
Active Correlation Technology

Rule Writer's Guide and Reference

Version 6.0

���

Active Correlation Technology

Rule Writer's Guide and Reference

Version 6.0

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 119.

First Edition (June 2006)

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

About this information

This information gives an overview of the IBM® Active Correlation Technology and

its role in complex event processing. The Active Correlation Technology rule

language is an XML-based language for writing rules to correlate events. This

information is designed for rule writers who must understand how to write rules

to correlate events for their business organizations.

© Copyright IBM Corp. 2006 iii

iv Rule Writer's Guide and Reference

Contents

About this information iii

Part 1. Rule Writer's Guide 1

Chapter 1. Introduction 3

Chapter 2. Rule language overview . . . 5

Anatomy of a rule 5

Life cycle of a rule 7

Organization of rules 9

Rule patterns 10

Collection pattern 11

Computation pattern 11

Duplicate pattern 12

Filter pattern 13

Sequence pattern 13

Threshold pattern 16

Timer pattern 18

Common and unique aspects of different rule

patterns 18

Expressions 19

Importing and accessing external modules and

objects 20

Initializing and accessing variables 21

Accessing event-related information 22

Best practices for coding expressions 22

Variables 23

Data types for Active Correlation Technology

variables 25

Expression contexts in which variables are valid 25

act_event variable 26

act_eventCount variable 26

act_eventList variable 27

act_lib variable 28

act_location variable 29

act_nodeName variable 30

act_threshold variable 31

Event flow through a rule set 31

Chapter 3. Rule writing overview . . . 33

Planning for event correlation 33

Designing the rules to correlate events 35

Getting started with the rule builder 36

Setting the perspective in the Eclipse Workbench 36

Setting preferences 36

Creating a project for storing a rule set file . . . 37

Creating a rule set 37

Creating a rule block 38

Creating a rule 39

Validating a rule set 39

Compiling a rule set 39

Updating a rule set 39

Including snippets in expressions within rules . . 40

Part 2. Rule Writer's Reference . . . 41

Chapter 4. Summary of rule set

organization 43

Rule set summary 43

Rule block summary 43

Collection rule summary 44

Computation rule summary 46

Duplicate rule summary 47

Filter rule summary 48

Sequence rule summary 49

Threshold rule summary 51

Timer rule summary 52

Chapter 5. Language element reference 55

action element 56

activateOnEvent element 57

activationByGroupingKey element 58

activationInterval element 65

activationTime element 67

after element 68

attributeAlias element 69

attributeName element 70

booleanThreshold element 70

collectionRule element 71

comment element 72

computationRule element 72

computedThreshold element 74

computedValue element 75

computeFunction element 76

dateTime element 77

deactivateOnEvent element 78

duplicateRule element 79

eventAttribute element 81

eventCountThreshold element 81

eventSelector element 84

eventType element 85

filteringPredicate element 86

filterRule element 87

groupingKey element 88

import element 90

inactiveWhenLoaded element 91

lifeCycleActions element 91

never element 92

onActivation element 92

onDeactivation element 93

onDetection element 93

onLoad element 94

onNextEvent element 95

onTimeOut element 95

onTimeWindowComplete element 96

onUnload element 97

ruleBlock element 97

ruleSet element 98

runUntilDeactivated element 99

© Copyright IBM Corp. 2006 v

sequenceRule element 101

start element 103

stop element 103

stopAfter element 104

thresholdRule element 105

timeInterval element 106

timerRule element 107

timeWindow element 109

variable element 109

varInitializer element 112

whenLoaded element 112

Chapter 6. Glossary 115

Appendix. Notices 119

Trademarks 120

vi Rule Writer's Guide and Reference

Part 1. Rule Writer's Guide

© Copyright IBM Corp. 2006 1

2 Rule Writer's Guide and Reference

Chapter 1. Introduction

This introduction briefly describes complex event processing (also known as CEP)

and gives an overview of the Active Correlation Technology and its role in

complex event processing.

The business environment of today

Today, commercial and government organizations are dependent on electronic

information processing through computer networks, and especially through the

Internet. With additional technologies such as grid computing, organizations run

mission-critical applications at any time and place in the world. Business processes,

activity, and infrastructure, and thus our global society, are dependent on the

information technology (IT) layer of organizations.

Organizations need to know what is happening with their business at all times. For

example, they need to know whether mission-critical applications are available and

working properly and how to detect and prevent a potential crisis in business

processes, activity, or infrastructure. If a crisis occurs, they immediately need to

understand the problem, how to fix it, and what caused it.

The significance of most events that pertain to business processes, activity, and

infrastructure is never recognized or understood because the amount of

information is too massive and too difficult to digest as it exists in individual,

unrelated pieces. However, if the events are aggregated and correlated such that

their relationships can be easily understood, they can yield a wealth of

information.

The purpose of complex event processing is to get better information on events in

real time.

Complex event processing

An event is simply a notification about something that has occurred.

Complex event processing is the derivation of high-level events from the analysis,

correlation, and summarization of low-level events in event-driven systems. These

high-level events, called complex events, are suitable for notifying people of

business opportunities or problems in easy-to-understand terms or for triggering

automated processes. Organizations can then operate more efficiently, with early

warning of potential opportunities or problems, and with a better understanding of

the root causes that change conditions in their business processes, activity, or

infrastructure.

Event correlation is the process of defining and detecting patterns in event streams

in real time and of implementing actions in response to related events. It is used to

identify a problem based on its detected symptoms. Events can be correlated by

cause, by time, by membership, or by combinations of these. Event correlation is

an integral part of complex event processing.

© Copyright IBM Corp. 2006 3

The Active Correlation Technology

The Active Correlation Technology uses rules to detect patterns in event streams in

real time. This technology is based on the understanding that in many cases,

response actions should not be triggered by a single low-level event, but rather by

a complex composition of events that are happening at different times and within

different contexts. The Active Correlation Technology makes use of the

relationships among events to provide awareness of business opportunities and

problems. For example, based on the business awareness that is obtained through

the correlation of events in real time, an organization can take the following types

of actions:

v Offer discounted shipping for some or all customers during a holiday sale.

v Over the next 30 days, calculate the shipping cost based on the shipping carrier,

the order amount, and the order quantity.

v Send customers who purchase goods that are worth more than USD500 between

1 July 2005 and 31 December 2005 a USD25 gift certificate.

v Notify an administrator if any order processing is not completed within 36

hours.

v Notify an administrator if more than four login attempts to the same computer

are detected within 30 seconds.

The Active Correlation Technology consists of the following primary items:

Active Correlation Technology rule language

An XML-based language for writing rules to correlate events. These rules

can then be deployed to Active Correlation Technology runtime

environments.

Active Correlation Technology engine

The Active Correlation Technology component that processes events

according to the output of the Active Correlation Technology compiler.

Active Correlation Technology rule builder

A GUI for writing correlation rules in the Active Correlation Technology

rule language.

An Active Correlation Technology runtime environment is an application in which

the Active Correlation Technology engine is embedded.

4 Rule Writer's Guide and Reference

Chapter 2. Rule language overview

This overview describes the key concepts of the Active Correlation Technology rule

language.

A rule pattern is the representation of an event correlation situation (such as a

threshold condition or duplicate event detection). The Active Correlation

Technology rule language includes seven rule patterns that have been proven to

represent most of the event correlation situations that IBM customers need to

address. Six of the seven rule patterns define stateful rules, and one of the patterns

defines a stateless rule.

Stateful rules correlate multiple events that occur during a specific time period and

generate a response to those events. Stateless rules process only a single event that

meets a certain condition and generate a response to that event.

stateful rule

A rule that retains state information, which is information about the

characteristics of a rule instance, for the purpose of acting on a collection

of events over a period of time. Rules that are defined by any of the

following rule patterns are stateful rules: collection, computation, duplicate,

sequence, threshold, or timer.

stateless rule

A rule that does not retain state information and therefore can act only on

one event at a time. A rule that is defined by the filter pattern is a stateless

rule.
 Related reference

 Chapter 4, “Summary of rule set organization,” on page 43
This reference lists all the language elements of a rule set, a rule block, and

each type of rule. It serves as a quick reference for coding a rule set.

 Chapter 5, “Language element reference,” on page 55
This reference describes the details of the language elements in the XML

schema for the Active Correlation Technology rule language. The language

elements are listed in alphabetical order, and the attributes that are available for

each element are described within the topic for that element.

 Chapter 6, “Glossary,” on page 115
This glossary contains the terms and definitions for important concepts in the

Active Correlation Technology.

Anatomy of a rule

The most basic parts of a rule are the event selection, the grouping key, the time

window for stateful rules, the rule response, the activation interval, and the life

cycle actions. A rule also includes expressions and variables. An expression is code

that contains custom logic that can be added to a rule.

Event selection

Event selection criteria determine which events are accepted for processing by the

rule. The <eventSelector> element defines the event selection criteria for a rule.

Event selection applies to all rules except those that are defined by the timer

© Copyright IBM Corp. 2006 5

pattern. Because the timer rule does not process events, it does not contain event

selection criteria.

Grouping key

Typically, each active rule has one rule instance, or copy, that is running in the

Active Correlation Technology engine. However, sometimes the same rule is

needed for different groups of events, which are often related to different groups of

resources. The grouping key is a method for directing a rule to create a separate

rule instance (or copy of itself) for each group of events that share common

characteristics.

The grouping key serves as an additional form of event selection. If a rule is

defined with a grouping key, and the rule receives an event with the characteristic

that is defined by the grouping key, the event is sent to the rule instance that is

processing the events that share that characteristic. For example, you can define a

rule that collects all security events of type Audit Failure and define the grouping

key to be the hostname attribute of an event. The rule can now be used multiple

times, with a separate copy of the rule running for each unique value of the

hostname attribute. You can also monitor all systems that receive the Audit

Failure event to determine if more than 10 such events occur in a time period of 2

minutes for each host name.

The <groupingKey> element defines the grouping key for a rule, and it is valid for

rules that are defined by the collection, computation, duplicate, sequence, and

threshold patterns.

Time window for stateful rules

Because stateful rules correlate multiple events that occur during a specific time

period, a basic part of a stateful rule is the time window, which is defined by the

<timeWindow> element. The time window specifies the time period during which

the stateful rule is processing to match its pattern.

Rule response

Rule response actions define the actions to take when the rule completes its

processing. Each of the following language elements defines a different type of rule

response action:

v <action> within <onDetection>

v <action> within <onNextEvent>

v <action> within <onTimeOut>

v <action> within <onTimeWindowComplete>

The types of rule response actions that are available to a rule are dependent on the

rule pattern.

Activation interval

The activation interval defines when a rule is active and inactive. The

<activationInterval> element defines the activation interval for a rule.

A rule can be activated or deactivated at a discrete point in time or by a specific

event.

6 Rule Writer's Guide and Reference

If you specify that a rule is to be activated, or deactivated, at a discrete point in

time and by a specific event, the rule is activated, or deactivated, by whichever

occurs first, the point in time or the receipt of the event. However, in this case, the

rule might be activated or deactivated by many events throughout its life cycle. For

example, a rule might be activated by an event, deactivated, activated at a defined

point in time, deactivated again, and activated by another event.

The <activationByGroupingKey> element is one element that is contained within

the <activationInterval> element. The <activationByGroupingKey> element

contains elements that specify the events that can activate and deactivate a rule

instance that is defined by the <groupingKey> element.

Life cycle actions

The life cycle actions define the actions to take at the following four primary stages

in the life cycle of a rule: load, activation, deactivation, and unload.

The <lifeCycleActions> element contains the following elements that define these

actions:

v <action> within <onLoad>

v <action> within <onActivation>

v <action> within <onDeactivation>

v <action> within <onUnload>

Life cycle of a rule

Each stage in the life cycle of a rule can have multiple causes and effects. By

writing and including expressions within life cycle actions (as defined by the

<lifeCycleActions> element), a rule writer can define the actions to take at each

stage.

Stages in the life cycle of a rule

Following are the four primary stages in the life cycle of a rule:

Load The loading of the rule into the running Active Correlation Technology

engine, which triggers the actions within the <onLoad> element.

Activation

The activation of the rule, which triggers the actions within the

<onActivation> element.

Deactivation

The deactivation of the rule, which triggers the actions within the

<onDeactivation> element.

Unload

The unloading of the rule from the running Active Correlation Technology

engine, which triggers the actions within the <onUnload> element.

The activation and deactivation stages can occur multiple times in the life cycle of

a rule, but the load and unload stages occur only once.

Typically, you do not need to define life cycle actions. Following are examples of

when you might want to define a particular life cycle action:

v When a certain rule is loaded, you might want to create a connection to an

external system (such as a database manager) that needs to be accessed within

Chapter 2. Rule language overview 7

that rule. When this same rule is unloaded, you want to drop the connection

and run any necessary cleanup processes.

v When a certain rule is activated, you might want to verify that certain resources

are available to that rule.

v When a threshold rule is deactivated but the threshold has not been met, and

the time period is not yet over, you might want to forward a message to

someone with this information.

Because the activation and deactivation of a rule can occur many times in the life

cycle, any actions that you code for these stages can run frequently.

The causes and effects of each life cycle stage

Table 1 lists the causes and effects of each life cycle stage.

 Table 1. Causes and effects of each life cycle stage

Life cycle stage Causes Effects

Load Any of the following circumstances:

v A rule or rule block is added or replaced,

which causes the new rule or rules to be

loaded.

v The rule set is replaced in the Active

Correlation Technology engine, which

causes the rules in the new rule set to be

loaded.

The actions within the

<onLoad> element run.

Activation The rule is activated. A rule can be activated

in any of the following ways:

v According to the definitions within the

<activationInterval> element

v Through the activate() method that is

available through the act_lib variable

v Through application calls to the activate()

method in the Active Correlation

Technology engine

If the rule is inactive, the

actions within the

<onActivation> element

run.

Deactivation The rule is deactivated. A rule can be

deactivated in any of the following ways:

v According to the definitions within the

<activationInterval> element, except that

the <deactivateOnEvent> element within

the <activationByGroupingKey> element

does not cause rule deactivation

v Through the deactivate() method that is

available through the act_lib variable

v Through application calls to the

deactivate() method in the Active

Correlation Technology engine

If the rule is active, the

actions within the

<onDeactivation> element

run.

8 Rule Writer's Guide and Reference

Table 1. Causes and effects of each life cycle stage (continued)

Life cycle stage Causes Effects

Unload Any of the following circumstances:

v The Active Correlation Technology engine

shuts down, which causes the rules to be

unloaded.

v A rule or rule block is removed or

replaced, which causes the old rule or

rules to be unloaded.

v The rule set is removed from, or replaced

in, the Active Correlation Technology

engine, which causes the rules in the old

rule set to be unloaded.

If the rule is active, the

actions within the

<onDeactivation> element

run, followed by the

actions within the

<onUnload> element.

Otherwise, only the

actions within the

<onUnload> element run.

Organization of rules

The Active Correlation Technology rule language organizes rules into rule blocks

that are part of a rule set.

Rule set

The rule set contains the rules, organized into rule blocks, to be executed by an

Active Correlation Technology engine. It is the rule execution unit. Each Active

Correlation Technology engine acts on only one rule set at a time.

The rules that are contained in a rule set are triggered by events that are sent to

the Active Correlation Technology engine. The events are delivered sequentially to

the appropriate rules based on the event selection criteria for each rule, and one

rule is executed at a time. The same event can apply to, and therefore trigger,

multiple rules. These rules are not necessarily related, but they might be.

The order of rule blocks and rules within a rule set determines how events flow

through the rule set.

Variables and imports can be defined at the rule set level for use in expressions

(code that contains custom logic) throughout the scope of the rule set. An import is

a programming language-specific way to access external code. A rule writer can

define an import to import external modules (such as Java™ classes) for use in

expressions within rules.

Rule block

The rule block is the organizational unit for grouping rules by function into

domains within the rule set. A domain is the category to which a group of rules

apply based on their function. For example, a domain can represent a specific

geographic area, IT management discipline (such as security detection or network

event correlation), or business organization (such as a specific company or division

with a company).

Rule blocks can contain rules and other rule blocks. Because rule blocks can be

nested, a hierarchy of rules can be constructed. For example, a rule set might

contain a rule block for network event correlation, and the rule block for network

event correlation might contain two other rule blocks: one for layer 2 correlation

and one for IP correlation.

Chapter 2. Rule language overview 9

Therefore, a rule set provides event correlation capabilities for a variety of

domains, and a rule block provides the organization for these different domains

that might need access to a similar set of events.

Variables and imports can be defined at the rule block level for use in expressions

throughout the scope of the rule block. The scope of a rule block includes any

rules and other rule blocks that are contained in the rule block.

Rule

The rule is the correlation unit that is used to recognize relationships among events

and to run the appropriate rule responses. A rule is an implementation of one of

the following seven rule patterns and is organized, according to its function, into a

rule block that is part of a rule set:

v collection pattern

v computation pattern

v duplicate pattern

v filter pattern

v sequence pattern

v threshold pattern

v timer pattern

Each rule can provide unique event correlation capabilities according to its pattern,

and rules can be chained through event forwarding. Through this chaining of

rules, the event correlation capabilities of different patterns can be combined or

nested.

Variables can be defined at the rule level for use in expressions throughout the

scope of the rule.

Summary

In summary, the rule set is the execution unit, the rule block is the organizational

unit, and the rule is the correlation unit. A rule set contains one or more rule

blocks, each of which can contain additional rule blocks. Each of the rule blocks

contains rules for a specific domain. Rule blocks can be nested to construct a

hierarchy of rules. The order of rule blocks and rules within a rule set determines

how events flow through the rule set.

Variables and imports can be defined at the rule set or rule block level for use in

expressions within rules. The scope of the variable or import is the respective rule

set or rule block. Variables can also be defined at the rule level, but this limits their

scope to only the rule.

Rule patterns

A rule pattern is the representation of an event correlation situation (such as a

threshold condition or duplicate event detection). The Active Correlation

Technology rule language defines the following rule patterns: collection,

computation, duplicate, filter, sequence, threshold, and timer.

10 Rule Writer's Guide and Reference

The pattern of a rule is matched when the situation that is defined by the rule

occurs. When the pattern is matched, the rule concludes its processing by taking

the appropriate rule response actions. While a rule is active, the rule pattern can be

matched multiple times.

Rules that are defined by the filter pattern are the only stateless rules in the rule

language. All other rules are stateful.

Collection pattern

A collection rule is defined by the collection pattern. It collects a group of selected

events within a time interval. It is a stateful rule.

Overview

The collection pattern is used to gather similar events over a period of time. The

time period is indicated by a mandatory time window, as defined by the

<timeWindow> element in the rule language.

Conditions under which the rule response runs

With the collection pattern, the rule response runs when the time window is

complete, as defined by the <onTimeWindowComplete> element.

Example usage of this rule pattern

An example usage of the collection pattern is a rule that does the following:

It collects events that meet the criteria of a certain event selector during the

time period. When the time period ends, it summarizes the collected events

into a single event that contains the total count of events and characteristic

information about the summarized events.
 Related reference

 “Collection rule summary” on page 44
This summary lists all language elements of the collection rule.

Computation pattern

A computation rule is defined by the computation pattern. It applies a

computation (through an expression) to collected events as each event is received

within a time interval. It is a stateful rule.

Overview

The computation pattern runs a computation function, as defined by the

<computeFunction> element in the rule language, against each event that is

accepted over a period of time. The time period is indicated by a mandatory time

window, as defined by the <timeWindow> element.

Conditions under which the rule response runs

With the computation pattern, the rule response runs when the time window is

complete, as defined by the <onTimeWindowComplete> element. The value of the

computation is available during the <onTimeWindowComplete> action.

Chapter 2. Rule language overview 11

Example usage of this rule pattern

Assume that an application is processing customer order events. An example usage

of the computation pattern is a rule that does the following:

Each time an event is received, the total value of the order is added to the

total value of all orders that have occurred during the specified time period,

and the updated total value of all orders is published within a user interface.
 Related reference

 “Computation rule summary” on page 46
This summary lists all language elements of the computation rule.

Duplicate pattern

A duplicate rule is defined by the duplicate pattern. It counts the second and

subsequent events that are accepted within the specified time interval but skips the

rule set processing for these events. It is a stateful rule.

Overview

The duplicate pattern is typically used to isolate similar (duplicate) events over a

period of time. A duplicate event is similar in some way to a previous event, but it

is not necessarily an exact copy of that event. Events are duplicates simply if they

meet the event selection criteria for the rule. The time period is indicated by a

mandatory time window, as defined by the <timeWindow> element in the rule

language.

Conditions under which the rule response runs

With the duplicate pattern, the rule response runs at the following times:

v When the first event is detected, as defined by the <onDetection> element.

v As each duplicate event is processed, as defined by the <onNextEvent> element.

v When the time window is complete, as defined by the

<onTimeWindowComplete> element.

The first event triggers the <onDetection> action even though no duplicate events

have been received. The reason for this behavior is that you might want to forward

the first event and skip the rule set processing for duplicate events. In this case,

you can add a rule response action that forwards the first event when the

<onDetection> action is triggered for the rule.

The default processing for duplicate events (the second and subsequent events) is

to count a duplicate event but skip the rule set processing for a duplicate event. If

you want to take additional action on a duplicate event, you can explicitly define

an <onNextEvent> action. For example, in certain cases, the duplicate event

represents an event that might already be logged in a database or other repository.

Therefore, you might want to code an <onNextEvent> action to remove the

duplicate event from these other locations.

An <onTimeWindowComplete> action can be used to create a summary record for

all duplicate events that includes the number of duplicates that were processed.

12 Rule Writer's Guide and Reference

Example usage of this rule pattern

Assume that a “Denial of service” message continues to occur from the same

resource type (a security monitor). This indicates a possible security breach. An

example usage of the duplicate pattern is a rule that does the following:

After a “Denial of service” message occurs from the security monitor, any

duplicates of that event that occur during a 30-second time period are

counted but are not sent to the operator console. Also, at the end of the

30-second time period, the rule generates an event that indicates the number

of “Denial of service” messages that have occurred over the time period.
 Related reference

 “Duplicate rule summary” on page 47
This summary lists all language elements of the duplicate rule.

Filter pattern

A filter rule is defined by the filter pattern. It takes a certain action when it accepts

an event. It acts only on a single event and is therefore a stateless rule.

Overview

The filter pattern is used to act on individual events that meet the event selection

criteria. Unlike the other rule patterns, it retains no associated state information

(such as the history of past events).

Conditions under which the rule response runs

With the filter pattern, the rule response runs when any event that meets the event

selection criteria is received, as defined by the <onDetection> element.

Example usage of this rule pattern

An example usage of the filter pattern is a rule that does the following:

If a ServerStatus event indicates a serverLoad that is greater than 95%, the

rule runs an action that pages an administrator.
 Related reference

 “Filter rule summary” on page 48
This summary lists all language elements of the filter rule.

Sequence pattern

A sequence rule is defined by the sequence pattern. It detects whether a certain

sequence of events arrives within a time interval. The sequence can be ordered or

random. A sequence rule is a stateful rule.

Overview

The sequence pattern checks for a sequence of events over a period of time, and it

detects whether the sequence is complete or incomplete. An incomplete sequence is

one that includes one or more of the events in the specified sequence but not all of

them.

The time period is indicated by a mandatory time window, as defined by the

<timeWindow> element in the rule language. Each event in the sequence is

Chapter 2. Rule language overview 13

defined by a separate <eventSelector> element within the rule. The sequence of

events can be detected in either of the following orders:

v In the order in which the <eventSelector> elements are coded for the rule. In this

case, when the rule detects the event that is defined by the first <eventSelector>

element, the detection of the sequence is started. The rule now awaits the event

that is defined by the second <eventSelector> element.

v In random order. In this case, when the rule detects any one of the events that

are defined by the <eventSelector> elements, the detection of the sequence is

started. The rule now awaits another one of the events that are defined by the

<eventSelector> elements.

The sequence pattern is different from other rule patterns in the following primary

ways:

v It has multiple <eventSelector> elements for defining which events are accepted

by the rule. It requires a minimum of two <eventSelector> elements.

v When an event meets the criteria that is defined by one of the <eventSelector>

elements, that <eventSelector> element is excluded from further event

processing within that rule instance.

v The alias attribute on the <eventSelector> element is valid only within a

sequence rule, and it uniquely names an event that is selected by a certain event

selector in the sequence rule. In an expression within a filtering predicate or

action, you can use the act_eventList variable to access an event in a sequence

rule by its alias name.

Conditions under which the rule response runs

With the sequence pattern, the rule response runs at the following times:

v When the full sequence of events is detected within the time window, as defined

by the <onDetection> element.

v When one or more events arrive but the complete sequence does not arrive

within the time window, as defined by the <onTimeOut> element.

The sequence pattern can be useful for detecting that a given sequence is

incomplete. For example, if a “system down” event occurs without a subsequent

“system up” event, the rule writer can code an <onTimeOut> action to handle

this type of missing event.

Example usage of this rule pattern

Scenario that illustrates detection of complete sequence:

Assume that in an IT environment, an administrator wants to know whether the

value of the DB2® heap size is affecting the WebSphere® Application Server, and if

so, to correct this problem. Therefore, if the following events occur in the following

order during a specified time period, the administrator wants to increase the value

of the DB2 heap size and restart the database manager:

1. A WebSphere Application Server resource allocation exception. Assume this is

an event of type WASResourceAllocationException.

2. The DB2 error message that states: “Not enough heap to process statement”.

Assume this is an event of type DB2NotEnoughHeap.

For this scenario, two <eventSelector> elements are defined in a sequence rule, and

the events must arrive in the order in which the <eventSelector> elements are

coded (rather than in random order). The first <eventSelector> element is checking

for the event WASResourceAllocationException, and the second <eventSelector>

14 Rule Writer's Guide and Reference

element is checking for the event DB2NotEnoughHeap. Assume that the following

events are presented to the system within the specified time window:

1. WASResourceAllocationException

2. DB2BackupStarted

3. WASResourceAllocationException

4. WASResourceAllocationException

5. DB2NotEnoughHeap

The rule behavior is as follows:

1. The first event, WASResourceAllocationException, is accepted. Because the

criteria for the first <eventSelector> element has been met, the first

<eventSelector> element is now excluded from further event processing within

this rule.

2. The second event, DB2BackupStarted, is ignored.

3. The third event, WASResourceAllocationException, is ignored.

4. The fourth event, WASResourceAllocationException, is ignored.

5. The fifth event, DB2NotEnoughHeap, is accepted, and it completes the sequence.

The <onDetection> rule response action runs. This action is defined to increase

the value of the DB2 heap size and restart the database manager. The rule

returns to its initial state.

The first <eventSelector> element is now included in future event processing by

this rule.

Scenario that illustrates detection of incomplete sequence:

Assume that a business organization wants to have all customer orders ready for

delivery within 1 hour of the order request and wants to know when this does not

occur.

For this scenario, two <eventSelector> elements are defined in a sequence rule, and

the events must arrive in the order in which the <eventSelector> elements are

coded (rather than in random order). The first <eventSelector> element is checking

for the event Netsales with operationType=Order, and the second <eventSelector>

element is checking for the event Netsales with operationType=Delivery. Assume

that the following events are presented to the system within the specified time

window of 1 hour:

1. A Netsales event with operationType=Order

2. A Netsales event with operationType=Order

The rule behavior is as follows:

1. The first event is accepted. Because the criteria for the first <eventSelector>

element has been met, the first <eventSelector> element is now excluded from

further event processing within this rule.

2. The second event is ignored.

3. Because a Netsales event with operationType=Delivery is not received within

the specified time window, the <onTimeOut> rule response action runs. This

action is defined to notify a business executive that a customer order is not

ready for delivery within 1 hour of the order request. The rule returns to its

initial state.

The first <eventSelector> element is now included in future event processing by

this rule.
 Related concepts

Chapter 2. Rule language overview 15

“Accessing event-related information” on page 22
The following examples indicate how you can access event-related information

through the variables that are provided by the Active Correlation Technology.
 Related reference

 “Sequence rule summary” on page 49
This summary lists all language elements of the sequence rule.

Threshold pattern

A threshold rule is defined by the threshold pattern. It collects a group of selected

events within a time interval and determines, after each event is received, whether

a threshold condition has been met. It is a stateful rule.

Overview

The threshold pattern collects events over a time period until a threshold value is

met. The time period is indicated by a mandatory time window, as defined by the

<timeWindow> element in the rule language.

The threshold pattern provides the following three options for a threshold type:

event count threshold

With this type of threshold, you can define the number of events that must

meet the event selection criteria in a certain time period. The defined

threshold value is compared to the number of events that have been

accepted. When the event count equals the defined limit within the time

window, the threshold is met.

 This type of threshold can be useful for a very simple event count check.

For example, it can answer the question: “Have 5 login failure events

occurred within 1 minute?”

 This threshold is defined by the <eventCountThreshold> element. The

<eventCountThreshold> element also specifies one of the following two

possible time interval modes for the time window:

fixed interval

A fixed interval begins when the first event that meets the event

selection criteria is received and ends when one of the following

occurs:

v The rule meets its threshold within the specified time duration.

v The specified time duration has passed.

sliding interval

A sliding interval begins when the first event that meets the event

selection criteria is received. However, when the rule has not met

its threshold and the specified time duration has passed, the time

window adjusts (slides) the beginning time to the event reception

time for a new “first” event, which is typically the next event that

is accepted. The sliding interval continues to adjust in this way

until one of the following occurs:

v The rule meets its threshold within the specified time duration.

v After the event that begins the time window is received, no

subsequent events are received within the specified time

duration.

The event that begins the time window (becomes the new “first”

event) is the event with a reception time that meets this criteria:

16 Rule Writer's Guide and Reference

the reception time, added to the time interval duration for the rule,

is greater than the current time. Here is the criteria in the form of

an equation:

event reception time + time interval duration for rule > current time

When no such event exists, the sliding interval cannot adjust the

time any further, and the interval ends.

computed threshold

With this type of threshold, you can write code (or use code that was

written by someone else) that performs a computation on each accepted

event and returns a computed threshold value that is held in a previously

defined variable. This computed threshold value is then compared to a

defined threshold value to determine whether the threshold is met.

 Therefore, a complex computation can be applied to create (or update) a

computed threshold value, possibly using data that is saved from previous

events, and the rule writer can set the defined threshold value

independently of the logic that calculates the computed threshold value.

 This type of threshold can be useful for the aggregation and comparison of

a value to a defined threshold value. For example, it can be used to

calculate the sum of the dollar amount of sales to a certain customer over a

certain period of time and to compare that sum to a defined threshold

value.

 This threshold is defined by the <computedThreshold> element.

boolean threshold

With this type of threshold, you can write code (or use code that was

written by someone else) that returns a value of true or false for each

accepted event. If the value is true, the threshold has been met. If the

value is false, the threshold rule continues to process until the time period

is over or until it accepts another event.

 This type of threshold can be useful for checking a range of values. For

example, if CPU utilization must be between 30% and 80% at all times, this

threshold can constantly verify that the utilization remains within that

range.

 This threshold is defined by the <booleanThreshold> element.

Conditions under which the rule response runs

With the threshold pattern, the rule response runs at the following times:

v When the threshold has been met, as defined by the <onDetection> element.

v When one or more events are accepted but the threshold is not met within the

time window, as defined by the <onTimeOut> element.

Example usage of this rule pattern

An example usage of the threshold pattern with the event count threshold is a rule

that does the following:

If more than 4 Server unreachable events originate from the same

subnetwork within a sliding time interval of 30 seconds, the rule runs an

action to check the status of a router.
 Related reference

Chapter 2. Rule language overview 17

“Threshold rule summary” on page 51
This summary lists all language elements of the threshold rule.

Timer pattern

A timer rule is defined by the timer pattern. It initiates actions at regular intervals.

It is a stateful rule. Although a timer rule does not process events, it can be

activated or deactivated by an event.

Overview

The timer pattern is analogous to a timer that starts at the beginning of a time

period and stops at the end of the time period. The time period is indicated by a

mandatory time window, as defined by the <timeWindow> element in the rule

language.

Unless specified not to repeat, the timer pattern repeats until the timer rule is

deactivated. Therefore, when the timer rule starts, it waits the specified time period

before it initiates any actions, and it repeats this behavior until either it is

deactivated or the Active Correlation Technology engine shuts down.

The timer rule is unique in that it does not contain event selection criteria. The

timer rule starts processing according to the activation interval for the rule, as

defined by the <activationInterval> element. If the default <activationInterval>

element is used and the timer pattern is set to repeat, the timer rule starts when it

is loaded by the Active Correlation Technology engine and stops when the Active

Correlation Technology engine shuts down. To activate a timer rule with an event,

you must specify the event in the <activateOnEvent> element within the

<activationInterval> element for the rule.

Conditions under which the rule response runs

With the timer pattern, the rule response runs when the time window is complete,

as defined by the <onTimeWindowComplete> element.

Example usage of this rule pattern

The timer pattern can be useful for implementing cleanup rules. An example usage

of the timer pattern is a rule that does the following:

Every 30 minutes, the rule runs an action that clears harmless and

informational events that have been open for longer than 48 hours.
 Related reference

 “Timer rule summary” on page 52
This summary lists all language elements of the timer rule.

Common and unique aspects of different rule patterns

This matrix provides a high-level overview of the common and unique aspects of

the different rule patterns.

Table 2 on page 19 lists the primary language elements for the rules and shows an

X in the column for each rule type under which the element is valid. The primary

language elements are the direct child elements of the different rule types. The list

does not include the elements that are contained within these direct child elements,

18 Rule Writer's Guide and Reference

which can also vary depending on the rule type. In addition, the validity of certain

element attributes can vary depending on the rule type.

 Table 2. Matrix showing the common and unique aspects of different rule patterns

Element collection computation duplicate filter sequence threshold timer

<comment> X X X X X X X

<variable> X X X X X X X

<activationInterval> X X X X X X X

<lifeCycleActions> X X X X X X X

<eventSelector> X X X X X X

<groupingKey> X X X X X

<timeWindow> X X X X X X

<computeFunction> X

<booleanThreshold> X

<computedThreshold> X

<eventCountThreshold> X

<onDetection> X X X X

<onNextEvent> X

<onTimeOut> X X

<onTimeWindowComplete> X X X X

Expressions

An expression is code that contains custom logic that can be added to a rule.

Expressions can also access code that is external to the Active Correlation

Technology engine. In the rule language, expressions are valid only within specific

contexts, or rule language elements.

Rule writers can code expressions for different purposes depending on the context

and on the result that they want to obtain. Expressions are frequently used for the

initialization of variables, the definition of event selection criteria, and the

specification of rule response and life cycle actions.

Language elements that contain expressions

Each language element that contains an expression has an expressionLanguage

attribute that identifies the programming language in which the expression is

written. The Java programming language is the only supported expression

language.

Expressions can be contained within the following rule language elements.

v <varInitializer> for a rule set, rule block, or rule variable

v <filteringPredicate> on <eventSelector>

v <computedValue> on <groupingKey>

v <computeFunction> on a computation rule

v <booleanThreshold> on a threshold rule

v <computedThreshold> on a threshold rule

v Rule response actions for a rule:

– <action> within <onDetection>. This action is valid only for the duplicate,

filter, sequence, and threshold rules.

– <action> within <onNextEvent>. This action is valid only for the duplicate

rule.

Chapter 2. Rule language overview 19

– <action> within <onTimeOut>. This action is valid only for the sequence and

threshold rules.

– <action> within <onTimeWindowComplete>. This action is valid only for the

collection, computation, duplicate, and timer rules.
v Life cycle actions for a rule:

– <action> within <onLoad>

– <action> within <onActivation>

– <action> within <onDeactivation>

– <action> within <onUnload>

What the Active Correlation Technology provides to help in

coding expressions

To help a rule writer in coding expressions, the Active Correlation Technology

provides the capability to do the following:

v Import external modules (such as Java classes) and objects for use in

expressions.

v Initialize and access rule set, rule block, or rule variables.

v Through the act_event variable, access the current event that a rule is processing.

v Through the act_eventCount variable, access the number of events that have

been accepted by a rule.

v Through the act_eventList variable, access the list of events that have been

accepted by a rule. This includes the capability to access various attributes of an

event and to access each event in a sequence rule by its alias name.

v Through the act_lib variable, access methods that include the capability to get

and set variables and to control event flow through a rule set.

v Through the act_location variable, access the location, within the rule hierarchy,

of an expression.

v Through the act_nodeName variable, access the fully qualified name of a node.

v Through the act_threshold variable, access the defined threshold value for a

threshold rule.

Importing and accessing external modules and objects

This example indicates how you can make external code (such as Java classes) and

external objects accessible to expressions. An external object is an object that an

application creates to communicate with expressions.

Before you can access external code from an expression, you must make that code

accessible to expressions.

An import is a programming language-specific way to make external code

accessible to expressions. The <import> element contains a special type of

expression that specifies the external modules (such as Java classes) to import for

use in other expressions within rules. An import can be defined at the level of the

rule set or a rule block.

The following <import> element contains an expression, written in the Java

programming language, that imports the StaticHelper class and the Queue class,

which can be referenced from other expressions:

20 Rule Writer's Guide and Reference

<import expressionLanguage="java">

 import com.ibm.act.sample.StaticHelper;

 import com.ibm.act.test.Queue;

</import>

Although the use of the full class name is not required in the import statement,

you should specify the full name to prevent a long compilation time. For example,

the Java class should be specified as com.ibm.act.sample.StaticHelper rather than

com.ibm.act.sample.* or com.ibm.act.*.

Accessing a static method

The following example indicates how an expression within a rule response action

references the StaticHelper class after the class is imported:

<onDetection>

 <action expressionLanguage="java">

 StaticHelper.pageAdministrator("Too many login attempts for " + act_event.getAttribute("userID"));

 </action>

</onDetection>

Accessing an instance method for an object

The following example indicates how an expression within a rule response action

references the Queue class after the class is imported. In this example, an external

object with a name of OutputQueueOne and a type of Queue is obtained and used to

put an event in a specific queue.

<onDetection>

 <action expressionLanguage="java">

 Queue myQueue = (Queue)act_lib.getExternalContext("OutputQueueOne");

 myQueue.enqueue(act_event);

 </action>

</onDetection>

Initializing and accessing variables

This example indicates how you can initialize and access rule set, rule block, or

rule variables.

A variable can be defined at the level of the rule set, a rule block, or a rule. Before

a variable can be accessed, it must be initialized with an initialization expression.

The following expression initializes two variables, one named hostsList and one

named hostsString:

<variable name="hostsList" dataType="java.util.ArrayList">

 <varInitializer expressionLanguage="java">

 return new ArrayList();

 </varInitializer>

</variable>

<variable name="hostsString" dataType="java.lang.String">

 <varInitializer expressionLanguage="java">

 return new String();

 </varInitializer>

</variable>

All variables are accessed through expressions. The following example shows how

the variables hostsList and hostsString, which were initialized in the preceding

example, are accessed through an expression within a rule response action. In this

example, hostsList is modified, and hostsString is given a new value.

<onNextEvent>

 <action expressionLanguage="java">

 String hostname = act_event.getStringAttribute("hostname");

 ArrayList hostsList = (ArrayList)act_lib.getVariable("hostsList");

 hostsList.add(hostname);

 String hostsString = act_lib.getStringVariable("hostsString");

Chapter 2. Rule language overview 21

String newHostString = hostsString + ", " + hostname);

 act_lib.setStringVariable("hostsString", newHostsString);

 </action>

</onNextEvent>

Accessing event-related information

The following examples indicate how you can access event-related information

through the variables that are provided by the Active Correlation Technology.

Example of accessing the current event:

The following code shows how to use the act_event variable to obtain the

hostname attribute for an event:

act_event.getAttribute("hostname");

Example of accessing events through the event list by index:

The following code shows how to use the act_eventList variable to obtain the first

event in the event list:

act_eventList.get(0);

Example of accessing events through the event list by alias:

Unlike other rule types, the sequence rule allows multiple event selectors and

actually requires a minimum of two event selectors. The alias attribute on the

<eventSelector> element is valid only within a sequence rule, and it uniquely

names an event that is selected by a certain event selector in the sequence rule. In

an expression within a filtering predicate or action, you can use the act_eventList

variable to access an event in a sequence rule by its alias name.

The following code shows two event selectors for a sequence rule. The alias names

are TECevent and WASevent.

<eventSelector alias="TECevent">

 <eventType type="serverStatus"/>

 <filteringPredicate expressionLanguage="java">

 return act_event.getStringAttribute("source").equals("TEC");

 </filteringPredicate>

</eventSelector>

<eventSelector alias="WASevent">

 <eventType type="serverStatus"/>

 <filteringPredicate expressionLanguage="java">

 return act_event.getStringAttribute("source").equals("WAS");

 </filteringPredicate>

</eventSelector>

The following code shows how to use the act_eventList variable to obtain the event

that has been accepted by the first event selector, which is named TECevent:

act_eventList.get("TECevent");

Best practices for coding expressions

This information includes some best practices, hints, and tips for coding

expressions efficiently and effectively.

v For ease in understanding, most of the expression examples that are provided in

this information include Java code directly within the XML constructs. However,

when you create rules, the best practice is to use external modules to contain the

Java code and to call these external modules as part of the expressions.

You can also use or edit existing snippets, or create new snippets, in the rule

builder to provide the code for the calls to external modules. Snippets are

22 Rule Writer's Guide and Reference

excerpts of source code that can be used within expressions. In the rule builder,

snippets are available through the Snippet view.

With this approach, the tasks of designing, developing, editing, testing, and

debugging Java code can be done in the integrated development environment

(IDE) of your choice and can be controlled as a regular part of your

development process.

v To prevent expression code from being parsed as XML, enclose the code in a

CDATA section, where <![CDATA[immediately precedes the code and]]>

immediately follows the code, as shown in the following example:

<onTimeOut>

<action expressionLanguage="java">

<![CDATA[

 IEvent firstEvent = act_eventList.get(0);

 System.out.println("Expired Item: " + firstEvent.getAttribute("sourceComponentId.location"));

]]>

</action>

</onTimeOut>

XML parsers ignore everything that is inside of a CDATA section.

v If you use the act_lib.getExternalContext() method in an expression, do not store

the object that is returned from the method in a rule set or rule block variable.

The reason is that an application can change the reference to the object instance,

and the associated rule set or rule block variable is not updated.

v If you use a return statement (return;) in an expression within an <action>

element, and additional <action> elements are coded for the respective rule

response or life cycle action, the code execution ends where the return statement

is coded and begins again in the expression within the next <action> element.

v Rule management and other Active Correlation Technology engine methods

cannot be called from within a rule response or life cycle action.

 Related information

 “Importing and accessing external modules and objects” on page 20
This example indicates how you can make external code (such as Java classes)

and external objects accessible to expressions. An external object is an object

that an application creates to communicate with expressions.

 “Including snippets in expressions within rules” on page 40
In expressions within rules, you can include snippets from the Snippet view in

the Eclipse Workbench.

Variables

In the rule language, certain variables are used to store event-related information

across different event occurrences or rules. This event-related information can then

be accessed from expressions within rules. Some types of variables are defined by

the rule writer, and others are provided by the Active Correlation Technology.

Some types can be accessed directly within an expression, and others can be

accessed only through methods that are provided by the Active Correlation

Technology.

Variables defined within <variable> elements and accessed

through methods

You can define a variable within the <variable> element for a rule, rule block, or

rule set. You can then access this variable within an expression by using one of the

following methods:

v The getVariable() method or one of the getjavatypeVariable() methods

v The setVariable() method or one of the setjavatypeVariable() methods

Chapter 2. Rule language overview 23

For example, if you define the variable rule_writer_variable within the <variable>

element for a rule, you can access this variable with the following code:

int sample_variable = act_lib.getIntVariable("rule_writer_variable");

Variables provided by the Active Correlation Technology and

accessed directly within an expression

The following variables are provided by the Active Correlation Technology. You

can use these variables inline within an expression.

v act_event

v act_eventList

v act_lib

For example, with the following code, you can access the act_event variable to

obtain the hostname attribute of an event:

act_event.getAttribute("hostname");

Variables provided by the Active Correlation Technology and

accessed through methods

The following variables are provided by the Active Correlation Technology. You

can access these variables within an expression by using the getVariable() method

or one of the getjavatypeVariable() methods.

v act_eventCount

v act_location

v act_nodeName

v act_threshold

For example, with the following code, you can access the act_eventCount variable:

int eventcount_integer = act_lib.getIntVariable(IACTLibrary.EVENTCOUNT);

Table 3 shows the constants that the IACTLibrary interface provides for these

variables. In your code, to ensure that any spelling or typographical errors are

found during compilation rather than during run time, always use the constants

that represent these variables rather than the variables themselves. For example,

use act_lib.getIntVariable(IACTLibrary.EVENTCOUNT); rather than

act_lib.getIntVariable("act_eventCount");.

 Table 3. Variables with associated constants

Variable Associated constant

act_eventCount EVENTCOUNT

act_location LOCATION

act_nodeName NODENAME

act_threshold THRESHOLD

 Related reference

 “variable element” on page 109
The <variable> element defines a variable and contains information in a form

that can be referenced by expressions. A variable can be defined at the level of

the rule set, a rule block, or a rule.

24 Rule Writer's Guide and Reference

Data types for Active Correlation Technology variables

The variables that are provided by the Active Correlation Technology have

different data types.

Table 4 shows the data types for these variables.

 Table 4. Data types for Active Correlation Technology variables

Variable Data type

act_ event The type that is defined by the com.ibm.correlation.IEvent interface

act_ eventCount int

act_ eventList The type that is defined by the com.ibm.correlation.IEventList

interface

act_ lib The type that is defined by the com.ibm.correlation.IACTLibrary

interface

act_ location java.lang.String

act_ nodeName java.lang.String

act_ threshold Because this variable is the value of the threshold attribute on the

<computedThreshold> or <eventCountThreshold> element of a

threshold rule, the data type must be the same as the data type for

the threshold attribute value.

Expression contexts in which variables are valid

The variables that are provided by the Active Correlation Technology are valid

only in specific expression contexts.

Table 5 lists the expression contexts in which these variables are valid. The table

shows an X in the column for each variable that is valid within the respective

expression context. Additional usage restrictions that apply to these variables are

described in the topic for the respective variable.

 Table 5. Expression contexts in which variables are valid

Expression context act_ event act_ eventCount act_ eventList act_ lib act_ location act_ nodeName act_ threshold

<action> within

<onActivation>

X X X X X

<action> within

<onDeactivation>

X X X X X X X

<action> within <onDetection> X X X X X X X

<action> within <onLoad> X X X X

<action> within

<onNextEvent>

X X X X X X

<action> within <onTimeOut> X X X X X X

<action> within

<onTimeWindowComplete>

X X X X X

<action> within <onUnload> X X X X

<booleanThreshold> X X X X X X

<computedThreshold> X X X X X X X

<computedValue> X X X X

<computeFunction> X X X X X X

<filteringPredicate> X X X X X X X

<varInitializer> for a rule X X X X

Chapter 2. Rule language overview 25

act_event variable

The act_event variable provides access to methods that apply to the current event.

Details

Because a timer rule does not process events, the act_event variable within a timer

rule applies only to the events that activate or deactivate the rule.

The act_event variable applies within the <onActivation> and <onDeactivation>

actions only if an event activated or deactivated the rule. Otherwise, this variable

is null.

Coding example

The following code accesses the act_event variable to obtain the hostname attribute

of an event:

String host = act_event.getStringAttribute("hostname");

Methods that can be accessed

The methods to which the act_event variable provides access are defined in the

IEvent interface, as shown in Table 6.

 Table 6. IEvent interface with corresponding methods and location of Javadoc method

descriptions

Interface Methods Location of Javadoc method descriptions

IEvent v get

v getAttribute

v getBooleanAttribute

v getByteAttribute

v getShortAttribute

v getIntAttribute

v getLongAttribute

v getFloatAttribute

v getDoubleAttribute

v getStringAttribute

v set

v getTimeStamp

v setTimeStamp

v getType

v getOriginal

com.ibm.correlation.IEvent

act_eventCount variable

The act_eventCount variable is an integer equal to the number of events that have

been accepted by a rule.

Details

For a duplicate rule, the value of the act_eventCount variable is the total number

of accepted events, which includes both the original event and any duplicates. For

26 Rule Writer's Guide and Reference

all other rule types, the value is the same as the size of the event list, which can be

obtained through the act_eventList variable using the act_eventList.size() method.

The act_eventCount and act_eventList variables are not valid within a timer rule

because a timer rule does not process events.

If a rule is defined with a grouping key, the act_eventCount, act_eventList, and

act_threshold variables are not valid within the following expression contexts:

v Life cycle actions

v <filteringPredicate> within <activateOnEvent> or <deactivateOnEvent> within

<activationInterval>

v <computedValue>

This is because in this case, the rule variables apply only to a rule instance, and

rule instances do not exist at the time that these expressions are run.

Coding example

The following code accesses the act_lib variable to obtain the number of events

that have been accepted by a rule:

int eventCt = act_lib.getIntVariable(IACTLibrary.EVENTCOUNT);

act_eventList variable

The act_eventList variable provides access to methods that apply to the list of

events that have been accepted by a rule.

Details

Both a filter rule and a duplicate rule always have a list of no more than one event

because a filter rule is a stateless rule and because a duplicate rule retains only the

first analyzed event.

The act_eventCount and act_eventList variables are not valid within a timer rule

because a timer rule does not process events.

If a rule is defined with a grouping key, the act_eventCount, act_eventList, and

act_threshold variables are not valid within the following expression contexts:

v Life cycle actions

v <filteringPredicate> within <activateOnEvent> or <deactivateOnEvent> within

<activationInterval>

v <computedValue>

This is because in this case, the rule variables apply only to a rule instance, and

rule instances do not exist at the time that these expressions are run.

Coding example

The following code accesses the act_eventList variable to obtain the second event

in the event list:

IEvent second_event = act_eventList.get(1);

Methods that can be accessed

The methods to which the act_eventList variable provides access are defined in the

IEventList interface, as shown in Table 7 on page 28.

Chapter 2. Rule language overview 27

Table 7. IEventList interface with corresponding methods and location of Javadoc method

descriptions

Interface Methods Location of Javadoc method descriptions

IEventList v get

v size

v isEmpty

v listIterator

com.ibm.correlation.IEventList

act_lib variable

The act_lib variable provides access to library methods in the Active Correlation

Technology.

Details

The methods that the act_lib variable can access vary depending on the rule

language element that contains the expression where the variable is used. See

Table 8.

 Table 8. Methods that the act_lib variable can access based on the context of its containing expression

Expression context

IACTLibrary

methods

IExitableActionLibrary

methods

IActionLibrary

methods

<action> within <onActivation> X

<action> within <onDeactivation> X

<action> within <onDetection> X X X

<action> within <onLoad> X

<action> within <onNextEvent> X X X

<action> within <onTimeOut> X X

<action> within <onTimeWindowComplete> X X

<action> within <onUnload> X

<booleanThreshold> X

<computedThreshold> X

<computedValue> X

<computeFunction> X

<filteringPredicate> X

<varInitializer> X

Coding example

The following code accesses the act_lib variable to call the method that exits the

rule set:

act_lib.exitRuleSet();

Methods that can be accessed

The methods to which the act_lib variable provides access are defined in the

IACTLibrary, IExitableActionLibrary, and IActionLibrary interfaces, as shown in

Table 9 on page 29.

28 Rule Writer's Guide and Reference

Table 9. Interfaces with corresponding methods and location of Javadoc method descriptions

Interface Methods Location of Javadoc method descriptions

IACTLibrary v trace

v getVariable

v getBooleanVariable

v getShortVariable

v getIntVariable

v getLongVariable

v getFloatVariable

v getDoubleVariable

v getStringVariable

v setVariable

v setBooleanVariable

v setShortVariable

v setIntVariable

v setLongVariable

v setFloatVariable

v setDoubleVariable

v setStringVariable

v getExternalContext

com.ibm.correlation.IACTLibrary

IActionLibrary v forward

v forwardOnCompletion

v activate

v deactivate

The methods that are defined in the

IACTLibrary interface are also

available to the IActionLibrary

interface.

com.ibm.correlation.IActionLibrary

IExitableActionLibrary v exitRuleSet

v exitRuleBlock

The methods that are defined in the

IACTLibrary and IActionLibrary

interfaces are also available to the

IExitableActionLibrary interface.

com.ibm.correlation.IExitableActionLibrary

act_location variable

The act_location variable is a string that identifies the location, within the rule

hierarchy, of an expression.

Details

The location is a fully qualified name that indicates the position of the expression

in the rule hierarchy. It has the form identifier.identifier...., where each

occurrence of identifier is one of the following:

v The value of the name attribute for an XML element that is in the respective

hierarchy.

v For elements that occur multiple times in a rule block or rule and have no name

attribute: the XML element that contains the expression, followed by an index

Chapter 2. Rule language overview 29

number in brackets. This index number indicates the position of the expression

within its containing element. The counter for assigning index numbers begins

with 0 rather than 1. Therefore, if an element is contained within the third

<action> element, for example, the index number is shown as action[2].

These identifiers are in descending order from the highest level rule block to the

lowest level element that contains the expression.

Coding example

The following code accesses the act_lib variable to obtain the location of the

expression:

String location = act_lib.getStringVariable(IACTLibrary.LOCATION);

Examples of the location that is returned from the variable

The following values are examples of the location that is returned from the

act_location variable.

ruleBlockA.ruleA.eventSelector[3].filteringPredicate

This expression is contained within the following:

v The rule block with a name attribute value of ruleBlockA

v The rule with a name attribute value of ruleA

v The fourth <eventSelector> element

v The <filteringPredicate> element

ruleBlockA.ruleA.onDetection.action[5]

This expression is contained within the following:

v The rule block with a name attribute value of ruleBlockA

v The rule with a name attribute value of ruleA

v The <onDetection> element

v The sixth <action> element

ruleBlockA.ruleA.variableA.varInitializer

This expression is contained within the following:

v The rule block with a name attribute value of ruleBlockA

v The rule with a name attribute value of ruleA

v The variable with a name attribute value of variableA

v The <varInitializer> element

act_nodeName variable

The act_nodeName variable is a string that identifies the fully qualified name of a

node.

Details

In the Active Correlation Technology, a node is an object within the rule hierarchy

that can be individually and independently added to, removed from, or replaced

within a rule set. Specifically, these objects are nodes: rules, rule blocks, rule block

variables, and rule set variables. Because an object cannot be operated on

individually and independently below the rule level, a rule variable is not a node.

The fully qualified node name for a rule with a name attribute value of rule1 that

is located within a rule block with a name attribute value of ruleBlockA is

30 Rule Writer's Guide and Reference

ruleBlockA.rule1. Because rules are organized hierarchically within a rule set, a

period (.) is used within a fully qualified node name to denote a descent into a

lower level node.

Coding example

The following code accesses the act_nodeName variable to obtain the fully

qualified name of a node:

String nodeName = act_lib.getStringVariable(IACTLibrary.NODENAME);

act_threshold variable

The act_threshold variable is the value of the threshold attribute, which is the

defined threshold value, on the <computedThreshold> or <eventCountThreshold>

element of a threshold rule.

Details

The act_threshold variable is valid only within a threshold rule.

If a rule is defined with a grouping key, the act_eventCount, act_eventList, and

act_threshold variables are not valid within the following expression contexts:

v Life cycle actions

v <filteringPredicate> within <activateOnEvent> or <deactivateOnEvent> within

<activationInterval>

v <computedValue>

This is because in this case, the rule variables apply only to a rule instance, and

rule instances do not exist at the time that these expressions are run.

Coding example

The following code accesses the act_lib variable to obtain a defined threshold

value:

int threshold = act_lib.getIntVariable(IACTLibrary.THRESHOLD);

Event flow through a rule set

Events flow through a rule set in the order that the rule blocks and rules are

coded. When the Active Correlation Technology engine receives an event, the

engine determines the event type and identifies the rules that use this event type

for rule activation, event processing, or rule deactivation.

How events are used by rules

Each rule that uses the event first determines whether the event meets all of the

specified criteria for rule activation, event processing, or rule deactivation. If it

does, the rule takes the following action:

For rule activation

The actions within the <onActivation> element for the rule are run, if they

are coded.

For event processing

The rule processes the event. When the rule pattern is matched, the rule

response actions are run, if they are coded. In some situations, rule

response actions can do the following:

Chapter 2. Rule language overview 31

v The action can cause the event to skip the processing in the remainder of

the rule block or rule set.

v The action can send a new or existing event to another rule or rule block

for processing.

For rule deactivation

The actions within the <onDeactivation> element for the rule are run, if

they are coded.

Methods that can influence the flow of events

The Active Correlation Technology provides the following methods that can be

called to influence the flow of events through the rule set. These methods are

available through the act_lib variable.

exitRuleSet

This method specifies that the current event is not processed by any

additional rules in the rule set.

exitRuleBlock

This method specifies that the current event is not processed by any

additional rules in the current rule block or in any rule blocks that this rule

block contains. However, it is processed by additional rules that are

outside the scope of the current rule block.

forward

This method specifies that an event is to be sent to other rules and rule

blocks even though the current rule has not completed its processing. Each

of the other rules and rule blocks then processes the event completely

before returning the event to the rule that called the forward method.

forwardOnCompletion

This method specifies that an event is to be sent to other rules and rule

blocks after the current rule has completed its processing.

32 Rule Writer's Guide and Reference

Chapter 3. Rule writing overview

Before writing rules to correlate events, you must understand and plan for event

correlation and design the rules. You can use the Active Correlation Technology

rule builder to write the rules and compile the rule set.

The Active Correlation Technology rule builder is a GUI for writing rules. It

includes online help. In the rule builder, the resulting rule set file is an XML file

with a file type of actl.

The Active Correlation Technology does not provide a change management or

version control system.

Planning for event correlation

Planning for event correlation includes understanding, or learning about, what

event correlation is and how it can be applied in your application.

Ensure that you understand the following concepts:

v The information in Chapter 1, “Introduction,” on page 3 and Chapter 2, “Rule

language overview,” on page 5

v The events that your application processes

Each application can process a different set of events, as described in the following

examples:

Insurance business example

In an insurance business, events that track the flow of work through the

claims process can be generated and correlated to determine whether the

business processes are completing in a timely manner.

Sales example

In a different type of business, sales results can be periodically

summarized, reported, and compared to a goal to indicate the status of

achieving the sales goals for a certain time period.

IT environment example

In an IT environment, a mission-critical system can generate an event

every minute to indicate that a database server is running normally.

Correlation rules can be written to monitor the receipt of these heartbeat

events and to take certain rule response actions if an expected heartbeat

event is not received.

You should also understand the format of the events that your application

processes. The Active Correlation Technology provides Java classes and methods to

access data within the events that are being processed by the Active Correlation

Technology engine. However, a basic understanding of the underlying event

objects is important if you want to use these classes and methods to access or

change the events as they are being processed.

To plan for event correlation, take the following steps:

1. Determine the events from your application that you want to correlate.

2. Determine the rule patterns for correlating the events.

© Copyright IBM Corp. 2006 33

A rule pattern represents a specific event correlation situation and can be used

to correlate events that contribute in some way to that situation. Think about

how the events that your application processes relate to the rule patterns that

are defined by the Active Correlation Technology rule language. This can help

you determine the rule patterns that you need to use.

Always use the most appropriate pattern for your event correlation situation.

For example, if you want a rule to detect a certain sequence of events, do not

write code to include the sequence pattern behavior in the rule response actions

for a filter rule. Rather, use the sequence pattern to create a sequence rule.

3. Identify the constructs of each rule pattern that you want to use.

The following information summarizes the primary constructs in the rule

language, although the details of each of these are unique to the rule pattern.

This information is organized in approximately the same way that it is

presented through the rule builder GUI:

Characteristics

The definition of the rule characteristics, including the rule name,

description, and pattern. For details, see the following topics:

v “collectionRule element” on page 71

v “computationRule element” on page 72

v “duplicateRule element” on page 79

v “filterRule element” on page 87

v “sequenceRule element” on page 101

v “thresholdRule element” on page 105

v “timerRule element” on page 107

Variables

The definition of rule variables, including the name, type, description,

and initialization expression for each variable. For details, see “variable

element” on page 109.

Event selection

The definition of the criteria that determines which events are accepted

for processing by the rule. For details, see “eventSelector element” on

page 84.

Grouping key

The definition of the grouping key, which is the way to direct the rule

to create a separate rule instance (or copy of itself) for each group of

events that share common characteristics. For details, see “groupingKey

element” on page 88.

Pattern specifics

The specification of the time period during which the stateful rule is

processing to match its pattern and the definition of unique aspects of

certain stateful rule patterns. For details, see “timeWindow element” on

page 109.

 For the computation rule, this includes the definition of the

computation to apply to the collected events. For details, see

“computeFunction element” on page 76.

 For the threshold rule, this includes the definition of the threshold type

and other information that is specific to the threshold type. For details,

see the following topics:

v “booleanThreshold element” on page 70

34 Rule Writer's Guide and Reference

v “computedThreshold element” on page 74

v “eventCountThreshold element” on page 81

Rule responses

The definition of the actions to take when the rule completes its

processing.

 For details, see the following topics:

v For duplicate, filter, sequence, or threshold rules: “onDetection

element” on page 93

v For duplicate rules: “onNextEvent element” on page 95

v For sequence or threshold rules: “onTimeOut element” on page 95

v For collection, computation, duplicate, or timer rules:

“onTimeWindowComplete element” on page 96

Activation interval

The definition of when a rule is active and inactive. For details, see

“activationInterval element” on page 65.

Life cycle

The definition of the actions, if any, to take at the following four

primary stages in the life cycle of a rule: load, activation, deactivation,

and unload. Typically, these actions do not need to be defined. For

details, see “lifeCycleActions element” on page 91.
4. Identify Java methods and associated snippets that are to be called within rule

expressions. Rather than writing extensive Java code within rule expressions,

rule writers should use Java methods to call external modules. These external

modules can be provided by the application that embeds the Active Correlation

Technology or can be created by the rule writer as necessary. The snippets that

are associated with each of the Java methods should also be identified. For

more information, see “Best practices for coding expressions” on page 22.

Proceed to “Designing the rules to correlate events.”

Designing the rules to correlate events

After you plan for event correlation, you must design the rules to correlate the

events.

First, complete “Planning for event correlation” on page 33.

To design the rules, take the following steps:

1. Design the organization of the rules and rule blocks within the rule set.

2. Design the level at which different variables are to be defined, for example, at

the level of the rule set, rule block, or rule.

3. Design the elements of each rule based on the rule pattern.

This step makes use of the constructs of each rule pattern that you identified in

the planning stage.

4. Design the interactions among rules, especially with regard to the forwarding

of events and the skipping of rule set processing for duplicate events.

For more details, see “Event flow through a rule set” on page 31.

5. Design, develop, and test any Java methods and associated snippets that you

created to be called within expressions.

Proceed to “Getting started with the rule builder” on page 36.

Chapter 3. Rule writing overview 35

Getting started with the rule builder

After you design the rules to correlate events, you can use the Active Correlation

Technology rule builder to write the rules.

The following steps are the primary steps in writing rules with the rule builder.

 1. Open the Eclipse Workbench.

 2. Set your perspective in the Eclipse Workbench.

 3. Set your preferences for the Active Correlation Technology, or accept the

default preferences.

 4. Either create a project in which to store the rule set file, or use an existing

project.

 5. Create a rule set file, and store it in the project of your choice.

 6. Create at least one rule block within the rule set. Additionally, you can create

other rule blocks within the rule set, and you can create rule blocks within

rule blocks.

 7. Create rules within rule blocks.

 8. Validate the rule set.

 9. Compile the rule set.

10. Update the rule set as necessary.

In expressions within rules, you can also include snippets from the Snippet view in

the Eclipse Workbench.

Setting the perspective in the Eclipse Workbench

Before you do anything else, you should set your perspective in the Eclipse

Workbench. This topic describes how to open the Rule Builder perspective.

First, open the Eclipse Workbench, if it is not already open.

Although you can use a perspective other than the Rule Builder perspective, the

steps for performing various tasks vary slightly depending on the perspective you

choose.

To open the Rule Builder perspective, take the following steps:

1. In the Workbench, click Window → Open Perspective → Other....

2. Click Rule Builder, and click OK. The Rule Builder perspective is then shown.

Proceed to “Setting preferences.”

Setting preferences

Before you create a rule set file, you should ensure that your preferences for the

Active Correlation Technology are set correctly in the Eclipse Workbench. This

topic describes how to set these preferences.

First, open the Eclipse Workbench, if it is not already open.

To set your preferences for the Active Correlation Technology, take the following

steps:

1. In the Workbench, click Window → Preferences....

36 Rule Writer's Guide and Reference

2. Click Active Correlation Technology, and on the Active Correlation Technology

page, specify whether you want to add “act” as the prefix for newly created

rules and rule blocks in the rule builder. By default, “act” is not added as the

prefix.

3. Expand Active Correlation Technology. Depending on your application, the

following additional items might be shown. Click these items to set the

associated preferences.

 Item Associated preference

Common Base Event Definition Provider You can specify the XML files that provide

the structure for one or more event types

(including the names and types of attributes

that a given event type can contain) that

conform to the Common Base Event

specification. These event types and

attributes are then available when you create

rules.

Compiler You can specify the following primary items:

v Whether compiled rule sets should be

saved

v The file type for compiled rule sets

v The class path for code that is to be used

at compile time

By default, compiled rule sets are saved and

shown in the Navigator view with a file

type of acts, which indicates that the

compiler output is a serialized rule set.

Proceed to “Creating a project for storing a rule set file.”

Creating a project for storing a rule set file

In the Eclipse Workbench, when you create a rule set file, you must specify the

project in which to store the file. Therefore, you must either create a project before

you create a rule set file, or use an existing project. This topic describes a way to

create a project in the Eclipse Workbench.

First, open the Eclipse Workbench, if it is not already open. Also, open the Rule

Builder perspective.

To create a simple project within the Workbench, take the following steps:

1. Click File → New → Project....

2. In the New Project wizard, click Simple → Project, and click Next.

3. In the Project name field, type a unique name for the project. Also, either use

the default location for the project, or choose a different location.

4. Click Finish. The new project is then shown in the Navigator view of the Rule

Builder perspective.

Proceed to “Creating a rule set.”

Creating a rule set

This topic describes how to create a rule set.

Chapter 3. Rule writing overview 37

First, open the Eclipse Workbench, if it is not already open. Also, open the Rule

Builder perspective.

To create a rule set file, take the following steps:

1. Click File → New → Rule Set File.

2. In the New Rule Set File wizard, click the name of the folder that is associated

with the project in which you want to store the rule set file. This is probably

the project that you created in “Creating a project for storing a rule set file” on

page 37. The folder name is then shown in the first field.

3. In the File name field, type a name for the rule set file. The file type must be

actl.

4. Click Next.

5. Type a unique name for the rule set and an optional description. If you do not

want to use the default value for the XML encoding field, also specify the

encoding style for the rule set file, which is an XML file.

6. Click Finish. The rule set file is then shown in its project folder in the

Navigator view. Because the file is validated when it is saved, the word

“Validated” is shown beside the file. The rule set file is also shown in the

Outline view.

Proceed to “Creating a rule block.”

Creating a rule block

This topic describes how to create a rule block within a rule set or within another

rule block.

First, open the Eclipse Workbench, if it is not already open. Also, open the Rule

Builder perspective.

If you are creating a rule set for the first time, you must create at least one rule

block within the rule set before you can create any rules. After you have created

that first rule block, you can create additional rule blocks, including rule blocks

within rule blocks.

To create a rule block, take the following steps:

1. In the Navigator view, double-click the name of the rule set file that you want

to update. The file is then opened in the Outline view. When you click the rule

set in the Outline view, the current information for the rule set is shown in the

editor area.

2. In the Outline view, right-click the rule set.

3. Click New Child → Rule Block. A rule block is then shown within the rule set

in the Outline view, and the current information for the rule block is shown in

the editor area.

You can now create additional rule blocks in the following ways:

v To create a rule block that is a peer to an existing rule block, right-click the

existing rule block, and click New Sibling → Rule Block.

v To create a rule block within an existing rule block, right-click the existing rule

block, and click New Child → Rule Block.

Also, using the editor, you can update the information for the rule set and each

rule block. Proceed to “Creating a rule” on page 39.

38 Rule Writer's Guide and Reference

Creating a rule

This topic describes how to create a rule.

First, open the Eclipse Workbench, if it is not already open. Also, open the Rule

Builder perspective.

A rule must be created within a rule block. To create a rule, take the following

steps:

1. In the Outline view, right-click the rule block that you want to update.

2. Click New Child and the type of rule that you want to create. The rule is then

shown within the rule block in the Outline view, and the current information

for the rule is shown in the editor area.

You can add additional rules to rule blocks in the same way. Also, using the editor,

you can update the information for each rule. Proceed to “Validating a rule set.”

Validating a rule set

This topic describes how to validate a rule set before you compile it.

First, open the Eclipse Workbench, if it is not already open. Also, open the Rule

Builder perspective.

To validate a rule set, take the following steps:

1. In the Outline view, right-click a rule, a rule block, or the rule set.

2. Click Validate Rule Set. When the validation is complete, a message window is

shown to indicate whether problems exist. If the validation completes

successfully, the word “Validated” is shown to the right of the file name for the

rule set in the Navigator view.

When the validation completes successfully, proceed to “Compiling a rule set.”

Compiling a rule set

This topic describes how to compile a rule set.

First, open the Eclipse Workbench, if it is not already open. Also, open the Rule

Builder perspective.

In either the Navigator or Outline view, right-click the rule set that you want to

compile, and click Compile Rule Set. Any compilation errors are shown in the

Problems view.

By default, if no compilation errors exist, the compiled rule set is shown in the

Navigator view with a default file type of acts, which indicates that it is a

serialized rule set. Also in the Navigator view, the word “Compiled” is shown to

the right of the file name for the rule set.

Updating a rule set

This topic describes how to update a rule set.

First, open the Eclipse Workbench, if it is not already open. Also, open the Rule

Builder perspective.

Chapter 3. Rule writing overview 39

In the Outline view, click the item (rule, rule block, or rule set) that you want to

update. The current information for the item is then shown in the editor area, and

you can use the editor to update this information.

To create a rule block or rule that is a peer to an existing rule block or rule, take

the following steps:

1. Right-click the existing rule block or rule.

2. Click New Sibling and the item (rule block or type of rule) that you want to

add.

To create a rule block or rule within an existing rule block, take the following

steps:

1. Right-click the existing rule block.

2. Click New Child and the item (rule block or type of rule) that you want to

add.

To access other update functions in the Outline view, take the following steps:

1. Right-click the item (rule block or rule) that you want to update.

2. Click the menu item for the function, such as Delete, Copy, or Paste.

Including snippets in expressions within rules

In expressions within rules, you can include snippets from the Snippet view in the

Eclipse Workbench.

First, open the Eclipse Workbench, if it is not already open. Also, open the Rule

Builder perspective.

The Snippet view is shown in the Rule Builder perspective. Snippets are organized

into categories based on their function.

To include a snippet from the Snippet view, take the following steps:

1. Click a snippet category to see the names of the snippets in the category.

2. Click the snippet that you want to include in an expression.

3. Drag the snippet into the respective Expression field. The code is placed at the

position of the cursor in the Expression field. If the code requires input from

the rule writer, such as specific message text or variable values, you are

prompted to provide that input before the code is included in the expression.

Proceed to “Validating a rule set” on page 39.

40 Rule Writer's Guide and Reference

Part 2. Rule Writer's Reference

© Copyright IBM Corp. 2006 41

42 Rule Writer's Guide and Reference

Chapter 4. Summary of rule set organization

This reference lists all the language elements of a rule set, a rule block, and each

type of rule. It serves as a quick reference for coding a rule set.

Table 10 explains the meaning of the notation that follows each language element.

n represents an unbounded number.

 Table 10. Explanation of notation that defines the number of occurrences for a language

element

Notation Meaning

(0, 1) 0 indicates that the language element is optional. 1 indicates that if coded,

only 1 occurrence is allowed.

(0, n) 0 indicates that the language element is optional. n indicates that if coded,

multiple occurrences are allowed.

(1, 1) The first 1 indicates that the language element is required. The second 1

indicates that only 1 occurrence is allowed.

(1, n) 1 indicates that the language element is required. n indicates that multiple

occurrences are allowed.

(2, n) 2 indicates that 2 occurrences of the language element are required. n

indicates that additional occurrences are allowed.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

Rule set summary

This summary lists the language elements of a rule set.

Rule set elements

<ruleSet> contains the following elements:

v <comment> (0, 1)

v <import> (0, n)

v <variable> (0, n)

– <comment> (0, 1)

– <varInitializer> (1, 1)
v <ruleBlock> (0, n)
 Related reference

 “Rule block summary”
This summary lists the language elements of a rule block.

Rule block summary

This summary lists the language elements of a rule block.

© Copyright IBM Corp. 2006 43

Rule block elements

<ruleBlock> contains the following elements.

If they are coded, the <comment>, <import>, and <variable> elements must be

coded in the order that is shown. The remaining elements can be coded in any

order.

v <comment> (0, 1)

v <import> (0, n)

v <variable> (0, n)

– <comment> (0, 1)

– <varInitializer> (1, 1)
v <ruleBlock> (0, n)

v <collectionRule> (0, n)

v <computationRule> (0, n)

v <duplicateRule> (0, n)

v <filterRule> (0, n)

v <sequenceRule> (0, n)

v <thresholdRule> (0, n)

v <timerRule> (0, n)
 Related reference

 “Collection rule summary”
This summary lists all language elements of the collection rule.

 “Computation rule summary” on page 46
This summary lists all language elements of the computation rule.

 “Duplicate rule summary” on page 47
This summary lists all language elements of the duplicate rule.

 “Filter rule summary” on page 48
This summary lists all language elements of the filter rule.

 “Sequence rule summary” on page 49
This summary lists all language elements of the sequence rule.

 “Threshold rule summary” on page 51
This summary lists all language elements of the threshold rule.

 “Timer rule summary” on page 52
This summary lists all language elements of the timer rule.

Collection rule summary

This summary lists all language elements of the collection rule.

Rule elements

<collectionRule> contains the following elements:

v <comment> (0, 1)

v <variable> (0, n)

– <comment> (0, 1)

– <varInitializer> (1, 1)
v <activationInterval> (0, 1)

– <activationTime> (0, 1)

44 Rule Writer's Guide and Reference

- <start> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <whenLoaded>

– <inactiveWhenLoaded>
- <stop> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <never>

– <after>
– <activateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
– <deactivateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
– <activationByGroupingKey> (0, 1)

- <activateOnEvent> (0, 1)

v <eventType> (0, n)

v <filteringPredicate> (0, 1)

v <stopAfter> (0, 1)
- <deactivateOnEvent> (0, 1)

v <eventType> (0, n)

v <filteringPredicate> (0, 1)
v <lifeCycleActions> (0, 1)

– <onLoad> (0, 1)

- <action> (0, n)
– <onActivation> (0, 1)

- <action> (0, n)
– <onDeactivation> (0, 1)

- <action> (0, n)
– <onUnload> (0, 1)

- <action> (0, n)
v <eventSelector> (0, 1)

– <eventType> (0, n)

– <filteringPredicate> (0, 1)
v <groupingKey> (0, 1)

– The following three elements, in any order (1, n):

- <attributeAlias>

v <eventAttribute> (2, n)
- <attributeName>

- <computedValue>
v <timeWindow> (1, 1)

– One of the following two elements (1, 1):

- <timeInterval>

Chapter 4. Summary of rule set organization 45

- <runUntilDeactivated>
v <onTimeWindowComplete> (0, 1)

– <action> (0, n)

Computation rule summary

This summary lists all language elements of the computation rule.

Rule elements

<computationRule> contains the following elements:

v <comment> (0, 1)

v <variable> (0, n)

– <comment> (0, 1)

– <varInitializer> (1, 1)
v <activationInterval> (0, 1)

– <activationTime> (0, 1)

- <start> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <whenLoaded>

– <inactiveWhenLoaded>
- <stop> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <never>

– <after>
– <activateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
– <deactivateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
– <activationByGroupingKey> (0, 1)

- <activateOnEvent> (0, 1)

v <eventType> (0, n)

v <filteringPredicate> (0, 1)

v <stopAfter> (0, 1)
- <deactivateOnEvent> (0, 1)

v <eventType> (0, n)

v <filteringPredicate> (0, 1)
v <lifeCycleActions> (0, 1)

– <onLoad> (0, 1)

- <action> (0, n)
– <onActivation> (0, 1)

- <action> (0, n)

46 Rule Writer's Guide and Reference

– <onDeactivation> (0, 1)

- <action> (0, n)
– <onUnload> (0, 1)

- <action> (0, n)
v <eventSelector> (0, 1)

– <eventType> (0, n)

– <filteringPredicate> (0, 1)
v <groupingKey> (0, 1)

– The following three elements, in any order (1, n):

- <attributeAlias>

v <eventAttribute> (2, n)
- <attributeName>

- <computedValue>
v <computeFunction> (1, 1)

v <timeWindow> (1, 1)

– One of the following two elements (1, 1):

- <timeInterval>

- <runUntilDeactivated>
v <onTimeWindowComplete> (0, 1)

– <action> (0, n)

Duplicate rule summary

This summary lists all language elements of the duplicate rule.

Rule elements

<duplicateRule> contains the following elements:

v <comment> (0, 1)

v <variable> (0, n)

– <comment> (0, 1)

– <varInitializer> (1, 1)
v <activationInterval> (0, 1)

– <activationTime> (0, 1)

- <start> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <whenLoaded>

– <inactiveWhenLoaded>
- <stop> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <never>

– <after>
– <activateOnEvent> (0, 1)

- <eventType> (0, n)

Chapter 4. Summary of rule set organization 47

- <filteringPredicate> (0, 1)
– <deactivateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
– <activationByGroupingKey> (0, 1)

- <activateOnEvent> (0, 1)

v <eventType> (0, n)

v <filteringPredicate> (0, 1)

v <stopAfter> (0, 1)
- <deactivateOnEvent> (0, 1)

v <eventType> (0, n)

v <filteringPredicate> (0, 1)
v <lifeCycleActions> (0, 1)

– <onLoad> (0, 1)

- <action> (0, n)
– <onActivation> (0, 1)

- <action> (0, n)
– <onDeactivation> (0, 1)

- <action> (0, n)
– <onUnload> (0, 1)

- <action> (0, n)
v <eventSelector> (0, 1)

– <eventType> (0, n)

– <filteringPredicate> (0, 1)
v <groupingKey> (0, 1)

– The following three elements, in any order (1, n):

- <attributeAlias>

v <eventAttribute> (2, n)
- <attributeName>

- <computedValue>
v <timeWindow> (1, 1)

– One of the following two elements (1, 1):

- <timeInterval>

- <runUntilDeactivated>
v <onDetection> (0, 1)

– <action> (0, n)
v <onNextEvent> (0, 1)

– <action> (0, n)
v <onTimeWindowComplete> (0, 1)

– <action> (0, n)

Filter rule summary

This summary lists all language elements of the filter rule.

48 Rule Writer's Guide and Reference

Rule elements

<filterRule> contains the following elements:

v <comment> (0, 1)

v <variable> (0, n)

– <comment> (0, 1)

– <varInitializer> (1, 1)
v <activationInterval> (0, 1)

– <activationTime> (0, 1)

- <start> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <whenLoaded>

– <inactiveWhenLoaded>
- <stop> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <never>

– <after>
– <activateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
– <deactivateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
v <lifeCycleActions> (0, 1)

– <onLoad> (0, 1)

- <action> (0, n)
– <onActivation> (0, 1)

- <action> (0, n)
– <onDeactivation> (0, 1)

- <action> (0, n)
– <onUnload> (0, 1)

- <action> (0, n)
v <eventSelector> (0, 1)

– <eventType> (0, n)

– <filteringPredicate> (0, 1)
v <onDetection> (0, 1)

– <action> (0, n)

Sequence rule summary

This summary lists all language elements of the sequence rule.

Chapter 4. Summary of rule set organization 49

Rule elements

<sequenceRule> contains the following elements:

v <comment> (0, 1)

v <variable> (0, n)

– <comment> (0, 1)

– <varInitializer> (1, 1)
v <activationInterval> (0, 1)

– <activationTime> (0, 1)

- <start> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <whenLoaded>

– <inactiveWhenLoaded>
- <stop> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <never>

– <after>
– <activateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
– <deactivateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
– <activationByGroupingKey> (0, 1)

- <activateOnEvent> (0, 1)

v <eventType> (0, n)

v <filteringPredicate> (0, 1)

v <stopAfter> (0, 1)
- <deactivateOnEvent> (0, 1)

v <eventType> (0, n)

v <filteringPredicate> (0, 1)
v <lifeCycleActions> (0, 1)

– <onLoad> (0, 1)

- <action> (0, n)
– <onActivation> (0, 1)

- <action> (0, n)
– <onDeactivation> (0, 1)

- <action> (0, n)
– <onUnload> (0, 1)

- <action> (0, n)
v <eventSelector> (2, n)

– <eventType> (0, n)

– <filteringPredicate> (0, 1)

50 Rule Writer's Guide and Reference

v <groupingKey> (0, 1)

– The following three elements, in any order (1, n):

- <attributeAlias>

v <eventAttribute> (2, n)
- <attributeName>

- <computedValue>
v <timeWindow> (1, 1)

– One of the following two elements (1, 1):

- <timeInterval>

- <runUntilDeactivated>
v <onDetection> (0, 1)

– <action> (0, n)
v <onTimeOut> (0, 1)

– <action> (0, n)

Threshold rule summary

This summary lists all language elements of the threshold rule.

Rule elements

<thresholdRule> contains the following elements:

v <comment> (0, 1)

v <variable> (0, n)

– <comment> (0, 1)

– <varInitializer> (1, 1)
v <activationInterval> (0, 1)

– <activationTime> (0, 1)

- <start> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <whenLoaded>

– <inactiveWhenLoaded>
- <stop> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <never>

– <after>
– <activateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
– <deactivateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
– <activationByGroupingKey> (0, 1)

- <activateOnEvent> (0, 1)

Chapter 4. Summary of rule set organization 51

v <eventType> (0, n)

v <filteringPredicate> (0, 1)

v <stopAfter> (0, 1)
- <deactivateOnEvent> (0, 1)

v <eventType> (0, n)

v <filteringPredicate> (0, 1)
v <lifeCycleActions> (0, 1)

– <onLoad> (0, 1)

- <action> (0, n)
– <onActivation> (0, 1)

- <action> (0, n)
– <onDeactivation> (0, 1)

- <action> (0, n)
– <onUnload> (0, 1)

- <action> (0, n)
v <eventSelector> (0, 1)

– <eventType> (0, n)

– <filteringPredicate> (0, 1)
v <groupingKey> (0, 1)

– The following three elements, in any order (1, n):

- <attributeAlias>

v <eventAttribute> (2, n)
- <attributeName>

- <computedValue>
v One of the following three elements (1, 1):

– <booleanThreshold>

– <computedThreshold>

– <eventCountThreshold>
v <timeWindow> (1, 1)

– One of the following two elements (1, 1):

- <timeInterval>

- <runUntilDeactivated>
v <onDetection> (0, 1)

– <action> (0, n)
v <onTimeOut> (0, 1)

– <action> (0, n)

Timer rule summary

This summary lists all language elements of the timer rule.

Rule elements

<timerRule> contains the following elements:

v <comment> (0, 1)

v <variable> (0, n)

52 Rule Writer's Guide and Reference

– <comment> (0, 1)

– <varInitializer> (1, 1)
v <activationInterval> (0, 1)

– <activationTime> (0, 1)

- <start> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <whenLoaded>

– <inactiveWhenLoaded>
- <stop> (0, 1)

v One of the following three elements (1, 1):

– <dateTime>

– <never>

– <after>
– <activateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
– <deactivateOnEvent> (0, 1)

- <eventType> (0, n)

- <filteringPredicate> (0, 1)
v <lifeCycleActions> (0, 1)

– <onLoad> (0, 1)

- <action> (0, n)
– <onActivation> (0, 1)

- <action> (0, n)
– <onDeactivation> (0, 1)

- <action> (0, n)
– <onUnload> (0, 1)

- <action> (0, n)
v <timeWindow> (1, 1)

– One of the following two elements (1, 1):

- <timeInterval>

- <runUntilDeactivated>
v <onTimeWindowComplete> (0, 1)

– <action> (0, n)

Chapter 4. Summary of rule set organization 53

54 Rule Writer's Guide and Reference

Chapter 5. Language element reference

This reference describes the details of the language elements in the XML schema

for the Active Correlation Technology rule language. The language elements are

listed in alphabetical order, and the attributes that are available for each element

are described within the topic for that element.

In XML, and in other markup languages such as SGML and HTML, an element is

a basic unit that consists of a start tag, end tag, associated attributes and their

values, and any text that is contained between the start and end tags. An attribute

is a name-value pair that is coded on an element to define a certain characteristic

of the element. An attribute has a data type that identifies the kind of information

that is provided in its value (for example, numerical, textual, or boolean

information).

In XML, a namespace is a uniform resource identifier (URI) that provides a unique

name to associate with the elements and type definitions in a schema. The URI

indicates which XML schema contains the definition of an element. A namespace is

specified with a prefix string followed by a colon. The Active Correlation

Technology rule language schema is defined in three different files and uses the

following three namespaces:

xsd: This namespace indicates that the language element is defined in the

standard XML schema, which is described at http://www.w3.org.

br: This namespace indicates that the language element is defined in the

Active Correlation Technology base rule set schema, which is in the

ACTparser.jar file in the com/ibm/correlation/ruleparser/xml/
RuleSetBase.xsd subdirectory. For example, br:ruleSet refers to the ruleSet

element that is defined in the RuleSetBase.xsd file.

act: This namespace indicates that the language element is defined in the

Active Correlation Technology language schema, which is in the

ACTparser.jar file in the com/ibm/correlation/ruleparser/xml/ACTL.xsd

subdirectory. For example, act:ruleSet refers to the ruleSet element that is

defined in the ACTL.xsd file.

In the rule language schema, language elements are defined as either elements or

complex types, for example:

<xsd:element name="symbol" minOccurs="1" maxOccurs="unbounded"></element>

<xsd:complexType name="symbol"></complexType>

In the schema, the minOccurs and maxOccurs attributes define the minimum and

maximum number of occurrences, respectively, for a language element. Table 11

describes the meaning of different values for the minOccurs and maxOccurs

attributes.

 Table 11. Attributes in the schema that define the number of occurrences for a language

element

Attribute Attribute value Meaning

minOccurs 0 The language element is optional.

minOccurs 1 The language element must occur at least once. 1 is the

default value for the minOccurs attribute.

© Copyright IBM Corp. 2006 55

http://www.w3.org

Table 11. Attributes in the schema that define the number of occurrences for a language

element (continued)

Attribute Attribute value Meaning

minOccurs 2 The language element must occur at least twice.

maxOccurs 1 The language element cannot occur more than once. 1 is

the default value for the maxOccurs attribute.

maxOccurs unbounded The language element can occur any number of times.

action element

The <action> element contains an expression that defines either a rule response

action or a life cycle action.

Details

Refer to “Variables” on page 23 for information about the variables that can be

used in expressions. The use of certain variables is dependent on the context of the

expression.

Attributes

<action> has the following attributes:

 Table 12. Attributes of the <action> element

Name Description Data type Required?

expressionLanguage Identifies the programming language

in which the expression is written.

Because the Java programming

language is the only supported

expression language, the only valid

value for this attribute is java.

xsd:NMTOKEN Yes

name Identifies the action. This identifier

can be useful for troubleshooting

purposes, especially if it is a unique

name among all <action> elements

that are defined for a specific rule

response or life cycle action.

xsd:NMTOKEN No

Contained within

<action> is contained within the following elements:

v <onActivation>

v <onDeactivation>

v <onDetection>

v <onLoad>

v <onNextEvent>

v <onTimeOut>

v <onTimeWindowComplete>

v <onUnload>

56 Rule Writer's Guide and Reference

Contains

<action> contains no elements.

 Related concepts

 “Expressions” on page 19
An expression is code that contains custom logic that can be added to a rule.

Expressions can also access code that is external to the Active Correlation

Technology engine. In the rule language, expressions are valid only within

specific contexts, or rule language elements.

activateOnEvent element

The <activateOnEvent> element defines the events that can activate the rule or, for

rules that are defined with a <groupingKey> element, a rule instance.

Following are the three possible ways of selecting events:

v The use of one or more <eventType> elements with a <filteringPredicate>

element

v The use of one or more <eventType> elements without a <filteringPredicate>

element

v The use of a <filteringPredicate> element without any <eventType> elements

If the rule is inactive and no <eventType> or <filteringPredicate> element is coded,

any event that occurs is selected.

Not coding any <eventType> elements can negatively impact system performance.

Assume that you want to select all events of type Audit Failure. You can use a

filtering predicate to further refine the selection criteria to include only the events

that have an event attribute with a certain value. For example, you would code an

<eventType> element to select all events of type Audit Failure, and code a

<filteringPredicate> element to select only those events that have a hostname

attribute with the value MyCriticalSystem.

Attributes

<activateOnEvent> has no attributes.

Contained within

<activateOnEvent> is contained within the following elements:

v <activationInterval>

v <activationByGroupingKey>

Contains

<activateOnEvent> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

Chapter 5. Language element reference 57

Table 13. Elements contained within the <activateOnEvent> element

Element Required or optional?

<eventType> Optional. 0 or more occurrences are allowed.

<filteringPredicate> Optional. 0 or 1 occurrence is allowed.

<stopAfter> This element is valid only when the <activateOnEvent>

element is contained within the

<activationByGroupingKey> element.

Optional. 0 or 1 occurrence is allowed.

activationByGroupingKey element

The <activationByGroupingKey> element contains elements that specify the events

that can activate and deactivate a rule instance that is defined by the

<groupingKey> element. Because the <groupingKey> element is not valid for the

filter and timer rules, the <activationByGroupingKey> element does not apply to

these rules.

Details

The function that is provided by the <activationByGroupingKey> element is for

use in rules where you define a grouping key. It allows you to control the

activation and deactivation of rule instances based on the grouping key. When you

code the <activationByGroupingKey> element, each rule instance can be

individually activated and deactivated based on the <activateOnEvent> and

<deactivateOnEvent> conditions within <activationByGroupingKey>.

The following example illustrates the use of the <activationByGroupingKey>

element within a computation rule.

v The following computation rule accepts events of type StockSharesTraded. These

events indicate the number of stock shares that are being traded for many

different companies.

v The grouping key is the stockSymbol attribute of an event. The value of the

stockSymbol attribute is the name of a specific company.

v The value of the sharesTraded attribute of an event is the number of stock shares

that have been traded for the respective company (the company is indicated by

the value of the stockSymbol attribute).

v For a specific company, a report is created that indicates the number of stock

shares that have been traded for that company during a 10-minute period.

However, before the computation rule can create this report, it must receive an

event of type StartReporting, with the name of the respective company as the

value of the stockSymbol attribute.
<computationRule name="StockReporter">

 <variable dataType="java.lang.Integer" name="totalSharesTraded">

 <varInitializer expressionLanguage="java">

 return new Integer(0);

 </varInitializer>

 </variable>

 <activationInterval>

 <activationTime>

 <start>

 <inactiveWhenLoaded/>

 </start>

 </activationTime>

58 Rule Writer's Guide and Reference

<activationByGroupingKey>

 <activateOnEvent>

 <eventType type="StartReporting"/>

 </activateOnEvent>

 </activationByGroupingKey>

 </activationInterval>

 <eventSelector>

 <eventType type="StockSharesTraded"/>

 </eventSelector>

 <groupingKey>

 <attributeName>stockSymbol</attributeName>

 </groupingKey>

 <computeFunction assignTo="totalSharesTraded" expressionLanguage="java">

 return new Integer(act_lib.getIntVariable("totalSharesTraded")

 + act_event.getIntAttribute("sharesTraded"));

 </computeFunction>

 <timeWindow>

 <timeInterval unit="ISO-8601" duration="PT10M"/>

 </timeWindow>

 <onTimeWindowComplete>

 <action expressionLanguage="java">

 StockReport.createReport(act_eventList.get(0).getStringAttribute("stockSymbol"),

 act_lib.getIntVariable("totalSharesTraded"));

 </action>

 </onTimeWindowComplete>

</computationRule>

Attributes

<activationByGroupingKey> has no attributes.

Contained within

<activationByGroupingKey> is contained within the following element:

v <activationInterval>

Contains

<activationByGroupingKey> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 14. Elements contained within the <activationByGroupingKey> element

Element Required or optional?

<activateOnEvent> Optional. 0 or 1 occurrence is allowed.

<deactivateOnEvent> Optional. 0 or 1 occurrence is allowed.

Relationship between <activationInterval> and

<activationByGroupingKey> elements

The <activateOnEvent> and <deactivateOnEvent> elements are contained within

both of these elements:

Chapter 5. Language element reference 59

v <activationInterval>

v <activationByGroupingKey>, which is also contained within <activationInterval>

Rule behavior can differ based on the current rule activity and on the interactions

between the <activateOnEvent> and <deactivateOnEvent> definitions within the

<activationInterval> and <activationByGroupingKey> elements. The following

example illustrates how these definitions can interact.

In this example, a duplicate rule is defined to suppress events from systems that

are in maintenance mode and to provide, at the end of the maintenance period, a

summary report of the number of events that were suppressed.

By default, a rule within which a grouping key is defined allows all grouping key

values to be processed. Therefore, when events meet the event selection criteria for

the rule, all rule instances are active and ready to accept these events according to

any value of the grouping key. The activation interval for the rule is the same as it

would be if the rule did not have a grouping key because in essence, all events

that meet the event selection criteria for the rule are processed.

In the following example, the grouping key is hostname, and the definitions within

the <activationInterval> element specify the following actions:

1. Activate all rule instances when an event of type

StartMaintenanceModeAllHosts is received.

2. Deactivate all rule instances either after 2 hours or when an event of type

StopMaintenanceModeAllHosts is received.
<duplicateRule name="Maintenance_Supression">

 <activationInterval>

 <activationTime>

 <start>

 <inactiveWhenLoaded/>

 </start>

 <stop>

 <after duration="PT2H" unit="ISO-8601"/>

 </stop>

 </activationTime>

 <activateOnEvent>

 <eventType type="StartMaintenanceModeAllHosts"/>

 </activateOnEvent>

 <deactivateOnEvent>

 <eventType type="StopMaintenanceModeAllHosts"/>

 </deactivateOnEvent>

 </activationInterval>

 <groupingKey missingAttributeHandling="ignoreEvent">

 <attributeName>hostname</attributeName>

 </groupingKey>

 <timeWindow>

 <runUntilDeactivated/>

 </timeWindow>

 <onDetection>

 <action expressionLanguage="java" name="DropEvent">

 <![CDATA[act_lib.exitRuleSet();]]>

 </action>

 </onDetection>

 <onTimeWindowComplete>

 <action expressionLanguage="java" name="CreateSummaryOfSupressedEvents">

 <![CDATA[Helper.createSummaryEvent("MaintenanceSummary", act_eventList, act_lib);]]>

 </action>

 </onTimeWindowComplete>

</duplicateRule>

In some situations, you might want to control which rule instances become active

and when they become active. For these situations, you should code the

<activationByGroupingKey> element.

60 Rule Writer's Guide and Reference

The following example extends the previous example and illustrates how you can

use the grouping key value to select which rule instances are allowed to process.

The definitions within the <activationByGroupingKey> element specify the

following actions:

1. Allow the rule instances for specific host names to process when events of type

StartMaintenanceMode are received for those host names.

2. Deactivate these rule instances either after 2 hours of activation or when an

event of type StopMaintenanceMode is received for the respective host name.
 <activationByGroupingKey>

 <activateOnEvent>

 <eventType type="StartMaintenanceMode"/>

 <stopAfter duration="PT2H" unit="ISO-8601"/>

 </activateOnEvent>

 <deactivateOnEvent>

 <eventType type="StopMaintenanceMode"/>

 </deactivateOnEvent>

 </activationByGroupingKey>

The following statements summarize what happens when you code the

<activationByGroupingKey> element:

v When the <activateOnEvent> element is coded within the

<activationByGroupingKey> element, only the events that share the grouping

key value of the event that met the <activationByGroupingKey>

<activateOnEvent> condition are allowed to process.

v When the <deactivateOnEvent> element is coded within the

<activationByGroupingKey> element, the events that share the grouping key

value of the event that met the <activationByGroupingKey>

<deactivateOnEvent> condition are not allowed to process.

The effect of different activation and deactivation definitions on

rule state

Table 15 on page 62 and Table 16 on page 64 show how the state of a rule is

affected by different activation and deactivation definitions. In these tables, the

following conventions are used:

v A is an activating event.

v In the notation “A[x], ” x represents the grouping key value. For example, A[1]

is an activating event with a grouping key value of 1.

v D is a deactivating event.

v In the notation “D[x], ” x represents the grouping key value. For example, D[1]

is an deactivating event with a grouping key value of 1.

Chapter 5. Language element reference 61

Table 15. Rule state changes based on different activation definitions

Starting rule state Rule state is potentially affected by Ending rule state

Inactive Time defined within

<activationInterval> <activationTime>

<start>

1. The rule is activated.

2. The <onActivation> actions run.

3. All grouping key values are allowed.

activate() method

Event A , defined within

<activationInterval> <activateOnEvent>

Event A[1] , defined within

<activationByGroupingKey>

<activateOnEvent> (without <stopAfter>)

1. The rule is activated.

2. The <onActivation> actions run.

3. Only the grouping key value of 1 is

allowed. When the rule pattern is

matched for this rule instance, the

grouping key value of 1 is no longer

allowed.

Event A[2] , defined within

<activateOnEvent> (with <stopAfter>)

1. The rule is activated.

2. The <onActivation> actions run.

3. Only the grouping key value of 2 is

allowed, and it is allowed only for

the duration that is specified by the

<stopAfter> element. The rule pattern

for this rule instance can be matched

multiple times during this duration.

v Active

v Allowing all grouping key

values

Time defined within

<activationInterval> <activationTime>

<start>

No change has occurred in the rule state.

It is the same as the starting rule state.

activate() method

Event A , defined within

<activationInterval> <activateOnEvent>

Event A[1] , defined within

<activationByGroupingKey>

<activateOnEvent> (without <stopAfter>)

Event A[2] , defined within

<activateOnEvent> (with <stopAfter>)

62 Rule Writer's Guide and Reference

Table 15. Rule state changes based on different activation definitions (continued)

Starting rule state Rule state is potentially affected by Ending rule state

v Active

v Allowing only grouping key

values that have triggered

rule instances based on

<activationByGroupingKey>

<activateOnEvent>

definitions

Time defined within

<activationInterval> <activationTime>

<start>

No change has occurred in the rule state.

It is the same as the starting rule state.

activate() method

Event A , defined within

<activationInterval> <activateOnEvent>

All grouping key values are allowed.

Event A[1] , defined within

<activationByGroupingKey>

<activateOnEvent> (without <stopAfter>)

v The grouping key value of 1 is now

allowed, in addition to the grouping

key values that were previously

allowed.

v When the rule pattern is matched for

this rule instance, the grouping key

value of 1 is no longer allowed.

Event A[2] , defined within

<activateOnEvent> (with <stopAfter>)

v The grouping key value of 2 is now

allowed, in addition to the grouping

key values that were previously

allowed.

v This value is allowed only for the

duration that is specified by the

<stopAfter> element.

v The rule pattern for this rule instance

can be matched multiple times during

this duration.

v Active

v Allowing all grouping key

values except those that are

not allowed based on

<activationByGroupingKey>

<deactivateOnEvent>

definitions

Time defined within

<activationInterval> <activationTime>

<start>

No change has occurred in the rule state.

It is the same as the starting rule state.

activate() method

Event A , defined within

<activationInterval> <activateOnEvent>

All grouping key values are allowed.

Event A[1] , defined within

<activationByGroupingKey>

<activateOnEvent> (without <stopAfter>)

The grouping key value of 1 is now

allowed, in addition to the grouping key

values that were previously allowed.

Event A[2] , defined within

<activateOnEvent> (with <stopAfter>)

The grouping key value of 2 is now

allowed, in addition to the grouping key

values that were previously allowed.

Chapter 5. Language element reference 63

Table 16. Rule state changes based on different deactivation definitions

Starting rule state Rule state is potentially affected by Ending rule state

Inactive Time defined within <activationInterval>

<activationTime> <stop>

No change has occurred in the rule

state. It is the same as the starting rule

state. deactivate() method

Event D , defined within

<activationInterval>

<deactivateOnEvent>

Event D[1] , defined within

<activationByGroupingKey>

<deactivateOnEvent>

Duration defined within

<activationByGroupingKey>

<activateOnEvent> <stopAfter> ends for

event A[2]

v Active

v Allowing all grouping key

values

Time defined within <activationInterval>

<activationTime> <stop>

1. All rule instances are deactivated.

2. The <onDeactivation> actions run.

3. The rule is deactivated.

deactivate() method

Event D , defined within

<activationInterval>

<deactivateOnEvent>

Event D[1] , defined within

<activationByGroupingKey>

<deactivateOnEvent>

v The grouping key value of 1 is no

longer allowed.

v If the rule instance with a grouping

key value of 1 is active, it is

deactivated.

Duration defined within

<activationByGroupingKey>

<activateOnEvent> <stopAfter> ends for

event A[2]

The rule instance with a grouping key

value of 2 is deactivated.

v Active

v Allowing only grouping key

values that have triggered

rule instances based on

<activationByGroupingKey>

<activateOnEvent>

definitions

Time defined within <activationInterval>

<activationTime> <stop>

1. All rule instances are deactivated.

2. The <onDeactivation> actions run.

3. The rule is deactivated.

deactivate() method

Event D , defined within

<activationInterval>

<deactivateOnEvent>

Event D[1] , defined within

<activationByGroupingKey>

<deactivateOnEvent>

v The grouping key value of 1 is no

longer allowed.

v If the rule instance with a grouping

key value of 1 is active, it is

deactivated.

Duration defined within

<activationByGroupingKey>

<activateOnEvent> <stopAfter> ends for

event A[2]

v The grouping key value of 2 is no

longer allowed.

v The rule instance with a grouping

key value of 2 is deactivated.

64 Rule Writer's Guide and Reference

Table 16. Rule state changes based on different deactivation definitions (continued)

Starting rule state Rule state is potentially affected by Ending rule state

v Active

v Allowing all grouping key

values except those that are

not allowed based on

<activationByGroupingKey>

<deactivateOnEvent>

definitions

Time defined within <activationInterval>

<activationTime> <stop>

1. All rule instances are deactivated.

2. The <onDeactivation> actions run.

3. The rule is deactivated.

deactivate() method

Event D , defined within

<activationInterval>

<deactivateOnEvent>

Event D[1] , defined within

<activationByGroupingKey>

<deactivateOnEvent>

v The grouping key value of 1 is no

longer allowed.

v If the rule instance with a grouping

key value of 1 is active, it is

deactivated.

Duration defined within

<activationByGroupingKey>

<activateOnEvent> <stopAfter> ends for

event A[2]

The rule instance with a grouping key

value of 2 is deactivated.

activationInterval element

The <activationInterval> element contains elements that define when a rule is

active and inactive.

Details

A rule can be activated or deactivated at a discrete point in time or by a specific

event.

If you specify that a rule is to be activated, or deactivated, at a discrete point in

time and by a specific event, the rule is activated, or deactivated, by whichever

occurs first, the point in time or the receipt of the event. However, in this case, the

rule might be activated or deactivated by many events throughout its life cycle. For

example, a rule might be activated by an event, deactivated, activated at a defined

point in time, deactivated again, and activated by another event.

In a business environment, you might want to activate a rule when an event is

received that indicates that the stock exchange has opened for business. In an IT

environment, you might want to start a maintenance window at 06:00 on 29

October 2005 and end it at one of the following times, based on whichever occurs

first:

v 11:30 on 30 October 2005

v When an event is received that indicates that the maintenance work is complete

Attributes

<activationInterval> has no attributes.

Contained within

<activationInterval> is contained within the following elements:

v <collectionRule>

v <computationRule>

Chapter 5. Language element reference 65

v <duplicateRule>

v <filterRule>

v <sequenceRule>

v <thresholdRule>

v <timerRule>

Contains

<activationInterval> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 17. Elements contained within the <activationInterval> element

Element Required or optional?

<activationTime> Optional. 0 or 1 occurrence is allowed.

<activateOnEvent> Optional. 0 or 1 occurrence is allowed.

<deactivateOnEvent> Optional. 0 or 1 occurrence is allowed.

<activationByGroupingKey> Optional. 0 or 1 occurrence is allowed.

Relationships among the contained elements

The <start> and <stop> elements that are contained within the <activationTime>

element are a static method of activating and deactivating a rule. Through these

elements, a rule is activated or deactivated at a discrete point in time. In contrast,

the <activateOnEvent> and <deactivateOnEvent> elements are a dynamic method

of activating and deactivating a rule. Through these elements, a rule is activated or

deactivated if a certain event occurs. For example, a rule is activated by any event

that meets the criteria that is defined for the <activateOnEvent> element, if the rule

is not already active. A rule is deactivated by any event that meets the criteria that

is defined for the <deactivateOnEvent> element, if the rule is not already inactive.

Therefore, certain events can alter the static definition of when a rule is activated

or deactivated.

Table 18 on page 67 describes how and when a rule is activated or deactivated

based on certain combinations in which the following elements might be coded:

v <start>

v <stop>

v <activateOnEvent>

v <deactivateOnEvent>

In Table 18 on page 67, X represents the name of an event that activates the rule,

and Y represents the name of an event that deactivates the rule.

If the <start> element is not coded at all, the default start time is the same as that

defined by the <whenLoaded> element.

If the <stop> element is not coded at all, the default stop time is the same as that

defined by the <never> element.

66 Rule Writer's Guide and Reference

Table 18. Rule activity based on coding different combinations of the elements that are contained within

<activationInterval>

<activationTime>

<activateOnEvent> <deactivateOnEvent> Rule activity <start> <stop>

<whenLoaded> <never> Rule is active when it is loaded and remains active

while the Active Correlation Technology engine is

running.

<whenLoaded> <never> Y Rule is active when it is loaded. Event Y deactivates the

rule.

<whenLoaded> <never> X Y Rule is active when it is loaded. Event Y deactivates the

rule, and event X reactivates it. This deactivation and

reactivation can occur multiple times.

<whenLoaded> <after> Rule is active when it is loaded, and it is deactivated

after a specified time interval.

<whenLoaded> <dateTime> Rule is active when it is loaded, and it is deactivated at

a specified date and time.

<inactiveWhenLoaded> <never> X Rule is inactive when it is loaded. Event X activates the

rule, and the rule remains active while the Active

Correlation Technology engine is running.

<inactiveWhenLoaded> <never> X Y Rule is inactive when it is loaded. Event X activates the

rule, and event Y deactivates it. This activation and

deactivation can occur multiple times.

<dateTime> <dateTime> Rule is activated at a specified date and time and

deactivated at a specified date and time.

<dateTime> <dateTime> X Y Rule is activated at a specified date and time and

deactivated at a specified date and time. Event X

activates the rule, and event Y deactivates it. Event X

and Y can activate and deactivate the rule multiple

times.

<dateTime> <never> Rule is activated at a specified date and time and

remains active while the Active Correlation Technology

engine is running.

<dateTime> <never> Y Rule is activated at a specified date and time. Event Y

deactivates the rule.

<dateTime> <never> X Y Rule is activated at a specified date and time. Event Y

deactivates the rule, and event X reactivates it. This

deactivation and reactivation can occur multiple times.

<dateTime> <after> Rule is activated at a specified date and time and

deactivated after a specified time interval.

<dateTime> <after> X Y Rule is activated at a specified date and time and

deactivated after a specified time interval. Event X

activates the rule, and event Y deactivates it. This

activation and deactivation can occur multiple times.

activationTime element

The <activationTime> element defines discrete points in time when a rule is

activated or deactivated.

Attributes

<activationTime> has no attributes.

Contained within

<activationTime> is contained within the following element:

v <activationInterval>

Contains

<activationTime> contains the following elements.

Chapter 5. Language element reference 67

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 19. Elements contained within the <activationTime> element

Element Required or optional?

<start> Optional. 0 or 1 occurrence is allowed.

<stop> Optional. 0 or 1 occurrence is allowed.

after element

The <after> element specifies the duration of time that the rule is to remain active

once it becomes active. After this duration of time, the rule is to be deactivated.

Attributes

<after> has the following attributes:

 Table 20. Attributes of the <after> element

Name Description Data type Required?

duration Specifies the amount of time for

the duration. The data type of this

attribute is dependent on the value

of the unit attribute.

v If the value of the unit

attribute is ISO-8601, the

data type is xsd:duration.

v If the value of the unit

attribute is milliseconds,

the data type is

xsd:positiveInteger.

Yes

unit Specifies the unit of time to use.

The valid values for this attribute

are:

v ISO-8601

v milliseconds

xsd:string Yes

The use of the ISO 8601 standard for time duration

Coding ISO-8601 as the value for the unit attribute indicates that the value of the

duration attribute is coded according to the ISO 8601 standard for specifying a

time duration as one string. The standard XML schema data type specification uses

ISO 8601 to provide a data type called duration. This data type is described in

detail at http://www.w3.org/TR/xmlschema-2/#duration.

The format for the duration data type in the standard XML schema is the

following string:

PnYnMnDTnHnMnS

v P is the character that always begins the string.

v nY represents the number of years. A year is the same as 365 days. Therefore,

coding 1Y is the same as coding 365D.

v nM represents the number of months. A month is the same as 30 days. Therefore,

coding 1M is the same as coding 30D.

v nD represents the number of days.

68 Rule Writer's Guide and Reference

http://www.w3.org/TR/xmlschema-2/#duration

v T is a separator that separates day units (years, months, and days) from time

units (hours, minutes, and seconds). Time units always follow T.

v nH represents the number of hours.

v nM represents the number of minutes.

v nS represents the number of seconds.

Following are examples of the format:

v P5DT12H is 5.5 days.

v PT59M59S is 59 minutes and 59 seconds.

v P1M is 1 month.

Contained within

<after> is contained within the following element:

v <stop>

Contains

<after> contains no elements.

attributeAlias element

The <attributeAlias> element provides an alias name to associate event attributes

that have the same meaning but different names in different events. For example,

three different events might use these three different names for an event attribute

that indicates the name of the system that originates the event: host, hostname, and

source. The <attributeAlias> element contains the <eventAttribute> elements that

describe the individual event attributes that must be associated as one event

attribute for the grouping key.

Details

The <attributeAlias> element and its aliasName attribute are valid only in the

context of a grouping key. This element and its attribute cannot be referenced in

any expression, including an expression within the <computedValue> element.

Attributes

<attributeAlias> has the following attribute:

 Table 21. Attributes of the <attributeAlias> element

Name Description Data type Required?

aliasName Defines the name for the event

attributes that are described in the

<eventAttribute> elements and are to

be associated as one event attribute for

the grouping key. This name must be

unique within the rule.

xsd:NMTOKEN Yes

Contained within

<attributeAlias> is contained within the following element:

v <groupingKey>

Chapter 5. Language element reference 69

Contains

<attributeAlias> contains the following element:

 Table 22. Elements contained within the <attributeAlias> element

Element Required or optional?

<eventAttribute> 2 occurrences of this element are required. Additional

occurrences are allowed.

attributeName element

The <attributeName> element contains the name of a specific event attribute that is

part of the grouping key. This name must match the name that is used in the

getAttribute method call for the act_event variable.

Attributes

<attributeName> has no attributes.

Contained within

<attributeName> is contained within the following element:

v <groupingKey>

Contains

<attributeName> contains no elements.

booleanThreshold element

The <booleanThreshold> element is valid only for the threshold rule. It contains an

expression that is called as each event is received. The expression computes or

compares the threshold value based on the current event and on any other events

that have been accepted by the rule. The expression returns a boolean value of

true or false to indicate whether the threshold has been met.

Details

Refer to “Variables” on page 23 for information about the variables that can be

used in expressions. The use of certain variables is dependent on the context of the

expression.

Attributes

<booleanThreshold> has the following attribute:

 Table 23. Attributes of the <booleanThreshold> element

Name Description Data type Required?

expressionLanguage Identifies the programming language

in which the expression is written.

Because the Java programming

language is the only supported

expression language, the only valid

value for this attribute is java.

xsd:NMTOKEN Yes

70 Rule Writer's Guide and Reference

Contained within

<booleanThreshold> is contained within the following element:

v <thresholdRule>

Contains

<booleanThreshold> contains no elements.

 Related concepts

 “Expressions” on page 19
An expression is code that contains custom logic that can be added to a rule.

Expressions can also access code that is external to the Active Correlation

Technology engine. In the rule language, expressions are valid only within

specific contexts, or rule language elements.

collectionRule element

The <collectionRule> element defines a rule according to the collection pattern.

Attributes

<collectionRule> has the following attributes:

 Table 24. Attributes of the <collectionRule> element

Name Description Data type Required?

name Identifies the rule. This

identifier must be unique

within the rule block that

contains this rule. It cannot

contain a period.

xsd:NMTOKEN Yes

processOnlyForwardedEvents Determines whether the rule

receives all events or only

events that are forwarded

from other rules. The default

value is false, which

indicates that the rule

receives all events, including

those that are forwarded from

other rules.

xsd:boolean No

Contained within

<collectionRule> is contained within the following element:

v <ruleBlock>

Contains

<collectionRule> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

Chapter 5. Language element reference 71

Table 25. Elements contained within the <collectionRule> element

Element Required or optional?

<comment> Optional. 0 or 1 occurrence is allowed.

<variable> Optional. 0 or more occurrences are allowed.

<activationInterval> Optional. 0 or 1 occurrence is allowed.

<lifeCycleActions> Optional. 0 or 1 occurrence is allowed.

<eventSelector> Optional. 0 or 1 occurrence is allowed.

<groupingKey> Optional. 0 or 1 occurrence is allowed.

<timeWindow> Required. Only 1 occurrence is allowed.

<onTimeWindowComplete> Optional. 0 or 1 occurrence is allowed.

 Related concepts

 “Collection pattern” on page 11
A collection rule is defined by the collection pattern. It collects a group of

selected events within a time interval. It is a stateful rule.

comment element

The <comment> element can contain a description of the function and purpose of

its containing rule set, rule block, rule, or variable.

Attributes

<comment> has no attributes.

Contained within

<comment> is contained within the following elements:

v <ruleSet>

v <ruleBlock>

v <collectionRule>

v <computationRule>

v <duplicateRule>

v <filterRule>

v <sequenceRule>

v <thresholdRule>

v <timerRule>

v <variable>

Contains

<comment> contains no elements.

computationRule element

The <computationRule> element defines a rule according to the computation

pattern.

72 Rule Writer's Guide and Reference

Attributes

<computationRule> has the following attributes:

 Table 26. Attributes of the <computationRule> element

Name Description Data type Required?

name Identifies the rule. This

identifier must be unique

within the rule block that

contains this rule. It cannot

contain a period.

xsd:NMTOKEN Yes

processOnlyForwardedEvents Determines whether the rule

receives all events or only

events that are forwarded

from other rules. The default

value is false, which

indicates that the rule

receives all events, including

those that are forwarded from

other rules.

xsd:boolean No

Contained within

<computationRule> is contained within the following element:

v <ruleBlock>

Contains

<computationRule> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 27. Elements contained within the <computationRule> element

Element Required or optional?

<comment> Optional. 0 or 1 occurrence is allowed.

<variable> Optional. 0 or more occurrences are allowed.

<activationInterval> Optional. 0 or 1 occurrence is allowed.

<lifeCycleActions> Optional. 0 or 1 occurrence is allowed.

<eventSelector> Optional. 0 or 1 occurrence is allowed.

<groupingKey> Optional. 0 or 1 occurrence is allowed.

<computeFunction> Required. Only 1 occurrence is allowed.

<timeWindow> Required. Only 1 occurrence is allowed.

<onTimeWindowComplete> Optional. 0 or 1 occurrence is allowed.

 Related concepts

 “Computation pattern” on page 11
A computation rule is defined by the computation pattern. It applies a

computation (through an expression) to collected events as each event is

received within a time interval. It is a stateful rule.

Chapter 5. Language element reference 73

computedThreshold element

The <computedThreshold> element is valid only for the threshold rule. It contains

an expression that is called as each event is received and that computes the

threshold value based on the current event and on any other events that have

matched the event selection criteria for the rule. The expression returns the

computed threshold value to be stored in a variable that is defined for the rule.

The rule then uses the computed threshold value to compare against the defined

threshold value.

Details

Refer to “Variables” on page 23 for information about the variables that can be

used in expressions. The use of certain variables is dependent on the context of the

expression.

Attributes

<computedThreshold> has the following attributes:

 Table 28. Attributes of the <computedThreshold> element

Name Description Data type Required?

expressionLanguage Identifies the programming

language in which the expression

is written. Because the Java

programming language is the only

supported expression language, the

only valid value for this attribute is

java.

xsd:NMTOKEN Yes

threshold Defines the threshold value that is

to be met. This defined threshold

value must be a string

representation of a numeric value

that can be converted to a data

type that is valid for the rule

variable.

xsd:string Yes

assignTo Identifies the name of the variable

that holds the computed threshold

value that is returned from this

expression. This variable must

already be defined for the rule (at

the rule set, rule block, or rule

level) using the <variable>

element. It must be defined as one

of the following numeric data

types:

v java.lang.Double

v java.lang.Float

v java.lang.Integer

v java.lang.Long

v java.lang.String

If the variable is defined at the rule

set or rule block level, it is not

reinitialized after the rule pattern is

matched.

xsd:NMTOKEN Yes

74 Rule Writer's Guide and Reference

Table 28. Attributes of the <computedThreshold> element (continued)

Name Description Data type Required?

thresholdComparison Defines the operator for comparing

the computed threshold value to

the defined threshold value. The

valid values for this operator are:

v lessThan

v lessThanOrEqualTo

v greaterThan

v greaterThanOrEqualTo

xsd:string Yes

Contained within

<computedThreshold> is contained within the following element:

v <thresholdRule>

Contains

<computedThreshold> contains no elements.

 Related concepts

 “Expressions” on page 19
An expression is code that contains custom logic that can be added to a rule.

Expressions can also access code that is external to the Active Correlation

Technology engine. In the rule language, expressions are valid only within

specific contexts, or rule language elements.

computedValue element

The <computedValue> element contains an expression that runs when the rule

receives an event to create a string value that is based on the value of one or more

attributes of the event. This string value can then be used in the grouping key.

Details

Sometimes, a rule writer might want to use items such as these in the grouping

key:

v A substring of an event attribute value. For example, if an event attribute value

contains an embedded IP address, the expression within the <computedValue>

element could extract that IP address as a unique value to use in the grouping

key.

v Substrings of the values from several different event attributes. For example, the

expression within the <computedValue> element could extract the substrings

and combine them to create a unique value to use in the grouping key.

If the expression within the <computedValue> element returns a null value, the

rule treats this null value as a missing attribute value.

Refer to “Variables” on page 23 for information about the variables that can be

used in expressions. The use of certain variables is dependent on the context of the

expression.

Chapter 5. Language element reference 75

Attributes

<computedValue> has the following attribute:

 Table 29. Attributes of the <computedValue> element

Name Description Data type Required?

expressionLanguage Identifies the programming language

in which the expression is written.

Because the Java programming

language is the only supported

expression language, the only valid

value for this attribute is java.

xsd:NMTOKEN Yes

Contained within

<computedValue> is contained within the following element:

v <groupingKey>

Contains

<computedValue> contains no elements.

 Related concepts

 “Expressions” on page 19
An expression is code that contains custom logic that can be added to a rule.

Expressions can also access code that is external to the Active Correlation

Technology engine. In the rule language, expressions are valid only within

specific contexts, or rule language elements.

computeFunction element

The <computeFunction> element is valid only for the computation rule. It contains

an expression that is called as each event is received and that returns a value to be

stored in a variable that is defined for the rule. The value that is returned from this

expression must match the data type of the variable that is named in the assignTo

attribute of the <computeFunction> element.

Details

Refer to “Variables” on page 23 for information about the variables that can be

used in expressions. The use of certain variables is dependent on the context of the

expression.

Attributes

<computeFunction> has the following attributes:

 Table 30. Attributes of the <computeFunction> element

Name Description Data type Required?

expressionLanguage Identifies the programming language

in which the expression is written.

Because the Java programming

language is the only supported

expression language, the only valid

value for this attribute is java.

xsd:NMTOKEN Yes

76 Rule Writer's Guide and Reference

Table 30. Attributes of the <computeFunction> element (continued)

Name Description Data type Required?

assignTo Identifies the name of the variable that

holds the value that is returned from

this expression. This variable must

already be defined for the rule (at the

rule set, rule block, or rule level) using

the <variable> element. If the variable

is defined at the rule set or rule block

level, it is not reinitialized after the

rule pattern is matched.

xsd:NMTOKEN Yes

Contained within

<computeFunction> is contained within the following element:

v <computationRule>

Contains

<computeFunction> contains no elements.

 Related concepts

 “Expressions” on page 19
An expression is code that contains custom logic that can be added to a rule.

Expressions can also access code that is external to the Active Correlation

Technology engine. In the rule language, expressions are valid only within

specific contexts, or rule language elements.

dateTime element

The <dateTime> element specifies the date and time when a rule is activated or

deactivated. However, the rule is activated or deactivated only if the rule has been

loaded into a running Active Correlation Technology engine prior to that specified

time.

Details

If the rule has not been loaded into a running Active Correlation Technology

engine prior to the specified time for activation, the rule is never activated. If the

rule has not been loaded into a running Active Correlation Technology engine

prior to the specified time for deactivation, the rule is set to the state that is

defined by the <start> element, and it is never deactivated by the <stop> element.

The content of the <dateTime> element must be a string that follows the format for

the dateTime data type in the standard XML schema. For example, dateTime

consists of finite-length sequences of characters in the following form:

yyyy ’-’ mm ’-’ dd ’T’ hh ’:’ mm ’:’ ss (’.’ s+)? (zzzzzz)?

v yyyy is a four-or-more digit numeral that represents the year. If it is more than

four digits, leading zeros are prohibited, and 0000 is prohibited.

v The remaining ’-’s are separators between parts of the date portion.

v The first mm is a two-digit numeral that represents the month, starting with 01.

v dd is a two-digit numeral that represents the day of the month, starting with 01.

v T is a separator that indicates that the time-of-day follows.

Chapter 5. Language element reference 77

v hh is a two-digit numeral that represents the hour of the day in the 24-hour

system, starting with 00 and ending with 23.

v : is a separator between parts of the time-of-day portion.

v The second mm is a two-digit numeral that represents the minute, starting with

00 and ending with 59.

v ss is a two-digit numeral that represents the whole seconds, starting with 00 and

ending with 59.

v ’.’ s+, if present, represents the fractional seconds.

v zzzzzz, if present, represents the time zone. The time zone consists of

finite-length sequences of characters in the form ((’+’ | ’-’) hh ’:’ mm) |

’Z’, where:

– ’+’, if present, represents a nonnegative duration, and ’-’ must not be

present.

– ’-’, if present, represents a nonpositive duration, and ’+’ must not be

present.

– hh is a two-digit numeral that represents the hours, starting with 00 and

ending with 14.

– mm is a two-digit numeral that represents the minutes, starting with 00 and

ending with 59. However, if the hours value is 14, the minutes value must be

00

– Z is shorthand for UTC (either +00:00 or -00:00), and as such, no other time

zone elements must be present.

Here are two examples of the content of the <dateTime> element:

v 2005-06-01T13:05:06.07 is June 1, 2005 at 6 seconds, and 7 hundredths of a

second past 1:05 p.m. local time.

v 2005-06-01T13:05:06.07Z is June 1, 2005 at 6 seconds, and 7 hundredths of a

second past 1:05 p.m. UTC time, which would be June 1, 2005 at 6 seconds, and

7 hundredths of a second past 9:05 a.m. EDT (or 2005-06-01T09:05:06.07-04:00)

Attributes

<dateTime> has no attributes.

Contained within

<dateTime> is contained within the following elements:

v <start>

v <stop>

Contains

<dateTime> contains no elements.

deactivateOnEvent element

The <deactivateOnEvent> element defines the events that can deactivate the rule

or, for rules that are defined with a <groupingKey> element, a rule instance.

Following are the three possible ways of selecting events:

v The use of one or more <eventType> elements with a <filteringPredicate>

element

78 Rule Writer's Guide and Reference

v The use of one or more <eventType> elements without a <filteringPredicate>

element

v The use of a <filteringPredicate> element without any <eventType> elements

If the rule is active and no <eventType> or <filteringPredicate> element is coded,

any event that occurs is selected.

Not coding any <eventType> elements can negatively impact system performance.

Assume that you want to select all events of type Audit Failure. You can use a

filtering predicate to further refine the selection criteria to include only the events

that have an event attribute with a certain value. For example, you would code an

<eventType> element to select all events of type Audit Failure, and code a

<filteringPredicate> element to select only those events that have a hostname

attribute with the value MyCriticalSystem.

Attributes

<deactivateOnEvent> has no attributes.

Contained within

<deactivateOnEvent> is contained within the following elements:

v <activationInterval>

v <activationByGroupingKey>

Contains

<deactivateOnEvent> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 31. Elements contained within the <deactivateOnEvent> element

Element Required or optional?

<eventType> Optional. 0 or more occurrences are allowed.

<filteringPredicate> Optional. 0 or 1 occurrence is allowed.

duplicateRule element

The <duplicateRule> element defines a rule according to the duplicate pattern.

Chapter 5. Language element reference 79

Attributes

<duplicateRule> has the following attributes:

 Table 32. Attributes of the <duplicateRule> element

Name Description Data type Required?

name Identifies the rule. This

identifier must be unique

within the rule block that

contains this rule. It cannot

contain a period.

xsd:NMTOKEN Yes

processOnlyForwardedEvents Determines whether the rule

receives all events or only

events that are forwarded

from other rules. The default

value is false, which

indicates that the rule

receives all events, including

those that are forwarded from

other rules.

xsd:boolean No

Contained within

<duplicateRule> is contained within the following element:

v <ruleBlock>

Contains

<duplicateRule> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 33. Elements contained within the <duplicateRule> element

Element Required or optional?

<comment> Optional. 0 or 1 occurrence is allowed.

<variable> Optional. 0 or more occurrences are allowed.

<activationInterval> Optional. 0 or 1 occurrence is allowed.

<lifeCycleActions> Optional. 0 or 1 occurrence is allowed.

<eventSelector> Optional. 0 or 1 occurrence is allowed.

<groupingKey> Optional. 0 or 1 occurrence is allowed.

<timeWindow> Required. Only 1 occurrence is allowed.

<onDetection> Optional. 0 or 1 occurrence is allowed.

<onNextEvent> Optional. 0 or 1 occurrence is allowed.

<onTimeWindowComplete> Optional. 0 or 1 occurrence is allowed.

 Related concepts

 “Duplicate pattern” on page 12
A duplicate rule is defined by the duplicate pattern. It counts the second and

subsequent events that are accepted within the specified time interval but skips

the rule set processing for these events. It is a stateful rule.

80 Rule Writer's Guide and Reference

eventAttribute element

The <eventAttribute> element provides a way to associate an event type and an

event attribute as part of the attribute alias name that is defined by the

<attributeAlias> element.

Attributes

<eventAttribute> has the following attributes:

 Table 34. Attributes of the <eventAttribute> element

Name Description Data type Required?

type Defines the name of the type of event.

This is the same name that is used for

the type attribute on the <eventType>

element.

xsd:NMTOKEN Yes

attributeName Specifies the fully qualified name of

the event attribute that is being

associated with other event attributes

through the attribute alias name. This

name must match the name that is

used in the act_event variable to call

the getAttribute method.

xsd:string Yes

Contained within

<eventAttribute> is contained within the following element:

v <attributeAlias>

Contains

<eventAttribute> contains no elements.

eventCountThreshold element

The <eventCountThreshold> element is valid only for the threshold rule. It defines

the number of events that must meet the event selection criteria in a certain time

period. The <eventCountThreshold> element also specifies one of two possible

time interval modes, either fixed or sliding, for the time window.

Details

fixed interval

A fixed interval begins when the first event that meets the event selection

criteria is received and ends when one of the following occurs:

v The rule meets its threshold within the specified time duration.

v The specified time duration has passed.

sliding interval

A sliding interval begins when the first event that meets the event selection

criteria is received. However, when the rule has not met its threshold and

the specified time duration has passed, the time window adjusts (slides)

the beginning time to the event reception time for a new “first” event,

which is typically the next event that is accepted. The sliding interval

continues to adjust in this way until one of the following occurs:

Chapter 5. Language element reference 81

v The rule meets its threshold within the specified time duration.

v After the event that begins the time window is received, no subsequent

events are received within the specified time duration.

The event that begins the time window (becomes the new “first” event) is

the event with a reception time that meets this criteria: the reception time,

added to the time interval duration for the rule, is greater than the current

time. Here is the criteria in the form of an equation:

event reception time + time interval duration for rule > current time

When no such event exists, the sliding interval cannot adjust the time any

further, and the interval ends.

The threshold rule counts each accepted event until either the threshold is met or

the time period ends. Then it runs the actions that are defined within the

<onDetection> element or the <onTimeOut> element, as appropriate.

<onDetection> actions

These actions run when the event count equals the value that is defined by

the threshold attribute of the <eventCountThreshold> element, which

indicates that the threshold is met.

<onTimeOut> actions

When these actions run is dependent on whether the time interval mode is

fixed or sliding.

fixed mode

With fixed mode, these actions run when the time window expires.

sliding mode

With sliding mode, these actions run if, after the event that begins

the time window is received, no subsequent events are received

within the specified time duration. In other words, no event is

received with a reception time that, when added to the time

interval duration for the rule, is greater than the current time.

The time interval mode for the time window is defined by the timeIntervalMode

attribute of the <eventCountThreshold> element. The following scenario illustrates

the behavior of, and differences between, the two possible time interval modes.

Scenario that illustrates fixed and sliding modes

Assume that the rule receives four events that meet the event selection criteria, one

event at each of these times: 8:00, 8:04, 8:06, and 8:07. The event count threshold is

3, and the duration for the time window is 5 minutes.

Rule behavior with fixed mode

With this time interval mode, the threshold rule begins processing at 8:00,

and it runs the <onTimeOut> actions at 8:05 because it receives only 2

events in 5 minutes. Therefore, it does not meet its threshold within the

time window. When the third event is received at 8:06, the threshold rule

begins processing again, and it runs the <onTimeOut> actions at 8:11

because it receives only 2 events in 5 minutes.

 The fixed mode is static.

Rule behavior with sliding mode

With this time interval mode, the threshold rule begins processing at 8:00.

At 8:05, when the time window is scheduled to complete, the rule

determines that it has received only 2 events. The rule then discards the

82 Rule Writer's Guide and Reference

event that it received at 8:00 and recalculates the duration to end at 8:09

(since the first event is now the one that it received at 8:04). When the rule

receives the event at 8:07, it runs the <onDetection> actions because it has

now met its threshold (3 events, at 8:04, 8:06, and 8:07) within the latest

time window (8:04 – 8:09).

 The sliding mode is dynamic in that it continues to adjust (to slide) the

beginning time in an attempt to meet its threshold within the time

window.

Now assume that the rule receives 4 events that meet the event selection criteria,

one event at each of these times: 8:00, 8:04, 8:06, and 8:10. The event count

threshold is 3, and the duration for the time window is 5 minutes.

Rule behavior with sliding mode

In this case, the threshold rule begins processing at 8:00. At 8:05, when the

time window is scheduled to complete, the rule determines that it has

received only 2 events. The rule then discards the event that it received at

8:00 and recalculates the duration to end at 8:09 (since the first event is

now the one that it received at 8:04).

 At 8:09, when the time window is now scheduled to complete, the rule

determines that it has received only 2 events. The rule then discards the

event that it received at 8:04 and recalculates the duration to end at 8:11

(since the first event is now the one that it received at 8:06).

 At 8:11, when the time window is now scheduled to complete, the rule

determines that it has received only 2 events. The rule then discards the

event that it received at 8:06 and recalculates the duration to end at 8:15

(since the first event is now the one that it received at 8:10).

 At 8:15, when the time window is now scheduled to complete, the rule

determines that it has received no events since the event at 8:10 that began

the time window. The rule then runs the <onTimeOut> actions.

Attributes

<eventCountThreshold> has the following attributes:

 Table 35. Attributes of the <eventCountThreshold> element

Name Description Data type Required?

threshold Defines the number of events

that must meet the event

selection criteria within a certain

time period. This is the event

count threshold that is to be met.

This value must be a positive

integer.

xsd:positiveInteger Yes

timeIntervalMode Defines whether the time

interval for the time window is

fixed or sliding. The valid values

for this attribute are:

v fixed (the default value)

v sliding

xsd:string No

Chapter 5. Language element reference 83

Contained within

<eventCountThreshold> is contained within the following element:

v <thresholdRule>

Contains

<eventCountThreshold> contains no elements.

eventSelector element

The <eventSelector> element defines the events that are selected for processing by

a rule.

Details

Following are the three possible ways of selecting events:

v The use of one or more <eventType> elements with a <filteringPredicate>

element

v The use of one or more <eventType> elements without a <filteringPredicate>

element

v The use of a <filteringPredicate> element without any <eventType> elements

In special cases where you want a rule to process all events, you have the

following options:

v Do not code an <eventSelector> element.

v Code an <eventSelector> element that contains no elements.

Not coding any <eventType> elements can negatively impact system performance.

Assume that you want to select all events of type Audit Failure. You can use a

filtering predicate to further refine the selection criteria to include only the events

that have an event attribute with a certain value. For example, you would code an

<eventType> element to select all events of type Audit Failure, and code a

<filteringPredicate> element to select only those events that have a hostname

attribute with the value MyCriticalSystem.

Attributes

<eventSelector> has the following attribute:

 Table 36. Attributes of the <eventSelector> element

Name Description Data type Required?

alias This attribute is valid only within a

sequence rule, which is the only rule

that has multiple <eventSelector>

elements. It uniquely names an event

that is selected by a certain event

selector in the sequence rule.

Filtering predicates and actions can

then use this alias name to access

that event.

xsd:NMTOKEN No

84 Rule Writer's Guide and Reference

Contained within

<eventSelector> is contained within the following elements:

v <collectionRule>

v <computationRule>

v <duplicateRule>

v <filterRule>

v <sequenceRule>

v <thresholdRule>

Contains

<eventSelector> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 37. Elements contained within the <eventSelector> element

Element Required or optional?

<eventType> Optional. 0 or more occurrences are allowed.

<filteringPredicate> Optional. 0 or 1 occurrence is allowed.

eventType element

The <eventType> element defines the type of event that is selected for processing

by a rule or that activates or deactivates the rule.

Attributes

<eventType> has the following attribute:

 Table 38. Attributes of the <eventType> element

Name Description Data type Required?

type Defines the event type.

For events that conform to the Common

Base Event specification, this name is the

value of the extensionName attribute.

For IBM Tivoli Enterprise Console®

events, this name is the event class name

that is defined in the BAROC file.

Events that are based on other formats

might use a different attribute to specify

the event type.

xsd:NMTOKEN Yes

Contained within

<eventType> is contained within the following elements:

v <activateOnEvent>

v <deactivateOnEvent>

Chapter 5. Language element reference 85

v <eventSelector>

Contains

<eventType> contains no elements.

filteringPredicate element

The <filteringPredicate> element contains an expression that further restricts which

events are selected for processing by the rule or are selected to activate or

deactivate the rule. Therefore, events can be filtered even more comprehensively

than filtering only by event type through the <eventType> element.

Details

The expression defines a condition and returns a boolean value, either true (the

condition is met) or false (the condition is not met).

Refer to “Variables” on page 23 for information about the variables that can be

used in expressions. The use of certain variables is dependent on the context of the

expression.

Attributes

<filteringPredicate> has the following attribute:

 Table 39. Attributes of the <filteringPredicate> element

Name Description Data type Required?

expressionLanguage Identifies the programming language

in which the expression is written.

Because the Java programming

language is the only supported

expression language, the only valid

value for this attribute is java.

xsd:NMTOKEN Yes

Contained within

<filteringPredicate> is contained within the following elements:

v <activateOnEvent>

v <deactivateOnEvent>

v <eventSelector>

Contains

<filteringPredicate> contains no elements.

 Related concepts

 “Expressions” on page 19
An expression is code that contains custom logic that can be added to a rule.

Expressions can also access code that is external to the Active Correlation

Technology engine. In the rule language, expressions are valid only within

specific contexts, or rule language elements.

86 Rule Writer's Guide and Reference

filterRule element

The <filterRule> element defines a rule according to the filter pattern.

Attributes

<filterRule> has the following attributes:

 Table 40. Attributes of the <filterRule> element

Name Description Data type Required?

name Identifies the rule. This

identifier must be unique

within the rule block that

contains this rule. It cannot

contain a period.

xsd:NMTOKEN Yes

processOnlyForwardedEvents Determines whether the rule

receives all events or only

events that are forwarded

from other rules. The default

value is false, which

indicates that the rule

receives all events, including

those that are forwarded from

other rules.

xsd:boolean No

Contained within

<filterRule> is contained within the following element:

v <ruleBlock>

Contains

<filterRule> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 41. Elements contained within the <filterRule> element

Element Required or optional?

<comment> Optional. 0 or 1 occurrence is allowed.

<variable> Optional. 0 or more occurrences are allowed.

<activationInterval> Optional. 0 or 1 occurrence is allowed.

<lifeCycleActions> Optional. 0 or 1 occurrence is allowed.

<eventSelector> Optional. 0 or 1 occurrence is allowed.

<onDetection> Optional. 0 or 1 occurrence is allowed.

 Related concepts

 “Filter pattern” on page 13
A filter rule is defined by the filter pattern. It takes a certain action when it

accepts an event. It acts only on a single event and is therefore a stateless rule.

Chapter 5. Language element reference 87

groupingKey element

Typically, each active rule has one rule instance, or copy, that is running in the

Active Correlation Technology engine. However, sometimes the same rule is

needed for different groups of events, which are often related to different groups of

resources. The grouping key is one or more event attributes, or parts of event

attributes, that can be used to separate the selected events into different groups for

unique processing as a group. The <groupingKey> element defines the grouping

key for a rule. The purpose of the <groupingKey> element is to direct the rule to

create a separate rule instance (or copy of itself) for each group of events that share

common characteristics (as defined by the values of their attributes that comprise

the grouping key).

Details

The following two scenarios illustrate the importance of the grouping key.

Scenario 1:

Two events occur, a DB2down event and a DB2up event. The DB2 program runs

on three computers that are named A, B, and C. A sequence rule is defined to

correlate a DB2down event with a DB2up event and to alert the operator when the

DB2 program stops and does not restart.

If the sequence rule is defined without the grouping key, and a DB2down event is

received from computer A, a DB2up event from any of the computers would

complete the sequence, but this would not accomplish what was intended.

However, if the grouping key were defined as the hostname attribute, a unique

copy, or instance, of the rule would be created for each unique value of the

hostname attribute in the selected events. The Active Correlation Technology

engine would send each event to the correct rule instance (the rule instance for

that event’s hostname value). Therefore, if a DB2down event is received from

computer A, the Active Correlation Technology engine would create a rule instance

for computer A. If a DB2down event is received from computer B, the Active

Correlation Technology engine would create a second rule instance for computer B.

When a DB2up event is received from computer B, the Active Correlation

Technology engine processes that event in the second rule instance. The sequence

is complete, and the operator is alerted because the DB2down and DB2up events

from computer B are correctly correlated.

Scenario 2:

An event for an Incorrect login attempted message occurs on all computers in a

particular environment. The event contains a user ID. A threshold rule is defined

to issue a warning to the operator if this event occurs more than 10 times in 5

minutes.

A grouping key could be defined as the user ID. Then, a new rule instance would

be created for each unique user ID. Each user’s login attempts would be tracked in

a unique threshold rule instance, with each instance having a separate count of the

number of login attempts by that user. The operator would receive a warning if

any user ID exceeds 10 incorrect logins in 5 minutes.

Other variations of this idea include:

v The grouping key could be defined as the host name rather than the user ID.

This option could detect a large number of incorrect login attempts on a single

computer.

88 Rule Writer's Guide and Reference

v The grouping key could be defined as a combination of the host name and user

ID. This option could detect a potential hack attempt by a specific user ID

against a specific computer.

If the same attribute is in all event types that are specified for a rule, the use of the

<attributeName> element is the simplest and most common way to define a

grouping key.

Attributes

<groupingKey> has the following attribute:

 Table 42. Attributes of the <groupingKey> element

Name Description Data type Required?

missingAttributeHandling Defines the action that the rule

must take under either of these

conditions:

v When a selected event has an

attribute that participates in

the grouping key but the value

for that attribute is missing

v When the expression within

the <computedValue> element

returns a null value. The rule

treats this null value as a

missing attribute value.

The valid values for the

missingAttributeHandling

attribute are:

v ignoreEvent (the default

value), which means that the

rule ignores the event and

takes no action on it.

v ignoreAttribute, which means

that the rule accepts the event

but ignores the attribute with

the missing value. The Active

Correlation Technology engine

then includes a substitute

value for the attribute.

xsd:string No

Contained within

<groupingKey> is contained within the following elements:

v <collectionRule>

v <computationRule>

v <duplicateRule>

v <sequenceRule>

v <thresholdRule>

Chapter 5. Language element reference 89

Contains

<groupingKey> contains the following elements.

 Table 43. Elements contained within the <groupingKey> element

Element Required or optional?

<attributeAlias> 1 of these elements is required. Coding more than 1 of

these elements is optional. Multiple occurrences of all

three elements are allowed. These elements can be

coded in any order.

<attributeName>

<computedValue>

import element

The <import> element contains an expression that specifies the external modules

(such as Java classes) to import for use in other expressions within rules.

Details

The expression code is a string within the <import> element. The Active

Correlation Technology compiler uses the import statements that are provided by

the <import> elements to compile expression code within rules that call external

methods.

Attributes

<import> has the following attribute:

 Table 44. Attributes of the <import> element

Name Description Data type Required?

expressionLanguage Identifies the programming language

in which the expression is written.

Because the Java programming

language is the only supported

expression language, the only valid

value for this attribute is java.

xsd:NMTOKEN Yes

Contained within

<import> is contained within the following elements:

v <ruleSet>

v <ruleBlock>

Contains

<import> contains no elements.

 Related concepts

 “Importing and accessing external modules and objects” on page 20
This example indicates how you can make external code (such as Java classes)

and external objects accessible to expressions. An external object is an object

that an application creates to communicate with expressions.

90 Rule Writer's Guide and Reference

inactiveWhenLoaded element

The <inactiveWhenLoaded> element specifies that a rule is inactive when it is

loaded by the Active Correlation Technology engine. The rule remains inactive

until it is activated by another means.

Attributes

<inactiveWhenLoaded> has no attributes.

Contained within

<inactiveWhenLoaded> is contained within the following element:

v <start>

Contains

<inactiveWhenLoaded> contains no elements.

lifeCycleActions element

The <lifeCycleActions> element contains elements that define the actions to take at

the four primary stages in the life cycle of a rule.

Details

The actions that are defined for the load and activation stages are called after the

rule is actually loaded or activated but before the rule begins any processing. The

actions that are defined for the deactivation and unload stages are called

immediately before the rule is actually deactivated or unloaded.

Attributes

<lifeCycleActions> has no attributes.

Contained within

<lifeCycleActions> is contained within the following elements:

v <collectionRule>

v <computationRule>

v <duplicateRule>

v <filterRule>

v <sequenceRule>

v <thresholdRule>

v <timerRule>

Contains

<lifeCycleActions> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

Chapter 5. Language element reference 91

Table 45. Elements contained within the <lifeCycleActions> element

Element Required or optional?

<onLoad> Optional. 0 or 1 occurrence is allowed.

<onActivation> Optional. 0 or 1 occurrence is allowed.

<onDeactivation> Optional. 0 or 1 occurrence is allowed.

<onUnload> Optional. 0 or 1 occurrence is allowed.

never element

The <never> element specifies that a rule is never deactivated at a certain time. A

rule can still be deactivated by an event or other means.

Attributes

<never> has no attributes.

Contained within

<never> is contained within the following element:

v <stop>

Contains

<never> contains no elements.

onActivation element

The <onActivation> element specifies the action or set of actions to take when the

rule is activated. The <onActivation> action is called after the rule is activated but

before the rule begins any processing.

Details

If the rule set contains multiple rules that are activated at the same date and time,

or by the same event, and that have the same time window, the following actions

for these rules do not run at exactly the same time:

v Rule response actions within the <onTimeOut> and <onTimeWindowComplete>

elements

v Life cycle actions within the <onActivation> and <onDeactivation> elements

These actions run sequentially in any order. They do not necessarily run in the

order in which they are coded in the rule set. Because each action must be

completed before the next action in the sequence begins, the actions do not run at

the same time.

Attributes

<onActivation> has no attributes.

Contained within

<onActivation> is contained within the following element:

v <lifeCycleActions>

92 Rule Writer's Guide and Reference

Contains

<onActivation> contains the following element:

 Table 46. Elements contained within the <onActivation> element

Element Required or optional?

<action> Optional. 0 or more occurrences are allowed.

onDeactivation element

The <onDeactivation> element specifies the action or set of actions to take when

the rule is deactivated. The <onDeactivation> action is called immediately before

the rule is deactivated.

Details

If the rule set contains multiple rules that are activated at the same date and time,

or by the same event, and that have the same time window, the following actions

for these rules do not run at exactly the same time:

v Rule response actions within the <onTimeOut> and <onTimeWindowComplete>

elements

v Life cycle actions within the <onActivation> and <onDeactivation> elements

These actions run sequentially in any order. They do not necessarily run in the

order in which they are coded in the rule set. Because each action must be

completed before the next action in the sequence begins, the actions do not run at

the same time.

Attributes

<onDeactivation> has no attributes.

Contained within

<onDeactivation> is contained within the following element:

v <lifeCycleActions>

Contains

<onDeactivation> contains the following element:

 Table 47. Elements contained within the <onDeactivation> element

Element Required or optional?

<action> Optional. 0 or more occurrences are allowed.

onDetection element

The <onDetection> element is valid only for the duplicate, filter, sequence, and

threshold rules. It specifies the action or set of actions to take when the rule

pattern is detected.

Chapter 5. Language element reference 93

Details

Table 48 describes how the rule pattern is detected for each rule type where an

<onDetection> action is valid.

 Table 48. How a rule pattern is detected based on the rule type

Rule type How the rule pattern is detected

duplicate This rule pattern is detected when the first event that meets the event

selection criteria is received.

filter This rule pattern is detected when any event that meets the event selection

criteria is received.

sequence This rule pattern is detected when a sequence of events that meet the event

selection criteria are received in the appropriate order and within the time

window.

threshold This rule pattern is detected when events that meet the event selection criteria

are received within the time window and the threshold is met.

Attributes

<onDetection> has no attributes.

Contained within

<onDetection> is contained within the following elements:

v <duplicateRule>

v <filterRule>

v <sequenceRule>

v <thresholdRule>

Contains

<onDetection> contains the following element:

 Table 49. Elements contained within the <onDetection> element

Element Required or optional?

<action> Optional. 0 or more occurrences are allowed.

onLoad element

The <onLoad> element specifies the action or set of actions to take when the rule

is loaded (or deployed) in the running Active Correlation Technology engine. The

<onLoad> action is called after the rule is loaded but before the rule begins any

processing.

Attributes

<onLoad> has no attributes.

Contained within

<onLoad> is contained within the following element:

v <lifeCycleActions>

94 Rule Writer's Guide and Reference

Contains

<onLoad> contains this element:

 Table 50. Elements contained within the <onLoad> element

Element Required or optional?

<action> Optional. 0 or more occurrences are allowed.

onNextEvent element

The <onNextEvent> element is valid only for the duplicate rule. It specifies the

action or set of actions to take when the duplicate rule receives the second and

each subsequent event that meets the event selection criteria within the specified

time window.

Details

For duplicate rules, the Active Correlation Technology engine skips the rule set

processing for the second and each subsequent event that matches the event

selection criteria within the specified time window. Therefore, the only reason for

coding an <onNextEvent> action is to specify alternative processing for the second

and each subsequent event.

Attributes

<onNextEvent> has no attributes.

Contained within

<onNextEvent> is contained within the following element:

v <duplicateRule>

Contains

<onNextEvent> contains the following element:

 Table 51. Elements contained within the <onNextEvent> element

Element Required or optional?

<action> Optional. 0 or more occurrences are allowed.

onTimeOut element

The <onTimeOut> element is valid only for the sequence and threshold rules. It

specifies the action or set of actions to take if the time window for the rule expires.

Details

Table 52 on page 96 describes how the time window expires for each rule type

where an <onTimeOut> action is valid.

Chapter 5. Language element reference 95

Table 52. How the time window expires based on the rule type

Rule type How the time window expires

sequence The time window expires if one or more events are accepted but the full

sequence of events is not received within the time window.

threshold The time window expires if one or more events are accepted but the

threshold is not met within the time window.

If the rule set contains multiple rules that are activated at the same date and time,

or by the same event, and that have the same time window, the following actions

for these rules do not run at exactly the same time:

v Rule response actions within the <onTimeOut> and <onTimeWindowComplete>

elements

v Life cycle actions within the <onActivation> and <onDeactivation> elements

These actions run sequentially in any order. They do not necessarily run in the

order in which they are coded in the rule set. Because each action must be

completed before the next action in the sequence begins, the actions do not run at

the same time.

Attributes

<onTimeOut> has no attributes.

Contained within

<onTimeOut> is contained within the following elements:

v <sequenceRule>

v <thresholdRule>

Contains

<onTimeOut> contains the following element:

 Table 53. Elements contained within the <onTimeOut> element

Element Required or optional?

<action> Optional. 0 or more occurrences are allowed.

onTimeWindowComplete element

The <onTimeWindowComplete> element is valid only for the collection,

computation, duplicate, and timer rules. It specifies the action or set of actions to

take when the time window for the rule is over.

Details

If the rule set contains multiple rules that are activated at the same date and time,

or by the same event, and that have the same time window, the following actions

for these rules do not run at exactly the same time:

v Rule response actions within the <onTimeOut> and <onTimeWindowComplete>

elements

v Life cycle actions within the <onActivation> and <onDeactivation> elements

96 Rule Writer's Guide and Reference

These actions run sequentially in any order. They do not necessarily run in the

order in which they are coded in the rule set. Because each action must be

completed before the next action in the sequence begins, the actions do not run at

the same time.

Attributes

<onTimeWindowComplete> has no attributes.

Contained within

<onTimeWindowComplete> is contained within the following elements:

v <collectionRule>

v <computationRule>

v <duplicateRule>

v <timerRule>

Contains

<onTimeWindowComplete> contains the following element:

 Table 54. Elements contained within the <onTimeWindowComplete> element

Element Required or optional?

<action> Optional. 0 or more occurrences are allowed.

onUnload element

The <onUnload> element specifies the action or set of actions to take when the

rule is unloaded, or removed, from the running Active Correlation Technology

engine. The <onUnload> action is called immediately before the rule is unloaded.

Attributes

<onUnload> has no attributes.

Contained within

<onUnload> is contained within the following element:

v <lifeCycleActions>

Contains

<onUnload> contains the following element:

 Table 55. Elements contained within the <onUnload> element

Element Required or optional?

<action> Optional. 0 or more occurrences are allowed.

ruleBlock element

The <ruleBlock> element provides the way to group related rules and organize

rules in a hierarchy.

Chapter 5. Language element reference 97

Attributes

<ruleBlock> has the following attribute:

 Table 56. Attributes of the <ruleBlock> element

Name Description Data type Required?

name Identifies the rule block. This identifier

must be unique within the rule set or

rule block that contains this rule block.

It cannot contain a period.

xsd:NMTOKEN Yes

Contained within

<ruleBlock> is contained within the following elements:

v <ruleSet>

v <ruleBlock>

Contains

<ruleBlock> contains the following elements.

If they are coded, the <comment>, <import>, and <variable> elements must be

coded in the order that is shown. The remaining elements can be coded in any

order.

 Table 57. Elements contained within the <ruleBlock> element

Element Required or optional?

<comment> Optional. 0 or 1 occurrence is allowed.

<import> Optional. 0 or more occurrences are allowed.

<variable> Optional. 0 or more occurrences are allowed.

<ruleBlock> Optional. 0 or more occurrences are allowed.

<collectionRule> Optional. 0 or more occurrences are allowed.

<computationRule> Optional. 0 or more occurrences are allowed.

<duplicateRule> Optional. 0 or more occurrences are allowed.

<filterRule> Optional. 0 or more occurrences are allowed.

<sequenceRule> Optional. 0 or more occurrences are allowed.

<thresholdRule> Optional. 0 or more occurrences are allowed.

<timerRule> Optional. 0 or more occurrences are allowed.

ruleSet element

The <ruleSet> element that is defined by act:ruleSet is the root element for the

Active Correlation Technology rule language. All other elements are contained

within this <ruleSet> element.

Details

The <ruleSet> elements that are defined by the Active Correlation Technology

language schema (act:ruleSet) and by the Active Correlation Technology base rule

set schema (br:ruleSet) are duplicates. However, when you create a rule set, you

98 Rule Writer's Guide and Reference

must specify the following namespace on the <ruleSet> element: act:ruleSet.

Attributes

<ruleSet> has the following attribute:

 Table 58. Attributes of the <ruleSet> element

Name Description Data type Required?

name Identifies the rule set. This identifier

must be unique. It cannot contain a

period.

xsd:NMTOKEN Yes

Contained within

Because <ruleSet> is the root element for the rule language, it is not contained

within any element.

Contains

<ruleSet> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 59. Elements contained within the <ruleSet> element

Element Required or optional?

<comment> Optional. 0 or 1 occurrence is allowed.

<import> Optional. 0 or more occurrences are allowed.

<variable> Optional. 0 or more occurrences are allowed.

<ruleBlock> Optional. 0 or more occurrences are allowed.

runUntilDeactivated element

The <runUntilDeactivated> element specifies that the time window continues to be

open until the rule is deactivated. Therefore, the time window for this rule starts

when the rule begins processing, and it does not stop until the rule is deactivated

or removed from the rule set, or the Active Correlation Technology engine shuts

down.

Details

The specific behavior of a rule that includes the <runUntilDeactivated> element is

dependent on the rule type. Table 60 on page 100 describes the rule behavior for

each rule type where the <timeWindow> element is valid and contains the

<runUntilDeactivated> element.

Chapter 5. Language element reference 99

Table 60. Rule behavior when <runUntilDeactivated> is coded

Rule type Rule behavior when <runUntilDeactivated> is coded

collection The collection rule accepts the first event that meets its event selection

criteria, and it continues to accept and process events until the rule is

deactivated, at which time the actions that are defined within the

<onTimeWindowComplete> element are run, immediately followed by

the actions that are defined within the <onDeactivation> element.

computation The computation rule accepts the first event that meets its event selection

criteria, and it continues to accept and process events until the rule is

deactivated, at which time the actions that are defined within the

<onTimeWindowComplete> element are run, immediately followed by

the actions that are defined within the <onDeactivation> element.

duplicate The duplicate rule accepts the first event that meets its event selection

criteria, and it continues to accept and process events until the rule is

deactivated, at which time the actions that are defined within the

<onTimeWindowComplete> element are run, immediately followed by

the actions that are defined within the <onDeactivation> element.

sequence The sequence rule accepts the first event that meets its event selection

criteria, and it continues to accept and process events until either of the

following circumstances occurs:

v The sequence pattern is detected. When this occurs, the actions that

are defined within the <onDetection> element are run, and the rule

returns to its initial state. Event processing by this rule begins again,

and this process can repeat many times until the rule is deactivated.

v The rule is deactivated while it is processing events. When this occurs,

the actions that are defined within the <onTimeOut> element are run,

immediately followed by the actions that are defined within the

<onDeactivation> element.

threshold The threshold rule accepts the first event that meets its event selection

criteria, and it continues to accept and process events until either of the

following circumstances occurs:

v The threshold pattern is detected. When this occurs, the actions that

are defined within the <onDetection> element are run, and the rule

returns to its initial state. Event processing by this rule begins again,

and this process can repeat many times until the rule is deactivated.

v The rule is deactivated while it is processing events. When this occurs,

the actions that are defined within the <onTimeOut> element are run,

immediately followed by the actions that are defined within the

<onDeactivation> element.

timer After the timer rule becomes active, it does nothing until it is

deactivated, at which time the actions that are defined within the

<onTimeWindowComplete> element are run, immediately followed by

the actions that are defined within the <onDeactivation> element. The

repeat attribute on the <timerRule> element is ignored.

Attributes

<runUntilDeactivated> has no attributes.

Contained within

<runUntilDeactivated> is contained within the following element:

v <timeWindow>

100 Rule Writer's Guide and Reference

Contains

<runUntilDeactivated> contains no elements.

sequenceRule element

The <sequenceRule> element defines a rule according to the sequence pattern. The

sequence rule is the only rule that allows multiple event selectors. It also requires a

minimum of two event selectors.

Attributes

<sequenceRule> has the following attributes:

 Table 61. Attributes of the <sequenceRule> element

Name Description Data type Required?

name Identifies the rule. This

identifier must be unique

within the rule block that

contains this rule. It cannot

contain a period.

xsd:NMTOKEN Yes

processOnlyForwardedEvents Determines whether the rule

receives all events or only

events that are forwarded

from other rules. The default

value is false, which

indicates that the rule

receives all events, including

those that are forwarded from

other rules.

xsd:boolean No

arrivalOrder Defines whether the events

must arrive in the order in

which the <eventSelector>

elements are coded for the

rule. The valid values are:

v inOrder (the default value)

v randomOrder

xsd:string No

If the value of the arrivalOrder attribute is randomOrder, the order in which the

<eventSelector> elements are coded is important. The <eventSelector> elements

with the most specific event selection criteria should be coded before the

<eventSelector> elements with less specific event selection criteria. Otherwise, the

sequence is not detected when it should be.

For example, assume the following circumstances:

v Three <eventSelector> elements are defined.

v The first <eventSelector> element is checking for the event eventA.

v The second <eventSelector> element is checking for any event.

v The third <eventSelector> element is checking for the event eventB.

v The following events are presented to the system within the specified time

window: eventA, eventB, eventC.

The rule behavior is as follows, and the sequence is not detected when it should

be:

Chapter 5. Language element reference 101

1. The first event, eventA, is accepted by the first <eventSelector> element.

2. The second event, eventB, is accepted by the second <eventSelector> element.

3. The third event, eventC, is ignored.

Assume the following circumstances, where the <eventSelector> elements are

coded correctly, with the most specific event selection criteria preceding the less

specific event selection criteria:

v The first <eventSelector> element is checking for the event eventA.

v The second <eventSelector> element is checking for the event eventB.

v The third <eventSelector> element is checking for any event.

The rule behavior is as follows, and the sequence is detected:

1. The first event, eventA, is accepted by the first <eventSelector> element.

2. The second event, eventB, is accepted by the second <eventSelector> element.

3. The third event, eventC, is accepted by the third <eventSelector> element.

Contained within

<sequenceRule> is contained within the following element:

v <ruleBlock>

Contains

<sequenceRule> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 62. Elements contained within the <sequenceRule> element

Element Required or optional?

<comment> Optional. 0 or 1 occurrence is allowed.

<variable> Optional. 0 or more occurrences are allowed.

<activationInterval> Optional. 0 or 1 occurrence is allowed.

<lifeCycleActions> Optional. 0 or 1 occurrence is allowed.

<eventSelector> 2 occurrences of this element are required for the sequence rule.

Additional occurrences are allowed.

<groupingKey> Optional. 0 or 1 occurrence is allowed.

<timeWindow> Required. Only 1 occurrence is allowed.

<onDetection> Optional. 0 or 1 occurrence is allowed.

<onTimeOut> Optional. 0 or 1 occurrence is allowed.

 Related concepts

 “Sequence pattern” on page 13
A sequence rule is defined by the sequence pattern. It detects whether a certain

sequence of events arrives within a time interval. The sequence can be ordered

or random. A sequence rule is a stateful rule.

102 Rule Writer's Guide and Reference

start element

The <start> element defines whether a rule is activated at a certain time on a

certain date or is activated when the rule is loaded by the Active Correlation

Technology engine.

Details

If the <start> element is not coded at all, the default start time is the same as that

defined by the <whenLoaded> element.

Attributes

<start> has no attributes.

Contained within

<start> is contained within the following element:

v <activationTime>

Contains

<start> contains the following elements:

 Table 63. Elements contained within the <start> element

Element Required or optional?

<dateTime> 1 of these elements is required, and only 1 occurrence of

the chosen element is allowed. <whenLoaded>

<inactiveWhenLoaded>

stop element

The <stop> element defines whether a rule is deactivated at a certain time on a

certain date, after a certain duration, or never at a certain time.

Details

If the <stop> element is not coded at all, the default stop time is the same as that

defined by the <never> element.

Attributes

The <stop> element has no attributes.

Contained within

The <stop> element is contained within the following element:

v <activationTime>

Chapter 5. Language element reference 103

Contains

The <stop> element contains the following elements:

 Table 64. Elements contained within the <stop> element

Element Required or optional?

<dateTime> 1 of these elements is required, and only 1 occurrence of the

chosen element is allowed. <never>

<after>

stopAfter element

The <stopAfter> element specifies the duration of time that a rule instance, as

defined by the <groupingKey> element, is to remain active once it becomes active.

After this duration of time, the rule instance is to be deactivated.

Attributes

The <stopAfter> element has the following attributes:

 Table 65. Attributes of the <stopAfter> element

Name Description Data type Required?

duration Specifies the amount of time for

the duration. The data type of this

attribute is dependent on the value

of the unit attribute.

v If the value of the unit

attribute is ISO-8601, the

data type is xsd:duration.

v If the value of the unit

attribute is milliseconds,

the data type is

xsd:positiveInteger.

Yes

unit Specifies the unit of time to use.

The valid values for this attribute

are:

v ISO-8601

v milliseconds

xsd:string Yes

The use of the ISO 8601 standard for time duration

Coding ISO-8601 as the value for the unit attribute indicates that the value of the

duration attribute is coded according to the ISO 8601 standard for specifying a

time duration as one string. The standard XML schema data type specification uses

ISO 8601 to provide a data type called duration. This data type is described in

detail at http://www.w3.org/TR/xmlschema-2/#duration.

The format for the duration data type in the standard XML schema is the

following string:

PnYnMnDTnHnMnS

v P is the character that always begins the string.

v nY represents the number of years. A year is the same as 365 days. Therefore,

coding 1Y is the same as coding 365D.

v nM represents the number of months. A month is the same as 30 days. Therefore,

coding 1M is the same as coding 30D.

104 Rule Writer's Guide and Reference

http://www.w3.org/TR/xmlschema-2/#duration

v nD represents the number of days.

v T is a separator that separates day units (years, months, and days) from time

units (hours, minutes, and seconds). Time units always follow T.

v nH represents the number of hours.

v nM represents the number of minutes.

v nS represents the number of seconds.

Following are examples of the format:

v P5DT12H is 5.5 days.

v PT59M59S is 59 minutes and 59 seconds.

v P1M is 1 month.

Contained within

<stopAfter> is contained within the <activateOnEvent> element but only when

<activateOnEvent> is coded within the <activationByGroupingKey> element.

Contains

<stopAfter> contains no elements.

thresholdRule element

The <thresholdRule> element defines a rule according to the threshold pattern.

Attributes

<thresholdRule> has the following attributes:

 Table 66. Attributes of the <thresholdRule> element

Name Description Data type Required?

name Identifies the rule. This

identifier must be unique

within the rule block that

contains this rule. It cannot

contain a period.

xsd:NMTOKEN Yes

processOnlyForwardedEvents Determines whether the rule

receives all events or only

events that are forwarded

from other rules. The default

value is false, which

indicates that the rule

receives all events, including

those that are forwarded from

other rules.

xsd:boolean No

Contained within

<thresholdRule> is contained within the following element:

v <ruleBlock>

Chapter 5. Language element reference 105

Contains

<thresholdRule> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 67. Elements contained within the <thresholdRule> element

Element Required or optional?

<comment> Optional. 0 or 1 occurrence is allowed.

<variable> Optional. 0 or more occurrences are allowed.

<activationInterval> Optional. 0 or 1 occurrence is allowed.

<lifeCycleActions> Optional. 0 or 1 occurrence is allowed.

<eventSelector> Optional. 0 or 1 occurrence is allowed.

<groupingKey> Optional. 0 or 1 occurrence is allowed.

<booleanThreshold> 1 of these elements is required, and only 1

occurrence of the chosen element is allowed. <computedThreshold>

<eventCountThreshold>

<timeWindow> Required. Only 1 occurrence is allowed.

<onDetection> Optional. 0 or 1 occurrence is allowed.

<onTimeOut> Optional. 0 or 1 occurrence is allowed.

 Related concepts

 “Threshold pattern” on page 16
A threshold rule is defined by the threshold pattern. It collects a group of

selected events within a time interval and determines, after each event is

received, whether a threshold condition has been met. It is a stateful rule.

timeInterval element

The <timeInterval> element specifies the duration for the time window.

Attributes

<timeInterval> has the following attributes:

 Table 68. Attributes of the <timeInterval> element

Name Description Data type Required?

duration Specifies the amount of time for

the duration. The data type of this

attribute is dependent on the value

of the unit attribute.

v If the value of the unit

attribute is ISO-8601, the

data type is xsd:duration.

v If the value of the unit

attribute is milliseconds,

the data type is

xsd:positiveInteger.

Yes

106 Rule Writer's Guide and Reference

Table 68. Attributes of the <timeInterval> element (continued)

Name Description Data type Required?

unit Specifies the unit of time to use.

The valid values for this attribute

are:

v ISO-8601

v milliseconds

xsd:string Yes

The use of the ISO 8601 standard for time duration

Coding ISO-8601 as the value for the unit attribute indicates that the value of the

duration attribute is coded according to the ISO 8601 standard for specifying a

time duration as one string. The standard XML schema data type specification uses

ISO 8601 to provide a data type called duration. This data type is described in

detail at http://www.w3.org/TR/xmlschema-2/#duration.

The format for the duration data type in the standard XML schema is the

following string:

PnYnMnDTnHnMnS

v P is the character that always begins the string.

v nY represents the number of years. A year is the same as 365 days. Therefore,

coding 1Y is the same as coding 365D.

v nM represents the number of months. A month is the same as 30 days. Therefore,

coding 1M is the same as coding 30D.

v nD represents the number of days.

v T is a separator that separates day units (years, months, and days) from time

units (hours, minutes, and seconds). Time units always follow T.

v nH represents the number of hours.

v nM represents the number of minutes.

v nS represents the number of seconds.

Following are examples of the format:

v P5DT12H is 5.5 days.

v PT59M59S is 59 minutes and 59 seconds.

v P1M is 1 month.

Contained within

<timeInterval> is contained within the following element:

v <timeWindow>

Contains

<timeInterval> contains no elements.

timerRule element

The <timerRule> element defines a rule according to the timer pattern.

Chapter 5. Language element reference 107

http://www.w3.org/TR/xmlschema-2/#duration

Attributes

<timerRule> has the following attributes:

 Table 69. Attributes of the <timerRule> element

Name Description Data type Required?

name Identifies the rule. This

identifier must be unique

within the rule block that

contains this rule. It cannot

contain a period.

xsd:NMTOKEN Yes

processOnlyForwardedEvents This attribute is ignored

because the timer rule does

not process events.

xsd:boolean No

repeat Defines whether the timer

rule runs repeatedly until it is

deactivated. The valid values

are:

v true (the default value)

v false

If the value is set to false,

the rule runs through its time

interval only once, executes

the rule response action when

the respective time window is

complete, and stops.

If the <timeWindow> element

for the timer rule contains the

<runUntilDeactivated>

element, the repeat attribute

is ignored.

xsd:boolean No

Contained within

<timerRule> is contained within the following element:

v <ruleBlock>

Contains

<timerRule> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 70. Elements contained within the <timerRule> element

Element Required or optional?

<comment> Optional. 0 or 1 occurrence is allowed.

<variable> Optional. 0 or more occurrences are allowed.

<activationInterval> Optional. 0 or 1 occurrence is allowed.

<lifeCycleActions> Optional. 0 or 1 occurrence is allowed.

<timeWindow> Required. Only 1 occurrence is allowed.

108 Rule Writer's Guide and Reference

Table 70. Elements contained within the <timerRule> element (continued)

Element Required or optional?

<onTimeWindowComplete> Optional. 0 or 1 occurrence is allowed.

 Related concepts

 “Timer pattern” on page 18
A timer rule is defined by the timer pattern. It initiates actions at regular

intervals. It is a stateful rule. Although a timer rule does not process events, it

can be activated or deactivated by an event.

timeWindow element

The <timeWindow> element contains elements that define the time interval during

which the rule is processing.

Details

For example, the time window for a duplicate rule defines how long the rule must

check for events that are duplicates of the first event that is accepted. If the time

window is 30 seconds, the duplicate rule processes all duplicate events that occur

within 30 seconds of the first event that it accepts.

Attributes

<timeWindow> has no attributes.

Contained within

<timeWindow> is contained within the following elements:

v <collectionRule>

v <computationRule>

v <duplicateRule>

v <sequenceRule>

v <thresholdRule>

v <timerRule>

Contains

<timeWindow> contains the following elements:

 Table 71. Elements contained within the <timeWindow> element

Element Required or optional?

<timeInterval> 1 of these elements is required, and only 1 occurrence of

the chosen element is allowed. <runUntilDeactivated>

variable element

The <variable> element defines a variable and contains information in a form that

can be referenced by expressions. A variable can be defined at the level of the rule

set, a rule block, or a rule.

Chapter 5. Language element reference 109

Details

rule set variable

Applies globally to the rule set and can be referenced by any expression in

that rule set.

rule block variable

Applies only within the rule block (and within any contained rule blocks)

and can be referenced by any expression within that rule block.

rule variable

Applies only to expressions within that rule.

Variables can have the same name at different levels in the rule hierarchy. When a

variable is accessed, the most local definition of the variable is used. For example,

if a variable is defined at the rule set level, rule block level, and rule level with the

same name, the variable definition at the rule level is used by the expressions

within that rule.

When variables are defined at the rule set or rule block level, multiple rules get

and set these variables at different times. Therefore, to ensure that variable values

are maintained correctly, be aware of how you code the interactions among

variables in the rule set.

If the variable is defined at the rule set or rule block level, it is not reinitialized

after the rule pattern is matched.

Under either of the following conditions, use locking on the getting and setting of

rule set and rule block variables to prevent the variable values from being

incorrectly set:

v If the timer rule gets or sets a variable during an <onTimeOut> action

v If the application in which the Active Correlation Technology engine is

embedded is multithreaded

If a rule is defined with a grouping key, rule variables that are defined by the

<variable> element are not valid within life cycle actions or within a

<filteringPredicate> element that is contained within an <activateOnEvent> or

<deactivateOnEvent> element that is contained within an <activationInterval>

element. This is because in this case, the rule variables apply only to a rule

instance, and rule instances do not exist at the time that these expressions are run.

Attributes

<variable> has the following attributes:

 Table 72. Attributes of the <variable> element

Name Description Data type Required?

name Identifies a specific variable. A

variable is referenced by its name.

xsd:NMTOKEN Yes

dataType Identifies the type of information

that a variable contains. This must

be a fully qualified data type such

as java.lang.String.

xsd:NMTOKEN Yes

110 Rule Writer's Guide and Reference

Name restrictions for variables

Variable names have certain restrictions. Therefore, the value of the name attribute

on the <variable> element has the following restrictions:

v It can include only the following characters:

– Uppercase ASCII Latin letters A-Z. The Unicode representation is

\u0041-\u005a.

– Lowercase ASCII Latin letters a-z. The Unicode representation is

\u0061-\u007a.

– The ASCII underscore (_). The Unicode representation is \u005f.

– The dollar sign ($). The Unicode representation is \u0024.

– The ASCII digits 0 – 9. The Unicode representation is \u0030-\u0039.
v It cannot be null.

v It cannot be an empty string.

v It cannot contain any blank spaces.

v It cannot contain a period.

v It cannot start with act_ in any form (not in uppercase, lowercase, or mixed

case).

Contained within

<variable> is contained within the following elements:

v <ruleSet>

v <ruleBlock>

v <collectionRule>

v <computationRule>

v <duplicateRule>

v <filterRule>

v <sequenceRule>

v <thresholdRule>

v <timerRule>

Contains

<variable> contains the following elements.

The elements must be coded in the order that is shown. If an element is optional, it

does not need to be coded, but all elements that are coded must follow the correct

order.

 Table 73. Elements contained within the <variable> element

Element Required or optional?

<comment> Optional. 0 or 1 occurrence is allowed.

<varInitializer> Required. 1 occurrence is allowed.

 Related concepts

 “Variables” on page 23
In the rule language, certain variables are used to store event-related

information across different event occurrences or rules. This event-related

information can then be accessed from expressions within rules. Some types of

Chapter 5. Language element reference 111

variables are defined by the rule writer, and others are provided by the Active

Correlation Technology. Some types can be accessed directly within an

expression, and others can be accessed only through methods that are provided

by the Active Correlation Technology.

varInitializer element

The <varInitializer> element contains an expression that provides the initial value

for the variable that is defined in the associated <variable> element.

Details

Because the variable can be of any type, the expression code can return an array

object or any other complex, implementation-specific object to be stored by the

Active Correlation Technology engine.

Refer to “Variables” on page 23 for information about the variables that can be

used in expressions. The use of certain variables is dependent on the context of the

expression.

Attributes

<varInitializer> has the following attribute:

 Table 74. Attributes of the <varInitializer> element

Name Description Data type Required?

expressionLanguage Identifies the programming language

in which the expression is written.

Because the Java programming

language is the only supported

expression language, the only valid

value for this attribute is java.

xsd:NMTOKEN Yes

Contained within

<varInitializer> is contained within the following element:

v <variable>

Contains

<varInitializer> contains no elements.

 Related concepts

 “Expressions” on page 19
An expression is code that contains custom logic that can be added to a rule.

Expressions can also access code that is external to the Active Correlation

Technology engine. In the rule language, expressions are valid only within

specific contexts, or rule language elements.

whenLoaded element

The <whenLoaded> element specifies that a rule is activated when it is loaded by

the Active Correlation Technology engine.

112 Rule Writer's Guide and Reference

Attributes

<whenLoaded> has no attributes.

Contained within

<whenLoaded> is contained within the following element:

v <start>

Contains

<whenLoaded> contains no elements.

Chapter 5. Language element reference 113

114 Rule Writer's Guide and Reference

Chapter 6. Glossary

This glossary contains the terms and definitions for important concepts in the

Active Correlation Technology.

ACT See Active Correlation Technology.

action An expression that runs as part of a rule response or when a rule is

loaded, unloaded, activated, or deactivated.

Active Correlation Technology

An IBM technology that provides event correlation through rules.

Active Correlation Technology compiler

The Active Correlation Technology component that parses a rule set and

any code that is contained within it to generate the internal data structures

that are required by the Active Correlation Technology engine.

Active Correlation Technology engine

The Active Correlation Technology component that processes events

according to the output of the Active Correlation Technology compiler.

Active Correlation Technology rule builder

A GUI for writing correlation rules in the Active Correlation Technology

rule language.

Active Correlation Technology rule language

An XML-based language for writing rules to correlate events. These rules

can then be deployed to Active Correlation Technology runtime

environments.

Active Correlation Technology runtime environment

An application in which the Active Correlation Technology engine is

embedded, with or without the compiler.

collection pattern

A rule pattern that defines a rule to collect a group of selected events

within a time interval. A rule that is defined by the collection pattern is a

stateful rule.

computation pattern

A rule pattern that defines a rule to apply a computation (through an

expression) to collected events as each event is received within a time

interval. A rule that is defined by the computation pattern is a stateful rule.

domain

The category to which a group of rules apply based on their function. For

example, a domain can represent a specific geographic area, IT

management discipline (such as security detection or network event

correlation), or business organization (such as a specific company or

division with a company).

duplicate pattern

A rule pattern that defines a rule to count the second and subsequent

events that are accepted within the specified time interval but to skip the

rule set processing for these events. A rule that is defined by the duplicate

pattern is a stateful rule.

© Copyright IBM Corp. 2006 115

event provider

Any software that generates events that are processed by the Active

Correlation Technology.

event selector

The criteria for event selection. These criteria determine what events are

accepted for processing by a rule. The event selector includes the event

type and the filtering predicate.

expression

Code that contains custom logic that can be added to a rule. Rule writers

can use expressions for different purposes, such as the initialization of

variables, the definition of event selection criteria, or the specification of

rule response actions and life cycle actions.

expression language

The programming language in which an expression is written.

external event

An event that the Active Correlation Technology engine receives from a

source that is external to it.

external object

An object that an application creates to communicate with expressions.

filtering predicate

An expression that defines the condition under which an event is accepted

for processing by a rule. The filtering predicate is a part of an event

selector. A filtering predicate returns a boolean value.

filter pattern

A rule pattern that defines a rule to take a certain action when it accepts

an event. A rule that is defined by the filter pattern acts only on a single

event and is therefore a stateless rule.

grouping key

A method for directing a rule to create a separate rule instance (or copy of

itself) for each group of events that share common characteristics.

import

A programming language-specific way to make external code accessible to

expressions.

internal event

An event that is created by a rule that is running in the Active Correlation

Technology engine. This event might be forwarded to other rules.

life cycle action

An expression that runs when a rule is loaded, unloaded, activated, or

deactivated.

node An object within the rule hierarchy that can be individually and

independently added to, removed from, or replaced within a rule set.

Specifically, these objects are nodes:

v Rules

v Rule blocks

v Rule block variables

v Rule set variables

Because an object cannot be operated on individually and independently

below the rule level, a rule variable is not a node.

116 Rule Writer's Guide and Reference

predicate

See filtering predicate.

response

See rule response.

rule The correlation unit that is used to recognize relationships among events

and to run appropriate rule responses. A rule is an implementation of one

of seven rule patterns and is organized, according to its function, into a

rule block that is part of a rule set. A rule accepts an event for processing if

the event meets the event selection criteria.

rule block

The organizational unit for grouping rules by function into domains within

the rule set. A rule block can contain not only rules but also other rule

blocks.

rule instance

In the context of the grouping key, a copy of a rule.

rule pattern

The representation of an event correlation situation (such as a threshold

condition or duplicate event detection). The Active Correlation Technology

rule language includes the following rule patterns: collection, computation,

duplicate, filter, sequence, threshold, and timer. The pattern of a rule is

matched when the situation that is defined by the rule occurs. When the

pattern is matched, the rule concludes its processing by taking the

appropriate rule response actions. While a rule is active, the rule pattern

can be matched multiple times.

rule response

An expression that is run when the Active Correlation Technology engine

recognizes that a rule condition has been met. A rule response consists of

one or more actions.

rule response action

See action.

rule set

The rule execution unit for the Active Correlation Technology rule

language. The rule set contains the rules, organized into rule blocks, to be

executed by the Active Correlation Technology engine. The engine acts on

only one rule set at a given time.

sequence pattern

A rule pattern that defines a rule to detect the presence or absence of a

certain sequence of events within a time interval. The sequence can be

ordered or random. A rule that is defined by the sequence pattern is a

stateful rule.

snippet

An excerpt of source code.

stateful rule

A rule that retains state information, which is information about the

characteristics of a rule instance, for the purpose of acting on a collection

of events over a period of time. Rules that are defined by any of the

following rule patterns are stateful rules: collection, computation, duplicate,

sequence, threshold, or timer.

Chapter 6. Glossary 117

stateless rule

A rule that does not retain state information and therefore can act only on

one event at a time. A rule that is defined by the filter pattern is a stateless

rule.

threshold pattern

A rule pattern that defines a rule to collect a group of selected events

within a time interval and to determine, after each event is received,

whether a threshold condition has been met. A rule that is defined by the

threshold pattern is a stateful rule.

timer pattern

A rule pattern that defines a rule to initiate actions at regular intervals. A

rule that is defined by the timer pattern is a stateful rule. Although a timer

rule does not process events, it can be activated or deactivated by an event.

118 Rule Writer's Guide and Reference

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain

transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006 119

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

2Z4A/101

11400 Burnet Road

Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Trademarks

DB2, IBM, the IBM logo, Tivoli, the Tivoli logo, Tivoli Enterprise Console, and

WebSphere are trademarks or registered trademarks of International Business

Machines Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

120 Rule Writer's Guide and Reference

����

Printed in USA

	About this information
	Contents
	Part 1. Rule Writers Guide
	Chapter 1. Introduction
	Chapter 2. Rule language overview
	Anatomy of a rule
	Life cycle of a rule
	Organization of rules
	Rule patterns
	Collection pattern
	Computation pattern
	Duplicate pattern
	Filter pattern
	Sequence pattern
	Threshold pattern
	Timer pattern
	Common and unique aspects of different rule patterns

	Expressions
	Importing and accessing external modules and objects
	Initializing and accessing variables
	Accessing event-related information
	Best practices for coding expressions

	Variables
	Data types for Active Correlation Technology variables
	Expression contexts in which variables are valid
	act_event variable
	act_eventCount variable
	act_eventList variable
	act_lib variable
	act_location variable
	act_nodeName variable
	act_threshold variable

	Event flow through a rule set

	Chapter 3. Rule writing overview
	Planning for event correlation
	Designing the rules to correlate events
	Getting started with the rule builder
	Setting the perspective in the Eclipse Workbench
	Setting preferences
	Creating a project for storing a rule set file
	Creating a rule set
	Creating a rule block
	Creating a rule
	Validating a rule set
	Compiling a rule set
	Updating a rule set
	Including snippets in expressions within rules

	Part 2. Rule Writers Reference
	Chapter 4. Summary of rule set organization
	Rule set summary
	Rule block summary
	Collection rule summary
	Computation rule summary
	Duplicate rule summary
	Filter rule summary
	Sequence rule summary
	Threshold rule summary
	Timer rule summary

	Chapter 5. Language element reference
	action element
	activateOnEvent element
	activationByGroupingKey element
	activationInterval element
	activationTime element
	after element
	attributeAlias element
	attributeName element
	booleanThreshold element
	collectionRule element
	comment element
	computationRule element
	computedThreshold element
	computedValue element
	computeFunction element
	dateTime element
	deactivateOnEvent element
	duplicateRule element
	eventAttribute element
	eventCountThreshold element
	eventSelector element
	eventType element
	filteringPredicate element
	filterRule element
	groupingKey element
	import element
	inactiveWhenLoaded element
	lifeCycleActions element
	never element
	onActivation element
	onDeactivation element
	onDetection element
	onLoad element
	onNextEvent element
	onTimeOut element
	onTimeWindowComplete element
	onUnload element
	ruleBlock element
	ruleSet element
	runUntilDeactivated element
	sequenceRule element
	start element
	stop element
	stopAfter element
	thresholdRule element
	timeInterval element
	timerRule element
	timeWindow element
	variable element
	varInitializer element
	whenLoaded element

	Chapter 6. Glossary
	Appendix. Notices
	Trademarks

