
NSC White Paper

A Web Server Primer: A PC Perspective

Date: November 3, 1998
Authors: Trish Sundgaard, Alan Bodiford, and Sean Takats

Abstract

Among the wealth of information about the Web on the Web, not much exists between
“click here for cool stuff” and highly technical and/or product-specific
documentation— at least about Web servers. A significant portion of what
documentation is available about Web servers, scarce as it is, examines the topic of
Web servers from a UNIX-only view; PC-familiar people may find it unfathomable
without significant study. This paper provides a concise overview of the basics of this
technology by examining the Web server side of the World Wide Web from the PC
perspective. Topics covered include communications, configuration and performance,
forms and scripts, gateways, Java, and security.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 1

Table of Contents

20 What about Certificates? .
17

 How can you secure the data while it’s enroute between the server
 and the browser? .

17 Authentication .
16 Confidentiality/Privacy .
16 Access Control .
15 So what’s involved in Web server Security? .
15Web Server Security .
13 So what about Java? .
12 What are Gateways and how do they work? .
11 How does this process differ from serving static HTML? .
9Forms & Scripts, Gateways, and Java .
9 What other factors can affect performance? .
8 Network Dispatching .
8 Multiple DNS entries .
7 Single server model .
7 How does Clustering affect performance? .
7 How does Caching help? .
6 How can hardware upgrades affect performance? .
6Configuration and Performance .
3 How do servers and browsers communicate? .
3 What are Web Servers? .
3Web Servers - Overview .
3Introduction .

Page 2Table of Contents .

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 2

Introduction

Written for users accustomed to a PC perspective, this paper describes the
fundamental functions, attributes, and terms associated with the Web server side of the
World Wide Web network computing model. While many people find the Web
fascinating, most have neither the time (nor the endurance) to slog through and find the
information available. When they do, often they may find information either too
technical or too simplistic to coherently introduce the topic.

This document attempts to find a balance within that spectrum. Busy people with some
familiarity with the Web and even minimal technical background should find this a good
introductory paper on Web servers; hence, the name primer. Our discussion describes
Web servers and how they work. For brevity’s sake, we exclude other Internet
applications such as FTP, telnet, SNMP, etc. In this paper we explore the following:

I. Web Servers - Overview
II. Configuration and Performance
III. Forms & Scripts, Gateways, and Java
IV. Web Server Security

Web Servers - Overview
What are Web Servers?

A Web server is a network-attached computer running software that can access
programs and data arranged in a file hierarchy. The server schedules web client
(browser) requests and responds to those requests. Web servers log activity. World
Wide Web servers do these things over the Internet.

Web servers differ from one another in terms of their file structure, naming conventions,
and the like. They do, however, share some commonalties:

� A directory for configuration files
� A directory for HTML documents
� A directory for executables.

The main configuration file will specify the port number the server runs on, who has
administrative access to the server, and the names and directories where other
configuration files are located. IBM’s Internet Connection Servers, Lotus’ Domino Go,
and Domino Go Pro servers offer Configuration Forms that you access with a browser
to modify the server’s configuration. Domino uses a Lotus Notes client to set up.
Microsoft and Netscape also offer setup through a graphical user interface. Other files
you will find in most Web servers include: an access control file to define who may
access what information on the server and a MIME (Multipurpose Internet Mail
Extension) type mapping file and to identify the file extensions associated with MIME
content types. MIME content types tell the browser what kind of data its response
contains, which leads us to the next question …
 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 3

How do servers and browsers communicate?

All computers communicate on the Internet using TCP/IP (Transmission Control
Protocol/Internet Protocol), a protocol “suite” composed of numerous protocols
providing various functions at the different layers of the suite. Often you will hear this
referred to as the TCP/IP protocol stack due to its layered model. An HTTP (Hypertext
Transfer Protocol) exchange takes place over a TCP/IP socket that closes at the end of
the exchange. (In brief, sockets request network services from the operating system
and serve as the endpoint of the connection...but a detailed discussion of sockets is
beyond the scope of this document. This is covered in depth by Eamon Murphy, Steve
Hayes, and Matthias Enders, in TCP/IP Tutorial and Technical Overview, Fifth Edition,
Prentice Hall PTR, 1995. See also the Related Publications section for further TCP/IP
study.)

Web servers use HTTP to communicate with Web browsers. HTTP is an application-
level protocol for distributed, collaborative, hypermedia information systems [RFC
2068, Fielding, et al., p. 7]. Sometimes you will hear Web servers referred to as httpd,
which stands for Hypertext Transfer Protocol Daemon. httpd is a type of information
server or small program that uses HTTP protocol. Daemons (a UNIX term) provide
background server functions such as name server functions (named) or routing
(routed). The world of the Web reflects UNIX terms and syntax because the
Internet— and the Web— were created by people who worked in a UNIX environment.
This explains why the syntax of the Internet and the WWW differ from common PC
syntax (or Mac for that matter). You can run an HTTP daemon on any multi-tasking
operating system (OS) with a TCP/IP stack; however, it works better if you have a
multi-tasking system like MacOS Version 7.1 or later, and best on a pre-emptive
multi-tasking, multi-threading OS like OS/2 or Windows NT in this environment. We are
excluding multi-user operating systems from this discussion.

In HTTP Version 1.0, each browser connection provides a self-contained session for
each transfer of information. The new version, HTTP 1.1, a Proposed Standard
described in RFC (Request For Comment) 2068, permits persistent connections. These
work much like phone calls, except that the ‘Net uses domain name resolution to
translate domain names like www.ibm.com to IP addresses like 204.146.46.133 while
the phone company uses directory assistance— if you know the name and not the

phone number (ah...progress). Using HTTP 1.0,
you would have to make a new call for each
request; HTTP 1.1 permits multiple requests.
Either way, each time you access a Web
document, four basic processes happen:

1. Connect

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 4

A Web Server Primer

ANALOGY

ü YOU CALL DIRECTORY ASSISTANCE
(DOMAIN NAME SERVER OR DNS).

ü THEY GIVE YOU THE NUMBER (IP ADDRESS).
ü YOU PRESS ONE TO PAY EXTRA AND DIAL THE

CALL. (PACKETS GO).
ü THE PHONE IS ANSWERED (SERVER LISTENS).
ü YOU ASK FOR WHOMEVER YOU CALLED TO

SPEAK TO (REQUEST CONNECTION).
ü THE PERSON YOU CALLED COMES TO THE

PHONE AND SAYS “HELLO” (SERVER

ACCEPTS).

The browser uses the HTTP scheme to locate network resources via HTTP. It requests a URL (Uniform
Resource Locator) in the following format:

protocol://hostname.com:portnumber

for example
http://info.cern.ch:8080

The server typically listens for connection requests on port 80 the “well-known port”
assigned to HTTP requests. (Other protocols have their own default well-known ports.)
In the example above, I used a typical port number for Web server testing. (You
configure this, as mentioned above, in the main configuration file.)

2. Request
The request specifies the actual resource, e.g., the above
example would return the default home page of the test
database. The following example shows a URL with the path
and Web page explicitly identified. The request will also
contain a request method, in this case, GET

METHOD GET http://info.cern.ch/WWW/HTML.html HTTP/1.0

GET is the most common request method. Other methods
include: HEAD, POST, PUT, and DELETE; the last three require
more than read access to the files and data on the server;
however, POST may be used in CGI (Common Gateway
Interface) scripts (discussed in this document under Scripts).
The last part of the GET request specifies which version of
HTTP you are using; this example uses 1.0.

3. Respond
The server interprets the request and sends the response to the
browser. Preceding the data is a MIME (Multipurpose Internet Mail

Extension) header that tells the browser how to interpret the response (that is, what’s in
it and if the response includes something beyond HTML (Hypertext Markup Language)
like images, sound, or video). The browser parses the request, and either (A) issues
another connection request (HTTP 1.0) or query (HTTP 1.1) or (B) renders the response
and displays it.

4. Close
After pumping the response down the socket, the server closes

the connection...usually. Either side of this connection can shut it down, like when you

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 5

A Web Server Primer

ANALOGY

ü YOU ASK THE PERSON

YOU CALLED FOR

WHATEVER INFORMATION

YOU NEED (REQUEST

URL).
HTTP 1.0
ü YOU CALL BACK FOR

EACH QUESTION (A
MAJOR REASON FOR

WORLD WIDE WAIT)
(NEW CONNECTION

FOR TEXT AND EACH

GRAPHIC ELEMENT).
HTTP 1.1
ü YOU ASK QUESTIONS

UNTIL YOU HAVE WHAT

YOU NEED (PERSISTENT

CONNECTION)

ANALOGY

ü YOU GET YOUR

INFORMATION.

ANALOGY

ü YOU HANG UP.

push the STOP button on your browser to stop loading a Web page that someone used
uncompressed graphics on .…

HTTP 1.0 remains the most common version of this protocol in use since the vast
majority of installed browsers are Netscape Navigator and Microsoft Internet Explorer
which still support HTTP 1.0. The latest versions of these browsers support HTTP 1.0
plus extensions; these include an extension to support persistent connections. Full
HTTP 1.1 support has not been achieved at this time. Persistent connections eliminate
a significant amount of network traffic generated by establishing connections for each
request. In addition, persistent connections conserve CPU activity. Speaking of CPU,
we next explore the server from a hardware and software performance and
configuration standpoint .…

Configuration and Performance

As the Internet handles increasingly heavy traffic, performance becomes a primary
concern for any Web site. Users do not want to wait needlessly for a page to load.
While the topology of the Internet’s backbone are beyond the control of most
webmasters, they can still tune their servers in several ways to improve performance.
Web server performance is usually measured in three variables:

� Connections per second
� Bytes per second
� Round trip time

Comparative papers exist to discuss the details of individual manufacturer’s Web
server’s performance in specific figures, so we will not. (Use any Web search engine
and search on web servers compare or web servers performance. Or look up the
manufacturer’s web server web site.) We will look at a few of the most effective
methods of tuning a Web server. These general concepts will help to improve the
performance of virtually any Web server.

Four major methods of improving performance are as follows:
� Upgrading hardware
� Caching
� Using multiple/networked drives
� Clustering servers

These concepts are all interrelated and interdependent. For example, a hardware
upgrade may be necessary to take full advantage of caching, as we will see.

How can hardware upgrades affect performance?

Hardware upgrades offer the easiest method for improving web server performance.
Just as you would optimize any computer for maximum performance, all aspects of a

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 6

A Web Server Primer

server should be optimized in order to handle a heavy load of client requests. Any of
the following hardware elements could create a bottleneck in your web server
environment:

� Processor speed
� Memory (RAM)
� Storage access (Disk) speed
� Network (LAN) speed

Upgrading your hardware can mean great improvement for relatively little investment.
Adding RAM, for example, costs very little, but may result in superior performance. And
having sufficient memory will permit you to employ another performance enhancing
technique: caching.

How does caching help?

Caching (loading files or directories into memory) allows the Web server to respond
more quickly to browser requests. Essentially, the Web server retains these cached
files, and the ones most frequently requested, in memory (RAM). When a user
requests a cached page or file, the web server can serve the file directly from memory,
rather than opening, reading and closing the file. While disk access times are
measured in milliseconds, RAM access time is measured in nanoseconds— noticably
faster. High-load servers, in particular, benefit from this performance boost. Caching
provides another benefit: caching curtails disk access, and thus lengthens disk life.

In order to enable caching, the Webmaster selects individual files or whole directories
to place into the system’s memory. For example you might choose to cache the site
map. When the server receives a request for this page, it can send it directly from
memory, rather than access the storage media, which accelerates the response time.
One thing to keep in mind when caching, is that you need ample memory for the
server’s other requirements, including the operating system and the Web server itself.

Caching frequently accessed files can
improve web server performance in any
web site model. All of the following site
configurations will benefit from caching.

How does Clustering affect performance?

Single server model
In the simplest model, a web site URL
corresponds to one physical server. For
example, Somecompany, Inc.’s site,
www.someco.net, would have a DNS entry

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 7

A Web Server Primer

httpd

dns

client client
Single Server model

for a single IP address that corresponds to the network card on the web server serving
someco.net’s site.

Clearly with a site as popular and important as Somecompany, Inc.’s, you would not
want to rely on a single machine to handle the load of millions of requests. Moreover,
what would happen if that machine went down? The site would go down as well.
There are several different methods to protect against such failure; we examine a
couple of possible solutions below.

The above diagram shows the single server model. Each client connects with the DNS
via TCP/IP to identify the web server’s IP address. Each client then accesses the Web
server.

Multiple DNS entries

Multiple DNS entries provide one
solution to this scenario. Rather than
one server, one address scheme, the
DNS will have multiple IP addresses
for a given name.

 for example:

Name: www.someco.net

Addresses: 9.19.139.4, 9.19.139.5,
9.19.139.6, 9.19.139.12

When the browser requests the URL
www.someco.net, the DNS returns
one of the listed numerical
addresses, in round-robin order.
This simple solution may effectively
balance the load in the long run. If

the request load continues to increase, you can expand this solution by adding another
IP address and another machine.

In the above diagram, each client requests the IP address of the same Web server from
the DNS. The DNS returns a different answer from the list to the second requesting
client. Thus, the DNS distributes the load among multiple Web servers. This “blind”
form of load distribution does not take into account the load levels of the servers. The
DNS merely rotates through a list of IP addresses that correspond to a given hostname.

Network Dispatching

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 8

A Web Server Primer

client

dns

httpd-1 httpd-2

client
 Multiple DNS Entries

Server clustering with a network dispatcher provides the best solution to this scenario.
A network dispatcher assumes the distribution role played by the DNS in the multiple
DNS entries solution. The dispatcher assigns client requests, and provides some
additional functions.

With dispatching, one server acts as the “front door” for the organization. This server
routes browsers’ requests to any number of Web servers. To the browser, again, there
seems to be only one address corresponding to one server. In reality, the dispatching
server balances the server load among several servers “behind” it. Network
dispatching improves upon the simple use of multiple DNS entries in a number of ways.

Most significantly, the network
dispatcher actively balances the
server load. The dispatcher remains
aware of the load of any given server
at all times; DNS-based load
balancing relies on chance. Thus, a
network dispatcher allows more
effective load balancing.

Another feature improves security: a
dispatcher screens the topography of
the network from end-users. To the
browsers, there is only one address
through which they may access any
number of services. Screening the
internal topography significantly
reduces opportunities for malicious
external attack on your intranet.

A dispatcher also makes site maintenance easier. As daily hits to the site increase,
you can add additional servers to reduce the load on any one server. Similarly, if a
web server fails, you can remove or replace it without bringing the whole site down.

What other factors can affect performance?

Web servers can take advantage of networked drives and network file systems. This
allows multiple servers to access one identical set of resources, which is particularly
useful in implementing either the round-robin DNS or network dispatching solutions.
Essentially, each web server mounts the shared resources as a virtual disk, eliminating
the need to replicate identical data out to each Web server. File systems that support
remote mounting in the PC environment include AppleShare, and Netware.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 9

A Web Server Primer

client

dns

httpd-1
httpd-2

httpd-n

dispatcher

client21
 Network Dispatching

Forms & Scripts, Gateways, and Java

This is where the plot thickens...as anyone who spends time surfing the Web knows, a
lot more goes on than simply requesting static HTML (Hypertext Markup Language) and
graphics. No doubt: the trend for greater interactivity will continue to sweep the Web.
Forms were the first vehicle used to elicit information so the server could provide
custom responses based on that input, so we’ll begin there.

What are Forms & Scripts?

Forms are HTML documents with places for users to input information. Forms permit an
interactive exchange between the server and the browser. You create the form within
an HTML document using HTML tags. The form is actually the part of the HTML
document between the opening tag

<FORM ACTION=”http://www.somecompany.com/cgi-bin/location.cgi” METHOD=GET>

and the closing tag </FORM>.

The body of the form resides within the opening and closing parameters of the form
tags. Within the body of the form, other HTML tags define the kind of fields— INPUT,
SELECT, or TEXTAREA. These tags all require a symbolic NAME defined for the data
field; INPUT requires the type of data (text, password, checkbox, radio/on-off toggle,
submit, or reset), the default value, and the physical size of the data field displayed. A
maximum length parameter can also be defined for text or password entry fields.
SELECT displays a menu from which to choose a response. TEXTAREA provides a
larger field for lengthier input. (A more detailed tutorial on HTML and how to create
forms will not be included here; however, this topic is well documented elsewhere. See
the Related Publications section for suggestions for HTML instruction.)

The METHOD=XXX part of the opening tag defines the way the form returns the
responses to the server. GET appends the data to the end of the URL, with the
parameters following a question mark. POST sends the data as a separate
MIME-encapsulated transaction. (MIME stands for Multipurpose Internet Mail Extension.)
POST is the preferred method if any significant amount of data will be returned.

When the user fills out and submits this Form, Web scripts— also known as CGI
scripts— come into play. CGI, Common Gateway Interface, is another suite of
specifications. From the browser’s perspective these specifications allow any browser
on any platform to send data to any server on any platform that supports CGI. The
differences appear on the server side of the interaction: the specifications for the
gateway interface depend on the server’s operating system.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 10

A Web Server Primer

CGI scripts run on the Web server; they receive information, execute, and return (via
the HTTP server) the requested output to the browser that initiated the contact — if all
goes well. These scripts usually reside in their own separate directory or group of
directories for security purposes, specifically to limit access to the executable
programs. Many servers use the name \cgi-bin for this directory.

CGI “script” is a bit of a misnomer; you can write CGI scripts with a wide variety of
languages, both compiled, e.g., C or C++, or interpreted scripting languages, e.g., Perl
or REXX. Compiled languages are better for some tasks; interpreted languages are
better for others. Some say Perl is easier to write and modify; however, interpreted
language scripts use more memory and run more slowly than compiled programs. On
the other hand, in his book The Web Architect’s Handbook, Charles Stross [p. 97]
illustrates this issue with the example of a UNIX filter to count the number of words in a
text file— this takes four lines of Perl compared to over a hundred lines of C. Right now
on the Web, a large proportion of CGI scripts have been written in Perl (Practical
Extraction and Reporting Language or, attributed to the language’s inventor, Larry
Wall, Pathologically Eclectic Rubbish Lister...really!) [Stross, p.102].

Here is one IBM developer’s perspective on the script versus compiled debate: “The
dominant cost of the script execution is having to create a new process for it and later
terminate it. The speed of the script itself is therefore negligible and should not be
considered. You are better off with [P]erl scripts because of ease of implementation”
[Bulka]. Based on implementation, the majority of programmers writing scripts appear
to agree.

How does this process differ from serving static
HTML?

Obviously, serving forms and scripts require the
server to work harder and to use more
resources than when it serves static HTML. The
more complex the task required by the script,
the greater the load on the server. Initially, the
process follows the same steps as when the
server serves static HTML:

� The server listens
� The server receives a request
� The server performs the requested method
� The server closes the connection

Now the browser has the form. The server does not await the form; the server has
finished its part of this task.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 11

A Web Server Primer

server
connect

request
response
close

browser

This brings us to the point where things change, however. When the user fills in the
form and presses the submit button, a new series of activities takes place. The
browser builds this request using the ACTION specified in the form and the input from
the fields.

The resulting request includes:

� The URL for the script in the /cgi-bin or executable directory.
� The name-value pairs separated by ampersands (&) to identify the symbolic

names of the fields in the form.
� The values of the responses.

The request could look something like this (except in a one-line string):

GET http://www.someco.net:80/cgi-bin/phonebook?nserver=someco.db.com&
name=yes&phone=yes&email=trishs@us.ibm.com

The question mark identifies the beginning of the form options which the server passes
to the script as the QUERY_STRING environment variable (this conforms with a CGI
specification). Then the script

� Converts the QUERY_STRING into a useable format for the program.
� Divides up the name-value pairs.
� Executes the program....could be

ü Retrieve the time and date or
ü Access a database or
ü Calculate complex computations using the variables provided or
ü “Observe” something like the fishcam web site.

(http://www.netscape.com/fishcam/fish_refresh.html)
� Returns the result to the server.

Then the Server
� Composes an HTTP header for the response to the browser.
� Formats the output in the response.
� Sends the result.
� Closes the connection.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 12

A Web Server Primer

Let’s use our example above. We’ll say this form requests phone numbers based on
the e-mail address of the person. The process would look like this:

In this example, the script acts as a gateway to the data in the database. This brings
us to our next topic: gateways.

What are gateways and how do they work?

Gateways provide Web browsers access to information not natively available to web
browsers— often legacy systems (e.g., flat-file mainframe), relational databases (e.g.,
IBM’s DB2), or transaction applications (e.g., CICS based). Mostly, these gateways
work very much the way the example appears above, built upon the CGI standard and
the three-tier model of browser/webserver/legacy system. The gateway acts as an
interpreter:

� translating the request from the browser for information into a protocol that
the legacy system understands

� translating the protocol used by the legacy system in its response to HTTP
� formatting the response into browser-friendly HTML

Another possible gateway implementation uses server-side includes (SSIs). This is far
less common than CGI. Server-side includes are macros or execs that run on the
server when the server responds to a request for an HTML document that contains
these executables. This request could mean simply incorporating date and time
information or may execute a program whose output is included in the page requested.
SSI has some potential drawbacks. First, the server must parse every page it serves

looking for includes in the HTML whether the page requested contains includes or not
which adds considerable overhead on the server and diminishes performance.
Second, many find the potential security risks outweigh the benefits. It is important to
be aware of the exposure inherent in letting an external entity initiate any executable on
your server.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 13

A Web Server Primer

Internet
CGI
script

Web
ServerBrowser

Ph #
DB

someco.db.com

The third, and up-and-coming possibility for a gateway implementation, is using Java or
Java Beans.

So what about Java?

Developed by Sun Microsystems, Sun describes Java thus in The Java Language: An
Overview available at http://java.sun.com/docs/Overviews/java/java-overview-1.html:

Java: A simple, object-oriented, network-savvy, interpreted, robust, secure,
architecture neutral, portable, high-performance, multithreaded, dynamic language.

Java is also described (more succinctly) as a programming language platform. We’ll
examine how this relates to the world of the Web.

Java was designed to be easy for programmers to use— it’s based on C++; to work in a
networked environment; and to be architechture-independent. Programmers can use
Java language to create several different types of programs:

� Applications - standalone programs
� Applets - tiny Java programs embedded in webpages that run on a

Java-enabled browser when the page is served
� Servlets - programs that run on the Webserver

Java has also spawned Java Beans, the application development model for
assembling Java using components. Java Beans are intended to be reusable
components or objects in an object-oriented development environment. Simple Java
Beans, such as pushbuttons, text fields, and check boxes, can be incorporated into
more complex Java Beans, such as a calculator. You can use both simple and
complex Java Beans as components in an application or applet (to continue our
example, incorporating the text field Bean and push button Bean and calculator Bean in
a GUI (graphical user interface) of a cash register program). Java Beans can be visual
in nature, such as a list box, or non-visual, such as a schema map of a DB2 database
table. Java Beans’ reusability and portability make Java developers more productive
since they have at their disposal the standard object components, they can create and
add new objects when necessary, and they do not have to start from scratch with each
new development project.

Java applications manage architectural independence through running in a
Java-enabled environment, the Java Virtual Machine (JVM). An example of this is the
HotJava browser. In any kind of Java language program, Java code is both compiled
and interpreted. Rather than producing machine code like C or C++, the Java compiler
generates bytecode which is interpreted by the JVM. This provides the “Write Once,
Run Anywhere™ ” capability. Java can also convert this bytecode into machine code at

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 14

A Web Server Primer

runtime, if an applet or application requires the fastest possible implementation. Java
uses a JIT (Just In Time) compiler to enable this conversion, which is just as fast as C
or C++ programs. Thus, Java finds the happy medium between the high-level,
portable but slow scripting languages and low-level, fast, and sometimes
labor-intensive to debug machine-code produced by compiled languages.

Java applets were created for use on the Web, providing most of the animated images
on the Web today. When a Java-enabled browser encounters the tags below in an
HTML page it knows to download and run the applet.

 <applet code=GeneralAnimate.class width=125 height=108>
<! - - The animTime parameter contains the number of milliseconds to wait - ->
<! - - between displays of images. - ->
<param name=animTime value=500>
<! - - The following three parameters contain the RGB values of the color - ->
<! - - of the background of the window the animation runs in. The double - ->
<! - - quotes are needed so that the value of 0 will be recognized. - ->
<param name=rColorVal value=”0”>
<param name=gColorVal value=”0”>
<param name=bColorVal value=”0”>
<! - - The following parameters contain the number of images shown in the - ->
<! - - animation and the files containing the images. The image parameters- ->
<! - - must be listed in the format “pieceX”, where X represents the order - ->
<! - - the image is shown. - ->
<param name=numPieces value=12>
<param name=piece1 value=”F01.jpg”>
<param name=piece2 value=”F02.jpg”>
<param name=piece3 value=”F03.jpg”>
<param name=piece4 value=”F04.jpg”>
<param name=piece5 value=”F05.jpg”>
<param name=piece6 value=”F06.jpg”>
<param name=piece7 value=”F07.jpg”>
<param name=piece8 value=”F08.jpg”>
<param name=piece9 value=”F09.jpg”>
<param name=piece10 value=”F10.jpg”>
<param name=piece11 value=”F11.jpg”>
<param name=piece12 value=”F12.jpg”>
</applet>

(applet courtesy of Kelly Westphal, IBM Advanced Technical Support, Personal Solutions
Systems Center, Application Development Team)

 The Java-enabled browser invokes subroutines called methods which tell the applet to
initialize itself, draw the space in which it will display, and do whatever the applet is

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 15

A Web Server Primer

required to do. This technology promises to be the de facto standard in the Internet
world soon.

Web Server Security

Placing a Web server on the Internet opens a door into your organization, inviting the
public in. This includes those interested in your organization, your products, or your
services; but unfortunately, this could also include undesirables interested in snooping
and hacking their way into your private files and your secure network. Fortunately, you
can take reasonable precautions to secure your Web server.

Webster defines security, “as relating to protection, as measures taken to guard
against espionage or sabotage, crime, attack, or escape.” This definition corresponds
easily to the context of Web servers. The measures available to protect against these
dangers constitute Web server security. The degree of security required depends on
the location and purpose of the Web server; whether the server exists outside a
company firewall directly connected to the Internet, or is connected to the company’s
secure intranet.

So what’s involved in Web Server Security?

Security has two major components: access control, and confidentiality or privacy.

� Access Control ensures that only expressly permitted users can access the data.
� Confidentiality/Privacy ensures the information transferred is not visible or usable

to anyone other than the intended recipient. Several other concepts fall under this
heading:

ü Authentication ensures the identity of the parties involved; simply, does the
user ID and password match.

ü Authorization ensures that given the user ID and password match, is this
user permitted to access this resource.

ü Integrity ensures the data sent equals the data received.
ü Accountability ensures the data exchange or transaction has taken place,

also called non-repudiation.

Access Control
This concept covers a lot of ground— from the of the server machine’s physical safety
to the directory permissions controlling file access. The Web server software controls
who can connect to the server and what the user can retrieve, alter, or delete through
access controls. These are specific mapping statement directives that modify the
server configuration file. Through these access controls, you can

w Deny access to the documents not intended for users.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 16

A Web Server Primer

w Grant access to documents for selected users by requiring user ids and
passwords.

w Restrict access to selected IP addresses or domain names.
w Allow “read only” access.
w Enforce any combination of the above controls.

Applying the “that which is not expressly permitted is prohibited” philosophy to the
server access controls will assure the tightest security. Give access only to specific
documents by selected, authorized users to fulfill the mission of the server and deny all
others access.

Directives are based on matching requests. When you request a URL, the server
checks to see what instructions exist that relate to that particular URL by looking for that
URL template defined in the configuration file.

The directives in a mapping statement can have any of the following values:

w Pass - Accept matching URL requests/ permit access to this resource.
w Fail - Reject matching URL requests/ do not permit access to this resource.
w Map - Change to a new string (directory, file name or both) if the URL matches.
w Exec - Run a CGI program if the URL request matches.
w Redirect - Send to another server if the URL request matches.

These directives allow you to create a virtual hierarchy of the server resources by
redirecting or passing client requests to other systems. This virtual layout enhances
the server security by locating sensitive files and directories on different drives and
systems, yet is transparent to the user.

Confidentiality/Privacy
Once you set up server security for the directories, you can allow individual users entry
into areas that are off limits to other users. By creating files containing lists of users
and their passwords the protection directives define access to the server resources.
These password files can then be used by Access Control Lists (or ACL files) and by
the protection setups. Access can be limited to specific user(s), IP address(es) or
domain name(s) at the directory or file level.

Authentication
Authentication, in the context of Web server security, really refers to two different
concepts. First, password authentication refers to the scenario common in multi-user
environments (like in Lotus Notes) in which the user must log in with a password to
access the system. Second, basic authentication, a part of the HTTP protocol standard,
“is a non-secure method of filtering unauthorized access to resources on an HTTP
server. It is based on the assumption that the connection between the client and the
server can be regarded as a trusted carrier. As this is not generally true on an open

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 17

A Web Server Primer

network, the basic authentication scheme should be used accordingly” [RFC-1945].
Basic authentication does not define permissions, it is simply the mechanism for
requiring and providing credentials (user ID/password) much like that in password
authentication; however, the encoding of the password is trivial, so it is trivial to steal.
Serious security requires SSL (which we discuss later in this section).

You can define authorizations in the Web server configuration file to establish access
control specifications which limit access to files in a directory by the request method
(e.g. GET, POST, PUT) and identifies specific users with access to the files.

When the browser requests a restricted resource, the HTTP daemon looks for
authorization in the header information that initiates the session. If the server does not
find the authorization field, rather than connecting the browser to the resource, the
server will send a status code 401 response— Unauthorized— to the browser. The
browser will then ask the user for a password and resend the request with the
password and the user’s name (encoded) in the authorization field right under the
method, URL, and HTTP version information.

GET http://www.somecompany.com/private/secret.html HTTP/1.1
Authorization: Basic 0(766^*>:9=84%7&54#”@

If the access control list for this resource includes your name and password, and your
request employs an acceptable method, you will receive the usual response and get
access to the Web page. If not, you will receive the default error 403, Forbidden, or the
custom error message for this server, if set up. (See RFC-1945 for further reading
regarding error codes.)

Your need for security extends beyond basic authentication and access to data on the
server. Next we look beyond the server itself to securing the data enroute from server
to browser.

How can you secure the data while it’s enroute between the server and the browser?

Let’s say that your Web server setup provides for maximum available security. Since
the server is secure, then your data is secure. Right? Wrong. TCP/IP provides a
transport mechanism to ensure your data gets from your server to the browser that
requested it. Data security needs to be in place above the transport layer before you
send it across the Internet.

Without data security, all transmissions on the Internet are open for viewing,
interception, or alteration. Data security attempts to:

w Make the information unreadable/unusable by anyone other than the intended
recipient: confidentiality/privacy and authenticity.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 18

A Web Server Primer

w Alert the parties involved that transmissions have been tampered with or
changed: integrity.

w Prove the transmissions or transactions took place and were received:
accountability.

Two protocols were developed to secure data: SSL (Secure Sockets Layer), developed
by Netscape Communications, and, S-HTTP (Secure HTTP). Most Web servers and
browers support one or both of these protocols. SSL is the by far the most widely
implemented.

How does SSL work?

The Secure Sockets Layer Protocol, or SSL, has two main objectives:

� To ensure confidentiality and privacy by encrypting the data that travels
between a browser and a Web server.

� To ensure authentication of the Web server and the browser.

SSL encapsulates HTTP as it travels down the TCP/IP stack. The SSL protocol resides
between the application layer (HTTP) and the transport layer (TCP). SSL connects to
port 443 of the server, rather than to the HTTP standard port 80. SSL uses several
encryption techniques to provide confidentiality/privacy and authenticity. It also uses
digital signatures to ensure integrity and accountability. First we’ll go through the SSL
process, then we’ll examine encryption..

The secure session process differs from a regular server/browser exchange. All the
above information passes back and forth to establish the secure socket and enable
encryption well before any HTTP messages are transmitted. This process is
transparent to the user who initiates the request.

The parameters set up during the handshake are kept in the CipherSpec file. The
requested URL can now be sent using the negotiated symmetric-key bulk cipher, with a
new set of session keys calculated for each new session.

Clearly, starting an SSL session generates considerable overhead compared to HTTP.
The protocol escapes some of this overhead when resuming sessions already
negotiated.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 19

A Web Server Primer

Now you can begin what you started out to do: securely transfer data.

Once a SSL has been implemented, graphical signals on your browser screen let you
know you are in a secure session. If, for example, you use Netscape Navigator, look at

the lower left corner and you will see a key icon. If the key is broken, you are not in a
secure session. If the key is whole and only has one tooth on it, you are in a secure
session using 40-bit encryption (for export). If the key is whole and has two teeth on it,
you are in a secure session with 128-bit encryption (US and Canada only). 128 bit
encryption is, in general, illegal to export outside of the US and Canada; however,
several US companies are working on strategies to work this out and exceptions, such
as the banking industry, already exist. This ventures into the realm of laws and lawyers
and as such we’ll leave it there.

So how does encryption work?

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 20

A Web Server Primer

Hello? (the SSL session begins...)

Browser
� Initiates a secure session using a URL starting with

https:// (instead of the usual http://) which asks for a
session with the server on port 443.

� Provides its SSL version number, a list of supported
encryption options, and a random number.

Server
� Responds with the corresponding SSL version and

encryption option information to allow the browser
and server to find common ground for
communicating.

� Server sends the client its identifying certificate (see
certificates section, following) containing its public
key, a random number and, if client authentication is
required, requests a client certificate.

Browser
� Generates the session key using its own random

number and the server’s random number.
� Encrypts the session key with the servers public key.
� Sends the encrypted session key to the server, as

well as its certificate (if requested).
Server
� Decrypts the session key with its private key.
� Sends a message back to the browser encrypted

with the session key (authenticating itself) known as
the message digest or Message Authentication
Code (MAC).

Encryption provides privacy and confidentiality by scrambling data in a manner that
makes it unreadable or unusable until the intended recipient unscrambles it. The
sender uses an algorithm pattern or key to scramble the data. The recipient decrypts it
with the corresponding algorithm or key. The level of security that encryption gives
directly relates to the length of the encryption key. The larger the key, the longer it will
take someone to break the key.

There are two common encryption keys: symmetric and asymmetric (or public) key.

w Symmetric-Key Encryption (symmetric): The sender and receiver have copies
of the same, shared, secret key.

w Public-Key Encryption (asymmetric): This method has a public and private key
pair. The private key is known only to the owner, while the public key is
available to anyone. Since the keys are different, only the owner of the private
key can decrypt any data scrambled by the public key, which can also
authenticate a client.

Most security protocols use both public-key and symmetric-key encryption. The
public-key provides authenticity and privacy, but is slow in encrypting large amounts of
data. The symmetric-key is faster in encrypting the data, but lacks the security of
public-key in using a secure encryption key. Usually the public key encryption method
is used to exchange a symmetric key for the session key.

Digital Signatures use public key encryption to authenticate the sender and validate the
integrity of the data, incorporating the entire message as well as the key in the
computation. This method of signing a message can be costly in both time and
resources if the message is a very long one. Another way of signing a message that is
quicker is the one-way hash function or message digest function. See the IBM
Redbook, Safe Surfing: How to Build a Secure WWW Connection (SG24-4564-00) for
more detail on digital signatures and hash functions.

What about Certificates?

Certificates, also known as digital IDs and digital certificates, confirm the identity of the
sender’s public key. This certificate has the highest credibility if it is issued by an
independent third party Certificate Authority (CA). Businesses comply with a rigorous
application process and pay for this certificate. Individuals have a less rigorous, but
still precise, process to obtain a digital ID. Certificate authorities are responsible for
validating that the certificate holders are, in fact, who they claim to be. Within a
company’s own intranet, it can sometimes be more efficient to have the server become
its own certificate authority— for a specific project or situation that requires high security
and limited access within that already secure environment. For any e-commerce
activity out on the Internet, the validating authority should be one of the standard CAs
recognized by your browser, beyond this ...caveat emptor — let the buyer beware.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 21

A Web Server Primer

Summary

This paper covers Web server basics: an overview of how Web server technology
works; possible ways to improve performance; and how multiple servers can be used to
improve site performance. We looked at the elements involved in interactive Web
communications between browsers and any other kind of computer through scripts,
executables, gateways to legacy systems, and Java. We looked into how to protect all
this at the server. This is only the beginning— in many ways. The Internet, and
specifically the World Wide Web, is changing the world. How we do business, how we
share information, how we learn, and more, have changed, and will continue to do so.
The more we can promote understanding of how this technology works, the smoother
this transition can be. Peter Andrews, another IBMer, said this well in his “The Grease
Monkey Theory of the Web” “...the more you understand a medium, the more
effectively you can use it for communication”. This Web Server Primer is a beginning.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 22

A Web Server Primer

Acknowledgments

The authors would like to thank the other people who have contributed to this paper.
Many people within the Personal Solutions Systems Center read this paper as a work
in progress and offered helpful perspectives. In particular, Wendell Crosley and Van
Landrum, our teammates, Joe Arnold, from the DB2 team, and Kelly Westphal from the
AD team took the time to make suggestions in writing and/or contribute to this work.
Donna Su, from the Publications team, contributed greatly to the readability of this
paper through her recommendations (and is the only person who has read this paper
as many times as I have… T.S.). We would especially like to thank Dov Bulka and
Richard Gray from the IBM Web Server Development Lab in Raleigh for their insight
and recommendations.

Additional Information and Sources
Publications

The publications listed in this section are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

Murphy, Eamon, Steve Hayes, and Matthias Enders, TCP/IP Tutorial and Technical
Overview, Fifth Edition, Prentice Hall PTR, 1995.

Stross, Charles, The Web Architect’s Handbook, Addison Wesley, 1996.

Yeager, Nancy and Robert E. McGrath, Web Server Technology, Morgan Kaufmann
Publishers, Inc., 1996.

IBM Redbooks:

Building a Firewall with the IBM Internet Connections Secured Network Gateway
Document Number SG24-2577-01.

Safe Surfing: How to Build a Secure WWW Connection
Document Number SG24-4564-00.

A Guide to the Internet Connection Servers
Document Number SG24-4805-00.

Building The Infrastructure for the Internet
Document Number SG24-4824-00.

Accessing the Internet
Document Number SG24-2597-00.

Using the Information Super Highway
Document Number GG24-2499-00.

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 23

A Web Server Primer

Internet Request for Comments via internic.net:

[RFC-822] revised by Crocker, D. H.,“Standard for the Format of ARPA Internet Text
Messages,” RFC 822, August 1982.

[RFC-1009] Braden, R. and J. Postel, “Requirements for Internet Gateways,” RFC 1009,
June 1987.

[RFC-1118] Krol , B., “The Hitchhikers Guide to the Internet,” RFC 1118, September 1989.
[RFC-1386] Cooper, A., and J. Postel, “The US Domain,” RFC 1386, December 1992.
[RFC-1739] Kessler, G., and S. Shepard, “A Primer On Internet and TCP/IP Tools,” RFC

1739, December 1994.
[RFC-1825] Atkinson, R. Security Architecture for the Internet Protocol,” RFC 1825, August

1995.
[RFC-1828] Metzger Pierpont , P., and W. Simpson Daydreamer “IP Authentication using

Keyed MD5,” RFC 1828, August 1995.
[RFC-1918] Rekhter, Y., B. Moskowitz, D. Karrenberg, G.J. de Groot, and E. Lear,

“Address Allocation for Private Internets,” RFC 1918, February 1996.
[RFC-1945] Berners-Lee, T., R. Fielding, and H. Frystyk, “Hypertext Transfer Protocol,”

RFC 1945, May 1996.
[RFC-2068] Fielding, R., J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, “ Hypertext

Transfer Protocol— HTTP/1.1,” January 1997.
[RFC-2069] Franks, J., P. Hallam-Baker, J. Hostetler,P. Leach, A. Luotonen, E. Sink, and

L. Stewart, “An Extension to HTTP: Digest Access
Authentication,” RFC 2069, January 1997.
[RFC-2076] Palme, J. “Common Internet Message Headers,” RFC 2076, February 1997.

Other Sources

Bulka, Dov, Private Communication.

Web Sites

IBM maintains extensive and timely information on the World Wide Web. Visis the
following sites for more information on IBM PC Servers and other IBM products. These
sources contain product information, performance data, and technical literature.

IBM Home Page
http://www.ibm.com

IBM PC Company Home page
http://www.pc.ibm.com

IBM PC Server Home page
http://www.pc.ibm.com/server

IBM PC Company Support
http://www.pc.ibm.com/support.html

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 24

A Web Server Primer

Lotus Domino Go Webserver
http://www.ics.raleigh.ibm.com/dominogowebserver

TechConnect Program
http://www.pc.ibm.com/techlink

IBM PSSC Home page
http://pssc.dfw.ibm.com

File repositories
http://www.pc.ibm.com/files.html
ftp://ftp.pcco.ibm.com

Other Helpful Web Sites:

CGI
http://hoohoo.ncsa.uiuc.edu/cgi/intro.html

Dictionary of the Internet Language
http://www.netlingo.com

Directory of Internet Information Sources
http://www.december.com/cmc/info

Glossary of Internet Terms
http://www.nw-direct.com/web_dict.htm

HTML
http://www.sandia.gov/sci_compute/elements.html
http://www.cc.ukans.edu/info/HTML_quick.html

Java
http://java.sun.com/docs/Overviews/java/java-overview-1.html

RFCs
http://www.internic.net/ds/dspg1intdoc.html

TCP/IP
http://www.datacomm-us.com/technow/scan05/scan05.html

The Webmaster’s Handbook
http://www.infomatik.th-darmstadt.de/%7Eneuss/Handbook/sample/sample.html

WWW Servers in the World (all of the)

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 25

A Web Server Primer

http://www.vtourist.com

 Copyright International Business Machines Corporation 1997. All rights reserved. webpaper.lwp Page 26

A Web Server Primer

Special Notices

References in this publication to IBM products, programs or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply that
only IBM’s product, program, or service may be used. Any functional equivalent
program that does not infringe any of IBM’s intellectual property rights may be used
instead of the IBM product, program or service.
Information in this paper was developed in conjunction with use of the equipment
specified, has not been subjected to any formal IBM test, is distributed on “as is” basis
without any warranty either expressed or implied, and is limited in application to those
specific hardware and software products and levels.
IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.
The information contained in this document has not been submitted to any formal IBM
test and is distributed AS IS. The information about non-IBM (VENDOR) products in
this manual has been supplied by the vendor and IBM assumes no responsibility for its
accuracy or completeness. The use of this information or the implementation of any of
these techniques is a customer responsibility and depends on the customer’s ability to
evaluate and integrate them into the customer’s operational environment. While each
item may have been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their own risk.

Company, product, and service names may be trademarks or service marks of their
respective companies.

A Web server Primer

π Copyright International Business Machines Corporation 1997. All rights reserved. Page 27

