
Build  a rich Java  client that  uses  a Web 

service 

   

���



ii Build  a rich Java client that uses a Web  service



Contents  

Build a rich Java client that uses a Web 

service  . . . . . . . . . . . . . . . 1 

Introduction:  Build  a rich  Java  client  that  uses  a Web 

service   . . . . . . . . . . . . . . . . 1 

Module  1: Design  the  client  GUI  in the  visual  editor  3 

Lesson  1.1:  Set  up  the  Java  project   . . . . . . 3 

Lesson  1.2:  Add  and  lay  out  the  employees  table   . 4 

Lesson  1.3:  Run  the  visual  class   . . . . . . . 8  

Module  2: Bind  visual  components  to the  Web 

service   . . . . . . . . . . . . . . . . 10 

Lesson  2.1:  Install  and  deploy  the  Web service  . . 10  

Lesson  2.2:  Bind  the  employees  table  to  the Web 

service  data  source   . . . . . . . . . . . 12 

Lesson  2.3: Bind  the  detail  fields  to the  table  

selection   . . . . . . . . . . . . . . 17 

Lesson  2.4: Bind  the  Update  button  to  an action  

binder   . . . . . . . . . . . . . . . 21  

Lesson  2.5: Enable  the  Delete  button  and  

confirmation  dialog  box   . . . . . . . . . 23 

Lesson  2.6: Set up  actions  and  bindings  for 

adding  a new  employee   . . . . . . . . . 25 

Lesson  2.7: Program  the  Cancel  button  behavior  30 

Lesson  2.8: Set up  a filter  on the  employees  table  30 

Summary:  Build  a rich  Java  client  that  uses  a Web 

service   . . . . . . . . . . . . . . . . 31

 

  iii



iv Build  a rich Java client that uses a Web  service



Build  a rich  Java  client  that  uses  a Web service  

This  tutorial  teaches  you  how  to  use  the  Java  visual  editor  to build  a rich  Java  client  that  connects  to  a 

Web service.  The  client  that  you  build  in  the  tutorial  is called  My  Company  Directory.  

My  Company  Directory  is a Java  application  that  is used  to  maintain  a company’s  employee  directory.  

The  application  connects  to  a sample  Web service  that  provides  methods  for  creating,  retrieving,  

updating,  and  deleting  employee  records  

The  client  is built  visually  in  the  Java  visual  editor  using  Swing  components.  The  Java  visual  editor  

provides  a set  of  helper  classes  (data  sources,  data  objects,  and  binders)  or  connecting  to  and  working  

with  the  Web service.  The  Web service  is  deployed  locally  on  your  own  installation  of IBM  WebSphere  

Application  Server  v6.0,  and  the  tools  help  you  generate  a Java  proxy  for  your  client  based  on  a Web 

Services  Description  Language  (WSDL)  file.  

See  the  finished  product  

Learning objectives 

In  this  tutorial,  you  will  learn  the  following  lessons:  

v   How  to  use  the  Java  visual  editor  to  design  and  layout  a user  interface  

v   How  to  bind  interface  elements  to  data  objects  and  a Web service

Time required 

2 hours  and  15  minutes  

   Related  information  

   View  the  PDF  version  

   Tutorial:  Hello  World  Java

Introduction: Build a rich Java client that uses a Web  service 

The  graphical  user  interface  (GUI)  for  the  client  was  mostly  prebuilt  for  you  visually  using  Swing  

components.  In  the  first  module,  you  will  finish  laying  out  the  essential  GUI  components  by  using  the  

Java  visual  editor.  In  the  second  module,  you  will  bind  the  GUI  components  to  the  Web service  data  

source,  services,  and  objects  returned  by  the  data  source.  When  building  the  application  in  the  Java  visual  

editor,  you  will  use  data  sources,  data  objects,  and  binders,  which  are  instances  of helper  classes  that  are  

generated  by  the  Java  visual  editor  and  used  by  your  application.  

 

  1

JavaScript:linkTutorial('com.ibm.etools.hwjava.tutorial.doc/topics/hwj_abstract.html')


See  a picture  of  the  finished  product:  

   

Learning objectives 

In  this  tutorial,  you  will  learn  how  the  following  lessons:  

v   How  to  use  the  Java  visual  editor  to  design  and  layout  a user  interface  

v   How  to  bind  interface  elements  to  data  objects  and  a Web service

Time required 

To complete  the  entire  tutorial,  you  will  need  approximately  2 hours  and  30  minutes.  

System requirements 

v   WebSphere  Application  Server  v6.1.  This  server  may  already  be  installed  with  your  product,  or  you  can  

use  your  own  standalone  installation.  The  scenario  in this  tutorial  asks  you  to  deploy  a sample  Web 

service  on  the  WebSphere  Application  Server  that  is running  locally.

The  sample  Web service  may  run on  other  servers,  but  this  tutorial  has  only  been  tested  with  WebSphere  

Application  Server  v6.0  and  v6.1.  

Prerequisites 

You should  be  familiar  with  the  following  concepts:  

v   Basic  Java  development  

v   Basic  Web service  principles  

v   Basic  workbench  skills,  such  as  working  with  projects  and  navigating  perspectives  and  views

 

2 Build a rich Java client that uses a Web  service



Module 1: Design the client GUI in the visual editor 

This  module  teaches  you  how  to  use  the  Java  Visual  Editor  to  add  a visual  component  to  an  application  

then  visually  lay  it out  and  set  arrangement  constraints.  The  final  lesson  of  this  module  shows  you  how  

to  run the  Java  file  to  see  how  it will  look  as an  actual  application.  

Remember:  Before  beginning  this  module,  you  should  have  the  prerequisite  knowledge  outlined  in  the  

tutorial  introduction.  

Learning objectives 

After  completing  the  lessons  in  this  module  you  will  know  understand  the  concepts  and  know  how  to  do  

the  following:  

v   Add  and  layout  a JTable  in  a Java  interface  

v   Run  a visual  class  to  test  your  work

Time required 

This  module  will  take  approximately  15  minutes  to complete.  

Lesson 1.1: Set up the Java project 

In  this  lesson,  you  will  set  up  the  MyDirectory  project  by  importing  a project  into  your  workspace.  The  

project  includes  a single  Java  class,  as well  as  other  files  that  will  be  used  later. 

Because  the  main  focus  of  this  tutorial  is binding  visual  components  to  a Web service,  most  of the  Java  

GUI  for  the  ″My  Company  Directory″ application  has  been  designed  for  you  already.  

The  MyDirectory  project  is  the  main  Java  project  that  you  will  work  with  in this  tutorial.  It  contains  your  

DirectoryApp.java  file,  which  is the  Java  file  that  contains  the  main  Java  application  that  you  are  

building.  This  tutorial  includes  several  versions  of  the  MyDirectory  project  to help  you:  one  for  the  start  

of each  module  and  a finished  version  of  the  completed  project.  

1.   Import  the  MyDirectory  project.  

2.   In  the  Package  Explorer  of  the  Java  perspective,  make  sure  that  your  MyDirectory  project  looks  like  

the  following  image:  

  

Lesson checkpoint 

In  this  lesson  you  imported  the  example  MyDirectory  project,  which  acts  as  the  starting  point  for  this  

tutorial.  

The  MyDirectory  project  includes  the  following  resources:  

v   DirectoryApp.java:  A  Java  file  that  contains  the  application  that  you  are  developing  in  this  tutorial.  The  

DirectoryApp.java  file  is  in  a Java  package  named  directory.client.  

v   EmployeeDirectory.ear:  An  enterprise  application  that  contains  the  sample  Web service.  In  Module  2, 

you  will  deploy  this  Web service  on  a local  installation  of WebSphere  Application  Server  v6.0.  

 

Build a rich Java client that uses a Web  service 3

javascript:importPISample('MyDirectory_pi_1+com.ibm.etools.jve.tutorial.doc.MyDirectory_pi_1')


v   EmployeeDirectory.wsdl:  An  XML  file  that  uses  the  Web Services  Description  Language  (WSDL)  to 

describe  the  sample  Web service  that  you  will  deploy.  In  Module  2,  you  will  use  this  WSDL  file  to  

generate  a Java  proxy  for  your  application  to use.

Lesson 1.2: Add and lay out the employees table 

In  this  lesson,  you  will  use  the  Java  visual  editor  to  add  a JScrollPane  and  a JTable  to  the  application.  In  

later  exercises,  you  will  program  the  JTable  to  get  its  data  from  a Web service  that  returns  a list  of  all the  

employees  in the  company  directory.  

After  you  add  the  JTable,  you  will  use  the  design  view  of  the  Java  visual  editor  to  customize  the  layout  

of  the  JTable  to  match  the  following  specifications:  

v   Span  the  JTable  across  three  cells  horizontally  and  two  cells  vertically  

v   Add  a left  inset  of  15  pixels  

v   Rename  the  JTable to  employeesTable.

Show  Me  

Open the DirectoryApp.java file in the Java visual editor 

To open  the  DirectoryApp.java  file  in  the  Java  visual  editor:  

1.   In  the  Package  Explorer  view  of  the  Java  perspective,  expand  the  MyDirectory  project  and  the  

directory.client  package.  

2.   Right-click  the  DirectoryApp.java  file,  and  select  Open  With  → Visual  Editor. The  Java  visual  editor  

loads  the  Java  class  and  displays  the  design  on  the  graphical  canvas  area.  

Tip:   

v   To change  the  look  and  feel  used  by  the  Java  visual  editor,  go  to  Window  → Preferences  → Java  → 

Visual  Editor  and  specify  a Swing  look  and  feel.  The  preference  will  take  effect  the  next  time  you  open  

the  class.  This  tutorial  uses  the  Windows  look  and  feel.  

v   To make  the  Visual  Editor  the  default  editor  for  all  Java  files,  you  can  click  Window  → Preferences  and  

go  to  the  Workbench  → File  Associations  page  to  define  your  preference.

Add a JTable on a JScrollPane 

The  main  window  of  DirectoryApp.java  uses  a JFrame  with  a JPanel  for  its  main  content  pane.  The  

JPanel  in  our  application  is  named  jContentPane.  The  jContentPane  was  set  to  use  a type  of  layout  

manager  called  GridBagLayout.  The  GridBagLayout  is a powerful  layout  scheme  based  on  a grid  of  cells  

that  can  be  occupied  by  visual  components.  The  Java  visual  editor  makes  it  easy  to  work  with  

GridBagLayout  by  showing  the  grid  borders.  It also  shows  placement  markers  when  you  drop  new  

components  onto  the  grid,  and  it  shows  handles  on  components  that  you  are  resizing  or  moving  on  the  

GridBagLayout.  

To add  the  employees  table  (a  javax.swing.JTable)  to the  DirectoryApp.java  user  interface:  

1.   Right-click  the  jContentPane  in the  design  view  or  Java  Beans  view, and  select  Show  Grid. A  red  

dotted  line  shows  the  grid  border,  and  blue  circles  with  numbers  indicate  the  row  and  column  

numbers.  For  example,  notice  that  the  New  button  occupies  the  cell  at row  1 (grid  y)  and  column  3 

(grid  x).  

   

2.   In  the  Java  visual  editor  palette,  select  the  JTable  on  JScrollPane  

   

Swing  component,  which  is 

categorized  under  the  Swing  components  drawer  of the  palette.  

 

4 Build a rich Java client that uses a Web  service



Tip:  By  default,  the  palette  is  collapsed  on  the  right  side  of  the  design  area.  You can  resize  and  move  

the  palette.  

3.   Move  your  mouse  pointer  over  the  cell  in the  grid  at column  0,  row  1:  

   

v   As  you  move  your  mouse  pointer  over  the  grid,  the  mouse  pointer  shows  two  numbered  squares  

that  tell  you  the  x and  y coordinates  in the  grid  based  on  the  location  of your  mouse  pointer.  

v   If you  hover  your  mouse  pointer  directly  on  a grid  border,  new  rows  and  columns  can  be  created,  

and  existing  rows  and  columns  will  be  renumbered.  In  this  case,  yellow  squares  on  the  mouse  

pointer,  yellow  bars  between  the  grids,  and  yellow  column  and  row  labels  indicate  this  behavior  

and  point  out  the  impact  that  the  placement  will  have.
4.   Left-click  to  drop  the  JScrollPane  and  JTable  into  the  cell  at column  0 and  row  1:  

  

Span the JScrollPane and JTable across multiple columns and rows of the grid 

Now  you  need  to  make  your  JScrollPane  (and  its  child  JTable)  span  three  columns  and  two  rows  for  

better  spacing  and  resizing  behavior.  To make  the  table  span  the  columns  and  rows:  

1.   Select  the  JScrollPane  in  the  design  area  or  Java  Beans  view  (it  should  still  be  selected  because  you  

just  added  it).  Notice  the  small  green  squares  on  the  right  and  bottom  of  the  JScrollPane.  You will  use  

these  resize  handles  to  drag  the  JScrollPane  to  span  multiple  columns  and  rows.  

2.   Click  and  hold  down  your  left  mouse  button  on  the  green  handle  on  the  right  side  of  the  JScrollPane.  

3.   Drag  your  mouse  pointer  to  the  right  until  the  placement  indicates  column  2,  row  1. A  dark  gray  

shadow  will  also  indicate  the  cells  that  the  component  will  occupy  when  you  release  the  mouse  

button.  

   

4.   Release  the  mouse  button.  The  JScrollPane  now  spans  the  three  columns.  

5.   Repeat  the  similar  process  to  drag  the  bottom  handle  of  the  JScrollPane  until  the  JScrollPane  spans  

into  row  2:  

 

Build a rich Java client that uses a Web  service 5



Customize the spacing of the JScrollPane within the GridBag 

Another  feature  of  the  GridBagLayout  manager  is that  you  can  specify  various  constraints  to  further  

customize  the  layout.  For  example,  you  can  specify  the  following  constraints:  

v   anchor:  A component  can  be  given  an  anchor  orientation  within  its  cell,  which  will  affect  how  the  

component  moves  as  the  application  is  resized  by  a user. For  example,  a component  could  be  anchored  

at  top-left,  middle-left,  center,  or  bottom-right.  

v   fill:  A component  can  be  told  to  occupy  all  available  space  within  its  cell  or  cells  either  horizontally,  

vertically,  or  both.  

v   insets:  A  component  can  be  given  its  own  padding  on  the  top,  bottom,  left,  and  right  side  to  provide  

spacing  between  the  component  and  the  edge  of the  grid.

To  customize  the  anchor,  fill,  and  insets  for  the  JScrollPane:  

1.   Right-click  the  JScrollPane  in the  design  view  or  Java  Beans  view, and  select  Customize  Layout. 

  

Tip:  The  Customize  Layout  dialog  box  can  remain  open  as you  select  and  change  the  layout  for  

different  components.  You can  open  the  Customize  Layout  dialog  box  at any  time  by  clicking  the  

Customize  Layout  button  in  the  menu  bar:  

  

 

2.   On  the  Component  tab  of  the  Customize  Layout  dialog  box,  make  sure  that  the  Anchor  center  button  

is pressed.  

3.   Make  sure  that  both  the  Fill  horizontal  and  Fill  vertical  buttons  are  pressed.  

4.   Add  a left  inset  of  15  (pixels)  to  make  the  spacing  on  the  left  side  of the  JScrollPane  similar  to  the  

other  visual  components  on  the  application.  

 

6 Build a rich Java client that uses a Web  service



The  table  now  aligns  with  the  Filter  label,  for  example.  

  

Rename the new JTable to a useful value and set it to select a single row 

Because  you  will  later  work  with  the  table,  it will  be  useful  for  you  to  rename  the  JTable  instance  and  its  

getter  method.  To rename  the  table:  

1.   In  the  Java  Beans  view, right-click  the  jTable component  and  select  Rename  field  from  the  pop-up  

menu.  

   

2.   Type employeesTable  and  click  OK. The  JTable  is now  named  employeesTable,  and  the  method  for  

instantiating  it  is  getEmployeesTable.  

3.   Set  the  table  to  allow  only  a single  row  to  be  selected:  

a.   Select  the  employeesTable  in  the  design  view. 

b.   In  the  Properties  view, select  the  selectionMode  property  and  set  it to  SINGLE_SELECTION.  

 

Build a rich Java client that uses a Web  service 7



c.   Save  the  DirectoryApp.java  file.

Lesson checkpoint 

In  this  lesson  you  learned  how  to  use  the  visual  editor  to add  a table  to  an  existing  user  interface.  Then  

you  learned  how  to  customize  its  layout,  positioning,  and  spacing.  

Lesson 1.3: Run the visual class 

Now  you  are  ready  to  run the  Java  application  to  preview  its  appearance.  The  workbench  and  visual  

editor  make  it  very  easy  to  quickly  run your  application,  and  you  can  repeat  these  steps  at any  time  in  

your  development  to  test  the  actual  run-time  appearance  and  behavior  of  the  class.  

Show  Me  

The  Java  visual  editor  provides  a Java  Bean  launcher  that  is  capable  of  running  classes  with  no  main()  

method.  When  it runs the  visual  class,  it launches  the  application  in  a separate  virtual  machine  (VM).  If 

you  run a visual  class  as  a Java  application,  the  launcher  attempts  to execute  the  main()  method  in  the  

class.  For  this  tutorial,  your  application  includes  a main()  method  that  invokes  and  shows  the  

DirectoryApp  JFrame,  so  you  can  run it as an  application  or  as a Java  bean.  

To run the  DirectoryApp.java  file  as  a Java  bean:  

1.   Make  sure  that  your  DirectoryApp.java  file  is open  in  the  Java  visual  editor.  

2.   From  the  menu  bar, click  Run  → Run  As  → Java  Bean. 

  

Tip:  The  application  opens  on  your  desktop  using  the  Swing  look  and  feel  that  you  have  defined  in 

your  Visual  Editor  preferences  (Window  → Preferences  → Java  → Visual  Editor). Alternatively,  you  can  

click  Run  → Run, and  define  the  look  and  feel  for  the  particular  launch  configuration  for  launching  

this  Java  bean.  If  you  run this  application  as an  application  rather  than  a bean,  it will  also  use  the  

Windows  look  and  feel  because  it  is  defined  in  the  main()  method.  The  screen  shots  used  in  this  

tutorial  show  the  Windows  look  and  feel.

 

8 Build a rich Java client that uses a Web  service



Lesson checkpoint 

Because  you  have  only  designed  the  interface  but  have  not  programmed  any  data  connection  or  event  

functionality,  you  cannot  do  anything  with  your  application.  However,  you  can  see  the  basic  layout  and  

appearance  as  it will  look  to  a user. You can  try  clicking  some  of  the  buttons,  but  you  will  notice  that  

they  do  nothing.  The  File  menu  and  Help  menus,  however,  are  already  implemented  for  you.  You can  try  

them  to  see  what  they  do,  and  you  can  inspect  the  Java  code  to  see  how  they  are  implemented  with  

actionPerformed  events.  

Lessons learned 

This  module  introduced  you  to  designing  the  interface  for  a rich  client  using  the  Java  visual  editor.  

Beyond  designing  the  visual  appearance  of a client,  however,  there  is much  more  that  you  need  to  do  to  

actually  make  the  client  useful.  You will  typically  need  to include  event  behavior  or  other  logic  and,  in 

this  case,  the  binding  of  the  visual  elements  to a data  source  of some  sort.  

In  this  module,  you  learned  how  to  perform  the  following  tasks:  

v   Import  a Java  project  using  Project  Interchange  import  

v   Add  a JTable  on  a JScrollPane  to  your  visual  class  

v   Use  the  GridBagLayout  manager  to  visually  lay  out  the  table  on  the  rich  client  

v   Run  the  application  to  see  the  actual  appearance  of the  rich  Java  client

In  the  next  module,  Module  2: Bind  visual  components  to  the  Web service,  you  will  take  the  simple  My  

Company  Directory  interface  and  turn  it into  a powerful  rich  client  that  accesses  Web service  methods  for  

creating,  retrieving,  updating,  and  deleting  employee  records  from  a company  directory.  

 

Build a rich Java client that uses a Web  service 9



Module 2: Bind visual components to the Web  service 

This  module  teaches  you  how  to  bind  the  visual  elements  of  My  Company  Directory  (the  buttons,  the  

employee  table,  fields,  and  other  actions)  to  a Web service.  The  Web service  provides  the  real  

functionality  to  create,  retrieve,  update,  and  delete  employees  from  the  sample  directory.  

Learning objectives 

After  completing  the  lessons  in  this  module  you  will  know  understand  the  concepts  and  know  how  to do  

the  following:  

v   Bind  a table  to  a data  Web service  data  source  

v   Bind  fields  to  objects  

v   Program  buttons  with  actions

This  module  will  take  approximately  2 hours  to  complete.  

Lesson 2.1: Install and deploy the Web  service 

In  this  exercise,  you  will  install  a sample  enterprise  application  (EAR)  file  onto  WebSphere  Application  

Server  v6.1  and  deploy  the  EmployeeDirectory  Web service.  Your application  will  use  this  Web service  to  

create,  read,  update,  and  delete  employee  records.  

Before  you  begin,  you  must  complete  one  of  the  following  options  to  make  sure  that  your  MyDirectory  

project  is at  the  proper  starting  point:  

v   Complete  “Module  1: Design  the  client  GUI  in  the  visual  editor”  on  page  3.  

or  

v   Import  the  MyDirectory  project  at  Module  2 starting  point

Tip:  Unless  you  specify  a different  project  name  during  import,  this  will  overwrite  your  MyDirectory  

project  contents.

Your  MyDirectory  Java  project  includes  an  EmployeeDirectory.ear  file.  You will  use  the  WebSphere  

Administrative  Console  to  install  the  EmployeeDirectory  enterprise  application  that  is contained  in  the  

EAR  file.  When  you  install  the  application,  you  also  deploy  the  Web service  included  in  the  application.  

The  finished  My  Company  Directory  application  uses  this  deployed  Web service.  

To install  the  sample  EmployeeDirectory  application  and  deploy  the  Web service  on  your  WebSphere  

Application  Server  v6.1  environment:  

1.   Start  an  instance  of  your  application  server  from  the  workbench.  There  are  several  different  ways  that  

you  can  launch  your  server,  but  these  steps  describe  how  to  do  it from  the  workbench:  

a.   Open  the  Servers  view. To add  the  Servers  view  to  the  Java  perspective,  click  Window  → Show  

view  → Other  and  select  Server  → Servers.  

b.   Tthe  Servers  view  lists  the  servers  that  are  installed  and  set  up.  

c.   Right-click  your  server  and  select  Start. When  the  Servers  view  shows  the  status  of the  server  as  

Started  or  the  console  says  Server  server1  open  for  e-business, the  server  is  successfully  started.  

You can  now  run the  Administrative  Console.

Note:   If there  is  no  server  instance  in  the  Servers  view, create  a new  server:  

a.   Right-click  in  the  Servers  view  and  select  New  → Server. 

b.   Use  the  New  Server  wizard  to  add  WebSphere  Application  Server  v6.1.
2.   Run  the  WebSphere  Administrative  Console.  Again,  there  are  other  ways  to run the  Administrative  

Console,  but  these  instructions  describe  how  to  do  it  from  the  workbench:  

 

10 Build a rich Java client  that uses a Web  service

javascript:importPISample('MyDirectory_pi_2+com.ibm.etools.jve.tutorial.doc.MyDirectory_pi_2')


a.   In  the  Servers  view, right-click  the  server  that  you  just  started,  and  select  Run  administrative  

console.  The  WebSphere  Administrative  Console  opens  in  a browser  window.  

b.   Enter  a user  ID  and  click  Log  in.  The  Welcome  page  of  the  Administrative  Console  opens.  The  

user  ID  that  you  enter  is only  used  to  track  user-specific  changes  to the  configuration  data  of the  

server.
3.   Use  the  Administrative  Console  to  install  the  EmployeeDirectory.ear  enterprise  application  that  is 

found  in  your  MyDirectory  project.  The  Administrative  Console  uses  a wizard  approach  to  help  you  

install  applications,  where  you  click  Next  to  move  from  page  to  page  until  all  options  are  set.  To 

install  the  sample  enterprise  application  that  contains  the  Web service  for  this  tutorial:  

a.   On  the  left  side  of  the  Adminstrative  Console,  expand  the  Applications  menu  option,  and  click  

Install  New  Application. 

b.   Select  Local  file  system  and  in  the  Specify  path  field  enter  the  full  path  to the  

EmployeeDirectory.ear  file  that  is  in  your  MyDirectory  project.  Tip: To get  the  full  path,  right-click  

on  the  EmployeeDirectory.ear  file  in  the  Package  Explorer  and  select  Properties. The  Properties  

page  lists  the  location  of  the  file,  which  you  can  copy  and  paste  into  the  Specify  path  field.  

c.   Click  Next  until  you  reach  the  Select  installation  options  page.  

d.   Select  Deploy  Web services. 

e.   Click  Next  until  you  reach  the  Summary  page,  then  click  Finish. 

f.   Click  the  Save  to  Master  Configuration  link  when  you  are  prompted  to apply  the  changes  that  

you  have  made  to  your  local  configuration.  Review  the  changes  and  click  the  Save  button.
4.   Use  the  Administrative  Console  to  start  the  EmployeeDirectory  application:  

a.   Click  Applications  → Enterprise  Applications. The  EmployeeDirectory  application  is listed  as  an  

installed  application  on  the  server,  but  its  status  is Stopped.  

   

b.   Select  the  check  box  next  to  EmployeeDirectory  and  click  Start. A  message  indicates  that  the  

EmployeeDirectory  application  started  successfully,  and  the  Status  icon  changes  to the  green  

arrow.  

The  EmployeeDirectory  application  is  now  running  on  localhost  at port  9080,  and  the  Web service  can  

now  be  accessed.  After  you  complete  this  tutorial,  you  can  go  back  to the  Administrative  Console,  stop  

the  EmployeeDirectory  application,  then  uninstall  it.  

If you  open  the  EmployeeDirectory.wsdl  file  found  in  your  MyDirectory  project  (it  should  open  in  the  

graphical  WSDL  Editor  by  default),  you  can  examine  the  Web service  that  you  just  deployed.  If the  

WSDL  file  does  not  open  in  the  WSDL  Editor,  the  Web Service  Developer  capability  might  not  be  turned  

on  in  the  workbench.  You can  specify  workbench  capabilities  in  the  Preferences  (Window  → Preferences  → 

Workbench  → Capabilities). 

The  following  image  from  the  WSDL  editor  shows  the  operations  available  in  the  EmployeeDirectory  

service:  

 

Build a rich Java client that uses a Web  service 11



You can  use  the  WSDL  editor  to  examine  each  operation  and  its  corresponding  request  messages  and  

return  messages.  This  can  help  you  understand  the  Web service  and  how  it is  used  in  the  remaining  

exercises.  

Lesson 2.2: Bind the employees table to the Web  service data source 

The  My  Company  Directory  application  displays  a list  of  all  current  employee  records  in  the  directory.  

The  records  are  displayed  in  a JTable  (employeesTable)  with  sortable  columns,  including  last  name,  first  

name,  email,  and  employee  ID.  In order  to  get  the  records  for  the  table,  you  need  to bind  the  

employeesTable  to  a data  object  that  is returned  by  the  sample  Web service  data  source.  

Show  Me  

Overview of data objects, data sources, and binders 

In  order  to  get  a local  data  object  for  the  employeesTable  to work  with,  you  will  use  the  visual  editor  to  

add  a data  source  to  your  application.  The  data  source  connects  to  the  sample  Web service  proxy  and  

discovers  the  service  methods  available  to  your  application.  You will  then  choose  the  

getLightEmployeeRecord  service  method  that  is made  available  from  the  data  source.  Finally,  you  will  

bind  the  employeesTable  in  your  application  to the  fields  that  are  returned  in  the  row  data  object  

(lightEmployeeRecordRows).  

You can  create  all  of  these  data  sources  and  data  objects  quickly  and  easily  by  using  the  Java  visual  

editor’s  built-in  binder  classes.  The  visual  editor  provides  a set  of generic  interfaces  and  classes  that  are  

generated  into  your  project  as  you  bind  visual  components  to  data  factories.  The  binder  classes  are  

generated  by  default  into  a package  named  jve.generated.  The  visual  editor  provides  the  binder  classes  as  

a generic  implementation  that  you  can  further  customize  and  enhance  to meet  your  application’s  needs.  

This  tutorial  demonstrates  the  power  and  flexibility  of even  a basic  and  simple  use  of the  default  binder  

classes.  

Important:  Before  you  begin  this  exercise,  it  is highly  recommended  that  you  read  the  following  help  

topics.  These  topics  can  help  you  learn  more  about  the  functionality  and  logic  behind  the  data  objects,  

data  sources,  and  binders  provided  by  the  Java  visual  editor:  

v   Data  binders  overview  

v   Binder  API  reference

For  this  tutorial,  you  will  use  a Web service  data  source,  several  types  of  data  objects,  and  several  types  

of  binders  in  your  application.  When  you  add  instances  of these  objects  to  your  application,  the  visual  

editor  adds  the  necessary  classes  into  the  jve.generated  package  in  your  project,  where  you  could  extend,  

replace,  or  rewrite  the  data  binding  logic.  The  Java  visual  editor  provides  visual  support  for  the  binding  

objects  by  showing  on  the  free-form  area  of  the  design  view  the  data  objects,  data  sources,  and  binders  

that  your  application  is  using.  The  visual  editor  draws  lines  between  visual  components  and  the  data  

objects  and  data  sources  to  show  the  current  bindings  for  any  selected  object.  

The  following  diagram  is a simple  overview  of how  visual  components,  binders,  data  objects,  and  data  

sources  interact.  The  application  that  you  build  in  this  tutorial  illustrates  a slightly  more  complex  and  

creative  use  of  the  binders.  This  diagram  does  not  represent  exactly  the  binders,  data  objects,  and  data  

sources  in  the  sample  application  that  you  are  building.  

 

12 Build a rich Java client  that uses a Web  service



In  Figure  1, each  visual  component  has  its  own  binder  that  associates  it with  a data  object  or, in  the  case  

of the  button,  a data  source.  The  binders  for  the  text  fields  bind  the  field  to  a particular  property  of the  

data  object.  Both  the  row  data  object  and  the  data  object  in this  diagram  get  their  data  from  direct  calls  to  

a service  on  the  data  source.  The  data  object  for  the  text  fields  uses  a key  value  from  the  selected  row  in  

the  table  as  its  argument  for  calling  Service2,  which  returns  a full  record  that  presumably  includes  more  

information  about  the  selected  row  in  the  table.  This  full  record,  in  turn,  is used  as  the  argument  for  the  

button’s  action  binder  when  it calls  Service3,  which  could  be  a method  that  updates  the  values  entered  in 

the  fields.  For  more  detailed  explanations  of  the  data  objects,  data  binders,  and  data  sources,  follow  the  

links  provided  earlier.  

Generate a Web service Java proxy in your project using the provided WSDL file 

In  order  to  work  with  the  Web service  running  on  a server,  your  Java  application  requires  a Java  proxy,  

or  client,  to  interact  with  it.  Using  a WSDL  file,  you  can  generate  a Java  proxy  into  your  Java  project  

using  the  Web Service  Client  wizard.  Your MyDirectory  project  includes  the  EmployeeDirectory.wsdl  file  

that  you  will  use  to  generate  this  proxy.  After  you  generate  the  Java  proxy,  you  can  create  a data  source  

that  represents  the  Web service  and  begin  binding  visual  components.  

Important:  The  WSDL  file  that  is  used  in  this  exercise  assumes  that  you  deployed  the  Web service  on  a 

local  installation  of  WebSphere  Application  Server  and  used  the  default  port  for  localhost  

(http://localhost:9080).  If  you  deployed  the  EAR  file  differently,  you  must  edit  the  WSDL  file  accordingly  

before  you  proceed.  

To generate  the  Web service  Java  proxy  in  your  project:  

1.   On  the  main  menu,  click  File  → New  → Other  and  select  the  Web Services  → Web Service  Client  

wizard.  If  the  Web Services  category  is not  showing,  select  Show  all  wizards.  

2.   Use  the  wizard  to  define  the  Web service  client:  

  

Figure  1. This  diagram  illustrates  a sample  relationship  between  visual  components,  binders,  data  objects,  and  data  

sources

 

Build a rich Java client that uses a Web  service 13



a.   For  the  Service  definition, enter  the  WSDL  file  that  is provided  in  your  MyDirectory  project:  

/MyDirectory/EmployeeDirectory.wsdl  

b.   In  the  Client  type  field,  select  Java  proxy. 

c.   Set  the  slider  bar  to  Deploy  client. 

d.   Make  sure  the  server  is and  Web service  runtime  are  set  properly  for  the  server  you  are  running.  

This  tutorial  has  been  tested  against  WebSphere  v6.0  and  WebSphere  v6.1  with  the  IBM  

WebSphere  JAX-RPC  runtime.  

e.   Make  sure  the  Java  proxy  client  is  output  to  the  MyDirectory  project.
   

3.   Click  Finish. The  Web Service  Client  wizard  generates  the  Java  proxy  in  a new  package  

(directory.service)  in your  project.

Bind the employeesTable to a row data object returned by the Web service 

Because  the  employeesTable  is  the  first  visual  component  that  you  are  binding  in  this  application,  you  

need  to  create  a data  source  that  points  to  the  sample  Web service  proxy  that  you  just  added  to  your  

project.  When  you  bind  other  visual  components  in  later  exercises,  you  will  reuse  this  data  source.  In  this  

step,  you  add  the  Web service  data  source  and  the  lightEmployeeRecordRows  data  object.  

To bind  the  employees  table:  

1.   In  the  Java  Beans  view  or  design  view, select  the  employeesTable.  (Make  sure  that  you  do  not  select  

its  JScrollPane  parent.)  A  small  tab  labeled  Bind  shows  on  the  top  of the  employeesTable  in the  design  

area.  

 

14 Build a rich Java client  that uses a Web  service



2.   Click  the  Bind  tab  on  the  employeesTable.  Alternatively,  you  can  right-click  the  employeesTable  and  

select  Binding  Properties. 

3.   Because  there  are  no  data  objects  in  your  application,  you  need  to  add  a new  one.  Click  New  Data  

Source  Data  Object. 

4.   In  the  Source  type  field,  select  Web service. 

5.   Because  you  have  not  yet  added  the  Web service  data  source  to  your  application,  you  need  to  add  it 

now. Next  to  the  Data  source  field,  click  the  ... button  to open  the  Add  Web Service  Data  Source  

dialog  box,  which  looks  for  available  Web service  clients,  or  proxies,  in  your  project.  

6.   Select  the  EmployeeDirectory  Web service  and  click  Finish.  A  new  data  source  is added  to  the  

DirectoryApp.java  file.  

   

7.   On  the  New  Data  Source  Data  Object  dialog  box,  select  getLightEmployeeRecords()  in  the  Source  

service  field,  and  accept  the  default  name  for  the  new  data  object:  lightEmployeeRecordRows.  No  

parameters  are  needed  for  this  service  method.  Click  OK.  The  new  data  object  is  created  and  

displayed  on  the  free-form  area  of  the  design  view. 

 

Build a rich Java client that uses a Web  service 15



Tip:  Because  you  are  binding  a table,  the  New  Data  Source  Data  Object  dialog  box  only  displays  

services  that  return  row  data  objects.  In  this  case,  the  getLightEmployeeRecords()  method  is the  only  

service  available  that  returns  an  array  of  objects.  

8.   On  the  Table  Data  Bindings  dialog  box,  select  the  lightEmployeeRecordRows  data  object.  

9.   Now, you  need  to  select  the  properties  of  the  lightEmployeeRecordRows  data  object  that  you  want  to  

display  on  employeesTable:  

   

a.   Click  the  double  arrow  

   

button  to  add  all  of the  object  properties  to the  Table  columns  list.  

b.   Use  the  up  and  down  arrows  to arrange  the  columns  in the  following  order, top  to bottom:  

lastName,  firstName,  email,  employeeID  

 

16 Build a rich Java client  that uses a Web  service



c.   Rename  the  column  titles:  Last  name, First  name, Email, Employee  ID  

Tip:  After  you  finish  binding  the  table,  you  can  always  go  back  to the  binding  properties  and  

rename  and  reorder  the  columns  at  any  time.  

d.   Click  OK. 

The  employeesTable  is  now  bound  to  the  lightEmployeeRecordRows  data  object  using  a 

JRowTableBinder.  If  you  click  the  lightEmployeeRecordRows  data  object  on  the  free-form  area,  the  visual  

editor  draws  a line  from  the  data  object  to  the  table.  On  the  line,  the  JRowTableBinder  is represented  by  

the  table  binder  

   

icon.  Another  line  indicates  that  the  data  object  uses  the  webServiceDataSource  as its  

data  source.  

   

Lesson checkpoint 

Notice  the  changes  to  your  project  and  application.  During  this  lesson  you  added  the  Web service  data  

source,  a row  data  object,  and  a binder  that  binds  the  employeesTable  to the  row  data  object.  

Examine  the  new  package  (jve.generated)  that  was  created  in  your  project  to  hold  all  of  the  binder  classes  

generated  by  the  Java  visual  editor.  Also  notice  the  new  package  (directory.service)  that  holds  the  Java  

proxy  for  the  Web service.Describe  or  summarize  what  was  learned  in  this  lesson.  

   

Now, when  you  run the  My  Company  Directory  application,  the  employees  table  is populated  by  the  

Web service  with  the  existing  employee  records.  

Lesson 2.3: Bind the detail fields to the table selection 

In  the  previous  exercise,  you  bound  the  employeesTable  to  the  lightEmployeeRecordRows  data  object  

returned  by  the  getLightEmployeeRecords()  service  in the  Web service.  Now  you  need  to  populate  the  

details  fields  based  on  the  employee  that  is selected  in  the  table.  

To get  the  extra  details  for  each  selected  employee,  another  data  object  is used.  The  

selectedEmployeeRecord  data  object  that  you  will  add  is  returned  by  the  getFullEmployeeRecord()  

service.  This  service  takes  the  ID  of  the  selected  employee  in  the  table  as  a parameter,  and  it  fetches  

additional  details  about  the  employee,  including  phone  number  and  work  location.  

The  JRowTableBinder  that  was  used  when  you  bound  the  table  to  the  row  data  object  simplifies  this  step.  

The  JRowTableBinder  exposes  the  selected  element  in the  table  as  a separate  data  object  that  can  be  used  

as  the  parameter  for  the  getFullEmployeeRecord(java.lang.Integer)  method.  You can  then  easily  bind  each  

of the  text  fields  to  its  corresponding  property  in the  selectedEmployeeRecord  data  object.  

 

Build a rich Java client that uses a Web  service 17



Learn  more  about  this  Web service:  The  Web service  includes  two  services  for  getting  all  the  details  of 

each  employee.  The  table  lists  all  employees,  and  only  a subset  of data  is displayed  in the  table.  Then,  

when  a single  employee  is  selected,  you  can  retrieve  the  rest  of  the  employee  information  for  that  

selected  employee  only.  If  the  Web service  sent  all  data  for  each  employee  when  the  table  requested  data,  

the  Web traffic  could  be  heavy  and  cause  slower  performance  of the  application.  

For  example,  if the  employee  record  included  a photo  or  an  attachment,  you  would  not  want  to retrieve  

all  photos  when  you  are  simply  getting  the  full  list  of employees.  So,  the  getLightEmployeeRecord  service  

is used  to  populate  the  table,  and  the  getFullEmployeeRecord  gets  the  full  record  for  the  employee  who  

is selected  in  the  table.  

Bind the Last name field 

In  this  step  you  will  bind  the  Last  name  field  to  the  lastName  property  in  the  selectedEmployeeRecord  

data  object:  

 1.   In  the  Java  Beans  view  or  the  design  view, select  the  JTextField  for  the  last  name  (lastNameField).  

The  design  area  shows  a Bind  tab  on  the  text  field.  

   

 2.   Click  the  Bind  tab  to  open  the  Field  Data  Bindings  dialog  box.  

 3.   Click  New  Data  Source  Data  Object. Although  the  existing  jRowTableBinder  data  object  does  return  

the  correct  last  name,  it does  not  include  the  full  employee  record.  You need  to  create  a new  data  

object  that  represents  the  full  employee  record.  

 4.   In  the  Source  type  field,  make  sure  that  Web Service  is selected,  and  for  Data  source  make  sure  that  

webServiceDataSource  is  selected.  

 5.   In  the  Source  service  list,  select  getFullEmployeeRecord(java.lang.Integer).  The  New  Data  Source  

Data  Object  dialog  box  lists  the  services  that  return  data  objects  that  are  compatible  with  a text  field.  

 6.   In  the  Name  field,  enter  selectedEmployeeRecord. 

 7.   In  the  Argument  field,  select  jRowTableBinder,  and  in  the  Property  field,  select  employeeID.  The  

employee  ID  of  the  selected  row  is now  set  to be  the  argument  for  the  getFullEmployeeRecord()  

service  method.  

Note:  The  getFullEmployeeRecord(java.lang.Integer)  requires  an  integer  as  an  argument.  You want  to  

use  the  employee  ID  of  the  current  selection  in  the  employees  table  to  retrieve  a full  record.  When  

you  bound  the  table,  the  visual  editor  automatically  generated  jRowTableBinder,  which  listens  for  the  

current  selection  on  the  employees  table.  For  the  integer  parameter,  you  will  use  the  employeeID  of  

the  selected  row  in jRowTableBinder.

 

18 Build a rich Java client  that uses a Web  service



8.   Click  OK. 

 9.   On  the  Field  Data  Bindings  dialog  box,  make  sure  that  selectedEmployeeRecord  is selected  in  the  

Data  objects  list.  Notice  that  there  are  more  available  properties  for  the  selectedEmployeeRecord  

data  object  than  for  the  jRowTableBinder  data  object.  

10.   In  the  Data  object  properties  list,  select  the  lastName  property.  

   

11.   Click  OK. The  last  name  field  in  your  application  is now  bound  to  the  lastName  property  of  the  

selectedEmployeeRecord  data  object,  which  is returned  by  getFullEmployeeRecord().  

A  new  data  object  named  selectedEmployeeRecord  is created  and  added  to  your  application.  A  

visual  representation  of  the  data  object  is added  to  the  free-form  area  of  the  design  view, as shown  in 

the  following  image:  

 

Build a rich Java client that uses a Web  service 19



Now, when  you  select  the  lastName  field  on  the  design  area,  a line  indicates  that  it is bound  to the  

selectedEmployeeRecord.  In  the  middle  of  the  line  the  text  binder  icon  represents  the  

SwingTextComponentBinder  that  is  used  for  this  binding.  If you  select  the  line  or  the  icon  

representing  the  binder  on  the  design  area,  you  can  examine  the  binder’s  properties  in the  Properties  

view.

Bind the remaining details fields 

To bind  each  of  the  remaining  details  fields  for  an  employee,  you  follow  a similar  process  as  the  last  

name  field,  but  you  do  not  need  to  add  the  data  object.  Because  you  already  added  the  

selectedEmployeeRecord  data  object,  you  can  simply  bind  each  field  to its  corresponding  property  in  the  

selectedEmployeeRecord  data  object.  

To bind  the  fields,  complete  the  following  steps  for  each  of  the  fields  in  the  Employee  details  section  of  

the  application:  

1.   Select  the  field  in  the  design  view, and  click  the  Bind  tab.  

2.   In  the  Field  Data  Bindings  dialog  box,  select  selectedEmployeeRecord  from  the  Data  objects  list.  

3.   In  the  Data  object  properties  list,  select  the  appropriate  property  for  the  field  that  you  are  binding.  

The  following  chart  shows  the  property  that  each  text  field  needs  to  be  bound  to:  

 Field  Property  in selectedEmployeeRecord  data  object  

lastNameField  lastName  

firstNameField  firstName  

idField  employeeID  

emailField  email  

phoneField  phoneNum  

officeField  location.office  

buildingField  location.building  

siteField  location.site
  

4.   Click  OK. 

When  you  finish  binding  the  text  fields,  the  design  area  should  look  like  the  following  image:  

   

 

20 Build a rich Java client  that uses a Web  service



Make the employee ID field read-only 

The  employee  ID  field  is  disabled  because  the  editable  property  on  the  field  is set  to false.  However,  the  

default  behavior  of  the  text  field  binder  changes  the  enabled  state  on  the  field  when  the  data  object  

contains  a value.  You can  turn  off  this  binder  behavior  so  that  the  field  will  remain  in its  initial  read-only  

state.  

To prevent  the  binder  from  automatically  switching  the  editable  property:  

1.   Select  the  Employee  ID  field.  A line  displays  on  the  design  area  with  an  icon  

   

representing  the  

binder  for  the  field.  

2.   Click  the  binder  

   

icon  for  the  Employee  ID  field.  

3.   In  the  Properties  view, change  the  autoEditable  property  to  false. Press  Enter.

Lesson checkpoint 

Now, when  you  run the  application  and  select  an  employee  from  the  table,  the  details  of  that  employee’s  

record  are  displayed  in  the  details  fields.  

Lesson 2.4: Bind the Update button to an action binder 

The  Java  visual  editor  provides  action  binders  for  calling  a service  on  a data  source  when  a button  is 

clicked.  For  example,  when  the  Update  button  is clicked,  the  application  should  run a modifyEmployee()  

method  on  the  Web service  with  the  changes  entered  into  the  details  fields.  In  this  lesson,  you  will  bind  

the  Update  button  to  an  action  binder.  

To bind  the  Update  button:  

 1.   Select  the  Update  button  in  the  design  area,  and  click  the  Bind  tab  to open  the  Component  Action  

Bindings  dialog  box.  

   

 2.   In  the  Source  type  field,  select  Web Service. 

 3.   In  the  Data  source  field,  select  webServiceDataSource. 

 4.   From  the  Source  service  list,  select  modifyEmployee(directory.service.FullEmployeeRecord). 

 5.   The  Name  field  automatically  changes  to modifyEmployeeAction. Accept  this  default.  

 6.   In  the  Argument  field,  select  selectedEmployeeRecord. 

 7.   Because  the  modifyEmployee()  method  takes  a full  employee  record  as  its  argument,  you  must  leave  

the  Property  field  blank.  

 8.   Set  the  Initial  state  of the  button  to  Disabled. 

 

Build a rich Java client that uses a Web  service 21



9.   To define  how  the  button  changes  its  state,  click  Enablement  rules. Specify  that  the  button  is 

enabled  only  when  the  argument’s  content  is changed,  and  disabled  in  all  other  instances.  Click  OK. 

   

This  means  that  the  Update  button  is disabled  until  the  contents  of the  selectedEmployeeRecord  

changes.  In  other  words,  as soon  as  you  type  a new  value  in one  of  the  details  fields,  which  are  

bound  to  the  selectedEmployeeRecord,  the  binder  enables  the  button.  If you  select  a new  record  or 

click  Update, the  button  will  become  disabled  again.  

10.   Click  OK. 

A  new  SwingDataServiceAction  binder  is added  for  the  Update  button.  If you  select  the  button  in  the  

design  area,  the  visual  editor  draws  a line  that  indicates  that  the  button  is bound  to  the  Web service  data  

source.  A  pink,  dotted  arrow  points  from  the  selectedEmployeeRecord  object  to  the  line.  This  arrow  

indicates  that  the  selectedEmployeeRecord  is  the  argument  for  the  call  to the  service.  

Lesson checkpoint 

Now, when  you  run the  application,  you  can  update  an  employee’s  record.  

 

22 Build a rich Java client  that uses a Web  service



Select  an  employee  in the  table  and  change  the  last  name.  As  soon  as  you  change  the  last  name,  the  

Update  button  is enabled.  When  you  click  Update, the  modifyEmployee  service  is  called  and  the  

employee  is updated.  The  new  last  name  is reflected  in  the  employees  table.  

Lesson 2.5: Enable the Delete button and confirmation dialog box 

In  this  exercise,  you  will  program  the  My  Company  Directory  application  to  delete  an  employee  record.  

The  following  list  describes  the  behavior  that  you  want  the  application  to  use:  

v   When  you  select  an  employee  in  the  table,  the  Delete  button  is  enabled.  

v   When  you  click  the  Delete  button,  the  Confirm  Delete  dialog  box  opens  and  asks  you  to  confirm  the  

deletion.  

v   If  you  click  the  Yes button  on  the  Confirm  Delete  dialog  box,  the  employee  record  is deleted,  the  

Confirm  Delete  dialog  box  closes,  and  the  list  of  employees  is refreshed.  

v   If  you  click  No, the  deletion  is  canceled  and  the  Confirm  Delete  dialog  box  closes.

Program the Delete button to be enabled or disabled based on whether a row is 

selected in the table 

To program  the  Delete  button  to  be  enabled  or  disabled,  add  a listener  to the  table  that  enables  the  

button  when  a row  is  selected.  

1.   Select  the  employeesTable  in  the  Java  Beans  view. The  source  view  highlights  the  following  line:  

employeesTable  = new  JTable();  

2.   Immediately  after  this  line,  add  a new  ListSelectionListener  and  valueChanged  event  to the  

employeesTable:  

employeesTable.getSelectionModel().addListSelectionListener(new  ListSelectionListener()  { 

   public  void  valueChanged(ListSelectionEvent  e) { 

     getDeleteButton().setEnabled(getEmployeesTable().getSelectedRowCount()  != 0); 

   } 

});  

3.   After  you  add  these  lines  of  code,  the  source  editor  marks  them  as  errors  until  you  import  

ListSelectListener  and  ListSelectionEvent.  To add  the  required  imports,  click  Source  → Organize  

Imports  on  the  main  menu.  The  following  lines  are  added  to  the  imports  section  of the  class:  

import  javax.swing.event.ListSelectionEvent;  

import  javax.swing.event.ListSelectionListener;  

Now, when  a row  in  the  table  is selected,  the  Delete  button  is  enabled.  

Program the Confirm Delete dialog box to open when Delete is clicked 

Add  an  actionPerformed  event  to  the  Delete  button,  and  program  the  event  to open  the  Confirm  Delete  

dialog  box.  

1.   Right-click  the  Delete  button  and  select  Events  → actionPerformed. The  following  event  stub  is added  

to  the  getDeleteButton()  method:  

deleteButton.addActionListener(new  java.awt.event.ActionListener()  { 

   public  void  actionPerformed(java.awt.event.ActionEvent  e) { 

     System.out.println("actionPerformed()");  

     // TODO  Auto-generated  Event  stub  actionPerformed()  

   } 

});  

2.   Replace  this  generated  stub  with  the  following  code,  which  sets  the  Confirm  Delete  dialog  box  to be  

visible  when  the  button  is  clicked:  

deleteButton.addActionListener(new  java.awt.event.ActionListener()  { 

   public  void  actionPerformed(java.awt.event.ActionEvent  e) { 

     getConfirmDialog().setVisible(true);  

   } 

});  

 

Build a rich Java client that uses a Web  service 23



Bind the text field in the Confirm Delete dialog box 

Bind  the  text  field  in  the  Confirm  Delete  dialog  box  to  display  the  first  name  of the  employee  to  be  

deleted.  

1.   On  the  Java  Beans  view  or  design  area,  select  the  employeeToDeleteField  text  field,  and  click  the  Bind  

tab.  

   

2.   On  the  Field  Data  Bindings  dialog  box,  select  the  selectedEmployeeRecord  data  object  and  the  

firstName  field,  then  click  OK. 

The  text  field  is  now  bound  to  the  firstName  column  of  the  selected  row  in  the  employeesTable.  

   

3.   To make  sure  that  this  field  is read-only,  set  the  autoEditable  property  for  the  field’s  binder  to  false.

Bind the Yes button to perform the deletion 

Bind  the  Yes button  to  call  the  removeEmployee(java.lang.Integer)  method  on  the  Web service.  

 1.   Select  the  Yes button,  and  click  the  Bind  tab  to open  the  Component  Action  Bindings  dialog.  

 2.   In  the  Source  type  field,  select  Web Service. 

 3.   In  the  Data  source  field,  select  webServiceDataSource. 

 4.   From  the  Source  service  list,  select  removeEmployee(java.lang.Integer). 

 5.   The  Name  field  automatically  changes  to removeEmployeeAction. Accept  this  default.  

 6.   In  the  Argument  field,  select  selectedEmployeeRecord. 

 7.   In  the  Property  field,  select  employeeID. Because  the  removeEmployee()  method  takes  an  integer  as 

its  argument,  you  use  the  employee  ID  of the  selectedEmployeeRecord.  

 8.   Set  the  Initial  state  of  the  button  to  Enabled.  

 9.   For  the  Enablement  rules, select  Ignore  for  each  of the  conditions.  

This  component  state  means  that  the  Yes button  will  always  be  enabled,  since  there  is no  need  for  it 

to  change  its  state.  

 

24 Build a rich Java client  that uses a Web  service



10.   Click  OK.

Add an event to hide the Confirm Delete dialog after the employee is deleted 

In  this  step  you  add  an  event  to  the  Yes button’s  binder  (not  the  Yes button  itself).  You want  the  Confirm  

Delete  dialog  box  to  close  after  the  employee  is removed,  which  means  after  the  binder  has  successfully  

called  the  service  on  the  data  source.  

Add  the  following  code  to  the  getRemoveEmployeeAction()  method:  

removeEmployeeAction.addActionBinderListener(new  jve.generated.IActionBinder.ActionBinderListener()  { 

   public  void  afterActionPerformed(jve.generated.IActionBinder.ActionBinderEvent  e) { 

     getConfirmDialog().setVisible(false);  

   } 

   public  void  beforeActionPerformed(jve.generated.IActionBinder.ActionBinderEvent  e) {} 

});  

This  event  code  hides  the  Confirm  Delete  dialog  box  after  the  binder’s  action  is performed.  

Lesson checkpoint 

Now, when  you  run the  My  Company  Directory  application  you  can  select  an  employee  in  the  table,  click  

the  Delete  button,  and  click  Yes to  confirm  the  deletion.  The  employee  record  will  be  removed  from  the  

directory,  and  the  list  of  employees  will  reflect  the  removal.  

Lesson 2.6: Set up actions and bindings for adding a new employee 

In  this  lesson  you  enable  the  My  Company  Directory  application  to  add  a new  employee  record.  

Because  the  behavior  of  the  application  is more  complicated  and  dynamic  for  adding  a new  employee,  

this  exercise  is inherently  more  complex  and  requires  you  to make  some  manual  changes  to the  source  

code.  Also,  this  exercise  demonstrates  some  advanced  capabilities  of the  data  objects,  and  it gives  you  a 

creative  example  for  ways  that  you  can  use  the  binders  and  data  objects  to  fit  your  needs.  

 

Build a rich Java client that uses a Web  service 25



The  following  list  describes  the  required  behavior  of the  application:  

v   When  you  click  the  New  button,  the  following  behavior  occurs:  

–   The  selection  is  cleared  on  the  employees  table,  and  the  table  is disabled.  

–   Clearing  the  table  selection  causes  the  Delete  button  to  be  disabled.  

–   The  Filter  field  is  disabled.  

–   The  details  fields  are  cleared  of  any  values,  except  for  a new  employee  ID.  

–   The  text  on  the  Update  button  switches  to Add.
v    When  you  click  the  Add  button,  the  following  behavior  occurs:  

–   The  values  entered  into  the  details  fields  are  added  to the  directory  as  a new  employee  record.  

–   The  table  is  enabled  and  the  values  are  refreshed.  

–   The  Filter  field  is  enabled.  

–   The  text  on  the  Add  button  switches  back  to  Update.

Add a new Data Source Data Object that calls createNewFullEmployeeRecord() 

The  sample  Web service  provides  a createNewFullEmployeeRecord  service  that  provides  a new, blank  

employee  record  that  is populated  with  the  next  available  employee  ID  number.  This  blank  record  can  

then  be  populated  with  a new  employee’s  information  and  submitted  back  to the  Web service.  

1.   On  the  palette  of the  Java  visual  editor,  expand  the  Data  Objects  drawer  and  select  Data  Source  Data  

Object. 

2.   Move  your  mouse  pointer  over  the  blank  area  of the  design  view, or  free-form  area,  and  left-click  to  

drop  the  Data  Source  Data  Object.  A new  Data  Source  Data  Object  is added  and  shown  on  the  

free-form  area:  

   

3.   Right-click  the  Data  Source  Data  Object,  and  select  Rename  field. Rename  the  data  object  to  

newEmployeeRecord. 

4.   Right-click  the  newEmployeeRecord  data  object,  and  select  Binding  Properties. The  Data  Binding  

dialog  box  opens.  

5.   In  the  Data  source  field,  select  webServiceDataSource  

6.   In  the  Service  field,  select  createNewFullEmployeeRecord()  

7.   Click  OK. 

On  the  free-form  area,  you  can  see  that  the  newEmployeeRecord  data  source  data  object  is  bound  to  the  

Web service.  

   

Add a Basic Data Object to facilitate the switching of data objects 

Because  the  details  fields  and  the  Update  button  need  to  switch  modes  (for  both  performing  an  update  

and  creating  a new  employee),  they  need  to  be  bound  to  two  different  data  objects  at different  times.  To 

facilitate  this  step,  you  will  add  a Basic  Data  Object  named  switchingDataObject.  You will  use  this  Basic  

Data  Object  to  switch  the  binding  for  the  text  fields  between  the  selectedEmployeeRecord  and  the  

newEmployeeRecord.  

 

26 Build a rich Java client  that uses a Web  service



The  new  Basic  Data  Object  simply  points  to another  data  object  (selectedEmployeeRecord)  that  you  

defined  in  an  earlier  exercise.  This  new  data  object  will  become  useful  when  you  create  a method  that  

tells  this  basic  data  object  to  use  the  newEmployeeRecord  that  you  created  earlier.  In  other  words,  this  

basic  data  object  will  function  as an  intermediate  data  object  that  switches  between  the  

selectedEmployeeRecord  data  object  and  the  newEmployeeRecord  data  object,  allowing  visual  

components  in  your  application  to  work  with  two  different  data  objects.  

1.   On  the  visual  editor  palette,  select  Basic  Data  Object, and  drop  it onto  the  free-form  area.  A 

basicDataObject  is  added.  

   

2.   Rename  the  data  object  to  switchingDataObject  

3.   In  the  Properties  view  for  switchingDataObject,  set  the  sourceObject  property  to 

selectedEmployeeRecord. You can  select  selectedEmployeeRecord  from  the  drop-down  menu  in  the  

Value  column  for  the  property.  

Now, switchingDataObject  refers  to  selectedEmployeeRecord  and  reflects  the  same  values:  

  

Rebind each employee field to the switchingDataObject 

Even  though  each  of  the  employee  details  fields  is already  bound  to selectedEmployeeRecord,  you  will  

now  bind  them  to  switchingDataObject.  After  binding  the  fields,  you  can  dynamically  switch  between  

data  objects  for  the  fields,  depending  on  whether  you  are  modifying  an  existing  employee  record  or  

adding  a new  employee  record.  

For  each  of  the  fields  in  the  Employee  details  section,  complete  the  following  steps:  

1.   Select  the  field  and  click  the  Bind  tab.  

2.   On  the  Field  Data  Bindings  dialog  box,  select  the  switchingDataObject.  You previously  bound  the  

fields  to  the  selectedEmployeeRecord.  

   

 

Build a rich Java client that uses a Web  service 27



3.   Make  sure  the  field  is still  bound  to  the  correct  data  object  property,  and  click  OK. If  you  select  the  

field  on  the  design  view, you  can  see  that  the  binder  lines  now  point  to  switchingDataObject.  

  

Define a flag and a method for updating and switching modes 

The  following  updateMode()  method  checks  to  see  if the  mode  flag  is set  to  new, then  changes  the  

application’s  behavior  accordingly.  By  default,  the  Boolean  flag  isNewMode  is set  to  false,  and  the  

updateMode()  method  enables  the  employees  table  and  the  filter  field,  and  sets  the  text  on  the  Update  

button  to  ″Update″.  If  isNewMode  is set  to  true, the  employees  table  is disabled  and  cleared  of  any  

selection,  the  filter  field  is disabled,  and  the  text  on  the  Update  button  is set  to  ″Add″. 

Add  the  following  code  to  your  DirectoryApp.java  class  just  before  the  last  closing  curly  brace:  

private  boolean  isNewMode  = false;  

private  void  updateMode()  { 

   if (isNewMode)  { 

      getEmployeesTable().clearSelection();  

      getEmployeesTable().setEnabled(false);  

      getFilterField().setEditable(false);  

      getUpdateCreateButton().setText("Add");  

   } else  { 

      getEmployeesTable().setEnabled(true);  

      getFilterField().setEditable(true);  

      getUpdateCreateButton().setText("Update");  

   } 

} 

Add an actionPerformed event to the New button 

In  this  step,  you  add  event  code  for  when  the  New  button  is clicked.  The  event  tells  the  

switchingDataObject  to  use  the  newEmployeeRecord  data  object,  sets  the  mode  flag  to ″new,″  and  runs 

the  updateMode()  method  that  you  added  in  the  previous  step.  

1.   In  the  design  view, right-click  the  New  button,  and  select  Events  → actionPerformed. The  following  

code  is  generated  in  the  getNewButton()  method:  

newButton.addActionListener(new  java.awt.event.ActionListener()  { 

   public  void  actionPerformed(java.awt.event.ActionEvent  e) { 

      System.out.println("actionPerformed()");  // TODO  Auto-generated  Event  stub  actionPerformed()  

   } 

});  

2.   Replace  this  generated  stub  with  the  following  code:  

newButton.addActionListener(new  java.awt.event.ActionListener()  { 

   public  void  actionPerformed(java.awt.event.ActionEvent  e) { 

      getSwitchingDataObject().setSourceObject(getNewEmployeeRecord());  

      getNewEmployeeRecord().refresh();  

      isNewMode  = true;  //sets  application  to new mode  

      updateMode();  //changes  UI according  to new  mode  

      getLastNameField().grabFocus();  

   } 

});  

Rebind the Update button 

In  a previous  lesson,  you  programmed  the  Update  button  to use  the  modifyEmployee  method  on  the  

Web service.  That  action  is  implemented  as a SwingDataServiceAction.  One  of  the  properties  of the  

SwingDataServiceAction  is  the  source  object,  which  acts  as  the  argument  for  the  service.  The  source  object  

for  the  modify  action  is  currently  set  to  selectedEmployeeRecord.  In  order  to  program  the  button  to 

control  both  an  update  and  an  addition,  you  will  reconfigure  the  button’s  action  to use  

switchingDataObject  as  an  argument  to  the  modifyEmployee  service.  

 

28 Build a rich Java client  that uses a Web  service



1.   In  the  design  view, select  the  Update  button.  Notice  the  pink,  dotted  arrow  showing  that  the  

selectedEmployeeRecord  is the  argument  for  the  service  call.  

2.   Click  the  Bind  tab  on  the  Update  button.  

3.   In  the  Argument  field,  select  switchingDataObject.  

   

4.   Click  OK. 

Now, notice  that  the  button’s  action  is now  configured  to  use  the  switchingDataObject  as its  argument  

to  the  modifyEmployee  method:  

  

Add an event to the Update button’s binder to reset the mode 

After  the  Update  button  is  clicked  and  the  action  is complete  on  the  Web service,  you  want  the  

application  to  go  back  into  its  default  mode  and  behavior.  To do  this,  you  add  an  event  listener  on  the  

button’s  action  binder  that  will  update  the  mode  and  refresh  the  table  after  the  update  or  addition  is  

performed.  

Add  the  following  code  to  the  getModifyEmployeeAction()  method  for  the  Update  button:  

modifyEmployeeAction.addActionBinderListener(  

  new  jve.generated.IActionBinder.ActionBinderListener()  { 

    public  void  afterActionPerformed(jve.generated.IActionBinder.ActionBinderEvent  e) { 

      if (isNewMode)  {

 

Build a rich Java client that uses a Web  service 29



//Go  back  to using  the  selectedEmployeeRecord  

        getSwitchingDataObject().setSourceObject(getSelectedEmployeeRecord());  

        //Revert  out  of new  mode  

        isNewMode  = false;  

        updateMode();  

      } 

      // Refresh  the  table’s  data  object  

      getLightEmployeeRecordRows().refresh();  

    } 

    public  void  beforeActionPerformed(jve.generated.IActionBinder.ActionBinderEvent  e)  {} 

});  

Lesson checkpoint 

Now, when  you  run the  My  Company  Directory  application,  you  can  click  the  New  button  and  add  a 

new  employee  record.  

Lesson 2.7: Program the Cancel button behavior 

When  using  your  application,  you  want  to  be  able  to easily  back  out  of any  changes  that  you  start  to 

make  to  an  employees  record  if you  decide  not  to submit  the  changes.  In other  words,  you  need  to be  

able  to  cancel  and  clear  the  fields  so  you  can  start  over. To add  this  functionality,  you  set  some  

actionPerformed  events  on  the  Cancel  button.  

The  following  list  describes  the  required  behavior  of the  Cancel  button:  

v   If you  click  the  Cancel  button  while  in  new  mode,  the  application  reverts  out  of  new  mode.  

v   If you  click  the  Cancel  button  while  modifying  an  employee  record,  any  values  that  you  have  changed  

revert  back  to  the  original  values.

To  add  an  actionPerformed  event  to  the  Cancel  button  to perform  the  required  behavior:  

1.   In  the  design  view, right-click  the  Cancel  button,  and  select  Events  → actionPerformed. The  following  

code  is  generated  in  the  getCancelButton()  method:  

cancelButton.addActionListener(new  java.awt.event.ActionListener()  { 

   public  void  actionPerformed(java.awt.event.ActionEvent  e) { 

      System.out.println("actionPerformed()");  // TODO  Auto-generated  Event  stub  actionPerformed()  

   } 

});  

2.   Replace  the  generated  event  stub  with  the  following  code:  

cancelButton.addActionListener(new  java.awt.event.ActionListener()  { 

   public  void  actionPerformed(java.awt.event.ActionEvent  e) { 

      if (isNewMode)  { 

         getSwitchingDataObject().setSourceObject(getSelectedEmployeeRecord());  

         isNewMode  = false;  

         updateMode();  

      } else  { 

         getSelectedEmployeeRecord().refresh();  

      } 

   } 

});  

Lesson checkpoint 

In  this  lesson,  you  learned  how  to  program  the  Cancel  button  with  actionPerformed  events.  

Lesson 2.8: Set up a filter on the employees table 

You can  use  a Text Filter  Binder  to  filter  the  contents  of  the  employees  table.  The  filter  takes  input  from  a 

text  field,  and  filters  the  table  based  on  a particular  property,  or  column,  in  the  table.  

In  the  application,  you  will  use  the  characters  entered  in  the  Filter  field  to  filter  by  employee  last  name.  If 

the  exact  values  entered  in  the  Filter  field  are  present  in the  last  name  of  an  employee  record,  the  

employee  record  will  display  in  the  table.  

 

30 Build a rich Java client  that uses a Web  service



To create  a filter  for  the  table:  

1.   Select  the  binder  icon  for  the  employeesTable  and  select  Filter  Binding  Properties. The  Filter  Binding  

dialog  box  opens.  

2.   In  the  Text  field  for  the  filter  input  list,  select  filterField. 

3.   In  the  Table  property  to  be  filtered  list,  select  lastName. 

   

4.   Click  OK. 

A new  SwingPropertyFilter  is  generated.  The  filter  property  on  the  table’s  binder  is set  to  use  the  new  

filter. The  new  filter  is  configured  to  use  the  Filter  field  for  its  input,  and  to  filter  on  the  lastName  

property  of  the  table.  

Lesson checkpoint 

In  this  lesson  you  learned  how  to  set  up  a filter  for  a table.  

Now, when  you  run the  My  Company  Directory  application,  you  can  type  characters  in  the  Filter  field,  

and  the  table  will  be  filtered  to  show  the  rows  where  the  last  name  contains  the  characters  entered.  

Congratulations!  The  My  Company  Directory  application  is finished.  

Summary: Build a rich Java client that uses a Web  service 

Congratulations!  You learned  how  to  use  the  Java  visual  editor  to build  the  My  Company  Directory  

application,  a rich  Java  client  that  connects  to  a sample  Web service  to  maintain  an  employee  directory.  

 

Build a rich Java client that uses a Web  service 31



See  a picture  of  the  finished  product:  

   

Lessons learned 

You used  the  visual  editor  to  complete  the  graphical  user  interface,  using  GridBagLayout  to  arrange  the  

employees  table.  Then  you  bound  the  table,  fields,  and  buttons  to  appropriate  data  objects  and  data  

source  to  make  the  application  work  with  a Web service  Java  proxy  that  you  generated.  You also  did  

some  complex  coding  to  make  the  application  behave  properly  to make  it easy  to  use  and  intuitive.  And,  

you  learned  how  to  install  an  enterprise  application  on  WebSphere  Application  Server  v6.0  and  deploy  a 

Web service.  

Most  importantly,  you  learned  all  about  the  powerful  binder  class  provided  by  the  Java  visual  editor  for  

working  with  data.  Now  you  are  ready  to  begin  experimenting  on  your  own  and  putting  the  binders  to 

new  and  exciting  uses.  

You should  now  be  able  to  do  the  following  tasks:  

v   Use  the  Java  visual  editor  to  layout  components  in  a GridBagLayout.  

v   Run  a visual  class  as  a Java  bean.  

v   Bind  a Java  application’s  visual  components  to methods  and  data  objects  returned  by  a Web service.  

v   Add  events  to  visual  components.

Additional resources 

Import  a finished  version  of  the  My  Directory  application  

This  project  includes  the  finished  application,  the  jve.generated  package  with  binder  classes,  and  the  Web 

service  Java  client  configured  for  WebSphere  Application  Server  v6.1.  If you  import  this  finished  project  

without  working  through  the  tutorial,  you  may  need  to  configure  your  Java  build  path  variable.  It needs  

to  point  to  your  WebSphere  v6.1  Web services  thin  client  JAR  file.  

 

32 Build a rich Java client  that uses a Web  service

javascript:importPISample('MyDirectory_pi_end+com.ibm.etools.jve.tutorial.doc.MyDirectory_pi_end')


Tip:  Unless  you  specify  a different  project  name  during  import,  this  will  overwrite  your  MyDirectory  

project  contents.  

 

Build a rich Java client that uses a Web  service 33


	Contents
	Build a rich Java client that uses a Web service
	Introduction: Build a rich Java client that uses a Web service
	Module 1: Design the client GUI in the visual editor
	Lesson 1.1: Set up the Java project
	Lesson checkpoint

	Lesson 1.2: Add and lay out the employees table
	Open the DirectoryApp.java file in the Java visual editor
	Add a JTable on a JScrollPane
	Span the JScrollPane and JTable across multiple columns and rows of the grid
	Customize the spacing of the JScrollPane within the GridBag
	Rename the new JTable to a useful value and set it to select a single row
	Lesson checkpoint

	Lesson 1.3: Run the visual class
	Lesson checkpoint


	Module 2: Bind visual components to the Web service
	Lesson 2.1: Install and deploy the Web service
	Lesson 2.2: Bind the employees table to the Web service data source
	Overview of data objects, data sources, and binders
	Generate a Web service Java proxy in your project using the provided WSDL file
	Bind the employeesTable to a row data object returned by the Web service
	Lesson checkpoint

	Lesson 2.3: Bind the detail fields to the table selection
	Bind the Last name field
	Bind the remaining details fields
	Make the employee ID field read-only
	Lesson checkpoint

	Lesson 2.4: Bind the Update button to an action binder
	Lesson checkpoint

	Lesson 2.5: Enable the Delete button and confirmation dialog box
	Program the Delete button to be enabled or disabled based on whether a row is selected in the table
	Program the Confirm Delete dialog box to open when Delete is clicked
	Bind the text field in the Confirm Delete dialog box
	Bind the Yes button to perform the deletion
	Add an event to hide the Confirm Delete dialog after the employee is deleted
	Lesson checkpoint

	Lesson 2.6: Set up actions and bindings for adding a new employee
	Add a new Data Source Data Object that calls createNewFullEmployeeRecord()
	Add a Basic Data Object to facilitate the switching of data objects
	Rebind each employee field to the switchingDataObject
	Define a flag and a method for updating and switching modes
	Add an actionPerformed event to the New button
	Rebind the Update button
	Add an event to the Update button's binder to reset the mode
	Lesson checkpoint

	Lesson 2.7: Program the Cancel button behavior
	Lesson checkpoint

	Lesson 2.8: Set up a filter on the employees table
	Lesson checkpoint


	Summary: Build a rich Java client that uses a Web service


