
Page 1 Automated Deployment of Enterprise Application (EAR) Updates

Part 1 (Basic Concepts): Automated Deployment of Enterprise
Application (EAR) Updates

Barry Searle [mailto:searle@ca.ibm.com]
Architect, WebSphere Tools for Automated Build and Deployment
IBM Toronto Lab

Ellen Matheson McKay [mailto:ecmckay@ca.ibm.com]
WebSphere Information Developer
IBM Toronto Lab

© 2004 International Business Machines Corporation. All rights reserved.

Abstract
This two-part article discusses application deployment, particularly automated updates, to IBM® WebSphere®
Application Server in a large-scale enterprise environment. It applies to WebSphere Application Server version
5.0, version 5.1, and version 6.0, and also includes an introduction to a few version 6.0 enhancements. This
article is not intended to be used as a reference for all the details of WebSphere Application Server
administration, but it does describe the key concepts used, and contains a list of references. Although the
beginning of the article reviews some fairly basic base server and managed server concepts and operations,
much of the remainder of the article will discuss certain complex concepts or operational considerations that
will be new even to very experienced enterprise application server administrators.

This first part of the article discusses wsadmin deployment to base and managed servers. It discusses why
phased deployments are needed to maintain applications in a WebSphere Application Server Network-
Deployment managed cell, and how to maintain high availability in such an environment.

Part 2 of the article discusses pre- and post-deployment validation, and it discusses gradual deployment of
incompatible versions of applications. It also discusses the design and implementation of a downloadable
Automated Deployment example program that illustrates how to automate the deployment of randomly
built collections of enterprise applications or updates, and how to automatically target those applications or
updates to the correct servers, including stage-specific application setup.

The problem
It is quite easy to deploy (install) an application into a WebSphere Application Server setup – typically it just
takes a one-line command. For your local running base server, it can be as simple as:

wsadmin -c "$AdminApp install X:/MyApp.ear" -lang jacl
However, this simplicity is deceiving, and the preceding example is really just the Hello World of deployment –
a nice demo, but not typical of the real world.

In a real enterprise environment, there are hundreds of interrelated applications spread over dozens of remote
application servers, and regular updates that need to be deployed to the right servers, all the while maintaining
application availability to users. Even worse, most large enterprises have different sets of operating
environments, or stages, each requiring different setups for the same application. For example, the security role
mappings and the database used for a specific application in a Microsoft® Windows® integration stage are likely
different from those used for that same application on a Linux® production server.

The result might be that at 3 a.m., when some random group of 20 applications have just been rebuilt because of
an automated production build of Library Control System (LCS) code changes, those particular 20 applications

Page 2 Automated Deployment of Enterprise Application (EAR) Updates

each need to have their updates deployed to their correct individual application servers somewhere in the
enterprise. And, although it is 3 a.m. in North America, it is prime time elsewhere in the world, so the
application updates need to be done in a way that maintains high application availability. This update build and
deployment process is regularly repeated, each time involving a randomly different set of updated applications.

Command line wsadmin and JACL/Jython scripts
WebSphere Application Server has an extensive administration program, the Administration Console. It also
has an equivalent command line tool, wsadmin, which can be run interactively or which accepts a file of
scripted commands. For scripting, wsadmin supports the two script languages JACL and jython. See the
reference section for links to related material. In the examples in this article, and in the downloadable example
program, JACL is used since it runs on WebSphere Application Server version 5.0 and later (jython runs on
WebSphere Application Server version 5.1 and above).

This article is not intended as a reference for WebSphere Application Server administration or the wsadmin
tool. For more detailed information, consult the material in the reference section.

Local base server deployment
The simplest deployment scenario is to deploy an application from a build machine to a local running base
server. (Network Deployment managed cells are discussed a little later in this article.) The local WebSphere
Application Server installation has a bin directory containing the wsadmin command and other tools.

The typical sequence for an initial application installation is as follows:

1. If the local server is not already running, then start it:
startServer server1

2. Install the application:
wsadmin -c "$AdminApp install C:/MyApp.ear" -lang jacl

3. Optionally, list all current installed applications (to verify that it really was installed):
wsadmin -c "$AdminApp list" -lang jacl

4. Save this new server configuration:
wsadmin -c "$AdminConfig save" -lang jacl

5. Start the application (this is a one-line command):
wsadmin -c "$AdminControl invoke

 [$AdminControl queryNames type=ApplicationManager,*]
startApplication MyAppName" -lang jacl

The typical sequence for an uninstallation, using a script file instead of interactive commands, is as follows:

wsadmin –f uninstall.jacl –lang jacl
where the file uninstall.jacl contains the following lines:

$AdminApp list
set appMgr [$AdminControl queryNames type=ApplicationManager,*]
$AdminControl invoke $appMgr stopApplication MyAppName
$AdminApp uninstall MyAppName
$AdminApp list
$AdminConfig save

Note that the default wsadmin server connection type SOAP requires a running server. It is possible to
connect using connection type NONE, but the available operations are restricted. Refer to wsadmin
documentation for more details.

Page 3 Automated Deployment of Enterprise Application (EAR) Updates

Remote base server deployment
A slightly more typical environment is one where one or more target base servers are on remote machines. The
most obvious approach (and the one used by many customers) is to use File Transfer Protocol (FTP) to transfer
the application or update from their build machine to the remote target machines, and then to use telnet, or
some other similar program, to run the wsadmin program on those remote machines. This works, but it is
quite messy. It requires FTP and telnet on each remote machine, and quite a few error-prone manual
operations. It also requires FTP and telnet accounts on each remote machine, which introduces
administration and security issues many companies would prefer to avoid.

WebSphere Application Server provides a nice solution to this scenario that many users are not even aware
exists. If you install WebSphere Application Server on the build machine, then the WebSphere Application
Server runtime and its wsadmin command tool are available, even if that installation server is never configured
or started. You can use the wsadmin command to connect to your remote target servers and run your
deployment commands against those remote servers. If a local build machine file is being installed on the
remote server, WebSphere Application Server will internally do the file transfer for you. All the normal
WebSphere Application Server security (if configured) is automatically used according to the userid and
password used with the wsadmin tool. Thus, deployment to remote servers is as easy as to a local server;
the only difference is that the wsadmin invocation command specifies a remote server instead of a local one:

Wsadmin -host MyRemoteHost -port MyRemotePort …commands…

Note: The above solution for remote base server deployment only works if both the remote and local installation
(where wsadmin is running) are WebSphere version-6 installations. If either of the installations is a
WebSphere version-5.0 or version-5.1 installation then you will get an error "X:\MyTEMP\appnnnnn.ear does
not exist for installation". Base server (non-managed) Remote File Transfer support is a version-6
enhancement, unfortunately the version-5x error is not clear about that.

Thus, a very simple, but representative, base server organization might be similar to this:

Application Build and
Deployment Server

Figure-1: Base Servers

Application
A

Server 1

Application
B

Application
C

Server 2

This approach provides a nice solution for a build
machine and one or two remote base servers. But
as the number of independent base servers
increases, it rapidly becomes desirable to have
centralized administration to manage the collection
of servers as a single administrative cell.

Page 4 Automated Deployment of Enterprise Application (EAR) Updates

Network deployment managed cells, nodes, and clusters
As the number of applications and the number of target servers grows, it becomes almost essential to provide
single administrative control for these large collections.

A node is a physical collection of one or many application servers on a particular machine, and there is typically
one Node Agent per node controlling those servers on that remote machine. Why should there be more than
one server per machine? In addition to the obvious redundancy consideration, there are technical and
performance reasons (such as Java threading limitations, Java memory garbage collection considerations, etc.)
why splitting one larger server into multiple servers can provide significant performance improvements on that
same machine. This is particularly common on very large and highly reliable server platforms. For details, see
the WebSphere Application Server performance “Best Practices” documents (available online at
http://www.ibm.com/developerworks/websphere/zones/bp/). Note that there can be two or more logically
separate nodes (each with their own servers) on the same physical machine, but that is very unusual.

Why should there be more than one target machine? In addition to the obvious ability to supply additional
resources (additional CPU cycles, physical memory, etc.) and to provide physical redundancy against hardware
failure, there may be organizational or geographical requirements. As well, the various Quality Assurance (QA)
environments, such as development, integration, test, pilot-production and production, are almost always run on
different machines for logistic, administrative, and security reasons.

To simplify the setup and ongoing administration of redundant servers, most application server products
introduce the concept of clusters. A cluster is a logical collection of servers, each of which typically contains
the same set of applications. (Any one cluster member could actually contain additional or different programs,
but that is highly unusual and confusing.) A vertical cluster contains multiple cluster members on the same
node, while a horizontal cluster contains cluster members on different nodes (which is more typical).

A managed cell is an administrative collection of many servers. One of the key features of WebSphere
Application Server Network Deployment is that groups of servers can be federated together into a single
managed cell. A special server called the Deployment Manager (DMgr) manages all the servers and
applications in the cell, using one Node Agent (NA) per node to control the one or more servers in that node.
Node Agents are typically configured as an always-running daemon within their host machine operating system
so they are always available. They can start or stop servers on that machine, install or uninstall applications on
the servers, and can configure other server settings and control other server functions.

Thus, a very simple, but representative and scalable, cell organization might be similar to this:

Page 5 Automated Deployment of Enterprise Application (EAR) Updates

Application
C

Server 1

Application Build and
Deployment Server

Figure-2: Cell Organization (Servers, Nodes, and Clusters)

Application
A

Application
B

Server 2

Application
C

Server 4

Application
A

Application
B

Server 3

Application
D

Server 5

Node A
(Machine A)

Node B
(Machine B)

Cluster

Using wsadmin with managed servers (conntype=SOAP)
In the earlier discussion about using wsadmin to deploy to a local running base server, you probably assumed,
correctly, that the wsadmin program connected to that server to perform its various administrative operations.
We also could have started wsadmin, specifying the default connection parameter type of -conntype
SOAP (or RMI). If the local server is not running, we can start wsadmin with –conntype NONE and then
wsadmin will directly manipulate the local server configuration files and their contents. In this case, there is
less functionality available, and some of the commands (like starting an application) are not available. In the
case of remote base servers, we supplied a host and port parameter to specify which running server to
connect to, so clearly it is not possible to use –conntype NONE for remote servers since the wsadmin
program has no direct access to their (remote) configuration files.

In the case of managed servers (servers federated into a Network Deployment cell), it is not quite so obvious
what is happening. If the local server is configured as part of a managed cell, then, by default the wsadmin
program will connect to its (likely remote) Deployment Manager server and will ask that Deployment Manager
to perform the specified administrative operations against the specified target servers. Again, the default
connection type is -conntype SOAP. For managed servers, we can override the default destination and
use the host and port parameters to connect to a Node Agent controlling one or more target servers, or to
connect directly to a target server. Connecting to the Deployment Manager (the default option) gives the most
functionality, to Node Agents a little less functionality, to servers even less functionality, and –conntype
NONE to a local server gives the least functionality. It is highly recommended that you always connect to the
Deployment Manager; otherwise, localized changes might be incompatible with the master cell configuration
(such as installing an application with the same name as is already installed elsewhere in the cell) and could
cause subsequent synchronization errors. For details, consult the WebSphere Application Server Information
Center documentation.

Page 6 Automated Deployment of Enterprise Application (EAR) Updates

How do you have a build machine deploy to remote production servers? Earlier we said that you could have
WebSphere Application Server installed on a build machine, without requiring a server to be actually
configured or running. Therefore, you can just start wsadmin using the host and port parameters to specify
the remote Deployment Manager for the production cell, and everything works as expected. Note that the
Deployment Manager must always be at the same version plus service level as all servers within the cell, or at a
later version.

Note that WebSphere Application Server version 6.0 provides support for multiple server profiles (an expanded
implementation of version 5.1 instances), where each server profile is essentially a totally independent server
(independent configurations sharing a common set of runtime programs). The wsadmin command will
operate against its default server profile (determined by the profile location you are executing from), but you
can use the parameter –profileName MyProfile to override that default and specify the actual server
profile (and hence its particular Deployment Manager) to be used, or you can use the host and port
parameters to directly specify the destination (typically a Deployment Manager).

Page 7 Automated Deployment of Enterprise Application (EAR) Updates

Web Servers, firewalls, redundancy, and workload management
Note that there are typically one or more Web servers in front of the set of application servers. The Web servers
accept incoming user HTTP requests and route each request to an appropriate application server to perform the
work. Of course, one or more levels of firewall protection are almost always present at different locations
within the system.

Thus, a simple, but representative, HTTP organization might be similar to this:

Figure-3: HTTP Organization

Machine A

Machine B

Node Agent

HTTP
web server

Plugin

Application
Server-1

Application
Server-N

Machine C

Node Agent

Application
Server-1

Application
Server-N

Firewall Firewall Firewall

Machine X

Deployment
Manager

Enterprise
Applications

Enterprise
Data

Tier-2Tier-1 Tier-3

N
et

w
or

k
D

is
pa

tc
he

r
(I

P
 S

pr
ay

er
)

(Other cells or
major organizations)

Page 8 Automated Deployment of Enterprise Application (EAR) Updates

Good availability using redundancy and server-failover
Looking after the design, setup, and operation of redundant systems is a significant activity, and there are whole
books devoted to this topic. For detailed information, consult the material in the reference section.

If two or more application servers are hosting the same application, then such redundancy can provide workload
sharing (better throughput and response time for increasing numbers of requests). This redundancy can also be
used to provide reactive server-failover and recovery in case of unexpected hardware or software failure. In
case of an application server failure, WebSphere Application Server can be configured such that incoming Web
server work requests are routed to a different server running that same application. All new requests are
handled appropriately, but any in-progress HTTP session will be disrupted and must be re-initiated by users (it
will appear to them that there was a brief service failure).

High availability using server-failover and session-recovery
WebSphere Application Server can reroute new work requests, but it can also be configured to provide reactive
session-recovery to allow most in-progress requests to continue and complete on the redundant server without
any visible interruption to end users. Thus, high application availability can be achieved in spite of unexpected
system failures. For most users, even in-progress HTTP sessions appear to continue without any visible
interruption.

Continuous availability using preemptive work rerouting (quiesce)
Even though many HTTP sessions can be recovered, some applications with very large session data or other
session data that cannot be persisted, can cause an in-progress HTTP session to fail. Thus, if an application or
system has a planned outage (due to maintenance, or other operator-initiated situations), then preemptive work
rerouting can be used to provide nearly continuous availability.

The affected servers are first quiesced, which means that all new incoming work requests are routed instead to
other redundant servers, and all in-progress HTTP sessions on the quiesced servers are temporarily allowed to
run until completed. After a reasonable time, the quiesced servers are then stopped, and the planned
maintenance or other activity is performed. After the planned activity is completed, the servers are re-activated.
New incoming requests can again be routed to them (in addition to the other, still running, redundant servers).

Quiescing entire cells (as discussed a little later in the “gradual rollout” section) is typically done up front at the
Network Dispatcher (IP Sprayer) level using products such as WebSphere Load Balancer. The Network
Dispatcher must be configured with session affinity to ensure that all user requests from the same user HTTP
session get routed to the same processing organization. Quiescing individual application servers is typically
done at the HTTP Web server level, by manipulating the routing table in the plugin-cfg.xml file. This file
is checked for changes by the HTTP server once per minute or at another specified frequency. The HTTP
server must similarly be configured with session affinity. Note that WebSphere Application Server version 5.x
could generate the plugin-cfg.xml files, but they needed to be manually transferred to the HTTP servers.
WebSphere Application Server version 6 has a new feature to allow its HTTP servers to be federated into a cell,
and to transfer the plugin-cfg.xml files.

Page 9 Automated Deployment of Enterprise Application (EAR) Updates

AutoSync application updates throughout an enterprise cell
WebSphere Application Server has the ability to provide automated distribution of application updates to
servers throughout a managed cell. The application update is first installed into the Deployment Manager
application repository. If a Node Agent has its AutoSync feature enabled (which is the default setting), then
that Node Agent will periodically (by default, every 60 seconds) perform a NodeSync, which asks the cell
Deployment Manager for any application updates. Any such updates are then transferred to the Node Agent,
and that Node Agent then updates all its affected servers (since it might have multiple servers that are
configured to run that same application). Thus, if each Node Agent has the default AutoSync enabled, any
application updated or installed into the Deployment Manager will be automatically distributed to every
affected node, and to every affected server on those nodes, over a relatively short period of time.

Application updates can cause application availability failures
What some administrators fail to understand is that default application updates can cause application availability
failures, even if their entire system is configured for server-failover and session-recovery. This
is because while an application is being updated it is not available to process work requests, and any work
routed to it from a Web server will not get a response. Even worse, any other interdependent application will
have a service failure if it tries to use the unavailable application instance. This is because the Web servers and
the workload management programs don’t know that the application is temporarily unavailable. The solution is
to first stop the affected application server before doing the application update (not just the application, the
complete application server). The stopped application server will be detected, and server-failover and
session-recovery will then take place as expected.

Note that WebSphere Application Server version 6.0 has the improved ability to perform incremental in-place
updates of application components, which will help improve application availability. However, certain types of
application component updates will still require stopping and restarting the application, and hence can still
result in application availability failures unless the servers are first stopped and server-failover and
session-recovery is active, or unless preemptive work using quiesce and rerouting is performed.

Remember the earlier discussion of the AutoSync feature to automatically distribute application updates to all
affected nodes in a cell? There is an availability issue that needs to be understood and handled. Each of the
affected applications will be unavailable on their individual servers during the update. Even worse, if several
Node Agents happen to request their NodeSync at the same time or at overlapping times, then the affected
application on each of those affected nodes will be transferred and updated at essentially the same time,
resulting in application unavailability on multiple nodes simultaneously! Where application availability is a
serious concern, the solution is to specifically control the phased distribution of updates throughout the
enterprise cell.

Page 10 Automated Deployment of Enterprise Application (EAR) Updates

Better: Phased distribution of a single (compatible) application update
As previously mentioned, a specifically controlled phased distribution of an application update (compatible with
previous versions) throughout a cell will minimize application availability issues. The required sequence is as
follows:

Initialize all affected nodes
(disable AutoSync)

Select next affected aode

Quiesce all affected nodes

Stop all affected servers
in selected node

NodeSync
(update all affected servers)

Restart all affected servers
in selected node

Reactivate all affected servers
in selected node

Restore all affected nodes
(restore AutoSync setting)

Remaining
nodes ?

NO

YES

Figure-4: Phased Deployment

The above process involves a lot of manual operations and is very error-prone. A script can be created to
perform the specific steps, but a different script is required for each different application and each application’s

1. Save the current setting and then disable
AutoSync on all affected nodes:

a. Can also optionally save and disable
SyncOnStartup.

2. Sequentially, for each affected node, phase-
deploy the update:

a. Select the next affected node to be
updated.

b. Optionally quiesce all its affected
servers (reroute new work requests).

c. Stop all its affected servers.
d. NodeSync that node to retrieve the

update and to install it in each affected
server.

o Note: Wait to ensure the EAR
expansion is complete.

e. Restart the affected servers.
o Note: Test and wait to ensure

the server is running.
f. Optionally reactivate the affected

servers (to process new work requests).
g. Optionally validate installed application

operation.
h. Optionally request manual confirmation

to accept (or reject and restore) this
update.

i. Repeat for the next affected node.
2. Restore the previous AutoSync settings for

all affected nodes:
a. Including SyncOnStartup if it was

optionally disabled.

Page 11 Automated Deployment of Enterprise Application (EAR) Updates

different set of associated target servers. The scripts can be quite complex and difficult to create, and require
ongoing maintenance as the environment changes.

There are two special notes in the above steps. First, after performing the NodeSync, the application update
(EAR) has been distributed down to the node, but the EAR file must still be expanded into the server
installed application directory. Until this EAR expansion is complete, attempting to start the
server will produce indeterminate results. An IBM Problem Report has been created about this, and there may,
in the future, be a downloadable WebSphere Application Server Interim Fix to allow scripts to test for the
completion of the EAR expansion. Second, after returning from the wsadmin startServer command, the
command has been processed by the Node Agent but the actual server startup may not yet be complete. Scripts
need to test that the server has completed startup and is running.

Note that WebSphere Application Server version 6.0 has a new cluster-update feature to distribute (in phases)
an update to each of a cluster’s members one node at a time, including the stopping and restarting of affected
servers being updated. Where server-failure and session-recovery have been configured and
provide sufficient functionality, this will provide very good high availability during cluster updates. This
feature currently cannot be used to phase distribute an update to unclustered servers, and does not do
preemptive quiescing or reactivation of work rerouting. If multiple cluster members are on the same node
(vertical clustering for scalability), then they will be simultaneously updated (and simultaneously unavailable)
as if the Node Agent had performed a regular NodeSync.

Also WebSphere Application Server version 6.0 cluster update can only be done for one application at a time.
If multiple applications need to be updated within a cluster, then multiple cluster-update operations must
be individually performed, and each cluster member node and its affected servers will be cycled again during
each individual cluster-update.

In summary, the WebSphere Application Server version 6.0 new cluster-update feature is a convenient
way to distribute a single update throughout a horizontal cluster with cluster members across multiple nodes,
and does so while maintaining high-availability.

Page 12 Automated Deployment of Enterprise Application (EAR) Updates

Best: Phased distribution of multiple (compatible) application updates
As just mentioned, a specifically controlled phased distribution of an individual application update helps
maximize availability. However, if multiple application updates are required, with each application update
targeted to a potentially different, but overlapping, set of enterprise servers, then the process is slightly more
complex, even though all the same basic principles apply. The sequence required is as follows:

Determine application updates
to be deployed

Determine target servers
for each application

Calculate all affected nodes
and affected servers

Phase deploy
the application updates

Figure-5: Deploying Multiple Updates

As for the phased deployment of single applications, the above process involves a lot of manual operations and
is very error-prone. Additional scripts can be created to assist in the above steps, but with ever-increasing
numbers of different applications, target servers, and stage environment and applications settings, the number
and complexity of specialized scripts becomes an enormous challenge to create and then to maintain.

Part-2: Deployment validation, gradual deployment, automated deployment, and
references
This part 1 has covered the basics of deployment of enterprise application (EAR) updates throughout an
enterprise cell. Part 2 covers pre- and post-deployment validation and gradual deployment (of incompatible
versions of applications), describes the Automated Deployment example program in detail, and includes an
extensive set of references.

About the authors

Ellen Matheson McKay is an Information Developer for IBM Canada Ltd. She writes online help and
publications for Rational Application Developer. You can reach Ellen at ecmckay@ca.ibm.com

1. Analyze the set of all current updates to be
deployed.

2. For each application, determine (read) its
specific set of target nodes and servers.

3. From the total set of affected nodes and
servers, calculate the subset of unique affected
nodes and unique affected servers.

4. Perform the previously described phased
distribution for each affected node.

Barry Searle is the Architect for WebSphere Tools for Automated Build and Deployment.
He is a Professional Engineer who has worked at the IBM Canada Lab for over fifteen years
on various application development tools. Prior to that he has many years of industry
experience developing command and control systems and leading complex communications
development projects. You can reach Barry at searle@ca.ibm.com

Page 13 Automated Deployment of Enterprise Application (EAR) Updates

Trademarks

IBM and WebSphere are registered trademarks of International Business Machines Corporation in the United
States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

