zPCR Familiarization Exercise

zPCR

Processor Capacity Reference
IBM Z and IBM LinuxONE

© IBM Corporation - 2003-2017
zPCR Version 9.1a
v91a zPCR familiarization Exercise (Mechanics Lab) JF2017d09.docx
August 30, 2017

zPCR Capacity Sizing Exercise

Objective

You will use zPCR (in Advanced Mode) to define a customer's current LPAR configuration and then project the capacity expectation for an upgrade to newer technology. The capacity results will then be used to determine if the upgrade model is adequate to support all of the work, and to determine if the amount of CP resource available to each partition is adequate to support that partition's workload with the anticipated growth applied.

Problem

XYZ Corporation currently has a zEC12 (2827-707) installed, which based on their last zPCR study, as having 8,937 MIPS of usable capacity. The 2827-707 is currently averaging 100\% busy during peak processing periods. The workload environment includes 8 logical partitions, all running on General Purpose CPs as shown in the table below.

	Partition	LP- mode	LCPs	Weight	Capped	SCP / Workload
1	CICSA	Share	7	340	No	z/OS-2.2 Average
2	BATCHA	Share	7	195	No	z/OS-2.2 Average
3	BATCHB	Share	2	32	No	z/OS-2.2 Average
4	TESTB	Share	2	12	No	z/OS-2.2 Average
5	TESTIMS	Share	5	36	No	z/OS-2.2 Average
6	CICSB	Share	7	297	No	z/OS-2.2 Average
7	IMSA	Share	5	73	No	z/OS-2.2 Average
8	TESTCICS	Share	2	15	No	z/OS-2.2 Average

A plan is being developed to replace the current zEC12 with a newer technology IBM z14 processor. The specific model chosen must provide at least 35\% additional capacity, or 12,065 MIPS (i.e., 8,937 MIPS $\times 1.35$). The current configuration is to be moved to the new processor with the partitions and their workloads continuing as today. The customer has turned on CPU MF counters and has collected SMF 113 data. They ran CP3KEXTR to create an EDF file for the CICSA partition containing data from 2/03. The data spans from 8:00 AM through 12:00 PM using 15 minute intervals.

The customer would also like to assess a potential z14 replacement that has slower CPs.
In addition the customer is looking at moving some work to an IFL running Linux on IBM Z and also adding 2 zIIPs in support of z/OS work. They are considering activating SMT on the z14 for both the IFL and zIIP LCPs.

Task Overview

Here are the 7 primary tasks that comprise this zPCR familiarization exercise, addressing the planned changes described above.
*** The actual Lab starts on the next page ***
Note that zPCR version 9.1 or later is required for this exercise

- Task-1: Initialize zPCR in Advanced-Mode.
- Task-2: Load the EDF which contains the latest RMF/SMF data including SMF 113 data for the $1^{\text {st }}$ partition.
- Task-3: Rename the LPAR configuration.
- Task-4: Save the study.
- Task-5: Find an appropriate z14/700 model upgrade.
- Task-6: Model the intended z14/700 processor.
- Task-7: Review capacity results and save the study.

Additional Analysis To Try

- Task-8: Model a z14/600 as an alternative and save the study.
- Task-9: Add IFL and zIIP CPs to z14 Host and Configure Partitions to Exploit. Add an IFL partition to the z14/700 running Linux guests under z/VM and activate SMT.
Associate a zIIP LCPs with the CICSA partition and activate SMT. Save the study.

Notes:
When instructed to Return, the icon should be used.
The Double Return icon may be used to close multiple open windows, returning directly to the Advanced-Mode Control Panel window.

This exercise has been validated with zPCR v9.1, made available 07/17/2017.

Task-1: Initialize zPCR

In this task you will set up zPCR for this exercise.
Note: zPCR's default Reference-CPU setting is the 2094-701 rated at 1.00. In order to have capacity results represented with typical MIPS values, we need to set the Reference-CPU to the 2094-701 rated at 593 MIPS.

Analysis Steps

1. Start zPCR. After the Logo window stages, you will be viewing the Function Selection window, on the Multi-Image Capacity tab.

Function Selection Window

2. Select the Advanced-Mode check box if it is not already checked
3. Click the Enter Advanced-Mode button.

Advanced-Mode Control Panel Window

Advanced-Mode Control Panel [untitled] | \square | \square | X |
| :--- | :--- | :--- |

File CPcalculator Documentation Help

$$
\text { 8 (} 3
$$

Advanced-Mode Capacity Planning Control Panel
Study ID: zPCR Familiarization Exercise

Double click on a tree branch below to access the relevant windows
Reference-CPU
REF 2094-701@1.000 \{ITR Ratio\}
LSPR Multi-Image Processor Table
${ }^{L_{5 P_{R}}\left\|\frac{10}{}\right\| \text { IBM Z General Purpose CPs }}$
${ }^{L_{5} P_{R}\| \| \|} \|_{\text {IBM }} Z$ IFL CPS

LPAR Configurations
\#1 z Configuration \#1

No LPAR configurations are defined
Define an LPAR configuration ...
+Drag \& drop a zPCR study file, EDF, or RMF file onto the LPAR configuration icon +Double-dick the LPAR configuration icon for manual definition windows
Create additional LPAR configurations ...
+Click the "Add $\{+\}$ " toolbar icon and define the LPAR configuration as described above

+ Select a defined LPAR configuration icon and click the "Clone $\{=\}^{\prime \prime}$ toolbar icon
Rename LPAR configurations ...
+Left-dick to select the LPAR configuration icon
+Right-dick LPAR configuration icon for pop-up menu and dick "Rename Configuration"
+Enter new name and press ENTER
Delete LPAR configurations ...
+Select LPAR configuration icon and dick the "Delete $\{X\}$ " toolbar icon

4. On the Advanced-Mode Control Panel window, double click

REF 2094-701 @ 1.000 \{ITR Ratio\}. to change the Reference-CPU scaling-factor and scaling-metric. The Reference-CPU window will appear.

a) Click Typical to set the Reference-CPU to 2094-701 @ 593 MIPS.

Note: Any IBM Z 1-way processor may be selected with any reasonable scaling-factor/metric. Typical establishes the IBM recommended setting which is widely accepted in the Industry.
b) Click Return.

Task-2: Create the LPAR configuration from EDF

Load the current zEC12 LPAR configuration into zPCR using the EDF supplied with the tool.

Analysis Steps

1. Open Windows Explorer (click "Start", "All Programs", "Accessories", "Windows Explorer"). Then using Windows Explorer (under My ComputerlLocal Disk (C:)) select the C:ICPSTOOLSIzPCRIEDF Files folder, where the XYZ 2827.edf file is located and visible. You may need to resize the Windows Explorer window, such that zPCR's AdvancedMode window is also visible.
2. Drag the XYZ 2827.edf file from the EDF Files folder to \square Configuration \#1 This will open the EDF Interval Selection window.
3. Sort the intervals on utilization by clicking the Pool 1 GP Pool Utilization column header.

Click on a row to select interval for which zPCR partition definitions are to be created
4. Select Interval \#12 and double click to open the Create LPAR Configuration from EDF window.
5. Click the Create LPAR Configuration button to transfer the LPAR host processor and its 8 GP partitions to the active zPCR study.

6. Click OK to dismiss the zPCR EDF Copy Partitions transfer dialog.

Note: Partition CICSA has 7 LCPs defined, but 4 are parked. Therefore, when the configuration is read into zPCR it will be defined with 3 LCPs. Since CICSA is the only one with EDF available, it is the only partition where the LCP count will be adjusted.

Advanced-Mode Control Panel Window

Task-3: Rename configuration and review capacity

Rename the LPAR configuration and review the capacity assessment.

Analysis Steps

1. Rename "Configuration \#1" to "Current zEC12 2827-707". On the Advanced-Mode Control Panel window, Single-click \#1
2. Right click on the selected area to reveal the Rename Configuration popup button.

3. Click the Rename Configuration button, key in the LPAR configuration name that you wish to use, and press Enter.

Note: This rename operation will also be used in subsequent steps.
4. Double-click \#1 \& Current EC12 2827-707 to open the LPAR Host and Partition Configuration window for the LPAR configuration.
5. Click Partition Detail in the Capacity Reports group box to open the Partition Detail Report window. This window will reveal the total GP capacity available as 8,937 MIPS.

Task-4: Save the study

Save the zPCR study for future reference.

Analysis Steps

1. Click Double Return to close the LPAR Configuration windows and return to the Advanced-Mode Control Panel window.
2. From the menu-bar on the Advanced-Mode Control Panel window, click File \rightarrow Save as, to save your LPAR definitions for the current LPAR host processor (e.g., Lab Task-4.zpcr).

Task-5: Find an appropriate replacement processor

Browse the z/OS-2.2 Multi-Image LSPR Capacity Ratios table to find an IBM z14 processor that can provide the required capacity increment using the Average workload category.

Analysis Steps

From the Advanced-Mode window

1. Double click ${ }^{L_{P_{P}}}$ \|nll IBM Z General Purpose CPs to open the LSPR Multi-Image Processor Capacity Ratios table.
2. Find the smallest IBM z14 processor that can provide the required 12,065 MIPS (tip: right click the table for a list of the Families, select Scroll to IBM, select $\boldsymbol{z 1 4}$, and then select z14/700).
For the purposes of this exercise, choose the 3906-708, which appears to have just a bit more capacity than we require, (e.g., 12,283 for Average). Remember that capacity values in the multi-image table represent typical (or average) partition configurations, and therefore is only a generalization of capacity.
3. Click Return to go back to the Advanced-Mode Control Panel window.

LSPR Multi-Image Capacity Ratio Table

Task-6: Model the LPAR host intended upgrade

Using the current zEC12 LPAR configuration as a starting point, we will transfer it to the new IBM z14 processor, making any necessary adjustments to the partition definitions.

Analysis Steps

1. Single-click \#1 \& Current zEC12 2827-707 on the Advanced-Mode Control Panel window to select it.
2. Click the Clone \square toolbar button. \#2 LPAR configuration is created as an exact copy of the 1st. Rename it to New z14 3906-708 (see Task 3 if you need be reminded how to rename).
3. Double-click \#2 New z14 3906-708 to open the LPAR Host and Partition Configuration window for that LPAR configuration.
4. Click Specify Host to open the LPAR Host window.
a) In the Select IBM Brand group box, choose \mathbf{Z}.
b) Set the Family to $\mathbf{z 1 4}$.
c) Set the Speed Class to $\mathbf{z 1 4 / 7 0 0}$.
d) Set the Model to 3906-M01/700 (this model has a maximum of 33 CPs).
e) Leave Power Mode set to Full.
f) Set General Purpose CPs to 8 (recognized as a 3906-708). There are no other CP types planned at this time.

g) Click Return.

zPCR Familiarization Exercise

5. Click Partition Detail in the Capacity Reports group box.

Task-7: Review capacity results and save the study

Using the capacity results for this new LPAR host, determine if we realized the desired 35% capacity increase (12,065 MIPS), for the overall host and for each individual partition.

Analysis Steps

1. On the Partition Detail Report window, the overall effective capacity for the z14 3906-708 is 12,442 MIPS for this LPAR configuration. The effective capacity for the zEC12 2827-707 was 8,937 MIPS (see Current 2827-707).
2. Click Double Return to close the LPAR Configuration windows and return to the Advanced-Mode Control Panel window.
3. On the Advanced-Mode Control Panel window, select the two configurations. Click on one, press the CtrI key and click on the other. Then click the Compare CV tool bar icon. The Host Capacity Comparison window presents a CPC oriented summary of the two LPAR host configurations. The first LPAR host is shown on the left, and the second is shown on the right. The partition types (CP pools) are listed in separate rows; the metrics presented are their combined values representing the number of partitions, the number of RCPs, the number of LCPs and the resulting capacity.

Comparison Report by Partition

Show capacity as

For significant configuration changes such as upgrading the processor family, consider capacity comparisons to have a $+/-5 \%$ margin-of-error
4. Click Minimum Capacity in the Comparison Report by Partition group box. Note that all of the partitions see an increase of 35% or more.

5. Click Optimize SHR LCPs in the Change Controls group box to see if you can improve the results by reducing the number of LCPs assigned to each partition to that required to accommodate its weight.

zPCR Familiarization Exercise

6. Using the default setting, Moderate, click Optimize to reduce the number of logical CPs assigned to each partition. Reducing the number of logical CPs can improve capacity. The partition's weight percent is used to determine the exact number of LCPs (rounded up to the nearest whole number).
Note: For availability purposes, no less than 2 logical CPs will ever be assigned.

7. Click Consider Margin-of-Error

The capacity expectation derived from zPCR for a new machine should normally be considered to have up to a $\pm 5 \%$ Margin-of-Error. The full $\pm 5 \%$ Margin-of-Error should be considered whenever the LPAR host processor family is changed, or when very significant changes are made to either the LPAR host CP configuration or to the partition configuration itself. At this point all of the partitions realize the intended 35\% capacity increase (rounded to a whole percent) when considering the $\pm 5 \%$ Margin-of-Error.

For significant configuration changes such as upgrading the processor family, consider capacity comparisons to have a $+/-5 \%$ margin-of-error
8. Close the Partition-Margin-of- Error window. Then click Commit Changes in the Change Controls group box to change the LPAR configuration to permanently include the modified metrics (from the Optimize).
9. Click Return on the Partition Capacity Comparison window. Then, on the Host Capacity Comparison window, click Consider Margin-of-Error. Note that the Host Margin-of-Error window now shows we are delivering 12,923 MIPS (12,277 MIPS when considering the $\pm 5 \%$ Margin-of-Error), both of which are greater than the 12,065 MIPS objective.

Lul Host Margin-of-Error	\square	\square	X

Margin-of-Error Consideration

LPAR Host Capacity
Study ID: zPCR Familiarization Exercise
Current zEC12 2827-707: Created from EDF C: \...XYZ 2827.edf interval \# 12 New z14 3906-708: Cloned from Current zEC12 2827-707
Capacity basis: 2094-701 @ 593.00 MIPS for a shared single-partition configuration Capacity for $z / O S$ on $z 10$ and later processors is represented with HiperDispatch turned ON

\#1 z Current zEC12 2827-707		\#2 \% New z14 3906-708			
Partition Туре	Projected	Projected		Projected minus 5\%	
	Capacity	Capacity	\% Delta	Capacity	\% Delta
GP 8,937		12,923	+44.6\%	12,277	+37.4\%
zAAP					
zIIP					
IFL					
ICF					
Total	8,937	12,923	+44.6\%	12,277	+37.4\%

For significant configuration changes such as upgrading the processor family, consider capacity comparisons to have a $+/-5 \%$ margin-of-error
10. Close all of the comparison windows by clicking the Return toolbar icon on the Host Capacity Comparison window.
11. From the menu bar on the Advanced-Mode Control Panel window click File $\rightarrow \underline{\text { Save as }}$, and save the complete study which will include both LPAR configurations (e.g., Lab Task-7.zpcr).

At this point we have met the $\mathbf{1 2 , 0 6 5}$ MIPS overall objective and 35% improvement for each partition even when considering a potential $\pm 5 \%$ Margin-of-Error.

*** End of Task-1 through 7 ***

Additional Analysis to Try

Task-8: Evaluate a z14/600 (slower GP CPs) as an alternative
Browsing the z/OS-2.2 Multi-Image LSPR Capacity Ratios table, find the IBM z14/600 processor that can provide the required capacity increment using the z/OS Average workload.

Determine the intended LPAR host

From the Advanced-Mode window,

1. Double click ${ }^{L_{p_{p}}}$ \|inl IBM Z General Purpose CPs to open the LSPR Multi-Image Processor Capacity Ratios table.

2. Find an IBM z14/600 processor that can provide the required 12,065 MIPS (right click for a list of the Families, then select via Scroll to IBM, z14, z14/600)
For the purposes of this exercise, choose the 3906-615, which appears to have a bit more capacity than we require, (e.g., 12,508 MIPS for Average). Remember that capacity values in the multi-image table represent typical (or average) partition configurations, and therefore is only a generalization of capacity.

Normal Reference-CPU is active; double click any processor row to set it as a Provisional Reference-CPU Select multiple processors with Ctrl+LeftClick or Shft+LeftClick; For flag explanation, position mouse on indicator
3. Click Return to go back to the Advanced-Mode Control Panel window.

Define new LPAR host

4. Single-click \#1 \& Current zEC12 2827-707 on the Advanced-Mode Control Panel window to select it.
5. Click the Clone \square toolbar button. \#3 / LPAR configuration is created as an exact copy of the 1st. Rename it to New z14 3906-615 (see Task 3 if you need be reminded how to rename).
6. Double-click \#3 _ New z14 3906-615 to open the LPAR Host and Partition Configuration window for that LPAR configuration.
7. Click Specify Host to open the LPAR Host window.
a) In the Select IBM Brand group box, choose \mathbf{Z}.
b) Set the Family to $\mathbf{z 1 4}$.
c) Set the Speed Class to $\mathbf{z 1 4 / 6 0 0}$.
d) Set the Model to 3906-M01/600 (this model has a maximum of 33 CPs).
e) Leave Power Mode set to Full.
f) Set General Purpose CPs to 15 (recognized as a 3906-615).

g) Click Return

zPCR Familiarization Exercise

8. On the LPAR Host and Partition Configuration window, in the Capacity Reports group box, click Partition Detail. Using the Partition Detail Report window, review the capacity values for the General Purpose CP pool.

The $1^{\text {st }}$ partition, CICSA, has an insufficient number of LCPs to satisfy its relative weight assignment. This will be corrected with the Optimize in step 12 below.
Note that the total capacity of 13,531 MIPS exceeds the 12,065 MIPS requirement.
9. Click Double Return to close the LPAR Configuration windows and return to the Advanced-Mode Control Panel window.
10. Select both \qquad and \#3 (New z14 3906-615. Click on one, press the CtrI key and click on the other. Then click Compare icon on the Advanced-Mode_Control Panel window.

LPAR Host Capacity Comparison Report

Capacity by Partition Type

Study ID: zPCR Familiarization Exercise Current zEC12 2827-707: Created from EDF C: \....XYZ 2827.edf interval \# 12

New z14 3906-615: Cloned from Current zEC12 2827-707
Capacity basis: 2094-701 @ 593.00 MIPS for a shared single-partition configuration
Capacity for z/OS on z10 and later processors is represented with HiperDispatch turned ON

Partition Type	$\# 1 / \mathrm{Z} \frac{\text { Current zEC12 2827-707 }}{2827-H 20 / 700: G P=7}$					$\text { \#3 z } \frac{\text { New z14 3906-615 }}{3906-M 01 / 600: G P=15}$					Capacity Net Change	
	$\begin{aligned} & \text { \# of } \\ & \text { LPs } \end{aligned}$	Usable RCPs	LCPs	$\begin{gathered} \text { SHR } \\ \text { LCP:RCP } \end{gathered}$	Full Capacity	$\begin{aligned} & \text { \# of } \\ & \text { LPs } \end{aligned}$	Usable RCPs	LCPs	$\begin{gathered} \text { SHR } \\ \text { LCP:RCP } \end{gathered}$	Full Capacity	MIPS	\% Delta
GP	8	7	33	4.714	8,937	8	15	33	2.200	13,531	+4,594	+51.4\%
zAAP	0	0	0			0	0	0				
zIIP	0	0	0			0	0	0				
IFL	0	0	0			0	0	0				
ICF	0	0	0			0	0	0				
Total	8	7	33		8,937	8	15	33		13,531	+4,594	+51.4\%

Comparison Report by Partition

Show capacity as
(O) Full CPC Single-CP Consider Margin-of-Error

For significant configuration changes such as upgrading the processor family, consider capacity comparisons to have a $+/-5 \%$ margin-of-error
11. Click Minimum Capacity. Note that now every partition except for CICSA sees more than the required 35% capacity increase over that of the current 2827-707 configuration.

zPCR Familiarization Exercise

12. Click Optimize SHR LCPs for GPs in the Change Controls group box to see if you can improve the results by reducing (or increasing) the number of LCPs assign to each partition to that required to accommodate its weight. Click Optimize with the Moderate option.

The CICSA partition now has 49.5% more capacity and we have more than met our 36% objective for all partitions. For availability reasons, Optimize will always provide at least a minimum of 2 LCPs for GP partitions.

Note that the Optimize operation increased the number of LCPs for CICSA from 3 to 7 . This change now allows its assigned relative weight to be met.
13. Click on Consider Margin of Error. We also want to validate that all of the partitions have enough capacity to ensure they cover the -5\% Margin-of-Error. We can see that all partitions are greater than the desired 35% delta on the Projected minus 5\%.capacity.

14. First close the Partition-Margin-of-Error window. Then click Commit Changes in the Change Controls group box to change the LPAR configuration to permanently include the modified metrics, (from the Optimize). Note that the Host Capacity Comparison window now shows we are delivering 13,681 MIPS, which is more than the 12,065 MIPS objective.

Comparison Report by Partition

Show capacity as

For significant configuration changes such as upgrading the processor family, consider capacity comparisons to have a $+/-5 \%$ margin-of-error
15. Click two Return buttons to close the comparison windows.
16. From the menu bar on the Advanced-Mode Control Panel window click File $\rightarrow \underline{\text { Save as, }}$ and save the complete study which will include both LPAR configurations (e.g., Lab Task-8.zpcr).

While we won't execute the following in this lab, there are some things to consider since this $\mathbf{z 1 4}$ 3906-615 has considerable more capacity than is required. Perhaps a $\mathbf{z 1 4} 3906-614$ could be an option, although getting 35% more capacity for each partition with a $\pm 5 \%$ Margin-of-Error is unlikely. If the partitions have zIIP/zAAP eligible workload content, perhaps a smaller GP configuration would satisfy the overall capacity requirement.

In addition, this sub-capacity model has "more \& slower" engines than the zEC12 2827-707 and the $\mathbf{z 1 4}$ 3906-707 option (which will be shown and briefly discussed at the end of the lab).

In summary there are many additional "real world" considerations when utilizing zPCR to analyze IBM Z configuration alternatives to achieve desired capacity.

Task-9: Add IFL and zlIP CPs to z14 Host and Configure Partitions to Exploit

Analysis Steps

1. Single-click
\#2 New z14 3906-708 on the Advanced-Mode Control Panel window to select it.
2. Click the Clone \square toolbar button. ${ }^{\# 4}$ \& LPAR configuration is created as an exact copy of the 2nd. Rename it New z14 3906-708 + zIIP \& IFL (see Task 3 if you need be reminded how to rename).
3. Double-click \#4 Z New z14 3906-708 + zIIP \& IFL to open the LPAR Host and Partition Configuration window for that LPAR configuration.
a) In the Define LPAR Host Processor group box, click Specify Host. Add 1 IFL CP and 2 zllP CPs to the configuration.

b) Click Return.
4. From the LPAR Host and Partition Configuration window, click IFL in the Define Partitions group box.
5. From the LPAR Partition Definition window, edit the partition name (from IFL-01) by double-clicking the name field to open it and entering the text "TESTLNX", and hitting enter. Leave the partition's LCPs set to 1 .

6. Click Return.
7. From the LPAR Host and Partition Configuration window, click GP / zIIP in the Define Partitions group box.
8. From the LPAR Partition Definition select the CICSA partition, then click on the z/OS only zIIP in the Associate with Selected GP group box. This will create the associated zIIP partition for CICSA. Assign 2 LCPs to the zIIP partition.

9. Click Return.

zPCR Familiarization Exercise

10. From the LPAR Host and Partition Configuration window, click Partition Detail in the Capacity Reports group box. The Partition Detail Report window opens, revealing the new capacity picture. The overall capacity has increased to 17,591 MIPS due to the addition of the IFL and zIIP CPs.

zPCR Familiarization Exercise

11. From the Partition Detail Report window, click the SMT Benefit button to open the SMT Benefit window. zIIP and IFL zIIP partitions must have SMT activated in order to define an estimated SMT benefit. On the Activate SMT pop-up, click the buttons that will activate SMT for the zIIP and IFL partitions that were previously defined. Then click Continue.

12. On the SMT Benefit window, you'll note that the Global Estimated SMT Benefit defaults to $\mathbf{2 5 \%}$ for zllPs and $\mathbf{2 0 \%}$ for IFLs. In this case since the customer has no experience with SMT we'll use the defaults. In the Global Estimated SMT Benefit group box, click zllP CPs and z/VM IFL CPs.

Lll SMT Benefit									
(-)									
SMT Benefit Settings Study ID: zPCR Familiarization Exercise \#4 \& New z14 3906-708 + zIIP \& IFL Description: Cloned from Current zEC12 2827-707 z14 Host $=3906-$ M01/700 with 11 CPs: GP=8 zIIP=2 IFL=1 10 Active Partitions: GP=8 ZIIP=1 IFL=1									
Partition Identification								SMT Benefit	
No.	Type	Name	SCP	Assigned Workload	Mode	LCPs	Weight Percent	Measured EDF/RMF	Estimated by User
1	GP	CICSA	z/OS-2.2	Average	SHR	4	34.00\%		
	zIIP	CICSA	z/OS-2.2	Average	SHR	2	100.00\%		25\%
2	GP	BATCHA	z/OS-2.2	Average	SHR	2	19.50\%		
3	GP	BATCHB	z/OS-2.2	Average	SHR	2	3.20\%		
4	GP	TESTB	z/OS-2.2	Average	SHR	2	1.20\%		
5	GP	TESTIMS	z/OS-2.2	Average	SHR	2	3.60\%		
6	GP	CICSB	z/OS-2.2	Average	SHR	3	29.70\%		
7	GP	IMSA	z/OS-2.2	Average	SHR	2	7.30\%		
8	GP	TESTCICS	z/OS-2.2	Average	SHR	2	1.50\%		
9	IFL	TESTLNX	z/VM-6.4	Average/LV	SHR	1	100.00\%		25\%

Global Estimated SMT Benefit

Set for

Commit Changes Undo Pending Changes Show SMT Restrictions

Measured SMT Benefit values are generated via EDF or RMF; Manual input is also possible
Estimated SMT Benefit values may only be set for partitions without Measured values
Partition Detail Report is displaying capacity based on SMT Benefit values

zPCR Familiarization Exercise

13．On the SMT Benefit window，click Commit Changes and then Return．This will apply the estimated SMT Benefit to the Minimum and Maximum Capacity result for the zIIP and IFL partitions．

Ill Partition Detail Report														－	回 x
Edit Graph Documentation															
（－）（3）HTM															
Include	Partition Identification					Partition Configuration									
	No．	Type	Name	SCP	Assigned Workload	Mode	LCPs	Weight	Weight Percent	Capping		SMT		Capacity	
										\checkmark	ABS	\checkmark	Benefit	Minimum	Maximum
V	1	GP	CICSA	z／OS－2．2	Average	SHR	4	340	34．00\％	回				4，204	6，183
\checkmark		zIIP	CICSA	z／OS－2．2	Average	SHR	2	100	100．00\％	\square		V	est．25．0\％	4，248	4，248
V	2	GP	BATCHA	z／OS－2．2	Average	SHR	2	195	19．50\％	回				2，512	3，220
V	3	GP	BATCHB	z／OS－2．2	Average	SHR	2	32	3．20\％	\square				412	3，220
V	4	GP	TESTB	z／OS－2．2	Average	SHR	2	12	1．20\％	回				155	3，220
V	5	GP	TESTIMS	z／OS－2．2	Average	SHR	2	36	3．60\％	\square				464	3，220
V	6	GP	CICSB	z／OS－2．2	Average	SHR	3	297	29．70\％	\square				3，826	4，830
V	7	GP	IMSA	z／OS－2．2	Average	SHR	2	73	7．30\％	回				940	3，220
\checkmark	8	GP	TESTCICS	z／OS－2．2	Average	SHR	2	15	1．50\％	\square				193	3，220
V	9	IFL	TESTLNX	z／NM－6．4	Average／LV	SHR	1	100	100．00\％	\square		V	est．25．0\％	2，350	2，350

Host Summary	SMT Benefit	LCP Alternatives

CP Pool	RealCPs	LPs	$\begin{aligned} & \text { DED } \\ & \text { LCPs } \end{aligned}$	SHR		Sum of Weights	SMT Benefit	Capacity Totals
				LCPs	LCP：RCP			
GP	8	8		19	2.375	1，000		12，706
zIIP	2	1		2	1.000	100	est．25\％	4，248
IFL	1	1		1	1.000	100	est．25\％	2，350
ICF								
Totals	11	10	0	22				19，303

For significant configuration changes such as upgrading the processor family，consider capacity comparisons to have a $+/-5 \%$ margin－of－error When the default estimated SMT Benefit is assigned to a partition，margin－of－error is $+/-10 \%$ ；For larger estimates，margin－of－error will be greater

Input fields have white background；Single－click a＂selection field＂for drop－down list；Double dick a＂key－in field＂to open．

Note that with the SMT Benefit applied，the zIIP capacity has increase by 25% ，from 3，398 MIPS to $\mathbf{4 , 2 4 8}$ MIPS．The IFL capacity has increased by 25% from 3，880 MIPS to 2，350 MIPS，and the total capacity has increased from 17，983 MIPS to 19，303 MIPS．

14．Click Double Return to close the LPAR Configuration windows and return to the Advanced－Mode Control Panel window．
15. On the Advanced-Mode Control Panel window, select both
\#1 Z Current zEC12 2827-707 and \#4 z z14 3906-708 + 2 zIIP \& 1 IFL. Click on one, press the CtrI key and click on the other. Then click the Compare CV tool bar icon. Click on Minimum Capacity, and then click Consider Margin-of-Error to see the Partition Margin-of-Error window.

Martition Margin-of-Error	\square	回	\times

(ㅇ) (3)

Margin-of-Error Consideration

Partition Minimum Capacity

Study ID: zPCR Familiarization Exercise Current zEC12 2827-707: Created from EDF C: \...XYZ 2827.edf interval \# 12

New z14 3906-708 + zIIP \& IFL: Cloned from New z14 3906-708 Capacity basis: 2094-701 @ 593.00 MIPS for a shared single-partition configuration Capacity for z/OS on z10 and later processors is represented with HiperDispatch turned ON

\#1 \% Current zEC12 2827-707					\#4 \% New z14 3906-708 + ZIIP \& IFL			
Partition Identification				Projected Capacity	Projected		Projected minus 5\%	
Type	Name	SCP	Workload		Capacity	\% Delta	Capacity	\% Delta
GP	BATCHA	z/OS-2.2	Average	1,724	2,512	+45.7\%	2,386	+38.4\%
GP	BATCHB	z/OS-2.2	Average	290	412	+42.1\%	392	+35.2\%
GP	CICSA	z/OS-2.2	Average	3,076	4,204	+36.7\%	3,994	+29.8\%
ZIIP	CICSA	z/OS-2.2	Average		4,248		4,035	
GP	CICSB	z/OS-2.2	Average	2,625	3,826	+45.8\%	3,634	+38.4\%
GP	IMSA	z/OS-2.2	Average	655	940	+43.5\%	893	+36.3\%
GP	TESTB	z/OS-2.2	Average	109	155	+42.2\%	147	+34.9\%
GP	TESTCICS	z/OS-2.2	Average	136	193	+41.9\%	184	+35.3\%
GP	TESTIMS	z/OS-2.2	Average	323	464	+43.7\%	441	+36.5\%
IFL	TESTLNX	z/NM-6.4	Average/LV		2,350		2,232	

For significant configuration changes such as upgrading the processor family, consider capacity comparisons to have a $+/-5 \%$ margin-of-error When the default estimated SMT Benefit is assigned to a partition, margin-of-error is $+/-10 \%$; For larger estimates, margin-of-error will be greater

New z14 3906-708 + zIIP \& IFL Capacity Values include SMT Benefit for one or more zIIP and/or IFL partitions
Verify that our partitions will still meet our objective of 35% (rounded up) improvement when the additional zIIP and IFL partitions are included. The exception is the CICSA partition, which is only reaching 29.8% capacity improvement. However, since we expect this partition to start routing zIIP eligible work to the zIIP LCPs, 29.8% is likely acceptable (will depend on the percent of the workload that is zIIP eligible).

zPCR Familiarization Exercise

16. Close all the comparison windows. On the Advanced-Mode Control Panel window, make sure that no LPAR configurations are selected. In the Compare group box, click the S tool bar icon to present the Host Capacity Comparison Summary window. This window relates the capacity projections for each defined LPAR configuration by CP pool. The sum of the individual pool capacity values is shown as a total for the entire CPC on the right.

zPCR Familiarization Exercise

17. Change the view to the Single-CP. Single-CP capacity represents the average capacity of each CP (determined by dividing the full capacity by the number of CPs involved). SingleCP capacity can be useful for revealing relative engine speed when comparing LPAR configurations where the host processor family is changed.

One use of the Single-CP option is to compare the z14 3906-615 alternative. In this case it has "more \& slower" engines (15 engines with 912 MIPS relative capacity per General Purpose CP) than the z14 3906-708 option (1,615 MIPS) and the original zEC12 (1,277 MIPS), but more total GCP capacity. This would be one consideration for a sub-capacity model, along with the type of work, number of partitions, dispatch points, CPU per Tran, etc.

18. From the menu bar on the Advanced-Mode Control Panel window click File $\rightarrow \underline{\text { Save as, }}$ and save the complete study which will include both LPAR configurations (e.g., Lab Task-9.zpcr).

*** End of Additional Analysis Task-9 ***

*** End of zPCR Lab ***

