SX

Duplicate
Data Field

User
Data

Program I/O Area for HALDB Secondary Index Segment

Search Field
Subsequence
Field with /SX

Duplicate
Data Field

User
Data

© IBM Corp. 2002 Application Design and Programming with HALDB 46

The /SX system related field contains an 8 byte ILK for HALDB secondary indexes. It contains a 4 byte RBA for
non-HALDB secondary indexes. This changes the key size and the offset to the duplicate data part of the segment.

The KEYLEN value in PCBs which reference this secondary index as a database must be at least as large as the new key
size. If the old value for KEYLEN accurately reflected the actual key size, it must be increased by 4 bytes.

Since the subsequence field is now 4 bytes larger, the offset to any duplicate data or user data fields must be adjusted by 4
bytes. Also, the IO area used by the application program must be large enough to hold the larger segment.

An index may have multiple subsequence field sources. This means that one or more fields from the source segment may
also be used in the subsequence field. Typically, this is not done with /SX fields since /SX fields always guarantee
uniqueness. But, if these additional fields are defined and if they follow the /SX field, the offset to these fields will also
change by 4 bytes.

IBM Corporation, 2002c

IMS Version 7

The world depends on it

XDFLD NAME=xdfldname,SRCH=list,SUBSEQ=/SXzzzzz,DDATA=list

LCHILD NAME=(segmentname,databasename),INDEX=xdfldname

Are You Affected by /SX?

If you have PSB which specifies DBDNAME as a secondary index name:

Find LCHILD in the DBD for this secondary index:

Match INDEX value from secondary index LCHILD with NAME value from
XDFLD statement in indexed database:

If "/SX" appears in SUBSEQ value, KEYLEN must be increased in PSB and
size of IO area must be increased

If DDATA is also specified, reference to dup. data fields must be adjusted

PCB TYPE=DB,DBDNAME='sec. index name',KEYLEN=n

© IBM Corp. 2002 Application Design and Programming with HALDB 47

This page explains how to determine if your program is affected by the increased size of /SX fields.

First, examine your PCBs. If the DBDNAME field on a PCB refers to a secondary index, you may be affected.

If so, examine the LCHILD statement in the DBD for the secondary index (PSINDEX). Match the name specified in the
INDEX parameter for this LCHILD statement with NAME parameter on an XDFLD statement in the indexed database
(PHDAM or PHIDAM). Examine this XDFLD statement. If its SUBSEQ value includes a field name beginning with "/SX",
this secondary index is using a system generated field. In this case, the key length of the segment is 4 bytes larger than it
was as a non-HALDB secondary index. This means that the KEYLEN field on the PCB and the size of the IO area must be
large enough to handle the increased key size and the increased segment size. Next, you must determine if there are any
duplicate data fields residing past (to the right of) the subsequence field. If their is a DDATA parameter on this XDFLD
statement, these duplicate data fields exist. Application program offsets to these fields must be adjusted for the extra 4
bytes.

If you have user data fields in this segment, the offsets to them must also be adjusted for the extra 4 bytes. User fields are
not directly defined in the secondary index DBD. Instead, they exist if the segment size is larger than that required to hold
the other fields (Search, Subsequence, etc.) of the segment.

IBM Corporation, 2002c

IMS Version 7

The world depends on itProcessing a Secondary Index as a Database

Symbolic pointing not used with HALDB

Concatenated key field not present

Application may not react correctly

Solution:

Concatenated key may be retained as duplicate data field
No changes required to application programs

Program I/O Area for Non-HALDB Sec. Index Segment using Symbolic Pointing

Search Field Subsequence Field Duplicate
Data Field

Concatenated
Key Field User Data

Program I/O Area for HALDB Sec. Index Segment with Concat. Key as Duplicate Data

Search Field Subsequence Field Duplicate Data Field including
Concatenated Key as last field

User Data

Same

© IBM Corp. 2002 Application Design and Programming with HALDB 48

As was mentioned at the beginning of this section, HALDB does not use symbolic pointing. When a non-HALDB
secondary index using symbolic pointing is migrated to HALDB, the concatenated key field will no longer be present. It
appears that application programs which process the secondary index as a database and which use the concatenated key
field or user data fields, would have to be adjusted. But, there is a simple solution for this.

The definition of the HALDB secondary index (PSINDEX) can be used to maintain the same segment from the application
point of view. This is done by defining a new duplicate data field in the PSINDEX. This duplicate data field is for the
concatenated key. By placing it at the end of the duplicate data, it occupies the place where the concatenate key field
appeared in the non-HALDB secondary index segment.

IBM Corporation, 2002c

IMS Version 7

The world depends on itAre You Affected by Symbolic Pointing?

LCHILD NAME=(segmentname,databasename),PTR=SYMB

Find LCHILD in the DBD for this secondary index:

If "PTR=SYMB" appears on LCHILD, you have symbolic pointing

Keep concatenated key in I/O area by adding "/CKxxxxx" field to DDATA

If you have PSB which specifies DBDNAME as a secondary index name:

PCB TYPE=DB,DBDNAME='sec. index name',KEYLEN=n

XDFLD NAME=xdfldname,SRCH=list,DDATA=(list,/CKxxxxx)

/CKxxxxx field must also be defined with FIELD statement in indexed database

© IBM Corp. 2002 Application Design and Programming with HALDB 49

This page explains how to determine if your program is affected by the elimination of symbolic pointing.

First, examine your PCBs. If the DBDNAME field on a PCB refers to a secondary index, you may be affected.

If so, examine the LCHILD statement in the DBD for the non-HALDB secondary index. If it has PTR=SYMB, it is using
symbolic pointing.

If your application program uses the concatenated key field or user data field, you should add the concatenated key field as
a duplicate data field in the HALDB secondary index (PSINDEX). This is done by including a field beginning with "/CK" as
the last or only field in the DDATA list for the XDFLD statement in the indexed database. This "/CK" field must also be
defined in a FIELD statement for the source segment in the indexed database.

IBM Corporation, 2002c

IMS Version 7

The world depends on it

Converting from
User Partitioning

© IBM Corp. 2002 Application Design and Programming with HALDB 50

This section describes application considerations for the migration of user partitioned databases to HALDB.

IBM Corporation, 2002c

IMS Version 7

The world depends on itUser Partitioning

Some installations have done their own partitioning

Database split into multiple databases

Application selects which database to use
Based on key of root segment

Database selection may be done by subroutine or modification to language
interface module
PSB has PCB for each database

DBX1

DBX2

DBX3

PCB TYPE=DB,DBDNAME=DBX1,...
PCB TYPE=DB,DBDNAME=DBX2,...
PCB TYPE=DB,DBDNAME=DBX3,...
...

PSB

© IBM Corp. 2002 Application Design and Programming with HALDB 51

Some installations have done their own partitioning. Typically, they did this to address database size limitations many
years ago. This technique is called "user partitioning" because it does not use a product such as IMS/ESA Partition
Support. Instead, the installation creates multiple IMS databases. Each database contains a portion of the records that
the application wants to view as one database. Since there are multiple databases, each requires its own PCB in PSBs.
The application has to select the proper PCB for the record with which it is dealing. The application can make this selection
in several ways. Typically, one of two ways is used. First, the program may invoke a subroutine. The key of the record is
passed to the subroutine. The subroutine selects the proper PCB and makes the call. Second, the program may use a
modified version of the IMS language interface module. With this scheme, the program always references the first PCB for
the user partitioned database. The module selects the proper PCB and modifies the call to use it.

In this example, database DBX has been split into three IMS databases, DBX1, DBX2, and DBX3. The PSB includes PCBs
for each of these databases.

Obviously, user partitioned databases are prime candidates for migration to HALDB. When they are migrated, they become
a single HALDB database with multiple partitions.

IBM Corporation, 2002c

IMS Version 7

The world depends on itUser Partitioning

Converting from user partitioning

Multiple databases become one HALDB database with multiple partitions

Application does not need to select which database to use

Could use one PCB - would require application changes

Alternative:
PSB is changed so that all PCBs reference the same HALDB database

Application program continues to select PCBs - no application changes

PART1

PART2

PART3

DBX

PCB TYPE=DB,DBDNAME=DBX,...
PCB TYPE=DB,DBDNAME=DBX,...
PCB TYPE=DB,DBDNAME=DBX,...
...

PSB

© IBM Corp. 2002 Application Design and Programming with HALDB 52

When a user partitioned database is migrated to HALDB, we might think we need to eliminate all but one of our PCBs from
our PSBs. It turns out that this is not required. Instead, we can merely change all of the existing PCBs to reference the
same HALDB database. This could make the migration simpler. We do not have to make other modifications to the
application program. For example, we can continue to use a subroutine which selects a PCB. No matter which PCB it
selects, it will be correct. Each PCB points to the same HALDB database. If we use a modified language interface module,
we can continue to use it.

Of course, we will probably want to eliminate our PCB selection routine or our modified language interface module at some
time. The point of this technique is that this work is not required as part of our migration to HALDB.

IBM Corporation, 2002c

IMS Version 7

The world depends on itSummary
Partitioning Options

Key range vs. partition selection exit routine

Initial Loads
Current programs work except for loading logical children

Can load partitions in parallel

Processing Partitions in Parallel

Use HALDB control statement to limit a PCB to a partition

Handling Unavailable Partitions

Optional, could operate as today without making individual partitions unavailable

Understand 'BA' status code use

Processing Secondary Indexes as Databases

May require changes to application programs, especially with duplicate data and /SX field

May require changes to secondary index definition for symbolic pointer fields

Converting from User Partitioning
PSB change will probably be sufficient

© IBM Corp. 2002 Application Design and Programming with HALDB 53

This presentation has covered many topics concerning HALDB database and application design.

During the introduction the partitioning options were explained. Application requirements may cause you to choose a
particular scheme for partitioning.

We looked at initial loads of HALDB databases. This included the required order of records when loading a database, how
to load partitions in parallel, and how to handle logical children.

We looked at processing partitions in parallel and described how the HALDB control statement may be used to limit a PCB
to one partition. We also saw the limitation of this approach when secondary indexes or logical relationships are used.

We looked at the handling of unavailable partitions. We saw that we can continue to operate as we do today without
making individual partitions unavailable. If we do make partitions unavailable, we will probably need to modify programs to
handle the 'BA' status code correctly.

We saw how secondary indexes which are processed as databases are affected by migration to HALDB.

Finally, we looked at the conversion of user partitioned databases to HALDB.

