Run a codereview

This tutorial shows you some of the code review features. It is written for software
developers.

Time Required

To simply read through this tutorial you will need approximately 15 minutes. To do the
exercise using the supplied sample project, you will need approximately 30 minutes.

Prerequisites
In order to complete this tutorial, you should be familiar with developing Java software

applications. It will also help if you understand how to use the perspectives and viewsin
the IBM Rational Software Development Platform.

L ear ning Objectives
Thistutorial is divided into sections that you should take in sequence. Y ou will read
about the benefits of automated code reviews and learn how to perform the following

tasks:

e Runacodereview
e Apply asupplied quick fix to resolve a problem in the code

When you are ready, begin “Overview of code review.”

C) Copyright IBM Corporation 2004, 2005. All Rights Reserved.
Feedback: https://www14.software.ibm.com/webapp/iwm/web/signup.do?source=rdf

Overview of codereview

Purpose

Codereview is a set of rules that automates the process for a software devel oper to
review code. While the manual code review process can consist of time-consuming and
subjective discussions, the automated code review is effective, quick, and consistent. The
automated code review supplements the manual code review. It does not replaceit.

Benefits

The automated code review tool adds value to the software development processin
several ways because it performs the following tasks:

Finds bugs in the code

Checks for adherence to best practices

Explains each finding and provides solutions for it

Provides an automated fix for some typical findings

Allows you to create rules to ensure that you follow the application design and
standards as you write code

Because the automated process is quick, you can run code reviews often. The code
review findings let you catch and correct problems early, when it is easiest and cheapest
to make changes.

Tutoria: Run acode review 2

Supplied codereviews

Several code reviews are supplied. Each code review applies a different set of rules,
which are organized in folders. Depending on which stage of the development process
you are in and what your review objectiveis, you can choose the code review to suit your
needs. The broadest review is the Complete Code Review that applies rules from all
categories, as shown in the following screen capture:

Code Review

Select Code Review: ICDmpIete Code Review j
= 3 Design Principles (5 rules, 5 enabled) Nevs rule |
H-[F 3 Globalization {50 rules, 50 enabled)

2 | (5 12EE Best Practices {63 rules, 65 enabled) Remowve rule |
= (23 125E Best Practices (71 rules, 71 enabled)

£ | 23 Maming Conventions (2 rules, 2 enabled) e rulz. . |
£ | 3 Performance (26 rules, 26 enabled)

H-[F 53 Private API (4 rules, 4 enabled) Shaw Search Bax |
£

r-[] £ Security (27 rules, 27 enabled)
Expand all |

Export... |
Imnpork. .. |

Tutoria: Run acode review 3

Some categories also have a code review associated with them. For example, you could
select the J2SE Best Practices Code Review when you want to apply rules for that
category only, as shown in the following screen capture below. Thislets you run code
reviews that focus on a particular aspect of the code.

Code Review

1= =e s (N =1 SR | 175F Biest Prachices Code Review Y

F-[#] 0 125E Best Practices (71 rules, 71 enabled)

User-defined codereviews

Y ou can create rules from a supplied wizard. The wizard lets you choose from two types
of rules: general and J2EE best practices. These rules allow software developers to extend
the capabilities of code review by creating rules to ensure the integrity of the code.

Severity levelsfor rules

Each rule has a severity level. For asupplied rule, you can modify the severity level
assigned to it. When you create arule from the wizard, you specify a severity level. The
three severity levels are indicated by the following icons:

« Problem (2): Thisfinding must be addressed.

e Warning (=): Thisfinding islikely a problem that needs to be addressed.

e Recommendation (m): Thisfinding is not serious yet, but it is highly
recommended that you address it now.

Although "recommendation” is the lowest severity level, do not discount how important
it isto address these findings. They reflect a set of best practices and industry standards
that engineering teams should adhere to. Even if these findings are not immediate
problems, they could lead to problemsin the future.

Tutoria: Run acode review 4

The following screen capture shows rules in the Comparison folder of the J2SE Best
Practices Code Review. Rulesin the folder have all three severity levels.

Code Review

Select Code Review: |J25E Best Practices Code Review j

=[] 0 J25E Best Practices (71 rules, 71 enabled) =
B[AWT (1 rule, 1 enabled)
B[]0 Casting (2 rules, 2 enabled)
H-[#] D Claneable {3 rules, 5 enabled)
[—] N _orparison (5 rules, S enabled)

e = Always override both java.lang. Obije.

----- ™ awvoid using java.lang. Class. getMame
b =) Always use instanceof in an equals()
e £ &woid using == and !=for javalanc =

b i Always place constants on the left si = |

Automated fixesfor some problems

Some common findings come with a quick fix, which is a supplied automated solution. If
afinding in the code review has a quick fix, it isindicated by one of theiconsin the
following illustration:

Guick Fix Available
[~}

= O
u u

Summary

In the software development life cycle, code review automates the peer review process on
abody of code. The supplied code reviews allow you to run the following types of
reviews:

o Broad, complete code reviews that apply a wide range of rules from all categories
to a code base

e Narrow, focused code reviews that apply rules from one or more specific
categories, such as globalization, design principles or both

Y ou can also use a supplied wizard to create your own rules that are specific to ensuring
the integrity of your application's design structure.

Because automated code reviews are quick to run, you can detect problems and
inconsistenciesin a code base early. Consequently, you can fix these problems early
before they affect your application's maintenance, scalability, and performance.

Now you are ready to begin Exercise 1.1: Importing the required resources.

Tutoria: Run acode review 5

Exercise 1.1: Importing therequired resources

This exercise tells you how to import the sample project, CodeReview Examples. You
use the sample project to do Exercise 1.2: Running a code review and applying a quick

fix.

Unzipping the sample project

The sample project for this tutorial isincluded in aZIPfile. The following steps lead you
through extracting files from that ZIP file into your Workspace folder.

1.

Navigate to
<installdir>\rad\eclipse\plugins\com.ibm.r2a.rad.tutorial.doc_6.0.1.0\resources
where the ZIP file, CodeReview_Examples, islocated.

Extract CodeReview Examplesto <installdir>\updater\eclipse\workspace. The
sample project files are extracted in your Workspace folder so you can import
them.

Opening the Code Review view

To open a perspective showing the Code Review view:

1.

Nook~wWN

Start IBM Rational Software Development Platform.

@®

Rational Software
Development Platfarm

Click Window > Preferences.

In the left pane expand Wor kbench and click Capabilities.

In the Capabilitieslist click Java Developer. Then click OK.

Click Window > Open Per spective > Java.

Click Window > Show View > Other > Java > Code Review.
Click Window > Show View > Other > Java > Package Explorer.

Tutoria: Run acode review

After you open the Java perspective and show the Code Review and Package
Explorer views, the perspective shows the views in the following screen capture.
Your layout might differ. That is, the perspective might show the viewsin
different locations. The tutorial uses the layout in the screen capture.

{9 Java - IBM Rational Software Development Platform _ (0] x|
Fle Edit Source Refactor Mavigate Search Project Run ‘Window Help

e85 [%-0-8-Q-|0- |BEE- & - - %] e Clioceing
tg E@ »2 :E %CD...E@ »1 :E
e E <§> b
F'rol:ulems‘Javadnc‘Declaration (@ Codz Review &3 Dl By = =13
Quick Code Review: Workspace

Importing the sample project
To import the sample project to the workspace:

1. Right-click in the Package Explorer view to open the pop-up menu. Then click
Import to open the Import wizard.

2. Inthe Select list click Existing Project into Workspace. Then click Next.
3. Next to the Project contentstext box click Browse and select
<installdir>\updater\eclipse\workspace\CodeReview_Examples.

Tutoria: Run acode review 7

4. Click Finish The sample project and al its associated files are imported to
Package Explorer.

Beginning the exercise

To begin go to Exercise 1.2: Running a code review and applying a quick fix.

Tutoria: Run acode review

Exercise 1.2: Running a code review and applying a
quick fix

This exercise assumes you have completed Exercise 1.1: Importing the required
resources. In the exercise you read a user scenario first. Then you assume the role of the
software developer described in the user scenario.

User scenario

A large group of geographically dispersed developersis coding a new software
application. It isimportant that the devel opers routinely run code reviews to check for
problems in their code.

One of the devel opers wants to run a code review to see how the code is doing in general.
To review newly written code to assess adherence to best practicesin severa areas, the
developer runs an automated quick code review. This review applies several categories of
supplied rules to code. Each category of rules checks the quality of the code in a specific
area, such as performance.

When the code review finishes, you see alist of findings. Each finding represents a string
of code that does not adhere strictly to an applied rule. One of the findings has a quick fix
availablefor it, so the developer applies the automated solution and corrects the problem
right away.

In the first part of the exercise, you perform the following tasks to run a code review:

Select a code review to run.

View the rules applied in the code review.

Choose what code to run the review on.

Run the code review.

View the findings of the code review.

Select afinding to see the following information for it:
o Source code
o Description, examples, and solutions

SahkhwdpE

Tutoria: Run acode review 9

Next, to apply aquick fix to one finding in the code review you perform the following
tasks:

Recognize when aquick fix is available for afinding.

See alist of changes that the quick fix will make to the code.

Preview the original and refactored code before you apply the quick fix.
Apply the quick fix to refactor the code.

Get a confirmation after the quick fix has been applied.

agrwdPE

Exercise

Selecting a codereview

To select aquick code review:

1. Onthetoolbar in the Code Review view click the Manage Rulesicon, %

e = g = ™
Problems | Javador | Declar ation (@ &3 = - :%:'P - EW 2 B
Cuick Code Review: Workspace

Tutoria: Run acode review 10

2. Inthe Select Code Review ligt, click Quick Code Review. The folders of rules
for the code review you selected are displayed, as shown in the following screen
capture:

@i Preferences (O]

- Workbench

- fgent Contraller
[#- Ank

- Build Order Select Code Review: IQuick Code Review
- Commaon Reporting
H- Compaonent Tesk

- Crystal Reports

| »

‘ Code Review ‘

c ed)

[

[= L i = -

E]" Data [5 125E Best Practices (20 rules, 20 enabled)
[

[

Mew rule...

- Help #-[FE Performance (5 rulss, 5 enabled) Remaye rul

- Instal [Update [Security (5 rules, 5 enabled)
H- Internet Mowve rule, .,

- J2EE

[Java

[+- Appearance
[+]- Build Path Expand Al
[#]- Code Review

(- Code Style
- Compiler
[-Debug || Impatt, ..
(- Editor

- Installed JREs
- Uit

- Task Tags

- Type Filters ﬂ
[#)- Visual Editar The JZEE Best Practices rule categoty containg niles based on the best

- Logging JZEE development practices. This category supports web projects targeted

i LPEX Editor to Web3phere servers.

(- Modeling

- Model Publishing j
[#1.. Phin-in Mieserlonrmenk j

Show Search Box

Export...

PEHRLLE

g

K Cancel |

Tutoria: Run acode review 11

3. To seeone of the rules that will be applied in the code review, expand the J2SE
Best Practicesfolder and then the Null subfolder. The Null folder shows one rule
with a problem severity level, as shown in the following screen capture:

Code Review

Select Code Review: IQuick Code Review

#-[#] =0 JZEE Best Practices (2 rules, 2 enabled)

IT|

-
A KR
D

J25E Best Practices (20 rules, 20 enabled)
f-[F] 0 AWT (1 rule, 1 enabled)

-[#] =9 Cloneable (1 rule, 1 enabled)

f-[#] 53 Comparison (2 rules, 2 enabled)

= I:l Mull {1 rule, 1 enabled)

------ . ﬂ Avoid returning null instead of emply array
A [T I:l Portability {1 rule, 1 enabled)

r-[] £ Serialization (4 rules, 4 enabled)

-[#] 59 Threads {10 rules, 10 enabled)

[w] I:I Petrfarmance (5 rules, 5 enabled)

[
[

ITl

I_|IT|IT|

IT|IT|IT|

[#] ©2 Security (S rules, 5 enablad)

]

Few rule, .. |
Remove rule |
Mave rule, ., |

Show Search Box |
Expand Al |

Expork. .. |
Import, .. |

=)

The T25E Best Practices rule category contans rules that wahdate code for
compliance with T25E Best Practices for JTava development.

[

Asareview, the severity level icons are shown in the following illustration:

leon
=]

Sewverity Level
Praoklem

Warning

Fecommendation

4. Click OK to choose the Quick Code Review.

Tutoria: Run acode review

12

Selecting a code base to review
To select the project as the code base to review:

o Onthetoolbar in the Code Review view click the Review icon (¥ =) > Projects
> Review CodeReview_Examples.

Running the codereview

Once you select the code base to review, the code review runs. Y ou can track its status by
checking the progress bar in the lower-right corner of the view.

Viewing the code review findings

When the code review is finished, the findings are shown in the Code Review view,as
shown in the following screen capture:

ol = -
Problems | Javadoc | Declaration (@ &l 4 :%:'? 1T - Ei? =

Cuick Code Review: Workspace, Rules: 39, Files: 103, Problems: 41, Warnings: 0, Recommendations: 0

-2 JESE Best F‘ral:tlces Clnneable {1 prl:ul:ulem]l
-[=3 125E Best Practices:Comparison (2 problems)
I:I 125E Best Practices:Mull (1 prablem)

I:I 125E Best Practices:Porkahility (1 problem)
I:I 125E Best Practices;Serialization (7 problems) ;I

The Code Review view provides the following information:

o Codereview statistics: The line above the findings displays information about the
most recent code review: type, scope, number of rules and files included, and
number and severity of findings.

e Codereview findings: The findings from the code review are listed in the Code
Review view, within folders. Each folder name tells you the category of rules
applied and the number of findings.

Tutoria: Run acode review 13

Getting mor e information on a code review finding

To get more information on afinding in the code review:

1. Inthe Code Review view, scroll to the J2SE Best Practices. Comparison folder.
Then expand the folder to show the findingsin it, as shown in the following

screen capture:

' = = "y
Problems | Javadoc | Declaration (@ &l = - :%:'? T - = Ei? L2 =8
Cuick Code Review: Workspace, Rules: 39, Files: 103, Problems: 41, Warnings: 0, Recommendations: 0

ElI:l 125E Best Practices; Comparisan (2 problems) ;I
P EJ EqualsHashCode_FExample.java:d Always override both java.lang, Object, equals() and java.lang.objnJ

EJ ClassMameComparison_Example.java: 11 &void using java.lang.Class,.getMame) to compare classes

I:I 125E Best Practices:Mull (1 prablem)
I:I 125E Best Practices:Porkahility (1 problem)

H— bl
i | »

2. Thefirst finding begins with EqualsHashCode Example.java. The rule that was
applied is noted after it:

Always override both java.lang.Object.equals() and java.lang.Object.hashCode()

Tutoria: Run acode review 14

3. Double-click thefirst finding. Details about it appear in two places, as outlined in
the following points and screen capture:
o Source code: Displays the code where the finding occurs and highlights
the exact location of it.
o Code Review Details view: Describes the finding in more detail and
provides examples and solutions to correct it.

15| EqualsHashCode_Example java 52 B = & Outline‘ =g
A package com,ibw.ria.rules,rdi,exsmop=|® || Description |Examples | saluliars |
Y
“public class |[NeptRELERE) ANl R gl |= Category —
J25E Best Practices : Comparison
= public EqualsHashCode Example(d
::1_131‘ [: . Name
18.58 = Always override both java.lang. Object. equals() and ja
)
= public int hashCode () { L";:t'“" .y | . |
return s.hashCods (] : | Imkz testiCodeReview Examples/comfibm/r2alirulesr—
)
Explanation
private String = = ""; //4NON-N* java.lang.Ol:uject.equlals{]l and java.lang.object.hash_tlfﬂ
. | > 1 b
Problems ‘ Javadoc ‘ Declaration (@ Code Review &3 -2 T - By 5 =0
Quick Code Review: Workspace, Rules: 33, Files: 103, Problems: 41, Warnings: 0, Recommendations: 0
EI:I 125E Best Practices; Comparison (2 problems) ﬂ
i ----ﬂ, EqualsHashCode_Example.java:3 Always override both java.lang, Object. equalst) and java.lang. Object.hashCode:
------ﬂ, ClassMameCompatison_Example.java: 11 Avoid using java.lang. Class, getMame() to compare dasses J
---I:I 125E Best Practices:Mull {1 problem)
---I:I J25E Best Practices;Portability (1 problem) _Ij
N i : R D

Tutoria: Run acode review 15

Selecting a finding that has a quick fix

Y ou can tell that both findings in the Best Practices:. Comparison folder have a quick fix
by their icons. As areview, the quick fix icons are shown in the following illustration:

Guick Fix Available

W W v

1. Right-click the first finding in the list, as shown in the next screen capture.
2. The Quick Fix pop-up menu choice varies depending upon the solution. For the
finding you selected, the fix is to implement hashCode and equals.

Quick Fiz: Implement hashiCode and equals

S Edit...

:{E| Go b location

.
Problems | Javadoc | Declaration ﬂi Disable rule

Quick Code Review: Warkspace, Rule Disable rule on EqualsHashiCode_Example, java

I:l 125E Best Practices:Mull {1 problem})
I:l 1Z5E Best Practices:Portability (1 problem}) _ILI
< i : S | S

3. Click Quick Fix: Implement hashCode and equals.

Tutoria: Run acode review 16

Applying the quick fix
The quick fix for the finding you selected is to implement hashCode and equals.
To review and apply the quick fix to the finding:
1. You see aside-by-side view of the code, as shown in the following screen
capture. The original source code is on the left and the refactored source code that

would be created by the quick fix is on the right. If you decide to apply the quick
fix, it will append the missing lines of code that are highlighted.

:@:Implement hashCode and equals x|
Changes ta be performed L 9F

Jd |

m EqualsHashCode_Example. java

Qriginal Source
SUPET (] &

polea o =
this.s = =; o J
} - -

Refactored Source

public int hashCode () {

return =.hashCode (] ; 0D
i

private String s = "*; //$MNON-

public int hashCode () {
b return =.hashCode (] ;

x =l
a | = Jd | »

O, I Cancel

Tutoria: Run acode review 17

2. Inthe Changesto be performed section expand the list to see exactly what the
quick fix will change and how, as shown in the following screen capture:

i@:lmplement hashCode and equals

Zhanges ko be performed

=A% EqualsHashCode_Exarnple

Elt.i’{él—I EqualsHashCode_Example.java - CodeReview_Examplesfoonnibrmyr2afrulesirdjlexamplesijizsebestpractices ool

4| "
3. Review the changesin thelist. Then click OK to apply the quick fix to all the
selected changesin the list.
4. After the quick fix has been applied, you see a checkmark next to the finding you
resolved.
{-F‘rcul:ulems | Javado: | Declaration (@ g -2 T - Ew J2 = Ifl-\

Quick Code Review: Workspace, Rules: 39, Files: 103, Problems: 41, \Warnings: 0, Recommendations: 0

E|I:l J25E BEesk Practices: Comparison 1 problem)
P nj J ClassMameComparison_Exarnple.java: 11 Avoid using java.lang. Class.getMamed) to compare classes
I:l J25E Besk Practices:Mull {1 problern)

I:l J25E Besk Practices: Partability {1 problem)

e

Next to the checkmark you see the following information:
o Thequick fix you applied
o Theline number in the source code where the finding is located
o Therulein the code review that had not been adhered to
Y ou have completed Exercise: Running a code review and applying a quick fix.

Exercise wrap-up

Y ou have performed all the tasks in Exercise: Running a code review and applying a
quick fix.

Tutoria: Run acode review 18

Tasksfor running a codereview
When you ran this code review, you performed the following tasks:

Selected a code review to run.

Viewed rules applied in the code review.

Chose abody of code to run the review on.

Ran the code review.

Viewed the findings of the code review.

Selected afinding to see the following information for it:
o Source code.
o Description, examples, and solutions.

Sk wdNE

Tasksfor applying a quick fix
When you applied the quick fix, you performed the next set of tasks:

Recognized when aquick fix isavailable for afinding.

Saw alist of changes that the quick fix would make to the code.
Previewed the original and refactored code.

Applied the quick fix to refactor the code.

Got a confirmation that the quick fix had been applied.

agbrwdNE

L ever aging the power of a codereview

By proactively running code reviews, you are able to analyze the findings early. This
means you can also address them early, before they lead to the following problems:

o Affect your application's performance, maintenance, or scalability
e Cost your company money, time, and resources

L everaging the power of a quick fix

By applying a supplied quick fix, you have an automated way to resolve acommon
finding. Quick fixes help you in the following ways:

o Correct aproblem consistently each time
e Freeyou up to code and spend less time fixing bugs

Finish the tutorial by reviewing the learning objectives in Summary: Running a code
review.

Tutoria: Run acode review

19

Exercise 1.2: Running a code review and applying a
quick fix

This exercise assumes you have completed Exercise 1.1: Importing the required
resources. In the exercise you read a user scenario first. Then you assume the role of the
software developer described in the user scenario.

User scenario

A large group of geographically dispersed developersis coding a new software
application. It isimportant that the devel opers routinely run code reviews to check for
problems in their code.

One of the devel opers wants to run a code review to see how the code is doing in general.
To review newly written code to assess adherence to best practicesin severa areas, the
developer runs an automated quick code review. This review applies several categories of
supplied rules to code. Each category of rules checks the quality of the code in a specific
area, such as performance.

When the code review finishes, you see alist of findings. Each finding represents a string
of code that does not adhere strictly to an applied rule. One of the findings has a quick fix
availablefor it, so the developer applies the automated solution and corrects the problem
right away.

In the first part of the exercise, you perform the following tasks to run a code review:

Select a code review to run.

View the rules applied in the code review.

Choose what code to run the review on.

Run the code review.

View the findings of the code review.

Select afinding to see the following information for it:
o Source code
o Description, examples, and solutions

SahkhwdpE

Next, to apply a quick fix to one finding in the code review you perform the following
tasks:

Recognize when aquick fix is available for afinding.

See alist of changes that the quick fix will make to the code.

Preview the origina and refactored code before you apply the quick fix.
Apply the quick fix to refactor the code.

Get a confirmation after the quick fix has been applied.

agrwbdPE

Tutoria: Run acode review 20

Exercise

Selecting a codereview

To select aquick code review:

1. Onthetoolbar in the Code Review view click the M anage Rulesicon, 7

y
Problems | Javadoc

Declaration (@

Quick Code Review: Workspace

&3

-2l - 9B 5 =0

Tutoria: Run acode review

21

2. Inthe Select Code Review ligt, click Quick Code Review. The folders of rules
for the code review you selected are displayed, as shown in the following screen
capture:

(& Preferences H=l B3

- Workbench 1= | Code Review ‘
- tygent Conkroller

[+]- &nk
- Build Qrder Select Code Review: IQuick Code Review
- i_ommon Reporking
|- Component Test

H- Crystal Reports

|- Data

[
[
[
- Help 3 Petformance (5 rules, 5 enabled) Remaiwe rule
[
[

Mew rule. ..

e InstallfUpdate 3 Security (5 rules, 5 enabled)
+- Internet

- JZ2EE
[Java
H- fppearance
fl- Build Path Expand Al
- Code Review
H- Code Skyle
- Compiler
[#-Debug |- Impatt, ..
[#- Editar
- Installed JREs
- Jnit
- Task Tags
- Type Filters ﬂ
- ¥isual Edtar The J2EE Best Practices nile categoty contains rules based on the best

- Logging TZ2EE development practices. This categoty suppotts web projects targeted
#- LPEX Editer to WebSphere servers.
- Maodefing

- Model Publishing ﬂ
1 Plin-in Mieseelnnrnent j

Mave rule, ..
; Show Search Box
[
[
[

Export...

[RELLE

ﬂ

K Cancel |

Tutoria: Run acode review 22

3. To seeone of the rules that will be applied in the code review, expand the J2SE
Best Practicesfolder and then the Null subfolder. The Null folder shows one rule
with a problem severity level, as shown in the following screen capture:

Code Review

Select Code Review: IQuil:k Code Review

=

IT|

(-3 12EE Best Practices {9 rules, 9 enabled)

1Z3E Best Practices (20 rules, 20 enabled)
H-FF LD AwWT (1 rule, 1 enabled)

- 53 Claneable (1 rule, 1 enabled)

[I:I Comparison (2 rules, 2 enabled)
=-FFED MUl 1 rule, 1 enabled)

- ﬂ &wvoid returning null instead of emphy array
r-[#] 53 Partability (1 rule, 1 enabled)

-[#] 53 Serialization (4 rules, 4 enabled)

f-[#] 20 Threads (10 rules, 10 enabled)

[w] I:I Performance (5 rules, 5 enabled)

[
[

[#] =2 Security (S rules, 5 enabled)

IT|IT|IT|

-

Mew rule., . |
Remove rule |
Mave rule, ., |

Show Search Box |
Expand &ll |

Expark. .. |
Imnport. .. |

=)

The T25E Best Practices rule category contamns rules that wahdate code for
compliance with J25E Best Practices for Java development.

[~

Asareview, the severity level icons are shown in the following illustration:

lcon
[}

Severity Level

Problem

Warning

Recommendation

4. Click OK to choose the Quick Code Review.

Tutoria: Run acode review

23

Selecting a code baseto review
To select the project as the code base to review:

» Onthetoolbar in the Code Review view click the Review icon (& =) > Projects
> Review CodeReview Examples.

Running the codereview

Once you select the code base to review, the code review runs. Y ou can track its status by
checking the progress bar in the lower-right corner of the view.

Viewing the code review findings

When the code review is finished, the findings are shown in the Code Review view,as
shown in the following screen capture:

' = = "
Problems | Javadoc | Declaration (@ &3 v :%:'} T - = E{? J2 =8
Quick Code Review: Workspace, Rules: 39, Files: 103, Problems: 41, Warnings: 0, FRecommendations: 0

I:I 125E Best Practices: AW T (2 problems)
I:I 125E Best Practices: Cloneable (1 prablem)

I:I 125E Best Practices: Camparisan (2 prablems)

I:I 125E Best Practices:Mull (1 prablem)

I:I 125E Best Practices:Parkahility (1 prablem)

I:I 125E Best Practices:Serialization (7 problems) ;I

The Code Review view provides the following information:

o Codereview statistics: The line above the findings displays information about the
most recent code review: type, scope, number of rules and files included, and
number and severity of findings.

e Code review findings: The findings from the code review are listed in the Code
Review view, within folders. Each folder name tells you the category of rules
applied and the number of findings.

Tutoria: Run acode review 24

Getting mor e information on a code review finding

To get more information on afinding in the code review:

1. Inthe Code Review view, scroll to the J2SE Best Practices. Comparison folder.
Then expand the folder to show the findingsin it, as shown in the following

screen capture:

' = = "y
Problems | Javadoc | Declaration (@ &l = - :%:'? T - = Ei? L2 =8
Cuick Code Review: Workspace, Rules: 39, Files: 103, Problems: 41, Warnings: 0, Recommendations: 0

ElI:l 125E Best Practices; Comparisan (2 problems) ;I
P EJ EqualsHashCode_FExample.java:d Always override both java.lang, Object, equals() and java.lang.objnJ

EJ ClassMameComparison_Example.java: 11 &void using java.lang.Class,.getMame) to compare classes

I:I 125E Best Practices:Mull (1 prablem)
I:I 125E Best Practices:Porkahility (1 problem)

H— bl
i | »

2. Thefirst finding begins with EqualsHashCode Example.java. The rule that was
applied is noted after it:

Always override both java.lang.Object.equals() and java.lang.Object.hashCode()

Tutoria: Run acode review 25

3. Double-click thefirst finding. Details about it appear in two places, as outlined in

the following points and screen capture:

o Source code: Displays the code where the finding occurs and highlights

the exact location of it.

o Code Review Details view: Describes the finding in more detail and
provides examples and solutions to correct it.

=
@ EqualsHashiCode_Example,java &4

£ package com.ibw.ria.rules.rdi.examp =

wpubhlic class |NeERECH-tc)ilule i £- 1 apN=
= public EqualsHashCode Example (3

super () :
this.z = =;

= public int hashCode(){

return =.hashCode();
¥

private 3tring s = ""; //iNON-TI ™
1| |]

=)

&a . Outline | =0

Drescripkion |Examples I Solutions I

Category
J25E Best Practices : Comparison

Name
Always override both java.lang.Object. equals() and ja

Location

Imkz_test/CodeReview Examplesicomibmt2aulesr—

Explanation

java.Iang.OI:uject.equials(]l and java.lang.Ohject.haiCIﬂ
4

y:
Problems | Javadoc ‘ Declaration (@ Code Review &3

-2l - 9 =0

Cuick Code Review: Workspace, Rules: 39, Files: 103, Problems: 41, Warnings: 0, Recommendations: 0

EI:I 125E Best Practices: Comparison (2 problems)

I:I 125E Best Practices:Mull (1 problem)
I:I J25E Best Practices;Portability {1 problem)

T

FY

.1 , EqualsHashCade_Example java:3 Always overtide both java lang,Object.equalsl) and java.lang.Object, hashCode
LB , ClassMameCompatison_Example.java: 11 Avoid using java.lang, Class.gethame() ko compare classes J

of"

Tutoria: Run acode review

26

Selecting a finding that has a quick fix

Y ou can tell that both findingsin the Best Practices: Comparison folder have a quick fix
by their icons. As areview, the quick fix icons are shown in the following illustration:

Guick Fix Available

v v ¥

1. Right-click the first finding in the list, as shown in the next screen capture.

2. The Quick Fix pop-up menu choice varies depending upon the solution. For the
finding you selected, the fix isto implement hashCode and equals.

Cuick, Fi: Implement hashCode and equals

5 Edt. ..

==/ Go to location

-
Problems

Javadoc

Declaration ﬂi Disable rule

Quick Cade Review: Workspace, Rule Disable rule on EqualsHashCode_FExample. java

£ 125E Best Practices:Compa Ignore match

shiCode_Exarnple.java
B ; ClassMarneComparison_Example.java: 11 Avoid using java.lang.Class.getMamel) to compare classes

nEF 1 13l5Ha

id Always override bokh 1ava.lang. o)

I:I 125E Best Practices:Mull (1 prablem)
I:I 125E Best Practices:Porkahility (1 problem)

- 78 5=0

ons: 0

o

3. Click Quick Fix: Implement hashCode and equals.

Tutoria: Run acode review

27

Applying the quick fix
The quick fix for the finding you selected is to implement hashCode and equals.
To review and apply the quick fix to the finding:
1. You see aside-by-side view of the code, as shown in the following screen
capture. The original source code is on the left and the refactored source code that

would be created by the quick fix is on the right. If you decide to apply the quick
fix, it will append the missing lines of code that are highlighted.

:@:Implement hashCode and equals x|
Changes to be performed dL 4%

< |

EqualsHashCode_FExample.java

Criginal Source Refactored Source

SUPEY [] & o
0 B d 0
this.s = =: _I

L

public int hashCode (] {
return =.hashCode () ;
B

private String s = "": S/ SO

public int hashCode () {

return s.hashCode ()] ;

=
1
J | B 1 | ’

(0] 4 I Zancel

Tutoria: Run acode review 28

2. Inthe Changesto be performed section expand the list to see exactly what the
quick fix will change and how, as shown in the following screen capture:

i@:lmplement hashCode and equals

Zhanges ko be performed

= (9 EqualsHashCode_Example

------ [¥l4 Add "equals” method invocation

Elt.i’{él—I EqualsHashCode_Example.java - CodeReview_Examplesfoonnibrmyr2afrulesirdjlexamplesijizsebestpractices ool

4| | "
3. Review the changesin thelist. Then click OK to apply the quick fix to all the
selected changesin the list.
4. After the quick fix has been applied, you see a checkmark next to the finding you
resolved.
rPru:ubIems Javadaoc | Declaration (@, s B2 T v & 'EW JE2 =8

Quick Code Review: Workspace, Rules: 39, Files: 103, Problems: 41, Warnings: 0, Recommendations: 0

Ell:l 125E Best Practices: Comparison (1 problem)

S ﬂ, ClasshameComparison_Example.java: 11 fvoid using java.lang. Class,getMamel) to compare classes
---I:I JZ5E Best Practices:Mull (1 problem)
---I:I 1Z5E Best Practices:Portability (1 problem)

e

Next to the checkmark you see the following information:
o Thequick fix you applied
o Theline number in the source code where the finding is located
o Therulein the code review that had not been adhered to
Y ou have completed Exercise: Running a code review and applying a quick fix.

Exer cise wrap-up

Y ou have performed all the tasks in Exercise: Running a code review and applying a
quick fix.

Tutoria: Run acode review 29

Tasksfor running a codereview
When you ran this code review, you performed the following tasks:

Selected a code review to run.

Viewed rules applied in the code review.

Chose abody of code to run the review on.

Ran the code review.

Viewed the findings of the code review.

Selected afinding to see the following information for it:
o Source code.
o Description, examples, and solutions.

Sk wdNE

Tasksfor applying a quick fix
When you applied the quick fix, you performed the next set of tasks:

Recognized when aquick fix isavailable for afinding.

Saw alist of changes that the quick fix would make to the code.
Previewed the original and refactored code.

Applied the quick fix to refactor the code.

Got a confirmation that the quick fix had been applied.

agbrwdNE

L ever aging the power of a codereview

By proactively running code reviews, you are able to analyze the findings early. This
means you can also address them early, before they lead to the following problems:

o Affect your application's performance, maintenance, or scalability
e Cost your company money, time, and resources

L everaging the power of a quick fix

By applying a supplied quick fix, you have an automated way to resolve acommon
finding. Quick fixes help you in the following ways:

o Correct aproblem consistently each time
e Freeyou up to code and spend less time fixing bugs

Finish the tutorial by reviewing the learning objectives in Summary: Running a code
review.

Tutoria: Run acode review

30

Summary: Running a code review

This tutorial showed you how to run a code review.

Completed L earning Objectives

If you completed the exercise, you should now be able to do the following tasks:

e Runacodereview.
e Apply asupplied quick fix to resolve a problem.

Moreinformation

If you want to learn more about the topics covered in this tutorial, please refer to the
online Help for running code reviews.

Tutoria: Run acode review

31

