
The Name Game:
WebSphere z/OS JNDI
Naming Concepts

Kenneth J. Muckenhaupt
IBM Design Center for e-transaction processing
kenjm@us.ibm.com

March 26, 2002

Table of Contents

Page 13References .
Page 12Summary .
Page 12Class violates loader constraints .
Page 11No Such Object .
Page 11NameNotFoundException .
Page 10Naming Registration Failure and NoClassDefFoundError
Page 10Debugging Common JNDI Naming Problems .
Page 8Mapping EJB Resource Reference Names To J2EE Datasources
Page 8Locating Datasources Under WebSphere z/OS
Page 8How To Lookup An EJB .
Page 6Anatomy Of A WebSphere z/OS LDAP Entry .
Page 5Creating EJB Instances With The java: Logical Reference
Page 5Creating EJB Instances During Runtime .
Page 3JNDI Naming Under WebSphere z/OS .
Page 3What Is A JNDI Namespace? .
Page 3Purpose of this Technical Paper .
Page 2Acknowledgments .

The Name Game: WebSphere z/OS JNDI Naming Concepts
TOC

Acknowledgments
The following people provided valuable technical and editorial input during the writing of this
technical paper:

Don Bagwell, IBM Washington Systems Center
Mike Cox, IBM Washington Systems Center
John Gates, IBM WebSphere Enablement Team - z/OS and OS/390
Andrew Mauer, IBM WebSphere z/OS Development
Hong Min, IBM Design Center for e-transaction processing
Bart Tague, IBM Design Center for e-transaction processing
Holger Wunderlich, IBM International Technical Service Organization (ITSO)

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 2

Purpose of this Technical Paper
Java® Naming and Directory Interface™ (JNDI) naming concepts can be one of the most
confusing aspects of developing or porting Java 2 Enterprise Edition (J2EE) applications on the
WebSphere® z/OS™ platform. This technical paper will dispel some of the mystery surrounding
J2EE JNDI naming concepts by

• Providing an overview of JNDI namespace principles
• Describing how the namespace is implemented in WebSphere z/OS
• Addressing some common naming problems

What Is A JNDI Namespace?
A JNDI namespace can be thought of as a specialized environment which identifies and
describes the attributes of an application’s Enterprise JavaBeans™ (EJBs). Within this
specialized environment are the names by which EJBs are referenced by other code within an
application. Typically, this other “code” is servlets and other EJBs that make up a J2EE
application.

According to the Enterprise JavaBeans Specification, v1.1, every EJB has an associated
environment that is declared in the EJB’s deployment descriptor. Recall that an EJB’s
deployment descriptor is a special “profile” that describes the attributes of an EJB. This
descriptive information, also known as “meta data,” is used by application assembly and
deployment tools such as the IBM® Application Assembly Tool (AAT) and Systems
Management Extended User Interface (SMEUI) for z/OS to install EJBs into a container.
Furthermore, the container uses the deployment descriptor meta data to manage an EJB during
runtime. Since the environment description is outside of the EJB’s source code, an EJB can be
customized without ever changing the EJB’s code. Therefore, the platform transparency of EJBs
can be maintained while only the deployment information needs to be altered for each target
platform.

JNDI Naming Under WebSphere z/OS
So what does all this have to do with the JNDI namespace? One of the attributes in an EJB’s
deployment descriptor identifies the name of the EJB itself. The name of an EJB is used by
application code to find or look up an EJB in a namespace. When a deployment tool installs an
EJB into a WebSphere z/OS container, it gathers information about each EJB in an application,
and determines where in the JNDI namespace the home for that bean should be stored. Then, as
part of the application installation process, references to the EJB homes are bound into the JNDI
namespace with the supplied name. Since WebSphere z/OS utilizes an LDAP database as the
backing store for its JNDI implementation, an LDAP entry is created for the home references.
 Therefore, when an application such as a servlet or an access bean wants to create an instance

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 3

of an EJB, it simply looks up the name of the desired EJB in the namespace created by the
deployment process.

As shown in Figure 1, JNDI naming under WebSphere z/OS can be summarized with following
fundamentals:

1. All EJBs have a deployment descriptor that, among other things, contains the name of the
EJB.

2. During EJB deployment into a server, the SMEUI determines the name under which the
home reference should be bound in the JNDI namespace. This namespace is backed in
LDAP.

3. A global environment or initial context is the required starting point for locating EJBs in a
JNDI namespace.

4. During bean development, if an EJB developer references an external EJB in their runtime
code, then they must make that evident by defining an <ejb-ref> tag with /ejb/home-name in
the EJB’s deployment descriptor. This is the string that gets passed to the lookup()
method to locate an external EJB under the java:comp JNDI context.

 Figure 1. JNDI Namespace Fundamentals

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 4

Creating EJB Instances During Runtime

To access an EJB’s registered deployment descriptor information, an application must first
create an instance of the initial context. Once the initial context is obtained, then the application
can look up the home or factory used to create an instance of the target EJB.

As you can see in Figure 1, the J2EE container’s scope of control encompasses the deployment
descriptor, the JNDI namespace, the application, and the instance of the target EJB. When an
EJB is first accessed, for example when the first method is driven on an EJB, the container loads
the EJB’s meta data and establishes its java:comp namespace.

Creating EJB Instances With The Java: Logical Reference

WebSphere z/OS complies with the Enterprise JavaBeans Specification, v1.1 by providing a
JNDI naming implementation based on the Lightweight Directory Access Protocol (LDAP).
LDAP provides a directory structure for efficiently locating names in a namespace. When you
deploy a J2EE application (servlets and EJBs) into a WebSphere z/OS container with the SMEUI,
the Systems Management and Naming components of the WebSphere z/OS runtime work
together to register the EJB home instances into the namespace. The registration process uses
the deployment descriptor located in the EAR file to generate an indirect object reference (IOR)
for the home interface which is stored in the LDAP database for each EJB.

Even though all EJB home references are stored in LDAP under WebSphere z/OS, EJB providers
can designate a logical means for creating EJB instances during runtime. The java: name for a
home is a logical name which an EJB provider specifies during runtime when they desire to
create instances of a certain type of bean. Therefore, the EJB deployer must map the logical
home to the physical home so that at runtime the lookup succeeds. Since EJB providers at
development time do not know where in the namespace the home reference is going to be found,
they can use the <ejb-ref> XML tag in the ejb-jar.xml file to declare that the EJB contains runtime
code that is going to lookup and use a home. Therefore, the logical notation,
java:comp/env/ejb/home-name, is passed on the lookup method call. To ensure a successful
lookup, the deployer (the person responsible for creating the server with the SMEUI) must make
sure that the declared java:comp name returns the EJB’s home reference wherever it is located.
The WebSphere z/OS container is ultimately responsible for determining how to return the home
reference. You should understand that the java: namespace is a container-use only namespace
that provides quick retrieval of important bean related objects during the container managed life
cycle of an EJB.

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 5

Anatomy Of A WebSphere z/OS LDAP Entry

The fully-qualified JNDI namespace reference for the WithdrawSB EJB shown in Figure 1 could
be represented by the following LDAP entry:

ibm-wsnName=sb, ibm-wsnName=Withdraw, ibm-wsnName=BankApp, ibm-wsnName=sample,
ibm-wsnName=pok, ibm-wsnName=legacyRoot, ibm-wsnName=PELPLEXT,
ibm-wsnName=domainRoots, ibm-wsnTree=t1, o=wasnaming,c=us

ibm-wsnentrytype: IORLeaf

ibm-wsnname: WithdrawSB

corbaior:IOR:0000000000000040524d493a646b2e64616e736b652e63722e6c6561646170706c2e70726
f62652e73622e50726f62655342486f6d653a30303030303030303030303030303030000000000249424d0
f000002040001000000000038d7f2f04040404040d7c5d3d7d3c5e7e30100000000000008c4c1c5d4d6d5
f0f100000011d7f2f0c24bc5e3d74bc9c2d44bc3d6d40000000000000175000000b4d6d9c2d200000002
c4d5e2d2e2d9e500b70216a75e04898e0000081400000140c0a8008c020000000000000000000040d9d4
c97a84924b848195a292854b83994b93858184819797934b97999682854ba2824bd799968285e2c2c896
94857af0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0000000003d84924b848195a292854b83994b9385818481979793
4b97999682854ba2824bc5d1e2d9859496a385e2a381a3859385a2a2d799968285e2c2c8969485000000
00000000b90000000000000001000000000000000000000000000000000000009db7057b6cd73998a700
00086000000017c0a8008cb7057b6dd236b8080000086000000017c0a8008cb7057b6dd89b062a00000
86000000017c0a8008cc2d5c9c40000000100000001000000010000000db7057b6cd73998a7000008600
0000017c0a8008cb7057b6dd236b8080000086000000017c0a8008cb7057b6dd89b062a000008600000
0017c0a8008c6d6d88969485d686c8969485a200000000130009000000030000000000000008000000004
9424d0049424d04000000070005000102000000000000010000001c000000001002041700000001100204
1710020417000000011002041700000000000002000001010000000011503230422e4554502e49424d2e4
34f4d000015b300000175000000b4d6d9c2d200000002c4d5e2d2e2d9e500b70216a75e04898e0000081
400000140c0a8008c020000000000000000000040d9d4c97a84924b848195a292854b83994b938581848
19797934b97999682854ba2824bd799968285e2c2c89694857af0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f00000000
03d84924b848195a292854b83994b93858184819797934b97999682854ba2824bc5d1e2d9859496a385e
2a381a3859385a2a2d799968285e2c2c896948500000000000000b9000000000000000100000000000000
0000000000000000000000009db7057b6cd73998a70000086000000017c0a8008cb7057b6dd236b80800
00086000000017c0a8008cb7057b6dd89b062a0000086000000017c0a8008cc2d5c9c400000001000000
01000000010000000db7057b6cd73998a70000086000000017c0a8008cb7057b6dd236b8080000086000
000017c0a8008cb7057b6dd89b062a0000086000000017c0a8008c6d6d88969485d686c8969485a20000
00000000000000000500000000000000080000000049424d0049424d04000000070005000102000000494
24d0100000010d7f2f0c24bc5e3d74bc9c2d44bc3d6d449424d0000000000000000010000001c0000000
0100204170000000110020417100204170000000110020417

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 6

To understand a little more detail about how JNDI naming is implemented under WebSphere
z/OS, let us breakdown the preceding LDAP entry into its constituent parts.

The following directory path, which is entered into the SMEUI by the deployer, maps the
WithdrawSB EJB:

/PELPLEXT/legacyRoot/pok/sample/BankApp/Withdraw/sb/WithdrawSB

This path can be represented graphically by the following diagram:

PELPLEXT
 legacyRoot

pok
 sample

 BankApp
 Withdraw

sb
 WithdrawSB

PELPLEXT: This entry represents the SYSPLEX on which the WebSphere z/OS application
server is running.

LegacyRoot: This entry represents the root anchor for the remaining segments of the LDAP
entry.

pok/sample/BankApp/Withdraw/sb/WithdrawSB: This is the fully-qualified directory path
which maps to the WithdrawSB EJB home. This segment typically maps to a package name in
VisualAge® for Java or a source path in the WebSphere Studio Application Development
(WSAD) tool.

The final significant segment of the LDAP entry for an EJB is the IOR. An IOR is a
CORBA-defined construct that uniquely identifies an object in a namespace. When your code
performs a lookup on the initial context, the WebSphere z/OS Naming service returns a reference
to the target EJB’s home. Once this reference to the EJB’s home is returned, application code
must convert it to a reference to an EJB home interface through a process called narrowing.
 With the reference to the EJB home, the application can create an instance of the EJB by driving
the create () or find by Primary Key () methods on the EJB home.

How To Lookup An EJB

The following code sample shows the typical technique for establishing an initial context,
performing a JNDI look up on the context, narrowing the home reference, and creating an
instance of a WithdrawSB EJB:

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 7

// Get the initial context
InitialContext ctx = new InitialContext();

// Look up the WithdrawSB EJB in the JNDI namespace
Object obj = ctx.lookup("java:comp/env/BankApp/WithdrawSB");

 // Narrow the obj reference to an EJB home reference
wsbRef = (pok.sample.BankApp.Withdraw.sb.WithdrawSB)

portableRemoteObject.narrow(obj,
pok.sample.BankApp.Withdraw.sb.WithdrawSB.class);

// Create an instance of the WithdrawSB EJB
wsb = wsbRef.create();
Or

Wsb = wsbRef.findByPrimaryKey(<key>);

Note: Application development tools such as IBM’s VisualAge for Java and the WebSphere
Studio Application Development tool provide wizards for generating access beans that contain
code for performing the initial context look up and instantiation of EJBs. By using these wizards,
you do not have to code the JNDI look up operations yourself. Instead, all you have to do is
create an instance of the access bean and all the JNDI naming resolution is done in the access
bean.

Locating Datasources Under WebSphere z/OS
WebSphere z/OS does not store datasource entries in LDAP; rather to ensure faster access to
database resources, these entries are stored exclusively in a JNDI cache. Therefore, datasource
lookup strings for J2EE applications on WebSphere z/OS must begin with the java:comp/env
string. For example, lookup string for the datasource that might support the banking application
referred to earlier could be “java:comp/env/jdbc/BankAppDataSource.”

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 8

Mapping EJB Resource Reference Names To J2EE Datasources

During application assembly, you specify datasource reference names or lookup names for EJBs
on the Resources tab of the AAT. In the example we are using, the Reference name for the
banking application would be jdbc/BankAppDataSource.

When you deploy this application into a WebSphere z/OS server, you must define a J2EE
resource and J2EE resource instance that represent a datasource that your EJBs access. Then,
when you import the EAR file for your application into the SMEUI, you map the JNDI name of
the datasource that each EJB accesses to the J2EE resource specified on the SMEUI. This is
done through the Reference and Resource Resolution panel displayed by the SMEUI during the
deployment process. When the SMEUI creates the container for the server, the datasource
name, in this case jdbc/BankAppDataSource, is registered in the JNDI namespace under the
java:comp/env context.

Finally, to perform a lookup on this datasource during runtime, provide the following code in
your servlets or access beans:

// Get the initial context
InitialContext ctx = new InitialContext ();

// Look up the datasource in the JNDI namespace
DataSource ds = ctx.lookup("java:comp/env/BankAppDataSource");
Instead of hard coding the datasource lookup string in the code itself, you can specify the string
as a variable in a properties file that you can read during servlet initialization or access bean
construction. This allows you to change the datasource name if necessary without regenerating
the jar file that contains the access code. Several Java classes such the Properties and Resource
Bundle classes provide methods for managing and accessing properties files.

Figure 2 shows the interaction between a lookup in application code on a JDBC resource and
how that lookup resolves to a reference to the actual database mapped by that reference.

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 9

Figure 2. Datasource lookup in the JNDI namespace.

Debugging Common JNDI Naming Problems
When you deploy a J2EE to a WebSphere z/OS container for the first time, especially if you
migrate an application from distributed WebSphere, you may encounter some problems related
registering or accessing J2EE objects in the JNDI namespace. This section addresses some of
the most common problems and what you can do to resolve them.

Naming Registration Failure and NoClassDefFoundError

A Naming registration failure manifests itself as a message displayed on the OS/390® or z/OS
console. The first time a server region is started after you deploy an application through the
SMEUI, the names of all EJBs and servlets are registered in the JNDI namespace. If an exception
is thrown during the Naming registration phase, this message is posted to the console.

To debug this problem:

1. Under SDSF, locate the active server region job.
2. Expand the job into its constituent parts with the ‘?’ line command.
3. Select the SYSPRINT file and locate the bottom of the trace.
4. Search backward using the word ‘exception’ as a search argument.
5. Once you locate an exception trace entry, search for a Java stack trace that might identify

the source of the naming registration problem. Typically, this problem occurs when the

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 10

Naming server cannot locate a class referenced by an object such as an EJB in the runtime
environment. During JNDI registration, the container requires that all classes referenced by
objects be available. The topmost entry in the Java exception stack trace identifies the class
that the container cannot locate. Usually, a NoClassDefFoundError exception is posted in
the stack trace.

6. When you have identified the missing class, locate the .jar file that contains that class in the
HFS directory and add the path to that .jar file to the CLASSPATH record in the current.env
file.

NameNotFoundException

The exception:

“Name <name> not found in context "java:comp/env": NameNotFoundException” frequently
occurs when a server application fails to locate a reference (<name>) in the JNDI namespace.
 The code that populates the java: namespace relies on exception triggered recursion during the
loading process. The first time EJBs are referenced, much of the java:comp namespace structure
does not exist for the EJB being activated. The container detects this fact through
NameNotFoundExceptions. For these cases, the container’s code that populates the namespace
correctly builds the missing portions before trying to bind in the java: information.

However, this exception can also occur for failed datasource lookups during runtime, the typical
message is:
Name jdbc not found in context "java:comp/env": NameNotFoundException

In this case, the datasource name specified in the code on the lookup method call, in a properties
file, or environment variable does not contain the java:comp/env prefix. To correct this problem,
ensure that the datasource name includes this prefix. For example, if your datasource name is
jdbc/BankAppDataSource, it must be defined as java:comp/env/ jdbc/BankAppDataSource.

No Such Object

Another exception thrown frequently by the javax.naming class is
javax.naming.NameNotFoundException: LDAP: Error code 32 - No Such Object
Remaining name ‘ibm-wsnName=<name>,ibm-wsnName=jdbc’

This error occurs when you do not pass the “java:comp/env” prefix on the lookup() method
when you lookup a datasource name. To remedy this problem, add the “java:comp/env” prefix
to the parameter string passed to the lookup() method. To ensure platform neutrality, specify
the datasource look up string in a properties or environment file. This way, you can have one
version of the datasource name on distributed and another on z/OS. The z/OS version must
contain the java:comp/env prefix.

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 11

Class violates loader constraints

While this condition is not directly related to JNDI naming, it frequently occurs after you correct
a NameNotFoundException or NoClassDefFoundError. In this case, the container has
successfully located the reference in the JNDI namespace but it is unable to load the class
associated with the reference. The following exception is thrown and is displayed at the top of
the java exception stack in the server region’s SYSPRINT log:
java.lang.LinkageError: Class <classpath/classname> violates classloader constraints .

To solve this problem, try changing the classloader mode in the server region’s jvm.properties
file. WebSphere z/OS uses classloader mode 1 (compatibility mode). To change the mode,

1. Edit the server region’s jvm.properties file which can be found in HFS directory
WebSphere390/CB390/controlinfo/envfile/<sysplex-name>/<server-name>/.

2. Add the following line to the file:
com.ibm .ws390.server.classloadermode=n where n is value 0, 1, 2, or 3.

Note: For detailed information about WebSphere z/OS classloader modes, see the
documentation for APAR PQ53684.

Summary
This technical paper focused on JNDI naming concepts that programmers, application
assemblers, server application deployers should keep in mind when designing and deploying
J2EE applications into WebSphere z/OS servers. These concepts include:

• EJB names are specified in the deployment descriptors and these names are registered in a
JNDI namespace during J2EE application deployment.

• Datasource names can be hard coded, specified in properties files, or defined with
environmental variables. For WebSphere z/OS, datasource names must be prefixed with the
string “java:comp/env”.

• Client code, such as servlets and access beans, must obtain a reference to a server’s initial
context and then drive a lookup for an EJB or datasource on the initial context.

• To debug common JNDI naming problems on WebSphere z/OS, analyze the Java exception
stack traces that are posted in the server region’s SYSPRINT log.

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 12

References
Enterprise JavaBeans Specification, v1.1
Sun Microsystems, Inc.

WebSphere Application Server V4.0 and V4.0.1 for z/OS and OS/390
Configuring Web Applications
Donald C. Bagwell
IBM Washington Systems Center

Enterprise JavaBeans for z/OS and OS/390 WebSphere Application Server
IBM Redbook SG24-6283

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 13

Copyright IBM Corporation 2002

IBM Corporation

Marketing Communications , Server Group

Route 100

Somers, NY 10589

U.S.A.

Produced in the United States of America

03/02

All Rights Reserved

IBM, IBM logo, e-business logo, OS/390, VisualAge, WebSphere, and z/OS are trademarks or registered

trademarks of International Business Machines Corporation of the United States, other countries or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States,

other countries or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Intel is a trademark of Intel Corporation in the United States, other countries or both.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Information concerning non-IBM products was obtained from the suppliers of their products or their published

announcements. Questions on the capabilities of the non-IBM products should be addressed with the suppliers.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our

warranty terms apply.

IBM may not offer the products, services or features discussed in this document in other countries, and the

information may be subject to change without notice. Consult your local IBM business contact for information on

the product or services available in your area.

All statements regarding IBM’s future direction and intent are subject to change or withdrawal without notice, and

represent goals and objectives only.

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard

IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary

depending upon considerations such as the amount of multiprogramming in the user’s job stream, the

I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given

that an individual user will achieve throughput improvements equivalent to the performance ratios

stated here.

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 14

