
IBM Corporation, 2000c

The world depends on it

IMS Version 7
High Availability Large DatabaseHigh Availability Large Database

(HALDB)(HALDB)

Rich Lewis
IBM Dallas Systems Center

Copyright IBM Corp. 2000 IMS V7 HALDB 1

This is an overview presentation of the High Availability Large Database (HALDB) capabilities introduced in IMS Version 7.

IBM Corporation, 2000c

IMS Version 7

The world depends on itAbstract

IMS Version 7 introduces many enhancements to help its users provide increased
availability, improved performance, and a more usable system.

High Availability Large Database (HALDB) is one of these enhancements. HALDB
supports databases with up to 1001 independently managed partitions. The large
number of partitions allows IMS full function databases to grow to over 40 terabytes.

HALDB provides greater availability through partition independence and parallel
processing. Database processing, including maintenance activities, may be done
in parallel. Each partition may be allocated, authorized, and reorganized
independently. HALDB has a new pointer scheme for use with secondary indexes
and logical relationships. This scheme eliminates some of the processing done by
reorganizations.

This presentation is an overview of HALDB capabilities and benefits. Partitioning,
pointer schemes, and migration considerations are included.

Copyright IBM Corp. 2000 IMS V7 HALDB 2

IBM Corporation, 2000c

IMS Version 7

The world depends on it

Large Database

Databases are partitioned
Up to 1001 partitions per database
Partitions have up to 10 data set groups

High Availability Database

Partition independence
Allocation, authorization, reorganization, and recovery are by partition

Self healing pointers
Reorganization of partition does not require changes to secondary indexes
or logically related databases which point to it

HALDB (High Availability Large Database)

Up to 10,010 data sets per database!
 Greater than 40 terabytes

Availability

Capacity

Compatibility

Managability

Copyright IBM Corp. 2000 IMS V7 HALDB 3

IMS Version 7 introduces a new capability for full function databases. This is High Availability Large Database (HALDB).
HALDB databases have up to 1001 partitions. Each partition has up to 10 data set groups. This gives HALDB up to 10,010
data sets per database. Each of these data sets may be up to 4 gigabytes. So, the limit is 40 terabytes per database.

HALDB provides two availability benefits. First, partitions are managed independently. Each partition in a database may be
allocated, authorized, reorganized, and recovered independently. Second, the reorganization of a partition does not require
utilities to update the pointers in secondary indexes and logically related databases which point to the reorganized data.
Even though the reorganization moves segments, pointers to those segments are not updated by the reorganization
process. Instead, these pointers are updated as needed. This is a "self healing" process. This combination of capabilities
can greatly reduce the windows required for database maintenance. Multiple partitions allow users to reorganize and image
copy smaller amounts of data. This takes less time. The reorganizations may be done in parallel, as can the image
copies. Since pointers are self healing, there is no need for utilities such as Prefix Resolution and Prefix Update, to correct
pointers. This also reduces the time required for reorganizations.

These new capabilities are delivered while maintaining application program compatibility. We will see how this is done.

The use of HALDB is optional. The non-HALDB databases of previous versions of IMS remain available with IMS V7.

IBM Corporation, 2000c

IMS Version 7

The world depends on itHighlights

New database types

PHDAM - partitioned HDAM

PHIDAM - partitioned HIDAM
Index is also partitioned

PSINDEX - partitioned secondary index

Hierarchic structure is maintained

A database record resides in one partition

Partition selection

By key range or by user exit routine

...

Copyright IBM Corp. 2000 IMS V7 HALDB 4

HALDB introduces three new full function database types, partitioned HDAM (PHDAM), partitioned HIDAM (PHIDAM), and
partitioned secondary index (PSINDEX). As the names imply, these are partitioned versions of the corresponding database
types for non-HALDB databases. PHIDAM includes its primary index which is also partitioned.

HALDB databases have the same hierarchic structure that is used for other full function databases. A database record,
which is a root segment and all of its dependents, resides in one partition.

Partitioning may be done either by key range or by a user written exit routine. Either method may be used with each of the
three database types, PHDAM, PHIDAM, and PSINDEX.

IBM Corporation, 2000c

IMS Version 7

The world depends on itHighlights

Logical relationships and secondary indexes are supported

Secondary indexes may be partitioned

OSAM and VSAM (ESDS and KSDS) are used

DBRC is required

Databases must be registered

Dynamic allocation from DBRC information, not DFSMDA

Minimal (or no) application changes required

Initial load cannot insert logical children (must be added by update)
New status code for load programs

'Data unavailable' conditions apply to partitions
Database may be available, but partition unavailable

Copyright IBM Corp. 2000 IMS V7 HALDB 5

HALDB has complete full function database capabilities. This includes support for logical relationships and secondary
indexes.

Like non-HALDB databases, HALDB databases use OSAM, VSAM ESDS, and VSAM KSDS data sets.

HALDB databases must be registered with DBRC. In fact, the definition process stores information about partitions in the
RECONs. Since the information about HALDB data sets must be stored in the RECONs, this information is used for
dynamic allocation. DFSMDA members cannot be used.

Most users will be able to convert non-HALDB databases to HALDB without any application program changes. Initial loads
of HALDB databases cannot insert logical children. The logical children may be added by an update program which is run
after the initial load. If an attempt to insert a logical child is made by initial load (PROCOPT=L), a status code of 'LF' is
returned for the call. Data unavailable information in database PCBs and INIT DBQUERY calls, reports on the availability of
the database, not its partitions. With HALDB a database may be available, but some partitions may not be available. That
is, an installation may /DBR a partition while leaving the rest of the database available. Users who wish to take advantage
of this new capability and who wish to have application programs react to it, may choose to modify existing programs. By
including the the INIT STATUS GROUPx call or the EXEC DLI ACCEPT STATUSGROUP command in a program, the
application will be returned a 'BA' status code when it attempts to access an unavailable partition.

IBM Corporation, 2000c

IMS Version 7

The world depends on itPartition Independence

Commands
Allowed on both databases and partitions

Availability
Partitions are allocated and authorized independently

Scheduling
Based on database availability

Partition may be unavailable with available database

Database Utilities
Allowed on individual partitions or sets of them

Concurrent processing of multiple partitions allowed

Copyright IBM Corp. 2000 IMS V7 HALDB 6

HALDB partitions are managed independently. This is similar to the handling of areas with Fast Path Data Entry Databases
(DEDBs).

Commands, such as /DBR DB, /START DB, and /DISPLAY DB may specify either a partition or a database. For example,
a partition is unallocated when a /DBR DB is issued specifying a partition. If a database is specified, all partitions in the
database are unallocated.

Partitions are allocated and authorized independently. For example, one partition may be authorized to a reorganization
utility while other partitions in the database are authorized to an online system.

Scheduling is done on a database basis. Of course, IMS can schedule a program when a database in its PSB is not
available. This remains true with HALDB. If a program examines a database PCB for availability information, issues an
INQY DBQUERY call, an INIT DBQUERY call, or an EXEC DLI QUERY command, the availability of the database, not a
partition is seen. If the database is available, but a partition is not available, the program will see the database's availability.
Attempts to access the partition will receive a "data unavailable" condition. This is either a 'BA' status code or a U3303
abend depending upon whether the INIT STATUS GROUPx call or EXEC DLI ACCEPT STATUSGROUP command has
been issued.

Database utilities may be run against the database, a partition, or a set of partitions. Many users will want to take
advantage of the ability to execute against partitions to invoke parallel reorganization processing for the partitions in a
database.

IBM Corporation, 2000c

IMS Version 7

The world depends on itDefinition Process

DBDGEN

Used to define database
Segments, fields, hierarchic structure, data set group boundaries, pointer
options, logical relationships, secondary indexes,...

HALDB Partition Definition Utility

Used to define partitions in database
No. of partitions, partition selection, space characteristics, randomizers,...

ISPF based

Stores information in the RECONs
Definitions may be done with DBRC commands instead of this utility

Copyright IBM Corp. 2000 IMS V7 HALDB 7

HALDB databases and their partitions are defined in separate processes. The databases are defined with a DBDGEN. This
is similar to non-HALDB databases. The DBDGEN includes the definition of the hierarchic structure, the assignment of
segments to data set groups, the choice of pointer options, and the definition of logical relationships and secondary
indexes.

The partitions for a HALDB database are not defined in the DBD. They are defined either with the HALDB Partition Definition
utility or with DBRC commands. Partition information includes the number of partitions, the method of partition selection,
the data set space characteristics, and the randomizer used with each partition. If partition selection is done by key
ranges, the partition boundaries are defined here. If an exit routine is used, the routine is named here. Space
characteristics include free space parameters used with each partition. The utility or commands store the partition definition
information in the RECONs. There are new RECON records for holding this information.

IBM Corporation, 2000c

IMS Version 7

The world depends on itReorganizations

Reoganizations are simplified for logical relationships and
secondary indexes

Work files are not used

Prefix Resolution, Scan, and Prefix Update are not used to
update logical relationship pointers

HISAM Unload, HISAM Reload, or tools are not used to update
secondary index pointers

A new pointer scheme is used!

Applies only to logical relationships and secondary indexes

Copyright IBM Corp. 2000 IMS V7 HALDB 8

The time required for reorganizations will typically be reduced when a database is converted to HALDB.

The utility processes for databases with logical relationships and secondary indexes are simplified. The use of
"self-healing" pointers eliminates the need to run some utilities. Only the HD Reload and HD Unload utilities are required to
reorganize a PHDAM or PHIDAM database. The Prefix Resolution, Scan, and Prefix Update utilities are never used with
HALDB databases. When a PHDAM or PHIDAM database with secondary indexes is reorganized, the HISAM Unload,
HISAM Reload, or tools replacements for these utilities are not used.

Each partition may be reorganized independently. Multiple partitions in the same database may be reorganized in parallel.
One or more partitions may be reorganized while other partitions are not. For example, other partitions may remain
allocated to online systems.

This combination of possibilities allows installations to meet various reorganization needs.

IBM Corporation, 2000c

IMS Version 7

The world depends on itDirect and Indirect Pointers

HALDB uses both direct and indirect pointers

Combination of pointers are used for logical relationships and secondary indexes

Direct pointers are RBAs of target segments

Indirect pointers "point" to Indirect List Entries (ILEs) in Indirect List Data Set
(ILDS)

Indirect pointers are keys of ILEs (Indirect List Keys (ILKs))

An ILK is a token associated with the target segment

ILEs contain direct pointer to segment

Updated only by reorganizations

ILDS is a KSDS associated with a Partition

Copyright IBM Corp. 2000 IMS V7 HALDB 9

HALDB uses a combination of direct and indirect pointers for logical relationships and secondary indexes. The direct
pointers are relative byte addresses (RBA) which point to segments. Indirect pointers "point" to Indirect List Entries (ILEs).
These indirect pointers are actually keys of these ILEs. They are known as ILKs (Indirect List Keys). The ILEs are stored
in an Indirect List Data Set. These ILDSs are new with HALDB. Each partition has an ILDS. The ILDS is updated only by
reorganizations. It contains direct pointers to the new locations of the segments after the reorganization. The ILDS is a
VSAM KSDS.

IBM Corporation, 2000c

IMS Version 7

The world depends on itExtended Pointer Set

Extended Pointer Set (EPS) is used for logical relationships and
secondary indexes

Replaces direct or symbolic pointer used in Non-HALDB databases

Key of root is used to determine partition

EPS contains direct pointer, indirect pointer, reorganization number, and
partition identification

If partition is correct and reorg number is current, direct pointer is used

If partition is wrong or reorg number is not current, indirect pointer is used

Indirect pointer points to Indirect List DS containing pointers from last reorg

EPS is not updated by reorganizations!

Direct pointer in EPS is updated when indirect pointer is used

Self healing pointers!

Copyright IBM Corp. 2000 IMS V7 HALDB 10

An Extended Pointer Set (EPS) is used for logical relationship and secondary index pointers. It replaces the direct or
symbolic pointer used with non-HALDB databases. The EPS has two "pointers". One is the direct pointer. The other is
the indirect pointer. The EPS also contains information that is used to determine if the direct pointer is accurate. The direct
pointer is the RBA of the target segment. It could be out of date. That is, it could point to the location of the target
segment before the last reorg. The indirect pointer is the key of the Indirect List Entry (ILE) in for the target segment. The
EPS also contains a reorganization number and partition ID. These were the partition ID and the partition's reorganization
number when the direct pointer was up to date. If a reorganization has been done since this direct pointer was created or
updated, the partition ID and/or the reorganization number will have changed. This information is used to determine which
pointer to use.

When following a pointer, IMS first determines the partition in which the target segment currently resides. It does this by
using the key of the target segment's root. This key is always stored in the segment with the EPS. IMS then compares
the target partition's ID and reorg numbers with those stored in the EPS. If they match the direct pointer is used. If they
both do not match, the indirect pointer is used to find the target segment's ILE in the ILDS.

The EPS is not updated by reorganizations. Reorganizations update the ILEs in the ILDS. The direct pointer in the EPS is
updated when the EPS is used. We will see how this "self healing" process works in the example which follows.

IBM Corporation, 2000c

IMS Version 7

The world depends on itSelf-Healing Pointers

Since Partition ID in EPS is correct
and reorg # in EPS matches reorg #
in Partition DBDS, we use EPS RBA
pointer

Current reorg # :1

Segment B

Partition DBDS
EPS
Partition ID

Reorg # : 1
RBA

ILK

...

EPS

Segment A

ILE
ILK
Segment Code
Partition ID

Current reorg # : 1
Current RBA
...

ILDS

ILE

KSDS

Using an Extended Pointer Set (EPS)

ILK

Indirect List Key
(ILK) is stored in
segment prefix.

Copyright IBM Corp. 2000 IMS V7 HALDB 11

In this example segment A has a pointer to segment B. This pointer is either for a logical relationship or a secondary index.
That is, segment A is either a logical child or a secondary index segment. Segment B is the target of the pointer. The
Extended Pointer Set (EPS) is in the prefix of segment A.

The EPS contains a direct pointer to segment B. The direct pointer is a Relative Byte Address (RBA). The EPS also
contains the partition ID of the partition where segment B resides. The EPS contains a reorganization number for the
partition where segment B resides. In this case it is 1. The reorganization number is also stored in the partition database
data set. When IMS opens the partition, it keeps the reorg number in its control blocks for the partition.

When the pointer from segment A to segment B is used, IMS first determines the partition where the segment currently
resides. It does this by using the root key to find the partition. (With HALDB, segments with EPSs also contain the key of
the target segment's root.) If this partition matches the partition ID stored in the EPS, the reorg number in the EPS is
compared to the reorg number from the partition DBDS. If they are the same, the direct pointer (RBA) in the EPS is used to
go directly to segment B and the ILDS is not used. In this case, the reorg numbers are both 1, so the direct pointer is
used.

IBM Corporation, 2000c

IMS Version 7

The world depends on it

EPS
Partition ID

Reorg # : 1

RBA

ILK

...

EPS

Segment A

Self-Healing Pointers

After reorganization of Partition

Reorg moves segment B, updates
reorg # in ILE and Partition DBDS,
and changes Current RBA in ILE

Current reorg # :2

Segment B

Partition DBDS

"broken" pointer

ILE
ILK
Segment Code
Partition ID
Current reorg # : 2

Current RBA
...

ILE

KSDS

ILDS

ILK

Indirect List Key
(ILK) is stored in
segment prefix.

Copyright IBM Corp. 2000 IMS V7 HALDB 12

Reorganizing a partition changes the location of its segments. It also updates the ILEs for these segments in the ILDS and
updates the reorg number stored in the partition DBDS. It does not update the pointers in EPSs. The ILE in the ILDS is
easily found by the reload utility. The ILK, which is the key of the ILE, is stored in the prefix of the segment.

In this example, segment B is moved and its ILE is updated with an RBA which points to the new location of B. The reorg
number in the partition DBDS is also updated.

Since the EPS in segment A is not changed, its RBA does not point to the new location of segment B. It is now a "broken"
pointer. The reorg number in the EPS remains 1.

IBM Corporation, 2000c

IMS Version 7

The world depends on itSelf-Healing Pointers

Using the EPS after the reorganization

Since reorg # in EPS does not
match reorg # in Partition DBDS,
we use the ILE RBA pointer

Current reorg # :2

Segment B

Partition DBDS
EPS
Partition ID

Reorg # : 1
RBA

ILK

...

EPS

Segment A

"broken" pointer

ILE
ILK
Segment Code
Partition ID

Current reorg # : 2
Current RBA
...

ILE

KSDS

ILDS

ILK

Indirect List Key
(ILK) is stored in
segment prefix.

Copyright IBM Corp. 2000 IMS V7 HALDB 13

An IMS call which needs to use the pointer from segment A to segment B will discover the "broken" pointer. IMS knows
that the RBA pointer should not be used because the reorg number in the EPS does not match the reorg number in the
partition DBDS. Instead of using the RBA, IMS will use the ILK in the EPS to find and read the ILE for segment B in the
ILDS. The ILE contains a correct RBA pointer. It was updated by the reorganization.

IBM Corporation, 2000c

IMS Version 7

The world depends on itSelf-Healing Pointers

"Healing" the EPS

When we use the ILE, we update
the reorg # and RBA pointer in
the EPS

Current reorg # :2

Segment B

Partition DBDS
EPS
Partition ID

Reorg # : 2
RBA

ILK

...

EPS

Segment A

"healed" pointer

ILE
ILK
Segment Code
Partition ID

Current reorg # : 2
Current RBA
...

ILE

KSDS

ILDS

ILK

Indirect List Key
(ILK) is stored in
segment prefix.

Copyright IBM Corp. 2000 IMS V7 HALDB 14

When an ILE is used, IMS updates the direct pointer (RBA) and the reorg number in the EPS. This allows future uses of
the EPS to avoid the overhead of referencing the ILDS. When this "healing" process completes, the EPS in segment A
contains reorg number 2 and the RBA of segment B's new location. This update to the EPS is done only by programs
which reference segment A with an update PROCOPT.

IBM Corporation, 2000c

IMS Version 7

The world depends on itReorganization Frequencies

Reorganization frequencies may be changed

Increased free space may reduce reorganization frequencies

HALDB may allow users to increase free space

Increased free space may reduce need to reorganize

Reorganization frequencies may be increased

Reorg windows are reduced due to elimination of utility steps and
parallel processing

Selected partitions may be reorganized independently

Copyright IBM Corp. 2000 IMS V7 HALDB 15

HALDB allows installations to reevaluate their reorganization frequencies.

Since HALDB databases may be spread over a much larger area, free space may be increased. Additional free space may
reduce the requirement to reorganize since segments will more likely go in their home block. The downward trend in DASD
costs and the greater need for database availability will make this use of HALDB attractive in many installations.

On the other hand, HALDB may allow for more frequent reorganizations. Since the time required for reorganizations is often
reduced with HALDB, the window required for reorganizations is typically shorter. Since selected partitions may be
deallocated from online systems, reorganizations of various partitions may be done at different times. This is another
reason why partitions may be reorganized more frequently.

IBM Corporation, 2000c

IMS Version 7

The world depends on itDatabase Data Sets

The data sets in a partition have generated data set names and DDNAMEs.

Letters are used to distinguish them.

X - PHIDAM index

L - ILDS

A through J - Data data sets

A - PSINDEX

...

...

...

...

...

...

...

...Index

ILDS

Data

PHIDAM PHDAM PSINDEX

...

...

...

...
1 to 1001 partitions 1 to 1001 partitions

1 to 1001 partitions

1
 to

 1
0

 d
a

ta
 s

e
t g

ro
u

p
s

X

L

A

L

A
-
J

A
-
J

Copyright IBM Corp. 2000 IMS V7 HALDB 16

This picture illustrates the data sets that may exist with HALDB databases.

PHIDAM, PHDAM, and PSINDEX (secondary index) databases may have from 1 to 1001 partitions.

PHIDAM databases have an index data set for each partition. They have an 'X' in their DDNAMEs and generated data set
names. Similarly, PSINDEX databases have an index data set for each partition. They have an 'A' in their DDNAMEs and
generated data set names.

PHIDAM and PHDAM partitions have an Indirect List Data Set (ILDS) for each partition. They have an 'L' in their DDNAMEs
and generated data set names.

The database segments for PHIDAM and PHDAM databases are stored in data data sets. Each partition has its own data
data sets. Each partition in a database will have the same number of data data sets. These data data sets will have letters
'A' through 'J' in their DDNAMEs and generated data set names.

IBM Corporation, 2000c

IMS Version 7

The world depends on itDDNAMEs and Data Set Names

DDNAMEs

Partition name is basis for DDNAME
Up to 7 characters
Assigned in HALDB Partition Definition Utility or by INIT.PART command
Letter is used as suffix

Data set names

Begin with data set name prefix for the partition
Up to 37 characters
Assigned in HALDB Partition Definition Utility or by INIT.PART command
Letter and Partition ID are used as suffix

Copyright IBM Corp. 2000 IMS V7 HALDB 17

HALDB DDNAMEs are generated from the partition names. The partition names are 1 to 7 characters. They are specified
in the HALDB Partition Definition Utility or by the DBRC INIT.PART command. The DDNAMEs are formed from the partition
name and a one letter suffix. The suffix indicates the function of the data set in the partition.

HALDB data set names are generated from the partition data set name prefixes. These prefixes are specified in the HALDB
Partition Definition Utility or by the DBRC INIT.PART command. A prefix may be up to 37 characters. The prefix is
combined with the letter associated with the data set and the partition ID. The partition ID is a five digit decimal number.
Since the partition ID is different for each partition and is included in the data set name, each partition in a database could
use the same data set name prefix. This could simplify the naming process. On the other hand, partitions could have
unique data set name prefixes.

IBM Corporation, 2000c

IMS Version 7

The world depends on itDDNAMEs and Data Set Names

Partition_name of FRANCE

DSN_prefix of IMP0.DB.INV23.FR

PartitionID of 00004

Example: PHIDAM with 3 data set groups, FRANCE partition

Data set DDNAME Data Set Name

Data set group 1 FRANCEA IMP0.DB.INV23.FR.A00004

Data set group 2 FRANCEB IMP0.DB.INV23.FR.B00004

Data set group 3 FRANCEC IMP0.DB.INV23.FR.C00004

ILDS FRANCEL IMP0.DB.INV23.FR.L00004

PHIDAM Index FRANCEX IMP0.DB.INV23.FR.X00004

Copyright IBM Corp. 2000 IMS V7 HALDB 18

This is an example of the DDNAMEs and data set names used for a partition. This is an inventory database. The partition
name is 'FRANCE'. The user has decided to include an identification of the database in the data set name. This is 'INV23'.
The user has also decided to include an identification of the partition, but not the partition name, in the data set name. 'FR'
is used for this identification. The data set name prefix for the partition is 'IMP0.DB.INV23.FR'. IMS has assigned a
partition ID of 00004 to the partition.

IBM Corporation, 2000c

IMS Version 7

The world depends on itHALDB Migration

Migration

Uses Prereorg, HD Unload, and HD Reload utilities with new control
statements

Prereorg has new function: initialization of data sets

Databases logically related to each other must be migrated together
Logical relationships between HALDB and non-HALDB databases are not

allowed

Secondary indexes must be migrated with the databases to which
they point

Only HALDB secondary indexes may be used with HALDB databases

Copyright IBM Corp. 2000 IMS V7 HALDB 19

IMS provides utilities to migrate full function databases to HALDB. New capabilities in the Prereorganization, HD Unload,
and HD Reload utilities are used.

HALDB databases cannot be logically related to non-HALDB databases. This means that logically related databases must
be migrated together.

Similarly, HALDB databases cannot have non-HALDB secondary indexes pointing to them and HALDB secondary indexes
cannot point to non-HALDB databases. This means that all of the secondary indexes pointing to a database must be
migrated to HALDB secondary indexes when the target database is migrated.

An IMS transaction or program may access a mixture of HALDB and non-HALDB databases. Only those databases which
have relationships to each other must be migrated simultaneously.

IBM Corporation, 2000c

IMS Version 7

The world depends on itHALDB Fallback

Fallback

Fallback from HALDB to HIDAM, HDAM, and secondary indexes is
supported

Uses Prereorg, HD Unload, HD Reload, Prefix Resolution, and Prefix
Update utilities with new control statements

Copyright IBM Corp. 2000 IMS V7 HALDB 20

IMS provides utilities to fall back from HALDB to non-HALDB for one or more databases. This involves the use of
Prereorganization, HD Unload, HD Reload, and the Prefix Update utilities.

IBM Corporation, 2000c

IMS Version 7

The world depends on itAdding, Deleting, and Changing Partitions

Partitions changes

Partitions may be added and deleted

Partition boundaries may be changed

Partition changes are made with HD Unload and HD Reload

Only changed partitions are unloaded and reloaded

Other partitions remain available during the process

Partition definitions are
changed after the unload
and before the reload.

200000 400000 999999
800000

600000 800000

HD Unload

HD Reload

High key for

partition

Copyright IBM Corp. 2000 IMS V7 HALDB 21

HALDB is designed to allow users to easily add partitions, delete partitions, and change partition boundaries. This is done
by unloading and reloading the affected partitions. Affected partitions are those from which or to which database records are
moved.

In the first step, the affected partitions are unloaded with the standard HD Unload utility. The change in partition definitions
is done in the second step. Finally, the HD Reload utility is run in the second step. It loads the new, and/or changed
partitions.

In the example shown here, the partition with high key 800000 is split into two partitions. The new partitions have high keys
of 600000 and 800000. HD Unload is run against the original partition with high key 800000. The HALDB Partition Definition
utility is executed to add the new partition with high key 600000. Finally, the HD Reload utility is run. Its input is the output
of the HD Unload job. The other partitions may remain available for processing while these changes are made.

IBM Corporation, 2000c

IMS Version 7

The world depends on itHALDB Support

HALDB is supported with:

Data sharing

Remote Site Recovery (RSR)

Extended Recovery Facility (XRF)

Online Change

OSAM Sequential Buffering

IMS Monitor and IMS Performance Analyzer

...

Copyright IBM Corp. 2000 IMS V7 HALDB 22

HALDB has the same support that non-HALDB full function databases have. That is, they may participate in data sharing,
RSR, XRF, and online change. HALDB database data sets may use OSAM sequential buffering and VSAM Hiperspace
buffers. HALDB activity is monitored by the IMS Monitor and reported by the IMS Monitor and the IMS Performance
Analyzer product.

IBM Corporation, 2000c

IMS Version 7

The world depends on itHALDB

Database candidates for HALDB

Very large databases

Approaching 4G (VSAM) or 8G (OSAM) limitations

Theoretical limit is now over 40 terabytes

Medium and large databases

Parallel processing to meet time deadlines

Less frequent reorganizations due to more free space

Any size database

More frequent reorganizations

Making only parts of the data unavailable for database maintenance

Copyright IBM Corp. 2000 IMS V7 HALDB 23

The most obvious candidates for HALDB are very large databases. Databases which are approaching the data set size
limits of 4GB for VSAM or 8GB for OSAM have their size restrictions removed when they are converted to HALDB.

Medium and large sized databases with time deadlines for batch executions may benefit from the use of parallel processing
against multiple partitions. Since space is practically unlimited with HALDB, more free space may be defined for
databases. This may eliminate the need for some reorganizations or reduce their required frequencies.

Even relatively small databases are candidates for HALDB. Since reorganizations may require less time, they may be done
more frequently. Installations that can benefit from removing only parts of a database for maintenance processing, will take
advantage of HALDB.

IBM Corporation, 2000c

IMS Version 7

The world depends on itHALDB

Benefits

Greater database capacity

Without application changes

Increased database availability
Partitions, not databases, are removed from system
Shortened reorganization process
Batch window is shortened with concurrent processing

Improved manageability
Data sets may be smaller

Availability

Capacity

Compatibility

Managability

Copyright IBM Corp. 2000 IMS V7 HALDB 24

HALDB benefits users in several ways.

HALDB allows databases to become larger without requiring changes to application programs.

Availability is increased by multiple means. HALDB allows partitions, not entire databases to be removed from systems for
database maintenance purposes. Reorganization times are shortened by providing for concurrent reorganizations of
partitions and eliminating utility step requirements to update logical relationship and secondary index pointers. Since
partitions may be processed in parallel, HALDB may reduce batch and utility window time requirements.

Finally, HALDB eliminates the need to have very large data sets. This improves their manageability.

