
Build  a J2C  application for  a CICS COBOL 

copybook: Multiple possible  output  

   

���



ii Build  a J2C application  for a CICS  COBOL  copybook:  Multiple  possible output



Contents  

Create a J2C application for a CICS 

transaction containing multiple possible 

outputs  . . . . . . . . . . . . . . . 1 

Create  a J2C  application  for a CICS  transaction  

containing  multiple  possible  outputs  introduction   . . 1 

Lesson  1.1:  Select  a resource  adapter   . . . . . . 2 

Lesson  1.2: Set up a Web project  and  Java  interface  

and  implementations   . . . . . . . . . . . 4 

Lesson  1.3: Create  a Java  method   . . . . . . . 5 

Lesson  1.4: Deploy  your  application   . . . . . . 9 

Create  a J2C  application  for  a CICS  transaction  

containing  multiple  possible  outputs  summary   . . 12

 

  iii



iv Build  a J2C application  for a CICS COBOL  copybook:  Multiple  possible  output



Create  a J2C  application  for  a CICS  transaction  containing  

multiple  possible  outputs  

This  tutorial  describes  how  to  use  the  J2C  Java™ Bean  wizard  to build  a simple  Web application  that  

processes  a transaction,  which  can  process  multiple  possible  outputs.  

Learning objectives 

This  tutorial  enables  you  to:  

v   Use  the  J2C  Java  bean  wizard  to  create  a J2C  application  that  interfaces  with  a CICS  transaction  using  

an  External  Call  Interface  (ECI).  Depending  on  the  customer’s  classification,  preferred  customer,  regular  

customer  or  bad  customer,  the  program  returns  different  output  information  about  the  customer.  Create  

a JSP  to  deploy  the  application  on  a WebSphere  application  server.  

v   Create  a Java  method  that  accepts  a customer  number.  

v   Create  a JSP  to  deploy  the  application  on  a WebSphere  application  server.

Time required 

30  minutes  

   Related  information  

   View  the  PDF  version  

   Multiple  Possible  Outputs  sample

Create a J2C application for a CICS transaction containing multiple 

possible outputs introduction 

This  tutorial  describes  how  to  use  the  J2C  Java  Bean  wizard  to  build  a simple  Web application  that  

processes  a CICS® transaction  with  multiple  possible  outputs.  

This  tutorial  might  require  some  optionally  installable  components.  To ensure  that  you  have  installed  the  

appropriate  optional  components,  see  the  System  requirements  list.  

This  tutorial  will  lead  you  through  the  detailed  steps  to generate  a J2C  application  that  interfaces  with  a 

CICS  transaction  using  an  External  Call  Interface  (ECI).  The  service  is built  from  a CICS  COBOL  function,  

getCustomerInfo,  which  accepts  a customer  number.  Depending  on  the  customer’s  classification,  preferred  

customer,  regular  customer  or  bad  customer,  the  program  returns  different  output  information  about  the  

customer.  

This  tutorial  is  divided  into  several  exercises  that  must  be  completed  in  sequence  for  the  tutorial  to work  

properly.  This  tutorial  teaches  you  how  to  use  the  J2C  Java  bean  wizard  to connect  to  a CICS  ECI  server.  

While  completing  the  exercises,  you  will:  

v   Use  the  J2C  Java  bean  wizard  to  create  a J2C  application  that  interfaces  with  a CICS  transaction  using  

an  External  Call  Interface  (ECI).  

v   Create  a Java  method,  getCustomerInfo, which  accepts  a customer  number.  Depending  on  the  customer’s  

classification,  preferred  customer,  regular  customer  or  bad  customer,  the  program  returns  different  

output  information  about  the  customer.  

v   Create  a Java  class,  TestECIMPO.java  to  test  your  application.

 

  1

JavaScript:linkSample('com.ibm.j2c.sample.doc/topics/sample_taderc25.html')


Time required 

This  tutorial  should  take  approximately  30  minutes  to  finish.  If you  explore  other  concepts  related  to  this  

tutorial,  it could  take  longer  to  complete.  

Skill level 

Experienced  

Audience 

This  tutorial  is intended  for  users  who  are  familiar  with  Enterprise  Information  systems  (EIS)  and  CICS  

ECI  in  particular.  

System requirements 

To complete  this  tutorial,  you  need  to  have  the  following  tools  and  components  installed:  

v   IBM® WebSphere® Application  Server,  version  6.1  

v   J2EE  Connector  (J2C)  tools  

v   Connection  to  a CICS  ECI  server: In  this  tutorial,  your  application  interacts  with  a CICS  program  on  a 

server.  Specifically,  you  need  to  set  up  a CICS  transaction  gateway  on  a machine  to access  the  server.  

You also  need  to  perform  some  setup  work  on  the  CICS  server  machine,  where  you  want  the  CICS  to 

run. These  steps  are  not  covered.  

v   A copy  of  the  COBOL  file  taderc25.cbl. You may  locate  this  file  in  your  product  installation  directory:  

<installdir>\IBM\SDP70Shared\plugins\com.ibm.j2c.cheatsheet.content_7.0.0\Samples\CICS\taderc25.  

If you  wish  to  store  it locally,  you  can  copy  the  code  from  here:  ../resources/taderc25.pdf  

v   A clean  workspace.

To use  this  tutorial,  you  must  have  an  application  server  installed  and  configured.  To verify  that  a server  

runtime  environment  is  available,  click  Window  → Preferences, expand  Server, and  then  click  Installed  

Runtimes. You can  use  this  pane  to  add,  remove,  or  edit  installed  server  runtime  definitions.  You can  

also  download  and  install  support  for  a new  server.  

Prerequisites 

In  order  to  complete  this  tutorial  end  to  end,  you  should  be  familiar  with:  

v   J2EE  and  Java  programming  

v   COBOL  programming  language  

v   CICS  ECI  server  technology

Lesson 1.1: Select a resource adapter 

This  lesson  leads  you  through  the  detailed  steps  to select  and  configure  the  resource  adapter  to connect  

to  the  CICS  ECI  server.  

Connecting  to  the  CICS  ECI  server  

1.   If the  J2EE  icon,  

  

, does  not  appear  in  the  top  right  tab  of  the  workspace,  you  need  to switch  to  

the  J2EE  perspective.  From  the  menu  bar, select  Window  > Open  Perspective  > Other. The  Select  

Perspective  window  opens.  

2.   Select  J2EE. 

3.   Click  OK. The  J2EE  perspective  opens.  

 

2 Build a J2C application  for a CICS  COBOL  copybook:  Multiple  possible output



4.   In  the  J2EE  perspective,  select  File  >  New  > Other. 

5.   In  the  New  page,  select  J2C  > J2C  Java  Bean. Click  Next  

6.   In  the  Resource  Adapters  page,  under  View  by,  select  JCA  version. Expand  1.5,  and  select  

ECIResourceAdapter  (IBM:6.0.2). Click  Next. 

7.   In  the  Connection  Properties  page,  select  Nonmanaged  connection. (For  this  tutorial,  you  will  use  the  

non-managed  connection  to  directly  access  the  CICS  server,  so  you  do  not  need  to provide  the  JNDI  

name.)  Accept  the  default  Connection  class  name  of  

com.ibm.connector2.cics.ECIManagedConnectionFactory. In  the  blank  fields,  provide  connection  

information.  Required  fields,  indicated  by  an  asterisk  (*),  include  the  following:  

v   Server  name: (Not  required)  The  name  of the  CICS  Transaction  Gateway  server.  

v   Connection  URL*: (Required)  The  server  address  of the  CICS  ECI  server  

v   Port  number:  (Not  required)  The  number  of  the  port  that  is used  to  communicate  with  the  CICS  

Transaction  Gateway.  The  default  port  is 2006.  

v   User  name: (Required)  The  user  name  for  the  connection.  

v   Password: (Required)  The  password  for  the  connection.  

v   : 

You may  obtain  the  connection  information  from  your  CICS  Server  system  administrator.  

8.   Click  Next. 

taderc25.cbl 

Here  is  the  code  from  taderc25.cbl:  

taderc25.cbl 

      identification  division.  

       program-id.  TADERC25.  

       environment  division.  

       data  division.  

       working-storage  section.  

       01 tmp  pic  a(40).  

       01  ICOMMAREA.  

           02   ICustNo     PIC  X(5).  

           02   Ifiller     PIC  X(11).  

       01  GENCUST.  

           02   GCUSTCODE  PIC  X(4).  

           02   GFILLER  PIC  X(40).  

       01  PREFCUST.  

           02   PCUSTCODE  PIC  X(4).  

           02   PCUSTNO     PIC  X(5).  

           02   ASSETS   PIC  S9(6)V99.  

       01  REGCUST.  

           02   RCUSTCODE  PIC  X(4).  

           02   RCUSTNO     PIC  X(5).  

           02   ACCOUNTNAME  PIC  A(10).  

           02   BALANCE  PIC  S9(6)V99.  

       01  BADCUST.  

           02   BCUSTCODE  PIC  X(4).  

           02   BCUSTNO     PIC  X(5).  

           02   DAYSOVERDUE  PIC  X(4).  

           02   AMOUNT  PIC  S9(6)V99.  

       LINKAGE  SECTION.  

       01 DFHCOMMAREA.  

          02 inputfield  pic  x(50).  

       procedure  division.  

       start-para.  

           move  DFHCOMMAREA  to ICOMMAREA.  

           IF  ICustNo  EQUAL  ’12345’  

              move  ’PREC’  to PCUSTCODE  

              move  ICustNo  to PCUSTNO

 

Create  a J2C application  for a CICS transaction  containing  multiple possible  outputs  3



move  43456.33  to ASSETS  

              move  PREFCUST  TO DFHCOMMAREA  

           ELSE  IF ICustNo  EQUAL  ’34567’  

                   move  ’REGC’  to RCUSTCODE  

                   move  ICustNo  to RCUSTNO  

                   move  ’SAVINGS’  TO ACCOUNTNAME  

                   move  11456.33  to BALANCE  

                   move  REGCUST  TO DFHCOMMAREA  

                ELSE  

                   move  ’BADC’  to BCUSTCODE  

                   move  ICustNo  to BCUSTNO  

                   move  ’132’  to DAYSOVERDUE  

                   move  -8965.33  to AMOUNT  

                   move  BADCUST  TO DFHCOMMAREA  

      *         END-IF.  

           END-IF.  

           EXEC  CICS  RETURN  

           END-EXEC.  

Lesson 1.2: Set up a Web  project and Java interface and 

implementations 

This  lesson  leads  you  through  setting  up  a Web project  and  Java  Interface  and  Implementations.  

Before  you  begin,  you  must  complete  Lesson  1.1.  In  this  lesson  you  will  

v   Create  a J2C  Java  bean  

v   Create  a dynamic  Web project
 1.   All  work  done  in  the  workbench  must  be  associated  with  a project.  Projects  provide  an  organized  

view  of  the  work  files  and  directories,  optimized  with  functions  based  on  the  type  of  project.  In  the  

workbench,  all  files  must  reside  in  a project,  so  before  you  create  the  J2C  Java  bean,  you  need  to 

create  a project  to  store  it  in.  

 2.   In  the  New  J2C  Java  Bean  page,  type  the  value  Taderc25Sample  in  the  Project  Name  field.  

 3.   Click  New  beside  the  Project  Name  field  to  create  the  new  project.  

 4.   In  the  New  Source  Project  Creation  page,  select  Web project, and  click  Next. 

 5.   In  the  New  Dynamic  Web Project  page,  click  Show  Advanced. 

 6.   Ensure  that  the  following  values  are  selected:  

a.   Project  name: Taderc25Sample  

b.   Project  contents:  accept  default  

c.   Target  runtime  : WebSphere  Application  Server  v6.1  

d.   Configurations: accept  default  

e.   Add  project  to  an  EAR: checked  

f.   EAR  Project  name: Taderc25SampleEAR
 7.   Click  Finish. 

 8.   A dialog  box  may  appear  asking  if you  would  like  to  switch  to the  Dynamic  Web perspective.  Click  

Yes. 

 9.   On  the  J2C  Java  Bean  Output  Properties  page:  

a.   In  the  Package  Name  field,  click  Browse  and  select  the  Taderc25Sample  project.  Click  OK. 

b.   Type sample.ims  in  the  Package  Name  field.  

c.   Type CustomerInfoMO  in the  Interface  Name  field.  

d.   Type CustomerInfoMOImpl  in  the  Implementation  Name  field.  

e.   Leave  the  Save  session  as  Ant  script  unchecked.
10.   Click  Finish.

 

4 Build a J2C application  for a CICS  COBOL  copybook:  Multiple  possible output



Lesson 1.3: Create a Java method 

Lesson  1.3  leads  you  through  the  creation  of  a Java  method.  

Before  you  begin,  you  must  complete  Lesson  1.2:  Setting  up  the  Web project  and  Java  Interface  and  

Implementations.  In  this  lesson  you  will:  

v   Create  a Java  method  

v   Create  the  input  and  output  data  mapping  between  COBOL  and  Java
 1.   First  you  will  create  a Java  method:  You will  now  create  a Java  method  that  will  use  the  COBOL  

importer  to  map  the  data  types  between  the  COBOL  source  and  the  data  in your  Java  method.  

 2.    Open  the  Snippets  view  by  clicking  on  Window  > Show  View  > Snippets. In  the  Snippets  view, 

click  on  J2C. 

 3.   Right  click  Add  Java  method  to  J2C  Java  bean  and  select  Insert. 

 4.   In  the  New  Java  Method  page,  click  Add. 

 5.   In  the  Java  method  name  field,  type  getCustomerInfo  for  the  name  of the  operation.  Click  Next. 

 6.   Next  you  will  create  the  input  parameter  data  mapping: In this  step,  you  will  import  the  

../resources/taderc25.pdf  (COBOL)  file  that  is needed  to create  your  application.  The  taderc25.cbl  file  

is located  in  <installdir>\IBM\SDP70Shared\plugins\com.ibm.j2c.cheatsheet.content_7.0.0\Samples\
CICS\taderc25,  where  <installdir>  is the  directory  where  this  product  is installed.  The  COBOL  file  

contains  the  program  that  runs on  the  CICS  server.  It has  the  definition  of the  structure  to be  passed  

to  the  CICS  server  via  the  communications  area  (COMMAREA).  This  structure  represents  the  

customer  records  being  returned  from  the  CICS  application.  Before  you  can  work  with  a file,  you  

must  import  it from  the  file  system  into  the  workbench.  In  the  Specify  the  input/output  type  field  of  

the  Java  Method  page,  click  New. 

 7.   In  the  Data  Import  page,  ensure  that  the  Choose  mapping  field  is COBOL_TO_JAVA. Click  Browse  

beside  the  COBOL  file  

 8.   Locate  the  taderc25.cbl  file  in  the  file  system,  and  click  Open. 

 9.   Click  Next. 

10.   In  the  COBOL  Importer  page,  select  a communication  data  structure: 

a.   Select  Win32  for  Platform  Name. 

b.   Select  ISO-8859-1  for  Code  page. 

c.   Click  Query. 

d.   Select  ICOMMAREA  for  Data  structures. 

11.   Click  Next. 

12.   In  the  Saving  properties  page:  

a.   Select  Default  for  Generation  Style. 

b.   Click  Browse  to  choose  the  Web project  Taderc25Sample. 

c.   In  the  Package  Name  field,  type  sample.cics.data  

d.   In  the  Class  Name  field,  the  default  value  is ICOMMAREA; replace  it  with  InputComm. 

13.   Click  Finish. 

14.   Next  you  will  create  the  multiple  possible  outputs  for  the  output  parameter:  In  the  Specify  the  

input/output  type  field  in  the  Java  Method  page,  click  New  beside  the  Output  type  area.  

15.   In  the  Data  Import  page,  ensure  that  the  Choose  mapping  field  is  COBOL_MPO_TO_JAVA. 

16.   Click  New  beside  the  multiple  possible  output  area.  

17.   Click  Browse  beside  the  Cobol  file  name  field,  and  locate  the  location  of  the  taderc25.cbl  file.  Click  

Open. 

18.   Click  Next. 

19.   In  the  COBOL  Importer  page,  select  a communication  data  structure: 

 

Create  a J2C application  for a CICS transaction  containing  multiple possible  outputs  5



a.   Select  Win32  for  Platform  Name. 

b.   Select  ISO-8859-1  for  Code  page. 

c.   Click  Query. 

d.   Select  PREFCUST, REGCUST, and  BADCUST  for  Data  structures. 

20.   Click  Finish. In  the  Specify  data  import  configuration  properties  page,  you  will  see  the  three  data  

types  listed.  

21.   Click  Next. 

22.   Next  you  will  specify  the  saving  properties:  In  the  Saving  Properties  page,  you  will  see  default  

values  set  for  each  of  the  customer  type  record.  Ensure  that  Taderc25Sample  appears  in the  Project  

Name  field.  Click  Browse  and  choose  the  Web project  Taderc25Sample. 

a.   In  the  Specify  the  Saving  properties  page,  highlight  COBOL  MPO  to  Java  Save  Properties. 

v   Type  sample.cics.data  in the  Package  Name  field  

v   TypeOutputComm  in the  Class  Name  field.  

v   You can  select  Overwrite  existing  class  .
b.   Expand  COBOL  MPO  to  Java  Save  Properties. The  three  data  binding  elements  should  appear.  

c.   Highlight  COBOL  To  Java  Save  Properties  For  ″PREFCUST″ in  File  taderc25.cbl  

v   For  Generation  Style, select  Default.  

v   Type sample.cics.data  in  the  Package  Name  field  

v   TypePrefCust  in  the  Class  Name  field.  

v   You can  select  Overwrite  existing  class  .
d.   Highlight  COBOL  To  Java  Save  Properties  For  ″REGCUST″ in  File  taderc25.cbl. 

v    

v   Type  sample.cics.data  in the  Package  Name  field  

v   TypeRegCust  in  the  Class  Name  field.  

v   You can  select  Overwrite  existing  class  .
e.   Highlight  COBOL  To  Java  Save  Properties  For  ″BADCUST″ in  File  taderc25.cbl. 

v   Type  sample.cics.data  in the  Package  Name  field  

v   TypeBadCust  in  the  Class  Name  field.  

v   You can  select  Overwrite  existing  class  .
23.   Click  Finish. Expand  OutputComm, and  you  will  see  that  it contains  PrefCust,  RegCust  and  BadCust  

in the  Output  type  field.  

24.   On  the  Java  Method  page,  click  Finish. 

25.   In  the  Java  methods  page:  

a.   Type TADERC25  (the  COBOL  program  id)  in  the  functionName  field.  

b.   Select  Show  Advanced. 

c.   Select  SYNC_SEND_RECEIVE(1)  in  the  interactionVerb  field.  

d.   Type -1  in  the  replyLength  field.  

26.   Click  Finish. 

27.   Now  you  will  Add  the  recognition  pattern  tag  to  the  generate  Java  output  data  mapping  file:  Since  

the  output  coming  back  can  be  any  one  of  the  data  types,  the  only  way  to match  it is to  have  some  

pattern  predefined  in  the  data  stream.  The  match  method  checks  the  recognition  pattern.  

 

6 Build a J2C application  for a CICS  COBOL  copybook:  Multiple  possible output



a.   To add  the  recognition  pattern  for  PrefCust:  

v   Open  the  PrefCust.java  file  in  a Java  editor.  

v   Navigate  to  the  getPcustcode()  method.  The  best  way  to  do  this  is to open  the  Outline  view  

and  scroll  down  until  you  find  the  desired  method.  

v   In  the  method  comment  area  , add  the  tag  @type-descriptor.recognition-desc  

pattern=″PREC″ or  you  can  use  the  content  assist  by  pressing  CTRL-space  and  navigate  down  

the  list  to  find  the  tag  and  then  enter  ″PREC″ as the  pattern.  

v   Save  the  changes  and  the  code  PrefCust.java  will  be  regenerated.  

v   Navigate  to  the  match  method  to  ensure  that  the  change  is there:  

/**  

  * @generated  

  

  */ 

 public  boolean  match(Object  obj)  { 

  if (obj  ==  null)  

   return  (false);  

  if (obj.getClass().isArray())  { 

   byte[]  currBytes  = buffer_;  

   try  { 

    byte[]  objByteArray  = (byte[])  obj;  

    buffer_  = objByteArray;  

    if (!("PREC".equals(getPcustcode().toString())))  

     return  (false);  

   } catch  (ClassCastException  exc)  { 

    return  (false);  

   } finally  { 

    buffer_  = currBytes;  

   } 

  } else  

   return  (false);  

  return  (true);  

 } 

b.   To add  the  recognition  pattern  for  RegCust:  

v   Open  the  RegCust.java  file  in  a Java  editor.  

v   Navigate  to  the  getRcustcode()  method.  Again,  the  best  way  to  do  this  is to open  the  Outline  

view  and  scroll  down  until  you  find  the  desired  method.  

v   In  the  method  comment  area  , add  the  tag  @type-descriptor.recognition-desc  

pattern=″REGC″ or  you  can  use  the  content  assist  by  pressing  CTRL-space  and  navigate  down  

the  list  to  find  the  tag  and  then  enter  ″REGC″ as the  pattern.  

v   Save  the  changes  and  the  code  RegCust.java  will  be  regenerated.  

v   Navigate  to  the  match  method  to  make  sure  the  change  is there:  

 

Create  a J2C application  for a CICS transaction  containing  multiple possible  outputs  7



/**  

  * @generated  

  

  */ 

 public  boolean  match(Object  obj)  { 

  if (obj  == null)  

   return  (false);  

  if (obj.getClass().isArray())  { 

   byte[]  currBytes  = buffer_;  

   try  { 

    byte[]  objByteArray  = (byte[])  obj;  

    buffer_  = objByteArray;  

    if (!("REGC".equals(getRcustcode().toString())))  

     return  (false);  

   } catch  (ClassCastException  exc)  { 

    return  (false);  

   } finally  { 

    buffer_  = currBytes;  

   } 

  } else  

   return  (false);  

  return  (true);  

 } 

c.   To add  the  recognition  pattern  for  BadCust:  

v   Open  the  BadCust.java  file  in  a Java  editor.  

v   Navigate  to  the  getBcustcode()  method.  Again,  the  best  way  to do  this  is to open  the  Outline  

view  and  scroll  down  until  you  find  the  desired  method.  

v   In  the  method  comment  area  , add  the  tag  @type-descriptor.recognition-desc  

pattern=″BADC″ or  you  can  use  the  content  assist  by  pressing  CTRL-space  and  navigate  down  

the  list  to  find  the  tag  and  then  enter  ″BADC″ as  the  pattern.  

v   Save  the  changes  and  the  code  BadCust.java  will  be  regenerated.  

v   Navigate  to  the  match  method  to  make  sure  the  change  is there:  

/**  

  * @generated  

  

  */ 

 public  boolean  match(Object  obj)  { 

  if (obj  == null)  

   return  (false);  

  if (obj.getClass().isArray())  { 

   byte[]  currBytes  = buffer_;  

   try  { 

    byte[]  objByteArray  = (byte[])  obj;  

    buffer_  = objByteArray;  

    if  (!("BADC".equals(getBcustcode().toString())))  

     return  (false);  

   } catch  (ClassCastException  exc)  { 

    return  (false);  

   } finally  { 

    buffer_  = currBytes;  

   } 

  } else  

   return  (false);  

  return  (true);  

 } 

 

8 Build a J2C application  for a CICS  COBOL  copybook:  Multiple  possible output



Lesson 1.4: Deploy your application 

Lesson  1.4  leads  you  through  the  creation  of  a Java  class  to  test  your  application.  

Before  you  begin,  you  must  complete  Lesson  1.3.  In  this  lesson  you  will:  

v   Create  a Java  class  to  test  your  application.  

v   Run  the  test  class.
1.   First  you  will  create  the  TestECIMPO  file:  Expand  the  CustomerProj  project,  expand  the  Java  

Resources  section  and  select  the  sample.cics  package.  

2.   Right  click  and  select  New. Select  the  

   

class  option  to create  a new  Java  class.  

3.   In  the  Java  class  name  field,  type  TestECIMPO  

4.   Open  TestECIMPO  in  the  Java  editor.  

5.   Replace  all  the  code  in  the  editor  with  the  following:  

Note:  The  TestECIMPO.java  Java  class  was  created  for  an  English  locale;  you  may  have  to make  

modifications  in  the  code  for  other  locales.  

/***************************************************************  

 * Licensed  Materials  - Property  of IBM  

 * 

 * com.ibm.j2c.cheatsheet.content  

 * 

 * Copyright  IBM  Corporation  2004.  All  Rights  Reserved.  

 * 

 * Note  to U.S.  Government  Users  Restricted  Rights:   Use,  duplication  or  disclosure  restricted  by  GSA ADP  Schedule  Contract  with  IBM Corp.  

 *************************************************************/  

package  sample.cics;  

  

import  sample.cics.data.*;  

public  class  TestECIMPO  

{ 

  

  

  

 public  static  void  process(InputComm  input)  

 { 

  

  System.out.println("processing....");  

     try  { 

  //CustomerInfoMOImpl  proxy  = new  CustomerInfoMOImpl();  

  CustomerInfoMOImpl  proxy  = new  CustomerInfoMOImpl();  

      OutputComm  output  = proxy.getCustomerInfo  (input);  

  

  BadCust  badCust  = output.getBadCust();  

  PrefCust  prefCust  = output.getPrefCust();  

  RegCust  regCust  = output.getRegCust();  

  

  if (regCust  != null)  

  { 

   System.out.println("Reg  Customer");  

   System.out.println("account  name:   " + regCust.getAccountname());  

   System.out.println("balance:   " + regCust.getBalance());  

   System.out.println("cust  code:   " + regCust.getRcustcode());  

   System.out.println("cust  no:   " + regCust.getRcustno());  

  } 

  else  if (prefCust  != null)  

  { 

   System.out.println("Pref  Customer");  

   System.out.println("assets:   " + prefCust.getAssets());  

   System.out.println("cust  code:   " + prefCust.getPcustcode());  

   System.out.println("cust  no:   " + prefCust.getPcustno());

 

Create  a J2C application  for a CICS transaction  containing  multiple possible  outputs  9



} 

  else  if (badCust  != null)  

  { 

   System.out.println("Bad  Customer");  

   System.out.println("amount:   " + badCust.getAmount());  

   System.out.println("cust  code:   " + badCust.getBcustcode());  

   System.out.println("cust  no:   " + badCust.getBcustno());  

   System.out.println("days  overdue:   " + badCust.getDaysoverdue());  

  } 

  else  

   System.out.println("No  match");  

 } 

 catch  (Exception  exc)  

 { 

  System.out.println  (exc);  

  exc.printStackTrace();  

 } 

  

 } 

  

 public  static  void  testPrefCust()  

 { 

    System.out.println("===========testPreCust==============");  

 try  { 

  InputComm  input  = new  InputComm();  

  String  prefC  = "12345";  

  input.setICustNo  (prefC);  

  process(input);  

 } 

 catch  (Exception  exc)  

 { 

  System.out.println  (exc);  

  exc.printStackTrace();  

 } 

  

  

 } 

  

 public  static  void  testRegCust()  

 { 

    System.out.println("===========testRegCust==============");  

 try  { 

  InputComm  input  = new  InputComm();  

  String  regC  = "34567";  

  input.setICustNo  (regC);  

  process(input);  

 } 

 catch  (Exception  exc)  

 { 

  System.out.println  (exc);  

  exc.printStackTrace();  

 } 

  

 } 

  

 public  static  void  testBadCust()  

 { 

  

  System.out.println("===========testBadCust==============");  

 try  { 

  

  InputComm  input  = new  InputComm();  

  String  badC  = "123";  

  input.setICustNo  (badC);  

  process(input);  

  

 }

 

10 Build a J2C application  for a CICS  COBOL  copybook:  Multiple  possible  output



catch  (Exception  exc)  

 { 

  System.out.println  (exc);  

  exc.printStackTrace();  

 } 

 } 

  

  

 public  static  void  main  (String[]  args)  

 { 

  testPrefCust();  

  testRegCust();  

  testBadCust();  

  

 } 

} 

6.   Next  you  will  test  the  application  

7.   Right-click  TestECIMPO.java  and  select  Run  as>  Java  Application. 

8.   The  console  should  display  the  following  output:  

   

Congratulations!  You have  completed  the  CICS  Taderc25  tutorial.  

 

Create  a J2C application  for a CICS transaction  containing  multiple possible outputs  11



Create a J2C application for a CICS transaction containing multiple 

possible outputs summary 

This  tutorial  has  taught  you  how  to  use  the  J2C  Java  Bean  wizard  to build  a simple  web  application  that  

processes  a CICS  transaction  with  multiple  possible  outputs.  

Lessons learned 

From  this  tutorial,  you  have  learned  how  to  

v   Use  the  J2C  Java  bean  wizard  to  create  a J2C  application  that  interfaces  with  a CICS  transaction  using  

an  External  Call  Interface  (ECI).  

v   Create  a Java  method,  getCustomerInfo, which  accepts  a customer  number.  Depending  on  the  

customer’s  classification,  preferred  customer,  regular  customer  or  bad  customer,  the  program  returns  

different  output  information  about  the  customer  

v   Create  a test  Java  class  to  test  the  application.  

v   

 

12 Build a J2C application  for a CICS  COBOL  copybook:  Multiple  possible  output


	Contents
	Create a J2C application for a CICS transaction containing multiple possible outputs
	Create a J2C application for a CICS transaction containing multiple possible outputs introduction
	Lesson 1.1: Select a resource adapter
	Lesson 1.2: Set up a Web project and Java interface and implementations
	Lesson 1.3: Create a Java method
	Lesson 1.4: Deploy your application
	Create a J2C application for a CICS transaction containing multiple possible outputs summary


