

IBM / Retek confidential 1

The Retek Merchandising System V9.0
Performance Benchmark

March - April, 2000

Prepared by:
Richard Agnew (Online Resources)

IBM / Retek confidential 2

Table of Contents

EXECUTIVE SUMMARY .. 3

INTRODUCTION .. 4

OBJECTIVES ... 4

HARDWARE CONFIGURATION... 4

SOFTWARE CONFIGURATION.. 5

BENCHMARK SCOPE ... 5
REPLENISHMENT PROCESSES .. 5
DATA VOLUMES ... 5
ACTIVE ITEM/LOCATION COMBINATIONS ... 5

BENCHMARK RESULTS .. 6
BASELINE SCENARIO .. 6
RESULT MATRIX... 8

Oracle 8.1.5 (64 bit) .. 8
Oracle 8.1.6 (32 bit) .. 9

OBSERVATIONS... 10
DATABASE DETAILS .. 12

TABLESPACE/DISK CONFIGURATION. ... 12
REDO LOG CONFIGURATION. .. 12
INSTANCE PARAMETERS. .. 12
TABLE/INDEX PARTITIONING. ... 13
BLOCK LEVEL TUNING ... 14

TUNING ENHANCEMENTS ... 16
PROGRAM MODIFICATIONS... 16

RPLEXT - The Replenishment Extract module.. 16
RPLBLD - The Replenishment Order Build module.. 16
REQEXT - The Item Requisition Extract module. ... 17
Program Modifications between Oracle versions 8.1.5 and 8.1.6 .. 17
RPLEXT - The Replenishment Extract module.. 17
RPLBLD - The Replenishment Order Build module.. 17
RPLEXT - The Replenishment Extract module.. 17

DATABASE MODIFICATIONS ... 18
Table/Index Partitioning ... 18
Block Level Tuning.. 18
Index Tuning.. 18
Database Modifications between Oracle version 8.1.5 and 8.1.6 ... 19

ORACLE ISSUES... 19
ORACLE 8.1.5 (64 BIT).. 19
ORACLE 8.1.6 (32 BIT).. 20

APPENDIX A – DISK CONFIGURATION... 21

APPENDIX B – SYSTEM PERFORMANCE NOTES ... 22
CPU.. 22
MEMORY .. 22

IBM / Retek confidential 3

Executive Summary

Inventory replenishment is the process of providing the right product at the right place at the right
time. To have all products in stock at all times is not technically difficult, but it is prohibitively
expensive. To replenish inventory profitably, a business must weigh the costs of stock outages
against the costs of holding inventory and of ordering more.

Merchandise Management for the Retail industry involves very large volumes of data, putting
significant strain on the entire OLTP/DSS environment (hardware, software and applications).
To meet the demands of high growth and complex business requirements, it is critical for the
system to process transactions and execute required tasks in an acceptable timeframe. This
document summarizes the technical configuration and results for this benchmark.

The Retek Merchandising System (RMS) Replenishment benchmark was performed at IBM
Poughkeepsie, USA, from March 2000 through to the end of April 2000.

Retek and IBM sponsored the benchmark to establish whether the RS/6000 S80 is capable of
running Retek’s Replenishment application at a rate of 13.7 million transactions in less than 120
minutes. It was estimated that the evaluation of 13.7 million location/item combinations in 120
minutes would establish a competitive position for the IBM S80. The target of 13.7 million
transactions in 120 minutes was exceeded during the benchmark exercise with 194,029
transactions per minute or 13.7 million items evaluated and replenished in 59 minutes. These
numbers were accomplished using 200 stores, 5 Warehouses and 67,200 items per location.

The benchmark was performed using commercially available hardware and software. A 220
Gigabyte Oracle 8i database was built using data that was representative of a large retailer’s
requirements. Under simulated but real-world conditions, replenishment transactions were
executed against the RMS Application.

The replenishment process was broken down into 3 modules.

• The Replenishment Extract (rplext) module maintains optimum stock levels of replenished

staple/fashion stock items by determining the Recommended Order Quantity for a location
(ROQ).

• The Replenishment Order Build (rplbld) module builds the actual purchase orders after all the

store and warehouse ROQs have been determined and written to the temporary order table.
The Replenishment Order Build (rplbld) module creates a new order for each supplier.

• The Item Requisition Extract (reqext) module creates transfers for all SKU/store records for

styles/staple SKUs that are being replenished, where the SKU/store is active and its stock
category is Warehouse Stocked (W).

The parameters and results from the primary worst-case scenario of the benchmark appear in the
following table:

Module Item/Locations Time (mins)

rplext 4,496,000 13:53

rplbld N/A 7:36

reqext 9,280,000 38:04

Total 13,776,000 59:33

IBM / Retek confidential 4

Introduction

This document summarizes the technical configuration and the results of the RMS V9
replenishment performance benchmark that Retek/IBM performed. It details the objectives, the
assumptions, the results, and the conclusions drawn from the benchmark.

Objectives

The primary purpose of the Retek Merchandising System (RMS) Benchmark was to determine
the performance and scalability of the RMS Application using massive data volumes and very
large batch transaction rates typical for extremely large Retek customers.

The benchmark tested different hardware configurations under varying transaction loads for the
batch environment. These tests were performed to test scalability and provide some insight into
capacity planning, and to provide assistance to potential hardware vendors in determining
hardware requirements to meet the client’s RMS needs.

Hardware Configuration

Retek performed the benchmark on an IBM RS/6000 model S80. It is a 64-bit symmetric
multiprocessor system. Details of the configuration appear in the following table:

RS/6000 S80
Maker IBM
Model RS/6000 - S80
Number of Processors 24
Processor Type 450 MHz PowerPC RS 64 III
RAM 64 GB
Hard Disk 1.7 TB
Operating System AIX 4.3.3

The S80 was configured with 12 SSA Adapters with 32 MB fast write cache. Each adapter
supported (2) loops, (8) disks per loop. A total of 160 – 9.1 gigabyte disk drives were used for the
database although the S80 contained 192 hard drives. The 80 drives for the database (mirrored)
were backed up on the remaining 32 drives.

We created 5 volume groups each containing 16 unique disks. Each of these disks was mirrored
onto another unique disk. (giving us a total of 160 disks for the database)

“Appendix A” describes the disk configuration in detail.

IBM / Retek confidential 5

Software Configuration

The RMS software tested in this benchmark was the Version 9 pre-release. We installed and
compiled all the RMS database objects. We only compiled the three Pro*C programs necessary
to complete the benchmark. (rplext, rplbld and reqext).

We started our testing on Oracle 8.1.5 (64bit) and completed the final benchmark tests on Oracle
8.1.6 (32bit). Due to problems encountered with 8.1.5 Pro*C on AIX 4.3.3, we compiled the RMS
programs using the 8.1.6 environment.

Benchmark Scope

This section defines the scope of the benchmark. It identifies the processes evaluated and the
characteristics of the data used.

Replenishment Processes

The benchmark will measure performance for the following Replenishment processes:
• The Replenishment Extract (rplext) module maintains optimum stock levels of replenished

staple/fashion stock items by determining the Recommended Order Quantity for a location
(ROQ).

• The Replenishment Order Build (rplbld) module builds the actual purchase orders after all the

store and warehouse ROQs have been determined and written to the temporary order table.
The Replenishment Order Build (rplbld) module creates a new order for each supplier.

• The Item Requisition Extract (reqext) module replenishes items from warehouses to stores. It

cycles through every item-store combination that is set to be reviewed on the current day,
and calculates the quantity of the item that needs to be transferred to the store (if any).

Data Volumes

The benchmark tested data for 200 stores and 5 warehouses. For the benchmark seven different
workloads were defined, assuming a maximum of 67,200 SKUs to be evaluated per location for
configuration IOR1. The following table lists the parameters of the different workloads defined as
active SKUs to be evaluated per location during each replenishment run.

Module IOR 1 IOR 2 IOR 3 IOR 4 IOR 5 IOR 6 IOR 7
Rplext 20,800 18,200 15,200 12,200 9,200 6,200 3,200
reqext 46,400 40,600 33,800 27,200 20,400 13,800 7,200

Active Item/Location Combinations

The “Active Item/Location Combinations” for this benchmark can be defined as the percentage of
Item/Location combinations that required the replenishment programs to either create a purchase
order or a transfer. To be sure the benchmark would address the retailer’s real-world needs,
Retek tested worst-case scenarios for the replenishment batch process. Retek set the target for
this benchmark at 100% for all seven workloads.

IBM / Retek confidential 6

Benchmark Results

The results of the benchmark appear in this section as execution times for the different batch
processes. Replenishment ran with the following baseline settings:

• We used the Min/Max Method

• Due Order Processing was not used

• Scaling was not used

• 9,280,000 SKU/Store Items set as Warehouse Replenished (100% Generating Transfers)

• 4,160,000 SKU/Store Items set as Cross-Dock Replenished (100% generating 232,000

Orders and 4,160,000 Allocations)

• 232,000 SKU/Warehouse Items for Vendor Replenishment (50% actually generated Orders)

Retek changed several key parameters from the baseline (that is, the most likely) scenario to
measure their effect on execution times:

• Number of active Item/Location combinations (i.e., number of Item/Location combinations
required to be evaluated)

• Number of threads to be run simultaneously on a given server

• Number of processors dedicated to RMS batch runs

By analyzing the effects of selectively changing these parameters, a retailer should be able to
estimate accurate batch run-times under different circumstances.

Baseline Scenario
The following table summarizes the characteristics of the most likely or “baseline scenario” (high
water benchmark) and provides execution times for the Retek batch processes:

Parameters Scenario 1
Item/Location Combinations 13,776,000
Active Item/Location 13,776,000
Percentage Active 100%
Batch Process Time (mins)
Rplext 13:53
Rplbld 7:36
Reqext 38:04
Total 59:33

These results were the best that we obtained. We made numerous tuning modifications to the
database prior to and when we upgraded from Oracle 8.1.5 (64 bit) to Oracle 8.1.6 (32 Bit). See
the section “Modifications between 8.1.5 and 8.1.6” for more details.

Retek/IBM executed more than 80 separate replenishment benchmark runs to assist in estimating
more accurately the hardware requirements for Retek clients.

This baseline scenario was achieved on Oracle 8.1.6 (32 bit) with the following important runtime
parameters:

IBM / Retek confidential 7

Parameters Scenario 1
Item/Location Combinations 13,776,000
Combinations Evaluated 13,776,000
Percentage Evaluated 100%
Batch Process Threads Sleep (secs) Time (mins)
rplext 37 2 13:53
rplbld 33 0 7:36
reqext 33 8 38:04
Total 59:33

We were able to reduce the overall runtime by increasing the total number of threads executing
simultaneously for each module, and by reducing the amount of wait time between starting each
thread. This was only possible by tuning the database to reduce contention. Initially due to the
contention within the database we only ran a maximum of one thread per CPU, plus one.

The following graph was recorded during the run of the baseline scenario:

This graph illustrates a number of important points.

• The consistent smooth CPU profile achieved during the benchmark tests demonstrates the

high User CPU utilization.

• The drop off after each module completes is rapid. This indicates that each thread is

completing in approximately the same amount of time, this highlights that each thread has
encountered little contention within the database.

• There is minimal I/O wait encountered throughout the entire process.

• The system CPU usage remains constant throughout each module’s execution.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

time into run (min)

%
 C

PU

% user time
% system time
% I/O wait time
running threads

IBM / Retek confidential 8

Result Matrix

Oracle 8.1.5 (64 bit)

The following matrix summarizes the initial results obtained running on Oracle 8.1.5 (64 bit)

CPUs IOR 1 IOR 2 IOR 3 IOR 4 IOR 5 IOR 6 IOR 7
24 1:32:12 1:28:33 1:12:16 1:02:14 53:29 - -
18 1:57:21 - 1:26:58 - 0:59:48 - -
12 - 2:03:27 1:46:52 - 1:09:14 52:23 -
6 - - 2:59:07 - 1:57:25 - 51:11

The following table summarizes the results obtained using 24 CPU’s.

Parameters IOR 1 IOR 2 IOR 3 IOR 4 IOR 5
Item/Location Combinations 13,776,000 13,776,000 13,776,000 13,776,000 13,776,000
Combinations Evaluated 13,776,000 12,054,000 10,045,000 8,077,000 6,068,000
Percentage Evaluated 100% 88% 73% 58% 44%
Batch Process Time Mins Mins Mins Mins Mins
Rplext 19:00 17:06 14:46 12:25 9:56
Rplbld 6:12 5:52 5:11 4:17 2:40
Reqext 1:07:00 1:05:35 52:19 45:32 40:53
Total 1:32:12 1:28:33 1:12:16 1:02:14 53:29

The following table summarizes the results obtained using 18 CPU’s.

Parameters IOR 1 IOR 3 IOR 5
Item/Location Combinations 13,776,000 13,776,000 13,776,000
Combinations Evaluated 13,776,000 10,045,000 6,068,000
Percentage Evaluated 100% 73% 44%
Batch Process Time Mins Mins Mins
Rplext 24:55 18:45 12:31
Rplbld 8:54 5:07 3:06
Reqext 1:23:32 1:03:06 44:11
Total 1:57:21 1:26:58 0:59:48

The following table summarizes the results obtained using 12 CPU’s.

Parameters IOR 2 IOR 3 IOR 5 IOR 6
Item/Location Combinations 13,776,000 13,776,000 13,776,000 13,776,000
Combinations Evaluated 12,054,000 10,045,000 6,068,000 4,100,000
Percentage Evaluated 88% 73% 44% 29%
Batch Process Time Mins Mins Mins Mins
Rplext 29:58 26:24 16:51 12:41
Rplbld 7:23 6:20 4:02 3:00
Reqext 1:26:06 1:14:08 48:21 36:42
Total 2:03:27 1:46:52 1:09:14 52:23

IBM / Retek confidential 9

The following table summarizes the results obtained using 6 CPU’s.

Parameters IOR 3 IOR 5 IOR 7
Item/Location Combinations 13,776,000 13,776,000 13,776,000
Combinations Evaluated 10,045,000 6,068,000 2,132,000
Percentage Evaluated 73% 44% 29%
Batch Process Time Mins Mins Mins
Rplext 43:32 29:07 13:53
Rplbld 10:03 6:26 3:09
Reqext 2:05:32 1:21:52 34:09
Total 2:59:07 1:57:25 51:11

Oracle 8.1.6 (32 bit)

NOTE: We made numerous tuning modifications to the database when we upgraded from Oracle
8.1.5 (64 bit) to Oracle 8.1.6 (32 Bit). See the section “Program Modifications between 8.1.5 and
8.1.6” for more details.

The following matrix summarizes the results for the same workload as shown above obtained
running on Oracle 8.1.5 (32 bit)

CPUs IOR 1 IOR 2 IOR 3 IOR 4 IOR 5 IOR 6 IOR 7
24 1:11:48 1:05:26 56:23 47:43 39:10 - -
18 1:27:16 - 1:08:35 - 46:26 - -
12 - 1:42:22 1:27:38 - 59:29 45:38 -
6 - - 2:24:53 - 1:36:21 - 47:29

The following table summarizes the results obtained using 24 CPU’s.

Parameters IOR 1 IOR 2 IOR 3 IOR 4 IOR 5
Item/Location Combinations 13,776,000 13,776,000 13,776,000 13,776,000 13,776,000
Combinations Evaluated 13,776,000 12,054,000 10,045,000 8,077,000 6,068,000
Percentage Evaluated 100% 88% 73% 58% 44%
Batch Process Time Mins Mins Mins Mins Mins
rplext 16:42 14:58 12:53 10:48 8:51
rplbld 7:14 6:24 5:35 4:20 3:00
reqext 47:52 44:04 37:55 32:35 27:19
Total 1:11:48 1:05:26 56:23 47:43 39:10

The following table summarizes the results obtained using 18 CPU’s.

Parameters IOR 1 IOR 3 IOR 5
Item/Location Combinations 13,776,000 13,776,000 13,776,000
Combinations Evaluated 13,776,000 10,045,000 6,068,000
Percentage Evaluated 100% 73% 44%
Batch Process Time Mins Mins Mins
rplext 21:25 16:29 11:21
rplbld 7:39 6:11 3:25
reqext 58:12 45:55 31:40
Total 1:27:16 1:08:35 46:26

IBM / Retek confidential 10

The following table summarizes the results obtained using 12 CPU’s.

Parameters IOR 2 IOR 3 IOR 5 IOR 6
Item/Location Combinations 13,776,000 13,776,000 13,776,000 13,776,000
Combinations Evaluated 12,054,000 10,045,000 6,068,000 4,100,000
Percentage Evaluated 88% 73% 44% 29%
Batch Process Time Mins Mins Mins Mins
rplext 25:07 22:19 15:29 12:00
rplbld 6:51 6:33 3:21 2:23
reqext 1:10:34 58:46 40:39 31:15
Total 1:42:32 1:27:38 59:29 45:38

The following table summarizes the results obtained using 6 CPU’s.

Parameters IOR 3 IOR 5 IOR 7
Item/Location Combinations 13,776,000 13,776,000 13,776,000
Combinations Evaluated 10,045,000 6,068,000 4,100,000
Percentage Evaluated 73% 44% 29%
Batch Process Time Mins Mins Mins
rplext 38:37 26:21 14:14
rplbld 8:50 5:13 2:07
reqext 1:37:26 1:04:37 31:08
Total 2:24:53 1:36:21 47:29

NOTE: These matrices only represent a small portion of the total test runs executed. The high
water benchmark results were obtained after these tuning runs were executed. We should not
compare the 8.1.5 results shown above against the 8.1.6 results because some database and
code changes were applied to the 8.1.6 version after we completed the 8.1.5 test.

Observations

In order to remove the bottlenecks, initial tuning runs were made to determine the internal Oracle
instance and session contention. The tuning approach was based primarily on Oracle’s wait event
statistics, and tuning efforts were focused on minimizing the contention causing the highest waits.
Utlestat reports and session tracing with wait event statistics generation revealed valuable
results.

Using the utlestat reports, instance contention was minimized such that:

• Observed hit-ratios were nominal (buffer cache, library cache, and dictionary cache).
• Latch contention was minimal.
• Redo contention was minimal and online log operations were optimal.
• DBWR performance was optimal.
• Rollback segment contention was negligible.
• Data block contention was negligible.
• I/O was distributed as evenly as possible.

Upon completion of tuning the Oracle instance, the utlestat report showed that almost 75% of the
total wait time for non-idle wait events were attributed to the ‘db file sequential read’ event. This is
a wait for I/O completion while Oracle performs a sequential read (indexed access single block
reads). Based on this information, further analyses were performed using Oracle’s session tracing
capabilities.

IBM / Retek confidential 11

The following graph displays the number of seconds required to execute the 3 modules compared
to the number of active SKUs on replenishment:

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 5000 10000 15000

Active SKUs on replenishment in 1000

Run

time

in

sec

Overall run time
rplext time
replbld time
reqext time

The following graph displays the maximum active virtual memory compared to the number of
active SKUs on replenishment.

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

0 2000 4000 6000 8000 10000 12000 14000 16000

Active SKUs on replenishment in 1000

m
ax

 a
ct

iv
e

vi
rtu

al
 m

em
or

y
(M

B)

IBM / Retek confidential 12

Database Details

Tablespace/Disk Configuration.

We decided to use Striped Raw disks when creating the database, utilizing a 64Kb stripe size.
We used 5 Volume Groups (VG), with a total of 16 Tablespaces distributed across 80 raw disks
(mirrored) and 140 LVG’s.

The Temporary Tablespace was designating as type temporary used exclusively for sorts. Doing
so effectively eliminates the space management operations involved in the allocation and de-
allocation of sort space. Obviously we tried to eliminate sorts to disk.

All operations that use sorts, including joins, index builds, ordering (ORDER BY), the computation
of aggregates (GROUP BY), and the ANALYZE command to collect optimizer statistics benefit
from temporary tablespaces.

Redo Log Configuration.

The database was configured to have 3 redo log groups containing 1 member per group. Each
redo log was 4Gb in size.

Under normal circumstances this may seem excessive, however to reduce log switches, moving
to larger redo logs can improve performance by reducing checkpoint and log switch frequency.
The trade-off is the potential to increase instance recovery time, if large long running transactions
require recovery after instance failure.

During the heaviest database activity Oracle was performing a log switch approximately every 10
minutes.

Instance Parameters.

We made minimal parameter changes when switching between Oracle 8.1.5 and 8.1.6, besides
the obvious 8.1.x specific. The most important consideration is the maximum size limitation
permitted under the 32 bit version of Oracle. (approximately 2.5Gb) The following tables lists the
important parameters modified:

Parameter Value
compatible 8.1.5
db_block_size 8192
db_block_buffers 350000
db_block_max_dirty_target 174762
log_buffer 62914560
shared_pool_size 104857600
shared_pool_reserved_size 2621440
pre_page_sga true
db_block_lru_latches 24
db_file_multiblock_read_count 32
db_writer_processes 1
dbwr_io_slaves 0
disk_asynch_io true
open_cursors 1500
cursor_space_for_time true
sessions 225

IBM / Retek confidential 13

Parameter Value
session_cached_cursors 150
dml_locks 7500
processes 500
enqueue_resources 6000
log_checkpoint_interval 994096000
parallel_server False
_affinity_on True
sort_area_size 104857600
timed_statistics True
optimizer_features_enable 8.1.5
hash_multiblock_io_count 8
nls_date_format DD-MON-RR

We changed the following parameters when we upgraded to Oracle 8.1.6 (32 bit)

Parameter Value
compatible 8.1.6
optimizer_features_enable 8.1.6
db_block_buffers 190000

We didn’t use the full 2.5Gb of shared memory available when benchmarking with the 32 bit
version of Oracle. The tests conducted showed minimal performance improvements. The buffer
cache hit ratio remained optimal, with little “buffer busy waits” and latch contention.

Table/Index Partitioning.

We analyzed each replenishment module identifying the tables and indexes most likely to cause
data block and I/O contention. Due to the number of concurrent processes needing to access the
same tables and indexes we isolated the following tables as good candidates for Oracle
Partitioning.

Table Name # of Partitions
ORD_TEMP 8
PRICE_HIST 200
REPL_DAY 7
REPL_ITEM_LOC 200
SA_TRAN_HEAD 8
SA_TRAN_ITEM 8
SA_TRAN_TENDER 4
TRAN_DATA 200
TRAN_DATA_HISTORY 200
TSFDETAIL 25
WIN_STORE 200
WIN_STORE_HIST 200
WIN_WH 8
WIN_WH_HIST 8

IBM / Retek confidential 14

Block Level Tuning

We made the some great performance gains at the block level by concentrating on the
PCT_FREE, INI_TRANS and FREELISTS parameters when creating the tables and indexes.

The freelists parameter determines the number of buffers made available in the buffer cache for
transactions to simultaneously insert into. For optimal performance we should set this parameter
to the number of transactions that are likely to insert into an object simultaneously.

Changing the initrans storage parameter sets the initial number of transactions that can
simultaneously update a block of data. If left at the default value of 1, when there is more than
one transaction accessing a single block for update a new 23-byte slot will be created in the block
to store the second transaction’s identifier. This will cause a wait, thus impacting performance.

With close monitoring of “buffer busy waits” and “latch free“ we could isolate the blocks were
causing unnecessary contention. We increased these parameters while avoiding the possibility of
chained rows. You should be able to practically eliminate this level of contention.

The following partitioned tables were modified to reduce block level contention:

Table Name Pct Free Initrans Freelists
ORD_TEMP 40 25 25
REPL_DAY 10 1 24
REPL_ITEM_LOC 10 1 24
TRAN_DATA 20 24 24
TRAN_DATA_HISTORY 10 1 24
TSFDETAIL 10 24 24
WIN_STORE 20 24 24
WIN_STORE_HIST 5 24 24
WIN_WH 10 24 24
WIN_WH_HIST 5 24 24

The following non-partitioned tables were modified to reduce block level contention:

Table Name Pct Free Initrans Freelists
ALLOC_DETAIL 10 24 24
ALLOC_HEADER 10 24 24
ORDHEAD 10 24 24
ORDLOC 10 24 24
ORDSKU 10 24 24
REPL_RESULTS 10 24 24
REV_ORDERS 10 24 24
TSFHEAD 50 24 24
WIN_SKUS 10 24 24

The following partitioned indexes were modified to reduce block level contention:

Table Name Pct Free Initrans Freelists
PK_REPL_DAY 10 24 24
PK_WIN_STORE_HIST 10 24 24
PK_WIN_WH_HIST 10 24 24
TRAN_DATA_I1 10 24 24

IBM / Retek confidential 15

The following non-partitioned indexes were modified to reduce block level contention:

Table Name Pct Free Initrans Freelists
ALLOC_HEADER_I1 10 24 24
ALLOC_HEADER_I2 10 24 24
ALLOC_HEADER_I3 10 24 24
ALLOC_HEADER_I4 10 24 24
ORDHEAD_I1 10 24 24
ORDHEAD_I10 10 24 24
ORDHEAD_I2 10 24 24
ORDHEAD_I3 10 24 24
ORDHEAD_I4 10 24 24
ORDHEAD_I5 10 24 24
ORDHEAD_I6 10 24 24
ORDHEAD_I7 10 24 24
ORDHEAD_I8 10 24 24
ORDHEAD_I9 10 24 24
ORDLOC_I1 10 24 24
ORDSKU_I1 10 24 24
ORDSKU_I2 10 24 24
ORD_TEMP_I2 10 25 25
PK_ALLOC_DETAIL 10 24 24
PK_ALLOC_HEADER 10 24 24
PK_ORDHEAD 10 24 24
PK_ORDLOC 10 24 24
PK_ORDSKU 10 24 24
PK_REPL_ITEM_LOC 10 24 24
PK_TSFHEAD 10 24 24
PK_WIN_SKUS 10 24 24
PK_WIN_STORE 10 24 24
PK_WIN_WH 10 24 24
REPL_ITEM_LOC_I1 10 24 24
REPL_ITEM_LOC_I2 10 24 24
REPL_ITEM_LOC_I3 10 24 24
REPL_ITEM_LOC_I4 10 24 24
REPL_ITEM_LOC_I5 10 24 24
TRAN_DATA_HISTORY_I1 10 24 24
TRAN_DATA_I2 10 24 24
TSFDETAIL_I1 10 24 24
TSFDETAIL_I2 10 24 24
TSFHEAD_I1 10 24 24
TSFHEAD_I2 10 24 24
TSFHEAD_I3 10 24 24
WIN_SKUS_I1 10 24 24
WIN_SKUS_I2 10 24 24
WIN_SKUS_I3 10 24 24
WIN_SKUS_I4 10 24 24
WIN_STORE_I1 10 24 24
WIN_STORE_I2 10 24 24
WIN_WH_I1 10 24 24
WIN_WH_I3 10 24 24

IBM / Retek confidential 16

Tuning Enhancements

Program Modifications

We made some small performance enhancements to the base Retek code. Other changes were
necessary to overcome specific Oracle bugs. The changes we made in no way affected the
functionality of the programs, some of these changes will be incorporated into the RMS Version 9
base code. The other changes will not be necessary due to Oracle bug fixes.

For more details on the bugs we encountered with Oracle on AIX please see the section “Oracle
Issues”.

RPLEXT - The Replenishment Extract module.

We made the following changes to this program under Oracle 8.1.5 (64 bit):

• Due to the Oracle bug # 884729, we needed to add indicator variables to all the columns

fetched in the driving cursor. Indicator variables should only be necessary on columns that
potentially return a null value from the database. I don’t believe that this effected
performance.

• The call to the database package GET_ITEM_LOC_REVIEW_TIME would only be executed

when the item/location review was not equal to 1. This eliminated potentially 4.1 million un-
necessary calls/executions in the database. The base product returns the value of 1 if the
item/location review is equal to 1.

• The place_xdock_wh_order() function was incorrectly setting the due_ind variable causing

incorrect data being written to the ord_temp table.

• The call to the function to write out the repl_results data was removed. This was an un-

necessary performance overhead. This was an option in the previous releases of RMS. We
believe that this modification will be incorporated into the Version 9 RMS base.

• The NEXT_ORD_TEMP_SEQ_NO function was changed to eliminate unnecessary database

activity. See “Database Modifications” for more details.

RPLBLD - The Replenishment Order Build module.

We made the following change to this program under Oracle 8.1.5 (64 bit):

• Due to an Oracle bug, we needed to change use the strncmp function rather than the Retek

MATCH macro when testing any column that was fetched via the driving cursor.

• Due to the Oracle bug # 907232, we encountered random core dumps of this program. To

overcome this problem we installed the Oracle 8.1.6 Pro*C software and recompiled this
code against the Oracle 8.1.5 database.

• In the get_sup_info() function two cursors were changed to allow correct functionality. The

inclusion of the Oracle to_number function around the supplier variable in the c_check_dept,
c_sup_dept and c_no_sup_dept cursors was added.

• A new index was placed on the ADDR table to improved the performance of the cursors

mention above. See “Database Modifications” for more details.

IBM / Retek confidential 17

REQEXT - The Item Requisition Extract module.

We made the following change to this program under Oracle 8.1.5 (64 bit):

• Due to the Oracle bug # 884729, we needed to add indicator variables to all the columns

fetched in the driving cursor. Indicator variables should only be necessary on columns that
potentially return a null value from the database. I don’t believe that this effected
performance.

• The call to the database package GET_ITEM_LOC_REVIEW_TIME would only be executed

when the item/location review was not equal to 1. This eliminated potentially 9.2 million un-
necessary calls/executions in the database. The base product returns the value of 1 if the
item/location review is equal to 1.

• The get_next_seq_no() function was changed. We replaced the existing c_next_seq_no

cursor with a select from a new Oracle sequence. This eliminates the unnecessary overhead
with manually selecting a unique sequence from the transfer detail table. See “Database
Modifications” for more details.

Program Modifications between Oracle versions 8.1.5 and 8.1.6

We encountered several problems when upgrading from Oracle 8.1.5 (64 bit) to 8.1.6 (32 Bit). We
created a new 8.1.6 database and repopulated it with the same Retek structure and data.

We were able to recompile the Retek Pro*C programs under the new Oracle software, but
encountered several problems during the program execution.

RPLEXT - The Replenishment Extract module.

We made the following changes to this program under Oracle 8.1.6 (32 bit):

• We removed the additional indicator variables that we added to the columns fetched in the

driving cursor because of a bug in version 8.1.5.

• Due to an Oracle bug, to enable successful execution we changed the driving cursors to do a

sub-select on the v_restart_dept view rather than a join. This change also reduced the overall
execution time of these programs by improving the Oracle execution plan.

RPLBLD - The Replenishment Order Build module.

We made no additional changes to this program under Oracle 8.1.6 (32 bit):

RPLEXT - The Replenishment Extract module.

We made the following changes to this program under Oracle 8.1.6 (32 bit):

• We removed the additional indicator variables that we added to the columns fetched in the

driving cursor because of a bug in version 8.1.5.

• Due to an Oracle bug, to enable successful execution we changed the driving cursors to do a

sub-select on the v_restart_dept view rather than a join.

For more details on the problems we encountered with Oracle on AIX please see the section
“Oracle Issues”.

IBM / Retek confidential 18

Database Modifications

In order to remove the bottlenecks, initial tuning runs were made to determine the internal Oracle
instance and session contention. The tuning approach was based primarily on Oracle’s wait event
statistics, and tuning efforts were focused on minimizing the contention causing the highest waits.
Utlestat reports and session tracing with wait event statistics generation revealed valuable
results.

Table/Index Partitioning

One of the key areas for improving performance was to understand how the various processes of
this Benchmark were going to access the tables in the database, and how many processes will
access the table.

The benefits of partitioning can potentially allow multiple processes (or threads) to process
against the same table with minimal I/O contention.

The area most likely to benefit from this process is the Batch System, as these will typically be
reading and writing high volumes of transactions, where disk contention is highly likely, thus
creating performance issues.

The key criteria to getting this right are to understand the data intimately, and how the programs
will be reading and writing. It may also mean that the method for accessing the data in the Batch
System (the ‘driving cursors’) will require modification to map to the partitioning and smooth the
volume of data to be processed by each thread.

Block Level Tuning

We achieved the some great performance gains at the block level by concentrating on the
PCT_FREE, INI_TRANS and FREELISTS parameters when creating the tables and indexes.

With close monitoring of “buffer busy waits” and “latch free“ we could isolate the blocks were
causing unnecessary contention. We increased these parameters while avoiding the possibility of
chained rows. You should be able to practically eliminate this level of contention.

See “Database Details” for more information on which objects we applied this level of tuning.

Index Tuning

We used the new Reversed Index feature of Oracle 8 where applicable. This feature is especially
useful for primary keys that are sequenced generated. By reversing the keys of the index, the
insertions become distributed across all leaf keys in the index.

We also utilized the ability to create a primary key on a non-unique index reducing the index
maintenance overhead. This should only be used on primary key constraints that do not have any
foreign key relationships.

We created 3 additional indexes to improve the overall access times on the following tables:

• tsfhead
• tsfdetail
• addr

IBM / Retek confidential 19

The following indexes were created as a reversed key index:

Index Name
SA_ERROR_I1
SA_TRAN_HEAD_I1
SA_TRAN_ITEM_I1
SA_TRAN_TENDER_I1
TSFDETAIL_I6

Database Modifications between Oracle version 8.1.5 and 8.1.6

We encountered several problems when upgrading from Oracle 8.1.5 (64 bit) to 8.1.6 (32 Bit).
The first problem was a bug with the Oracle upgrade scripts (# 1208625) that meant we could not
simply upgrade the database. We created a new 8.1.6 database and repopulated it with the same
Retek structure and data.

For more details on the problems we encountered with Oracle on AIX please see the section
“Oracle Issues”.

Given the opportunity to reorganize the tables and indexes when we recreated the database we
modified some storage clauses to eliminate dynamic extension. Dynamic extensive is the process
of acquiring more extents of disk space for tables and indexes that have not been allocated a
large enough initial extent. When extents are thrown, the information is written immediately to
disk to maintain database address consistency. Throwing many extents can cause a bottleneck
against the data dictionary structures within Oracle.

Oracle Issues

As mention in the section “Tuning Modifications” not all changes made to the Pro*C programs
were performance enhancements. We encountered several bugs with Oracle 8.1.x on AIX 4.3.3.
The following is a list of the symptoms, work-arounds or bug fixes.

Oracle 8.1.5 (64 bit)

• We encountered a bug when attempting an array fetch into a structure of arrays. This is a
know problem on 8.1.5 Pro*C. There are several methods of overcoming this problem.
Initially we opted to add indicator variables to all the columns in the fetch. This by-passed
the problem but due to other bugs with 8.1.5 we installed the 8.1.6 version of Pro*C in a
separate ORACLE_HOME, then recompiled the programs against the 8.1.5 database.

• We were unable to utilize the large amount of memory available due to a bug that caused

the server to crash randomly. The server became unstable when the SGA was larger
than 3.5Gb. The crashes occurred spasmodically. Sometimes when starting the
database, sometimes when running the Pro*C programs and once when shutting the
database after a successful run.

• Another problem encountered randomly during execution of the Pro*C programs, was

unusual core dumps occurring at different times. These core dumps seemed to be
causes by any memory manipulation call. (malloc, calloc or realloc). This problem was
overcome by installing the 8.1.6 version of Pro*C in a separate ORACLE_HOME, then
recompiled the programs against the 8.1.5 database.

IBM / Retek confidential 20

Oracle 8.1.6 (32 bit)

• The first problem encountered was a bug with the Oracle upgrade scripts. We were unable to

upgrade the database from Oracle 8.1.5 (64 bit) to 8.1.6 (32 bit). We tried installing Oracle
8.1.5 (32 bit) and then downsizing the word size as recommended by Oracle. This also failed
with another bug encountered. The only way we could overcome this problem was to create a
new database under 8.1.6. This problem had been fixed on Solaris and HP-UX, but the fix
was not yet ported to AIX.

• We encountered another bug when trying a joined query against the 8.1.6 database. We

encountered this problem initially in Pro*C, but during further testing it also occurred in
SQL*Plus. This was also logged with Oracle Support as a bug. (We received an ORA-600
with this problem).

• The final problem discovered was the appearance of a single white space appended to any

varchar column fetched in Pro*C via an array fetch. Fortunately we were able to simply strip
this additional white space off.

IBM / Retek confidential 21

Appendix A – Disk Configuration

The following table describes the disk layout in detail:

Loop

A
Loop

B
I/O ssa0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Draw1 ssa1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 ssa2 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 ssa15 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

I/O ssa4 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
Draw2 ssa6 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

 ssa8 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
 ssa16 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

I/O ssa9 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
Draw3 ssa11 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

 ssa12 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
 ssa14 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

VG_Name PP_Size Hdisk - Primary : Mirror

retek1 16 6,22,38,166,54,70,86,182,102,118,134,150,12,28,60,108:
 62,78,94,190,110,126,142,158,14,30,46,174,109,125,156,188

retek2a 16 7,23,39,167,55,71,87,183,103,119,135,151,44,172,92,140:
 63,79,95,191,111,127,143,159,15,31,47,175,141,157,124,76

retek2b 16 8,24,40,168,56,72,88,184,104,120,136,152,13,61,116,132:
 64,80,96,192,112,128,144,160,16,32,48,176,189,173,21,37

retek3a 16 9,25,41,169,57,73,89,185,105,121,137,153,29,77,148,164:
 65,81,97,193,113,129,145,161,17,33,49,177,93,45,53,181

retek3b 16 10,26,42,170,58,74,90,186,106,122,138,154,20,68,149,165:
 66,82,98,194,114,130,146,162,18,34,50,178,196,180,85,69

IBM / Retek confidential 22

Appendix B – System Performance Notes

CPU

The CPU usage data demonstrated a healthy and smooth use of the available processors for the
entire benchmark.

Using 24-process, 24-CPU configuration as base for all load levels (IOR1 - 7), The CPU usage
for the application was 85 to 90 percent throughout. We noticed almost no I/O wait, with only 2-
3% on system idle. The rest (less than 10 to 15%) was on system kernel time.

Another observation was based on the same work load (IOR1) on the different system
configurations, which includes 24-CPU/24-processes, 18-CPU/18-processes, 12-CPU/12-
process, 6-CPU/6-process and 24-CPU/33-process combinations.

The result was interesting enough to indicate that the CPU usage was at almost a constant value
of 85-88% for application, with only the 33-process run reaching slightly higher than 90%. The
kernel time stayed at 10% for all the tests. This gives a clear picture of the superior scalability of
the S80 server. That is, when the load increase is proportional to the number of CPU increase,
there was no noticeable CPU kernel time increase due to SMP overhead. The benchmark result
showed that all the increased CPU capacity went to serve the application in a "no-cost" manner.
This result reflects a fact that the S80's balanced internal design, the cross-bar switch and the
AIX 4.3.3 together have made a system is scalable enough to handle huge IS application as well
as medium or small ones. This capability is especially important for multi-task or multi-thread
applications.

Memory

Throughout the entire benchmark there has been no sign of memory shortage, in fact, we did not
even notice any major paging activities. With 64G RAM installed on the test machine, it is
warranted that the memory is sufficient for most of today's applications. Then the question is,
what would be a typical memory requirement for a Retek customer environment?

Below, we show the memory requirement under different combinations of workload, number of
processes and number of processors:

Max active memory (MB)

 CPU24 CPU18 CPU12 CPU06

IOR7 2469 2338.2 2205.6 2193.3
IOR6 2613.4 2420.4 2347.8
IOR5 2891.2 2743.9 2666.9 2684.5
IOR4 3116.1 2997.1 2921.4 2940.3
IOR3 3361.5 3240.2 2921.4 2940.4
IOR2 3614.5 3492.9 3234.9 2941.3
IOR1 3820.2 3791.8 3234.9 3056.6

Multi-task level:
CPU24 - 25 processes
CPU18 - 19 processes
CPU12 - 13 processes
CPU06 - 7 processes

IBM / Retek confidential 23

Note: with the optimized run (run #62, 24CPU, IOR1, 33/32/33 processes, 59min) we used up to
3870MB. Refer to the main report for run details.

From the above table, we can predict that for the load level we have tested, the IOR1/CPU24
combination would require the highest memory amount of up to 4G, while the lowest combination
(IOR7/CPU6) needed a little more than 2G. This is the minimum amount of memory that is
required for the Retek application and Oracle database to run without major paging activities.

It is important to indicate, however, any additional system real memory is not wasted. AIX
operating system will always use them for JFS file caching to maintain a high performance for
random and sequential files. For example, a sequential file and/or a file system on disk will
become fragmented over time due to allocation and reallocation of the disk partitions, inode
structures and data blocks. Once a large file is mapped into memory, the access speed becomes
memory speed, and the fragmentation goes away, delivering a much higher level of I/O
performance. The additional real memory is also important to support other applications running
concurrently.

I/O

The CPU report showed minimal I/O wait for the entire benchmark process and very light disk
busy rate from the I/O report. This result was contributed by the following factors:

• A large number of fast SSA disks
• A well designed database table/table space layout
• Disk Adapters with large write cache
• The AIX logical volumes span across a large number of physical disks. (This forms the basis

for parallel disk access)
• File striping supported directly at the AIX operating system level

