
WebSphere Application Server V4.0WebSphere Application Server V4.0WebSphere Application Server V4.0WebSphere Application Server V4.0

for zOS and OS/390for zOS and OS/390for zOS and OS/390for zOS and OS/390

Configuring Web ApplicationsConfiguring Web ApplicationsConfiguring Web ApplicationsConfiguring Web Applications

IBM Washington Systems CenterIBM Washington Systems CenterIBM Washington Systems CenterIBM Washington Systems Center

Donald C. Bagwell
301-240-3016

dbagwell@us.ibm.com

This document would not have been possible without the assistance of
others in the Washington Systems Center who offered guidance, supplied
subject material and reviewed the final draft. In particular much credit
must flow to Mike Cox, who unlocked the mystery of WAS 4.0 webapps so
the rest of us could follow. In addition, John Hutchinson and Carl Wohlers
provided valuable content updates and review.

Table of Contents

30Example: jvm.properties configuration .
30Example: was.conf configuration .
30Example: httpd.envvars configuration .
30Example: httpd.conf configuration .
30Configuration .
29Background: deployment descriptor for PolicyWebApp webapp .
28Background: deployment descriptor for PolicyIVP application .
28Overview of the application .
28Example: PolicyWebApp in the PolicyIVP Application .
27Activity: validate request results in execution of desired webapp class file .
27Activity: determine if you can serve any portion of your webapp .
25Background: key error indicators found on the browser screen .
24Background: the servlet-mapping string and execution of webapp class files .
23Activity: validate that request has been mapped to WAS 4.0 runtime .
23Background: how the plugin determines if a request is to be sent to WAS 4.0 runtime
22Activity: validate that the plugin isn't trying to run the webapp locally .
22Activity: validate that your request was mapped to the plugin .
22Activity: validate that your request reached the webserver .
21Background: Basic Debugging .
20Activity: check plugin Application Dispatching Information .
19Activity: check server region SYSPRINT .
19Background: preliminary validation .
19Validation and Basic Debugging .
18Activity: restart the servers .
17Background: the role of the WAS 4.0 webserver plugin code .
16Background: WAS 4.0 serving of static files and JSPs .
15Background: the "servlet mapping" value of an application .
15Activity: defining context roots in webcontainer.conf .
14Example: "PolicyIVP" application and its "context-root" setting .
12Background: binding applications to virtual hosts .
11Activity: defining a virtual host in the webcontainer.conf file .
11Background: defining virtual hosts in the webcontainer.conf file .
10Background: the concept of virtual hosts .
9Activity: creating the webcontainer.conf file .
9Configuration .
9Overview .
9Webapps Running in WAS 4.0 Runtime and Driving EJB .
8Next Steps .
7Activity: validation and basic debugging of plugin .
7Background: configuring and running servlets in the WAS 4.0 plugin .
6Activity: configuring the WAS 4.0 plugin code .
5Overview .
5Initial Configuration of the Webserver Plugin Code .
4Question: which plugin should be used? .
4Question: will the webserver support the WAS plugin and another product's plugin?
4Question: can both plugins be configured in the same webserver? .
3Background: WAS 4.0's web container .
3Background: WAS 4.0's webserver plugin .
2Background: WAS 3.5 Standard Edition plugin .
1Background: the basics of serving out a web applications .
1Overview of Web Applications .

Configuring Web Applications in WAS 4.0

63Background: the plugin's JVM properties file .
63Advanced Webapp Topics .
61Activity: migrating web applications from plugin to WAS 4.0 runtime .
61Activity: restart webserver and validate plugin initialization .
61Activity: making certain the httpd.envvars file is correctly configured .
59Activity: changing the plugin pointers in the httpd.conf file .
59Activity: preparing a WAS 3.5 was.conf for use with WAS 4.0 plugin .
59Question: can WAS 3.5 SE was.conf file be used with WAS 4.0 plugin? .
59Activity: changing plugin from WAS 3.5 to WAS 4.0 plugin .
58Activity: configuring the WAS 3.5 plugin code to allow communication with EJB
57Step 3: migrate web applications over to WAS 4.0 web container environment .
57Step 2: configure WAS 4.0 plugin and use existing was.conf configuration file .
57Step 1: update WAS 3.5 SE to communicate with WAS 4.0 runtime .
57Background: overview of the three steps of migration .
57Migration Scenarios .
56Class file incorrect .
55Mismatch in servlet name in deployment descriptor .
53Servlet mapping string doesn't match .
53Errors related to request not resolving to web application class file .
52Plugin not connected to the WAS 4.0 runtime you think it is .
51Your application didn't bind to a virtual host .
49URL doesn't contain value that matches defined context root or virtual host .
48Plugin tries to run the code locally .
46Web container not configured in WAS 4.0 application server .
46WAS 4.0 application server not started .
45Errors related to plugin not passing request to web container .
44Service directive has error in the "exit" routine named on directive .
43Service directive has error in directory or filename of plugin code .
42Plugin not initialized .
42No Service directive coded that matches URL received .
41Errors related to request not reaching plugin .
40Browser error messages .
40Common Configuration Errors and the Symptoms Displayed .
38Activity: drive JSP directly, get GIF directly .
38Activity: drive SimpleJSPServlet code .
38Activity: start webserver and validate plugin's knowledge of new application
38Activity: update httpd.conf with Service directive .
38Activity: check SYSPRINT of server region and insure application bound to virtual host
38Activity: use SME EUI to deploy into WAS 4.0 web container .
37Activity: provide webcontainer.conf file .
37Activity: use AAT to construct an EAR file .
36Activity: JAR the directory into a WAR file .
35Activity: create web.xml file for WAR .
35Activity: download files from WAS 3.5 SE and place in the proper directories
35Activity: create WAR file directory structure on your workstation .
35Background: creating a WAR file by hand .
34Background: structure and settings for this example .
34Example: SimpleJSPServlet from WAS 3.5 Standard Edition .
32Example: Application Dispatching Information provided by plugin .
31Example: SYSPRINT of server region .
31Example: SYSOUT of webserver .
31Starting the servers .
31Example: webcontainer.conf configuration .

Configuring Web Applications in WAS 4.0

67Index .
65Activity: how to alter the polling interval used by the plugin to check for new applications
65Activity: how to alter the interval between which the plugin checks for new J2EE servers
64Activity: how to limit the number of J2EE servers with which the plugin will communicate
64Background: what the plugin wants to know from the SMS .
64Background: how the plugin communicates with the WAS 4.0 runtime .
63Activity: create custom JVM properties file for your WAS 4.0 plugin .

Configuring Web Applications in WAS 4.0

(This page intentionally left blank)

Configuring Web Applications in WAS 4.0

Overview of Web Applications
A web application is a servlet (or some number of servlets) working in conjunction with other web
files such as HTML pages, JPG/GIF image files and Java Server Page (JSP) files. A servlet is a
Java program, and the servlet requires a servlet execution environment in which to run. IBM
provides many different places in which you may run a servlet:

Web Container

WebApp

EJB Container

WebSphere V4.0 for zOS and OS/390

WAS "plugin"

WebApp

IBM OS/390 HTTP Server

zSeries Servers

WebSphere

WebApp

Windows, AIX, AS/400, Linux

IBM servlet execution environments

The message here is that anywhere IBM provides support for WebSphere Application Server, servlets
will run there. This chart doesn't show HP-UX and Solaris, but servlets can run there as well because
WebSphere Application Server is supported on those platforms.

Note:

Background: the basics of serving out a web applications

Regardless of the environment in which the webapp is running, three fundamental things must
be in place:

1. Some piece of programming code must act as the listening for HTTP requests coming in from the
network. The browsers out in the world will send their requests in using the HTTP protocol, and this
"HTTP Listener" must be active to catch the request.

For the zSeries platform, that HTTP listener is the IBM HTTP Server.

2. The HTTP listener's configuration must be set so that requests for servlets are recognized as such.
This allows the HTTP listener to pass the request over to the servlet execution environment.
Requests coming in from browsers may be for many different things: HTML pages, image files, or
requests for programs (such as servlets) to be run. This ability to determine the nature of the request
and properly act on it is critical.

For the IBM HTTP Server, the file in which this ability to determine the nature of the requests is the
httpd.conf file. The configuration statement in that file that directs requests for servlets over to the
servlet environment is the Service statement.

3. The servlet execution environment's configuration must be set to allow that environment to figure out
what is being requested by the sender of the request. The servlet environment may have dozens or
hundreds of servlets it knows about. Which one is being asked for? Further, web applications consist
of not just servlets, but static files such as HTML and image files. The servlet environment is capable
of simply sending them out as well. Is that what is being requested?

The configuration file settings for this function differs depending on whether the web application is
running in the "WAS plugin" of the HTTP Server, or in the "Web Container" of the WAS 4.0 runtime.
This subject will be explored in depth in this document.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 1 -© 2001, IBM Corporation, Wash. Systems Center

Understanding these three basic functions of serving out web applications helps when trying to
understand all the configuration files and statements that will be discussed in this document.
These three functions are represented in the following picture:

Browser Network

HTTP Server

Listen for
Requests

Determine
Nature of
Request

Servlet Environment

httpd.conf

Figure out what the
request is asking for

zSeries

1 2 3

The configuration settings in
support of this function will be
covered in more depth throughout
this document

Three basic functions involved with serving out a web application

Background: WAS 3.5 Standard Edition plugin

Prior to the introduction of WebSphere V4.0 for zOS, servlets on the zSeries platform were run
in the WAS 3.5 Standard Edition product, which is a "plugin" to the HTTP Server. It is called a
"plugin" because the code runs inside the webserver's address space and makes use of a
programming interface provided by the webserver. Therefore, it is said to "plug in" to the
webserver:

HTTP Server

Webserver's Programming
Interface

WebSphere V3.5
Standard Edition

HTTP Server's
address space

WAS plugin runs
inside webserver's
address space

The WAS "plugin" to the HTTP Server

The WAS 3.5 Standard Edition environment still exists. It is possible for servlets running in this
environment can talk to EJBs running in the WAS 4.0 EJB environment:

EJB

EJB Container

WebSphere V4.0 for zOS and OS/390

WAS 3.5 SE

WebApp

IBM OS/390 HTTP Server

zSeries Servers

Webapp in WAS 3.5 plugin talking to EJB in WAS 4.0 runtime

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 2 -© 2001, IBM Corporation, Wash. Systems Center

Background: WAS 4.0's webserver plugin

The WAS 4.0 product ships with a module that on the surface looks and feels just like the WAS
3.5 SE plugin. It too can run inside the webserver's address space, and servlets can run inside
of it:

EJB

EJB Container

WebSphere V4.0 for zOS and OS/390

WAS 4.0 Plugin

WebApp

IBM OS/390 HTTP Server

zSeries Servers

Webapp in new WAS 4.0 plugin talking to EJB in WAS 4.0 runtime

The servlet execution environment provided by the new WAS 4.0 plugin is pretty much equal to
that provided by WAS 3.5 SE. In fact, the WAS 3.5 SE code is wrapped up inside the new
WAS 4.0 plugin.

But the new WAS 4.0 plugin has a feature the older WAS 3.5 SE plugin doesn't have: the
ability to understand what webapps are deployed in the WAS 4.0 runtime's "web container" and
to route requests over to web container:

Web Container

WebApp

EJB Container

WebSphere V4.0 for zOS and OS/390

WAS 4.0 plugin

IBM OS/390 HTTP Server

zSeries Servers

EJB
Pass request
over to WAS
4.0 runtime

WAS 4.0 plugin acting as request router to webapp running in WAS 4.0 runtime

The WAS 4.0 plugin in this scenario acts as a traffic cop of sorts, routing the requests over to
the environment where the servlet will run. This scenario is the primary focus of this document.
The configuration steps necessary to do this is provided starting with "Webapps Running in
WAS 4.0 Runtime and Driving EJB" on page 9.

Background: WAS 4.0's web container

As described earlier, the new WAS 4.0 plugin code has the ability to route requests for webapp
execution over to the WAS 4.0 runtime. The picture showed something called a "web
container," and it was in that box that the webapp was represented.

A web container is a logical software structure within the coding of the WAS 4.0 product. The
WAS 4.0 runtime has another type of container as well: an "EJB Container." Their mission in
life is to provide a place in which the two types of applications -- webapps or EJBs -- will run.

This primary configuration file for the web container is called webcontainer.conf. That file
and its contents are covered in "Webapps Running in WAS 4.0 Runtime and Driving EJB" on
page 9.

For a webapp to run in the web container of the WAS 4.0 runtime, you must have the WAS 4.0
plugin configured in the HTTP Server.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 3 -© 2001, IBM Corporation, Wash. Systems Center

Question: can both plugins be configured in the same webserver?

No. The plugins will conflict with one another if they are configured within the same webserver.
If you have a need for both plugins to be active, you must provide separate webservers: one for
each plugin:

IBM HTTP Server

Plugin Plugin

3.5 4.0

This configuration is not
supported. The two WAS

plugins in the same
webserver will conflict.

IBM HTTP Server

Plugin

3.5

IBM HTTP Server

Plugin

4.0

This is acceptable. Each webserver has
only one WAS plugin configured.

WAS 3.5 and WAS 4.0 plugin cannot coexist in the same webserver

Question: will the webserver support the WAS plugin and another product's plugin?

Most likely. There's nothing about the webserver's API architecture that prohibits multiple
plugins from coexisting in the same address space. The restriction applies only to attempting to
have the WAS 3.5 and the WAS 4.0 plugin running concurrently.

Question: which plugin should be used?

This depends on what you wish to do. The following diagram summarizes the options:

Web Container EJB ContainerPlugin

HTTP Server WAS 4.0 Runtime

Webapp EJB

Web Container EJB ContainerPlugin

HTTP Server WAS 4.0 Runtime

Webapp EJB

You must use WAS 4.0 plugin
for this environment.

Either WAS 3.5 or WAS 4.0
plugin may be use. See below:

If you already have a WAS 3.5 SE environment and you
wish to preserve that environment during migration

If you're setting up a new environment, and migration
issues are not part of the consideration

WAS 3.5 Plugin

WAS 4.0 Plugin

If you already have a WAS 3.5 SE environment but you
wish to move your servlets over to WAS 4.0 plugin

WAS 4.0 Plugin

Summary of which plugin you should use

If you wish to deploy webapps into the WAS 4.0 web container, the decision becomes simple:
you must use the new WAS 4.0 plugin. If your desire is to run the webapp in the plugin
environment, the general rule of thumb is to use the new WAS 4.0 plugin unless you wish to
maintain your existing WAS 3.5 plugin for migration purposes.

You'll see in "Activity: preparing a WAS 3.5 was.conf for use with WAS 4.0 plugin" on page 59
that the new WAS 4.0 plugin will happily use a WAS 3.5 plugin configuration file, so migrating
to the new plugin is fairly easy.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 4 -© 2001, IBM Corporation, Wash. Systems Center

Initial Configuration of the Webserver Plugin Code
Overview

As stated earlier, the WebSphere Application Server plugin code executes within the address
space of the HTTP Server. That is true whether the plugin is the WAS 3.5 SE plugin, or the
newer WAS 4.0 plugin.

The plugin's configuration file is called was.conf. The webserver knows to load the plugin and
use a particular copy of was.conf based on the second parameter found on the ServerInit
statement coded in the webserver's httpd.conf file

WAS Plugin Code

HTTP Server

httpd.conf

httpd.envvars

was.conf

ServerInit <pointer to plugin code> parameter1,parameter2
Service <URL template> <pointer to plugin code>
ServerTerm <pointer to plugin code>

Second parameter points
to configuration file that

will be used

Relationship between HTTP Server's configuration files and plugin's configuration file

Here's what each plugin statement does:

This statement is used to bring the plugin down in an orderly fashion when the webserver
is stopped. This statement simply points to the plugin executable module and code exit
used to shut down the plugin gracefully.

You will have only one ServerTerm statement in your httpd.conf file.

ServerTerm

This statement is used to map URLs received by the webserver over to the plugin for
execution. If the URL received matches the "URL template" named on the Service
statement, the webserver will take the URL and pass it to the plugin executable module
and code exit specified on the statement. If you want a URL to execute a servlet, you
must have a Service statement that'll catch the URL and "throw it over the wall" into the
plugin.

You will have between one and many Service statements in your httpd.conf file,
depending on how many different URLs you wish to define that'll map over to the WAS
plugin environment.

Service

This statement is used to tell the webserver to initialize the plugin code when the
webserver is in the act of coming up. The ServerInit statement points to the plugin's
executable module and the code exit to invoke to intialize the plugin. This statement has
two parameters: the first names the HFS install root of the WAS product, and the second
parameter points to the configuration file to be used by the plugin.

You will have only one ServerInit statement in your httpd.conf file.

ServerInit

The exact syntax of each statement is provided in "Activity: configuring the WAS 4.0 plugin
code" on page 6.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 5 -© 2001, IBM Corporation, Wash. Systems Center

Activity: configuring the WAS 4.0 plugin code

Any given webserver may have either the WAS 4.0 plugin configured, or the WAS
3.5 plugin configured, but not both at the same time! See "Question: can both
plugins be configured in the same webserver?" on page 4.

Very Important Note:

Do the following:

! Copy the supplied sample was.conf file from the following directory:

/WAS 4.0 Install Root/WebServerPlugIn/properties

to the directory in which the httpd.conf file resides.

If you're wondering if you can use your existing WAS 3.5 SE was.conf with the new WAS 4.0
plugin, the answer is "yes." How this is done, and other migration related topics, is provided in
"Migration Scenarios" on page 57.

Note:

! Edit the file httpd.conf and locate the following string starting in column 1:
Service /servlet/* /usr/lpp/WebSphere/AppServer/lib/libadpter.so:AdapterService

Comment out this line. It is leftover from the days of WAS 1.2 and will cause confusion if
any URL comes in that maps to the /servlet/* mask on the Service statement.

! Immediately following the line you just commented out, add the following:

The directory "WebServerPlugIn" has a capital "I" for "In" at the very end. It is very easy to not
see that and type that with a lowercase. Making a tiny mistake like that does matter. Be very
careful with your typing.

Note:

ServerInit /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:init_exit

/usr/lpp/WebSphere,/etc/was.conf

Service /webapp/examples/* /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit

ServerTerm /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:term_exit

Example of WAS 4.0
install root

The entire
ServerInit on
one line

One blank space
separates statement
from parameters Second parameter

points to location of
was.conf file

(see note below)

Note: the first parameter on the ServerInit is
the install root of WebSphere. This example
is showing that as /usr/lpp/WebSphere

Statements added to httpd.conf to support WAS 4.0 plugin initialization

The Service statement provides the "basic function" #2 from "Background: the basics of serving
out a web applications" on page 1.

Note:

! Edit your httpd.envvars file and add the following:

JAVA_HOME=/usr/lpp/java2/J1.3

or wherever the Java 1.3 JDK is installed on your system.

! Stay in your httpd.envvars and add the following to the NLSPATH variable:

/usr/lpp/WebSphere/WebServerPlugIn/msg/%L/%N

or whatever your WAS 4.0 install root happens to be.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 6 -© 2001, IBM Corporation, Wash. Systems Center

! Add the following two variables to httpd.envvars:

RESOLVE_IPNAME=<fully qualified IP host name of server on which WAS 4.0 SMS exists>
RESOLVE_PORT=900 (or port on which WAS 4.0 SMS server is listening if not default)

If your HTTP Server (and therefore the plugin as well) is on the same system as your WAS 4.0
runtime, and you configured the SMS server to use the default port value of 900, you don't
need these two values. But coding them is relatively easy, and it avoids confusion. So go
ahead and code these even though strictly speaking they're not always necessary.

Note:

! Now go to "Activity: validation and basic debugging of plugin" on page 7 for how to validate
the plugin initializes properly.

Background: configuring and running servlets in the WAS 4.0 plugin

The WAS 4.0 plugin has imbedded within it the WAS 3.5 Standard Edition execution
environment. That means the WAS 4.0 plugin is capable of running web applications just like
WAS 3.5 Standard Edition was. The process of configuring the deployedwebapp and
webapp statements inside the was.conf file is exactly the same as with WAS 3.5 SE.

The subject of configuring web applications for execution in the plugin is covered in the IBM
document GC34-4835, "WebSphere Application Server Standard Edition, Planning, Installing
and Using."

If the servlet you are deploying will drive an EJB in the WAS 4.0 runtime, the servlet will locate
the EJB with the aid of the RESOLVE_IPNAME and RESOLVE_PORT settings in the
httpd.envvars file. The WAS 4.0 plugin is able to locate the WAS naming service "initial
context factory" because its been coded to know where that's located. The WAS 3.5 plugin, by
contrast, must be told where that resides.

Activity: validation and basic debugging of plugin

These instruction apply to both the WAS 3.5 plugin as well as the WAS 4.0 pluginNote:

! Start the webserver.

! Now browse the SYSOUT of the BBOWEB started task and find the following string:

:-)

Yes, that's a "smiley face", and that's an indication that the plugin initialized okay. The
plugin sometimes takes a few moments to initialize, and may not be up even though the
webserver is operational. Give it a few moments and try again if you don't see it initially.

If you still can't find the "smiley" face, search on the "frowny face" :-(. The webserver will
throw that message if something prevented the plugin from initializing. Common causes for
plugin initialization failure:

" JAVA_HOME variable in httpd.envvars not set correctly.

" Mistyped directory or file name on ServerInit statement in httpd.conf. Check for
case problems.

" Second parameter on ServerInit statement points to was.conf file and/or directory
that does not exist.

! Once you've verified the smiley face, issue the following URL from your browser:

http://<host>/webapp/examples/index.html

You should see a screen that looks something like this:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 7 -© 2001, IBM Corporation, Wash. Systems Center

Initial screen for "webapp/examples" that validates basic operation of plugin code

If you receive this, it is an indication that your URL was successfully mapped over to the
WAS 4.0 plugin using the Service statements in httpd.conf. You have successfully
invoked the plugin's function to serve out the static page you see above.

Next Steps

By achieving the smiley face you have taken the first step towards establishing your webapp
environment. But you have not invoked any webapps and no EJBs are yet in the picture.

Proceed to "Webapps Running in WAS 4.0 Runtime and Driving EJB" on page 9.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 8 -© 2001, IBM Corporation, Wash. Systems Center

Webapps Running in WAS 4.0 Runtime and Driving EJB
Overview

This is the scenario that is the focal point of this document. The web application is deployed
into the web container of the WAS 4.0 runtime. The WAS 4.0 plugin is configured into the
HTTP Server, and requests received by the webserver are routed over to the web container for
webapp execution:

Web Container

WebApp

EJB Container

WebSphere V4.0 for zOS and OS/390

WAS 4.0 plugin

IBM OS/390 HTTP Server

zSeries Servers

EJB
Pass request
over to WAS
4.0 runtime

WAS 4.0 plugin acting as request router to webapp running in WAS 4.0 runtime

To illustrate this, the "PolicyIVP" sample application shipped with the WAS 4.0 product will
serve as application. That sample application has an EJB environment (consisting of one
session bean and two entity beans) as well as a webapp.

Configuration

Activity: creating the webcontainer.conf file

The web container utilizes a file called webcontainer.conf to hold configuration
information for the container. The server instance knows what file to use for this purpose by
reading the contents of the jvm.properties file and looking for a pointer to the container
configuration file:

/WebSphere390/CB390/controlinfo/envfile/WSLPLEX/BBOASR2A1/

current.env

jvm.properties

webcontainer.conf

com.ibm.ws390.wc.config.filename=

/WebSphere390/CB390/controlinfo/envfile/WSLPLEX/BBOASR2A1/webcontainer.conf

Server instance private directory (example)

How the server instance knows what web container configuration file to use

Do the following:

! Determine the private directory of your server instance. This is where the
current.env and jvm.properties files resides. This is also where you will copy
the sample webcontainer.conf file. Write down the location of that private directory:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 9 -© 2001, IBM Corporation, Wash. Systems Center

! Copy the sample webcontainer.conf file from the following location to the private
directory of your server instance:

/Server Instance Private Directory/webcontainer.confTo:

/WAS 4.0 install root/bin/webcontainer.confFrom:

! Edit the jvm.properties file in your server instance's private directory and add the
following line (all on one line), which points to the new webcontainer.conf file in your
server instance's private directory:

com.ibm.ws390.wc.config.filename=/private directory/webcontainer.conf

! Make certain that webcontainer.conf file has permissions of at least 644 and is
owned by the same userid which owns the current.env file (should be CBSYMSR1).

There are many configuration statements in the webcontainer.conf file, but only two
that you must modify to make it work:

host.default_host.alias=

host.default_host.contextroots=

Both relate to the concept of "virtual hosts," which is discussed next.

Background: the concept of virtual hosts

The HTTP Server has for some time now had the ability to handle URLs with different host
names. This allows you to host multiple host domains on the same webserver. This
functional concept has been included in the WAS 4.0 runtime's web container environment
as well.

Imagine a scenario where you are asked to put up a web application environment for three
different divisions of a company, each with its own host name. You are told to do it all on
one server:

http://fire.state.md.us

http://taxes.state.md.us

http://police.state.md.us

9.80.90.100 fire.state.md.us
9.80.90.100 taxes.state.md.us
9.80.90.100 police.state.md.us

DNS

WAS 4.0Based on DNS
entries, all

requests hit the
same server:
9.80.90.100

One webserver hosting three different host domains

Further, you are told to make certain that anyone coming in with host name
fire.state.md.us has access only to those applications for the Fire Department, and
the same for the Police Department and the Department of Taxation.

The web container support of WAS 4.0 for zOS and OS/390 is quite capable of handling
this. Doing so involves first defining virtual hosts in your webcontainer.conf file, and
then indicating which applications are associated (or "bound") to which virtual host.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 10 -© 2001, IBM Corporation, Wash. Systems Center

Background: defining virtual hosts in the webcontainer.conf file

A virtual host is defined in the webcontainer.conf file by providing that host name on a
host.<name>.alias= statement:

host.fire.alias=fire.state.md.us
host.taxes.alias=taxes.state.md.us
host.police.alias=police.state.md.us

The actual host name ...

... and the associated
alias for that host name

webcontainer.conf

Configuring virtual host aliases in webcontainer.conf

After the virtual hosts have been defined, another definition in the webcontainer.conf
file will be used to "bind" applications to a given virtual host. With an application bound to a
virtual host, only URLs coming in with the IP host name connected to the virtual host will be
allowed to execute the application. More on that subject in "Background: binding
applications to virtual hosts" on page 12.

The first question that comes to mind for most people is, "What if I am hosting only one host
name on my server?" You will still need to code a host alias. You can take advantage of
the "default host alias definition that's in the sample webcontainer.conf file:

host.default_host.alias=<your server host name>[:port]

The port number is required only
if your webserver is listening on
something other than default 80

Default host-alias
statement has name of

default_host

webcontainer.conf

See note!

One virtual host alias defined using default host alias in sample webcontainer.conf

The webapp support of WAS 4.0 had a problem initially when the default port 80 was used. At
the time of this writing a temporary fix was available, with an official APAR in the pipeline. Your
copy of WAS 4.0 may not have that fix. So if you're in test mode and things don't work with the
default HTTP listen port of 80, change the Port directive in your httpd.conf file to
something like 8080 and then code the 8080 in the webcontainer.conf file's virtual host
alias statement and try again.

Note:

Activity: defining a virtual host in the webcontainer.conf file

You must have at least one host.<name>.alias= statement defined in your
webcontainer.conf

Note:

Do the following:

! Edit your copy of webcontainer.conf, locate the host.default_host.alias=
statement and provide the host name that will be used by browsers to reach your
webserver. Include a port designation if the webserver is listening on something other
than port 80.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 11 -© 2001, IBM Corporation, Wash. Systems Center

A single virtual host using the sample default_host name. The webserver is
listening on port 8080, so the port designation :8080 is provided on the virtual host
definition.

host.default_host.alias=wsc4.washington.ibm.com:8080Example:

Using a <name> value of default_host and a single virtual host with IP host name of
wsc4.washington.ibm.com. Webserver is listening on default port 80, so no port
designation provided.

host.default_host.alias=wsc4.washington.ibm.comExample:

! If you have more than one virtual host to define, copy the default_host alias
definition to another line and change the value default_host to something else (any
string is acceptable) and code your other host name on the new statement. Do this for
as many different virtual hosts as you wish to define.

Three virtual hosts defined, each with a unique <name> value. The webserver is
listening on default port 80, so no port designation is provided.

host.taxes.alias=taxes.state.md.us
host.police.alias=police.state.md.us
host.fire.alias=fire.state.md.us

Example:

You should code your virtual host values in the webcontainer.conf file in lowercase. It
appears the URL received from the browser is folded into lower-case and then compared
against the value found in webcontainer.conf. If your virtual host IP name is coded in
uppercase in webcontainer.conf, your request may not be honored..

Note:

The webapp support of WAS 4.0 had a problem initially when the default port 80 was used. At
the time of this writing a temporary fix was available, with an official APAR in the pipeline. Your
copy of WAS 4.0 may not have that fix. So if you're in test mode and things don't work with the
default HTTP listen port of 80, change the Port directive in your httpd.conf file to
something like 8080 and then code the 8080 in the webcontainer.conf file's virtual host
alias statement and try again.

Note:

Background: binding applications to virtual hosts

When a web application is deployed into a WAS 4.0 web container, one of the properties
set for the webapp is a "context root." This is a string of text that will be matched up against
the received URL to determine which web application is being requested. For those familiar
with the WAS 3.5 Standard Edition environment, a "context root" is analogous to the
"rooturi" value:

http://fire.state.md.us/safety/home.jsp

Webapp
Context Root:
/income

Webapp
Context Root:
/crime

Webapp
Context Root:
/safety

Webapp
Context Root:
/events

Web Applications Deployed into WAS 4.0 Runtime Server

WAS knows URL is
intended for a webapp
based on match with
"context root"

Context roots are
defined at the time of
application assembly
(using AAT tool)

Context roots are used to associate received URL with an application

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 12 -© 2001, IBM Corporation, Wash. Systems Center

The picture above illustrates how a URL is associated with a webapp, but it does not show
how the application is bound to a virtual host. That is done by making a match between the
"context root" value set for the webapp and the values found on the following property in the
webcontainer.conf file:

host.<virtual_host_alias_name>.contextroots=

If the "context root" as set in the deployment descriptor of the application matches the value
found on the contextroots= statement in the webcontainer.conf file, then that
application is bound to the virtual host named on that statement:

host.fire.alias=fire.state.md.us
host.police.alias=police.state.md.us
host.taxes.alias=taxes.state.md.us
:
:

host.fire.contextroots=/safety
host.police.contextroots=/crime, /events
host.taxes.contextroots=/income

Webapp
Context Root:
/income

Webapp
Context Root:
/crime

Webapp
Context Root:
/safety

Webapp
Context Root:
/events

1

2
3

4

URLs with host name fire.state.md.us will be allowed to invoke
application /safety, but URLs with "police" or "taxes" will not.
/safety application is "bound" to virtual host fire.state.md.us

Context root match and the binding of application to virtual host

This picture shows a few things you should note:

" Multiple host.<name>.alias= properties are allowed in the webcontainer.conf
file

" Multiple host.<name>.contextroots= properties are allowed in the
webcontainer.conf

" Defining more than one string per host.<name>.contextroots= property is allowed

What's not being shown in that picture is something that'll simplify this whole "virtual host"
and "context root" issue quite a bit: a single slash on the host.<name>.contextroots=
property will allow all web applications to bind to that virtual host:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 13 -© 2001, IBM Corporation, Wash. Systems Center

host.default_host.alias=www.yourhost.com
:

host.default_host.contextroots=/

Webapp
Context Root:
/income

Webapp
Context Root:
/crime

Webapp
Context Root:
/safety

Webapp
Context Root:
/events

The alias "default_host" is
what you'll find in the supplied
sample webcontainer.conf

All applications
will match this
single slash

All applications will be bound to this
virtual host. If you only have one

virtual host, this works perfectly well

The "catch-all" contextroots value allows all webapps to bind to it

Using the "catch-all" single slash is the best way to start. If your plans do not call for having
multiple IP hosts serviced by your one server, this works well.

The comments within the supplied sample webcontainer.conf provide examples of the different
ways you can code the contextroots= strings. In addition to the explicit coding and
"catch-all" coding shown here, you may also code wildcards. Having all three of those in a
webcontainer.conf introduces questions about what happens when multiple
contextroots= values match a webapp. In short, the order of precedence is: 1) exact
match takes first precedence, 2) wildcard match takes second and 3) "catch-all" slash takes
last.

Please do not code the same contextroots= values for two different virtual hosts. The
results are somewhat unpredictable.

Note:

Example: "PolicyIVP" application and its "context-root" setting

The WAS 4.0 product comes with a sample application that can be used to verify the
environment. This application is commonly known as the "PolicyIVP" application, and it is
supplied as a fully-assembled "EAR" file in the following location:

/usr/lpp/WebSphere/samples/PolicyIVP/ejb/PolicyIVP.ear

If you were to download that EAR file to your workstation and use a product like WinZIP to
open the file, you'd see, among other things, a file called application.xml. That is the
"deployment descriptor" for the assembled application, and was created by the assembly
tool (AAT). View the contents of application.xml and you'll find the following:

<web>
<web-uri>PolicyWebApp.war</web-uri>
<context-root>/PolicyIVP</context-root>
</web>

When the WAS 4.0 server starts it'll read in the deployment descriptors of all the
applications deployed into the server, and it'll see that <context-root> value for
PolicyIVP application.

That sets the "context root" for the application. All that's left is to provide a
host.<name>.contextroots= property in the webcontainer.conf file to allow this
application to bind to a virtual host. The easiest, as just described, would be:

host.default_host.contextroots=/

But you could also use:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 14 -© 2001, IBM Corporation, Wash. Systems Center

host.default_host.contextroots=/PolicyIVP

However, an explicit coding like this would allow only the PolicyIVP application to be bound
to the "default_host" virtual host alias. If that's the only application in the server, then it is
acceptable. However, if another application came along -- let's assume with a context root
of /Sample1 -- you would need to add that context root to the property:

host.default_host.contextroots=/PolicyIVP, /Sample1

Multiple values are allowed on the statement. With only one virtual host defined, however, it
makes things quite a bit easier to code just the single slash and allow all applications to
map to it.

Activity: defining context roots in webcontainer.conf

Back in "Activity: defining a virtual host in the webcontainer.conf file" on page 11 you
defined the virtual host in the webcontainer.conf file. Now do the following:

! Edit the webcontainer.conf file. Locate the property
host.default_host.contextroots= near the bottom of the file.

! Add a single slash to the statement:

host.default_host.contextroots=/

The name "default_host" in this example is what's provided in the sample
webcontainer.conf file. You may continue to use that value, or provide one of your
own. The key is having the value you choose be equal on both the contextroots=
property and the alias= statement to which you wish the webapp to bind. Case matters,
so type carefully.

Note:

! Save the file

Background: the "servlet mapping" value of an application

With an application successfully bound to a virtual host with the "context root" setting in both
the application.xml file and the webcontainer.conf file, the final piece of the puzzle
is the setting that connects the URL to a specific servlet to execute. A given "context root"
such as /PolicyIVP only gets you to the proper web container; something called the
servlet mapping is what relates the URL to the specific servlet.

The servlet mapping value is something set at the time the web application is developed. It
is not something you configure into your webcontainer.conf file or any other
configuration file related to the WAS 4.0 server or the plugin. The servlet mapping string for
a servlet is contained in the deployment descriptor for the webapp, which is a file called
web.xml and is part of the WAR file:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 15 -© 2001, IBM Corporation, Wash. Systems Center

/(base or root)

HTML, GIF/JPG and JSP files

/META-INF

MANIFEST.MF

/theme

Master.css

/WEB-INF

web.xml

/classes

/lib

WAR
File

:
<servlet-mapping>
<servlet-name>Was40Ivp</servlet-name>
<url-pattern>/PolicyServlet</url-pattern>

</servlet-mapping>
:

This is the basic directory structure of a
WAR file, which is a ZIP-format file used
to hold webapps.

The web.xml file is the "deployment
descriptor" for the webapp.

The <url-pattern> tag defines the
servlet mapping string for the servlet.

Servlet mapping string inside webapp's deployment descriptor

In this example the string /PolicyServlet is the servlet mapping string. What that
means is that the URL to invoke this application is the following:

http://www.your_host.com/PolicyIVP/PolicyServlet

The "context root" value
The "servlet mapping" value

URL to invoke PolicyIVP's servlet

The context root (/PolicyIVP) gets you to the proper web container; the servlet mapping
(/PolicyServlet) gets you to the proper class file for the servlet code to run. If you go
back to "Background: the basics of serving out a web applications" on page 1, this provides
the "basic function" tagged with #3 in the diagram.

The servlet mapping is part of the webapp development and not something you code into
the webcontainer.conf file or specify at the time of application assembly with the AAT
tool.

Background: WAS 4.0 serving of static files and JSPs

A web application may consist of files other than servlets, such as JPG/GIF image files,
HTML files and JSP pages. WAS will happily serve those files out as long as it can figure
out that the URL request is for that kind of file. Here's how WAS figures that out:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 16 -© 2001, IBM Corporation, Wash. Systems Center

Match on "servlet
mapping"?

Attempt to
invoke servlet

URL ends with
"jsp"?

Attempt to
invoke JSP

Assume request
is for static file

Yes

Yes

No

No

Process by which WAS determines if request is for servlet vs. JSP vs. file

Notice what happens: if the URL does not match on a "servlet mapping" known to the web
container, WAS will work down through its logic and default to considering the request to be
for a static file. Requsts for static files are served by a built in function of WAS known as
the "SimpleFileServlet."

This is important because you may very well encounter a problem were the servlet mapping
string in the web.xml file isn't what you enter on the URL. When that happens, you see
problem as described in "Servlet mapping string doesn't match" on page 53.

Background: the role of the WAS 4.0 webserver plugin code

The WAS 4.0 plugin code is a requirement to running a webapp in the web container
environment of the WAS 4.0 runtime. This is because the WAS 4.0 runtime does not at the
present time have an HTTP listener, so the webserver has to serve that role. The WAS 4.0
plugin provides an environment to which the webserver can pass a request for webapp
execution. The WAS 4.0 plugin then routes the request over to the WAS 4.0 runtime web
container for application execution:

Webapp EJBRouting
Function

HTTP
Listener

HTTP Server WAS 4.0 Runtime

WAS 4.0 plugin Web Container EJB Container

WAS 4.0 plugin routing request over to the WAS 4.0 runtime web container

But what tells the WAS 4.0 plugin whether to run the webapp locally or route the request
over to the WAS 4.0 runtime? It depends on the definitions in the local was.conf file used
by the plugin. If the plugin finds a deployedwebapp.<name>.rooturi= statement
whose value matches the received URL, it'll try running the webapp locally. If it can't find a
definition for the requested application in the was.conf file, it'll route the request over to
the WAS 4.0 runtime. The following flowchart illustrates the logic of this:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 17 -© 2001, IBM Corporation, Wash. Systems Center

URL map to
Service

statement?

Other webserver
processing, such
as Pass directive

Run servlet in the
plugin

Pass request
over to WAS 4.0
web container

Yes

No

Yes

No

httpd.conf

Hit on rooturi=
value in
was.conf?

was.conf

Logic employed to determine where to run the web application requested

Truth is the WAS 4.0 plugin is a bit smarter than this. It maintains communication with the
WAS 4.0 runtime to know what applications are bound to what virtual hosts. If the requested
application isn't defined in the was.conf and isn't bound to a virtual host over in the web
container environment, the plugin will issue out an error message on behalf of the WAS 4.0
runtime. It won't route requests over to the WAS 4.0 runtime it knows isn't defined over there.
See "Activity: check plugin Application Dispatching Information" on page 20 to read how to
determine what applications the plugin knows about. See also "Advanced Webapp Topics" on
page 63 for information on changing the behavior of this "communication" conducted by the
plugin.

Note:

Activity: restart the servers

Do the following to refresh your environment:

! Stop the application server instance. This is necessary to pick up the changes to the
jvm.properties file and its pointer to the new webcontainer.conf file.

! Stop the webserver. This is not strictly required if you have restarted it after making the
changes to the httpd.conf and httpd.envvars detailed in "Initial Configuration of
the Webserver Plugin Code" on page 5, but it doesn't hurt to do it again here "just to be
sure."

! Restart the webserver and restart the application server instance.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 18 -© 2001, IBM Corporation, Wash. Systems Center

Validation and Basic Debugging
The most basic form of validation is to point your browser at the webserver and issue the URL used
to invoke the application. But there are a few things you can do before that to insure success, and
there's a methodology used afterwards when things don't work.

Background: preliminary validation

The following two "activities" help you determine if things are in proper working order prior to
issuing a URL against the system. There's no point in testing it if a fundamental piece of the
puzzle is broken.

Activity: check server region SYSPRINT

The SYSPRINT of the application server region (not the control region) has two pieces of
key information that'll tell you if things are working okay:

" An indication of what webcontainer.conf file is in use

If the server can't locate the webcontainer.conf you pointed to in the
jvm.properties file, it'll take the default webcontainer.conf file located in the
/usr/lpp/WebSphere/bin directory. If that happens, your virtual host won't be
defined and things won't work. The server can fail to find your webcontainer.conf
file with something as small as a typo in the long directory pointing to the private
directory of the server.

Why you
should
care:

" An indication of what applications are bound to what virtual hosts

If for whatever reason the application you deployed didn't get bound to a virtual host,
your request to run the application will fail. Failure to bind to a virtual host can occur if
the string you provide on the host.<name>.contextroots= property doesn't match
the <context-root> setting in the deployment descriptor for the application. If you
code the single slash, this problem isn't likely to occur. But an explicit coding of the
contextroots= property might lead to a mismatch.

Why you
should
care:

Do the following:

! Check the SYSPRINT of the server region. Near the top you'll find the following
statement:

Web Container:Configuration File Name: <directory and file name of config file>

The key is to make certain the directory and file name is what you specified in the
jvm.properties file. A minor typo will result in the server not finding your file. That'll
result in the server taking the default in the /usr/lpp/WebSphere/bin directory.

! If the "Web Container Configuration File Name" doesn't point to your
webcontainer.conf, then go back and check your jvm.properties file and make
certain your pointer is exactly correct.

! Now look further down in SYSPRINT and locate the following string:

VirtualHost Web Application Context Root Bindings:

/

You'll find a separate block of information for each "context root binding" in the
webcontainer.conf file. If you coded just the single forward slash, then you'll see only
one such block of information. More "context root bindings" will result in more blocks of
information presented in the SYSPRINT.

Note:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 19 -© 2001, IBM Corporation, Wash. Systems Center

! Now scroll down just a bit within the block of information for the "context root binding"
(the single slash in this example) and look for the following:

VirtualHost Bound Web Applications:
Web Application Context Root: /PolicyIVP

This indicates which applications matched the "context root binding" value. In this
example, the application with a context root of /PolicyIVP has matched the single
slash.

So far, so good. But now you must make sure the application is bound to the virtual
host you intended.

! Scroll down a bit further and look for the following:

VirtualHost Alias List:
wsc4.washington.ibm.com:8080

This indicates the virtual host, as defined on the host.<name>alias= property in the
webcontainer.conf file, to which the application has been bound. Make certain this
is the virtual host you intended.

Activity: check plugin Application Dispatching Information

The WAS 4.0 plugin provides a program that will tell you what applications it sees bound to
virtual hosts over in the WAS 4.0 runtime. This is a very handy way to verify that your
plugin sees things the way you intended them to be.

Do the following:

! With the webserver and application server up and running, point your browser to:

http://<your host>/webapp/examples/index.html

That'll bring up a screen that looks like this:

The "webapp examples" primary screen

Receiving the screen shown above is a good way to validate that the plugin is working, but
it does not in itself mean the web container configuration information is correct. But
continue, and the information you'll find supplied by this "Examples" application will provide
further validation.

Note:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 20 -© 2001, IBM Corporation, Wash. Systems Center

! Click on the "Show server configuration" link and when the next screen comes up, scroll
down and find the heading "Application Dispatching Information." Click on that link.
That'll bring up a screen that looks like this:

The virtual
host value

The context
root value

The JDNI name of
the webapp's home

interface

"Application Dispatching Information" screen

The appearance of your virtual host and your context root indicates the plugin has
knowledge of your deployed application over in the WAS 4.0 runtime environment. If
you see only the two "localhost" values, things aren't working right.

The linkage between the plugin and the WAS 4.0 runtime is not instantaneous. If you just
started your server region it may take a few moments (15 to 45 seconds sometimes) for
the information about what webapps are in the web container to work its way over to the
plugin. If you don't see your webapp immediately, give it a minute or so and hit the
"refresh" on the screen.

Note:

Background: Basic Debugging

When something goes wrong (and something always goes wrong), there's a way you can
methodically walk through the system and determine what's failing (or at least determine what's
not failing). The following picture illustrates this methodology:

WAS 4.0 Plugin

HTTP Server

Application Server

WAS 4.0 Runtime

Web Container EJB Container

Webapp1 2 4

53

1.Did your request reach the webserver?

2.Did your request get mapped to the WAS 4.0 plugin?

3.Did the plugin try to execute your request locally, or route it to WAS 4.0?

4.Did your request get routed over to the web container?

5.Are you able to drive any portion of your webapp?

Basic debugging methodology

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 21 -© 2001, IBM Corporation, Wash. Systems Center

Activity: validate that your request reached the webserver

Typing a URL at the browser and hitting "enter" doesn't guarantee the request will hit the
server you think it will. There best way to validate your request is getting to your server is to
start the "vv" trace and see if your request is recognized by the webserver.

For example, a URL of:

http://<your_host>[:port]/webapp/examples/index.html

will show up in the "vv" trace as:

Client sez.. GET /webapp/examples/index.html HTTP/1.0

That validates that your request hit your webserver and is being acted upon.

Activity: validate that your request was mapped to the plugin

A request received by your webserver doesn't guarantee that request will be mapped to the
WAS 4.0 plugin. That requires a properly coded Service statement. Here again, the "vv"
trace validates the request being mapped over to the plugin.

Of course, a properly coded Service statement is of little use if the plugin itself isn't initialized.
You can make certain the plugin is up and going by reviewing the information found at "Activity:
validation and basic debugging of plugin" on page 7.

Note:

Again, a URL of:

http://<your_host>[:port]/webapp/examples/index.html

with a Service statement of:

Service /webapp/examples/* /usr/lpp/WebSphere/WebServerPlugIn/...

will show the following in the "vv" trace when the request is mapped to the plugin:
Service..... /webapp/examples/* matched "/webapp/examples/index.html" ->

:
Pattern..... match SUCCEEDED.

:
APIClassExec Calling function "service_exit"

That validates that your request was mapped over to the plugin. If you see your request
mapping to a Pass statement, then the plugin is not coming into play.

Activity: validate that the plugin isn't trying to run the webapp locally

The WAS 4.0 plugin will attempt to run a request locally whenever it gets a match on a
"rooturi" statement in the was.conf statement. This relationship is illustrated in the figure
"Logic employed to determine where to run the web application requested" on page 18.
(The truth is it checks the "rooturi" as well as the virtual host. How all that works is beyond
the scope of this document since the objective here is to run webapps over in the WAS 4.0
web container, not the plugin.)

The best way to check is to review your was.conf and make sure no deployedwebapp
rooturi statement is defined that will map to your inbound request. If it maps, the plugin
will try to run the request locally. Remember: it is the absence of definitions in the
was.conf that means it'll try to map the request over to the WAS 4.0 runtime.

The other way to validate this is by seeing if the request is mapped to the WAS 4.0 runtime.
That is explained next.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 22 -© 2001, IBM Corporation, Wash. Systems Center

Background: how the plugin determines if a request is to be sent to WAS 4.0 runtime

A request received by the plugin will get mapped over to the WAS 4.0 runtime only when
the plugin matches the received URL to a known webapp over in the web container. This
matching is done in the WAS 4.0 plugin's code and uses something called the "String
Matcher Table." This "string matcher table" is kept in memory, and is constructed using
information the plugin sees in the local was.conf file as well as information it receives from
the web container about webapps deployed there.

Here's an example of the table, taken from the "ncf" log of the plugin when
appserver.loglevel=WARNING at a minimum is set in the was.conf file.
String Matcher Table:
====================================
/wg31.washington.ibm.com:8080/SimpleJSP/* --> (remote web container JNDI home)
/localhost/webapp/examples/* --> LocalHostDispatch
/wg31.washington.ibm.com:8080/PolicyIVP/* --> (remote web container JNDI home)
/localhost/ConfigViewer/* --> LocalHostDispatch

This string matcher table will contain the same information you'll find in the "Application
Dispatching Information" panel (see "Activity: check plugin Application Dispatching
Information" on page 20):

URL pattern to be
matched Where dispatched

Application Dispatching Information is the same as what's in "ncf" trace "string matcher table"

This is important because you don't need to crawl through the "ncf" trace to validate what
webapps the plugin knows about: you can use the "appliction dispatching" information as
well. You do have to look in the ncf trace to see for certain that a request was properly
mapped. That is discussed next.

For the sake of simplicity the process is often described as, "the plugin will look for a local
definition in was.conf, and if not there then send it over to the web container." The truth is the
plugin won't send the request unless it matches a known list of webapps in the web container.
This list is the "string matcher table." With that understanding, you may now proceed to
validating that your request is getting mapped to the WAS 4.0 runtime's web container.

Key:

Activity: validate that request has been mapped to WAS 4.0 runtime

There are two ways you can validate that a request was mapped to the WAS 4.0 runtime:

Perform a visual comparison of URL against information in "Application Dispatching
Information" (that proves nothing, but it'll weed out obvious errors of typing and such)

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 23 -© 2001, IBM Corporation, Wash. Systems Center

Enable tracing of the plugin and interrogate the trace file for evidence of the request
getting mapped.

It is the latter that will be covered here. Do the following:

! Edit the was.conf file and set the following properties:

appserver.tracelevel=com.ibm.*=all=enabled
appserver.loglevel=WARNING
appserver.logdirectory=(directory to which logging will occur)

Setting the appserver.tracelevel to all=enabled like this produces a tremendous
amount of output. You would never have this running on a production system as it would
drain away too much system resource. If you set this property on your test system,
remember that is set and turn it off (comment out the line and restart the webserver) after
you have done your debugging. Otherwise, you will likely quickly fill the HFS in which the
logging is done.

Note:

! Stop and restart the webserver.

! Verify that the plugin initialized (see "Activity: validation and basic debugging of plugin"
on page 7).

! Clear your browser cache

! Issue the URL that produces the failure indication

! Browse the "ncf" log, which should be quite large with tracing enabled

! Issue a "find" command on the URI you issued. For example, if your entire URL was:

wg31.washington.ibm.com:8080/SimpleJSP/simple.jsp

then do a find on only the /SimpleJSP/simple.jsp portion of it.

! When you find the first occurrence of the string, scroll down just a bit. You should see
the "string matcher table" as well as the "Basic Rules" and "Exact Rules" tables. If the
plugin sees a match on the URI vs. the "string matcher table," you should see the
following immediately afterwards in the trace:
WS390Redirect < localDispatch
WS390Redirect D Matched JNDI Name : "/WSLPLEX/APSRV3/SimpleJSP/...
InProcNativeS D ConnectionStub.getRequestURI: instance = 2
WS390Redirect D Remotely Dispatching Request URI "/SimpleJSP/simple.jsp"

What this means is that the request (/SimpleJSP/simple.jsp in this example)
matched an entry in the string matcher table, the plugin was able to determine the JNDI
name from the table, and that the plugin is dispatching the request remotely.

After this there is a great deal of trace activity showing the plugin flowing requests to invoke
the home interface of the remote web container. All that will augment the validation
provided by the "Remotely Dispatching Request URI" message. Your request has been
sent to the web container.

Background: the servlet-mapping string and execution of webapp class files

The activity just discussed simply validates that your request got to the web container. But
that does not guarantee that it'll execute a web application. That's because the specific
webapp to be executed is implied with the servletmapping string, which is part of the URL to
be sure, but not something the plugin worries about. So a request you send could have the
correct context-root, which will allow the plugin to map the request to the runtime, but have
an incorrect servletmapping, which will result in an error.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 24 -© 2001, IBM Corporation, Wash. Systems Center

The servletmapping string is defined in the deployment descriptor for the webapp (the
web.xml file in the WAR file), and has an XML tag of <url-pattern>:

Servletmapping
string

:
<web-app>
<display-name>SimpleJSP</display-name>
<servlet>
<servlet-name>SimpleJSPServlet</servlet-name>
<servlet-class>SimpleJSPServlet</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>SimpleJSPServlet</servlet-name>
<url-pattern>/call_jsp</url-pattern>

</servlet-mapping>
</web-app>

Run
SimpleJSPServlet.class

file

Servletmapping string in the webapp deployment descriptor

If you're interested in where this "SimpleJSP" example is coming from, see "Example:
SimpleJSPServlet from WAS 3.5 Standard Edition" on page 34.

Note:

The interesting thing is this: if the web container doesn't see a match with a defined
<url-pattern> servletmapping string, it'll then determine if the request is for a JSP. It
does this by checking the end of the URI for a string of .jsp. If the URI doesn't end in
.jsp, the web container will assume the request is for a simple file and go looking for a file
to serve out.

If you accidentally mistype the servletmapping value on the URL, but the context-root value is
proper, the request will flow over to the web container. But the web container won't find any
webapps with a servletmapping equal to your garbled URL value, so it'll eventually consider it a
request for a simple file. The error you get on the browser screen will tell you which file type the
web container was trying to service. Those are described next.

Key:

Background: key error indicators found on the browser screen

If your URL has the proper context root value and the request makes it over to the web
containter, there are plenty of opportunities for errors. The first step is to look at the error
message on the browser to narrow the possibilities. Consider the following examples:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 25 -© 2001, IBM Corporation, Wash. Systems Center

URL with mistyped servletmapping.
/SimpleJSP is the correct context-root,
but call_jspx is incorrect: it should be

just call_jsp (no "x")

"SimpleFileServlet" is a built-in basic
function of the webcontainer, and is used
to serve files. This error is telling you the
SimpleFileServlet is what was invoked.

That means your request wasn't
interpreted as a webapp. It was seen as a
request for a simple file. And that file

(call_jspx) wasn't found

Example A: URL with mistyped servletmapping string

In Example A, the person issuing the URL fat-fingered the servletmapping value and
provided an extraneous "x" at the end. The plugin properly interpreted the correctly typed
context-root value of SimpleJSP and dutifully passed the request over to the web container.
But the web container looked through its set of known servletmapping values and didn't find
a call_jspx servletmapping string, so it assumed the request was for a simple file.
Having failed to find call_jspx in the root of the WAR file in the HFS, it gave up and
issued the "File not found" error message.

Now consider an example where a JSP is requested directly, but the person issuing the
URL mistypes the JSP name. They get the .jsp extension right, but fail to properly type
the first part of the name correctly:

URL with mistyped JSP file name.
/SimpleJSP is the correct context-root,
but simplex.jsp is incorrect (should be

just simple.jsp with no "x")

"JSP 1.1 Processor" is a built-in basic
function of the webcontainer, and is used
to execute JSP pages. This error is telling
you the JSP processor was invoked. But
the file requested (simplex.jsp) wasn't

found

Example B: URL with mistyped JSP file name

So the bottom line is this: if what you're trying to do is invoke a servlet and you see either
the SimpleFileServlet error message or JSP 1.1 Processor error message, you know you've
probably got something wrong with your servletmapping string.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 26 -© 2001, IBM Corporation, Wash. Systems Center

Activity: determine if you can serve any portion of your webapp

Webapps consist of not just servlet class files, but static files like HTML and JPG/GIF files,
and JSP pages. You should be able to request and be served those files directly. To
insure your path to the webapp in the web container is open, you could request for example
an image file with the following URL:

http://<your host>/SimpleJSP/banner.gif

The GIF file banner.gif is part of the "SimpleJSP" example illustrated in "Example:
SimpleJSPServlet from WAS 3.5 Standard Edition" on page 34.

Note:

If you can get the GIF, and you're certain that GIF is not being served by the HTTP Server
directly (validate this in "vv" trace), then you know the following things have worked:
Service in httpd.conf; "string matcher table" function in WAS 4.0 plugin; receipt of
request by web container in WAS 4.0; recognition of request as simple file; and the locating
and serving of the file itself.

Activity: validate request results in execution of desired webapp class file

So how can you validate that your webapp was in fact run in the web container? By routing
the TRACEALL=1 output to SYSPRINT and looking at the results. Do the following:

! Edit the current.env file of your application server instance and insure the the
TRACEALL property is set to at least 1.

! Set TRACEBUFFLOC=SYSPRINT

! Stop and restart your application server

! Clear your browser cache

! Issue the URL that you wish to test

! Review the contents of the application server instance's SYSPRINT. What you will find
is something that looks like this (example shown is for SimpleJSPServlet as
illustrated in "Example: SimpleJSPServlet from WAS 3.5 Standard Edition" on page 34).

Trace: 2001/09/12 18:09:47.991 01 t=8E15C0 c=1.27 key=P8 (13007002)
FunctionName: com.ibm.servlet.engine.webapp.ServletInstance
SourceId: com.ibm.servlet.engine.webapp.ServletInstance
Category: AUDIT
ExtendedMessage: Loading.servlet:."SimpleJSPServlet"

Trace: 2001/09/12 18:09:48.066 01 t=8E15C0 c=1.27 key=P8 (13007002)
FunctionName: com.ibm.servlet.engine.srt.WebGroup
SourceId: com.ibm.servlet.engine.srt.WebGroup
Category: AUDIT
ExtendedMessage: [Servlet.LOG]:."SimpleJSPServlet: init"

Trace: 2001/09/12 18:09:48.090 01 t=8E15C0 c=1.27 key=P8 (13007002)
FunctionName: com.ibm.servlet.engine.webapp.ServletInstance
SourceId: com.ibm.servlet.engine.webapp.ServletInstance
Category: AUDIT
ExtendedMessage: Servlet.available.for.service:."SimpleJSPServlet"

Contents of SYSPRINT showing loading and making ready of a servlet in the webcontainer

With this indication appearing in the application server instance's SYSPRINT, you know the
request has been received by the web container, recognized and the servlet class file is
being loaded.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 27 -© 2001, IBM Corporation, Wash. Systems Center

Example: PolicyWebApp in the PolicyIVP Application
Overview of the application

The WAS 4.0 product ships with a sample verification program called "PolicyIVP." Most people,
when first testing their WAS 4.0 environment, use the "fat client" to drive the application. The
fat client is a Java program run from the OMVS enviornment that exercises both the CMP and
BMP bean found in the PolicyIVP application:

Stateless
Session Bean

CMP Entity
Bean

BMP Entity
Bean

Application Server DB2

BBO.POLICYDO

TableJD
B
C

OMVS

Java Client
Code

(not an EJB)

Utility ClassesUtility Classes

Client-side
Bindings

Diagram of PolicyIVP sample application when driven by "fat client"

There is no webserver or web container involved when the PolicyIVP application is driven by the
fat client. However, the PolicyIVP application also comes with a servlet client, and when you
configure the web container and plugin to run the servlet, the picture of PolicyIVP then
becomes:

Stateless
Session Bean

CMP Entity
Bean

BMP Entity
Bean

EJB Container DB2

BBO.POLICYDO

TableJD
B
C

Utility Classes

Web ContainerHTTP Server

WebApp

Plugin

Route
Request

WAS 4.0 Runtime

PolicyIVP when driven by the PolicyWebApp servlet client

The behavior of the beans is the same; the client code used to drive that behavior is different.

Background: deployment descriptor for PolicyIVP application

The PolicyIVP.ear file has within it a "deployment descriptor" (an XML file) that provides
information about the beans and the webapp contained within the EAR file. This XML file is
generated by the AAT tool at the time of application assembly. Of particular interest to this
topic is the <context-root> tag in the XML file. The value named there is what WAS
uses when it tries to bind the application to the virtual host:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 28 -© 2001, IBM Corporation, Wash. Systems Center

<application>
<display-name>PolicyIVP</display-name>
<module>

<ejb>policysession_deployed.jar</ejb>
</module>
<module>

<ejb>policycmp_deployed.jar</ejb>
</module>
<module>

<ejb>policybmp_deployed.jar</ejb>
</module>
<module>

<web>
<web-uri>PolicyWebApp.war</web-uri>

<context-root>/PolicyIVP</context-root>
</web>

</module>
<module>

<ejb>PolicyWebApp_WebApp.jar</ejb>
</module>

</application>

XML generated
by the AAT tool

The EJB JAR
files referenced

The context root
for the webapp

The "appliciation.xml" deployment descriptor in PolicyIVP.ear file

The PolicyIVP.ear file is a ZIP-format file, and a tool like WinZIP can be used to look
inside of -- and extract files from -- the EAR file. If you wish to see the application.xml
file's content for yourself, use WinZIP and pull the file out.

Background: deployment descriptor for PolicyWebApp webapp

The PolicyIVP.ear file has within it a file called PolicyWebApp.war, which is another
ZIP-format file that holds the webapp. The WAR file has within it a deployment descriptor
that describes the webapp. Of interest is the servlet mapping value, which when appended
to the context root value, provides the web container knowledge of which specific webapp to
run. The WAR file can be accessed using WinZIP as well, and if you looked inside the
PolicyWebApp.war file, you'd see something like the following:

/(base or root)

HTML, GIF/JPG and JSP files

/META-INF

MANIFEST.MF

/theme

Master.css

/WEB-INF

web.xml

/classes

/lib

WAR
File

:
<servlet-mapping>
<servlet-name>Was40Ivp</servlet-name>
<url-pattern>/PolicyServlet</url-pattern>

</servlet-mapping>
:

This is the basic directory structure of a
WAR file, which is a ZIP-format file used
to hold webapps.

The web.xml file is the "deployment
descriptor" for the webapp.

The <url-pattern> tag defines the
servlet mapping string for the servlet.

The layout of the PolicyWebApp.war file and the servlet mapping inside the deployment descriptor.

So now you have the two key strings used to locate and run the webapp:
<context-root> in the application.xml file sets the context root value.
<url-pattern> in the web.xml file sets the servlet mapping value.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 29 -© 2001, IBM Corporation, Wash. Systems Center

Configuration

This example will show the WAS 4.0 plugin being used. The application is deployed into the
BBOASR2 application server. The webapp will be deployed into the WAS 4.0 web container. The
port on which the HTTP Server is listening is 8080.

Note:

Example: httpd.conf configuration

The updates to httpd.conf required to support the PolicyIVP application are:

ServerInit /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:init_exit

/usr/lpp/WebSphere,/etc/was.conf

Service /webapp/examples/* /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit
Service /PolicyIVP/* /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit

ServerTerm /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:term_exit

Statements added to httpd.conf to support WAS 4.0 plugin and PolicyIVP application

The Service statement with /PolicyIVP/* provides the webserver the ability to
recognize any URL received with /PolicyIVP as its starting string and pass it over to the
plugin environment.

Example: httpd.envvars configuration

This will show only the additions to httpd.envvars and not the whole file.Note:

:
NLSPATH= ... /usr/lpp/WebSphere/WebServerPlugIn/msg/%L/%N
JAVA_HOME=/usr/lpp/java2/J1.3
RESOLVE_IPNAME=wsc.washington.ibm.com
RESOLVE_PORT=900
:

Example: was.conf configuration

Beyond copying the supplied sample was.conf to the directory pointed to on the
ServerInit statement in the httpd.conf file (/etc for this example), no updates to
was.conf are necessary. In fact, if you added any references to PolicIVP to the
was.conf file, the plugin might think the webapp is to be run locally. Remember: the
absence of a webapp "rooturi" specification in the was.conf allows the WAS 4.0 plugin to
consider routing the request over to the web container environment.

Example: jvm.properties configuration

The jvm.properties file must have a pointer to the webcontainer.conf file to be
used. For this example, that looks like this:

jvm.properties
com.ibm.ws390.wc.config.filename=

/WebSphere390/CB390/controlinfo/envfile/WSLPLEX/BBOASR2A/webcontainer.conf

Pointer to webcontainer.conf from inside the jvm.properties file

This example is illustrating putting the webcontainer.conf file in the same directory as
the jvm.properties file and the current.env file for the server instance.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 30 -© 2001, IBM Corporation, Wash. Systems Center

Example: webcontainer.conf configuration

Two statements are updated in the webcontainer.conf file:

:
host.default_host.alias=wsc.washington.ibm.com:8080
:
host.default_host.contextroots=/
:

As specified earlier, the HTTP Server is listening on port 8080. Therefore any URLs passed
over to the web container will container not just the host name
(wsc.washington.ibm.com) but the port as well (8080).

The single slash allows any application -- including the PolicyIVP application with a context
root setting of /PolicyIVP -- to bind to the virtual host.

Starting the servers

It doesn't really matter what order you start the server region and the webserver. The two will
act in concert with one another, and when the second one comes up the two will shake hands
and shart exchanging information about deployed webapps.

Example: SYSOUT of webserver

The SYSOUT of the webserver's started task will show the following information:
:
WAS Startup Parameter -- Install Root = /usr/lpp/WebSphere
WAS Startup Parameter -- Configuration file = /etc/was.conf
:
IBM WebSphere Application Server native plugin initialization went OK :-)

It is the "smiley face" that indicates that the plugin has successfully initilized. If you can't
locate the smiley face, look for the "sad face" to indicate initialization has failed. If you can't
find either, it may be that the plugin is still in the process of initializing. It may take 15
seconds or more to initialize the plugin.

Example: SYSPRINT of server region

The following picture illustrates what the SYSPRINT will look like and what things to look for
as indicators of success or failure.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 31 -© 2001, IBM Corporation, Wash. Systems Center

Web Container:Configuration File Name:
/WebSphere390/CB390/controlinfo/envfile/WSCPLEX/BBOASR2A/webcontainer.conf
:
:

VirtualHost Web Application Context Root Bindings:

/
:
:

VirtualHost Alias List:

wsc.washington.ibm.com:8080
:
:

VirtualHost Bound Web Applications¨:

Web Application Context Root: /PolicyIVP

JNDI name of Web Application EJB: /WSCPLEX/BBOASR2/PolicyIVP/...
:
:

This is telling you what webcontainer.conf file it
will be using. This should be the one you copied

and configured, not the default one.

The "context root" as set in
the webcontainer.conf

The "virtual host" from webcontainer.conf.
This should not read "localhost". If it does,

it's probably picking up the default
webcontainer.conf

The "context root" values indicates
the applications that have been
successfully bound to this virtual

host

A
b
lo
ck

lik
e
th
is
fo
r
ea
ch

vi
rt
u
al
h
o
st

What to look for in the server region's SYSPRINT to validate web container configuration

Example: Application Dispatching Information provided by plugin

The "webapp/examples" sample application provided with the plugin provides a very good
way of verifying that the plugin understands the deployed webapps over in the WAS 4.0
web container environment. The URL used to reach the front page of this application is:

http://wsc.washington.ibm.com:8080/webapp/examples/index.html

The default was.conf file contains all the definitions required to run the "webapp/examples"
application. However, when you're setting up your httpd.conf file, you must provide a
Service statement with a URL template of /webapp/examples/* to make this work.

Note:

On the HTML page that is returned, the "Show Server Configuration" link will invoke a
servlet that runs in the plugin (not the WAS 4.0 runtime) that queries the plugin's
configuration. The "Application Dispatching Information" link will bring up the following
page, which indicates what web applications the plugin knows about:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 32 -© 2001, IBM Corporation, Wash. Systems Center

wsc.washington.ibm.com:8080/PolicyIVP

Applications the plugin knows about

The picture above shows the virtual host wsc.washington.ibm.com:8080 bound to the
/PolicyIVP context root. The right side of the table shows where the application will be
dispatched:

" LocalHostDispath: application run locally in the plugin

" A JNDI name (like what's shown): indicates the application will be routed over to the
WAS 4.0 runtime.

The presence of the PolicyIVP information in this panel indicates the plugin and the web
container have successfully communicated with one another, and that your configuration is
likely correct. All that's left is to test it.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 33 -© 2001, IBM Corporation, Wash. Systems Center

Example: SimpleJSPServlet from WAS 3.5 Standard Edition
The WAS 3.5 Standard Edition for OS/390 product had as part of its default packaging a simple
JSP application. It's structure looked like this:

Servlet JavaBean
JSP

Generated
HTML

1
2

3

4

Logical structure of SimpleJSPServlet and simple.jsp from WAS 3.5 SE

The numbered blocks refer to the following:

1. The servlet (SimpleJSPServlet.class) when called by you at your browser, will turn
and invoke the JSP (simple.jsp)

2. The JSP will then turn and call the JavaBean (SimpleJSPBean.class). That bean does
nothing more than return a string of characters back to the JSP

3. The string of characters is returned to the JSP

4. The JSP generates the HTML and ships it back to the browser

This application provided a very simple way of validating the WAS 3.5 SE environment using a
servlet and JSP that had no external datasource requirement. It serves as a good example here
for the same reason, and because it introduces JSPs which the PolicyIVP application doesn't have.
So what this example will show is how to take the files from the WAS 3.5 SE environment and turn
them into a webapp you can deploy into your WAS 4.0 environment.

Background: structure and settings for this example

Use the following chart to map the URL to the various settings so this will work:

http://<host>/SimpleJSP/call_jsp

Service Statement Mapping
The string /SimpleJSP will be used on the
Service statement in the webserver's
httpd.conf file to map the URL to the
plugin for processing

Context Root Value
The string /SimpleJSP will be used for the
"Context Root" value as set in AAT when
generating the EAR file. This is what will bind
to the contextroots= statement in
webcontainer.conf and allow your
request to be routed to the proper web
container.

Servletmapping String
The string /call_jsp will be used in the
web.xml deployment descriptor to allow your
request to be resolved to a particular servlet class
file (in this case, SimpleJSPServlet.class)

URL components and mapping to Service, Context Root and Servet Mapping settings

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 34 -© 2001, IBM Corporation, Wash. Systems Center

Background: creating a WAR file by hand

Normally you would create a WAR file using a tool like WebSphere Studio. But doing it by hand
is relatively easy, so that's what you'll do here. First you have to create a directory structure on
your PC that mimics the structure of the WAR. Then you'll populate the directories with the
various files from the WAS 3.5 HFS on the 390 server. Finally, you'll create a WAR file using
the Java "jar" command on the PC.

Activity: create WAR file directory structure on your workstation

! Create the following directory structure on your PC

C:\

\SimpleJSP

\WEB-INF

\classes

\lib

Make certain this directory
is upper case, and uses a
hyphen, or dash, rather
than an underscore.

Directory structure on PC that mimics the standard WAR file structure

Activity: download files from WAS 3.5 SE and place in the proper directories

! Download the following files from the WAS 3.5 SE installation directory to your newly
created WAR-like directory on your PC:

C:\

\SimpleJSP

\WEB-INF

\classes

\lib

simple.jsp
banner.gif

SimpleJSPServlet.class
SimpleJSPBean.class

/usr/lpp/WebSphere/AppServer/hosts/default_host/examples

/web
simple.jsp
banner.gif

/servlets
SimpleJSPServlet.class
SimpleJSPBean.class

HFS

Binary FTP!

Binary FTP!

Download SimpleJSP files from host HFS to your PC

Activity: create web.xml file for WAR

The web.xml file is the "deployment descriptor" for the web application. Normally this file is
created by the tool you use to create the WAR, but for this simple application the file is easy
enough to just use Notepad and enter it by hand.

! Create a file called web.xml and place it in the directory structure as shown. Enter the
data as shown into the file:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 35 -© 2001, IBM Corporation, Wash. Systems Center

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
<display-name>SimpleJSP</display-name>
<servlet>
<servlet-name>SimpleJSPServlet</servlet-name>
<servlet-class>SimpleJSPServlet</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>SimpleJSPServlet</servlet-name>
<url-pattern>/call_jsp</url-pattern>

</servlet-mapping>
</web-app>

This is the "servlet mapping" string

The web.xml
file is in the
\WEB-INF
directory

C:\

\SimpleJSP

\WEB-INF

\classes

\lib

simple.jsp
banner.gif

SimpleJSPServlet.class
SimpleJSPBean.class

web.xml

Use Notepad and enter
into the web.xml the
contents shown above

The web application's deployment descriptor file called web.xml

Activity: JAR the directory into a WAR file

All your files are in place. You are now ready to "jar up" the directory into a WAR file.

This assumes you have the Java 1.3 JDK installed on your workstation, and the /bin directory of
your JDK 1.3 installation is available on the PATH variable. The jar.exe command file resides in
the Java /bin directory.

Note:

! Open up a command prompt on your workstation.

! Change directories so that you're in the C:\SimpleJSP directory

! Issue the following command:

jar -cf SimpleJSP.war *

! Now use WinZIP to verify the contents of the new WAR file. It should look like this:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 36 -© 2001, IBM Corporation, Wash. Systems Center

Using WinZIP to inspect the contents of your WAR file

Activity: use AAT to construct an EAR file

Now bring your new WAR file into AAT and create an EAR file. The EAR file you'll create will
have no EJBs. It'll consist of one web application and that's it.

! Start AAT and add an application and call your new application SimpleJSP.

! Expand the tabs to expose the "EJB Jars" and "WebApps" folder. Select the "WebApps"
folder, right-click and select "Import."

! Point to your new C:\SimpleJSP\SimpleJSP.war file and click on "OK"

! When the WAR file has been imported, select the "SimpleJSP" object, right-click and select
"Modify". Then set the "Context Root" value to /SimpleJSP

SimpleJSP
object
selected

General tab
selected

Context root set to
/SimpleJSP (note the

leading slash)

Setting the context root of a webapp

! Save the modification, click on the the "SimpleJSP" application (not the webapp) and then
right-click and select "Validate." When done, right-click and select "Deploy." Finally,
right-click and select "Export" and put the file out as C:\SimpleJSP\SimpleJSP.ear.

Activity: provide webcontainer.conf file

This activity was discussed under "Activity: creating the webcontainer.conf file" on page 9. Go
to that spot, perform the activities listed, then return to this spot.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 37 -© 2001, IBM Corporation, Wash. Systems Center

Activity: use SME EUI to deploy into WAS 4.0 web container

With the EAR file generated, all you need do is start the SMS EUI and install this J2EE
application into a server. This document assumes you have a server in which a web container
has been configured.

! Create a conversation

! Select your EAR file for installation into the server

! Set the default JNDI value for the web application

! Validate, Commit and Activate the conversation.

Activity: check SYSPRINT of server region and insure application bound to virtual host

Please go to "Activity: check server region SYSPRINT" on page 19 for a discussion of checking
the SYSPRINT to see if your application was bound properly. If your application server wasn't
started when you deployed the web application, start the server control region and watch for it
to register your new application. Then check SYSPRINT of the server region.

Activity: update httpd.conf with Service directive

Provided you have already performed "Activity: configuring the WAS 4.0 plugin code" on page
6, all you need do is add another Service statement with the URL pattern of /SimpleJSP/*.

! Edit your httpd.conf file and locate your Service directives.

! Duplicate one of the Service directives and then change the URL pattern to
/SimpleJSP/*

! Save httpd.conf

Activity: start webserver and validate plugin's knowledge of new application

Please go to "Activity: check plugin Application Dispatching Information" on page 20 for
information about this basic validation procedure.

Activity: drive SimpleJSPServlet code

! Use the following URL:

http://<your host>[:port]/SimpleJSP/call_jsp

You should get a screen that looks like this:

"3.5" because GIF
came from WAS 3.5 SE

environment

On initial invocation this may take a
few seconds as the JSP is dynamically
compiled. Be patient.

Results of SimpleJSP servlet execution

Activity: drive JSP directly, get GIF directly

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 38 -© 2001, IBM Corporation, Wash. Systems Center

You need not go through the servlet to drive the JSP, or get the GIF for that matter. Do the
following:

! Issue the following URL to get the JSP directly:

http://<your host>[:port]/SimpleJSP/simple.jsp

! Issue the following URL to get the GIF directly:

http://<your host>[:port]/SimpleJSP/banner.gif

This illustrates how the WAS 4.0 web container can act as a JSP server for direct invocation,
and it can serve as a simple file server.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 39 -© 2001, IBM Corporation, Wash. Systems Center

Common Configuration Errors and the Symptoms Displayed
The purpose of this section is to show you some error symptoms and discuss what common
configuration errors cause them. The first error symptom you'll see will be on the screen of your
browser. Unfortunately, that error symptom is almost never enough to know exactly what's wrong.
So further digging into the various traces is necessary.

The browser error symptoms shown in this document are based on what Netscape displays. Internet
Explorer may sometimes display different things, particularly if you have the "Show Friendly Error
Messsages" option turned on.

Note:

Browser error messages

56"Class file incorrect" .

55"Mismatch in servlet name in deployment descriptor" .

53"Servlet mapping string doesn't match" .

Recursive Error Detected - File Not Found

52"Plugin not connected to the WAS 4.0 runtime you think it is" .

51"Your application didn't bind to a virtual host" .

49"URL doesn't contain value that matches defined context root or virtual host"

46"Web container not configured in WAS 4.0 application server" .

46"WAS 4.0 application server not started" .

Virtual Host or Web Application Not Found

48"Plugin tries to run the code locally" .

Error 500 - Failed to load target Servlet

44"Service directive has error in the "exit" routine named on directive"

43"Service directive has error in directory or filename of plugin code"

42"Plugin not initialized" .

Error 500 - Service handler performed no function

42"No Service directive coded that matches URL received" .

Error 404 - File was not found

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 40 -© 2001, IBM Corporation, Wash. Systems Center

Errors related to request not reaching plugin

A request received by the HTTP Server is passed to the WAS 4.0 plugin with the Service
directive in the httpd.conf file. There are quite a few reasons why that request might not make
it "over the wall" into the plugin:

HTTP Server

WAS 4.0 Plugin

:
Service /PolicyIVP/* /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit
:

httpd.conf

http://<host>/SimpleJSP/call_jsp

:

Service /PolicyIVP/*
:

1
2

3 4

Some reasons why request may not reach the plugin

1. No Service directive coded that matches URL received

For a request to make it to the plugin, a Service statement needs to be coded with a URL pattern
that "catches" the request. It is very easy to overlook adding a new Service statement when adding
a new webapp. And if no Service statement catches, the request falls through and catches on some
Pass statement later. The plugin is never invoked.

2. Plugin not initialized

You could have a perfectly coded Service statement, but if the plugin itself isn't initialized, then the
Service statement has nowhere to send the request. The plugin may fail to initialize for several
reasons. You should always check to insure the plugin has initialized before testing any new webapp.

3. Service directive has error in directory or filename of plugin code

The Service directive has a rather lengthy portion where there directory and filename of the plugin
code is specified. If you mistype any portion of that, the webserver will try to invoke the plugin, but will
fail because no such directory or file exists. This error will not be caught at webserver startup; it only
becomes evident when a request is mapped to that Service.

4. Service directive in the "exit" routine named on directive

The plugin has three different "exit routines" and the one invoked on the Service statement is the
service_exit. That is, unless you mistype that value. Then problems occur.

Each of these is discussed next, with the error symptom associated with the error.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 41 -© 2001, IBM Corporation, Wash. Systems Center

No Service directive coded that matches URL received

The request fails to map to a coded Service statement in the httpd.conf file. The
webserver continues to evaluate the request against other directives, and eventually the
request maps to a Pass statement (probably the Pass /* statement), or fails to map at all.

Browser error symptom

Log or trace symptom

This problem will show itself in the webserver's "vv" trace. There will be no matches on
Service directives, and you will probably see it match against the Pass /* directive, but
the file implied won't be found.

How to correct

Make certain the URL being sent from the browser will map against one of your defined
Service statements. If necessary, code another Service statement and restart the
webserver.

Plugin not initialized

A Service statement matched, but the plugin to which the request is intended is not
initialized. The request has nowhere to go.

A plugin not initializing can be due to errors in the was.conf file, an improperly coded
ServerInit statement, or a missing JAVA_HOME variable in the httpd.envvars file.
You check for initializing by searching for the "smiley face" in the SYSOUT of the
webserver's started task (see "Activity: validation and basic debugging of plugin" on page
7).

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 42 -© 2001, IBM Corporation, Wash. Systems Center

Browser error symptom

The key here is the phrase "Service handler performed no action." That means the Service
handler was invoked, but did nothing. So a Service statement was matched.

Log or trace symptom

This problem will show itself in the webserver's "vv" trace, but it is very obscure. There will
be a match on a Service directive and then you'll see the webserver trying to match on
other Service directives. But no indication of why the first match wasn't honored is given.
Ultimately you see the ERROR 500 message in the trace.

How to correct

The check the SYSOUT of the webserver's started task and look for the smiley face [:-)]
or the sad face [:-(]. You will likely see the sad face or neither. Some initialization
failures will be cited in the "vv" trace (for example, a was.conf file not found will be flagged
there). Other causes for plugin initialization failures can be found in the plugin's "native" log.

Service directive has error in directory or filename of plugin code

In this scenario the plugin is initialized, and a Service directive is coded to match the URL.
But the directory or filename of the WAS 4.0 plugin code has some error in it that causes
the webserver to fail to find the plugin. If it can't find the plugin, it can't invoke the plugin
with your request.

Browser error symptom

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 43 -© 2001, IBM Corporation, Wash. Systems Center

This is the same error browser symptom displayed as when the plugin isn't initialized.

Log or trace symptom

Unfortunately, the "vv" trace for this problem displays the same information as was
displayed when the plugin wasn't initialized. You see a match on the Service statement,
then without explanation the webserver starts trying to match the other Service
statements. It finally "bails out" with a 500 error.

How to correct

First, verify that the plugin initilized. If it has, then visually inspect the Service statement
for typos. Some common problems:

Lowercase "s" in "Websphere" rather than correctly typed "WebSphere"

Lowercase "i" in "WebServerPlugin" rather than correctly typed "WebServerPlugIn"

Fix and restart the webserver.

Service directive has error in the "exit" routine named on directive

The Service directive has an exit routine of service_exit, which points to the portion of
the plugin code to be invoked when a request is received. If you made a mistake in coding
that, the plugin will fail to initialize. (A common mistake is replicating the ServerInit
statement to make a Service statement, and forgetting to change the exit routine from
init_exit to service_exit).

The external symptom is similar to other things that cause the plugin to initialize, but the
indication in the "vv" trace is different.

Browser error symptom

Log or trace symptom

In the "vv" trace you will find a string that flags the problem::

Failed to load function <exit routine>:
EDC5214I Requested function not found in this DLL

You will find no smiley face and no sad face. This will be the only indication of this problem.

How to correct

Carefully inspect the exit routines specified after the colon on the Service statement.
Each one should have :service_exit. Any variations on this will cause a failure.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 44 -© 2001, IBM Corporation, Wash. Systems Center

Errors related to plugin not passing request to web container

Once the request has been passed to the plugin, the plugin then has to get it over to the WAS
4.0 runtime. There are several things that can keep that from happening:

HTTP Server

Plugin

WAS 4.0 Runtime

1

3 4

6

2

5

Some reasons why request may not be sent to runtime environment

1. WAS 4.0 application server not started

Your webapp might be perfectly configured and deployed into the application server, but if that server
isn't started then the plugin won't have much success routing the request.

2. WAS 4.0 web container not configured

The process of configuring the web container is a manual one, and it's easy to forget to do that if you
are in test mode and creating many different application servers. With no web container configured,
the deployed webapp will be recognized (sort of) but it won't be bound to any virtual host. Therefore,
your attempts to access it will result in failure.

3. Plugin tried to run the webapp locally

If in the past you ran the webapp in the plugin, but are in the process of migrating your webapp to the
WAS 4.0 web container, you might forget to remove the definitions from the local was.conf file. That
means the plugin will try to run the webapp locally, probably with no success.

4. URL doesn't map to any defined context root or virtual host

Your URL might match a Service statement and get passed to the plugin properly, but if the URL as
received doesn't match any "context roots" found in the "string matcher table" (see "Background: how
the plugin determines if a request is to be sent to WAS 4.0 runtime" on page 23 for an explanation of
what that table is), then the request won't have any place to go.

5. Application doesn't bind to a virtual host

If the context root setting for your web application isn't able to bind to a virtual host defined in the web
container, your application will be unrecognized. If you're using a contextroots= statement of a
single slash (/), your webapp will always bind. But if you're using a contextroots= value of
something more specific, it might not bind.

6. Plugin isn't connected to WAS 4.0 system you think it is

The plugin connects to the Systems Management Server (SMS) based on the RESOLVE_IPNAME and
RESOLVE_PORT environment variables in the httpd.envvars file for the webserver in which the
plugin runs. If you have multiple WAS 4.0 runtime environments, it's possible that your plugin isn't
connected to the runtime you think it is. If that's the case, your webapp might not be recognized by
the plugin.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 45 -© 2001, IBM Corporation, Wash. Systems Center

WAS 4.0 application server not started

The WAS 4.0 plugin works in conjunction with the WAS 4.0 application server. If that server
isn't started, then the plugin has nowhere to redirect the request.

Browser symptom

Log or trace symptom

You'll see the following error on the console:

+BBOU0516E LOCATE REQUEST FAILED FOR SERVER - (server name).

The plugin found its way to the SMS server (via the RESOLVE_IPNAME and RESOLVE_PORT
variables in httpd.envvars) and was given the names of the application servers that
have deployed webapps. Then when the plugin went to communicate with the application
server, it was unable to locate the server. If the server has not been started, then the locate
will of course fail.

Any requests for applications deployed in the not-yet-started application server will fail with
the "Virtual Host or Web Application Not Found" message.

If you then look in the plugin's "ncf" log you'll see an indication of the error:

ServletHost W Web.Group.Not.Found:."/SimpleJSP/simple.jsp"
ServletReques X Web Group Not Found
The web group /SimpleJSP/simple.jsp has not been defined

How to correct

Start the application server, provide enough time for the plugin to communicate with the
server, and issue the URL again.

Web container not configured in WAS 4.0 application server

It is possible to deploy a web application into a WAS 4.0 application server even though the
web container has not been configured. WAS will place the webapp code and files into the
HFS and will even recognize that a webapp has been deployed. WAS will then make use of
the default webcontainer.conf file, but that default copy has no virtual host defined.
Failing to bind to a virtual host means the plugin will see the webapp as a "localhost"
dispatch," but will fail to load it because the executable code isn't available to the plugin.

Configuring the web container is covered in "Activity: creating the webcontainer.conf file"
starting on page 9.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 46 -© 2001, IBM Corporation, Wash. Systems Center

Browser symptom

Log or trace symptom

A peek in the "ncf" log will reveal the following:

ServletHost W Web.Group.Not.Found:."/SimpleJSP/simple.jsp"
ServletReques X Web Group Not Found
The web group /SimpleJSP/simple.jsp has not been defined

Further, the "application dispatching" panel will show:

JNDI name of remote webapp home
interface is provided, which means
plugin recognizes the webapp as
deployed in the WAS 4.0 environment ...

... but the "virtual host" is showing up
as "localhost." This combination tells
you the deployed webapp didn't bind to
a virtual host.

Symptom when web container not configured

The final proof of this can be found in the SYSPRINT of the server region for the application
server:

Web Container:Configuration File Name:
/usr/lpp/WebSphere/bin/webcontainer.conf

:
VirtualHost Web Application Context Root Bindings

/
:

VirtualHost Alias List
localhost

The key information here is the use of the default webcontainer.conf file (located at
/usr/lpp/WebSphere/bin) and the localhost alias. A properly configured web

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 47 -© 2001, IBM Corporation, Wash. Systems Center

container will have your custom copy of webcontainer.conf, and the virtual host will be
your IP host name for the server.

How to correct

This problem can be caused by several things:

You simply forgot to configure the web container

If this is the problem, then follow the instructions found at "Activity: creating the
webcontainer.conf file" on page 9.

You made a mistake in the pointer to the webcontainer.conf

This pointer is found in the jvm.properties file, and a mistake in the typing of any
portion of this pointer will cause the server to use the default webcontainer.conf file
(which contains no virtual host definitions). Check the SYSPRINT of the server region
and see if the default configuration file is in use. Then check the pointer out of
jvm.properties and make sure everything -- case, spelling -- everything is correct.

Plugin tries to run the code locally

The general rule of thumb is this: if the plugin sees a match on "rooturi" in the local
was.conf file, it'll try to run the webapp locally (in the plugin). Otherwise, the request will
be passed over to the web container if the webapp is defined over there. It is good practice
to follow this rule of thumb and make certain no was.conf definitions for your webapp
exists if you intent is to run the webapp in the WAS 4.0 web container.

However, it's very easy to imagine a scenario where in the act of migrating a webapp from
the plugin environment to the web container environment you accidentally forget to remove
the definitions from was.conf. Somewhat surprisingly, this may or may not result in an
error. It all depends on whether you have an explicitely coded virtual host in your local
was.conf.

The concept of virtual hosts in the WAS 4.0 web container is discussed in "Background: binding
applications to virtual hosts" on page 12. The version of WAS found in the plugin also has the
concept of a "virtual host" but the coding is different. All web applications defined in the local
was.conf file must have a deployedwebapp.<name>.host= statement. The value found
on that statement points to a host.<name>.alias= statement also found in the was.conf
file. What follows the alias= on that statement is the virtual host. By default the value is the
keyword localhost, but you may also have an explicitely coded IP name. If the virtual host is
an explicitely coded IP name, and that IP name is identical to a virtual host IP name coded in
the WAS 4.0 webcontainer.conf file, then the plugin will ignore the web container in favor of
the local definition.

Note:

The best way to view this is to look at the following example of the "Application Dispatching"
information from the supplied "configuration viewer":

LocalHostDispatchlocalhost/SimpleJSP
WSLPLEX/APSRV3C ...wg31.washington.ibm.com:8080/SimpleJSP

JNDI NameURL Prefix Pattern

This is showing the URL pattern /SimpleJSP being defined in the web container and the
plugin's local was.conf. The difference is this: the web container's version is bound to
virtual host wg31.washington.ibm.com:8080, while the local plugin is using the default
localhost virtual host.

In this example, the request will flow to the web container only if the URL's host value
matches the virtual host of wg31.washington.ibm.com:8080. Any other host value will
be run local to the plugin.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 48 -© 2001, IBM Corporation, Wash. Systems Center

If, however, you have coded a virtual host of wg31.washington.com:8080 in your
was.conf and your webcontainer.conf, and the webapp /SimpleJSP is bound to that
virtual host in both locations, the plugin will only recognize the local copy. It'll see the
conflict and reject the web container's definition.

The following discussion will show the error when the plugin tries to run it locally and fails.

Browser symptom

Log or trace symptom

Look in the "ncf" trace of the plugin. With appserver.loglevel=WARNING set, you'll see
the following:
"zzzzzzzz"
"Failed to load servlet"
javax.servlet.ServletException: Servlet [zzzzzzzz]:

Could not find required servlet class - SimpleJSPServlet.class

In this example the problem illustrated is the servlet class file not being found. This would be
the case when a servlet is moved from the plugin environment to the WAS 4.0 web container
environment. Lots of other problems could occur: servlet class file invalid, permission bits too
restrictive, etc. The point is the plugin is trying to run the servlet, when it should be routing the
request over to the WAS 4.0 environment.

Note:

How to correct

Edit the was.conf file and remove (or comment out) the definitions for the web application
that you wish to run in the WAS 4.0 environment.

URL doesn't contain value that matches defined context root or virtual host

This problem has two forms:

URL doesn't match any Service statement and therefore doesn't get "over the wall" to
the plugin. This problem will manifest itself in the way described in "No Service directive
coded that matches URL received" on page 42.

URL gets "over the wall" but the doesn't match any context root settings in the web
container. This problem is very similar to that described under "WAS 4.0 application
server not started" on page 46. The difference here is that the application server is up
and running.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 49 -© 2001, IBM Corporation, Wash. Systems Center

Browser symptom

Log or trace symptom

This problem is caused by the URL received not matching an entry in the "string matcher
table" maintained by the plugin. The contents of the "ncf" trace will be the same as
illustrated for "WAS 4.0 application server not started" on page 46.

The webapps deployed into the WAS 4.0 server will show on the "application dispatching"
panel (see "Activity: check plugin Application Dispatching Information" on page 20):

The virtual
host value

The context
root value

The JDNI name of
the webapp's home

interface

"Application Dispatching Information" screen

If you see the application you're trying to invoke on this screen, that means the WAS 4.0
application server is up and the plugin has successfully communicated with the server.
What that leaves is an error in your URL: either the virtual host is incorrect, or the "context
root" string doesn't match.

How to correct

Provided the "application dispatching" screen shows your application and verifies that the
plugin is talking to the WAS 4.0 web container, visually inspect your URL and make certain
the following two things:

The IP host name on the URL is identical (including port information, if any) to the virtual
host shown on the "application dispatching" screen. Without an exact match here the
plugin will not associate your URL with the application.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 50 -© 2001, IBM Corporation, Wash. Systems Center

The string that follows the first slash matches the characters on your URL exactly,
including matching the case of the characters. This is the "context root" value, and
WAS uses that string to match your URL request with a deployed webapp.

Anything not matching between URL and the information shown on the "application
dispatching" screen will prevent the request from being honored and will result in the "Web
group not defined" message.

Your application didn't bind to a virtual host

This is different from the preceeding problem. In that one your URL was incorrect. In this
one the application you deployed into the web container contains a "context root" that didn't
bind to any virtual host defined in the webcontainer.conf file. If it doesn't bind to any
virtual host, then the plugin has no knowledge of the application at all.

If your webcontainer.conf file is making use of the single-slash "catch all"
contextroots= setting, then this problem will not occur (that's because the single slash
will allow any and all web applications to bind to the virtual host). But this problem may pop
up if you are coding more explicit contextroots= values. For example, consider the setting:

host.default_host.contextroots=/PolicyIVP

and a web application <context-root> setting of /SimpleJSP. There's no match
possible there. The web application will not bind to the virtual host.

Browser symptom

Log or trace symptom

The key indicator of this problem is the content of the "application dispatching" panel, which
will fail to show your application:

Your application doesn't appear in the
"application dispatching" information at
all (not even under "localhost"). Means
webapp wasn't able to bind to any defined
virtual host in webcontainer.conf

Application dispatching when web application doesn't bind to any virtual host

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 51 -© 2001, IBM Corporation, Wash. Systems Center

Furthermore, if you look in the SYSPRINT of the application server region, you'll see
something like this:

VirtualHost Web Application Context Root Bindings:
/SimpleJSP

VirtualHost Bound Web Applications: <none>
VirtualHost Alias List:

wg31.washington.ibm.com:8080

In this example the test webapp used to force this condition was the only webapp in my web
container, so the value <none> is appearing in under "Bound Web Applications." If you had
other webapps that did bind properly, they would appear, but the webapp you're debugging
would not. Look for the webapp you're debugging. If it's not showing up as bound, then this
particular problem is occurring.

How to correct

Modify your webcontainer.conf file and update the contextroots= statement so your web
application will bind. That statement will allow multiple string, separated by commas:

host.default_host.contextroots=/SimpleJSP, /PolicyIVP, /XYZ

Your solution may be something as simple as adding another string to the statement.
Changing the webcontainer.conf file requires a restart of the application server.

Plugin not connected to the WAS 4.0 runtime you think it is

The plugin will attempt to communicate with whatever WAS 4.0 Systems Management
Server (SMS) it finds based on the RESOLVE_IPNAME and RESOLVE_PORT variables in
httpd.envvars. If you fail to code those environment variables, the plugin will by default
go to port 900 on the TCP/IP stack on which the plugin itself is operating. If you have
multiple WAS 4.0 systems running, it's possible to make a mistake and point your plugin to
the wrong WAS 4.0 server. If that happens, the web application you think should be
deployed in the web container might not be accessible by the plugin.

This problem will show itself in ways nearly identical to "WAS 4.0 application server not
started" and "URL doesn't contain value that matches defined context root or virtual host"
(pages 46 and 49).

Browser symptom

Log or trace symptom

The problem here is the URL won't match what's found in the "string matcher table."
Therefore, the message you'll see in the "ncf" trace is:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 52 -© 2001, IBM Corporation, Wash. Systems Center

ServletHost W Web.Group.Not.Found:."/SimpleJSP/simple.jsp"
ServletReques X Web Group Not Found
The web group /SimpleJSP/simple.jsp has not been defined

You'll not see anything in the logs that indicates the plugin is pointed to the wrong IP name
and port. You must simply review the configuration of httpd.envvars and make sure you
have it coded to the proper values. Checking the "application dispatching" information helps
isolate this problem.

How to correct

Visually inspect the RESOLVE_IPNAME and RESOLVE_PORT values in httpd.envvars
and correct if necessary.

Errors related to request not resolving to web application class file

The URL request may map to a Service request and be thrown "over the wall" into the plugin;
it may map to a virtual host and context root in the "string matcher table" and be routed over to
the web container, and then still fail.

The ability of a URL request to make its way over to the web container is based on your coding
of the webcontainer.conf file and the value of the <context-root> XML tag found in
application.xml of the deployed EAR file. But there's more to the webapp puzzle than that.
There is the web.xml file inside the webapp's WAR file, and that's where all manner of
problems can be introduced:

<servlet>

<servlet-name>Was40Ivp</servlet-name>

<servlet-class>com.ibm.ws390.samples.ivp.servletclient.Was40Ivp</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Was40Ivp</servlet-name>

<url-pattern>/PolicyServlet</url-pattern>

</servlet-mapping>

</web-app>

1

2

2

3

The webapp creation tool would
normally be responsible for making
sure this was all correct. But that
doesn't mean problems can't occur!

Where problems can be introduced into the web applications deployment descriptor

1. The <url-pattern> tag contains the "servlet mapping" string. If the value on the URL
doesn't match any <url-pattern> string defined in any webapp deployed in the
container, then the request will fail.

2. The <servlet-name> string is what ties together the <servlet-mapping> stanza of the
XML file with the <servlet> stanza. If the values don't match one-for-one, then the
request will fail. (Surprisingly, neither the AAT tool nor the SMS GUI checks for this error).

3. The <servlet-class> tag points to the actual class file that is to be invoked. It's quite
possible the class file named is incorrect, or the class file itself is corrupt or otherwise
invalid.

Servlet mapping string doesn't match

This will be a quite common problem. Between the time you create the web application and
set its <url-pattern> and the time you issue your first URL against that servlet, you'll
forget the format of the servlet mapping string. You'll take a guess, and the guess will be

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 53 -© 2001, IBM Corporation, Wash. Systems Center

wrong. The URL will get passed to the plugin based on a match to a Service statement,
and it'll get routed to the web container based on the <context-root> match. But without
a <url-pattern> match, WAS won't know what specific servlet to invoke.

What happens next is described in "Background: WAS 4.0 serving of static files and JSPs"
on page 16. The request will eventually filter down to being considered a request for a
static file, and the name on the URL won't be the name of a file WAS sees in the HFS. So
it'll issue the following error:

Browser symptom

"Recursive" error the result of the lack
of a defined error page for a "404 - File
Not Found" condition. See below.

Message is telling you the
SimpleFileServlet could not find the file
implied by your servlet mapping string

Default error page when servletmapping not found and WAS looks for static file without success

This error is somewhat ugly in that the page is really telling you two things: the static file
wasn't found (resulting in a 404 error), and the error page for the 404 condition wasn't found
either. Error pages for web applications are defined in the web.xml file, and up to this
point the sample web.xml files in this document have not included that XML coding. Here's
what that XML stanza would look like to specify a custom "404" error page (this example will
use the web.xml file as provided in "Activity: create web.xml file for WAR" on page 35):

<webapp>
:
<servlet>
<servlet-name>SimpleJSPServlet</servlet-name>
<servlet-class>SimpleJSPServlet</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>SimpleJSPServlet</servlet-name>
<url-pattern>/call_jsp</url-pattern>

</servlet-mapping>
<error-page>
<error-code>404</error-code>
<location>/404.html</location>
</error-page>
</web-app>

The server will look for this page in the root of the HFS directory structure that represents
the deployed WAR file. If the <location> string was /subdir/404.html, it would look
in the subdirectory /subdir. If you don't have an error page defined, or WAS can't find the
error page you specify, you get the "recursive error" symptom.

Log or trace symptom

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 54 -© 2001, IBM Corporation, Wash. Systems Center

The symptom of this problem will occur in the WAS 4.0 application server region's
SYSPRINT. The HTTP Server's "vv" trace will show the request being passed to the plugin
based on a match to a Service statement. The plugin's "ncf" trace will show normal
operation because the URL will match to a virtual host and context root string. The browser
symptom shows enough detail of the problem so that looking in the SYSPRINT is not
required.

How to correct

Correct the format of your URL, or change the <url-pattern> value in the web.xml file,
refresh your WAR file, regenerate your EAR file and redeploy the application.

Mismatch in servlet name in deployment descriptor

This problem is fairly obscure, and would occur only if you're hand-building the web.xml file
in the WAR file. A webapp construction tool would likely not create this problem.
Nevertheless, this symptom would occur any time the <url-pattern> value is defined
and found by WAS, but no associated servlet can be found in the web.xml file.

Browser symptom

"Recursive" error the result of the lack
of a defined error page for a "404 - File
Not Found" condition. See below.

Message is telling you the
SimpleFileServlet could not find the file
implied by your servlet mapping string

Default error page when servletmapping found, but no associated servlet defined

It turns out WAS will treat this problem just like when it can't get a hit on a "servletmapping"
string: it falls back and assumes the request is for a static file. It'll then go looking for the
file, and if it fails it'll throw the default "recursive error" page.

Log or trace symptom

The symptom of this problem will occur in the WAS 4.0 application server region's
SYSPRINT. The HTTP Server's "vv" trace will show the request being passed to the plugin
based on a match to a Service statement. The plugin's "ncf" trace will show normal
operation because the URL will match to a virtual host and context root string. The browser
symptom shows enough detail of the problem so that looking in the SYSPRINT is not
required.

How to correct

Reconstruct the WAR file with a corrected web.xml file. Make certain the
<servlet-name> string is present in both the <servlet-mapping> stanza as well as the
<servlet> stanza.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 55 -© 2001, IBM Corporation, Wash. Systems Center

Class file incorrect

In this case the servlet mapping string is correct, but the class file referenced in the
<servlet-class> tag of the web.xml file isn't correct, and therefore the class file can't
be found. The WAS web container will try to locate the class file, but will fail.

Browser symptom

Unfortunately, the symptom for this problem is very cryptic. What you will see on the
browser screen is the following:

Log or trace symptom

This problem lies entirely within the WAS 4.0 runtime, so the webserver's "vv" trace and the
plugin's "ncf" trace are of no use. The output provided to the server region's SYSPRINT is
by default minimal. If your trace settings in current.env are the default, you will not see
any evidence of this problem in the SYSPRINT.

However, if in your current.env file you have the following coded:

:
TRACEALL=1
TRACEBUFFLOC=SYSPRINT
TRACEPARM=00
:

then you'll get some information out to your SYSPRINT that'll indicate the problem. Here's
what you'll see:
:

"Failed to load servlet": javax.servlet.ServletException:
Servlet [SimpleJSPServlet]:

:
Could not find required servlet class - SimpleJSPServletx.class

:
Unexpected internal engine error while sending error to client:

"/SimpleJSP/call_jsp"
:

Why the resulting message to your browser "contained no data" is still a mystery.

How to correct

Very carefully inspect your web.xml file and make sure the pointer to the class file in the
<servlet-class> tag is correct. Watch for misspellings of the file name, or possibly an
error in any of the qualifiers of a longer package name. If you spot an error, correct it,
re-assembly the WAR/EAR file and redeploy the application.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 56 -© 2001, IBM Corporation, Wash. Systems Center

Migration Scenarios
This section covers what to do when migrating your web application environment from the WAS 3.5
SE environment to the new WAS 4.0 environment. The news here is good, because the new WAS
4.0 plugin is capable of running servlets locally or routing the request over to the WAS 4.0 runtime.
The migration path looks like this:

HTTP Server

WAS 3.5 SE

Servlet

WAS 4.0 Runtime

EJB Container

RMI / IIOP
EJB

S S S

WAS 3.5 SE was.conf configuration file

HTTP Server

WAS 4.0 plugin

Servlet

WAS 4.0 Runtime

EJB Container

RMI / IIOP
EJB

S S S

Migrated WAS 3.5 was.conf file (updated to be WAS 4.0 was.conf)

HTTP Server

WAS 4.0 plugin

WAS 4.0 Runtime

EJB Container

EJB
S

WAS 4.0 plugin was.conf file

WAS 3.5 Updated
Use existing WAS 3.5 SE and
modify it to allow RMI/IIOP
connection from servlets to
EJB. Existing servlets
continue unchanged.

WAS 4.0 Plugin
Configure WAS 4.0 plugin and
use WAS 3.5 was.conf (small
changes required). Existing
servlets continue unchanged.

Migrate Apps to WAS 4.0
As you migrate webapps over
to WAS 4.0 runtime, simply
comment-out those
definitions from was.conf

Bring existing
was.conf over
and use with
WAS 4.0 plugin

Remove defs for
migrated

applications

"Step #1"

"Step #2"

"Step #3" Web Container

Servlet

Migration path from WAS 3.5 SE environment to WAS 4.0 runtime

Background: overview of the three steps of migration

The migration path is a fairly straight-forward thing:

Step 1: update WAS 3.5 SE to communicate with WAS 4.0 runtime

Assuming you have a WAS 3.5 SE environment presently operating on your system, you
probably have servlets configured and operating in the WAS 3.5 plugin. The objective of
this step is to update your WAS 3.5 SE environment so servlets designed to communicate
with EJBs can do so.

Step 2: configure WAS 4.0 plugin and use existing was.conf configuration file

In this step you change your plugin environment from WAS 3.5 SE to the new WAS 4.0
plugin. Because the new plugin is capable of running servlets, your existing servlet base
can easily be moved to the new WAS 4.0 plugin by simply using your existing was.conf
configuration file with the new WAS 4.0 plugin.

Step 3: migrate web applications over to WAS 4.0 web container environment

Once you have the WAS 4.0 plugin configured, you may migrate your webapps over to the
WAS 4.0 web container environment at your leisure. This involves packaging the webapps

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 57 -© 2001, IBM Corporation, Wash. Systems Center

into WAR files and deploying them into the web container, and then removing from
was.conf the deployedwebapp and webapp definitions for that web application.

Activity: configuring the WAS 3.5 plugin code to allow communication with EJB

This section assumes you already have a WAS 3.5 SE environment working on your system,
and that your objective is to update that environment so that servlets written to communicate
with EJBs can do so. This section does not provide the full instructions on how to configure the
WAS 3.5 SE plugin.

The WAS 3.5 plugin configuration is very similar to that of the WAS 4.0 plugin. But some of the
directories are different, so don't assume the WAS 4.0 plugin directions apply to the WAS 3.5
plugin environment.

Any given webserver may have either the WAS 4.0 plugin configured, or the WAS
3.5 plugin configured, but not both at the same time! See "Question: can both
plugins be configured in the same webserver?" on page 4.

Very Important Note:

Do the following:

This document assumes you'll do the appropriate backing up of any files that you're changing.Note:

! Edit the was.conf file and add the following to the appserver.classpath property:

/usr/lpp/WebSphere/lib/ws390crt.jar

This provides the client (the servlet) access to the necessary client-side Java components to
access the WAS 4.0 EJB runtime. Without this, the client would try, but fail, to make the
connection.

Why?

! Add a new property to the was.conf file (all on one line):

appserver.java.extraparm=-Djava.naming.factory.initial=
com.ibm.ws.naming.ldap.WsnLdapInitialContextFactory

The client (the servlet) needs to be know where the "initial context factory" code resides so that
it can look up the home interface of the target EJB and create the object. Without this, the
client would never be able to locate the bean's home interface.

Why?

! Edit the httpd.envvars file and add the following two variables:

RESOLVE_IPNAME=<fully qualified IP host name of server on which WAS 4.0 SMS exists>
RESOLVE_PORT=900 (or port on which WAS 4.0 SMS server is listening if not default)

The client (the servlet) needs to know the location of the Systems Management Server so that
it can connect to the WAS 4.0 runtime and request the services of the runtime. Absent this
update, the client wouldn't have a clue where to go to satisfy its desire to run the EJB.

Why?

With these changes made, stop and restart the webserver to pick up the changes. Your WAS
3.5 plugin environment is now ready to accept servlets written to access EJBs.

"Step #1" from the picture at the beginning of this section has been satisfied.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 58 -© 2001, IBM Corporation, Wash. Systems Center

Activity: changing plugin from WAS 3.5 to WAS 4.0 plugin

Assuming that you have a WAS 3.5 SE plugin running in your webserver, you are now ready to
change the environment to use the new WAS 4.0 plugin. This involves the following things:

WAS Plugin Code

HTTP Server

httpd.conf

httpd.envvars

was.conf

ServerInit
Service
ServerTerm

Change the directory and
filename pointers on all

occurrences of these three
statements in the
httpd.conf file.

Insure this file has
RESOLVE_IPNAME and

RESOLVE_PORT variables

Make certain this file has
been updated to work with

the 4.0 plugin

Modifications needed to WAS 3.5 plugin environment to make it run the WAS 4.0 plugin

Question: can WAS 3.5 SE was.conf file be used with WAS 4.0 plugin?

Yes. The format of the was.conf is largely identical between the two. There are a few
parameter changes you need to make when migrating a WAS 3.5 SE copy of the
was.conf for use with the WAS 4.0 plugin. This is good news for those who have invested
considerable time configuring webapps for the WAS 3.5 plugin and now wish to migrate to
the WAS 4.0 plugin environment. What is required to use the WAS 3.5 was.conf with the
WAS 4.0 plugin is explained next.

Activity: preparing a WAS 3.5 was.conf for use with WAS 4.0 plugin

If you wish to use an existing copy of a WAS 3.5 SE was.conf with your new WAS 4.0
plugin, do the following:

This document assumes you'll do the appropriate backing up of any files that you're changing.Note:

! Edit the copy of was.conf you wish to use with the WAS 4.0 plugin. Locate the
appserver.version property and change its value from 3.50 to 4.00.

! Remove all deployedwebapp and webapp statements for applications you intend to
run in the web container environment of the WAS 4.0 runtime. (For the WAS 4.0 plugin
to correctly route requests over to the web container for execution, it must see that no
local webapp definitions exist in the was.conf.)

! If you wish (but it is not critical), you may remove the ws390crt.jar file from the
appserver.classpath statement and remove the appserver.java.extraparm
statement from the was.conf file. These are the updates outlined in "Activity: configuring
the WAS 3.5 plugin code to allow communication with EJB" on page 58.

Activity: changing the plugin pointers in the httpd.conf file

Assuming you have a working WAS 3.5 plugin environment, the steps necessary to point to
the new WAS 4.0 plugin involve changing three things in the httpd.conf file:

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 59 -© 2001, IBM Corporation, Wash. Systems Center

ServerInit /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:init_exit

/usr/lpp/WebSphere,/etc/was.conf

Service /webapp/examples/* /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit

ServerTerm /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:term_exit

1 2 3

4 5

The Service and ServerTerm statements have
updates identical to the ServerInit, minus items
4 and 5 (which are specific to the ServerInit)

Changes necessary to point to new WAS 4.0 plugin

Each numbered block in the picture is described next (the "to do" activities follow):

1. This is the directory in which the WAS product is installed. By default this is
/usr/lpp/WebSphere for both WAS 3.5 and WAS 4.0. Clearly if you have both versions
installed on the same system, both can't be installed at the same mount point. Therefore you
have to be careful when you code the WAS 4.0 plugin's updates because you'll need to point to
where WAS 4.0 is installed.

2. This is the directory under the install root (numbered block #1) which contains the plugin code.
For WAS 3.5, this value was /AppServer/bin. For WAS 4.0 it is /WebServerPlugIn/bin.

3. This is the file name of the plugin code. For WAS 3.5 it was was350plugin.so, for WAS 4.0 it
is was400plugin.so.

4. This is the first parameter on the ServerInit statement, and is separated from the rest of the
statement by a blank space (and all coded on one line). This points to the install root of the WAS
code. This value should be identical to the value you coded for numbered block #1. Make sure
you're pointing to the right directory for WAS 4.0 and not back to the directory where WAS 3.5
was installed.

5. This is the second parameter on the ServerInit. It points to the directory and file name for the
plugin configuration file. It is separated from the first parameter by a comma. This should point to
the was.conf you updated as described in "Activity: preparing a WAS 3.5 was.conf for use with
WAS 4.0 plugin" on page 59.

Do the following:

This document assumes you'll do the appropriate backing up of any files that you're changing.Note:

! Edit the httpd.conf for your webserver and locate the ServerInit statement.
There should be only one, and it if you're presently running WAS 3.5 SE it'll point to
WAS 3.5.

! Inspect the install root directory specified on the ServerInit (numbered block #1 in
the picture) and make change it to point to where WAS 4.0 is installed on your system.

! Inspect the directory and filename of the plugin code itself on the ServerInit
statement (numbered blocks #2 and #3 in the picture). Change this to:

/WebServerPlugIn/bin/was400plugin.so:init_exit

Note the upper-case "I" in "PlugIn" of the directory /WebServerPlugIn. That's
something easy to overlook, and if overlooked it will cause the plugin to not be found.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 60 -© 2001, IBM Corporation, Wash. Systems Center

! Inspect the first parameter on the ServerInit (numbered block #4) and change it to
the install root of WAS 4.0. This should match the value you coded for numbered block
#1.

! Inspect the second parameter on the ServerInit and make certain it points to the
directory and file of the was.conf you wish to use.

! Now go through every Service statement in your httpd.conf and make certain that
the directory and plugin module points to the install root (block #1), the plugin directory
(block #2) and plugin module name (block #3).

! Finally, locate the ServerTerm statement and change the directory and plugin module
name to equal that of what you provided the ServerInit and Service statements.

It is important to note that function name on the module (what follows the colon after the
module name of was400plugin.so) is different for the ServerInit vs. Service vs.
ServerTerm. The function name for ServerInit is :init_exit, for Service
:service_exit and ServerTerm :term_exit.

Note:

Activity: making certain the httpd.envvars file is correctly configured

The steps here are the following:

! Edit your httpd.envvars file and make certain the JAVA_HOME variable is present
and set to the following:

JAVA_HOME=/usr/lpp/java2/J1.3

or wherever the Java 1.3 JDK is installed on your system. You'll probably already have
this if you had WAS 3.5 SE running. Both WAS 3.5 SE and the WAS 4.0 plugin require
JDK 1.3.

! Stay in your httpd.envvars and add the following to the NLSPATH variable:

/usr/lpp/WebSphere/WebServerPlugIn/msg/%L/%N

or whatever your WAS 4.0 install root happens to be.

! Add the following two variables to httpd.envvars:

RESOLVE_IPNAME=<fully qualified IP host name of WAS 4.0 SMS server system>
RESOLVE_PORT=900 (or port on which WAS 4.0 SMS server is listening if not default)

If your HTTP Server (and therefore the plugin as well) is on the same system as your WAS
4.0 runtime, and you configured the SMS server to use the default port value of 900, you
don't need these two values. But coding them is relatively easy, and it avoids confusion.
So go ahead and code these even though strictly speaking they're not always necessary.

Note:

Activity: restart webserver and validate plugin initialization

At this point you're ready to see if all your changes were correctly entered, at least as far as
allowing the plugin to initialize properly. Go to "Activity: validation and basic debugging of
plugin" on page 7 for instruction on validating the initialization of the plugin.

Activity: migrating web applications from plugin to WAS 4.0 runtime

There are two steps involved with this:

1. Packaging your webapp into an WAR file format and deploying that application into the
WAS 4.0 runtime environment.

2. Removing from the was.conf file any application definitions for the application.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 61 -© 2001, IBM Corporation, Wash. Systems Center

This document is not intended to cover the packaging and deployment activities. However, the
information provided in "Webapps Running in WAS 4.0 Runtime and Driving EJB" on page 9
and "Example: PolicyWebApp in the PolicyIVP Application" on page 28 covers some of the
background on this process.

The reason why the application definitions (deployedwebapp and webapp) in was.conf are
removed is because the WAS 4.0 plugin will seek to run the application locally (within the plugin
rather than over in the web container) if it gets a "hit" on a deployedwebapp "rooturi" definition
in the was.conf. Therefore, to make the request flow over to the WAS 4.0 runtime after the
application has been deployed there, you must remove the application definitions from
was.conf.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 62 -© 2001, IBM Corporation, Wash. Systems Center

Advanced Webapp Topics
This section contains information that is more advanced than basic configuration and validation. It
is by no means a comprehensive reference for all such information: the WAS 4.0 manuals serve
that purpose. This section will contain things we at the Washington Systems Center came across
in our testing and development and thought might be useful to include in a document such as this.

This section is frequently updated with new information. Check the date in the footer of each page and
compare against other copies of this document to see if you have an older version.

Note:

Background: the plugin's JVM properties file

The new WAS 4.0 plugin runs inside the HTTP Server's address space, but interestingly has
within the plugin itself a copy of the JVM (Java Virtual Machine). That makes sense: the plugin
is capable of running servlets (just like WAS 3.5 SE did), so it would need a JVM to do that.
That copy of the JVM uses, like all JVMs everywhere, a "properties" file. The JVM properties
file provides the JVM information about how it is to behave.

For most people and their plugin environment, the default JVM properties file is what is used.
That's because most instructions (including those provided earlier in this document) don't
indicate to do what's necessary to bring into play a custom copy of the JVM properties file (the
default is fine for most implementations). But to do some of the "advanced" things you need to
modify the plugin's JVM properties, and to do that you need to point your WAS 4.0 plugin to its
own custom copy of the file:

HTTP Server
was.conf

WAS 4.0
Plugin

jvm.properties

appserver.jvmpropertiesfile=<dir and filename>

The pointer to a custom JVM properties file

The default copy of the properties file (the one that is used if you don't specify any directory or
filename on the appserver.jvmproperties statement) is the following:
/usr/lpp/WebSphere/WebServerPlugIn/properties/default_global.properties

It is this file you would copy to a custom directory and point to out of your was.conf. Then you
could update your copy of the file with some of these advanced functions.

Activity: create custom JVM properties file for your WAS 4.0 plugin

! Copy default_global.properties from the from the /WebServerPlugIn/properties
directory to the directory in which your plugin's was.conf file resides. Make sure the file
has permissions of at least 644.

! Rename the copied file to something other than default_global.properties. It is no
longer a "default" properties, so something like jvm.properties would be better.

! Edit was.conf and update the appserver.jvmproperties= statement and provide the
directory and filename of your copied and renamed file.

Your plugin now has its own copy of the JVM properties file. The change won't take effect until
you restart the webserver.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 63 -© 2001, IBM Corporation, Wash. Systems Center

Background: how the plugin communicates with the WAS 4.0 runtime

For the plugin to do its job, it needs to know the hostname and port number for the Systems
Management Server (SMS) to which you wish the plugin to connect. You tell it this in the
httpd.envvars file, where the RESOLVE_IPNAME and RESOLVE_PORT variables provide that
information:

HTTP Server

WAS 4.0 Plugin

httpd.envvars

RESOLVE_IPNAME=wsc4.washington.ibm.com
RESOLVE_PORT=900

WAS 4.0 Runtime

SMS

Port 900 of wsc4.washington.ibm.com host

Pointers to the SMS of the runtime serviced by the plugin

That WAS 4.0 Runtime could be on the same system, on a different LPAR on the same box, or
clear across the world.

Background: what the plugin wants to know from the SMS

There are two basic pieces of information for which the plugin is interested:

HTTP Server

WAS 4.0 Plugin

WAS 4.0 Runtime

SMS

Appl.
Server

Appl.
Server

Appl Appl

Appl

Appl

1.What servers are in runtime environment?

2.What applications are deployed in each?

... and periodically check to
see if this information has

changed

Two basic things the plugin wants to know

How to modify the default behavior of the plugin for these things is provided next.

Activity: how to limit the number of J2EE servers with which the plugin will communicate

The default behavior of the plugin is seek knowledge of all application servers in the runtime
environment. But you can limit the plugin to maintain knowledge of a specified list of servers.
This would be applicable in an environment where, for example, you had twenty application
servers, one of which had web applications deployed and nineteen of which did not. Why
spend energy checking those nineteen servers you know don't contain web applications? With
this setting you could limit the search to just the server you wish:

! Edit the plugin's jvm.properties file (not the 4.0 runtime's application server JVM
properties, but the new plugin's JVM properties. See "Activity: create custom JVM
properties file for your WAS 4.0 plugin" on page 63 for a discussion of setting up a custom
JVM properties for your plugin).

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 64 -© 2001, IBM Corporation, Wash. Systems Center

! Set the following property:

com.ibm.ws390.wc.includeWebContainers=<list of servers delimited by a coma>

As of the writing of this document (see footer for date), the format of the list of servers
was not clear to the author. The issue is whether the list referenced the Server or the
Server Instance. Awaiting response from development.

Open Issue:

! Stop and restart the webserver to pick up this change.

Activity: how to alter the interval between which the plugin checks for new J2EE servers

By default the plugin will poll the SMS every 10 minutes to see if additional servers have been
defined. You may wish to set a longer time, particularly if your environment is relatively stable
regarding the number of servers configured.

Do the following:

! Edit the plugin's jvm.properties file.

! Set the following property:

com.bim.ws390.wc.serverCheckInterval=<interval in minutes>

! Stop and restart the webserver to pick up this change.

Activity: how to alter the polling interval used by the plugin to check for new applications

By default the plugin will query each application server every two minutes to see if any new
applications have been deployed. You may wish to set this value higher, particularly if your rate
of new application introduction is low, or you have a large number of servers and wish to
minimize the amount of polling.

Do the following:

! Edit the plugin's jvm.properties file.

! Set the following property:

com.bim.ws390.wc.webappupdateinterval=<interval in minutes>

This value should be set to something less than the serverCheckInterval.Note:

! Stop and restart the webserver to pick up this change.

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 65 -© 2001, IBM Corporation, Wash. Systems Center

(This page intentionally left blank)

Index

4
404

coding custom error page, 54

5
500

error in exit routine, 44
error when bad Service directive, 43
error when plugin not initialized, 42
when servlet not configured, 48

8
8080

use of instead of port 80, 11

A
AAT

using to construct EAR, 37
application dispatching

PolicyIVP example, 32
relation to string matcher table, 23
used to debug mismatched URL, 50
verification information, 20

applications
binding to virtual host, 12
problem when not bound to virtual host, 51

B
BBOU0516E

error locating server, 46
binding

applications to virtual hosts, 12
browser

error message table, 40
key indicators of problems, 25

C
class file

not found error, 56
compatibility

of WAS plugin and other plugin code, 4
container

overview, 3
context root

analagous to rooturi, 12
indication of applications bound, 19
relation to servlet mapping, 15
single slash catch all, 14
statement in webcontainer.conf, 13
used in PolicyIVP example, 28
using wildcards, 14
where defined for application, 14
XML tag, 14

current.env
TRACEALL setting, 27
TRACEBUFFLOC setting, 27

D
debugging

basic background, 21
deployment descriptor

context root definition, 14
for web application, 15

document contains no data
error when class file not found, 56

E
EAR file

creating for SimpleJSPServlet, 37
used by PolicyIVP program, 28
using AAT to construct, 37

error pages
coding custom for webapps, 54

F
Failed to Load Servlet

error trying to run in plugin, 48
file not found

error condition, 42
error resulting from bad web.xml coding, 55

flowchart
of servlet vs JSP vs static file, 16
of webapp execution logic, 17

H
HTTP

configuration file, 1
listener, 1

http.conf
PolicyIVP example, 30

httpd.envvars
4.0 plugin message catalog, 6
JAVA_HOME variable, 6
NLSPATH, 6
RESOLVE_IPNAME update, 7
RESOLVE_PORT update, 7

I
IVP

supplied with WAS plugin, 7

J
J2EE servers

limiting number plugin communicates with, 64
JAR command

used to create WAR file, 36
JAVA_HOME

cause for plugin failure, 7
variable coded in httpd.envvars, 6

JSP
serving from WAS, 16

jvm.properties
for plugin code, 63
pointer to webcontainer.conf, 9

L
libadapter.so, 6

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 67 -© 2001, IBM Corporation, Wash. Systems Center

M
migration

moving plugin from WAS 3.5 to WAS 4.0, 59
overview, 57
running 3.5 and 4.0 plugin together, 4
webapps from plugin to WAS 4.0 runtime, 61

N
NLSPATH

update for WAS 4.0 plugin, 6

P
plugin

altering application polling interval, 65
altering J2EE server polling interval, 65
background of WAS 4.0 plugin, 3
both 3.5 and 4.0 in same HTTP Server, 4, 6
changing from 3.5 to 4.0 in httpd.conf, 59
changing from WAS 3.5 to WAS 4.0, 59
comparison of 3.5 plugin to 4.0 plugin, 3
compatibility with other plugin code, 4, 6
error when not initialized, 42
error when servlet not configured, 48
how HTTP server knows to initialize, 5
IVP, 7
limiting number of J2EE servers, 64
overview, 2
passing request over to WAS 4.0 container, 3
routing requests to WAS runtime, 17
servlets in WAS 4 plugin, 7
which to use, 4

PolicyIVP
and jvm.properties file, 30
and was.conf, 30
application dispatching example, 32
context root definition for, 14
example of httpd.conf coding, 30
example of httpd.envvars coding, 30
example of servlet mapping, 15
example of WAR file, 15
overview of, 28
server region SYSPRINT, 31
webcontainer.conf example, 31

port
problem with port 80, 11

R
recursive error

problem when servlet mapping not matched, 53
when servlet not found, 55

RESOLVE_IPNAME
pointer to SMS server location, 7
problem when not pointed properly, 52
update in httpd.envvars, 7
updating WAS 3.5 httpd.envvars, 58

RESOLVE_PORT
pointer to SMS server port, 7
problem when not pointed properly, 52
update in httpd.envvars, 7
updating WAS 3.5 httpd.envvars, 58

rooturi
analagous to context root, 12

S
ServerInit

statement in httpd.conf, 5
ServerInit statement

coding only one for plugin, 5
what it does, 5

ServerTerm statement
coding only one for plugin, 5
what it does, 5

Service handler
performed no action problem, 42, 43, 44

Service statement
coding more than 1, 5
error when miscoded, 43
error when not found, 42
used for SimpleJSPServlet, 38
used in PolicyIVP example, 30
validating it gets invoked, 22
what it does, 5

servlet mapping
background on how it works, 15
definition in web.xml, 15
error when not matched by URL, 53
problems that can arise, 24
relation to context root, 15
used in PolicyIVP example, 29

servlets
running in WAS 4 plugin, 7

SimpleJSPServlet
creating war file with JAR command, 36
how it works, 34
Service directive, 38
using AAT to construct EAR, 37
web.xml file, 35
webcontainer.conf file, 37

smiley face, 7
SMS EUI

used to deploy SimpleJSPServlet, 38
SMS server

pointing plugin to, 7
static files

serving from WAS, 16
SimpleFileServlet program, 17

string matcher table
found in ncf log, 23
relation to application dispatching, 23

SYSPRINT
PolicyIVP example, 31
setting TRACEBUFFLOC to, 27
what applications are bound, 19
what webcontainer.conf is used, 19

T
TRACEBUFFLOC

setting to SYSPRINT, 27
tracelevel

setting in was.conf, 24

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 68 -© 2001, IBM Corporation, Wash. Systems Center

V
validation

correct class file invoked, 27
of webapp not run locally, 22
that some portion of app works, 27
that URL gets to webserver, 22
that URL maps to plugin, 22
URL mapped to WAS runtime, 23

verification
of WAS plugin, 7
that plugin knows of applications, 21
WAS plugin IVP program, 7

Virtual Host Not Found
error when application not bound, 51
error when plugin not connected to WAS server, 52
error when URL does not match virtual host, 49
when URL does not match context root, 49
when WAS appserver not started, 46
when webcontainer not configured, 46

virtual hosts
alias in webcontainer.conf, 10
alias list in SYSPRINT, 20
and context roots, 10
binding applications to, 12
coding in lower case, 12
concept, 10
defining in webcontainer.conf, 11
defining more than one, 12
defining only one, 11, 13
error when URL does not match, 49
indication of applications bound, 19
problem symptom when app not bound, 51

W
WAR file

creating one by hand, 35
example of for PolicyIVP, 15
using WinZIP to view, 36

WAS
plugin configuration file, 5
plugin for WAS 4.0, 3
which plugin to use, 4
why called plugin, 2

WAS 3.5
changing to WAS 4.0 plugin, 59
updating to work with WAS 4.0, 58

was.conf
3.5 file used with 4.0 plugin, 59
configuration file for plugin, 5
enabling tracing, 24
pointer to plugin jvm.properties file, 63
using 3.5 version with 4.0 plugin, 6

web application
binding to virtual host, 12
custom error pages, 54
fundamental aspects, 1
migrating from plugin to WAS 4.0 runtime, 61
overview, 1
plugin vs. runtime execution, 17

web container
error when not configured, 46
indication of file in use, 19
overview, 3

web.xml
coding custom error pages, 54
creating for SimpleJSPServlet, 35
problems when coded improperly, 53
problems when hand-coding, 55

webapp/examples
IVP program, 7

webcontainer.conf
and PolicyIVP example, 31
comments contained within, 14
creating, 9
default supplied with WAS, 10
error when not configured, 46
for SimpleJSPServlet example, 37
pointer from jvm.properties, 9

WinZIP
use to view WAR file, 36

ws390crt.jar
updating WAS 3.5 to work with WAS 4.0, 58

X
XML

tag for context root, 14

Configuring Web Applications in WAS 4.0

Monday, October 08, 2001- 69 -© 2001, IBM Corporation, Wash. Systems Center

End of Document

