
Create EJB components using UML modeling tools 

This tutorial describes how to create container-managed persistence (CMP) entity beans from a Unified Modeling 
Language (UML) class diagram. It examines the Enterprise JavaBeansTM (EJB) specification and the JavaTM 2 
Platform, Enterprise Edition (J2EE) specification. It also describes how to map relational database tables from 
enterprise beans.  

This tutorial covers the following concepts: 

� Basic concepts of EJB servers and containers  
� The three main types of enterprise beans  
� The structure of EJB components and enterprise applications  
� The structure of EJB and related projects  
� Creating new UML class diagrams  
� Creating container-managed entity beans from class diagrams  
� Visually editing EJB components  
� How UML class diagrams interact with the underlying code  
� Decorations used in UML class diagrams  
� Creating relational database maps from enterprise beans  

1 of 27Create EJB components using UML modeling tools



Create EJB components using UML modeling tools 

Time required 

To complete this tutorial, you will need approximately two hours. If you decide to explore other facets of creating 
entity beans using UML modeling tools while working on the tutorial, it could take longer to finish. 

Prerequisites 

In order to complete this tutorial end to end, you should be familiar with the following subjects: 

� Java programming  
� UML modeling  

It will also help if you understand basic concepts about these subjects: 

� Relational databases  
� Container-managed entity beans  
� J2EE architecture  

Learning objectives 

This tutorial is divided into several exercises that must be completed in sequence for the tutorial to work properly. This 
tutorial explains basic concepts about creating container-managed entity beans using UML class diagrams. In addition, 
you will learn how to map enterprise bean fields into relational database definitions, which are used to create the 
database tables required when the EJB application is put into production. This tutorial does not cover the design and 
creation of a complete enterprise application, but there are several examples provided in the Samples Gallery (Help > 
Samples Gallery). This tutorial targets beginners who have never created an EJB component, used UML class 
diagrams nor used the workbench. Small code snippets will be used to illustrate concepts.  

This tutorial consists of these exercises: 

� Exercise 1.1 introduces you to the technologies.  
� Exercise 1.2 shows you how to set up the required projects in the workbench and how to create a UML class 

diagram.  
� Exercise 1.3 shows you how to populate the class diagram with CMP entity beans and how to define 

relationships between classes.  
� Exercise 1.4 explains top-down database mapping.  
� Exercise 1.5 explains the next steps you would take in the EJB creation process.  

When you are ready, begin Exercise 1.1: Introduction to the technologies 

2 of 27Create EJB components using UML modeling tools 



Exercise 1.1: Introduction to the technologies 

An enterprise bean is a set of JavaTM classes and interfaces that implement the Enterprise JavaBeansTM (EJB) 
specification. The EJB specification is a part of the JavaTM 2 Platform, Enterprise Edition (J2EE) specification. J2EE is 
a set of standardized Java technologies that extend the Java 2 Standardized Platform, Standard Edition (J2SE). Here 
are a few of the technologies that J2EE includes:  

� Servlets and JavaServer Pages (JSP), for handling Web browser requests and responses  
� Enterprise beans (EJB beans), for handling database transactions  
� Java Database Connectivity (JDBC), for database access  
� Java Messaging Service (JMS), for messaging  

Applications that are written using the J2EE specifications are easily deployed on any server that provides J2EE 
support, such as IBMR's WebSphereR Application Server. 

The most recent version of the EJB specification is 2.1. The workbench supports multiple versions of the EJB 
specification including 1.1, 2.0 and 2.1. You will see references to the different specification levels in the workbench. 
For instance, when creating a new container-managed (CMP) entity bean, you can select the CMP Version 1.x or 2.x, 
which correspond to the EJB versions 1.1 or 2.0/2.1, respectively. 

For more information on the J2EE and EJB technologies, consult these Web sites: 

� J2EE Technologies at java.sun.com  
� Enterprise JavaBeansTM Technology at java.sun.com  

Information on using these technologies can also be found in the following topics in the information center: 

� EJB architecture  
� J2EE architecture  

Enterprise JavaBeans 

The EJB specification defines these things: 

� A specific set of classes and interfaces  
� The directory structure and packaging for a deployable enterprise application  
� Deployment descriptors and other metadata that define the components, interactions, and behavior of the parts 

of the enterprise application, including information on database connectivity  

An enterprise application can be installed and run on an EJB server (also called an Enterprise Java Server), such as 
the one provided by WebSphereR Application Server. The server's task is to provide an EJB container where the 
enterprise beans run. An EJB server and container work together to provide these services: 

� Transaction support  
� Persistence of data  
� Security  
� Life cycle management  
� Naming service  
� Concurrency management  
� Messaging  

Client applications do not access enterprise beans directly. Instead, interfaces are provided that list the methods of the 
enterprise bean that are available to the client. The container provides the implementation of the interfaces in the 
enterprise bean.  

3 of 27Create EJB components using UML modeling tools 



 

The types of enterprise beans 

There are three types of enterprise beans: session beans, entity beans, and message-driven beans. A typical EJB 
application consists of several entity beans, plus session or message-driven beans. 

Entity beans are used to represent and interact with relational database tables. An entity bean typically represents a 
row in a database table, with the columns of the table corresponding to the fields in the bean. Data persistence refers 
to storing data permanently, in a database or other format. EJB containers can handle the persistence for an entity 
bean (container-managed persistence, or CMP); or, the entity bean can handle its own persistence (bean-managed 
persistence, or BMP). 

Session beans are used to interact with entity beans. They usually provide the overall process or workflow for a client 
application. Session beans can be stateless (no data is saved) or stateful (some data is saved). Typically, an 
application client interacts with session beans, which in turn interact with entity beans. 

Message-driven beans provide a communication vehicle for applications that want to access entity beans. They can be 
used in the same way that session beans are. The primary difference is how they are invoked. Session beans (and 
entity beans) are called synchronously, while message-driven beans are called asynchronously. A synchronous call to 
a session bean would be to invoke the session bean directly. An asynchronous call to a message-driven bean would 
be to send a message, for which the message-driven bean is listening. Java Messaging Service (JMS) is the 
underlying communications vehicle for message-driven beans. 

More information on enterprise bean types can be found in the information center under EJB architecture.  

The anatomy of an enterprise bean 

An enterprise bean contains the following classes and interfaces: 

� EJB remote component interface, or EJB object  
� EJB local component interface, or EJB local object  
� EJB home interface, or EJB home  
� EJB bean class  
� Primary key class  

Local and remote component interfaces 

The local and remote component interfaces are used by client applications to access enterprise beans. These 
interfaces list the available business logic methods in an enterprise bean. An enterprise bean can have a remote 

4 of 27Create EJB components using UML modeling tools 



interface, a local interface or both.  

Performance is better when you access an enterprise bean using the local interface rather than the remote interface. 
Some of the reasons for the performance improvement include: 

� Method arguments are passed by reference using the local interface, but are passed by value using the remote 
interface  

� Serialization of data is required to transfer data over a network when using the remote interface, while no 
serialization is needed using the local interface  

� Network overhead occurs when using the remote interface, but there is none when using the local interface  

The local interface was added to the EJB 2.0 specification to improve performance. A recommended design practice is 
to wrap entity beans in a session facade, so that clients access the session bean remotely, but the session bean 
accesses the entity bean locally. This practice allows remote access from clients while providing better performance. 

Local and remote home interfaces 

The home interface of an entity bean is also used by client applications to access the enterprise bean, but the methods 
available through this interface are life cycle methods, including methods to find, create, and remove entity beans 
within the EJB container. Home interfaces can also be remote or local. 

Enterprise bean classes 

Enterprise bean classes contain the business logic of the enterprise application. Methods in the interfaces expose the 
corresponding methods in the bean class to client applications.  

Primary key classes 

A primary key is a unique ID that is associated with a specific entry in a database. For example, if you have a 
database of employees, each employee has a unique employee ID. Each instance of a primary key class corresponds 
to one of the unique IDs, and thus to a specific employee record in the database. 

The anatomy of an enterprise application 

The J2EE specification defines the files and directory structure of an enterprise application. In addition, it specifies the 
filetypes of .war, .ear and .jar, each type used for specific purposes.  

An EAR file (Enterprise Archive) is the package type for an enterprise application. It contains WAR files and JAR files, 
as well as an application deployment descriptor (application.xml) that contains metadata about the enterprise 
application.  

A WAR file (Web Archive) contains files for a Web application, such as images, HTML files, servlets and JSPs. It also 
contains metadata in the form of a Web deployment descriptor (web.xml).  

JAR files (Java Archives) contain Java classes. In EJB applications, JAR files can contain EJB modules, or they can 
contain an EJB client application.  

EJB modules contain the enterprise beans themselves, plus metadata including an EJB deployment descriptor (ejb-
jar.xml). EJB modules deployed to WebSphere Application Server can also contain metadata describing IBM-specific 
extensions and binding information. An EJB client application contains the Java programs used to access an EJB 
application, plus a client deployment descriptor (application-client.xml). 

Workbench projects and file types for EJB development
File type Meaning Application type Deployment descriptor

.ear Enterprise Archive enterprise application.xml

.war Web Archive Web web.xml

5 of 27Create EJB components using UML modeling tools 



Using UML with Visual Editor 

Visual Editor uses Unified Modeling Language (UML) to represent the structure and design of Java classes and 
interfaces, including EJB components, visually. It provides mechanisms for showing relationships between classes, as 
well as workflow. Using the UML tools within the workbench, you can visually edit Java classes and interfaces, or other 
EJB components. You can initiate the creation of an EJB component directly from a class diagram. The underlying 
code is generated and then visually rendered on the class diagram, ready to be edited. Changes made to a UML class 
diagram result in changes to the underlying code. Changes to the underlying code are reflected in the UML class 
diagram. 

In the workbench, a UML class diagram is stored as a file with a .dnx extension. 

UML 2 is a standard specification provided by the Object Management Group (OMG). The OMG Web site also 
provides an Introduction to UML.  

The information center provides in-depth information on these topics:  
� Managing UML diagrams.  
� Visually developing EJB applications with UML diagrams.  

Now you are ready to begin Exercise 1.2: Preparing the workspace. 

Exercise 1.2: Preparing the workspace 

Before you begin, you might want to review the concepts in Exercise 1.1: Introduction to the technologies. 

Exercise 1.2 gives an overview of the workbench layout and EJB-related projects. In this exercise, you will do these 
tasks:  

� Create an enterprise application (EAR) project  
� Create an EJB project  
� Create an EJB client project  
� Create a UML class diagram  

Workbench layout 

All work done in the workbench must be associated with a project. Projects provide an organized view of the work files 
and directories, optimized with functions based on the type of project.  

The layout of the workbench consists of perspectives and views. Views are panes in the workbench providing different 
ways of looking at the data. For instance, projects are displayed in a Project Explorer view. The structure of a class or 
XML file would be displayed in an Outline view. The workbench has many different views, specialized for each type of 
data. In a given area of the workbench, views may be stacked, so that they appear as tabbed pages for easy access. 

A perspective manages the overall layout of the workbench, and comprises a set of views and an editor area. 
Perspectives come with a set of predefined or default views, laid out in a specific arrangement. However, the 
perspectives are highly customizable. Different views can be added or removed from a given perspective. The location 
of a view can be changed.  

The J2EE perspective is optimized for EJB development. 

.jar Java Archive EJB 
EJB client

ejb-jar.xml 
application-client.xml

6 of 27Create EJB components using UML modeling tools 



 

The information center provides more information on these topics:  
� Views  
� Perspectives  
� Workbench 

Setting up the projects 

In the workbench, all files must reside in a project, so before you create the UML class diagram, you need to create a 
project to put it in. Since you are creating an EJB, you will create an EJB project. When you create an EJB project, 
other supporting projects are automatically created.  

Creating an EJB project 

Creation of an EJB project requires that a Target server be defined. Make sure that you included the WebSphere 
Application Server 6.0 Integrated Test Environment during installation of this product.  

1. From the File menu, select New > Other. The New wizard opens.  
2. Select the Show All Wizards check box.  
3. Expand EJB.  
4. Select EJB Project.  
5. Click Next.  
6. If the Confirm Enablement dialog box opens, click OK.  
7. When the New EJB Project wizard opens, give the project a name (UML EJB tutorial in this example)  
8. Leave the project location as it is.  
9. If the Advanced options are displayed, there is no Target server defined. If this occurs, you need to do one of 

these steps: 
� Rerun the product installation program and install the WebSphere Application Server 6.0 Integrated Test 

7 of 27Create EJB components using UML modeling tools 



Environment.  
� Define a Target server by selecting New and defining a locally installed version of WebSphere 

Application Server.  
10. Click Finish.  
11. If the Confirm Perspective Switch dialog box opens, answer Yes. This switches you to the J2EE perspective.  

The EJB project is created along with several supporting projects, as shown in the Project Explorer view of the J2EE 
perspective: 

� The EAR project UML EJB tutorialEAR in Enterprise Applications  
� The EJB project UML EJB tutorial in EJB Projects  
� The EJB client project UML EJB tutorialClient in Other Projects  

 

The Enterprise Application (EAR) project 

In the Project Explorer view, expand Enterprise Applications and explore the UML EJB tutorialEAR project. Within 
the EAR directory you will see 

� The Deployment Descriptor directory that contains three subdirectories. The Deployment Descriptor 
directory is also a link to the application.xml file in the META-INF directory. 

� The Modules directory containing EJB UML_EJB_tutorial.jar. This is the primary JAR file for the 
enterprise beans. It is associated with the EJB project.  

� The Project Utility JARs directory containing UML_EJB_tutorialClient.jar. This JAR file 
contains the code needed by an EJB client. It is associated with the EJB client project.  

� The Utility JARs directory. This directory can hold other classes that are used by the EJB 
components.  

� The META-INF directory, containing the application.xml deployment descriptor.  

8 of 27Create EJB components using UML modeling tools 



 

If you double-click the deployment descriptor (either the link or the actual file), the application.xml file opens in the 
Application Deployment Descriptor editor. Contents of the application deployment descriptor are shown on several 
different pages and can be navigated by clicking the tabs at the bottom of the editor area. You can double-click the title 

bar ( ) of the Application Deployment Descriptor editor to expand it to use the 
entire workbench frame. Double-click the title bar again when you want to restore the window to its normal size. 

Notice on the Overview page, under the General Information heading, the Display name is UML EJB tutorialEAR, 
which is the same as the EAR project name. This name is derived from your EJB project name. Display name is the 
value seen when installing and configuring an EAR file in the WebSphere Application Server Administrative console. 
Of course, you can choose your own names when creating the EJB project, or rename them after creation. 

Also note, under the Modules heading, EJB UML_EJB_tutorial.jar. On the Module tab, in addition to this EJB JAR file, 
you will see the Project Utility JAR file, UML_EJB_tutorialClient.jar listed.  

9 of 27Create EJB components using UML modeling tools 



 

Close the deployment descriptor editor by clicking the X on the title bar. 

The EJB project 

In the Project Explorer view, collapse all open projects ( ). Expand EJB Projects, then UML EJB tutorial. You will 
find these resources: 

� The Deployment Descriptor directory, that contains four subdirectories. The Deployment Descriptor 
directory is also a link to the ejb-jar.xml file in the ejbModule > META-INF directory. 

� The Session Beans directory that will list session beans associated with the EJB project.  
� The Entity Beans directory that will list entity beans associated with the EJB project.  
� The Message-Driven Beans directory that will list message-driven beans associated with the EJB 

project.  
� The Maps directory that will list mapping relationships between the enterprise beans and the relational 

database tables.  
� The ejbModule directory that contains the META-INF directory. The META-INF directory contains the ejb-

jar.xml deployment descriptor. The gen/src directory, where generated code is placed. For instance, if you 
generate a session facade bean from an entity bean, the code is place here, as well as the gen/src directory in 
the EJB client project. -->  

� The WebSphere v6.0 Runtime directory, containing code libraries shipped with WebSphere Application 
Server v6.0.  

� The Java Runtime Environment (JRE) System Library [WebSphere v6 JRE] directory, which are 
the Java libraries shipped with WebSphere Application Server v6.  

10 of 27Create EJB components using UML modeling tools 



 

If you double-click the deployment descriptor (either the link or the actual file), the ejb-jar.xml file opens in the EJB 
Deployment Descriptor editor. Contents of the EJB deployment descriptor are shown on several different pages and 
can be navigated by clicking the tabs at the bottom of the editor area. 

Notice on the Overview page, under the General Information heading, the Display name is UML EJB tutorial. This is 
the same as your EJB project name. Under the Usage heading, you will see the UML EJB tutorialEAR, indicating the 
EAR file that uses this JAR file. Under the EJB Client Jar heading, you will see the UML_EJB_tutorialClient.jar listed. 

11 of 27Create EJB components using UML modeling tools 



 

Click on the Source tab of the deployment descriptor. This view shows the actual XML data that is displayed on the 
other pages of the deployment descriptor editor. When changes are made to the enterprise application, via the 
deployment descriptor editor or via the UML class diagram, the changes are made to the XML data, then shown in the 
deployment descriptor editor and the class diagram.  

  

There are many other tabs for the EJB deployment descriptor editor, but these details are beyond the scope of this 
tutorial. See the EJB deployment descriptor editor section of the information center for more information.  

Close the deployment descriptor editor by clicking the X on the title bar. 

The EJB Client project 

12 of 27Create EJB components using UML modeling tools 



In the Project Explorer view, collapse the expanded projects again ( ). 

Expand Other Projects, then UML EJB tutorialClient. You will find these resources: 

� The ejbModule directory, which will contain the local and local home classes.  
� The gen/src directory, where generated code is placed. For instance, if you generate a session facade bean, 

the code is placed here, as well as the gen/src directory in the EJB project.  
� The WebSphere v6.0 Runtime directory, the same as in the EJB project.  
� The JRE System Library [WebSphere v6 JRE] directory, the same as in the EJB project.  
� The bin directory, which will eventually contain compiled Java classes.  

Notice that there is no deployment descriptor for this type of project. 

 

Creating the UML class diagram 

Now that you have your projects defined, you will create a UML class diagram. You will create a folder to contain the 
class diagram, to keep it separate from the actual code. 

In the Project Explorer view, do these steps: 

1. Highlight the EJB project UML EJB tutorial.  
2. Right-click, select New > Other.  
3. Expand Simple.  
4. Select Folder.  
5. Click Next.  
6. Verify that the parent folder name is UML EJB tutorial.  
7. Provide the folder name diagrams.  
8. Click Finish.  

Now, create an empty UML class diagram by following these steps: 

1. Highlight the EJB project UML EJB tutorial.  
2. Right-click and select New > Class Diagram. The New Class Diagram wizard opens.  
3. Expand UML EJB tutorial.  
4. Select the diagrams folder.  
5. Change the class diagram file name to EJB Sample  
6. Click Finish.  

13 of 27Create EJB components using UML modeling tools 



This creates an empty class diagram and opens the empty file in the UML visual editor. Notice the palette on the right 
side of the class diagram. The palette contains items that can be created, visualized, and edited on the class diagram. 
In general, click on any palette object to highlight it, then click anywhere in the class diagram to drop the item onto the 
class diagram. The object will appear on the class diagram after any underlying code to support that object is created 
in your project. If creation of the object involves a wizard, the wizard is automatically launched. 

Notice the EJB drawer in the palette. Since our class diagram is inside an EJB project, the EJB drawer is automatically 
included on the palette. 

 

Now you are ready to begin Exercise 1.3: Adding entity beans to class diagrams. 

Exercise 1.3: Adding entity beans to class diagrams 

Before you begin, you must complete Exercise 1.2: Preparing the workspace. 

Exercise 1.3 guides you through the creation of entity beans from a UML class diagram. In this module, you will do 
these tasks: 

� Add entity beans to the class diagram  
� Show relationships between the beans  
� Explore additional useful views  
� Manipulate objects on the class diagram  

Description of the beans 

You will create two entity beans in this scenario: Author and Book. The Author bean will represent a database table, 
also named AUTHOR. The bean will contain fields representing the author: ID, name, age and gender. These fields in 
the bean will map directly to columns in the AUTHOR table. 

The Book bean will represent a book. Its fields include ID and title. Data corresponding to the Book bean will be stored 
in the BOOK table.  

Creating the Author bean 

14 of 27Create EJB components using UML modeling tools 



Follow these steps to create the Author bean: 

1. Locate the EJB drawer of the palette on the right of the UML class diagram.  
2. Click on the EJB drawer to open it if it is not already open. CMP 2.x Entity bean appears in the middle of 

the list.  
3. Click the arrow ( ) to the right of CMP 2.x Entity bean to reveal more choices. The other choice listed is 

CMP 1.x Entity bean.  
4. Select the CMP 2.x Entity bean.  
5. Move the mouse pointer onto the class diagram and click where you want the bean placed. This creates a new 

CMP 2.x entity bean and visualize it in the class diagram.  

Since EJB beans are complex, this action launches the Create an Enterprise Bean wizard, allowing you to define the 
bean. 

The Create an Enterprise Bean page 

On the first page of the wizard, follow these steps: 

1. Verify that the EJB project is UML EJB tutorial.  
2. Provide the Bean name, Author  
3. Verify the Source folder is ejbModule.  
4. Change the Default package name to sample  
5. Verify that the CMP Version is 2.x.  
6. Click Next.  

 

The Enterprise Bean Details page 

On the second page of the wizard, follow these steps: 

1. Leave the Bean supertype blank.  

15 of 27Create EJB components using UML modeling tools 



2. Verify that Bean class is sample.AuthorBean.  
3. Leave the Remote client view check box cleared.  
4. Select the Local client view check box.  
5. Verify the Local home interface name is sample.AuthorLocalHome.  
6. Verify the Local interface name is sample.AuthorLocal.  
7. Verify the Key class is java.lang.Integer.  
8. Select the Use the single key attribute type for the key class check box.  
9. Verify that the key id is on the list of CMP attributes.  

10. Add two CMP attributes: 
a. Click Add.  
b. Create an attribute named name with a type of java.lang.String. Leave the Array and Key field 

check boxes cleared and the Promote getter and setter methods to local interface check box 
selected. When getters and setters are promoted to the local interface, they are exposed to client 
applications.  

c. Click Apply.  
d. Create an attribute named age with a type of java.lang.Integer. Leave the Array and Key field 

check boxes cleared and the Promote getter and setter methods to local interface check box 
selected.  

e. Click Apply, then Close.  
f. Click Finish.  

 

Your first entity bean will be created and visualized on the class diagram. The following files appear in the Project 
Explorer view:  

16 of 27Create EJB components using UML modeling tools 



� In the EJB project under ejbModule > sample 
� AuthorBean.java -- the bean  

� In the EJB client project under ejbModule > sample 
� AuthorLocal.java -- the local interface  
� AuthorLocalHome.java -- the local home interface  

Open the EJB deployment descriptor and notice that on the Overview page, under the Enterprise JavaBeans heading, 
the Author bean is listed. Click on the Author bean entry. The Bean page of the deployment descriptor editor opens, 
showing the three CMP fields and the four class and interface files, including the class used by the primary key, 
java.lang.Integer. 

On the Bean page, under the WebSphere Bindings heading, the JNDI name ejb/sample/AuthorLocalHome is shown. 
This JNDI name is used when a client application is searching for the bean.  

In the Project Explorer view, under the EJB project, the ejbModule > META-INF directory contains the new file ibm-
ejb-jar-bnd.xmi. This file contains IBM-specific binding information. The information within it is accessible through the 
deployment descriptor editor, but the values are stored a separate file to allow you easily remove IBM-specific 
enhancements if you want to deploy your application on another vendor's EJB server. Later in the EJB development 
process, the file ibm-ejb-jar-ext.xmi will appear. It contains IBM-specific extension information. 

Also in the Project Explorer view, expand the deployment descriptor directory under the EJB project, expand Entity 
Beans > Author and explore the links to the various components that comprise the Author bean.  

Creating the Book bean 

Next, you will create the Book bean. Follow these steps: 

1. Add another CMP 2.x entity bean to the class diagram.  
2. Follow the same steps as for the Author bean, with these differences: 

� The bean name is Book  
� These are the CMP attributes: 

� id, of type java.lang.Integer (the id attribute is created for you automatically)  
� title, of type java.lang.String  

3. Click Finish.  

Your second entity bean is created and visualized on the class diagram and the following files appear in the Project 
Explorer view: 

� In the EJB project under ejbModule > sample 
� BookBean.java -- the bean  

� In the EJB client project under ejbModule > sample 
� BookLocal.java -- the local interface  
� BookLocalHome.java -- the local home interface  

The EJB deployment descriptor now has Book on the list of Enterprise JavaBeans on the Overview page. The Book 
bean has details similar to the Author bean. From the Project Explorer view, expand the deployment descriptor 
directory under the EJB project. Expand Entity Beans > Book and explore the links to the bean's components.  

Defining relationships between beans 

Next, you will define a CMP relationship between the two CMP beans on the class diagram. A single Author can be 
associated with zero or more books. And a single book can be associated with one or more authors. This relationship 
would be expressed as a bidirectional many-to-many relationship using the notation 0..*:0..*.  

1. Double-click the title bar of the UML class diagram to enlarge the window.  
2. In the palette view, expand the CMP relationship drawer by clicking the arrow ( ).  

17 of 27Create EJB components using UML modeling tools 



3. Select the 0..*:0..* CMP relationship.  

4. Move the mouse pointer over the Author bean. You will see an arrow icon ( ) if the relationship is valid for 

the bean. If the relationship is not valid, you will see the same icon plus an invalid symbol ( ) .  
5. Click on the Author bean.  
6. Drag the cursor to the Book bean and release it. If this target bean is invalid for the relationship, the invalid icon 

( ) appears.  
7. The CMP relationship is visualized as an association on the diagram after the appropriate underlying code is 

generated. In the deployment descriptor, these relationships appear under the Relationships heading on the 
Bean page.  

8. Select Ctrl + S to save the class diagram.  

  

You may want to rearrange elements in the class diagram to see the details.  

 

Exploring additional views 

The Outline and Properties views provide useful information on the overall class diagram and on specific EJB 
component properties.  

18 of 27Create EJB components using UML modeling tools 



The Outline view appears, by default, in the bottom left of the workbench. Use this view to navigate a large diagram 
following these steps:  

1. If the class diagram is still using the entire workbench frame, double-click the title bar of the class diagram 
again to restore it to normal size.  

2. Notice the Outline view in the bottom left corner of the workbench. The class diagram is displayed there on a 
small scale. If the diagram is too large to see completely in the edit window, you will see a highlighted rectangle 
in the Outline view which indicates the visible portion of the diagram.  

3. In the Outline view, move the highlighted rectangle around with your mouse pointer. The section of the class 
diagram that is visible in the editor area moves to correspond to the highlighted section in the Outline view.  

  

The Properties view appears, by default, in the bottom right of the workbench. It has two tabs, Appearance and 
Advanced. You can change colors, fonts and other visual properties on the Appearance page. The Advanced page 
shows detailed properties of the highlighted element in the class diagram. Some of the property values in the 
Properties view are read-only and some can be modified.  

 

Modifying attributes from the UML class diagram 

Next, you will modify some of the CMP attributes for the Author bean.  

Add a CMP attribute to a bean 

1. Move the mouse cursor anywhere on the Author bean. An Action bar appears. 

19 of 27Create EJB components using UML modeling tools 



  
2. Click the primary key symbol ( ) in the Action bar to add additional CMP attributes to AuthorBean. The CMP 

Fields wizard opens.  
3. Add a field with the name gender of type java.lang.Character.  
4. Click Apply > Close > Finish. The bean classes are updated and the gender attribute appears in the Attribute 

compartment of the bean on the class diagram.  

 

Make a CMP attribute part of the key 

1. Highlight the name attribute in the Author bean.  
2. Right-click and select Edit > Add to Key. The New Key class wizard opens. A new key class is now required 

because the key is no longer a primitive Java type. Prior to this step, the java.lang.Integer was used as the key 
class.  

3. Click OK to use the preselected options to create the new key class with the default key class name, 
AuthorKey. The name attribute now appears on the class diagram with the primary key field symbol. The new 
key class appears in the UML EJB tutorialClient > ejbModule > sample directory  

4. Select Ctrl + S to save the class diagram.  

 

Manipulating objects in the UML class diagram 

Next, look at the details of the class diagram. Double-click the title bar of the class diagram to enlarge it. Now the class 
diagram editor takes up most of the workbench window, leaving the palette expanded on the right. 

Rearrange the bean components on the diagram 

1. Click once on one of the beans. Small black squares appear around the bean's rectangle, indicating that it has 

20 of 27Create EJB components using UML modeling tools 



been selected.  
2. Drag the bean to another location on the class diagram and drop it. If the Author or Book beans are moved, the 

relationship arrow adjusts to reflect the new position.  

Change the items displayed for a bean 

1. In the class diagram editor, highlight the Author bean. The rectangle representing the bean is divided into 
several compartments. The default compartments that are displayed are Attribute and Provided Interfaces. The 
compartments have a hide icon ( ) in the top left corner.  

2. Click on one of the hide icons to hide that compartment of the bean. The compartment collapses and the hide 
icon is replaced with the show icon ( ).  

3. Click on the show icon to re-expand that compartment.  
4. Select which compartments are shown or hidden by right-clicking the bean and selecting Filters > Show/Hide 

Compartment.  

 

Open editors from the diagram 

� Double-click the bean name or the Attribute compartment of a bean in the class diagram. The EJB deployment 
descriptor editor opens.  

� Highlight a bean in the class diagram. Right-click and select Navigate > Open with > EJB Bean Java Editor. 
The Java class editor opens on the Java class selected.  

When you open the EJB Bean Java Editor, an Outline view for this editor appears in the lower left corner of the 
workbench. You can make changes to the bean from this view. Right-click one of the methods in the Outline view and 
select Enterprise Bean. Select one of the Promote or Demote choices to promote or demote the selected method to 
one of the interface types listed.  

Try adding a method to the class using the EJB Bean Java Editor. The new method appears in the Outline view. If you 
promote the new method to an interface, the method appears on the class diagram. 

21 of 27Create EJB components using UML modeling tools 



 

Familiarize yourself with the decorations associated with the beans 

A complete list of decorations is shown in the information center under UML visualization reference.  

UML class diagrams and code interaction 

As you make changes in your class diagram, corresponding changes are automatically made to the underlying code. 
Conversely, if you make changes directly to the code, the class diagram is automatically altered to reflect the change. 
Any type of change made within the workbench results in automatic and immediate revalidation of the code. For EJB 
applications, validation includes identifying compilation errors in Java classes, class path problems, and violation of 
EJB specifications. 

At the bottom of the workbench, several views are stacked, including one named Problems. This view shows all errors, 
warnings and informational messages for all projects and files within the workbench. Double-clicking one of the listed 
problems opens the appropriate file to the place where the error occurs. 

The Problems view limits the number of problems listed to 100 by default. You can change this limit, or filter the view 
to display only items you want to see. Filtering options include problem severity, projects, resources, and problem 
type. To modify these default settings, click the arrow ( ) and select Filters. 

See Problems view in the information center for more information. --> 

Decoration Meaning

CMP 2.x entity bean

primary key field

CMP field, not primary

local interface

local home interface

remote interface

local method

local home method

remote method

22 of 27Create EJB components using UML modeling tools 



Configuring preferences for UML class diagrams 

You can change some of the default behaviors and display characteristics of class diagrams. From the Window menu, 
select Preferences. Expand Modeling to see the items that can be changed. 

The main section contains Global Settings, such as whether Action Bars appear when you hold the mouse pointer 
over a class in the diagram. The Appearance section has several pages that allow you to change things like fonts, 
colors, connectors, and shapes. The EJB section has a settings for when class diagrams open. Other sections include 
options for Java fields and methods, rules and grids, and validation. 

Step through the sections to become familiar with the various options. After making changes, click OK to save them 
and exit the Preferences page. 

Now you are ready to begin Exercise 1.4: Mapping entity beans to relational databases. 

Exercise 1.4: Mapping entity beans to relational databases 

Before you begin, you must complete Exercise 1.3: Adding entity beans to class diagrams. 

Exercise 1.4 teaches you how to create the database mapping files for CloudscapeTM. It explains the files created and 
their use. In this module, you will do these tasks: 

� Define the target database type  
� Generate relational database mapping files  

Overview 

Next, you will map the entity beans to a relational database. Mapping involves creating database definition files for the 
tables that will be used to store the entity bean's fields. Generally, each bean uses a different table. Fields in the bean 
represent columns in the table. Key fields in the bean correspond to primary keys in the database table. 

Database mapping results in a set of files that are discussed later. These files are packaged with the EJB. They are 
also used by an administrator to create the database tables when putting the EJB application into production. The 
database mapping files are dependent on the database type.  

You can create a set of database mapping files for one or several database types, which are listed below. 

� CloudscapeTM (included with the workbench)  
� DB2 Universal Database  
� Oracle  
� InformixR Dynamic Server  

� MicrosoftR SQL Server  
� Sybase Adaptive Server Enterprise  
� InstantDB  
� MySQL  
� Other databases that support the SQL-92 or SQL-99 standards  

This approach, creating database definitions from existing entity beans, is called top-down mapping. The reverse 
process, bottom-up mapping, is also provided, where you create entity beans from existing database tables. Meet-in-
the-middle mapping is also available, for use when you have existing enterprise beans and existing database tables. 
See Mapping enterprise beans to database tables for more information. 

Mapping relational databases from entity beans 

To create mapping files for Cloudscape, follow these steps: 

23 of 27Create EJB components using UML modeling tools 



1. On the class diagram, highlight the Author bean.  
2. Right-click and select EJB to RDB Mapping > Generate Map. The EJB to RDB Mapping wizard opens.  
3. On the first page, select Create a new backend folder.  
4. Click Next.  
5. Select Top-Down as the type of mapping.  
6. Click Next.  
7. On the Top-Down Mapping Options page, 

a. Select Cloudscape V5.1 as the Target Database.  
b. Use UMLEJB as the Database name.  
c. Leave NULLID as the Schema name.  
d. Leave the other options as they are.  

8. Click Finish. The mapping files are created and the Author table is visualized on the class diagram.  
9. Select Ctrl + S to save the class diagram.  

  

In the Project Explorer view, under EJB Projects > UML EJB tutorial > ejbModule > META-INF > backends, you 
will see the folder CLOUDSCAPE_V51_1 which contains the mapping files listed below. Another view of the mapping 
relationships can be found in EJB Projects > UML EJB tutorial > Deployment Descriptor > Maps directory. You 
can locate the newly mapped table in the Project Explorer view by selecting the table on the class diagram, right-
clicking and selecting Navigate > Show in > Data Definition View.  

� Map.mapxmi 

This XML file defines the relationships between the CMP fields in the beans and the database schema. Double-
click the file in the Project Explorer view to see a visual representation. 

24 of 27Create EJB components using UML modeling tools 



  
� Table.ddl 

This is the data definition file. It contains the SQL table creation statements and other table definitions. It is 
used to create the actual database that will be used to persist the EJB application data on the test or production 
server. 

� UMLEJB_NULLID_AUTHOR.tblxmi 

This XML file has a name derived from the database name, the schema name and the table name. It uses the 
XMI tag library to define entries for the database, schema, columns and data types. This particular file defines 
the Author bean table.  

� UMLEJB_NULLID_BOOK.tblxmi 

This XML file defines the Book bean table.  

� UMLEJB_NULLID_Author_Book.tblxmi 

This XML file defines the relationships between the Author and Book beans. 

� UMLEJB_NULLID.schxmi 

This XML file defines the schema, with pointers to the other XMI-encoded files. 

� UMLEJB.dbxmi 

This XML file defines the database, with pointers to the other XMI-encoded files. 

Now you are ready to begin Exercise 1.5: Finishing the EJB creation process. 

Exercise 1.5: Finishing the EJB creation process 

Before you begin, you must complete Exercise 1.4: Mapping entity beans to relational databases. 

Exercise 1.5 explains the next steps. In this module, you will be introduced to these concepts: 

25 of 27Create EJB components using UML modeling tools 



� Deploying an enterprise application  
� Exporting an EAR file  
� Creating database tables  
� Testing the enterprise application  
� Installing the enterprise application  

The next steps 

This tutorial has shown you the techniques for using UML class diagrams to create some simple CMP entity beans. 
However, the files created do not comprise a complete enterprise application. Some examples of enterprise 
applications are in the Samples Gallery (Help > Samples Gallery). A real application would also have these elements: 

� Business logic added to the skeleton methods of the classes.  
� Session or message-driven beans to drive the overall program logic.  
� Optionally, a Web module containing related HTML files, servlets and JSPs.  

For this discussion, assume that you have a complete enterprise application. The next steps in the process are as 
follows: 

1. Deploy the enterprise application. The deployment step will package the projects into the JAR, WAR and EAR 
files defined by the J2EE specification. To deploy an enterprise application, follow these steps: 

a. From the Project Explorer view, highlight the UML EJB tutorial EJB project.  
b. Right-click and select Deploy.  

2. Export the EAR file following these steps: 
a. From the Project Explorer view, highlight the UML EJB tutorialEAR Enterprise Application project.  
b. Right-click and select Export > EAR file.  
c. Provide a destination directory and a name for the EAR file.  
d. Select Export source files if you want the Java source files included in the EAR file.  
e. Select Finish.  

3. Create the database tables for the test server using the .ddl file. Each database type uses a different process 
for running .ddl files. For instructions, consult the documentation for the type of database you are using.  

4. Test the enterprise application on the test server within the workbench. For information, consult the help topic 
Testing enterprise beans in the universal test client.  

5. Create the database tables for the production server using the .ddl file. Each database type uses a different 
process for running .ddl files. For instructions, consult the documentation for the type of database you are 
using.  

6. Install the EAR file on a production EJB server using the WebSphere Administrative console. Consult the 
WebSphere Application Server Information Center for your version of WebSphere.  

Finish your tutorial by reviewing the materials in the Summary. 

26 of 27Create EJB components using UML modeling tools 



Create EJB components using UML modeling tools summary  

Congratulations! You have finished this learning exercise. This tutorial has taught you basic concepts about creating 
container-managed entity beans using UML class diagrams and mapping EJB fields into relational database 
definitions. 

Completed learning objectives 

If you have completed all of the exercises, you should now be able to: 

� Create an enterprise application (EAR) project  
� Create an EJB project  
� Create an EJB client project  
� Create a UML class diagram  
� Generate relational database mapping files  
� Deploy an enterprise application  
� Export an EAR file  
� Understand the process for testing an enterprise application and putting it into production  

More information 

If you want to learn more about the topics covered in this tutorial, consider the following RedbooksTM: 

 

� EJB 2.0 Development with WebSphere Studio Application Developer, SG24-6819-00  
� WebSphere Studio Application Developer Version 5 Programming Guide, SG24-6957-00 

27 of 27Create EJB components using UML modeling tools 


