
 IBM Washington Systems Center

WebSphere Application Server V4.0.1 for z/OS and OS/390

Configuring Applications for Java Message Service (JMS) and
setting up JMS Resources on z/OS and OS/390

We welcome your comments and corrections. Our goal is for this document to be 100% accurate. Your
comments should be addressed directly to the author of this document.

Version Date: June 13, 2002

Chao-lin Liu
IBM Washington Systems Center
800 N Frederick Ave
Gaithersburg, MD 20879

Notes ID: Chao-lin Liu/Bethesda/IBM
Internet: cliu@us.ibm.com
T/L 372-2153
External 301-240-2153

Acknowledgments

The author gratefully acknowledge the contributions made by the following individuals in reviewing
and ensuring the accuracy of this paper:

John Hutchinson IBM USA

Mike Cox IBM USA

 IBM Washington Systems Center WebSphere Application Server v4.0.1

Configuring Applications for Java Message Service (JMS) and
setting up JMS Resources on z/OS and OS/390

1.1 Java Message Service (JMS) Introduction

Overview

Enterprise messaging products (also called MOM - Message Oriented Middleware) are an essential component
for integrating intra-company operations. They permit separate business components to be combined into a
reliable, yet flexible, system. JMS provides a set of interfaces and associated semantics that define how a JMS
client accesses the facilities of an enterprises messaging product.

Java Message Service (JMS) provides a framework for developing and supporting Java software components
that communicate by creating, sending, receiving and reading messages. This method of communication,
known as messaging, allows components to interact asynchronously and reliably, knowing only message
formats and destinations without concerns about their communication partners

JMS Objectives

Defines a common set of enterprise messaging concepts and facilities needed to implement sophisticated
enterprise applications.
Minimize the set of concepts a Java programmer must learn to use enterprise messaging products.
Maximize the portability of messaging applications.

JMS Administered Objects:

ConnectionFactory - This is the object a client uses to create a connection with a provider.
Destination - This is the object a client uses to specify the destination of messages it is sending and the
source of messages it receives.

Overview of JMS object relationships

 IBM Washington Systems Center Page 1 WebSphere Application Server v4.0 .1

&RQQHFWLRQ

)DFWRU\

&RQQHFWLRQ

6HVVLRQ0HVVDJH

3URGXFHU

0HVVDJH

&RQVXPHU

0HVVDJH

&UHDWH

&UHDWH

&UHDWH6HQGV�

7R

5HFHLYHV�

)URP

&UHDWH &UHDWH

'HVWLQDWLRQ 'HVWLQDWLRQ

Two Messaging Models (also called Styles or Domains):

1. The point-to-point (PTP) model: One message producer creates and sends messages to a queue, from
which one message consumer retrieves the messages.

2. The publish/subscribe (PUB/SUB) model: One message producer creates and sends messages to a topic,
from which many message consumers retrieve the messages.

For more information, see the JMS API specifications at http://java.sun.com/j2ee/docs/ or
http://java.sun.com/products/jms/docs.html .

 IBM Washington Systems Center Page 2 WebSphere Application Server v4.0 .1

1.2 JMS implementation in WebSphere is built on WebSphere MQ

JMS is built on the assured messaging capability of WebSphere MQ, formerly known as MQSeries. A typical
message flow uses WebSphere MQ messages for input and output. WebSphere MQ Supports a number of
APIs - Message Queuing Interface (MQI), Application Messaging Interface (AMI), and Java Messaging
Services (JMS); as well as a number of communication models; including PTP and PUB/SUB.

The Java Message Support Pac MA88 implements JMS to enable JMS programs accessing WebSphere MQ
systems. MA88 was first available for the distributed environment. MA88 extended its support to z/OS July
of 2001. WebSphere V4.0.1 for z/OS allows a JMS client participating in the global transaction via Java
Transaction API (JTA) to use RRS.

The JMS API can also be used by WebSphere applications to indirectly access legacy applications.
Examples should be CICS and IMS.

 IBM Washington Systems Center Page 3 WebSphere Application Server v4.0 .1

1.3 JMS in WebSphere Application Server V4.0.1 for z/OS

JMS Administered objects are modeled as J2EE resource references

EJB 1.1 declares ConnectionFactory and Destination as resources.
During deployment, these resources are resolved through the SM EUI.
java:/comp/env lookups are used by the bean to locate administered objects.

Two types of connection factories are supported in WebSphere V4.0.1 for z/OS

1. RRS Enabled capable of 2 Phase Commit.

MQRRSQueueConnectionFactory
MQRRSTopicConnectionFactory

2 MQ Specific capable of 0 and 1 Phase Commit semantics only. Can be used for messaging out of a
global transaction scope.

MQQueueConnectionFactory
MQTopicConnectionFactory

In general, RRS enabled factories are used to support the J2EE programming model.

Below is a Point-to-Point example of a JMS configuration for WebSphere V4.0.1 for z/OS.

 IBM Washington Systems Center Page 4 WebSphere Application Server v4.0 .1

WebSphere for z/OS V4.0.1

]�26�RU�26����

-�((�VHUYHU�LQVWDQFH
-�((�

UHVRXUFHV������

045564XHXH&RQQHFWLRQ)DFWRU\

045564XHXH'HVWLQDWLRQ

�����

4XHXH

046HULHV

4XHXH�0DQDJHU

866

-06�%HDQ

-06�&OLHQW

1.4 Software Prerequisites

The following software products are required to deploy and run JMS EJBs:

1. WebSphere Application Server V4.0.1 for z/OS and OS/390. As of this writing, the current available PTF
level is 401069.

2 MQSeries V5.2 for z/OS and OS/390. JMS enabling PTF (APAR PQ52271 - PTF UQ59032, superseded
by UQ65906), and Timer Services PTF (APAR PQ52891 - PTF UQ59338), are minimum requirements. (
Current PTF maintenance is strongly recommended to avoid unnecessary problems.)

3 The Java Message Service Support Pac MA88 for z/OS and OS/390. This software can be downloaded
from the website: http://www.ibm.com/software/ts/mqseries/txppacs/ma88.html

4 Software Development Kit, SDK, V1.3.1 for z/OS and OS/390. Current available JVM build level is
hm131s - 20020207 (service refresh 13).

5 Application Assembly Tool, AAT, for z/OS and OS/390. Current available version is 27. AAT can be
downloaded from the website: http://www.ibm.com/software/webservers/appserv/download_v4z.html

6 Systems Management EUI for z/OS. This can be downloaded from WebSphere for z/OS. The default
directory is: /usr/lpp/WebSphere/bin/bboninst.exe

At the time of this writing, WebSphere should be able to use MQSI for z/OS V2.1 to provide its Pub/Sub
engine. The development team has efforts underway to verify that this is indeed the case. For the time being,
we will focus on point-to-point (PTP) requirements, and discuss minimum setup and configurations for two of
the above software components, MQSeries and MA88.

 IBM Washington Systems Center Page 5 WebSphere Application Server v4.0 .1

1.5 MQSeries V5.2 Setup and Local Queue.

WebSphere Application Server V4.0.1 for z/OS is built on WebSphere MQ (or MQSeries) to exchange
messages. Refer to the following manuals for detailed information about WebSphere MQ:

MQSeries for OS/390 V5.2 System Setup Guide (SC34-5651)
MQSeries for OS/390 V5.2 Concept and Planning Guide (GC34-5650)

JMS point-to-point (PTP) configurations need a local MQ Queue Manager. The channel initiator is not
required for PTP communication with a local queue already defined. MQ maintenance should be kept
up-to-date. Especially the afore-mentioned PTFs.

Listed below is a sample local queue definition for JMS point-to-point.

DEFINE QLOCAL (xxxxxx.LOCAL.QUEUE) REPLACE +
 DESCR(' Queue for JMS PTP messages ') +
 PUT (ENABLED) +
 GET (ENABLED) +
 TRIGTYPE(NONE) +
 MSGDLVSQ (FIFO) +
 MAXDEPTH (1000) +
 MAXMSGL (2000) +
 USAGE (NORMAL)

NOTE: You can replace the xxxxxx.LOCAL.QUEUE with a name of your choice. For example, your
local queue name can be JMSWSD.LOCAL.QUEUE or any naming convention that suits your needs.

 IBM Washington Systems Center Page 6 WebSphere Application Server v4.0 .1

1.6 Installing Java Message Service Support Pac, MA88, on z/OS.

MQSeries classes for Java and MQSeries classes for the Java message Services Support Pac (MA88) have
recently been made available on z/OS to support the development of Java based MQSeries applications.
Special support has been added to the MQSeries implementation of JMS to support the RRS based transaction
environment used by WebSphere on z/OS.

WebSphere Application Server V4.0.1 and MA88 Support Pac for z/OS, make it possible to write J2EE
compliant EJBs and Web Applications that exploit the JMS APIs.

The file, ma88_zos.tar.Z, contains the software. It can be downloaded from the website:
http://www.ibm.com/software/ts/mqseries/txppacs/ma88.html

To install the ma88 support pac, perform the following:

1. Create a directory called ma88 in the /usr/lpp directive with Permissions 755.

2 Create a HFS data set called hlq.MA88.HFS using the File_systems in ishell. (primary 6 cyls and secon-
dary 1 cyl)

3 Mount the HFS data set hlq.MA88.HFS at the mount point /usr/lpp/ma88, and file system type: HFS
using the File_systems in ishell.

4 Within omvs, change the current directory to /usr/lpp/ma88.

5 Within omvs, use the following command to uncompress and explode the MA88 :
 tar -xozf / ~ download directory/ma88_zos.tar.Z

 This creates and populates a directive named mqm in the current directory, /usr/lpp/ma88.

 IBM Washington Systems Center Page 7 WebSphere Application Server v4.0 .1

1.7 Assembling the sample JMS application for use on WebSphere

In our example, an .ear file has been provided. But in real life situations, the application must be developed in
a tool such as WSAD, and then assembled into an .ear file using the WebSphere V4.0.1 for z/OS Application
Assembly Tool (AAT).

This section describes how to take the sample JMS PTP EAR file and deploy it into WebSphere Application
Server for z/OS.

There are two sample beans provided to demonstrate the use of the JMS point-to-point and JMS pub/sub APIs
in EJBs. As mentioned before, the message broker is not available on z/OS at this time. We’ll focus on
point-to-point sample deployment. (The majority of this section is taken from the README.txt with some
clarity modifications)

All JMS related sample files can be found in the WebSphere directory. Usually it is under the
/usr/lpp/WebSphere/samples/jms directive. Below is a summary of files relevant to our deployment processes:

README.txt A description of how to deploy and configure the JMS sample beans.
JMSClient.sh Shell script to execute the client for the JMS sample beans.
JMSSample.jar Deployed ejb-jar file that contains all compiled code for this sample. This jar should be
 placed on the client's classpath.
 ws390jms.properties

 Properties used to configure the client's behavior at run time.
JMSSample.ear Deployable application.
JMSSample-noPubSub.ear

 Deployable application that will not exercise the JMS publish/subscribe APIs. The only
 differences between this application archive and the JMSSample.ear is that the
 deployment descriptor for the JMSPubSubLogger bean does not have any resource
 references defined and the usePubSubLogging environment entry in the JMSSample
 bean is set to false. There are no differences in the implementation.

JMSSample-src.jar
 Source code (in ASCII) for the sample beans and client. This jar file also contains the
 ejb-jar deployment descriptor.

If you wish to skip the AAT configuration, you may use the JMSSample-noPubSub.ear for installing the J2EE
application to WebSphere using the SM EUI and proceed with the step Deploying JMS Point-to-Point
Sample to WebSphere Application Server for z/OS.

 IBM Washington Systems Center Page 8 WebSphere Application Server v4.0 .1

Import the EAR file - Import the JMSSample.ear file into the Application Assembly Tool (Version
 4.00.027 or later) by right-clicking on the Applications folder and selecting Import. A file location
 dialog should pop up asking for the location of the EAR file that is to be imported. Once the path name
 of the file is correct, press the OK button to import the file. A new application called "JMS Sample
 Application" should now be available in the AAT.

Locate the EJBs - Expand the "JMS Sample Application" node and the "Ejb Jars" folder. A "JMS
Sample" node should now be visible. Expanding the "JMS Sample" node should reveal a folder called
"Session Beans." Expanding the "Session Beans" folder will reveal two stateless session beans -
JMSSample and JMSPubSubLogger.

Setup environment entry - Disable the Pub/Sub calls made by the JMS Sample bean as follows. Select
the JMSSample bean in the left pane. In the right pane, please select the "Environment" tab. On the
environment tab you will find two properties. Please verify that the usePubSubLogging environment entry
is set to "False" for this bean. If it is set to true, the sample will attempt to use the Pub/Sub APIs.

Remove Pub/Sub related resource references - After ensuring that the JMS Sample will not attempt to
use the Pub/Sub APIs, you will need to remove the Pub/Sub resource-refs that have been declared for the
JMSPubSubLogger. To do this, select the "JMSPubSubLogger" entry in the left pane of the AAT. Next,
select the “Resource" tab in the right pane of the AAT. Three resource-refs should be visible. In order to
delete these resource references, data needs to be put into the "modify" state by selecting "Modify" from
the "Selected" menu. Once in the "modify" state, delete the three resource references declared for the
JMSPubSubLogger. This step is required if you do not want to define the administered objects on the SM
EUI at deploy time. Once the resource references have been deleted, save the updates by selecting "Save"
from the "Selected" menu.

Deploy the EAR in the AAT - Once the beans have been configured for your environment, you will
need to deploy the beans in the AAT and export the EAR file. To do this, right click on the "JMS
Sample Application" folder and select the "Deploy" option. This will generate the implementations for
the Home and Remote interfaces of the bean, as well as the stubs and ties required for RMI/IIOP.

Export the EAR - Now that the EAR has been deployed, it is time to export it for the deploy phase in
the SM EUI. To do this, right click on the "JMS Sample Application" folder and select the "Export"
option. A dialog box will pop up asking for the file name and location to export to. Suggestion - export
the EAR to a new file so that the IBM supplied EAR file is not overwritten.

 IBM Washington Systems Center Page 9 WebSphere Application Server v4.0 .1

1.8 Installing the Application using the System Management End User Interface (SM EUI)

Defining the Required J2EE Resources to Enable JMS Support

You are now ready to set up JMS connection information to the J2EE server. Perform the following:

1. From the System Management End User Interface (SM EUI), create a new conversation. This conversation
will be used to add the JMS support.

2 Expand the list of J2EE servers and locate the J2EE server that you wish to use with JMS resources. Right
click on the J2EE server and select Modify. Make the following changes in the environment variable list:

Add the following classes from section 1.6 - Installing Java Message Service Support Pac,
MA88, on z/OS, to the CLASSPATH variable:

/~ma88 install directory~/mqm/java/lib/com.ibm.mq.jar and
/~ma88 install directory~/mqm/java/lib/com.ibm.mqjms.jar

NOTE: Separate each entry with a colon (:)

Add the MQSeries native libraries for JMS to the LIBPATH:

/~ma88 install directory~/mqm/java/lib

Press Selected -> Save to save your changes.

3 To define a RRS enabled JMS ConnectionFactory as a new J2EE resource perform the following:

Locate the J2EE Resources folder under your sysplex, right click it and select Add.

In the properties window enter the following:

a. Set the J2EE resource ConnectionFactory name. We used Sample_QCF
b. Set the J2EE resource ConnectionFactory type to MQRRSQueueConnectionFactory.
c. Set the J2EE resource Queue name. We used Sample_Queue.
d. Set the J2EE resource Queue type to MQQueue.

Press Selected -> Save to save your changes. Look for the following message in the status bar to
confirm that the operation was completed successfully.
BBON0515I J2EE Resource name was added.

 IBM Washington Systems Center Page 10 WebSphere Application Server v4.0 .1

You now can create J2EE resource instances which define the connection information. For each of the
resource instances we define. Please provide your own names and descriptions. Unless explicitly
stated below, the defaults provided by the panels should be accepted.

a. Expand the J2EE resources you have just created. This displays a J2EE resource instance folder.
Right click it and select Add.

b In the properties window enter the following:

i. Set the ClientID for Sample_QCF instance. i.e. ClientID = JMSSample.
The JMSSample ClientID is used for all connections created by the Sample_QCF Connection-
Factory. This is for concurrency and authentication purposes.

ii Set the Queue Manager Name for Sample_QCF instance. This is the name of the local queue
manager to which this sample application will connect.

iii Set the MQ Queue Name for Sample_Queue instance - This is the name of the MQ Queue to

be used in this sample. It is recommended that a queue is defined explicitly for this sample as
this sample will be placing messages to and getting messages from this queue. (see Section
1.5 MQSeries V5.2 Setup and Local Queue for the sample provided.)

iv Set the Queue Manager Name for Sample_Queue instance- This is the name of the queue
manager that hosts the queue. Generally, this will be the same queue manager that was speci-
fied in the Sample_QCF instance.

c Press Selected -> Save to save your changes. Look for the following message in the status bar to
confirm the operation was successfully completed.

 BBON0515I J2EE resource instance (name) was added.

The J2EE server region is now configured to use JMS. Do not commit the conversation yet, because you
still need to deploy an Application to make use of this support. This is described in the next section.

 IBM Washington Systems Center Page 11 WebSphere Application Server v4.0 .1

Deploying JMS Point-to-Point Sample to WebSphere Application Server for z/OS.

The final task is to take the EAR file, and deploy it to a J2EE server in WebSphere. Complete the following
steps:

Return to the conversation you were previously editing in the SM EUI. Right click on the J2EE server
where you install the JMS support and select Install J2EE Application.

In the EAR filename field, enter the name of the EAR file you exported from the AAT, then press OK.
A resources and references window will pop up. Completely expand the tree of beans in the left pane.
Once they are expanded, select the JMSSample bean.

i. On the EJB tab, specify the physical JNDI name where you would like the bean's home to be regis
-tered. The suggested JNDI path is "/samples" and the suggested JNDI name is "JMSSample."

ii. On the Reference tab, make sure that the EJB reference points to the JMSPubSubLogger and that a
green check mark appears in the tab.

iii. On the J2EE Resource tab, resolve the jms/sampleQ reference to the Sample_Queue resource and
the jms/sampleQCF reference to the Sample_QCF resource. A green check mark should appear in
the tab.

Verify that a green check mark is visible over each of the beans shown in the left pane of the resources
and references window. If the check marks are not visible, please verify that you have resolved all
references. If the check marks are visible, click the OK button on the window. The SM EUI will connect
to the server and begin the installation of the bean.

Commit and activate the conversation.

 IBM Washington Systems Center Page 12 WebSphere Application Server v4.0 .1

1.9 Configure the client

The client for the JMSSample bean needs to be configured before it can be used. First, the shell script that
will invoke the java client needs to have the CLASSPATH and LIBPATH settings set to include the MQ
Series and WebSphere/390 jar files and libraries. The deployed jar file that contains the server stubs and
interfaces needs to be put on the client's CLASSPATH. There are two basic ways to do this. The first is to
extract the JMSSample.jar from the JMSSample.ear via 'jar xvf JMSSample.ear JMSSample.jar'. The second
is to point to the deployed jar in the WebSphere install directory.

Once the shell script is configured, the ws390jms.properties file (or any file specified by the -CFG argument
in the shell script) needs to be updated to reflect the actual MQSeries setup used for the EJBs. This involves
two steps.

First, be sure that the client.subscribe.to.status.topic property is set to false. This is the default.
Second, in order for the client to drive the server side EJB, the client will need to be able to locate the
home of the JMSSample in JNDI. The home's location in JNDI is configured by the
client.sample.bean.jndi.name property. If you accepted the suggested name when deploying the bean on
the server, this property should be set to /samples/JMSSample.

For your reference, listed below is the ws390jms.properties file. No need to make any changes for our
exercise.

If true, the client will subscribe to status messages from the EJB
client.subscribe.to.status.topic=false

JNDI name of the JMS Sample bean
client.sample.bean.jndi.name=/samples/JMSSample

Local Queue Manager that can reach the message broker
client.tcf.qm.name=MVS

Queue Manager on which the message broker is running
client.tcf.broker.name=BROKER

Topic to which the client should subscribe
client.status.topic=WS390JMS/Sample/Status*

Use JNDI to locate configured JMS administered objects
client.jms.administered.with.jndi=false

JNDI name of the configured TopicConnectionFactory
client.tcf.jndi.name=/jms/sample/SampleTCF

JNDI name of the configured Topic
client.status.topic.jndi.name=/jms/sample/StatusTopic

 IBM Washington Systems Center Page 13 WebSphere Application Server v4.0 .1

Copy and modify the sample JMSClient.sh script.

Listed below is the client shell script that we have used to run the sample JMS bean.

#---
Point to the directory where the JMS Sample is located
#---

SAMPLEHOME=/usr/lpp/WebSphere401/samples/jms

#---
Point to the configuration file for this client
#---

JMSPROP="$SAMPLEHOME/ws390jms.properties"

#---
Point to the directory where the WebSphere native libraries
and jar files are located
#---

WSLIBDIR="/usr/lpp/WebSphere401/lib"
WSJARDIR="/usr/lpp/WebSphere401/lib"

#---
Point to the directory containing the MQ JMS native libraries
and the MQ JMS jar files
#---

MQLIBDIR="/usr/lpp/ma88/mqm/java/lib"
MQJARDIR="/usr/lpp/ma88/mqm/java/lib"

#---
Setup the CLASSPATH and LIBPATH
#---

CLASSPATH="$SAMPLEHOME/JMSSample.jar:$CLASSPATH"
CLASSPATH="$CLASSPATH:$WSJARDIR/ws390crt.jar"
CLASSPATH="$CLASSPATH:$MQJARDIR"
CLASSPATH="$CLASSPATH:$MQJARDIR/com.ibm.mq.jar"
CLASSPATH="$CLASSPATH:$MQJARDIR/com.ibm.mqjms.jar"

LIBPATH="$LIBPATH:$WSLIBDIR:$MQLIBDIR"

export CLASSPATH LIBPATH

#---

 IBM Washington Systems Center Page 14 WebSphere Application Server v4.0 .1

Execute the code
#---

java -Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
-Djava.naming.provider.url=iiop://wsc4:4900 com.ibm.ws390.samples.jms.client.JMSSampleClient
-CFG "$JMSPROP"

NOTE : the above java commands should be on ONE line.

 IBM Washington Systems Center Page 15 WebSphere Application Server v4.0 .1

1.10 Run the JMSSampleClient and verify the output

If the client has been executed successfully, the output should look similar to this:

 Looking up home /samples/JMSSample...
 Narrowing home...
 Creating JMSSample bean...
 Sending message "Very simple text message" to the app queue...
 Sent message.
 Receiving message from the app queue...
 Received message "Thu Oct 04 15:22:44 GMT 2001: Very simple text message"
 from the app queue.
 Calling bean to send 10 messages
 Calling bean to receive 10 messages
 10 messages received
 Calling runRequestReply()
 Calling runPutGetPrimitive()
 Removing the bean
 Cleaning up the JMS resources

If any stack traces are listed, an unexpected exception occurred. If the exception originated on the server side,
please check the server side output for the source of the problem. If a JMSException is the source of the
problem, please use the message number shown in the exception's message to determine the cause in the JMS
documentation.

 IBM Washington Systems Center Page 16 WebSphere Application Server v4.0 .1

