VTAM and HPR Performance Update Session 3644 Wednesday, February 24, 1999, 1:30 PM

Nancy Gates IBM Networking Systems Center, Gaithersburg, MD

000000

The following are trademarks of the International

Business Machines, Inc.

ACF/VTAM* AFP AIX* AIX/6000* AnyNet APL2* **APPN*** AS/400* **Application Development** BookManager* CICS CICS/ESA* CUA **DB2*** DFSMS DFSMS/MVS* DFSMSdfp DFSMSdss DFSMShsm DFSMSrmm ESCON* ES/9000* **GDDM*** geoManager* **Hardware Configuration Definition Hiperbatch Hiperspace** IBM* IMS **IMS/ESA*** Language Environment* **MVS/DFP**

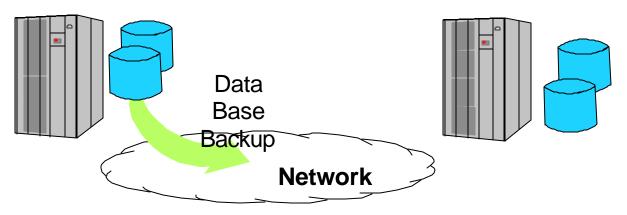
The following are trademarks of other corporations:

C++ **CMA-CONNECTION** DCE Endevor FINGRAPH II/M HP/UX Intel Interlink Librarian MAC Motif **NetWare** NFS Novell OSF Panvalet POSIX SAS/GRAPH** Sun UNIX** WINDOWS XPG4 X/Open

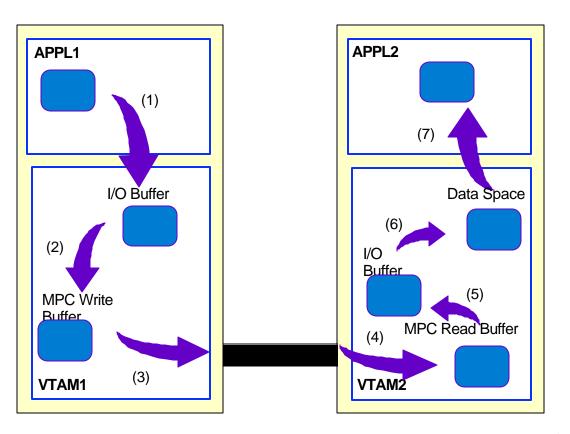
VTAM - Virtual Telecommunications Access Method HPR - High Performance Routing NPM - NetView Performance Monitor NGMF - NetView Graphics Monitor Facility **RTP - Rapid Transport Protocol** ANR - Automatic Network Routing NCP - Network Control Program **CMIP - Common Management** Information Protocol **APPN - Advanced Peer to Peer** Networking COS - Class of Service SNA - Systems Network Architecture SNI - SNA Network Interconnection CDS - Central Directory Server AHHC - APPN Host to Host Channel

APPNTAM - APPN Topology and Accounting Management NN - Network Node EN - End Node ICN - Interchange Node MDH - Migration Data Host FFST - First Failure Support Technology NFTID - Network Identifier **RODM - Resource Object Data Manager** VIT - VTAM Internal Trace VSE/ESA - Virtual Storage Extended/Enterprise Systems Architecutre VM/ESA - Virtual Machine/Enterprise Systems Architecture MVS/ESA - Multiple Virtual Storage/Enterprise Systems Architecture ATM - Asynchronous Transfer Mode OS/390 - Operating System for S/390 CS/390 - Communication Server for System/390

- VTAM V4R4 Performance Information
 - VTAM V4R4 Benchmark Results
 - VTAM V4R4 performance related enhancements
 - Storage and Cycle Tuning general guidelines
- HPR Performance Information
 - Review of HPR performance Information
 - Recent HPR benchmark performance information
 - HPR tuning general guidelines



- VTAM V4R4 has several functions directed at improved availability with HPR and further exploitation of high speed networking
 - High Performance Data Transfer (MPC+)
 - Native ATM with OSA-2 adapter
 - Multi-node Persistent Sessions
 - HPR available in many configurations
 - Miscellaneous enhancements
- Extensive VTAM V4R4 benchmarks were conducted in Research Triangle Park, NC in early 1997
 - Results documented in paper available via:
 - System Center Flash www-1.ibm.com/support/techdocs/atsflash.nsf
 - Support Page www.software.ibm.com/network/commserver

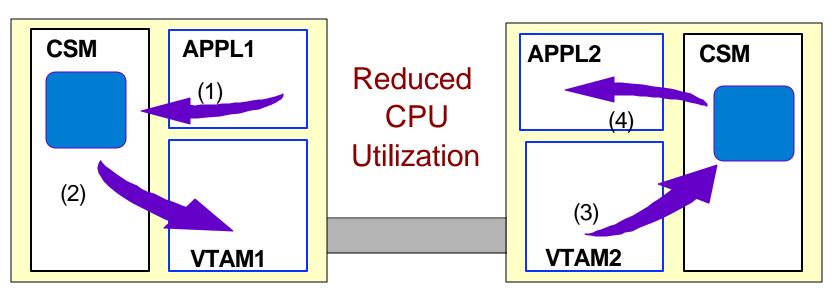

VTAM V4R4 High Performance Data Transfer

- MPC+ is a channel protocol first introduced with VTAM V4R4 (OS/390 V1R3 and higher)
- Full duplex protocol, exploiting Communication Storage Manager (CSM) and Seldom Ending Channel Programs
- Used when connections traverse VTAM V4R4 high bandwidth HPR network attachments
 - S/390 OSA connected to native ATM network
 - VTAM Host to Host Channel Connections
 - XCF links between processors in a Sysplex
 - -VTAM to 2216 or 3746 MAE MPC+ connections
- Can increase channel utilization, decrease CPU utilization and improve throughput

(1) Move data from APPL's buffers to IO buffers

(2) Move data from IO buffers to MPC write buffers

(3) Write data over channel


(4) Read data into MPC read buffers

(5) Move data from MPC read buffers
to IO buffers
(6) If RECEIVE not outstanding then move data from IO buffers into Data
Space storage
(7) Move data from Data Space

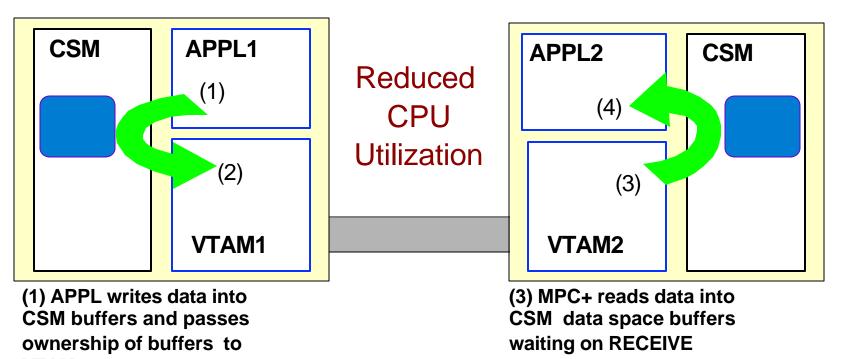
storage

to APPL's buffers once RECEIVE issued

(1) Move data from APPL's buffers into CSM buffers

(2) MPC+ accesses CSM buffers to write data over channel

(3) MPC+ reads data into CSM data space buffers waiting on RECEIVE


(4) Move data from CSM Data Space buffers to APPL's buffers once RECEIVE issued

CSM code ships as part of VTAM V4R4

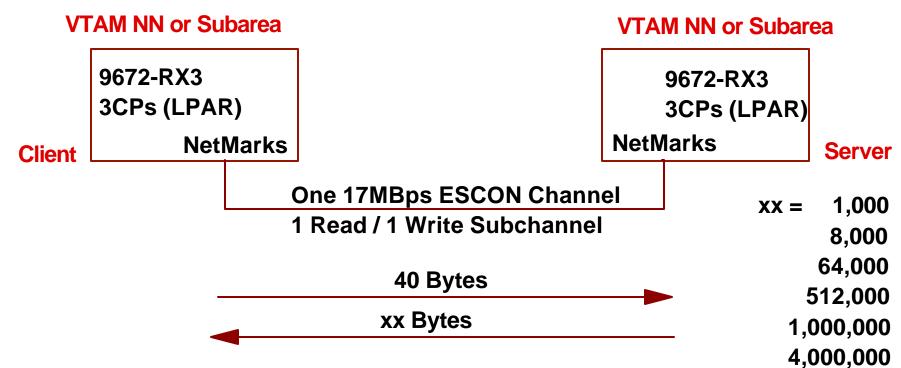
- Runs as a separate MVS task
- CSM storage in Data Space or ECSA

Data Moves with MPC+ and HPDT

(2) MPC+ accesses CSM buffers to write over channel (4) VTAM passes ownership of CSM buffers to APPL once RECEIVE is issued

VTAM/APPC applications can use High Performance Data Transfer (HPDT) application program interface

 Additional performance improvements for large blocks because of less data moves


VTAM V4R4 HPDT and MPC+ Benchmarks

The following test cases were run using the NetMarks program: • 44 HPR

- Netmarks with HPDT API -- CSM storage in ECSA
- VTAM V4R4 to VTAM V4R4 MPC+ ESCON connections
- 44 HPR Non-HPDT API
 - Netmarks using VTAM/APPC CSM storage in ECSA
 - VTAM V4R4 to VTAM V4R4 MPC+ ESCON connections
- 44 HPR Non-HPDT API DS
 - Netmarks using VTAM/APPC CSM storage in DataSpace
 - VTAM V4R4 to VTAM V4R4 MPC+ ESCON connections
- 44 HPR (No MPC+)
 - Netmarks using VTAM/APPC
 - VTAM V4R4 to VTAM V4R4 AHHC ESCON connections (not MPC+)
- 43 HPR
 - Netmarks using VTAM/APPC
 - VTAM V4R3 to VTAM V4R3 AHHC ESCON connections
- 44 Subarea MPC
 - Netmarks using VTAM/APPC
 - VTAM V4R4 to VTAM V4R4 MPC (Subarea) ESCON connections
- 43 Subarea MPC
 - Netmarks using VTAM/APPC
 - VTAM V4R3 to VTAM V4R3 MPC (Subarea) ESCON connections

- Application uses API crossing size of 61411 bytes
- RUsize in BIND is 60K
- VTAM IOBUF set to largest size (3992 bytes)
- Pacing windows are set to 63 (adaptive session pacing also applies)
- **DELAY = 0 (no coattailing delay)**
- CSM initial and expansion sizes set to 500 and 200

MPC+ With/Without HPDT Measurements

File Size	Parameters	44 HPR 44	HPR non-HPDT API	43 HPR
1,000	Thruput Bytes/Sec	205.637	224,416	226,540
	CPU % Client	18.87%	19.00%	22.28%
	Server	19.77%	19.66%	24.37%
	CPU Sec/Byte Client	2.752E-6	2.540E-6	2.950E-6
	Server	2.884E-6	2.628E-6	3.227E-6
8,000	Thruput Bytes/Sec	1,472,436	1,556,596	1,527,417
	CPU % Client	17.90%	17.86%	21.00%
	Server	18.33%	18.21%	22.76%
	CPU Sec/Byte Client	3.647E-7	3.442E-7	4.125E-7
	Server	3.735E-7	3.510E-7	4.470E-7
64,000	Thruput Bytes/Sec	6,690,790	6,164,534	5,514,138
	CPU % Client	16.89%	17.00%	19.76%
	Server	15.10%	15.59%	20.11%
	CPU Sec/Byte Client	7.573E-8	8.273E-8	1.075E-7
	Server	6.771E-8	7.587E-8	1.094E-7
512,000	Thruput Bytes/Sec	13,540,844	13,245,419	10,777,640
	CPU % Client	15.99%	19.74%	21.82%
	Server	12.23%	16.54%	24.52%
	CPU Sec/Byte Client	3.543E-8	4.471E-8	6.074E-8
	Server	2.710E-8	3.746E-8	6.825E-8
1,000,000	Thruput Bytes/Sec	14,223,854	14,041,280	11,502,200
	CPU % Client	15.71%	20.01%	22.23%
	Server	11.98%	16.68%	24.92%
	CPU Sec/Byte Client	3.313E-8	4.275E-8	5.798E-8
	Server	2.527E-8	3.564E-8	6.500E-8
4,000,000	Thruput Bytes/Sec	15,053,724	14,956,889	12,134,400
	CPU % Client	15.93%	20.25%	22.89%
	Server	11.83%	19.54%	25.52%
	CPU Sec/Byte Client	3.175E-8	4.062E-8	5.659E-8
	Server	2.358E-8	3.919E-8	6.309E-8

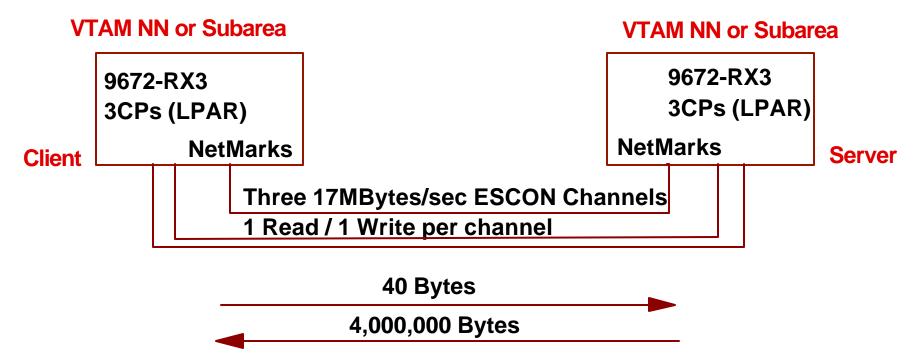
VTAM V4R4/V4R3 AHHC Measurements

File Size	Parameters	44 HPR (no MPC+)	43 HPR
1,000	Thruput bytes/sec		226,540
		243,171	
	CPU % Client	19.80%	22.28%
	Server	19.49%	24.37%
	CPU Sec/Byte Client	2.443E-6	2.950E-6
	Server	2.404E-6	3.227E-6
8,000	Thruput bytes/sec	1,591,739	1,527,417
	CPU % Client	18.31%	21.00%
	Server	18.34%	22.76%
	CPU Sec/Byte Client	3.451E-7	4.125E-7
	Server	3.457E-7	4.470E-7
64,000	Thruput bytes/sec	5,522,700	5.514,138
	CPU % Client	17.22%	19.76%
	Server	17.03%	20.11%
	CPU Sec/Byte Client	9.354E-8	1.075E-7
	Server	9.251E-8	1.094E-7
512,000	Thruput bytes/sec	10,210,500	10,777,640
	CPU % Client	18.74%	21.82%
	Server	20.83%	24.52%
	CPU Sec/Byte Client	5.506E-8	6.074E-8
	Server	6.120E-8	6.825E-8
1,000,000	Thruput bytes/sec	10,874,213	11,502,200
	CPU% Client	19.16%	22.23%
	Server	21.73%	24.92%
	CPU Sec/Byte Client	5.286E-8	5.798E-8
	Server	5.995E-8	6.500E-8
4,000,000	Thruput bytes/sec	11,815,633	12,134,400
	CPU% Client	20.15%	22.89%
	Server	23.05%	25.52%
	CPU Sec/Byte Client	5.116E-8	5.659E-8
	Server	5.852E-8	6.309E-8

VTAM V4R4/V4R3 Subarea MPC Measurements

File Size	Parameters	44 Subarea MPC	43 Subarea MPC
1,000	Thruput bytes/sec		320,555
		314,542	
	CPU % Client	18.30%	17.97%
	Server	19.11%	18.75%
	CPU Sec/Byte Client	1.745E-6	1.682E-6
	Server	1.823E-6	1.755E-6
8,000	Thruput bytes/sec	2,008,189	2,047,008
	CPU % Client	16.77%	16.50%
	Server	17.46%	17.36%
	CPU Sec/Byte Client	2.505E-7	2.418E-7
	Server	2.608E-7	2.544E-7
64,000	Thruput bytes/sec	6.171,537	6,239,905
	CPU % Client	15.09%	14.90%
	Server	15.19%	15.09%
	CPU Sec/Byte Client	7.335E-8	7.164E-8
	Server	7.384E-8	7.255E-8
512,000	Thruput bytes/sec	10,889,385	10,894,619
	CPU % Client	17.01%	16.60%
	Server	17.10%	16.89%
	CPU Sec/Byte Client	4.686E-8	4.571E-8
	Server	4.711E-8	4.651E-8
1,000,000	Thruput bytes/sec	11,582,450	11,560,279
	CPU % Client	17.62%	17.25%
	Server	17.59%	17.40%
	CPU Sec/Byte Client	4.564E-8	4.477E-8
	Server	4.556E-8	4.515E-8
4,000,000	Thruput bytes/sec	12,296,736	12,258,663
	CPU % Client	18.59%	18.10%
	Server	18.05%	17.79%
	CPU Sec/Byte Client	4.535E-8	4.430E-8
	Server	4.404E-8	4.354E-8

Conclusions - Measurement Set I


- Conclusions about VTAM V4R4 MPC+
 - With larger blocksizes, HPDT Application Program Interface (API) significantly increases throughput
 - With larger blocksizes, HPDT API significantly reduces VTAM CPU requirements
 - With smaller blocksizes, non-HPDT API is slightly better than HPDT API in terms of throughput and VTAM CPU requirements
 - VTAM V4R4 MPC+ with or without HPDT API significantly reduces CPU requirements as compared to VTAM V4R3
 - VTAM V4R4 MPC+ with or without HPDT API significantly increases throughput with larger blocksizes as compared to VTAM V4R3
 - With smaller blocksizes, VTAM V4R3 HPR throughput is minimally better than VTAM V4R4

Conclusions - Measurement Set I

- Comparisons of VTAM V4R4 HPR (not MPC+) with VTAM V4R3 HPR:
 - Throughput is about the same
 - VTAM V4R4 reduces CPU requirements
- Comparisons of VTAM V4R4 Subarea MPC with VTAM V4R3 Subarea MPC:
 - VTAM V4R4 performance is slightly degraded in terms of throughput and CPU requirements due to additional functions added with VTAM V4R4
- VTAM V4R4 MPC+ significantly increases throughput and reduces CPU requirements for larger blocksizes as compared to Subarea MPC
- Maximum channel utilization achieved with VTAM V4R4 MPC+ was 95% as compared to maximum of 78-80% with VTAM V4R3

VTAM V4R4 Second Measurement Set

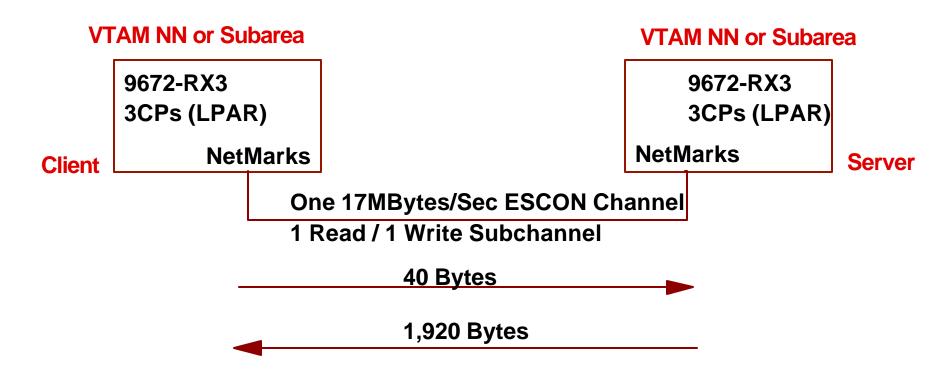
- Connections between hosts are:
 - HPDT API and MPC+ (Hosts are VTAM V4R4)
 - Non-HPDT API and MPC+ either CSM DataSpace or ECSA (Hosts are VTAM V4R4)
 - HPR (Hosts are VTAM V4R3)
 - Subarea MPC (Hosts are both V4R4 or both V4R3)

© IBM Corporation 1999

Second Measurement Set Results

	Thruput	CPU Utilization		CPU Seconds/Byte	
	Bytes/Sec	Client	Server	Client	Server
44 HPR	41,513,637	43.09%	31.85%	3.114E-8	2.302E-8
44 HPR non-HPDT API	39,056,113	90.76%	50.13%	6.972E-8	3.851E-8
44 HPR non-HPDT API Dataspace	40,379,001	61.65%	49.05%	4.580E-8	3.644E-8
44 HPR (no MPC+)	36,095,776	83.73%	74.52%	6.959E-8	6.194E-8
43 HPR	35.824,934	85.02%	74.61%	7.120E-8	6.248E-8
44 Subarea MPC	37,123,139	75.79%	55.96%	6.125E-8	4.522E-8
43 Subarea MPC	37,038,682	74.54%	54.50%	6.038E-8	4.414E-8

Second Measurement Set Conclusions

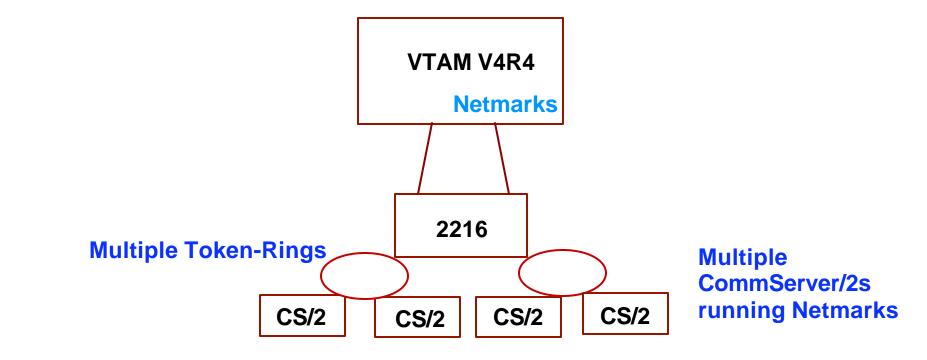

• VTAM V4R4 as compared to VTAM V4R3 HPR:

	Thruput % Improvement	CPU Utilization % Improveme	
		Client	Server
44 MPC+ HPDT API	15.9%	56.3%	63.2%
44 MPC+ non-HPDT API	9.0%	2.1%	38.4%
44 MPC+ non-HPDT API CSM Dataspace	12.7%	35.7%	41.7%

- VTAM V4R4 with MPC+ with or without HPDT API significantly improves throughput while reducing CPU requirements
- Recommend using CSM dataspace (the default) rather than ECSA
- There is minimal performance difference between VTAM V4R4 with no MPC+ and VTAM V4R3
- There is minimal performance difference between VTAM V4R4 and VTAM V4R3 Subarea MPC

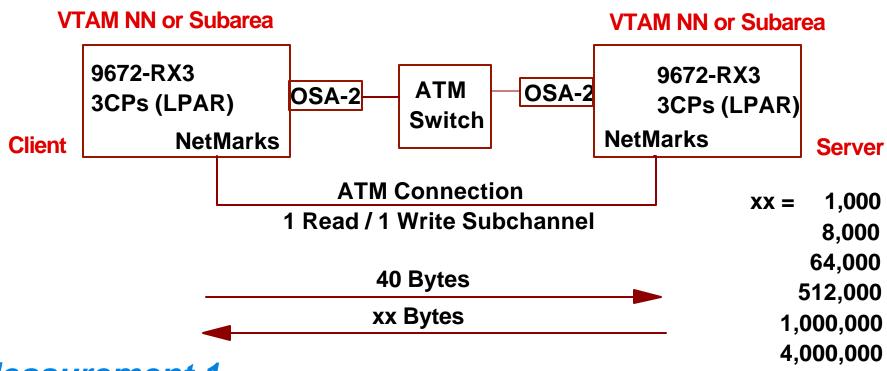
VTAM V4R4 Third Measurement Set

- Connections between hosts are:
 - HPDT API and MPC+ (Hosts are VTAM V4R4)
 - Non-HPDT API and MPC+ (Hosts are VTAM V4R4)
 - HPR (Hosts are VTAM V4R3)
 - Subarea MPC (Hosts are both V4R4 or both V4R3)


	Transactions	CPU Utili	CPU Utilization		CPU Seconds/Trans	
	Trans/Sec	Client	Server	Client	Server	
44 HPR	925.17	84.77%	83.94%	2.749E-3	2.722E-3	
44 HPR non-HPDT API	1017.82	87.41%	84.57%	2.576E-3	2.493E-3	
44 HPR (no MPC+)	1076.73	87.50%	87.19%	2.438E-3	2.429E-3	
43 HPR	991.08	84.03%	83.40%	2.544E-3	2.525E-3	
44 Subarea MPC	1338.23	81.34%	80.67%	1.823EE-3	1.808E-3	
43 Subarea MPC	1366.90	79.72%	78.15%	1.750E-3	1.715E-3	

Third Measurement Set Conclusions

- Interactive (small blocksize) applications using the HPDT API may see some degradation (10%) in throughput and some increase (8-9%) in CPU utilization compared to VTAM V4R4 MPC+ without the HPDT API
- Interactive applications using MPC+ may see minimal increase (3%) in throughput with the same CPU requirements as compared to VTAM V4R3 HPR
- Interactive applications not using MPC+ or HPDT API may see somewhat better throughput (8-9%) while reducing CPU seconds/transaction by 4-5%
- VTAM V4R4 Subarea MPC users may see a minimal performance degradation in throughput and CPU utilization as compared to VTAM V4R3 Subarea MPC


1997 2216 Benchmark MPC+ Observations

- Tests run with 16K and 4K RUsizes
- Observations roughly similar to VTAM-VTAM MPC+ benchmarks:
 - Tests with 16K RUs achieved about twice the throughput as with 4K RUs
 - CPU time per byte was more than twice as much with the 4K test than with the 16K test

VTAM V4R4 ATM Benchmark Configuration

Measurement 1

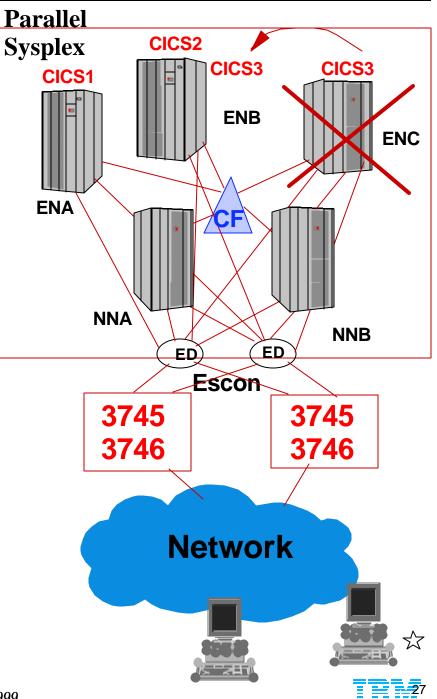
- Application uses API crossing size of 61411 bytes or single API crossing for file sizes less than 61,411 bytes
- RUsize in BIND is 8192 bytes
- Measurement 2
 - 4,000,000 byte file size RUsize varied between 4 and 16K
- CSM storage is in ECSAM Corporation 1999

File Size	Thruput	CPU Utilizatio	on	CPU Seconds/Byte	
Bytes	Bytes/Sec	Client Server		Client	Server
1,000	95,873	10.67%	10.94%	3.339E-6	3.423E-6
8,000	586,820	9.10%	9.11%	4.652E-7	4.657E-7
64,000	1,833,970	10.10%	8.40%	1.652E-7	1.374E-7
512,000	3,973,279	13.70%	10.82%	1.034E-7	8.170E-8
1,000,000	4,490,119	14.82%	11.89%	9.902E-8	7.944E-8
4,000,000	5,208,295	16.32%	14.16%	9.400E-8	8.156E-8
4,000,000	5,208,295	16.32%	14.16%	9.400E-8	8.156E-

• Conclusions:

 Throughput increases as a function of file size due to latency for acknowledgement contributing a smaller amount to overall time

 CPU seconds/byte decreases initally but levels off for larger file sizes


Ruslze Thruput		CPU Utilization		CPU Seconds/Byte		
Bytes Bytes/Sec		Client Server		Client	Server	
4,096	4,272,404	21.07%	17.20%	1.479E-7	1.208E-7	
7,680	4,990,243	15.33%	12.59%	9.216E-8	7.569E-8	
8,192	5,100,781	16.31%	12.60%	9.593E-8	7.411E-8	
16,384	5,213,517	13.67%	11.60%	7.866E-8	6.675E-8	

• Conclusions:

- As RUsize increases:
 - Throughput increases
 - CPU seconds per byte decreases

VTAM V4R4 Multinode Persistent Sessions

- Sessions survive failures in VTAM, MVS, or hardware
- HPR allows non-disruptive session continuation with application restarted on another processor
- VTAM keeps persistent session information in Coupling Facility
- Benchmark measures ICN and EN CPU time, elapsed time, and storage
 - -5,000 and 10,000 sessions
 - Session establishment, failure and recovery

MNPS Session Establishment Results

MNPS versus non-MNPS Session Establishment

	CPU Seconds		Elapsed Time (mm:ss)	
	ICN	EN		
5,000 LUs MNPS	105.6	119.1	1:58	
5,000 LUs non-MNPS	105.2	93.1	1:57	
10,000 LUs MNPS	227.6	254.6	3:24	
10,000 LUs non-MNPS	221.3	193.4	3:23	

MNPS Storage Requirements

	MNPS Session	SNPS Session	Non-PS Session
ECSA	2.8K	1.3K	1.0K
Private	1.4K	1.1K	1.1K

MNPS Failure and Recovery Results

MNPS Failure and Recovery measurements:

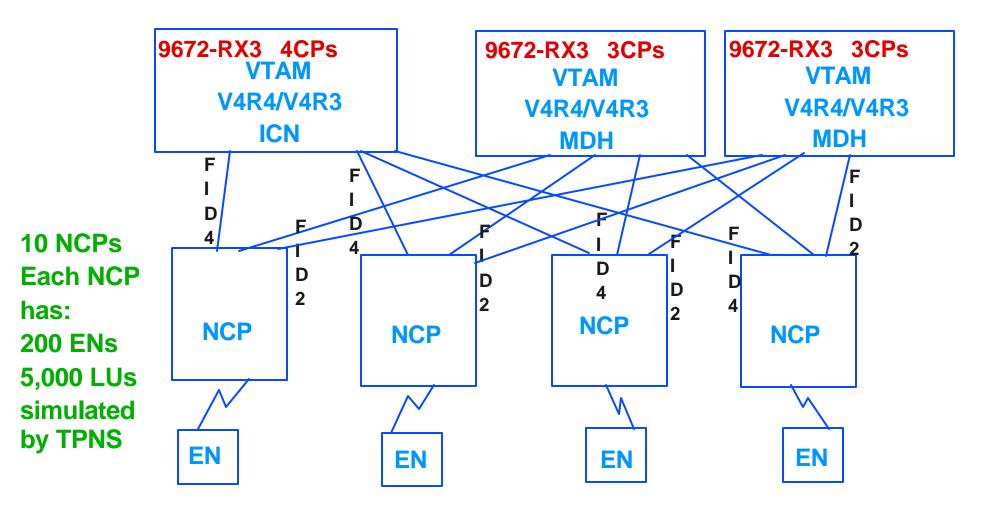
1. 5,000 sessions failed and recovered - recovery host has no other activity

2. 10,000 sessions failed and recovered - recovery host has no other activity

3. 5,000 sessions with send/receive traffic failed and recovered - recovery host has no other activity

4. 10,000 sessions with send/receive traffic failed and recovered

- recovery host has no other activity
- 5. 10,000 sessions failed and recovered recovery host is 40%-50% busy with other traffic


	Elapsed Time (mm:ss)	VTAM CPU Seconds
5,000 sessions	00:39	41.02
10,000 sessions	01:28	83.97
5,000 sessions w/traffic	01:00	54.00
10,000 sessions w/traffic	03:00	109.93
10,000 sessions w/CPU load	01:24	84.00

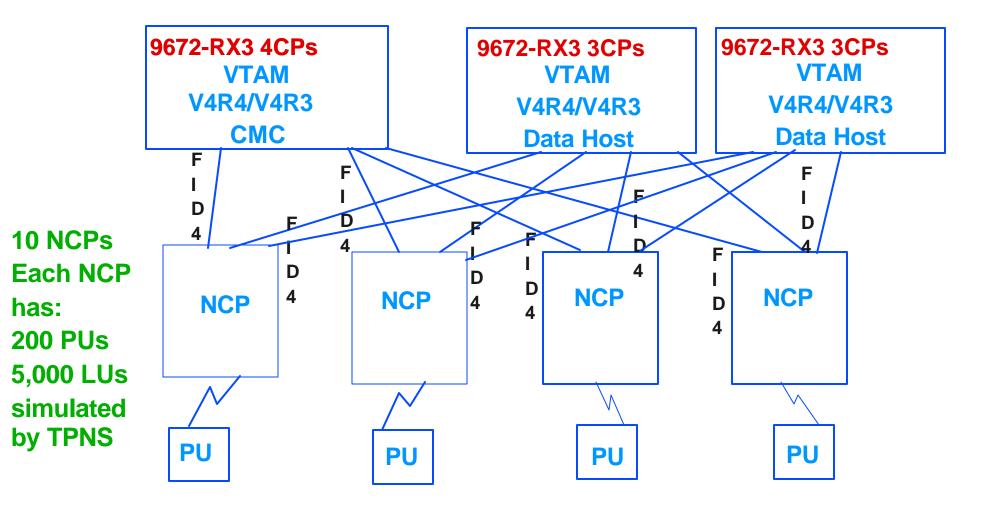
Failure and Recovery for MNPS Sessions

VTAM V4R4 APPN Network Measurements

APPN Configuration - Measurements taken for activation, logon, failure, and recovery

VTAM 50K APPN Release Comparison

	VTAM V4R4			VTAM V4R3		
	Elapsed Time (mm:ss)	CPU seconds (ICN)	CPU seconds (MDH)	Elapsed Time (mm:ss)	CPU seconds (ICN)	CPU seconds (MDH)
Activation	05:42	283.8	*	06:30	320.2	*
Logon	12.38	970.7	372.2	13:40	1104.1	438.6
Failure/React	04:05	60.9	24.5	04:25	76.8	31.8
Re-logon	03:53	92.0	73.1	04:40	102.6	89.5


Conclusion:

VTAM V4R4 reduces elapsed and CPU time in all processes as compared to VTAM V4R3

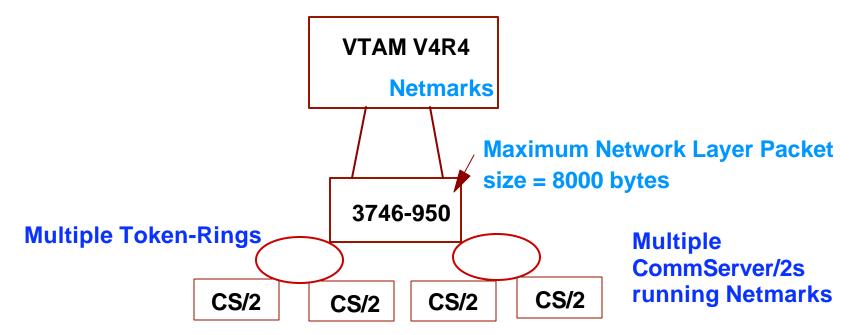
VTAM V4R4 Subarea Network Measurements

Subarea Configuration - Measurements taken for activation, logon, failure, and recovery

	VTAM V4R4			VTAM V4R3		
	Elapsed Time (mm:ss)	CPU seconds (CMC)	CPU seconds (Data)	Elapsed Time (mm:ss)	CPU seconds (CMC)	CPU seconds (Data)
Activation	02:43	146.9	*	02:52	167.8	*
Logon	08:30	523.3	267.2	09:32	592.0	325.0
Failure/React	02:03	34.7	51.2	02:23	44.7	58.7
Re-logon	02:07	47.7	53.5	02:11	52.1	62.7

• Conclusion:

VTAM V4R4 reduces elapsed and CPU time in all processes as compared to VTAM V4R3



- Use worksheets in VTAM Installation and Migration Guide (GC31-8367) - VTAM V4R4 has no Storage Estimates diskette
- Evaluate ECSA value (second value of CSA parm in IEASYSxx) based on following:
 - 1.6Mbytes of VTAM ECSA modules
 - 1.8K ECSA per MNPS session on application host
 - 3.6 ECSA per MNPS session during recovery
 - 3K of default buffers for new pools, CRA4 and CRA8
- TIBUF uses 120K of ECSA new buffers holding HPR headers for MPC+ data in CSM storage (IOBUF not used at all with MPC+)
 - Code TIBUF=0 if not using MPC+
- Size of BSBUF increased from 248 bytes to 298 bytes
 Monitor with D NET, BFRUSE
- Average number of IOBUFs on VTAM nodes serving as RTP endpoints is greater than if they support pure APPN traffic
 - Consider increasing BASENO
 - Monitor with D NET, BFRUSE

- Consider coding MPCLEVEL=NOHPDT on TRL if connection primarily used for small blocksizes
 - Not possible to do on some connections -- i.e. VTAM OSA-2 ATM and VTAM to 2216 MPC+ connections
- Tune IOBUFsize with HPR (non-MPC+) in mind
 - VTAM prefers not to segment IOBUFs. Example:

With 16K RUs and IOBUF=3992, VTAM not able to put 2 IOBUFs + HPR header into a single packet fitting within 8000 byte NLP size. Reducing IOBUF to 3900 bytes allows VTAM to send two IOBUFs worth of data in a single packet

Other VTAM V4R4 Performance Items

- Large VTAM IOBUFsize can significantly improve performance with large blocksize data
- MPC+ doesn't use IObuffers -- puts data in 2K blocks of CSM storage and sends maximum allowed on connection at 2K boundary
- DELAY default changed to 0 for CTC and NCP connections
 - For CTC default was .1 second
 - For NCP and NCP Data Host was .2 second
- SEARCHINFO command allows DISPLAY of outstanding search requests
 - Includes status, DLU node name, etc..
- VTAM V4R4 implements adaptive session pacing adaptive window sizes as a receiver
 - In prior releases adaptive pacing window size was constant on the stage where VTAM was the receiver

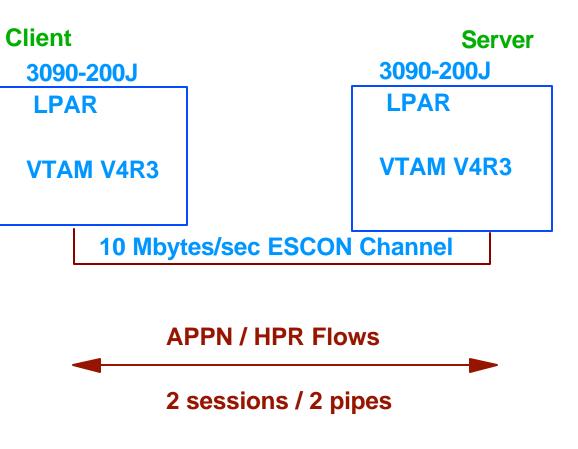
Other Interesting VTAM V4R4 Facts

D NET, SESSIONS, SID= shows current pacing values

D NET, SESSIONS, SID=FD87C05900BCFE62 **IST097I DISPLAY ACCEPTED** IST350I DISPLAY TYPE = SESSIONS 124 IST879I PLU/OLU REAL = CSSNET.NETM001 ALIAS = ***NA*** IST879I SLU/DLU REAL = CSSNET.EN001 ALIAS = ***NA*** IST880I SETUP STATUS = ACTIV IST875I ADJSSCP TOWARDS SLU = ISTAPNCP IST875I ALSNAME TOWARDS SLU = PU75072 IST933I LOGMODE=#BAT2K . COS=*BLANK* IST875I APPNCOS TOWARDS SLU = #BATCH IST1635I PLU HSCB TYPE: FMCB LOCATED AT ADDRESS X'05AB7C90' IST1635I SLU HSCB TYPE: BSB LOCATED AT ADDRESS X'05CD4C90' IST1636I PACING STAGE(S) AND VALUES: IST1644I PLU--STAGE 1-----STAGE 2--SLU **IST1638I STAGE1: PRIMARY TO SECONDARY DIRECTION - ADAPTIVE** IST1639I PRIMARY SEND: CURRENT = 4 NEXT =7 IST1640I SECONDARY RECEIVE = 7 IST1641I STAGE1: SECONDARY TO PRIMARY DIRECTION - ADAPTIVE IST1642I SECONDARY SEND: CURRENT = 54 NEXT = 63IST1643I PRIMARY RECEIVE = 63 **IST1638I STAGE2: PRIMARY TO SECONDARY DIRECTION - ADAPTIVE PRIMARY SEND:** CURRENT = 50**IST1639** NEXT = 64IST1641I STAGE2: SECONDARY TO PRIMARY DIRECTION - ADAPTIVE PRIMARY RECEIVE **IST1643** 63 = **IST314I END**

APPN/HPR Performance

- HPR can significantly improve performance
- RTP endpoints implement:
 - ARB allowing data to flow into network at high rate without causing congestion
 - Selective frame retransmission
 - Non-disruptive session switching
- Intermediate nodes (ANR nodes) can:
 - Increase throughput due to faster routing mechanism than with APPN ISR
 - Support more traffic due to reduction in processor and storage requirements
- RTP endpoints may require somewhat increased processor and storage requirements due to end to end session recovery and flow control
- Recent HPR performance information follows

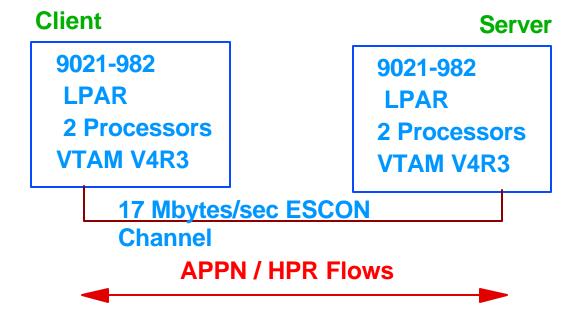


APPN/HPR VTAM V4R3 Channel Measurement

• Measurement used to compare HPR with

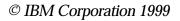
APPN for session endpoints:

- Throughput
- Storage
- CPU Cycles
- 4 Mbyte file transferred repeatedly from client to server
 - Data in storage
 - Large IOBUFs
 - Large pacing windows
 - No coattailing delays

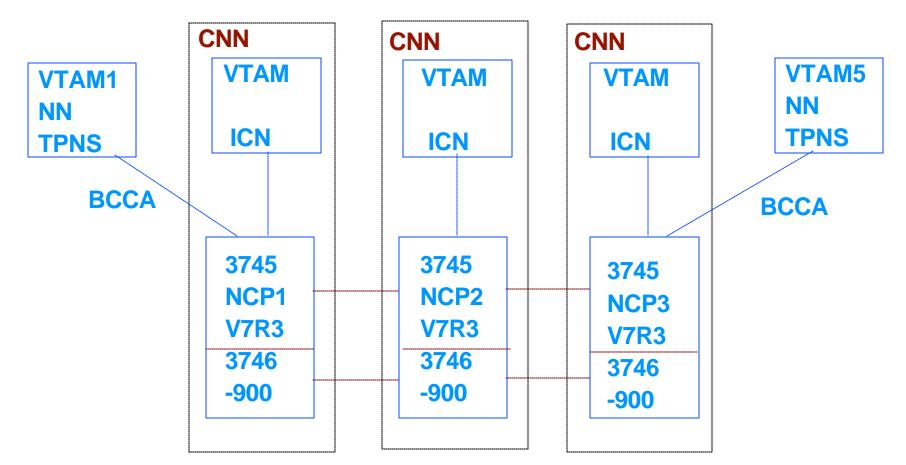

	HPR	APPN
Thruput (Mbytes/Sec)	8.23	8.36
Client Host		
Storage		
IOBUF (Max Used)	2191	1702
CSA	11177K	11144K
Private	6360K	6344K
Utilization		
CP0	35.4%	33.5%
CP1	37.4%	29.3%
Server Host		
Storage		
IOBUF (Max Used)	313	80
CSA	11079K	11052K
Private	6100K	6100K
Utilization		
CP0	66.7%	65%
CP1	48.9%	45.5%

17MBytes/sec Channel VTAM V4R3 Measurements

 Measurement used to compare 17 Megabyte ESCON channel for VTAM-VTAM communication with 10 Megabyte ESCON channel


- 4 Mbyte file transferred repeatedly from client to server
 - -Data in storage
 - -Large IOBUFs
 - -Large pacing windows
 - -No coattailing delays

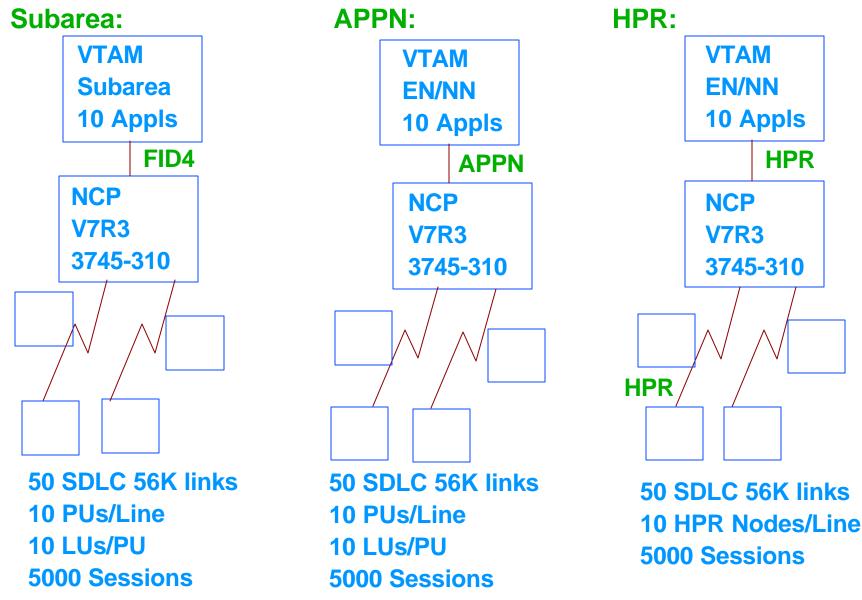
2 sessions / 2 pipes


17 Mbytes/Sec Channel Measurement Results

	HPR	APPN
Thruput (Mbytes/Sec)	14.76	15.09
Client Host		
Utilization	22%	20%
Server Host		
Utilization	38%	34%

VTAM V4R3/NCP V7R3 HPR/APPN Measurement

- TPNS used to simulate interactive workload
- 200 sessions/200 pipes 128/128 bytes per transaction
- APPN vs. HPR compared for this configuration/workload



VTAM/NCP HPR Measurement Results

	HPR	APPN
Thruput Trans/Min	21,140	17,930
Host	37.5%	28.1%
Utilization	(4.4% increase for same thruput)	
Storage (Client/Server)	. ,	
IOBUF	430K / 498K	119K / 97K
CSA	3201K / 3258K	2835K / 2740K
Private	8485K / 7794K	5281K / 5465K
NCP		
Utilization		
NCP1	57.6%	95.0%
NCP2	32.9%	65.5%
NCP3	41.4%	93.6%
Storage	Savings of 400 bytes per NCP per session	
Routing Capacity at same utilization	2-3X (Frame Relay on 900 could be greater)	X

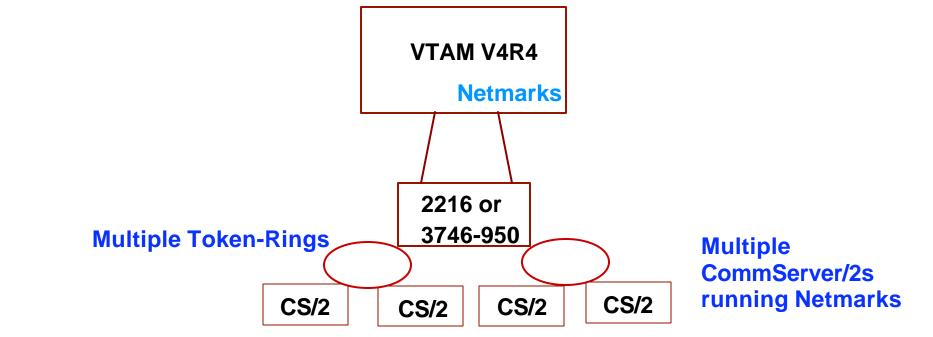
NCP V7R3 Comparison (CF3745)

• Also modeled using Frame Relay links - non-ERP for HPR

© IBM Corporation 1999

NCP V7R3 CF3745 Comparison Results

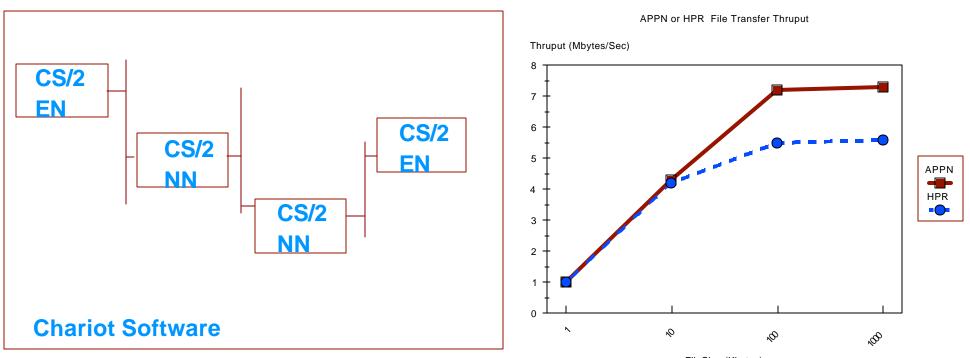
SDLC Configurations:


Subarea	APPN	HPR
78%	87%	57%
35%	34%	37%
70%	70%	68%
4.19Mbytes	5.31Mbytes	2.45Mbytes
	78% 35% 70%	78% 87% 35% 34% 70% 70%

Frame Relay Configurations:

Subarea	APPN	HPR
80%	90%	49%
35%	34%	38%
68%	68%	66%
4.55Mbytes	5.68Mbytes	3.07Mbytes
	80% 35% 68%	80% 90% 35% 34% 68% 68%

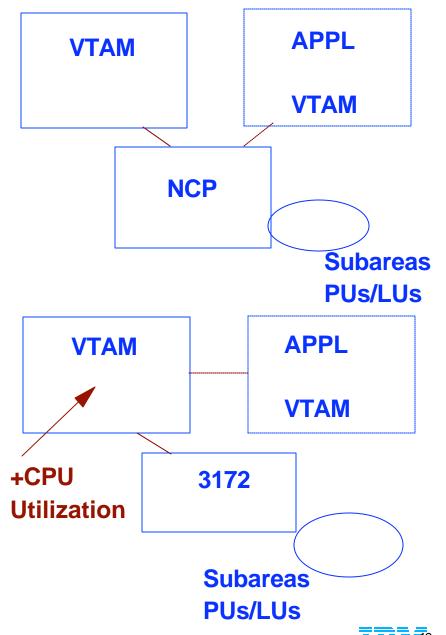
1997 Benchmark ISR/HPR Comparisons


- 3746-950 HPR and ISR Configuration Results
 - 10-30% throughput increase with HPR versus ISR for large blocks
 - Minimal VTAM cycle increase for RTP endpoint function

• 2216 HPR/ISR

- Significant throughput (3-4 times) increase with HPR versus ISR for large blocksizes
- VTAM cycle requirements for RTP endpoint much less than APPN ISR due to LSA channel protocol usage with ISR configuration

Ganymede Software Test Report



- In Ganymede Test configuration, APPN had higher transaction rate and better throughput with the larger file sizes than HPR
- End node processors were highly utilized, RTP function added 10-30% more processor utilization
- With HPR, NN utilization stayed at about 25%, while grew with load in APPN
- To understand HPR's effects, test with planned configurations
 - ANR nodes should support much more traffic but don't always increase throughput rate -- different platforms perform differently
 © IBM Corporation 1999

3172 (LSA) Revised Formula

- Formula provided in 1993 to estimate additional CPU time needed for 3172 XCA versus NCP supported resources
 - Original formula was low because assumed traffic was INN only
 - Formula has been enhanced to estimate BNN functions
 - Formula has been enhanced to estimate routing functions
- Formula for Subarea, but roughly applies to APPN

Revised Formula for 3172 VTAM Cycles

The formula is:

Compute the increase in host utilization due to OUTBOUND traffic: Uo = Lo * (1706 + 26*No)/M * 100% (INN) Uo = Lo * (1706 + 1585 + 26*No)/M * 100% (BNN) Compute the increase in host utilization due to INBOUND traffic: Ui = Li * (2116 + 7*Ni)/M * 100% (INN) Ui = Li * (2116 + 763 + 7*Ni)/M * 100% (BNN) Compute the increase in host utilization due to SESSION ROUTED traffic: Ur = Lr * (2116 + 1706 + 3500 + 26*no + 7*Ni)/M * 100% (Subarea) Ur = Lr * (2116 + 1706 + 5800 + 26*no + 7*Ni)/M * 100% (APPN)

Add the results of each computation

Notation:

- Lo Average Outbound PIUs/second
- Li Average Inbound PIUs/second
- Lr Average routed PIUs/second (INN or APPN ISR)
- M Host MIPs in Instructions/sec, i.e. 20MIPs = 20,000,000
- No Average IOBUFs/outbound PIU
- Ni Average IOBUFs/inbound PIU

3172 VTAM CPU Formula Example

Compute increase in VTAM CPU utilization for 3172 BNN environment::

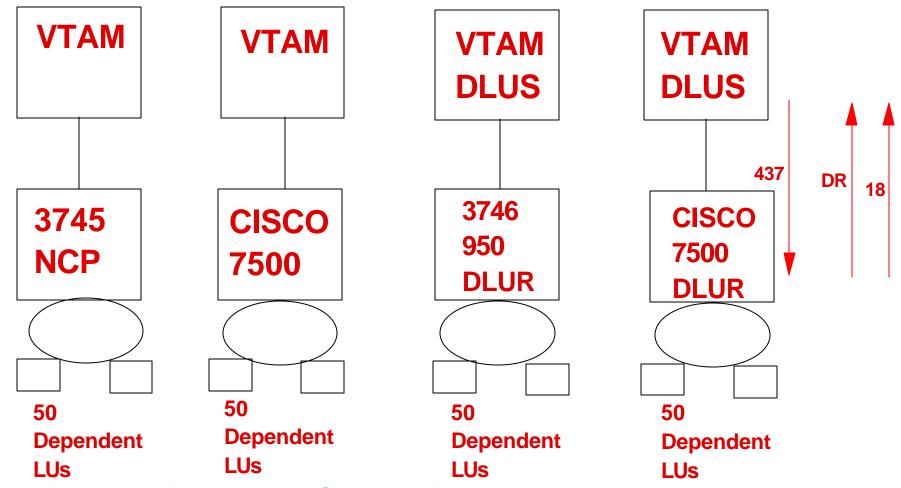
IOBUFsize = 512, Host MIPs = 20

300 Inbound 300 byte PIUs/sec, 400 Outbound 1200 bytes PIUs/sec

Uo = 400 * (1706 + 1585 + 26 * 3)/20000000 * 100% = 6.74%

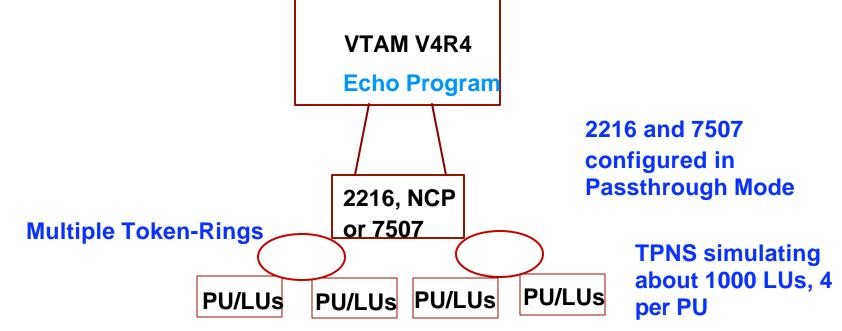
Ui = 300 * (2116 + 763 + 7 * 1)/20000000 * 100% = 4.34%

Increase in processor utilization for VTAM cycles = 11.08%

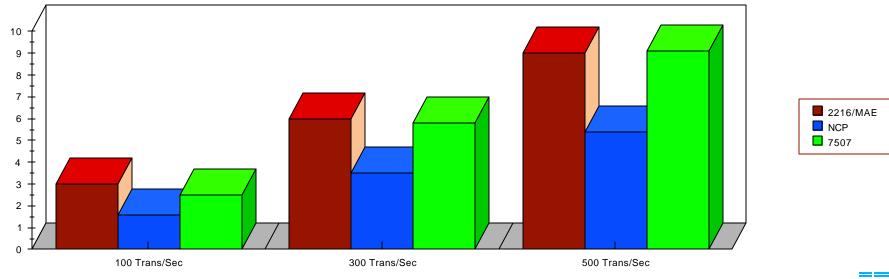

Compute additional increase for routing 100 PIUs/sec of 50 bytes to an APPN channel attached node:

Ur = 100 * (2116+1706+5800+26+7)/20000000 * 100 = 4.83%

The total increase in CPU utilization for VTAM cycles is 15.91%, e.g. a processor averaging 39.5% busy with VTAM cycles would increase to 55.41%

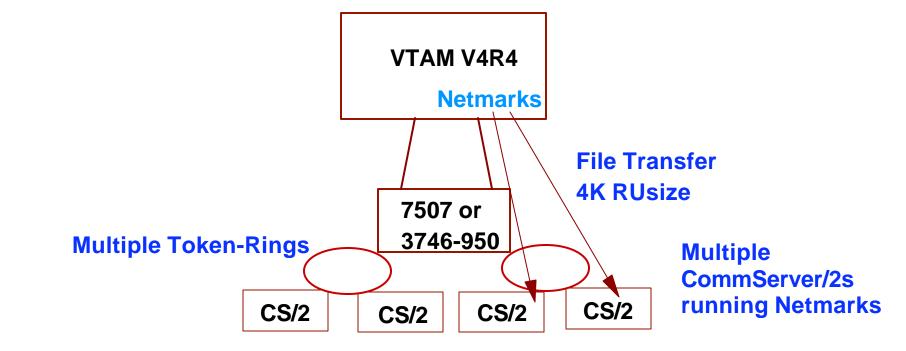

1996 Benchmark with Cisco,NCP and 3746

- Equalized Performance Comparison:
 - 3745 subarea to APPN causes 2.92% increase in VTAM cycles
 - 3745 subarea to CISCO subarea causes 46.9% increase in VTAM cycles
 - 3745 subarea to CISCO APPN cause 49.8% increase in VTAM cycles
 - CISCO APPN instead of 950 APPN cause 45.6% increase in VTAM cycles



1997 Benchmark VTAM Cycles Comparisons

S/390 Utilization % (VTAM & MVS)


% CPU Utilization

© IBM Corporation 1999

1997 Benchmark VTAM Cycles Comparisons

- 3746-950 and 7507 running as APPN NNs
- Both configurations running APPN ISR
- 7507 uses LSA channel protocol, 3746-950 uses CDLC channel protocol
 - 7507 required 65% more S/390 processor time per byte transferred
 - 3746-950 required significantly less S/390 processor time per byte transferred with 8K and 16K than with 4K or 2K RUsizes

Other VTAM / NCP Performance Highlights

- APPN Multiple Network Connectivity (Border Node)
 - 10K LU XNet logon took 75% less elapsed time compared to SNI configuration
 - VTAM V4R4 with or without NCP V7R5 supports HPR across Border Node connections
 - NCP HPR Border Node significantly reduces processing and storage as compared to SNI
- Virtual Route Transmission Groups
 - 10K LU Xdomain logon 40% faster in elapsed time and used 10% less CPU cycles than APPN configuration
- Results of VTAM V4R3 and V4R2 benchmarks documented in ASKQ WSC Flashes
 - Use search argument "VTAM Performance Benchmark"

- VTAM V4R4 Performance Information
 - VTAM V4R4 Benchmark Results
 - VTAM V4R4 performance related enhancements
 - Storage and Cycle Tuning general guidelines
- HPR Performance Information
 - Review of HPR performance Information
 - Recent HPR benchmark performance information
 - HPR tuning general guidelines

