

IBM Advanced Technical Support

LPAR Concepts

Walt Caprice Washington Systems Center

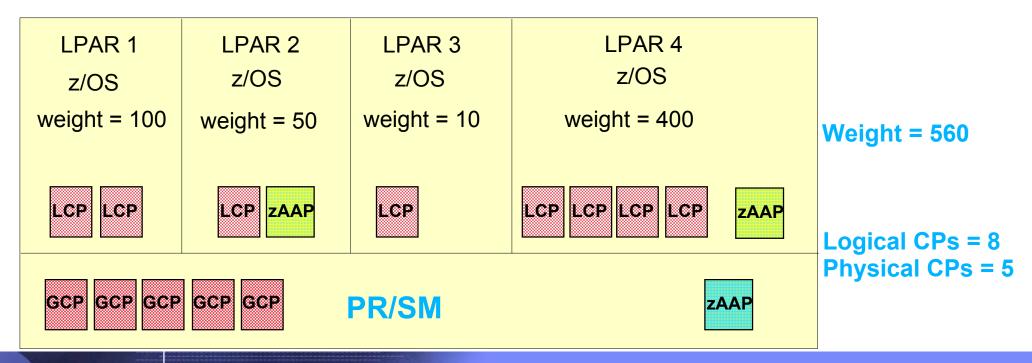
Agenda

- Introduction to PR/SM ™ and to LPAR Controls
- "Short" CPs
- Dispatching Work
- Fewer, Faster CPs vs. More, Slower CPs
- Sources of LPAR Overhead
- Miscellaneous LPAR Information
- Capacity Planning Impacts of LPAR

zSeries Virtualization via PR/SM Technology

LPAR 1	LPAR 2	LPAR 3	LPAR n
			Up to 30 LPARs
z/OS	OS/390	zLINUX	
GCP GCP	SCP GCP GCP	PR/SM	ICF ICF IFL ZAAP SAP

- 1 to 30 LPARs per CEC
- 1 to 32 PUs per CEC (2084-D32)
- Operating Systems don't know they are not running directly on the hardware
- PR/SM ™ is managing the resource allocations based on installation controls
 - PUs can be defined as shared among the LPARs or dedicated to a specific LPAR



IBM

© IBM Corporation 2005

Partitioning Controls

- Number of partitions, their relative weights, and CP mode (dedicated or shared)
- Number of logical CPs defined to the partitions
- Ratio of logical CPs to physical CPs defined
- Effect of the partitions shared weight and any impact of capping on the partition
- CP usage; either general purpose, traditional CPs or the use of IFL / ICF / zAAP CPs
- Type of system control program (z/OS, z/VM, Linux, etc.), and the workload characteristics in each partition

Important Terms to Understand

- LPAR weight and per CP share
- Effective Dispatch Time
- Partition Dispatch Time
- Short CPs

Important Concepts to Understand

- LPAR weights become important only when the processor is very busy or capped
- There are two dispatchers involved in making resource allocations
 - PR/SM
 - Operating System

RMF Partition Report

PARTITION DATA REPORT

MVS PARTITION NAME	WSC1
NUMBER OF CONFIGURED PARTITIONS	2
NUMBER OF PHYSICAL PROCESSORS	9
CP	9
ICF	0
WAIT COMPLETION	NO
DISPATCH INTERVAL	DYNAMIC
PARTITION DATA	PROCESSORS
NAME STATUS WEIGHTS CAPPING	G NUM TYPE

	DIATOD	WEIGHID	CALLING	ROH	
WSC1	A	800	NO	9	CP
WSC2	A	200	NO	9	CP

2084-309 = 325 MIPS/CP

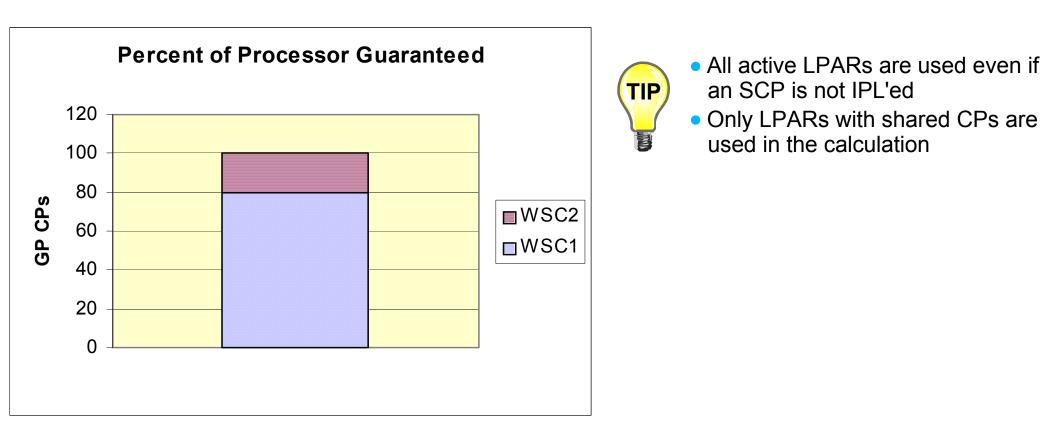
Logical Processor Utilizations

Measurement which states the busy of the logical CPs

- Independent measure of capacity
- Can run out of logical CP capacity before the processor is 100% busy

Physical Processor Utilizations

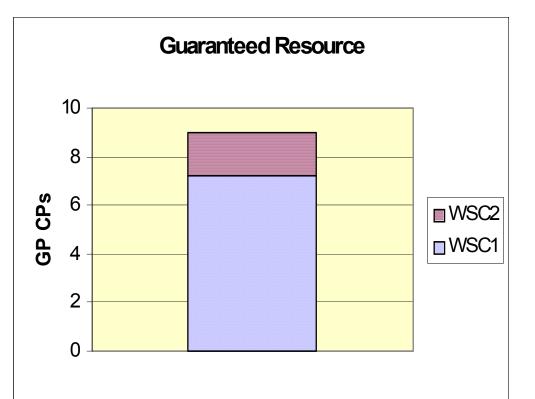
Measurement of the partition busy in processor terms


- Differs from effective time when the number of logicals defined to the partition does not match the number of general purpose CPs
- It is this metric which is used in capacity planning exercises

	P2	ARTITI	ON DAT	A			-		AVERAGE	PROCESSO	R UTILIZATI	ON PERCENTA	AGES
			MS	U	-CAP	PING	PROCI	ESSOR-	LOGICAL PRO	CESSORS	PHYSIC	AL PROCESSO	ORS
NAME	S	WGT	DEF	ACT	DEF	WLM%	NUM	TYPE	EFFECTIVE	TOTAL	LPAR MGMT	EFFECTIVE	TOTAL
OSP1	A	100	0	80	NO	0.0	4	CP	19.61	19.62	0.00	4.90	4.91
OSP2	A	100	0	80	NO	0.0	4	CP	19.61	19.62	0.00	4.90	4.90
OSP3	A	100	0	80	NO	0.0	4	CP	19.61	19.62	0.00	4.90	4.91
OSP4	A	120	0	95	NO	0.0	4	CP	94.74	94.75	0.00	23.68	23.69
CF01	A	DED	0	100		0.0	3	CP	99.98	99.98	0.00	18.75	18.75
CF02	A	DED	0	100		0.0	3	CP	99.98	99.98	0.00	18.75	18.75
*PHYSICAL	*										0.02		0.02
TOTAL											0.03	75.88	75.93

Calculate LPARs Weight (relative value)

Share = LPAR Weight Sum of Weights WSC1 share = 800/1000 = 80% WSC2 share = 200/1000 = 20%



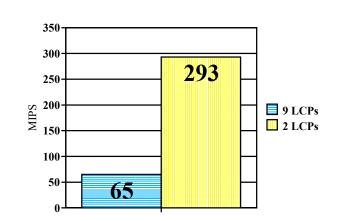
Calculate amount of processor guaranteed to each LPAR

Processor guaranteed = # of General Purpose (GP) Physical CPs (PCP) * LPAR share

WSC1 capacity = 9 * .80 = 7.2 CPs WSC2 capacity = 9 * .20 = 1.8 CPs

 The processor guarantee is used to offer protection to one LPAR over other busy LPARs demaning service

Determine Per CP Fair Share Dispatch Time


Partition dispatch time % = ---

Guaranteed Processor Value # LCPs in the partition

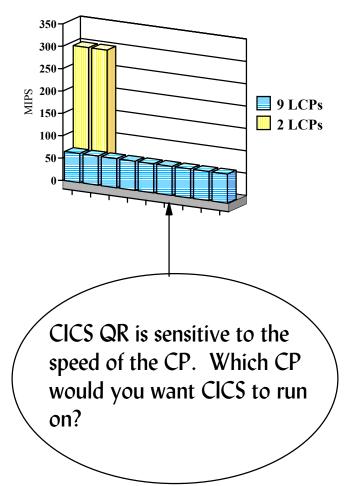
WSC1 = 7.2 / 9 = 80% or .8 * 325 = 260 MIPS WSC2 = 1.8 / 9 = 20% or .2 * 325 = 65 MIPS -

Better Alternative Is:

WSC1 = 7.2 / 8 = 90% or .9 * 325 = 293 MIPS WSC2 = 1.8 / 2 = 90% or .9 * 325 = 293 MIPS

* 100

 Biggest per CP Share possible is best when processor is busy


What Are 'Short CPs'?

Term created by the WSC performance staff

- Performance phenomenon created by LPAR hipervisor enforcing LPAR weights on busy processors or capped partitions
- LPAR ensures each partition has access to the amount of processor specified by the LPAR weight
 - This can reduce the MIPS delivered by the logical CPs in the partition
 - Controlled by a combination of LPAR weights and number of Logical CPs
 - Potential Performance Problems

In a processor migration "short CPs" are not a problem as long as the partition on the new CEC has access to an equal or greater number of MIPS per CP

 Techdocs Item: WP100258 – Performance Considerations when moving to Fewer, Faster CPUs

WSC 'Short CPs

Possible Performance Symptoms

- Prod CICS can't keep up and transactions are backing up
- Production system is 'sluggish'
 - High performance address space may not be getting enough cycles (GRS, XCF, Catalog, etc.)
- Test system is not processing XCF requests in a timely fashion and production system is experiencing the performance problem in a Sysplex (sympathy sickness)
 - GRS on production system
 - Catalog processing

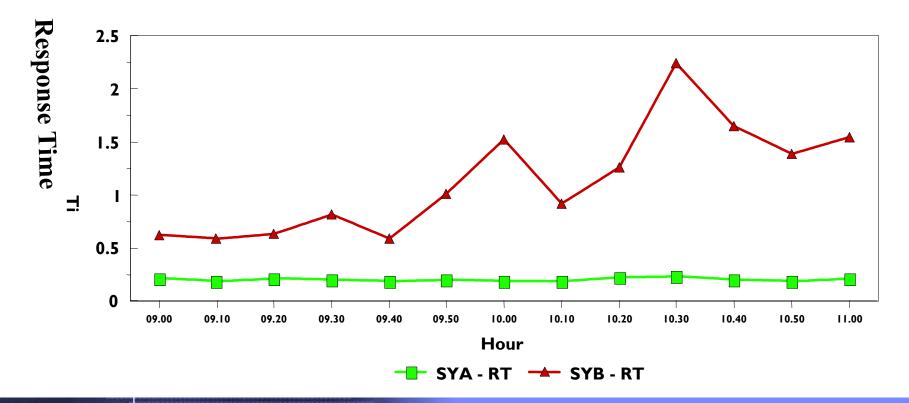
Due to logical CP losing access to physical CP

- z/OS is <u>NOT AWARE</u> the CP is gone
- High priority task doesn't have a physical assigned, while the low priority task does have a physical CP assigned

Do I Have Short CPs?

- Compare LPAR Busy % versus MVS Busy % on RMF CPU Activity Report
 - If MVS Busy is greater then LPAR Busy 'short CPs' exist
 - May or may not be great enough to cause pain (yet)
- Can calculate the MVS to LPAR busy Ratio
 - MVS Busy / LPAR Busy 71.55 / 31.64 = 2.26
 - Most problems are noticed with a ratio greater than 1.25

	z/OS V1R	4	SYSTEM ID SYS	A	DATE
08/06/2	2003				
			RPT VERSION V1	R2 RMF	TIME
08.56.5	59				
CPU 20	64 MODEL 21	.6			
CPU	ONLINE TIME	LPAR BUSY	MVS BUSY	CPU SERIAL	I/O TOTAL
NUMBER	PERCENTAGE	TIME PERC	TIME PERC	NUMBER	INTERRUPT
RATE					
0	100.00	31.85	71.76	010B2E	14.09
1	100.00	31.62	71.54	110B2E	20.42
2	100.00	31.57	71.48	210B2E	19.94
3	100.00	31.50	71.42	310B2E	21.84
TOTAL/A	VERAGE	31.64	71.55		76.29

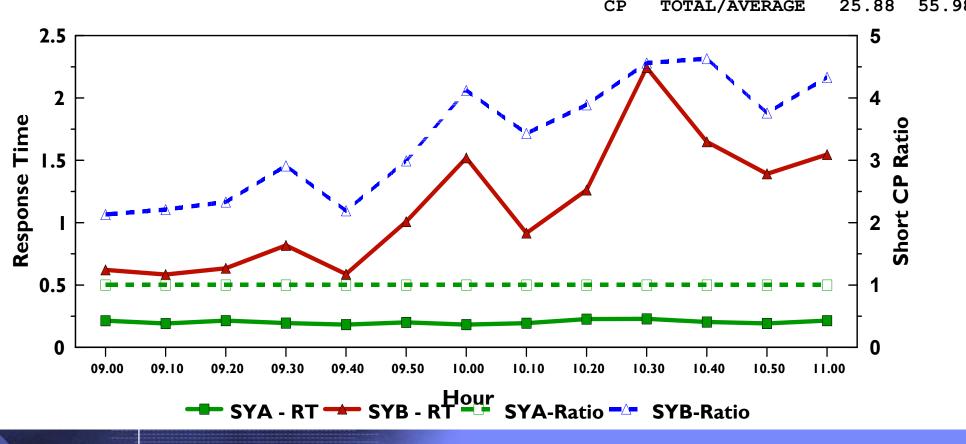

MVS Dispatcher when LPAR Weights are being Enforced

Interval	CP 0	CP 1	CP 2	CP 3
1 CICS,STC,Batch,Batch	CICS L=P	BATCH L=P	STC L=P	BATCH L=P
2 CICS,STC,Batch	CICS L	BATCH L=P	STC L=P	0
3 CICS,Batch,Batch,Batch	CICS L=P	BATCH L=P	BATCH L=P	BATCH L=P
4 cics	CICS L	0	0	0
CICS Active	4:4	= 100%		
CICS Dispatched	2:4	= 50%		
LPAR BUSY	10:16	= 63%		
MVS BUSY	12:16	= 75%		

tem

Short CP Example

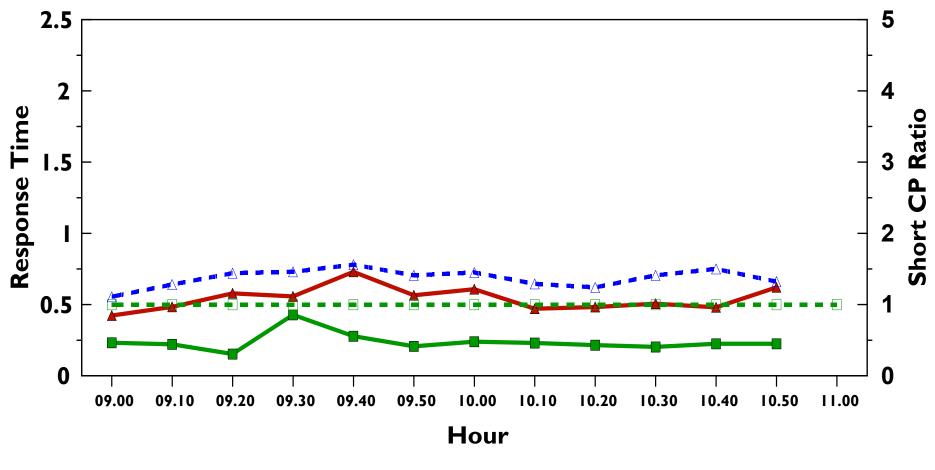
- Data sharing workload runs on 2 images on different CECs
 - Both CECs are the same technology
 - Both LPARs run the same, exact transactions
- Response time on SYB is consistently higher than SYA
- Work is defined with high importance, and a stringent goal



Short CPs - An Example

SYB has short CPs

- RMF Short CP ratio = (MVS Busy / LPAR BUSY)
- Each LCP was allowed 18% of a CP across 6 CPs
- Change logicals to 2, get per CP share to 54%


	CPU	ΑСТΙVΙ	ТҮ
CPU 2084		MODEL 315	
CPU	LPAR BUSY	MVS BUSY	
NUM	TIME PERC	C TIME PERC	
0	33.39	63.56	
1	31.20	61.34	
3	20.67	50.73	
4	18.26	48.32	
CP	TOTAL/AVE	RAGE 25.88	55.98

Short CPs

Short CP Ratio dropped to approx 1.5 and response times dropped noticeably

🖿 SYA - RT📥 SYB - RT 🖻 ' SYA-Ratio' 🛎 SYB-Ratio

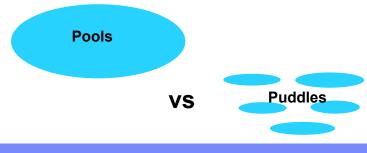
IBM

MVS Dispatcher

Much more functional dispatcher than PR/SM

Reduced preemption dispatcher

- Newly ready work at a higher priority is not immediately dispatched
- Give a small time slice of capacity to newly dispatched work to ensure productive use of the CPU cost to run the dispatcher logic
- Work at equal dispatch priority use a round robin access to a CP


TIP

If work at a lower dispatch priority is using CPU then higher priority work didn't demand the CP

Question which is difficult to answer is: did the work not want the CP (idle) or was the work unable to request the CP (wait)

Configure systems so more workloads are under the control of the more functional dispatcher

- WLM is sysplex aware
- WLM IRD is multiple LPAR aware

Fewer, Faster CPs vs More, Slower CPs

Fewer, Faster CPs

- High priority workloads see great benefits
- Have the ability to monopolize a CP
- On a migration a previously limited workload can now use more capacity
 - Rejoice
 - Control with WLM resource groups
- Availability Issues

More, Slower CPs

- More work units are active
- Can limit a tasks throughput
- Increased parallelism
- Limits the impact of a workload which monopolizes a CP

Fewer/Faster Case Study

Case Study Objectives

- New technology is causing many customers to run more partitions on processors with fewer physical CPs
 - Can performance be maintained as the logical to physical ratio increases?
 - What about "short CPs"?
 - What about the overhead of many LPARs on a single machine?
- Evaluate this new environment
- Identify any new performance/capacity planning considerations

Hardware and Software Configurations

IBM

Base Configuration

- Software
 - OS/390[®] V2R10
 - z/OS not supported on 9672-RX3
 - CICS/TS V1R2
 - ► TPNS
 - Batch
- Hardware
 - Single Partition on a 9672-RX3
 - 1 dedicated CP

9672-RX3

Base Partition	Lightly	Lightly	Lightly	Lightly
OS/390 V2R10	Used Partition	Used Partition	Used Partition	Used Partition
TPNS				
CICS-TS				
Batch				
1 Dedicated CP	9 Shared CPs	9 Shared CPs	2 Shared CPs	2 Shared CPs

Migrated Configuration

- Software
 - Same as base configuration
- Hardware
 - Use PCR to estimate capacity of a 2064-116 CP
 - 1 Shared CP

PCR (Version 2.5a) - Processor Table, View is Selected, Vendor claim processors are Excluded Single-CP ITR Ratios relative to IBM 9672-RX3 rated at 1.000 OS/390 (V2R10) - LSPR Rel 2002a (02/13/2002)

Processor	Features	F SG	MSU	Custom Mix	20% CBW2	20% CB84	20% TSO	20% CICS/DB2	20% IMS
9672-RX3 2064-116	10W 20PU 16W	70	30 441	1.000 9.303	1.000 10.772	1.000 9.692	1.000 8.322	1.000 8.316	1.000 9.899

2064-116

RAP01	RAP02	RAP03	RAP04	RAP05	RAP06	RAP07	RAP08	RAP09	RAP10	SOAKER
1	1	1	1	1	1	1	1	1	1	15
Shared	Ded.									
СР	CPs									

Workload Characteristics

Workloads

TPNS

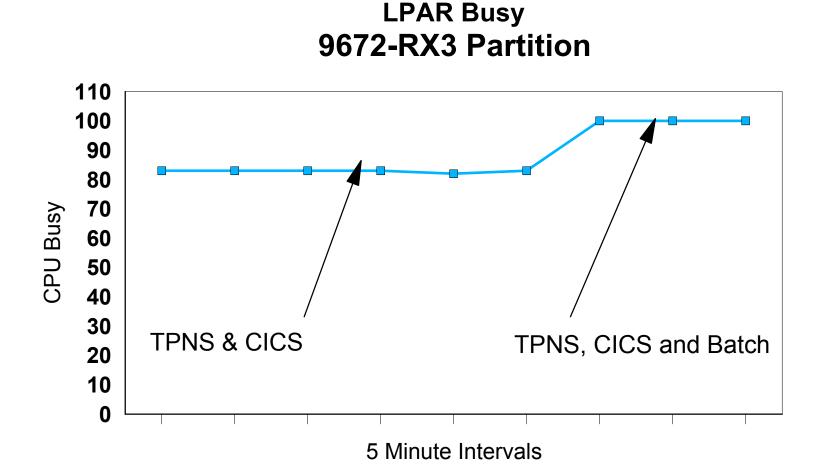
- SYSSTC service class
- Simulate a 500 terminal network
- Vary think time to drive 9672-RX3 partition to greater than 80% busy
 - 5-second think time

CICS-TS

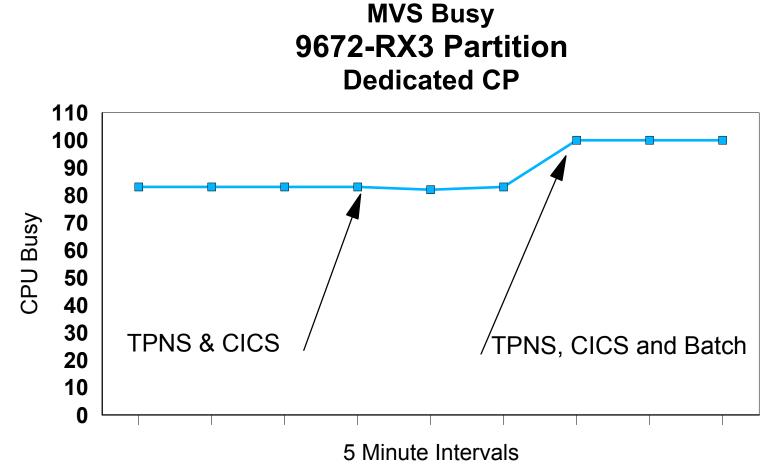
- Single CICS region
- Multiple transactions accessing VSAM files
- Transaction classification
 - Average response time LE .125 seconds
- Run during the entire measurement period
- Batch
 - Submitted back end of the measurement
 - Push partition to 100% busy to cause LPAR weights to be enforced
 - 1 address space

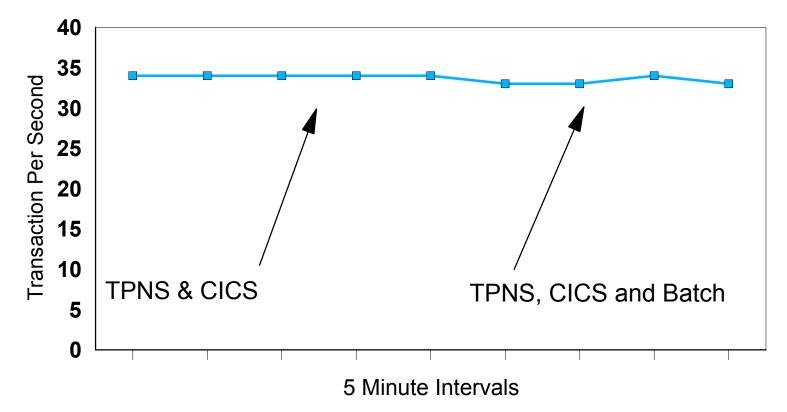
Monitored Measurement Variables

RMF Metrics

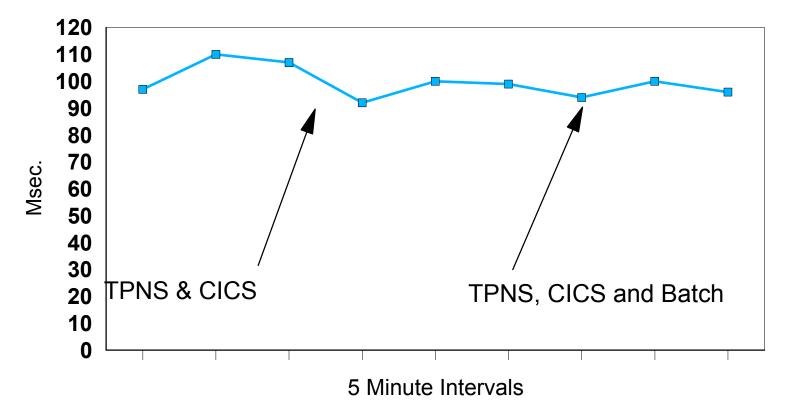

- MVS Busy
 - How busy is the partition from an MVS point of view?
 - Indicator of "short CPs" (LPAR taking the physical CP away from the logical CP)
- LPAR Busy
 - How busy are the logical CPs in the partition?
 - How busy is the base partition? (9672-RX3)
 - How busy are each of the migrated partitions? (2064-116)
- CICS Transaction Values
 - Rate
 - How many answers is the CICS system generating?
 - Response Time
 - How long does it take to make an answer?
 - Performance Index
 - How well did the transaction achieve its goal?

+

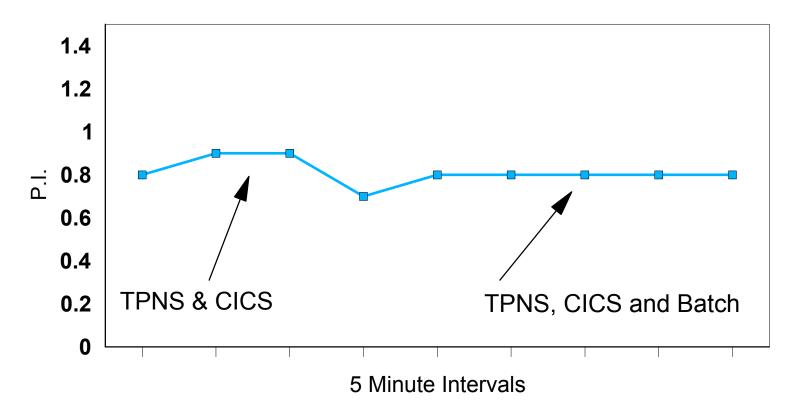

Test Results

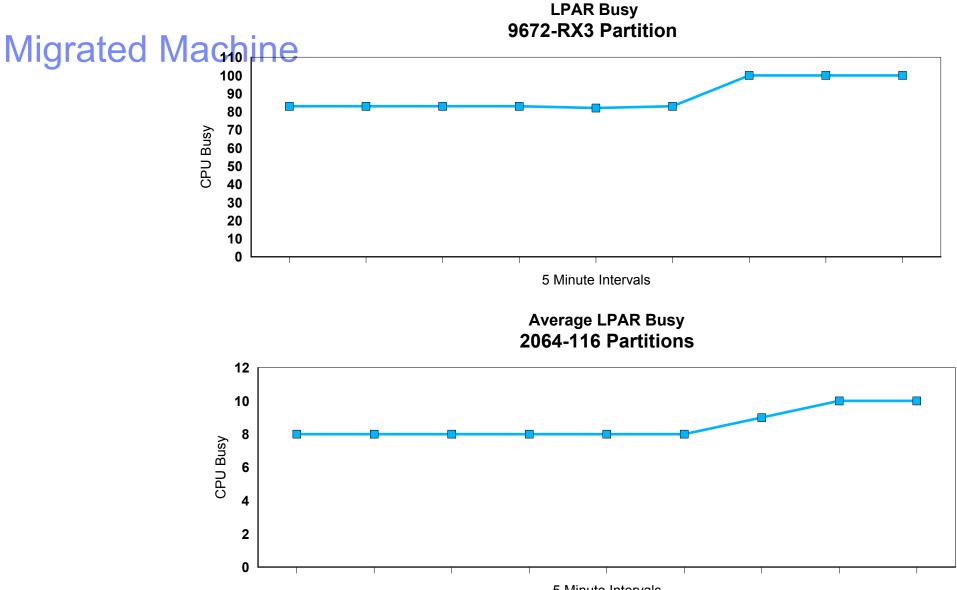


2 2

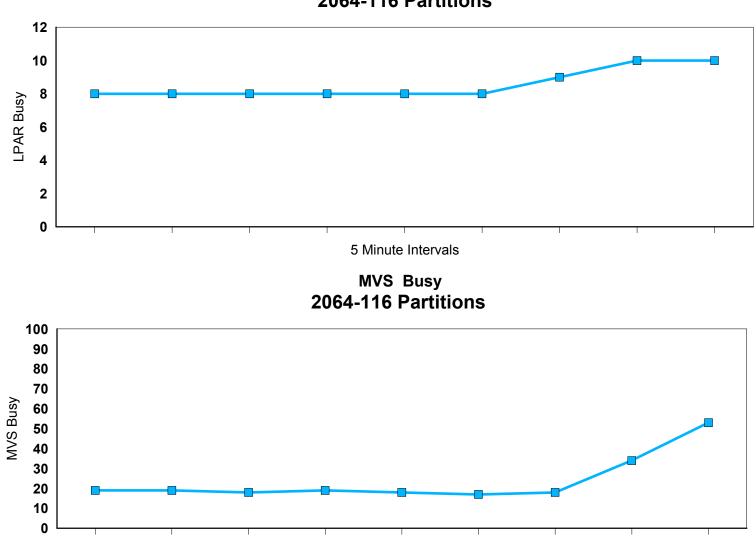


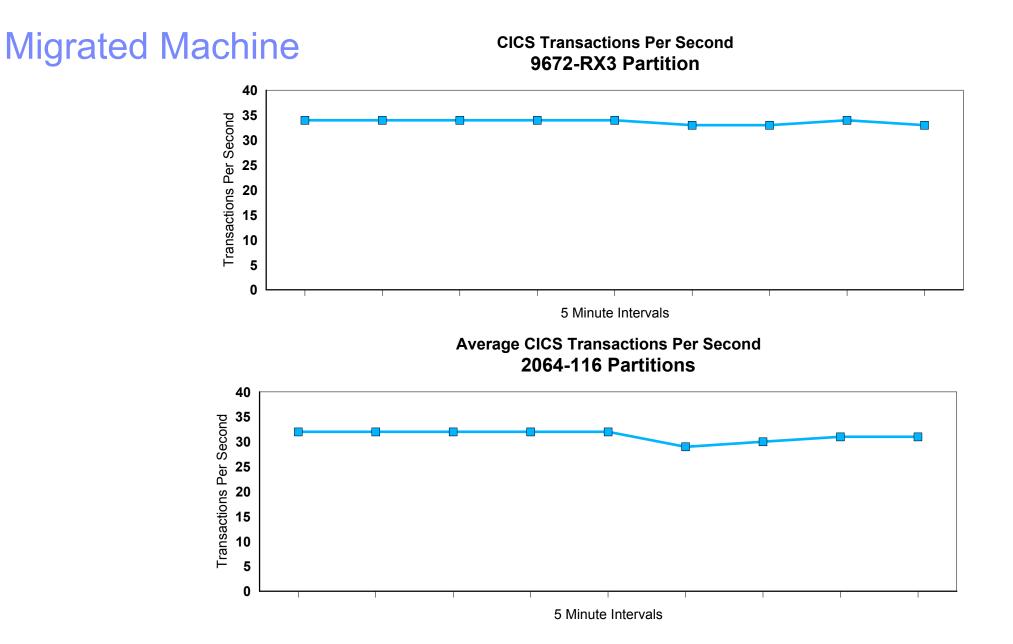
CICS Transactions Per Second 9672-RX3 Partition

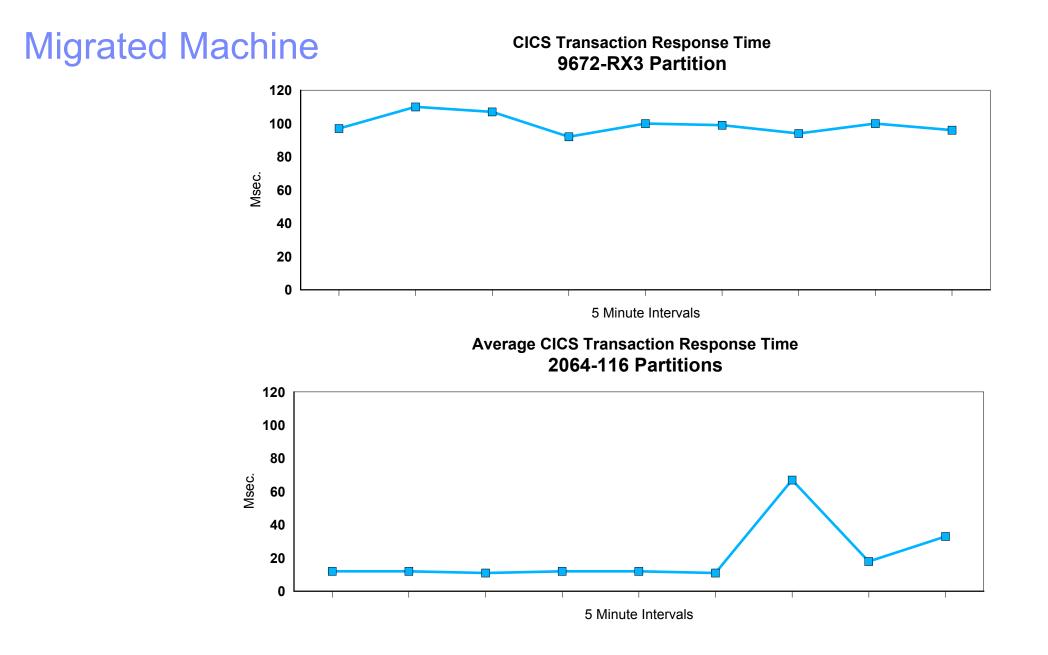

CICS Transaction Response Time 9672-RX3 Partition



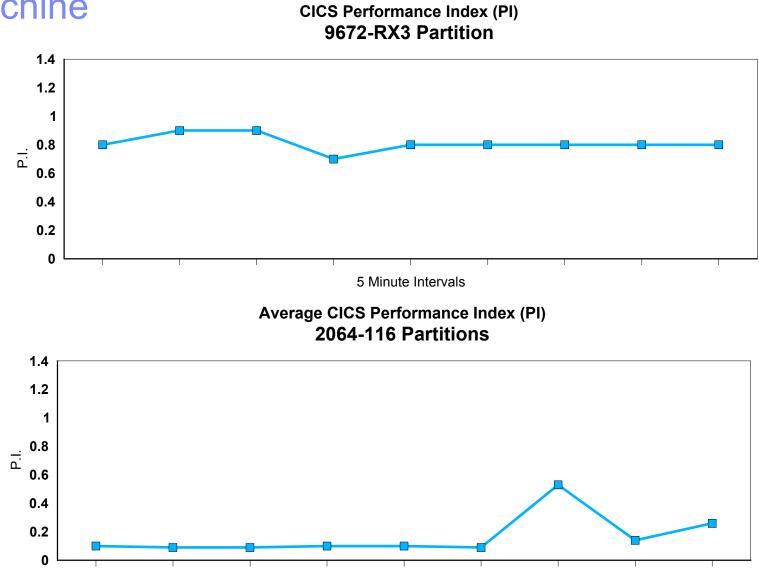
CICS Performance Index (PI) 9672-RX3 Partition




Migrated Machine


5 Minute Intervals

LPAR Busy 2064-116 Partitions



Migrated Machine

5 Minute Intervals

Recommendations

How to be Successful

- Don't Ignore "Short CPs"; to be successful, make sure each:
 - Partition has access to the same or more MIPS on the new machine
 - Logical CP has access to the same or more MIPS on the new machine
- The overhead of LPAR can make a difference when the logical to physical CP ratio is greater than 3-to-1
 - Use LPAR/CE or IBM Processor Capacity Reference (zPCR) to estimate LPAR cost

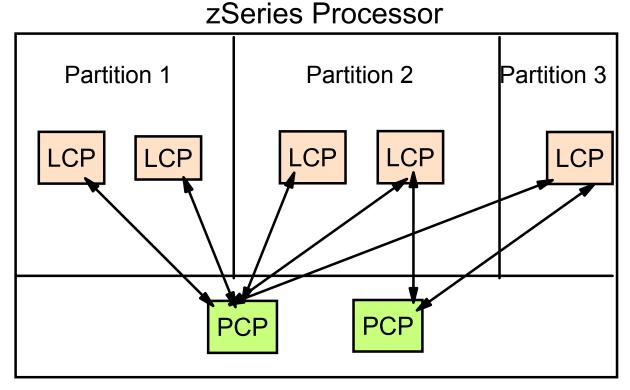
PCR (Version 2.5a) - Processor Table, View is Selected, Vendor claim processors are Excluded Single-CP ITR Ratios relative to IBM 9672-RX3 rated at 1.000 OS/390 (V2R10) - LSPR" Rel 2002a (02/13/2002)

Processor	Features	F SG	MSU	Custom Mix	20% CBW2	20% CB84	20% TSO	20% CICS/DB2™	20% IMS™
	1.017			1 000	1 000	1 000	1 000	1 000	1 000
9672-RX3 2064-116	10W 20PU 16W	70	30 441	1.000 9.303	1.000 10.772	1.000 9.692	1.000 8.322		1.000 9.899

IBM CPS Capacity Planning Support LPAR Capacity Estimator

Estimate of host's LPAR-mode (vs.) host's B-mode capacity: 80.62%

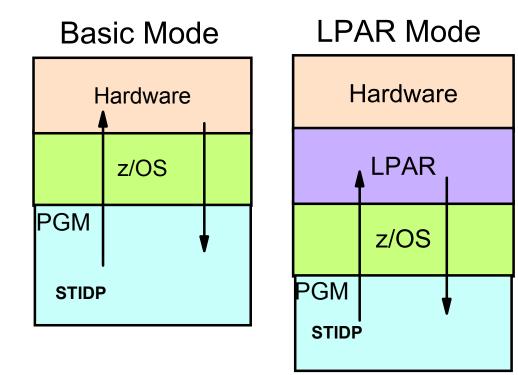
Causes of LPAR Overhead



© IBM Corporation 2003 Foil #

Management of the Hardware

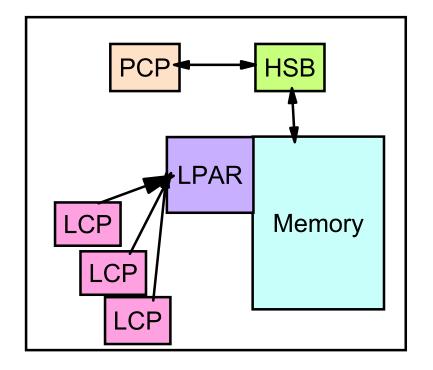
- LPAR must assign a physical CP to a logical CP in order to execute instructions
- CPU cost in the *PHYSICAL partition on RMF Partition Report
- CPU Timers are stopped when physical CP is removed from the logical CP



Logical to Physical Ratio	LPAR Overhead
1:1	0.22%
2:1	0.42%
3:1	0.55%
10:1	0.81%

Management of the Partition

- LPAR must get involved with certain instructions
- Cost reflected in LPAR MGMT Column on RMF Partition Report for each partition

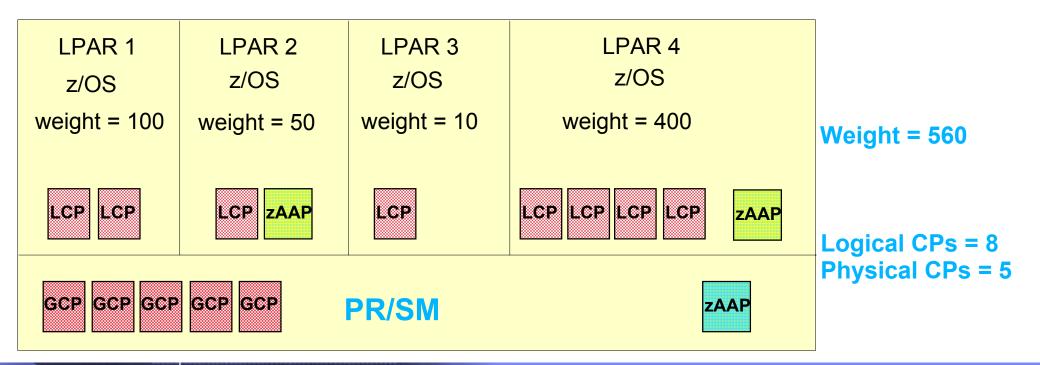

	PAR	TITION	DATA	AVERAGE	PROCESSO	R UTILIZATI	ON PERCENT	AGES
				LOGICAL PRO	CESSORS	PHYSIC	AL PROCESS	ORS
NAME	S	WGT	DEF	EFFECTIVE	TOTAL	LPAR MGMT	EFFECTIVE	TOTAL
SYS6LP01	Α	174	0	85.29	85.53	0.24	85.29	85.53
SYS6LP02	A	35	0	53.86	55.90	0.51	13.46	13.97
*PHYSICAL	*					0.44		0.44
TOTAL						1.19	98.75	99.94

High Speed Buffer Contention

The high speed buffer is 'fast' memory

- Accessing data from the high speed buffer improves the speed of the PCP
- Data not found in the high speed buffer reduces the effective speed of the PCP
- Each time a new LCP is associated with a PCP, increased risk of HSB miss
- The impact of the HSB miss is not reported in RMF, but is reflected in increased TCB time for jobs
- IBM tool zPCR includes estimated TCB time elongation

Miscellaneous LPAR Information


Logical to Physical CP Ratio

- Strive to keep logical to physical ratio in the 2:1 or 3:1 area
- Higher ratios will work but cause increased cost which needs to be factored into the capacity plan
- Biggest issue to reducing the logical to physical CP ratio is the requirement to run small LPARs as z/OS uni-processors
 - Availability issues of running z/OS as a uni-processor
 - Places greater emphasis on doing LPAR consolidation to make fewer LPARs which need more than 1 CP of capacity
 - Virtual storage constraints need to be reviewed
 - Places greater emphasis on doing CICS consolidation to make fewer, larger CICS regions which can use more of a CP's capacity
 - Virtual storage constraints need to be reviewed

Capacity Planning and LPAR

- n-way and MP effects will impact capacity
- LPAR 3 is a uni, but the hardware is running as a 6-way shared processor and the capacity is of a 6-way shared processor
 - 5 GCPs and 1 zAAP
 - z/OS 1.6 will support up to 24 CPs per image

Capacity Planning and LPAR

Set a 2084-316 as the base processor equated to 1.0

5752 MIPS, and defined with a LowIO mixed workload and shared CPs

Case	Mode	# of LPARs	LPARs x LCPs	LCP	ITRR	LCP:PCP
Base	2084-316	1	1 x 16	16	1.00	1:1
1	2084-316	2	2 x 12	24	.9882	1.5:1
2	2084-316	7	2 x 12 2 x 4 3 x 2	38	.9591	2.4:1
3	2084-316	4	2 x 12 2 x 6	36	.9733	2.25:1
4	2084-316	4	4 x 6	24	.9998	1.5:1