

MQSeries IBM

Using Java

 SC34-5456-00

MQSeries IBM

Using Java

 SC34-5456-00

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix A, “Notices”
on page 119.

First edition (March 1999)

This edition applies to the following products:

� MQSeries for AIX Version 5 Release 1
� MQSeries for AS/400. Version 4 Release 2 Modification 1
� MQSeries for AT&T GIS UNIX Version 2 Release 2
� MQSeries for HP-UX Version 5 Release 1
� MQSeries for OS/2 Warp Version 5 Release 1
� MQSeries for OS/390 Version 2 Release 4
� MQSeries for SINIX and DC/OSx Version 2 Release 2
� MQSeries for Sun Solaris Version 5 Release 1
� MQSeries for Windows NT Version 5 Release 1

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at
the address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997,1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . vii
Who this book is for . vii
What you need to know . vii
How to use this book . vii
Changes in this version . vii
MQSeries publications . viii

MQSeries cross-platform publications . viii
MQSeries platform-specific publications . xi
MQSeries Level 1 product publications . xii
Softcopy books . xiii

MQSeries information available on the Internet xiv

Part 1. Guidance for users . 1

Chapter 1. Getting started with the MQSeries classes for Java 3
What are the MQSeries classes for Java? . 3
Who should use the MQSeries classes for Java? 3
Connection options . 4
Prerequisites . 5
Installing the MQSeries classes for Java . 5

Chapter 2. Using the MQSeries classes for Java 9
Using the sample applet to verify the TCP/IP client 9
Verifying with the sample application . 11
Running your own programs . 12

Chapter 3. Solving MQSeries classes for Java problems 13
Tracing the sample applet . 13
Tracing the sample application . 13
Error messages . 14

Part 2. Programming with the MQSeries classes for Java 15

Chapter 4. Introduction for programmers . 17
Why should I use the Java interface? . 17
The MQSeries classes for Java interface . 18
Java Developer's Kit . 18
The MQSeries classes for Java class library . 19

Chapter 5. Writing Java programs for MQSeries 21
Should I write applets or applications? . 21
Connection differences . 21
Example code fragments . 22
Running MQSeries classes for Java applets . 28
Operations on queue managers . 28
Accessing queues and processes . 29
Handling messages . 30
Handling errors . 32
Getting and setting attribute values . 32

 Copyright IBM Corp. 1997,1999 iii

 Contents

Multithreaded programs . 33
Writing user exits . 33
Compiling and testing MQSeries classes for Java programs 35

Part 3. MQSeries classes for Java reference . 37

Chapter 6. Environment dependent behavior 39
Core details . 39
Restrictions and variations for core classes . 40
Version 5 extensions operating in other environments 41

Chapter 7. The Java classes and interfaces for MQSeries 45
MQChannelDefinition . 46
MQChannelExit . 48
MQDistributionList . 51
MQDistributionListItem . 53
MQEnvironment . 55
MQException . 59
MQGetMessageOptions . 61
MQManagedObject . 65
MQMessage . 68
MQMessageTracker . 86
MQProcess . 88
MQPutMessageOptions . 90
MQQueue . 93
MQQueueManager . 101
MQC . 109
MQReceiveExit . 110
MQSecurityExit . 112
MQSendExit . 114

Part 4. Appendix . 117

Appendix A. Notices . 119
Trademarks . 121

Part 5. Glossary and Index . 123

Glossary of terms and abbreviations . 125

Index . 127

iv MQSeries Using Java

 Figures � Tables

 Figures

1. MQSeries classes for Java example applet 23
2. MQSeries classes for Java example application 26

 Tables

1. Platforms and connection modes . 5
2. Installation directories . 6
3. Sample CLASSPATH statements . 7
4. AIX and HP-UX environment variables . 7
5. Core classes restrictions and variations 40
6. Character set identifiers . 71

 Figures v

 Tables

vi MQSeries Using Java

 About this book � Changes in V5.1

About this book

This book describes the MQSeries classes for Java which can be used to access
MQSeries systems.

Part 1 describes the use of MQSeries classes for Java, Part 2 provides assistance
for programmers, and Part 3 contains detailed information about the MQSeries
classes for Java.

Who this book is for
This information is written for programmers who are familiar with the procedural
MQSeries application programming interface as described in the Application
Programming Guide, and shows how to transfer this knowledge to become
productive with the MQSeries Java programming interface.

What you need to know
You should have:

� Knowledge of the Java programming language

� Understanding of the purpose of the Message Queue Interface (MQI) as
described in Chapter 6, “Introducing the Message Queue Interface” in the
MQSeries Application Programming Guide and in Chapter 3, “Call descriptions”
in the MQSeries Application Programming Reference book

� Experience of MQSeries programs in general, or familiarity with the content of
the other MQSeries publications

How to use this book
First read the sections of Part 1 that introduce you to the MQSeries classes for
Java. Then read the programming guidance in Part 2 to understand how to use the
classes to send and receive MQSeries messages. Refer to Part 3 for detailed
information about the syntax of the classes.

Changes in this version
This version of the MQSeries classes for Java is a consolidation of the MQSeries
Client for Java and MQSeries Bindings for Java products and contains the following
additions and enhancements:

Programmable transport options
MQSeries client and bindings code have been combined into a single Java
package. The transport choice is now a programmable option making it
possible to connect to the MQSeries server either as an MQSeries client, or
through the Java Native Interface (JNI). Applications previously written
specifically for MQSeries Client for Java or MQSeries Bindings for Java can
still be run with this version of the MQSeries classes for Java. The package
com.ibm.mqbind can still be used but it is deprecated and you are
recommended not to use it in any new applications.

 Copyright IBM Corp. 1997,1999 vii

 MQSeries publications

Repackaging into Java .jar files
The client, bindings, and common files have been repackaged into .jar files for
easier installation and downloading to clients.

Support for connection using VisiBroker for Java
As an option, the MQSeries classes for Java running on supported Windows
platforms can connect to the MQSeries server using an IIOP protocol. This
support is provided using VisiBroker for Java in conjunction with Netscape
Navigator, and requires Inprise VisiBroker for Java to be installed on the
MQSeries server machine.

 MQSeries publications
This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2M1
� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for OS/390 V2.1
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for Sun Solaris V5.1
� MQSeries for Tandem NonStop Kernel V2.2
� MQSeries for VSE/ESA V2.1
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1
� MQSeries for Windows NT V5.1

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xii. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from

viii MQSeries Using Java

 MQSeries publications

earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, and the
dead-letter queue handler. It also includes the syntax of the MQSeries control
commands.

This book applies to the following MQSeries products only:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
Programmable Command Format (PCF) messages, and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

 About this book ix

 MQSeries publications

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

MQSeries Using C ++
MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by these MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for AS/400 V4R2M1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for OS/390 V2.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries C++ is also supported by MQSeries clients supplied with these products
and installed in the following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1
� Windows 95 and Windows 98

MQSeries Using Java
MQSeries Using Java, SC34-5456, provides both guidance and reference
information for users of the MQSeries classes for Java. MQSeries classes for Java
is supported by these MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1

MQSeries Administration Interface Programming Guide and Reference
The MQSeries Administration Interface Programming Guide and Reference,
SC34-5390, provides information for users of the MQAI. The MQAI is a
programming interface that simplifies the way in which applications manipulate
Programmable Command Format (PCF) messages and their associated data
structures.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for Sun Solaris V5.1

x MQSeries Using Java

 MQSeries publications

MQSeries for Windows NT V5.1

MQSeries Queue Manager Clusters
MQSeries Queue Manager Clusters, SC34-5349, describes MQSeries clustering. It
explains the concepts and terminology and shows how you can benefit by taking
advantage of clustering. It details changes to the MQI, and summarizes the syntax
of new and changed MQSeries commands. It shows a number of examples of
tasks you can perform to set up and maintain clusters of queue managers.

This book applies to the following MQSeries products only:

MQSeries for AIX V5.1
MQSeries for HP-UX V5.1
MQSeries for OS/2 Warp V5.1
MQSeries for OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

MQSeries for AIX Version 5 Release 1 Quick Beginnings, GC33-1867

MQSeries for AS/400

MQSeries for AS/400 Version 4 Release 2.1 Administration Guide, GC33-1956

MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
(RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2 Release 2 System Management
Guide, SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2 Release 2 System Management
Guide, GC33-1791

MQSeries for Digital UNIX

MQSeries for Digital UNIX Version 2 Release 2.1 System Management Guide,
GC34-5483

MQSeries for HP-UX

MQSeries for HP-UX Version 5 Release 1 Quick Beginnings, GC33-1869

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp Version 5 Release 1 Quick Beginnings, GC33-1868

MQSeries for OS/390

MQSeries for OS/390 Version 2 Release 1 Licensed Program Specifications,
GC34-5377

MQSeries for OS/390 Version 2 Release 1 Program Directory

MQSeries for OS/390 Version 2 Release 1 System Management Guide,
SC34-5374

 About this book xi

 MQSeries publications

MQSeries for OS/390 Version 2 Release 1 Messages and Codes, GC34-5375

MQSeries for OS/390 Version 2 Release 1 Problem Determination Guide,
GC34-5376

MQSeries link for R/3

MQSeries link for R/3 Version 1 Release 2 User’s Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2 Release 2 System Management
Guide, GC33-1768

MQSeries for Sun Solaris

MQSeries for Sun Solaris Version 5 Release 1 Quick Beginnings, GC33-1870

MQSeries for Tandem NonStop Kernel

MQSeries for Tandem NonStop Kernel Version 2 Release 2 System
Management Guide, GC33-1893

MQSeries for VSE/ESA

MQSeries for VSE/ESA Version 2 Release 1 Licensed Program Specifications,
GC34-5365

MQSeries for VSE/ESA Version 2 Release 1 System Management Guide,
GC34-5364

MQSeries for Windows

MQSeries for Windows Version 2 Release 0 User’s Guide, GC33-1822
MQSeries for Windows Version 2 Release 1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT Version 5 Release 1 Quick Beginnings, GC34-5389
MQSeries for Windows NT Using the Component Object Model Interface,
SC34-5387
MQSeries LotusScript Extension, SC34-5404

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for UnixWare Version 1 Release 4.1 User’s Guide, SC33-1379

xii MQSeries Using Java

 MQSeries publications

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager  format
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

 HTML format
Relevant MQSeries documentation is provided in HTML format with these
MQSeries products:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1 (compiled HTML)
� MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML format from the MQSeries product
family Web site at:

 http://www.software.ibm.com/ts/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader, or would like up-to-date
information about the platforms on which the Acrobat Reader is supported, visit the
Adobe Systems Inc. Web site at:

 http://www.adobe.com/

PDF versions of relevant MQSeries books are supplied with these MQSeries
products:

� MQSeries for AIX V5.1
� MQSeries for HP-UX V5.1
� MQSeries for OS/2 Warp V5.1
� MQSeries for Sun Solaris V5.1
� MQSeries for Windows NT V5.1
� MQSeries link for R/3 V1.2

PDF versions of all current MQSeries books are also available from the MQSeries
product family Web site at:

 http://www.software.ibm.com/ts/mqseries/

 About this book xiii

 MQSeries on the Internet

 PostScript format
The MQSeries library is provided in PostScript (.PS) format with many MQSeries
Version 2 products. Books in PostScript format can be printed on a PostScript
printer or viewed with a suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

MQSeries information available on the Internet
MQSeries Web site

The MQSeries product family Web site is at:

 http://www.software.ibm.com/ts/mqseries/

By following links from this Web site you can:

� Obtain latest information about the MQSeries product family.

� Access the MQSeries books in HTML and PDF formats.

� Download MQSeries SupportPacs.

xiv MQSeries Using Java

Part 1. Guidance for users

Chapter 1. Getting started with the MQSeries classes for Java 3
What are the MQSeries classes for Java? . 3
Who should use the MQSeries classes for Java? 3
Connection options . 4

Client connection . 4
Using VisiBroker for Java . 4
Bindings connection . 5

Prerequisites . 5
Installing the MQSeries classes for Java . 5

Web server configuration . 7

Chapter 2. Using the MQSeries classes for Java 9
Using the sample applet to verify the TCP/IP client 9

Configuring your queue manager to accept client connections 9
Running from appletviewer . 10
Running from a Web browser . 10
Customizing the verification applet . 11

Verifying with the sample application . 11
Using VisiBroker connectivity . 12

Running your own programs . 12

Chapter 3. Solving MQSeries classes for Java problems 13
Tracing the sample applet . 13
Tracing the sample application . 13
Error messages . 14

 Copyright IBM Corp. 1997,1999 1

2 MQSeries Using Java

 Overview � Who should use Java

Chapter 1. Getting started with the MQSeries classes for
Java

This chapter gives an overview of the MQSeries classes for Java, their uses, and
installation requirements.

What are the MQSeries classes for Java?
The MQSeries classes for Java allow a program written in the Java programming
language to connect to MQSeries as an MQSeries client, or directly to an
MQSeries server. It enables Java applets, applications, and servlets to issue calls
and queries to MQSeries giving access to mainframe and legacy applications,
typically over the Internet, without necessarily having any other MQSeries code on
the client machine. With the MQSeries classes for Java the user of an Internet
terminal can become a true participant in transactions, rather than just a giver and
receiver of information.

Who should use the MQSeries classes for Java?
If your enterprise fits any of the following scenarios, you can gain significant
advantage by using the MQSeries classes for Java:

� A medium or large enterprise that is introducing intranet-based client/server
solutions. Here Internet technology provides low cost easy access to global
communications, while MQSeries connectivity provides high integrity with
assured delivery and time independence.

� A medium or large enterprise with a need for reliable business-to-business
communications with partner enterprises. Here again, the Internet provides
low-cost easy access to global communications, while MQSeries connectivity
provides high integrity with assured delivery and time independence.

� A medium or large enterprise that wishes to provide access from the public
Internet to some of its enterprise applications. Here the Internet provides
global reach at a low cost, while MQSeries connectivity provides high integrity
through the queuing paradigm. In addition to low cost, the business can
achieve improved customer satisfaction through 24 hour a day availability, fast
response, and improved accuracy.

� An Internet Service provider, or other Value Added Network provider. These
companies can exploit the low cost and easy communications provided by the
Internet and add the value of high integrity provided by MQSeries connectivity.
An Internet Service provider that exploits MQSeries can immediately
acknowledge receipt of input data from a Web browser, guarantee delivery, and
provide an easy way for the user of the Web browser to monitor the status of
the message.

MQSeries provides an excellent infrastructure for access to enterprise applications
and for development of complex Web applications. A service request from a Web
browser can be queued and processed when possible, thus allowing a timely
response to be sent to the end user regardless of system loading. By placing this
queue 'close' to the user in network terms, the timeliness of the response is not
impacted by network loading. In addition, the transactional nature of MQSeries

 Copyright IBM Corp. 1997,1999 3

 Connections

messaging means that a simple request from the browser can be expanded safely
into a sequence of individual back-end processes in a transactional manner.

The MQSeries classes for Java also enable application developers to exploit the
power of the Java programming language to create applets and applications that
can run on any platform that supports the Java run-time environment. These
factors combine to reduce significantly the development time for multi-platform
MQSeries applications, and future enhancements to applets are automatically
picked up by end users as the applet code is downloaded.

 Connection options
Programmable options allow the MQSeries classes for Java to connect to
MQSeries in three distinct ways:

� As an MQSeries client using TCP/IP
� Using VisiBroker for Java
� In bindings mode, connecting directly to MQSeries

These options are described in more detail below.

 Client connection
If you are using the MQSeries classes for Java as an MQSeries client, they can be
installed either on the MQSeries server machine, which may also contain a Web
server, or on a separate machine. Installation on the same machine as a Web
server has the advantage of allowing you to download and run MQSeries client
applications on machines that do not have the MQSeries classes for Java installed
locally.

Wherever you choose to install the client, it can be run in three different modes:

From within any Java-enabled Web browser
When running in this mode, the locations of the MQSeries queue managers
that can be accessed may be constrained by the security restrictions of the
browser being used.

Using an applet viewer
To use this method you must have the Java Developer's Kit (JDK) or Java
Runtime Environment (JRE) installed on the client machine.

As a stand-alone Java program or in a Web application server
To use this method you must have the Java Developer's Kit (JDK) or Java
Runtime Environment (JRE) installed on the client machine.

Using VisiBroker for Java
Connection through Visibroker is provided as an alternative to connection using the
standard MQSeries client protocols. This support is provided by VisiBroker for Java
in conjunction with Netscape Navigator, and requires VisiBroker for Java and an
MQSeries object server on the MQSeries server machine. A suitable object server
is provided with the MQSeries classes for Java.

4 MQSeries Using Java

 Prerequisites � Installation

 Bindings connection
When used in bindings mode, the MQSeries classes for Java use the JNI to call
directly into the existing queue manager API rather than communicating through a
network. This provides better performance for MQSeries classes for Java
applications than using network connections. Unlike the client mode, applications
written using the bindings mode cannot be downloaded as applets.

To use the bindings connection, the MQSeries classes for Java must be installed
on the MQSeries server.

 Prerequisites
The following software is required to run the MQSeries classes for Java:

� MQSeries for the server platform you wish to use. Table 1 shows the
connection modes that can be used for each platform.

� Java Developers Kit (JDK) for the server platform

� Java Developers Kit, or Java Runtime Environment (JRE), or Java-enabled
Web browser for client platforms. (See “Client connection” on page 4.)

Note: To run MQSeries classes for Java applets (for example the installation
verification program) inside a Web browser, you need a browser that can run
Java 1.1.6 applets. Sun System's HotJava, Netscape Navigator 4, and
Microsoft Internet Explorer 4 are examples of browsers that meet this
requirement.

� VisiBroker for Java. (Only if running with a VisiBroker connection.)

Table 1. Platforms and connection modes

Server platform Connection mode

Client Bindings

Windows NT yes yes
AIX yes yes
Solaris yes yes
OS/2 yes yes
OS/400 yes no
HP-UX yes no
AT&T GIS UNIX yes no
Sun OS yes no
SINIX and DC/OSx yes no
OS/390 yes yes

Installing the MQSeries classes for Java
The MQSeries classes for Java can be installed from either the MQSeries Version
5.1 Software Server CD or the MQSeries Version 5.1 Software Client CD. Follow
the installation instructions provided with the CD. If you choose the typical
installation, the MQSeries classes for Java are included in the installation. If you
choose to customize your installation, make sure that MQSeries classes for Java is
checked.

 Chapter 1. Getting started with the MQSeries classes for Java 5

 Installation

Notes:

1. If you want to use the native connection (bindings) mode, you must install from
the server CD.

2. On an OS/2 system, the MQSeries classes for Java must be installed in an
HPFS partition.

The MQSeries classes for Java files, documentation, and samples are installed in
the directories shown in Table 2.

MQSeries Java is contained in the following Java .jar files:

com.ibm.mq.jar This code includes support for all the connection options.

com.ibm.mq.iiop.jar This code supports only the Visibroker connection.

com.ibm.mqbind.jar This code supports only the bindings connection.

After installation, you will need to update your CLASSPATH environment variable to
include the MQSeries Java code and samples directories. Table 3 on page 7
shows typical CLASSPATH settings for the various platforms:

Table 2. Installation directories

Platform Files Directory

AIX code
Documentation
Samples

usr/lpp/mqm/java/lib
usr/lpp/mqm/html/mqjava
usr/lpp/mqm/samp/javaclnt/langdir

HP-UX
 Solaris

code
Documentation
Samples

opt/mqm/java/lib
opt/mqm/html/mqjava
opt/mqm/samp/javaclnt/langdir

 OS/2
Windows
NT

code
Documentation
Samples

install_dir\java\lib
install_dir\html\mqjava\
install_dir\tools\javaclnt\samples\langdir

Note: install_dir is the directory in which you chose to install the MQSeries classes for
Java. langdir is the language directory for your installation

6 MQSeries Using Java

 Installation

Additional environment variables need to be updated on Solaris, AIX, and HP-UX,
as shown in Table 4.

Table 3. Sample CLASSPATH statements

Platform Sample CLASSPATH

AIX CLASSPATH=/usr/lpp/jdk1.1.6/lib/classes.zip:
/usr/lpp/mqm/java/lib/com.ibm.mq.jar:
/usr/lpp/mqm/java/lib/com.ibm.mqbind.jar:
/usr/lpp/mqm/samp/javaclnt/en_us:

 HP-UX
Solaris

CLASSPATH=/opt/jdk1.1.1/lib/classes.zip:
/opt/mqm/java/lib/com.ibm.mq.jar:
/opt/mqm/java/lib/com.ibm.mqbind.jar:
/opt/mqm/samp/javaclnt/en_us:

 OS/2 CLASSPATH=C:\jdk1.1.6\lib\classes.zip;
install_dir\java\lib\com.ibm.mq.jar;
install_dir\java\lib\com.ibm.mqbind.jar;
install_dir\tools\javaclnt\samples\en_us;

 Windows
NT

CLASSPATH=C:\jdk1.1.6\lib\classes.zip;
install_dir\java\lib\com.ibm.mq.jar;
install_dir\java\lib\com.ibm.mqbind.jar;
install_dir\java\lib\com.ibm.mq.iiop.jar;
install_dir\tools\javaclnt\samples\en_us;

Note: install_dir is the directory in which you chose to install the MQSeries classes for
Java.

Table 4. AIX and HP-UX environment variables

Platform Environment variable

 AIX LD_LIBRARY_PATH=/usr/lpp/mqm/lib

 Solaris LD_LIBRY_PATH=/opt/mqm/lib

 HP-UX SHLIB_PATH=/opt/mqm/lib

Web server configuration
If you install MQSeries Java on a Web server, you can download and run
MQSeries Java applications on machines that do not have MQSeries Java installed
locally. To make the MQSeries Java files accessible to your Web server, you must
set up your Web server configuration to point to the directory where the client is
installed. Consult your Web server documentation for details of how to configure
this.

 Chapter 1. Getting started with the MQSeries classes for Java 7

 Installation

8 MQSeries Using Java

 Verifying client mode

Chapter 2. Using the MQSeries classes for Java

This chapter describes how to configure your system to run the sample applet and
application programs to verify your installation of the MQSeries classes for Java,
and how to modify the procedures to run your own programs.

The procedures depend on the connection option you want to use. Follow the
instructions in the section that is appropriate for your requirements.

Using the sample applet to verify the TCP/IP client
An installation verification applet, mqjavac.html, is provided with the MQSeries
classes for Java. The applet can be used to verify the TCP/IP connected client
mode of the MQSeries classes for Java. (See also “Verifying with the sample
application” on page 11.)

The applet connects to a given queue manager, exercises all the MQSeries calls,
and produces diagnostic messages in the event of any failures.

The applet can be run from the applet viewer supplied with your JDK (v1.1.6 or
later), or any Java 1.1.6 enabled browser. When using the applet viewer you will
be able to access a queue manager on any host. When using a Web browser, you
will be able to access a queue manager only on the host from which the applet was
loaded. This is your local machine if you have the MQSeries classes for Java
installed, or the machine on which your Web server is running if you download the
applet from a Web server.

Note: When loading applets from a local installation, some Web browsers allow
you to specify only the literal string "localhost" as the name of the host to connect
to. Consult your Web browser documentation for further information.

In all cases, if the applet does not complete successfully, follow the advice given in
the diagnostic messages and try to run the applet again.

Configuring your queue manager to accept client connections
Use the following procedure to configure your queue manager to accept incoming
connection requests from the clients.

 TCP/IP client
1. Define a server connection channel using the following procedure:

a. Start your queue manager using the strmqm command

 b. Type

runmqsc

to start the runmqsc program

c. Define a sample channel called JAVA.CHANNEL by typing:

DEF CHL('JAVA.CHANNEL') CHLTYPE(SVRCONN) TRPTYPE(TCP) MCAUSER(' ') +
DESCR('Sample channel for MQSeries Client for Java')

 Copyright IBM Corp. 1997,1999 9

 Verifying client mode

2. Start a listener program with the following commands:

For OS/2 and NT operating systems:
Issue the command:

runmqlsr -t tcp [-m QMNAME] -p 1414

Note: If you use the default queue manager, the -m flag is not required.

Using VisiBroker for Java on the Windows NT operating system:
Start the IIOP server with the following command:

java com.ibm.mq.iiop.Server

Note: To stop the IIOP server, issue the following command:

java com.ibm.mq.iiop.samples.AdministrationApplet shutdown

For UNIX operating systems:
Configure the inetd daemon, so that the inetd starts the MQSeries channels.
See MQSeries Clients for instructions on how to do this.

Running from appletviewer
To use this method you must have the Java Developer's Kit (JDK) installed on your
machine.

Local installation procedure

1. Change to your samples directory for your language

 2. Type:

appletviewer mqjavac.html

Web server installation procedure:
Enter the command:

appletviewer http://Web.server.host/MQJavaclient/mqjavac.html

Notes:

1. On some platforms the command is 'applet', and not 'appletviewer'.

2. On some platforms, you may need to select 'Properties' from the 'Applet' menu
at the top left of your screen, and then set 'Network Access' to 'Unrestricted'.

Using this technique you should be able to connect to any queue manager running
on any host to which you have TCP/IP access.

Running from a Web browser
To run the applet from a Web browser, first copy the contents of the samples
directory (for your chosen language) into the directory that contains the MQSeries
classes for Java code. This is necessary because browsers may not make use of
your local CLASSPATH setting and so require all the files used by the applet to be
in a single directory tree.

Local installation procedure

Note: This method requires a Java 1.1 capable browser.

Open your copied version of the file mqjavac.html in your Web browser. The
file open procedure varies from between browsers, but the function is usually
found on the 'File' menu and is likely to be called 'open', or 'open page'.

10 MQSeries Using Java

 Sample application

Web server installation procedure

1. Configure your Web server so that it can serve files located in this
directory. (Consult your Web server documentation for details on how to do
this.)

2. Open the URL:

http://Web.server.hostname/MQJavaclient/mqjavac.html

Note: Because of security restrictions imposed by your browser, you will be
able to connect only to a queue manager running on the same host as the
Web server.

Customizing the verification applet
Optional parameters are included in the mqjavac.html file. These parameters allow
you to modify the applet to suit your requirements. Each parameter is defined in a
line of HTML which looks like the following:

<!PARAM name="xxx" value="yyy">

To specify a parameter value, remove the initial exclamation mark, and edit the
value as desired. The following parameters can be specified:

hostname
Prefills the hostname edit box with the supplied value.

port
Prefills the port number edit box with the supplied value.

channel
Prefills the channel edit box with the supplied value.

queueManager
Prefills the queue manager edit box with the supplied value.

userID:
Uses the specified user ID when connecting to the queue manager.

password
Uses the specified password when connecting to the queue manager.

trace
Causes the MQSeries classes for Java to write a trace log. Use this option
only at the direction of IBM service.

Verifying with the sample application
An installation verification program MQIVP is supplied with the MQSeries classes
for Java. You can use this application to test all the connection modes of the
MQSeries classes for Java. The program prompts for a number of choices and
data to determine which connection mode you want to verify. Use the following
procedure to verify your installation:

1. If you want to test a client connection:
Configure your queue manager as described in “Configuring your queue
manager to accept client connections” on page 9.

Note: Carry out the rest of the procedure on the client machine if you are
testing a client connection. For a bindings connection it should be carried out
on the MQSeries server machine.

 Chapter 2. Using the MQSeries classes for Java 11

 Running programs

2. Change to your samples directory.

 3. Type

java MQIVP

The program tries to:

a. Connect to, and disconnect from the named queue manager

b. Open, put, get, and close the system default local queue

c. Return a message if the operations are successful

Here is an example of the prompts and responses you may see. The actual
prompts and your responses depend on your MQSeries network.
(1)Please enter the type of connection (MQSeries) : (MQSeries)
(2)Please enter the IP address of the MQSeries server : myhost
(3)Please enter the port to connect to : (1414)
(3)Please enter the server connection channel name : JAVA.CHANNEL

Please enter the queue manager name :
Success: Connected to queue manager.
Success: Opened SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Put a message to SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Got a message from SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Closed SYSTEM.DEFAULT.LOCAL.QUEUE
Success: Disconnected from queue manager

Tests complete -
SUCCESS: This transport is functioning correctly.
Press Enter to continue...

4. At prompt (1):

Leave the default 'MQSeries'.

5. At prompt (2):

� If you want to use TCP/IP connection, enter an MQSeries server hostname.
� If you want to use native connection (bindings mode), leave the field blank.

(Do not enter a name.)

Note: If you choose server connection, you do not see the prompts marked (3).

Using VisiBroker connectivity
If you are running with VisiBroker, the procedures described in “Configuring your
queue manager to accept client connections” on page 9 are not required.

To test an installation using VisBroker, use the procedures described in “Verifying
with the sample application” on page 11, but at prompt (1), type VisiBroker using
the exact case.

Running your own programs
To run your own Java applets or applications, use the procedures described for the
verification programs, substituting your application name in place of 'mqjavac.html'
or 'MQIVP'.

For information on writing MQSeries Java applications and applets, see Part 2,
“Programming with the MQSeries classes for Java” on page 15.

12 MQSeries Using Java

 Tracing

Chapter 3. Solving MQSeries classes for Java problems

If a program does not complete successfully, try running the installation verification
applet or installation verification program, both of which are described in Chapter 2,
“Using the MQSeries classes for Java” on page 9, and follow the advice given in
the diagnostic messages.

If you continue to have problems and need to contact the IBM service team, you
may be asked to turn on the trace facility. The method of doing this depends on
whether you are running the client or the bindings. Choose the appropriate section
below to find the procedures for your system.

Tracing the sample applet
To run trace with the sample applet, edit the mqjavac.html file as follows:

In the line

<!PARAM name="trace" value="1">

remove the exclamation mark, and change the value from 1 to a number from 1 to
5 depending on the level of detail required. (The higher the number, the more
information will be gathered.)

The line should then read:

<PARAM name="trace" value="n">

where 'n' is a number between 1 and 5.

The trace output appears in the Java console or in your Web browser's Java log
file.

Tracing the sample application
To trace the MQIVP program enter the following:

java MQIVP -trace n

where 'n' is a number between 1 and 5, depending on the level of detail required.
(The higher the number, the more information is gathered.)

For more information on using trace, and how to find and use the output on your
platform, see MQSeries System Administration.

 Copyright IBM Corp. 1997,1999 13

 Error messsages

 Error messages
Here are some of the more common error messages that you may see:

Unable to identify local host IP address
The server is not connected to the network.

Recommended Action: Connect the server to the network and retry.

Unable to load file gatekeeper.ior
This failure can occur on a web server deploying VisiBroker applets, when the
gatekeeper.ior file is not located in the correct place.

Recommended Action: Restart the VisiBroker Gatekeeper from the directory in
which the applet is deployed. The gatekeeper file will be written to this
directory.

Failure: Missing software, may be MQSeries, or VBROKER_ADM variable
This failure occurs in the MQIVP sample program if your Java software
environment is incomplete.

Recommended Action: On the client, ensure that the VBROKER_ADM
environment variable is set to address the VisiBroker for Java administration
(adm) directory, and retry.

On the server, ensure that the MQSeries classes for Java from MQSeries
Version 5.1 are installed and retry.

NO_IMPLEMENT
There is a communications problem involving VisiBroker Smart Agents.

Recommended Action: Consult your VisiBroker documentation.

COMM_FAILURE
There is a communications problem involving VisiBroker Smart Agents.

Recommended Action: Use the same port number for all VisiBroker Smart
Agents and retry. Consult your VisiBroker documentation.

MQRC_ADAPTER_NOT_AVAILABLE
If you get this error when you are trying to use Visibroker, it is likely that the
Java class org.omg.CORBA.ORB cannot be found in the CLASSPATH.

Recommended action: Ensure that your CLASSPATH statement includes the
path to the Visibroker vbjorb.jar and vbjapp.jar files.

14 MQSeries Using Java

Part 2. Programming with the MQSeries classes for Java

Chapter 4. Introduction for programmers . 17
Why should I use the Java interface? . 17
The MQSeries classes for Java interface . 18
Java Developer's Kit . 18
The MQSeries classes for Java class library . 19

Chapter 5. Writing Java programs for MQSeries 21
Should I write applets or applications? . 21
Connection differences . 21

Client connections . 21
Bindings mode . 22
Defining which connection to use . 22

Example code fragments . 22
Example applet code . 22
Example application code . 26

Running MQSeries classes for Java applets . 28
Operations on queue managers . 28

Setting up the MQSeries environment . 28
Connecting to a queue manager . 29

Accessing queues and processes . 29
Handling messages . 30
Handling errors . 32
Getting and setting attribute values . 32
Multithreaded programs . 33
Writing user exits . 33
Compiling and testing MQSeries classes for Java programs 35

Running MQSeries classes for Java programs 35
Tracing MQSeries Java programs . 35

 Copyright IBM Corp. 1997,1999 15

16 MQSeries Using Java

 programming � Java advantages

Chapter 4. Introduction for programmers

This chapter contains general information for programmers. For more detailed
information about writing programs see Chapter 5, “Writing Java programs for
MQSeries” on page 21.

Why should I use the Java interface?
The MQSeries classes for Java programming interface makes the many benefits of
Java available to you as a developer of MQSeries applications:

� The Java programming language is easy to use . There is no need for header
files, pointers, structures, unions, and operator overloading. Programs written
in Java are easier to develop and debug than their C and C++ equivalents.

� Java is object-oriented . The object-oriented features of Java are comparable
to those of C++, but there is no multiple inheritance. Instead, Java uses the
concept of an interface.

� Java is inherently distributed . The Java class libraries contain a library of
routines for coping with TCP/IP protocols like HTTP and FTP. Java programs
can access URLs as easily as accessing a file system.

� Java is robust . Java puts a lot of emphasis on early checking for possible
problems, dynamic (runtime) checking, and the elimination of situations that are
error prone. Java uses a concept of references that eliminates the possibility of
overwriting memory and corrupting data.

� Java is secure . Java is intended to be run in networked/distributed
environments, and a lot of emphasis has been placed on security. Java
programs cannot overrun their run-time stack, cannot corrupt memory outside
of their process space, and when downloaded from the Internet cannot even
read or write local files.

� Java programs are portable . There are no "implementation-dependent"
aspects of the Java specification. The Java compiler generates an architecture
neutral object file format. The compiled code is executable on many
processors, as long as the Java run-time system is present.

If you write your application using thge MQSeries classes for Java, users can
download the Java byte codes for your program (called applets) from the Internet
and run them on their own machines. This means that users with access to your
Web server can load and run your application with no prior installation needed on
their machines. When an update to the program is required, you update the copy
on the Web server and users automatically receive the latest version the next time
they access the applet. This can significantly reduce the costs involved in installing
and updating traditional client applications where a large number of desktops are
involved. If you place your applet on a Web server that is accessible outside the
corporate firewall, anyone on the Internet can download and use your application.
This means that you can get messages into your MQSeries system from anywhere
on the internet. This opens the door to building a whole new set of Internet
accessible service, support and electronic commerce applications.

 Copyright IBM Corp. 1997,1999 17

 Java interface � JDK

The MQSeries classes for Java interface
The procedural MQSeries application programming interface is built around the
following verbs:

MQBACK, MQBEGIN, MQCLOSE, MQCMIT, MQCONN, MQCONNX,
MQDISC, MQGET, MQINQ, MQOPEN, MQPUT, MQPUT1, MQSET

These verbs all take, as a parameter, a handle to the MQSeries object on which
they are to operate. Because Java is object-oriented, the Java programming
interface turns this round. Your program consists of a set of MQSeries objects,
which you act upon by calling methods on those objects, as in the following
example.

Using the procedural interface, you disconnect from a queue manager using the
call MQDISC(Hconn, CompCode, Reason), where Hconn is a handle to the queue
manager.

In the Java interface, the queue manager is represented by an object of class
MQQueueManager and you disconnect from it by calling the disconnect() method
on that class.

// declare an object of type queue manager
MQQueueManager queueManager=new MQQueueManager();
...
// do something...
...
// disconnect from the queue manager
queueManager.disconnect();

Java Developer's Kit
Before you can compile any applets or applications that you write, you must have
access to the Java Developers Kit (JDK) for your development platform. The JDK
contains all the standard Java classes, variables, constructors, and interfaces on
which the MQSeries classes for Java depend, and the tools required to compile
and run the applets and programs on each supported platform.

The MQSeries classes for Java require JDK 1.1.6 or higher.

If you do not have the right JDK, go to the IBM Software Download Catalog which
is available on the World Wide Web at location:

http: //www.software.ibm.com/download

You can also develop applications using the JDK included with the integrated
development environment of IBM Visual Age for Java.

18 MQSeries Using Java

 MQSeries classes

The MQSeries classes for Java class library
The MQSeries classes for Java are a set of Java classes that enable Java applets
and applications to interact with MQSeries.

The following classes are provided:

 � MQChannelDefinition
 � MQChannelExit
 � MQDistributionList
 � MQDistributionListItem
 � MQEnvironment
 � MQException
 � MQGetMessageOptions
 � MQManagedObject
 � MQMessage
 � MQMessageTracker
 � MQPutMessageOptions
 � MQProcess
 � MQQueue
 � MQQueueManager

and the following Java interfaces:

 � MQC
 � MQReceiveExit
 � MQSecurityExit
 � MQSendExit

In Java, a package is a mechanism for grouping sets of related classes together.
The MQSeries classes and interfaces are shipped as a Java package called
com.ibm.mq. To include the MQSeries classes for Java package in your program,
add the following line at the top of your source file:

import com.ibm.mq.\;

 Chapter 4. Introduction for programmers 19

 MQSeries classes

20 MQSeries Using Java

 Writing programs � Connection differences

Chapter 5. Writing Java programs for MQSeries

To access MQSeries queues using the MQSeries classes for Java, you write Java
programs containing calls that put messages onto and get messages from
MQSeries queues. The programs can take the form of Java applets, servlets, or
Java applications.

This chapter provides information to assist with writing Java applets, servlets, and
applications to interact with MQSeries systems. For details of individual classes,
see Chapter 7, “The Java classes and interfaces for MQSeries” on page 45.

Should I write applets or applications?
Whether you write applets, servlets, or applications depends on the connection that
you want to use and from where you want to run the programs.

The main differences between applets and applications are:

� Applets are run with an applet viewer or in a Web browser, servlets are run in a
Web application server,and applications are run stand-alone.

� Applets can be downloaded from a Web server to a Web browser machine, but
applications and servlets are not.

The following general rules apply:

� If you want to run your programs from machines that do not have the MQSeries
classes for Java installed locally, you should write applets.

� The native bindings mode of the MQSeries classes for Java does not support
applets. Therefore, if you want to use your programs in all connection modes,
including the native bindings mode, you must write servlets or applications.

 Connection differences
The way you program the MQSeries classes for Java has some dependencies on
the connection modes you want to use.

 Client connections
When the MQSeries classes for Java are used as a client, it is similar to the
MQSeries C client, but has the following differences:

� It supports only TCP/IP.

� It does not support connection tables.

� It does not read any MQSeries environment variables at startup.

� Information that would be stored in a channel definition and in environment
variables is stored in a class called MQEnvironment, or can be passed as
parameters when the connection is made.

� Error and exception conditions are written to a log specified in the
MQException class. The default error destination is the Java console.

The MQSeries classes for Java clients do not support the MQBEGIN verb or fast
bindings.

 Copyright IBM Corp. 1997,1999 21

 Example code

For general information on MQSeries clients see the MQSeries Clients book.

Note: When you use the VisiBroker connection, the userid and password settings
in MQEnvironment are not forwarded to the MQSeries server. The effective userid
is that which applies to the IIOP server.

 Bindings mode
The bindings mode of the MQSeries classes for Java differs from the client modes
in the following ways:

� Most of the parameters provided by the MQEnvironment class are ignored.

� The bindings support the MQBEGIN verb and fast bindings into the MQSeries
queue manager.

Defining which connection to use
The connection is determined by the setting of variables in the MQEnvironment
class.

MQEnvironment.properties
This can contain the following key/value pairs:

� For client and bindings connections:

MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES

� For VisiBroker connections:

MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_VISIBROKER
MQC.ORB_PROPERTY, orb

MQEnvironment.hostname
Set the value of this variable follows:

� For client connections, set this to the hostname of the MQSeries server to
which you want to connect

� For bindings mode, set this to null

Example code fragments
Two example code fragments are included in this section; Figure 1 on page 23
and Figure 2 on page 26. Each is written to use a particular connection with notes
to describe the changes needed to use alternative connections.

Example applet code
The following code fragment demonstrates an applet that uses a TCP/IP connection
to:

1. Connect to a queue manager
2. Put a message onto SYSTEM.DEFAULT.LOCAL.QUEUE
3. Get the message back

22 MQSeries Using Java

 Example code

// ===
//
// Licensed Materials - Property of IBM
//
// 5639-C34
//
// (c) Copyright IBM Corp. 1995,1999
//
// ===
// MQSeries Client for Java sample applet
//
// This sample runs as an applet using the appletviewer and HTML file,
// using the command :-
// appletviewer MQSample.html
// Output is to the command line, NOT the applet viewer window.
//
// Note. If you receive MQSeries error 2 reason 2ð59 and you are sure your
// MQSeries and TCP/IP setup is correct,
// you should click on the "Applet" selection in the Applet viewer window
// select properties, and change "Network access" to unrestricted.

import com.ibm.mq.\; // Include the MQSeries classes for Java package

public class MQSample extends java.applet.Applet
{

private String hostname = "your_hostname"; // define the name of your
// host to connect to

private String channel = "server_channel"; // define name of channel
// for client to use
// Note. assumes MQSeries Server
// is listening on the default
// TCP/IP port of 1414

private String qManager = "your_Q_manager"; // define name of queue
// manager object to
// connect to.

private MQQueueManager qMgr; // define a queue manager object

// When the class is called, this initialization is done first.

public void init()
 {

// Set up MQSeries environment
MQEnvironment.hostname = hostname; // Could have put the

// hostname & channel
MQEnvironment.channel = channel; // string directly here!

MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,//Set TCP/IP or server
 MQC.TRANSPORT_MQSERIES);//Connection

} // end of init

Figure 1 (Part 1 of 3). MQSeries classes for Java example applet

 Chapter 5. Writing Java programs for MQSeries 23

 Example code

public void start()
 {

 try {
// Create a connection to the queue manager
qMgr = new MQQueueManager(qManager);

// Set up the options on the queue we wish to open...
// Note. All MQSeries Options are prefixed with MQC in Java.

int openOptions = MQC.MQOO_INPUT_AS_Q_DEF |
 MQC.MQOO_OUTPUT ;

// Now specify the queue that we wish to open, and the open options...

MQQueue system_default_local_queue =
 qMgr.accessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",
 openOptions,

null, // default q manager
null, // no dynamic q name
null); // no alternate user id

// Define a simple MQSeries message, and write some text in UTF format..

MQMessage hello_world = new MQMessage();
 hello_world.writeUTF("Hello World!");

// specify the message options...

MQPutMessageOptions pmo = new MQPutMessageOptions(); // accept the defaults,
// same as

 // MQPMO_DEFAULT
 // constant

// put the message on the queue

 system_default_local_queue.put(hello_world,pmo);

// get the message back again...
// First define a MQSeries message buffer to receive the message into..

MQMessage retrievedMessage = new MQMessage();
retrievedMessage.messageId = hello_world.messageId;

// Set the get message options..

MQGetMessageOptions gmo = new MQGetMessageOptions(); // accept the defaults
// same as

 // MQGMO_DEFAULT

// get the message off the queue..

 system_default_local_queue.get(retrievedMessage, gmo);

Figure 1 (Part 2 of 3). MQSeries classes for Java example applet

24 MQSeries Using Java

 Example code

// And prove we have the message by displaying the UTF message text

String msgText = retrievedMessage.readUTF();
System.out.println("The message is: " + msgText);

// Close the queue

 system_default_local_queue.close();

// Disconnect from the queue manager

 qMgr.disconnect();

 }

// If an error has occurred in the above, try to identify what went wrong.
// Was it an MQSeries error?

catch (MQException ex)
 {

System.out.println("An MQSeries error occurred : Completion code " +
 ex.completionCode +

" Reason code " + ex.reasonCode);
 }

// Was it a Java buffer space error?
catch (java.io.IOException ex)

 {
System.out.println("An error occurred whilst writing to the
message buffer: " + ex);

 }

} // end of start

} // end of sample

Figure 1 (Part 3 of 3). MQSeries classes for Java example applet

Changing the connection to use VisiBroker for Java
Modify the line

MQEnvironment.properties.put (MQC.TRANSPORT_PROPERTY,
 MQC.TRANSPORT_MQSERIES);

to

MQEnvironment.properties.put (MQC.TRANSPORT_PROPERTY,
 MQC.TRANSPORT_VISIBROKER);

and add the following lines to initialize the ORB:

ORB orb=ORB.init(this,null);
MQEnvironment.properties.put(MQC.ORB_PROPERTY,orb);

You also need to add the following import statement to the beginning of the file:

import org.omg.CORBA.ORB;

You do not need to specify port number or channel if you are using VisiBroker.

 Chapter 5. Writing Java programs for MQSeries 25

 Example code

Example application code
The following code fragment demonstrates a simple application that uses bindings
mode to:

1. Connect to a queue manager
2. Put a message onto SYSTEM.DEFAULT.LOCAL.QUEUE
3. Get the message back again

// ==
// Licensed Materials - Property of IBM
// 5639-C34
// (c) Copyright IBM Corp. 1995, 1999
// ==
// MQSeries classes for Java sample application
//
// This sample runs as a Java appication using the command :- java MQSample

import com.ibm.mq.\; // Include the MQSeries classes for Java package

import java.util.Hashtable // Required for properties

public class MQSample
{
private String qManager = "your_Q_manager"; // define name of queue

// manager to connect to.
private MQQueueManager qMgr; // define a queue manager

 // object
public static void main(String args[]) {

 try {

 java.util.Hashtable properties;

// Create a connection to the queue manager
qMgr = new MQQueueManager(qManager);

// Set up the options on the queue we wish to open...
// Note. All MQSeries Options are prefixed with MQC in Java.

int openOptions = MQC.MQOO_INPUT_AS_Q_DEF |
 MQC.MQOO_OUTPUT ;

// Now specify the queue that we wish to open,
// and the open options...

MQQueue system_default_local_queue =
 qMgr.accessQueue("SYSTEM.DEFAULT.LOCAL.QUEUE",
 openOptions,

null, // default q manager
null, // no dynamic q name
null); // no alternate user id

// Define a simple MQSeries message, and write some text in UTF format..

MQMessage hello_world = new MQMessage();
 hello_world.writeUTF("Hello World!");

Figure 2 (Part 1 of 2). MQSeries classes for Java example application

26 MQSeries Using Java

 Example code

// Define a simple MQSeries message, and write some text in UTF format..

MQMessage hello_world = new MQMessage();
 hello_world.writeUTF("Hello World!");

// specify the message options...

MQPutMessageOptions pmo = new MQPutMessageOptions(); // accept the // defaults,
// same as MQPMO_DEFAULT

// put the message on the queue

 system_default_local_queue.put(hello_world,pmo);

// get the message back again...
// First define a MQSeries message buffer to receive the message into..

MQMessage retrievedMessage = new MQMessage();
retrievedMessage.messageId = hello_world.messageId;

// Set the get message options...

MQGetMessageOptions gmo = new MQGetMessageOptions(); // accept the defaults
// same as MQGMO_DEFAULT

// get the message off the queue...

 system_default_local_queue.get(retrievedMessage, gmo);

// And prove we have the message by displaying the UTF message text

String msgText = retrievedMessage.readUTF();
System.out.println("The message is: " + msgText);

// Close the queue...

 system_default_local_queue.close();

// Disconnect from the queue manager

 qMgr.disconnect();

 }
// If an error has occurred in the above, try to identify what went wrong
// Was it an MQSeries error?

catch (MQException ex)
 {

System.out.println("An MQSeries error occurred : Completion code " +
ex.completionCode + " Reason code " + ex.reasonCode);

 }
// Was it a Java buffer space error? catch (java.io.IOException ex)

 {
System.out.println("An error occurred whilst writing to the message buffer: " ex);

 }
 }

} // end of sample

Figure 2 (Part 2 of 2). MQSeries classes for Java example application

 Chapter 5. Writing Java programs for MQSeries 27

 Running applets � Queue manager operations

Running MQSeries classes for Java applets
If you are writing an applet (subclass of java.applet.Applet), you must create an
HTML file referencing your class before you can run it. A sample HTML file might
look as follows:

<html>
<body>
<applet code="MyClass.class" width=2ðð height=4ðð>
</applet>
</body>
</html>

Operations on queue managers
This section describes how to connect to and disconnect from a queue manager
using the MQSeries classes for Java.

Setting up the MQSeries environment
Note: This step is not necessary when using the MQSeries classes for Java in
bindings mode. In that case, go directly to “Connecting to a queue manager” on
page 29. Before connecting to a queue manager using the client connection, you
must take care to set up the MQEnvironment.

The "C" based MQSeries clients rely on environment variables to control the
behavior of the MQCONN call. Because Java applets have no access to
environment variables, the Java programming interface includes a class
MQEnvironment, which allows you to specify the following details that are to be
used during the connection attempt:

 � Channel name
 � Hostname
 � Port number
 � User ID
 � Password

To specify the channel name and hostname use the following code:

MQEnvironment.hostname = "host.domain.com";
MQEnvironment.channel = "java.client.channel";

This is equivalent to an MQSERVER environment variable setting of:

"java.client.channel/TCP/host.domain.com".

By default, the MQSeries classes for Java attempt to connect to an MQSeries
listener at port 1414. To specify a different port, use the code:

MQEnvironment.port = nnnn;

28 MQSeries Using Java

 Queue and process access

The user ID and password default to blanks. To specify a non-blank user ID or
password use the code:

MQEnvironment.userID = "uid"; // equivalent to env var MQ_USER_ID
MQEnvironment.password = "pwd"; // equivalent to env var MQ_PASSWORD

Note: If you are setting up a connection using VisiBroker for Java, see “Changing
the connection to use VisiBroker for Java” on page 25.

Connecting to a queue manager
You are now ready to connect to a queue manager by creating a new instance of
the MQQueueManager class:

MQQueueManager queueManager = new MQQueueManager("qMgrName");

To disconnect from a queue manager, call the disconnect() method on the queue
manager:

queueManager.disconnect();

Calling the disconnect method causes all open queues and processes that you
have accessed through that queue manager to be closed. It is good programming
practice, however, to close these resources yourself when you have finished using
them. You do this with the close() method.

The commit() and backout() methods on a queue manager replace the MQCMIT
and MQBACK calls of the procedural interface.

Accessing queues and processes
Queues and process are accessed using the MQQueueManager class. The MQOD
(object descriptor structure) has been collapsed into the parameters of these
methods. For example, to open a queue on a queue manager "queueManager",
use the following code:

MQQueue queue = queueManager.accessQueue("qName",
 MQC.MQOO_OUTPUT,
 "qMgrName",
 "dynamicQName",
 "altUserId");

The options parameter is the same as the Options parameter in the MQOPEN call.

The accessQueue method returns a new object of class MQQueue.

When you have finished using the queue, close it using the close() method, as in
the following example:

queue.close();

 Chapter 5. Writing Java programs for MQSeries 29

 Handling messages

With the MQSeries classes for Java you can also create a queue using the
MQQueue constructor. The parameters are exactly the same as for the
accessQueue method, with the addition of a queue manager parameter. For
example:

MQQueue queue = new MQQueue(queueManager,
 "qName",
 MQC.MQOO_OUTPUT,
 "qMgrName",
 "dynamicQName",
 "altUserId");

Constructing a queue object in this way enables you to write your own subclasses
of MQQueue.

To access a process use the accessProcess method in place of accessQueue.
This method does not have a dynamic queue name parameter since this does not
apply to processes.

The accessProcess method returns a new object of class MQProcess.

When you have finished using the process object, close it using the close()
method, as in the following example:

process.close();

With the MQSeries classes for Java you can also create a process using the
MQProcess constructor. The parameters are exactly the same as for the
accessProcess method, with the addition of a queue manager parameter.
Constructing a process object in this way enables you to write your own subclasses
of MQProcess.

 Handling messages
You put messages onto queues using the put() method of the MQQueue class, and
you get messages from queues using the get() method of the MQQueue class.
Unlike the procedural interface, where MQPUT and MQGET put and get arrays of
bytes, the Java programming language puts and gets instances of the MQMessage
class. The MQMessage class encapsulates the data buffer that contains the actual
message data, together with all the MQMD parameters that describe that message.

To build a new message, create a new instance of the MQMessage class, and use
the writeXXX methods to put data into the message buffer.

When the new message instance is created, all the MQMD parameters are
automatically set to their default values, as defined in the MQSeries Application
Programming Reference. The put() method of MQQueue also takes an instance of
the MQPutMessageOptions class as a parameter. This class represents the
MQPMO structure.

30 MQSeries Using Java

 Handling messages

The following example shows the creation of a message and putting it onto a
queue:

// Build a new message containing my age followed by my name
MQMessage myMessage = new MQMessage();
myMessage.writeInt(25);

String name = "Wendy Ling";
myMessage.writeInt(name.length());
myMessage.writeBytes(name);

// Use the default put message options...
MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message!
queue.put(myMessage,pmo);

The get() method of MQQueue returns a new instance of MQMessage, which
represents the message just taken from the queue. It also takes an instance of the
MQGetMessageOptions class as a parameter. This class represents the MQGMO
structure.

There is no need to specify a maximum message size because get() method
automatically adjusts the size of its internal buffer to fit the incoming message. Use
the readXXX methods of the MQMessage class to access the data in the returned
message.

The following example shows how to get a message from a queue:

// Get a message from the queue
MQMessage theMessage = new MQMessage();
MQGetMessageOptions gmo = new MQGetMessageOptions();
queue.get(theMessage,gmo); // has default values

// Extract the message data
int age = theMessage.readInt();
int strLen = theMessage.readInt();
byte[] strData = new byte[strLen];
theMessage.readFully(strData,ð,strLen);
String name = new String(strData,ð);

The number format used by the read and write methods can be altered by setting
the encoding member variable.

The character set to use for reading and writing strings can be altered by setting
the characterSet member variable.

See “MQMessage” on page 68 for more details.

Note: Using the writeUTF() method of MQMessage automatically encodes the
length of the string as well as the Unicode bytes it contains. When your
message is to be read by another Java program (using readUTF()), this is
the simplest way to send string information.

 Chapter 5. Writing Java programs for MQSeries 31

 Handling errors � Using attribute values

 Handling errors
Methods in the Java interface do not return a completion code and reason code.
Instead, they throw an exception whenever the completion code and reason code
resulting from an MQSeries call are not both zero. This simplifies the program logic
so that you do not have to check the return codes after each call to MQSeries.
You can decide at which point in your program you want to deal with the possibility
of failure by surrounding your code with 'try' and 'catch' blocks, as in the following
example:

try {
myQueue.put(messageA,putMessageOptionsA);
myQueue.put(messageB,putMessageOptionsB);
}
catch (MQException ex) {
// This block of code is only executed if one of
// the two put methods gave rise to a non-zero
// completion code or reason code.
System.out.println("An error occurred during the put operation:" +

"CC = " + ex.completionCode +
"RC = " + ex.reasonCode);

}

Getting and setting attribute values
For many of the common attributes, the classes MQManagedObject, MQQueue,
MQProcess, and MQQueueManager contain getXXX() and setXXX() methods
which allow you to get and set their attribute values. Note that for MQQueue, the
methods will work only if you specify the appropriate 'inquire' and 'set' flags when
you open the queue.

For less common attributes, the MQQueueManager, MQQueue, and MQProcess
classes all inherit from a class called MQManagedObject. This class defines the
inquire() and set() interfaces.

When you create a new queue manager object using the new operator, it is
automatically opened for 'inquiry'. When you access a process object using the
accessProcess() method, it is automatically opened for 'inquiry'. When you access
a queue object using the accessQueue() method, it is not automatically opened for
either 'inquire' or 'set' operations, because automatically adding these options can
cause problems with some types of remote queues. To use the inquire, set, and
getXXX/setXXX methods on a queue, you must specify the appropriate 'inquire' and
'set' flags in the openOptions parameter of the accessQueue() method.

The inquire and set methods take three parameters:

 � selectors array
 � intAttrs array
 � charAttrs array

There is no need for the SelectorCount, IntAttrCount and CharAttrLength
parameters found in MQINQ, because the length of an array in Java is always
known.

32 MQSeries Using Java

 Multithreading � Writing exits

The following example shows how to make an inquiry on a queue:

// inquire on a queue
final static int MQIA_DEF_PRIORITY = 6;
final static int MQCA_Q_DESC = 2ð13;
final static int MQ_Q_DESC_LENGTH = 64;

int[] selectors = new int[2];
int[] intAttrs = new int[1];
byte[] charAttrs = new byte[MQ_Q_DESC_LENGTH]

selectors[ð] = MQIA_DEF_PRIORITY;
selectors[1] = MQCA_Q_DESC;

queue.inquire(selectors,intAttrs,charAttrs);

System.out.println("Default Priority = " + intAttrs[ð]);
System.out.println("Description : " + new String(charAttrs,ð));

 Multithreaded programs
Multithreaded programs are hard to avoid in Java. Consider a simple program that
connects to a queue manager and opens a queue at startup. The program
displays a single button on the screen and, when the button is pressed, it fetches a
message from the queue.

Because the Java runtime environment is inherently multithreaded, your application
initialization will take place in one thread, and the code that is executed in response
to the button press executes in a separate thread (the user interface thread).

With the "C" based MQSeries client this would cause a problem, since handles
cannot be shared across multiple threads. The MQSeries classes for Java relax
this constraint, allowing a queue manager object (and its associated queue and
process objects) to be shared across multiple threads.

The implementation of the MQSeries classes for Java ensures that, for a given
connection (queue manager object instance), all access to the target MQSeries
queue manager is synchronized. This means that a thread wishing to issue a call
to a queue manager is blocked until all other calls in progress for that connection
have completed. If you require simultaneous access to the same queue manager
from within your program, create a new queue manager object for each thread
requiring concurrent access. (This is equivalent to issuing a separate MQCONN
call for each thread.)

Writing user exits
The MQSeries classes for Java allow you to provide your own send, receive, and
security exits.

To implement an exit, you define a new Java class that implements the appropriate
interface. There are three exit interfaces defined in the MQSeries package:

 � MQSendExit
 � MQReceiveExit
 � MQSecurityExit

 Chapter 5. Writing Java programs for MQSeries 33

 Writing exits

The following sample defines a class that implements all three:

class MyMQExits implements MQSendExit, MQReceiveExit, MQSecurityExit {

// This method comes from the send exit
public byte[] sendExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,
 byte agentBuffer[])
 {

// fill in the body of the send exit here
 }

// This method comes from the receive exit
public byte[] receiveExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,
 byte agentBuffer[])
 {

// fill in the body of the receive exit here
 }

// This method comes from the security exit
public byte[] securityExit(MQChannelExit channelExitParms,

 MQChannelDefinition channelDefParms,
 byte agentBuffer[])
 {

// fill in the body of the security exit here
 }

}

Each exit is passed an MQChannelExit and an MQChannelDefinition object
instance. These objects represent the MQCXP and MQCD structures defined in the
procedural interface.

The agentBuffer parameter contains the data that is about to be sent (in the case of
the send exit), or has just been received (in the case of the receive and security
exits). There is no need for a length parameter, because the expression
agentBuffer.length tells you the length of the array.

For the Send and Security exits, your exit code should return the byte array that
you wish to be sent to the server. For a Receive exit, your code should return the
modified data that you wish to be interpreted by the MQSeries classes for Java.

The simplest possible exit body is:

{
 return agentBuffer;
}

If your program is to run as a downloaded Java applet, note that under the security
restrictions placed on it you will not be able to read or write any local files. If your
exit needs a configuration file, you can place the file on the web and use the
java.net.URL class to download it and examine its contents.

34 MQSeries Using Java

 Compiling and testing

Compiling and testing MQSeries classes for Java programs
Before compiling MQSeries classes for Java programs you must ensure that your
MQSeries classes for Java installation directory is in your CLASSPATH
environment variable, as described in “Installing the MQSeries classes for Java” on
page 5.

To compile a class "MyClass.java", use the command:

javac MyClass.java

Running MQSeries classes for Java programs
If you are writing an application (a class that contains a main() method), using
either the client or the bindings, run your program using the Java interpreter. Use
the command:

java MyClass

Note: The '.class' extension is omitted from the class name.

If you are writing MQSeries classes for Java applets, run your program either by
loading this HTML file into a Java enabled web browser, or by using the
appletviewer that comes with the Java Development Kit (JDK).

To use the applet viewer, enter the command:

appletviewer myclass.html

Tracing MQSeries Java programs
The MQSeries classes for Java include a trace facility, which can be used to
produce diagnostic messages if you suspect there might be a problem with the
code. (You will normally need to use this facility only at the request of IBM
service.)

Tracing is controlled by the enableTracing and disableTracing methods of the
MQEnvironment class. For example:

MQEnvironment.enableTracing(2); // trace at level 2
 ... // these commands will be traced
MQEnvironment.disableTracing(); // turn tracing off again

The trace is written to the Java console (System.err).

If your program is an application, or you are running it from your local disk using
the appletviewer command, you also have the option of redirecting the trace output
to a file of your choice.

 Chapter 5. Writing Java programs for MQSeries 35

 Compiling and testing

The following code fragment shows an example of how to make the redirection to a
file called myapp.trc:

import java.io.\;

try {
 FileOutputStream
traceFile = new FileOutputStream("myapp.trc");

 MQEnvironment.enableTracing(2,traceFile);
}
catch (IOException ex) {
// couldn't open the file,
// trace to System.err instead

 MQEnvironment.enableTracing(2);
}

There are 5 different levels of tracing:

To trace methods in the Java Virtual Machine with trace level 5, issue the
command java_g in place of java to run an application, or appletviewer_g instead
of appletviewer to run an applet.

1 Provides entry, exit and exception tracing.
2 Provides parameter information in addition to 1.
3 Provides transmitted and received MQSeries headers and data blocks in addition to 2.
4 Provides transmitted and received user message data in addition to 3.
5 Provides tracing of methods in the Java Virtual Machine in addition to 4.

36 MQSeries Using Java

Part 3. MQSeries classes for Java reference

Chapter 6. Environment dependent behavior 39
Core details . 39
Restrictions and variations for core classes . 40
Version 5 extensions operating in other environments 41

Chapter 7. The Java classes and interfaces for MQSeries 45
MQChannelDefinition . 46
MQChannelExit . 48
MQDistributionList . 51
MQDistributionListItem . 53
MQEnvironment . 55
MQException . 59
MQGetMessageOptions . 61
MQManagedObject . 65
MQMessage . 68
MQMessageTracker . 86
MQProcess . 88
MQPutMessageOptions . 90
MQQueue . 93
MQQueueManager . 101
MQC . 109
MQReceiveExit . 110
MQSecurityExit . 112
MQSendExit . 114

 Copyright IBM Corp. 1997,1999 37

38 MQSeries Using Java

 Environment dependencies � Core details

Chapter 6. Environment dependent behavior

This chapter describes the behavior of the Java classes in the various
environments in which they can be used. The MQSeries classes for Java allow
you create applications that can be used in the following environments:

1. MQSeries Client for Java connected to an MQSeries V2.x server

2. MQSeries Client for Java connected to an MQSeries for OS/390 V 2.5 server

3. MQSeries Client for Java connected to an MQSeries for OS/400 server

4. MQSeries Client for Java connected to an MQSeries V5 server

5. MQSeries Bindings for Java executing on an MQSeries V5 server

6. MQSeries Bindings for Java executing on an MQSeries for OS/390 V2.4 or
higher server

In all cases the MQSeries classes for Java code makes use of services provided by
the underlying MQSeries server. There are differences in the level of function (for
example MQSeries V5 provides a superset of the function of V2), and in terms of
behavior of some of the API calls and options. The differences in behavior are
mainly minor, and mostly occur between the OS/390 (MQSeries for MVS/ESA)
servers and the servers on other platforms.

The MQSeries classes for Java provide a 'core' of classes, which provide
consistent function and behavior in all the environments, and 'V5 extensions', which
are designed for use only in environments 4 and 5. The core and extensions are
documented below.

 Core details
The MQSeries classes for Java contain the following core of classes, which can be
used in all environments with only the minor variations listed in “Restrictions and
variations for core classes” on page 40.

 � MQEnvironment
 � MQException
 � MQGetMessageOptions

Excluding:
 – MatchOptions
 – GroupStatus
 – SegmentStatus
 – Segmentation

 � MQManagedObject
Excluding:
 – inquire()
 – set()

 � MQMessage
Excluding:
 – groupId
 – messageFlags
 – messageSequenceNumber
 – offset
 – originalLength

 Copyright IBM Corp. 1997,1999 39

 Restrictions

 � MQPutMessageOptions
Excluding:
 – knownDestCount
 – unknownDestCount
 – invalidDestCount
 – recordFields

 � MQProcess
 � MQQueue
 � MQQueueManager

Excluding:
 – begin()
 – accessDistributionList()

 � MQC

Some constants are not included in the core (see “Restrictions and variations for
core classes” for details), and you should not use them in completely portable
programs.

Restrictions and variations for core classes
Although the core classes generally behave consistently across all environments,
there are some minor restrictions and variations which are documented in Table 5.

Apart from these documented variations, the core classes give consistent behavior
across all environments, even if the equivalent MQSeries classes normally have
environment differences. In general, the behavior will be that expected in
environments 4 and 5.

Table 5 (Page 1 of 2). Core classes restrictions and variations

MQGMO_LOCK
MQGMO_UNLOCK

Cause MQRC_OPTIONS_ERROR when used
in environments 2 or 6.

MQPMO_NEW_MSG_ID
MQPMO_NEW_CORREL_ID
MQPMO_LOGICAL_ORDER

Give errors except in environments 4 and 5.
(See V5 extensions.)

MQGMO_SYNCPOINT_IF_PERSISTENT
MQGMO_LOGICAL_ORDER
MQGMO_COMPLETE_MESSAGE
MQGMO_ALL_MSGS_AVAILABLE
MQGMO_ALL_SEGMENTS_AVAILABLE

Give errors except in environments 4 and 5.
(See V5 extensions.)

MQGMO_MARK_SKIP_BACKOUT Causes MQRC_OPTIONS_ERROR except in
environment 2 and 6.

MQCNO_FASTPATH_BINDING Supported only in environment 5. (See V5
extensions.)

MQPMRF_* fields Supported only in environments 4 and 5.

Putting a message with MQQueue.priority >
MaxPriority

Rejected with MQCC_FAILED and
MQRC_PRIORITY_ERROR in environments 2
and 6. Other environments accept it with the
warnings MQCC_WARNING and
MQRC_PRIORITY_EXCEEDS_MAXIMUM and
treat the message as if it were put with
MaxPriority.

40 MQSeries Using Java

 V5 extensions

Table 5 (Page 2 of 2). Core classes restrictions and variations

BackoutCount Environments 2 and 6 return a maximum
backout count of 255, even if the message
has been backed out more than 255 times.

Default dynamic queue name CSQ.* for environments 2 and 6. AMQ.* for
other systems.

MQMessage.report options:

MQRO_EXCEPTION_WITH_FULL_DATA
MQRO_EXPIRATION_WITH_FULL_DATA
MQRO_COA_WITH_FULL_DATA
MQRO_COD_WITH_FULL_DATA
MQRO_DISCARD_MSG

Not supported if a report message is
generated by an OS/390 queue manager,
although they may be set in all environments.
This issue affects all Java environments,
because the OS/390 queue manager could be
distant from the Java application. Avoid
relying on any of these options if there is a
chance that an OS/390 queue manager could
be involved.

Version 5 extensions operating in other environments
The MQSeries classes for Java contain the following functions specifically designed
to use the API extensions introduced in MQSeries V5. These functions operate as
designed only in environments 4 and 5. This section describes how they can be
expected to behave in other environments.

MQQueueManager constructor option
An optional integer argument is included in the MQQueueManager constructor.
This maps onto the MQI's MQCNO.options field, and is used to switch between
normal and fastpath connection. This extended form of the constructor is
accepted in all environments, provided that the only options used are
MQCNO_STANDARD_BINDING or MQCNO_FASTPATH_BINDING. Any other
options cause the constructor to fail with MQRC_OPTIONS_ERROR. The
fastpath option MQC.MQCNO_FASTPATH_BINDING is only honored when
used in the MQSeries V5 bindings (environment 5). If it is used in any other
environment, it is ignored.

MQQueueManager.begin() method
This can be used only in environment 5. In any other environment it fails with
MQRC_ENVIRONMENT_ERROR.

MQPutMessageOptions options.
The following flags may be set into the MQPutMessageOptions options fields in
any environment, but if used with a subsequent MQQueue.put() in any
environment other than 4 or 5, the put() fails with MQRC_OPTIONS_ERROR:

 � MQPMO_NEW_MSG_ID
 � MQPMO_NEW_CORREL_ID
 � MQPMO_LOGICAL_ORDER

 Chapter 6. Environment dependent behavior 41

 V5 extensions

MQGetMessageOptions options.
The following flags may be set into the MQGetMessageOptions options fields in
any environment, but if used with a subsequent MQQueue.get() in any
environment other than 4 or 5, the get() fails with MQRC_OPTIONS_ERROR:

 � MQGMO_SYNCPOINT_IF_PERSISTENT
 � MQGMO_LOGICAL_ORDER
 � MQGMO_COMPLETE_MESSAGE
 � MQGMO_ALL_MSGS_AVAILABLE
 � MQGMO_ALL_SEGMENTS_AVAILABLE

MQGetMessageOptions fields
Values may be set into the following fields, regardless of the environment, but if
the MQGetMessageOptions used on a subsequent MQQueue.get() is found to
contain non-default values when running in any environment other than 4 or 5,
the get() fails with MQRC_GMO_ERROR. This means that in environments
other than 4 or 5, these fields will always be set to their initial values after every
successful get().

 � MatchOptions
 � GroupStatus
 � SegmentStatus
 � Segmentation

Distribution Lists
The following classes are used to create Distribution Lists:

 � MQDistributionList
 � MQDistributionListItem
 � MQMessageTracker

You can be create and populate MQDistributionList and MQDistributionListItems
in any environment, but you can only create and open MQDistributionList
successfully in environments 4 and 5. An attempt to create and open one in any
other environment is rejected with MQRC_OD_ERROR.

MQPutMessageOptions fields
Four fields in MQPMO are rendered as the following member variables in the
MQPutMessageOptions class:

 � knownDestCount
 � unknownDestCount
 � invalidDestCount
 � recordFields

Although primarily intended for use with distribution lists, the MQSeries V5
server also fills in the DestCount fields after an MQPUT to a single queue. For
example, if the queue resolves to a local queue, then knownDestCount is set to
1 and the other two fields to 0. In environments 4 and 5, the values set by the
V5 server are returned in the MQPutMessageOptions class. In the other
environments return values are simulated as follows:

� If the put() succeeds, unknownDestCount is set to 1, and the others are set
to 0.

� If the put() fails, invalidDestCount is set to 1, and the others to 0.

recordFields is used with distribution lists. A value may be written into
recordFields at any time, regardless of the environment, but is ignored if the

42 MQSeries Using Java

 V5 extensions

MQPutMessage options are used on a subsequent MQQueue.put(), rather than
MQDistributionList.put().

MQMD fields
The following MQMD fields are largely concerned with message segmentation:

 � GroupId
 � MsgSeqNumber
 � Offset MsgFlags
 � OriginalLength

If an application sets any of these MQMD fields to non-default values, and then
does a put() to or get() in an environment other than 4 or 5, the put() or get()
raises an exception (MQRC_MD_ERROR). A successful put() or get() in an
environment other than 4 or 5, always leaves the new MQMD fields set to their
default values. A grouped or segmented message should not normally be sent
to a Java application running against a queue manager that is not MQSeries
Version 5 or higher. If such an application does issue a get, and the physical
message to be retrieved happens to be part of a group or segmented message
(it has non-default values for the MQMD fields), it is retrieved without error.
However, the MQMD fields in the MQMessage are not updated. The
MQMessage format property is set to MQFMT_MD_EXTENSION, and the true
message data is prefixed with an MQMDE structure containing the values for
the new fields.

 Chapter 6. Environment dependent behavior 43

 V5 extensions

44 MQSeries Using Java

 Java classes

Chapter 7. The Java classes and interfaces for MQSeries

This chapter describes all the classes and interfaces contained in MQSeries. It
includes details of the variables, constructors, and methods in each class and
interface.

The following classes are described:

 � MQChannelDefinition
 � MQChannelExit
 � MQDistributionList
 � MQDistributionListItem
 � MQEnvironment
 � MQException
 � MQGetMessageOptions
 � MQManagedObject
 � MQMessage
 � MQMessageTracker
 � MQPutMessageOptions
 � MQProcess
 � MQQueue
 � MQQueueManager

and the following interfaces:

 � MQC
 � MQReceiveExit
 � MQSecurityExit
 � MQSendExit

 Copyright IBM Corp. 1997,1999 45

 MQChannelDefinition

 MQChannelDefinition

java.lang.Object
 │
 └─ com.ibm.mq.MQChannelDefinition

public class MQChannelDefinition
extends Object

The MQChannelDefinition class is used to pass information concerning the
connection to the queue manager to the send, receive and security exits.

Note: This class does not apply when connecting directly to MQSeries in bindings
mode.

 Variables
channelName

public String channelName

The name of the channel through which the connection is established.

queueManagerName
public String queueManagerName

The name of the queue manager to which the connection is made.

maxMessageLength
public int maxMessageLength

The maximum length of message that can be sent to the queue manager.

securityUserData
public String securityUserData

A storage area for the security exit to use. Information placed here is
preserved across invocations of the security exit, and is also available to the
send and receive exits.

sendUserData
public String sendUserData

A storage area for the send exit to use. Information placed here is preserved
across invocations of the send exit, and is also available to the security and
receive exits.

receiveUserData
public String receiveUserData

A storage area for the receive exit to use. Information placed here is
preserved across invocations of the receive exit, and is also available to the
send and security exits.

connectionName
public String connectionName

The TCP/IP hostname of the machine on which the queue manager resides.

46 MQSeries Using Java

 MQChannelDefinition

remoteUserId
public String remoteUserId

The user id used to establish the connection.

remotePassword
public String remotePassword

The password used to establish the connection.

 Constructors
MQChannelDefinition

public MQChannelDefinition()

 Chapter 7. The Java classes and interfaces for MQSeries 47

 MQChannelExit

 MQChannelExit

java.lang.Object
 │
 └─ com.ibm.mq.MQChannelExit

public class MQChannelExit
extends Object

This class defines context information passed to the send, receive, and security
exits when they are invoked. The exitResponse member variable should be set by
the exit to indicate what action the MQSeries classes for Java should take next.

Note: This class does not apply when connecting directly to MQSeries in bindings
mode.

 Variables
MQXT_CHANNEL_SEC_EXIT

public final static int MQXT_CHANNEL_SEC_EXIT

MQXT_CHANNEL_SEND_EXIT
public final static int MQXT_CHANNEL_SEND_EXIT

MQXT_CHANNEL_RCV_EXIT
public final static int MQXT_CHANNEL_RCV_EXIT

MQXR_INIT
public final static int MQXR_INIT

MQXR_TERM
public final static int MQXR_TERM

MQXR_XMIT
public final static int MQXR_XMIT

MQXR_SEC_MSG
public final static int MQXR_SEC_MSG

MQXR_INIT_SEC
public final static int MQXR_INIT_SEC

MQXCC_OK
public final static int MQXCC_OK

MQXCC_SUPPRESS_FUNCTION
public final static int MQXCC_SUPPRESS_FUNCTION

MQXCC_SEND_AND_REQUEST_SEC_MSG
public final static int MQXCC_SEND_AND_REQUEST_SEC_MSG

MQXCC_SEND_SEC_MSG
public final static int MQXCC_SEND_SEC_MSG

MQXCC_SUPPRESS_EXIT
public final static int MQXCC_SUPPRESS_EXIT

MQXCC_CLOSE_CHANNEL
public final static int MQXCC_CLOSE_CHANNEL

48 MQSeries Using Java

 MQChannelExit

exitID
public int exitID

The type of exit that has been invoked. For an MQSecurityExit this is always
MQXT_CHANNEL_SEC_EXIT. For an MQSendExit this is always
MQXT_CHANNEL_SEND_EXIT, and for an MQReceiveExit this is always
MQXT_CHANNEL_RCV_EXIT.

exitReason
public int exitReason

The reason for invoking the exit. Possible values are:

MQXR_INIT
Exit initialization; called after the channel connection conditions have been
negotiated, but before any security flows have been sent.

MQXR_TERM
Exit termination; called after the disconnect flows have been sent but
before the socket connection is destroyed.

MQXR_XMIT
For a send exit indicates that data is to be transmitted to the queue
manager. For a receive exit, indicates that data has been received from
the queue manager.

MQXR_SEC_MSG
Indicates to the security exit that a security message has been received
from the queue manager.

MQXR_INIT_SEC
Indicates that the exit is to initiate the security dialog with the queue
manager.

exitResponse
public int exitResponse

Set by the exit to indicate the action that MQSeries classes for Java should
take next. Valid values are:

MQXCC_OK
Set by the security exit to indicate that security exchanges are complete.
Set by send exit to indicate that the returned data is to be transmitted to
the queue manager. Set by the receive exit to indicate that the returned
data is available for processing by the MQSeries client for Java.

MQXCC_SUPPRESS_FUNCTION
Set by the security exit to indicate that communications with the queue
manager should be shut down.

MQXCC_SEND_AND_REQUEST_SEC_MSG
Set by the security exit to indicate that the returned data is to be
transmitted to the queue manager, and that a response is expected from
the queue manager.

MQXCC_SEND_SEC_MSG
Set by the security exit to indicate that the returned data is to be
transmitted to the queue manager, and that no response is expected.

MQXCC_SUPPRESS_EXIT
Set by any exit to indicate that it should no longer be called.

 Chapter 7. The Java classes and interfaces for MQSeries 49

 MQChannelExit

MQXCC_CLOSE_CHANNEL
Set by any exit to indicate that the connection to the queue manager
should be closed.

maxSegmentLength
public int maxSegmentLength

The maximum length for any one transmission to a queue manager. If the exit
returns data that is to be sent to the queue manager, the length of the returned
data should not exceed this value.

exitUserArea
public byte exitUserArea[]

A storage area available for the exit to use. Any data placed in the
exitUserArea is preserved by MQSeries classes for Java across exit
invocations with the same exitID. (That is to say, the send, receive, and
security exits each have their own, independent, user areas.)

capabilityFlags
public static final int capabilityFlags

Indicates the capability of the queue manager. Only the
MQC.MQCF_DIST_LISTS flag is supported.

fapLevel
public static final int fapLevel

The negotiated Format and Protocol (FAP) level.

 Constructors
MQChannelExit

 public MQChannelExit()

50 MQSeries Using Java

 MQDistributionList

 MQDistributionList

java.lang.Object
 │
 └─ com.ibm.mq.MQManagedObject
 │
 └─ com.ibm.mq.MQDistributionList

public class MQDistributionList
extends MQManagedObject (See page 65.)

Note: You can use this class only when connected to an MQSeries Version 5 (or
higher) queue manager.

An MQDistributionList is created with MQDistributionList constructor or with the
accessDistributionList method for MQQueueManager.

A distribution list represents a set of open queues to which messages can be sent
using a single call to the put() method. (See“Distribution lists” in the MQSeries
Application Programming Guide.)

 Constructors
MQDistributionList

public MQDistributionList(MQQueueManager qMgr,
 MQDistributionListItem[] litems,
 int openOptions,
 String alternateUserId)

Throws MQException.

qMgr is the queue manager where the list is to be opened.

litems are the items to be included in the distribution list.

See "accessDistributionList" on page 107 for details of the remaining
parameters.

 Methods
put

public synchronized void put(MQMessage message,
MQPutMessageOptions putMessageOptions)

Throws MQException.

Puts a message to the queues on the distribution list.

Parameters

message
An input/output parameter containing the message descriptor information
and the returned message data.

 Chapter 7. The Java classes and interfaces for MQSeries 51

 MQDistributionList

putMessageOptions
Options that control the action of MQPUT.(See “MQPutMessageOptions”
on page 90 for details.)

Throws MQException if the put fails.

getFirstDistributionListItem
public MQDistributionListItem getFirstDistributionListItem()

Returns the first item in the distribution list, or null if the list is empty.

getValidDestinationCount
public int getValidDestinationCount()

Returns the number of items in the distribution list that were opened
successfully.

getInvalidDestinationCount
public int getInvalidDestinationCount()

Returns the number of items in the distribution list that failed to open
successfully.

52 MQSeries Using Java

 MQDistributionListItem

 MQDistributionListItem

java.lang.Object
 │
 └─ com.ibm.mq.MQMessageTracker
 │
 └─ com.ibm.mq.MQDistributionListItem

public class MQDistributionListItem
extends MQMessage (See page 68.)

Note: You can use this class only when connected to an MQSeries Version 5 (or
higher) queue manager.

An MQDistributionListItem represents a single item (queue) within a distribution list.

 Variables
completionCode

public int completionCode

The completion code resulting from the last operation on this item. If this was
the construction of an MQDistributionList, the completion code relates to the
opening of the queue. If it was a put operation, the completion code relates to
the attempt to put a message onto this queue.

The initial value is "0".

queueName
public String queueName

The name of a queue you want to use with a distribution list. This cannot be
the name of a model queue.

The initial value is "".

queueManagerName
public String queueManagerName

The name of the queue manager on which the queue is defined.

The initial value is "".

reasonCode
public int reasonCode

The reason code resulting from the last operation on this item. If this was the
construction of an MQDistributionList, the reason code relates to the opening of
the queue. If it was a put operation, the reason code relates to the attempt to
put a message onto this queue.

The initial value is "0".

 Chapter 7. The Java classes and interfaces for MQSeries 53

 MQDistributionListItem

 Constructors
MQDistributionListItem

public MQDistributionListItem()

Construct a new MQDistributionListItem object.

54 MQSeries Using Java

 MQEnvironment

 MQEnvironment

java.lang.Object
 │
 └─ com.ibm.mq.MQEnvironment

public class MQEnvironment
extends Object

Note: All the methods and attributes of this class apply to the MQSeries classes
for Java client connections, but only enableTracing, disableTracing, properties, and
version_notice apply to bindings connections.

MQEnvironment contains static member variables which control the environment in
which an MQQueueManager object (and its corresponding connection to MQSeries)
is constructed.

Values set in the MQEnvironment class take effect when the MQQueueManager
constructor is called so you should set the values in the MQEnvironment class
before constructing an MQQueueManager instance.

 Variables
version_notice

public final static String version_notice

The current version of MQSeries classes for Java.

securityExit
public static MQSecurityExit securityExit

A security exit allows you to customize the security flows that occur when an
attempt is made to connect to a queue manager.

To provide your own security exit, define a class that implements the
MQSecurityExit interface, and assign securityExit to an instance of that class.
Otherwise, you can leave securityExit set to null, in which case no security exit
will be called.

See also “MQSecurityExit” on page 112.

sendExit
public static MQSendExit sendExit

A send exit allows you to examine and possibly alter the data sent to a queue
manager. It is normally used in conjunction with a corresponding receive exit
at the queue manager.

To provide your own send exit, define a class that implements the MQSendExit
interface, and assign sendExit to an instance of that class. Otherwise, you can
leave sendExit set to null, in which case no send exit will be called.

See also “MQSendExit” on page 114.

 Chapter 7. The Java classes and interfaces for MQSeries 55

 MQEnvironment

receiveExit
public static MQReceiveExit receiveExit

A receive exit allows you to examine and possibly alter data received from a
queue manager. It is normally used in conjunction with a corresponding send
exit at the queue manager.

To provide your own receive exit, define a class that implements the
MQReceiveExit interface, and assign receiveExit to an instance of that class.
Otherwise, you can leave receiveExit set to null, in which case no receive exit
will be called.

See also “MQReceiveExit” on page 110.

hostname
public static String hostname

The TCP/IP hostname of the machine on which the MQSeries server resides.
If the hostname is not set, and no overriding properties are set, bindings mode
is used to connect to the local queue manager.

port
public static int port

The port to connect to. This is the port on which the MQSeries server is
listening for incoming connection requests. The default value is 1414.

channel
public static String channel

The name of the channel to connect to on the target queue manager. You
must set this member variable, or the corresponding property, before
constructing an MQQueueManager instance for use in client mode.

userID
public static String userID

Equivalent to the MQSeries environment variable MQ_USER_ID.

If a security exit is not defined for this client, the value of userID is transmitted
to the server and will be available to the server security exit when it is invoked.
The value may be used to verify the identity of the MQSeries client.

The default value is "".

password
public static String password

Equivalent to the MQSeries environment variable MQ_PASSWORD.

If a security exit is not defined for this client, the value of password is
transmitted to the server and is available to the server security exit when it is
invoked. The value may be used to verify the identity of the MQSeries client.

The default value is "".

properties
public statis java.util.Hashtable properties

A set of key/value pairs defining the MQSeries environment.

This hash table allows you to set environment properties as key/value pairs
rather than as individual variables.

56 MQSeries Using Java

 MQEnvironment

The properties can also be passed as a hash table in a parameter on the
MQQueueManager constructor. Properties passed on the constructor take
precedence over values set with this properties variable, but they are otherwise
interchangeable. The order of precedence of finding properties is:

1. properties parameter on MQQueueManager constructor
 2. MQEnvironment.properties

3. Other MQEnvironment variables
4. Constant default values

The possible Key/value pairs are shown in the following table:

Key Value

MQC.CCSID_PROPERTY Integer (Overrides MQEnvironment.CCSID.)

MQC.CHANNEL_PROPERTY String (Overrides MQEnvironment.channel.)

MQC.CONNECT_OPTIONS_PROPERTY Integer, defaults to MQC.MQCNO_NONE.

MQC.HOST_NAME_PROPERTY String (Overrides MQEnvironment.hostname.)

MQC.ORB_PROPERTY org.omg.CORBA.ORB (optional)

MQC.PASSWORD_PROPERTY String (Overrides MQEnvironment.password.)

MQC.PORT_PROPERTY Integer (Overrides MQEnvironment.port.)

MQC.RECEIVE_EXIT_PROPERTY MQReceiveExit (Overrides
MQEnvironment.receiveExit.)

MQC.SECURITY_EXIT_PROPERTY MQSecurityExit (Overrides
MQEnvironment.securityExit.)

MQC.SEND_EXIT_PROPERTY MQSendExit (Overrides MQEnvironment.sendExit.)

MQC.TRANSPORT_PROPERTY MQC.TRANSPORT_MQSERIES_BINDINGS
 or
MQC.TRANSPORT_MQSERIES_CLIENT
 or
MQC.TRANSPORT_VISIBROKER
 or
MQC.TRANSPORT_MQSERIES (The default, which
selects bindingd or client based on the value of
"hostname".)

MQC.USER_ID_PROPERTY String (Overrides MQEnvironment.userID.)

CCSID
public static int CCSID

The CCSID used by the client.

Changing this value affects the way that the queue manager you connect to
translates information in the MQSeries headers. All data in MQSeries headers
is drawn from the invariant part of the ASCII codeset, except for the data in the
applicationIdData and the putApplicationName fields of the MQMessage class.
(See “MQMessage” on page 68.)

If you avoid using characters from the variant part of the ASCII codeset for
these two fields, you are then safe to change the CCSID from 819 to any other
ASCII codeset.

If you change the client's CCSID to be the same as that of the queue manager
to which you are connecting, you gain a performance benefit at the queue
manager because it does not attempt to translate the message headers.

The default value is 819.

 Chapter 7. The Java classes and interfaces for MQSeries 57

 MQEnvironment

 Constructors
MQEnvironment

public MQEnvironment()

 Methods
disableTracing

public static void disableTracing()

Turns off the MQSeries classes for Java trace facility.

enableTracing
public static void enableTracing(int level)

Turns on the MQSeries classes for Java trace facility.

Parameters

level
The level of tracing required, from 1 to 5 (5 being the most detailed)

enableTracing
public static void enableTracing(int level,
 OutputStream stream)

Turns on the MQSeries classes for Java trace facility.

Parameters:

level
The level of tracing required, from 1 to 5 (5 being the most detailed)

stream
The stream to which the trace is written

58 MQSeries Using Java

 MQException

 MQException

java.lang.Object
 │
 └─ java.lang.Throwable
 │
 └─ java.lang.Exception
 │
 └─ com.ibm.mq.MQException

public class MQException
extends Exception

An MQException is thrown whenever an MQSeries error occurs. You can change
the output stream for the exceptions that are logged by setting the value of
MQException.log. The default value is System.err. This class contains definitions
of completion code and error code constants. Constants beginning MQCC_ are
MQSeries completion codes, and constants beginning MQRC_ are MQSeries
reason codes. The MQSeries Application Programming Reference contains a full
description of these errors and their probable causes.

 Variables
log

public static java.io.outputStreamWriter log

Stream to which exceptions are logged. (The default is System.err.) If you set
this to null no logging occurs.

completionCode
public int completionCode

 MQSeries completion code giving rise to the error. The possible values are:

 � MQException.MQCC_WARNING
 � MQException.MQCC_FAILED

reasonCode
public int reasonCode

MQSeries reason code describing the error. For a full explanation of the
reason codes refer to the MQSeries Application Programming Reference.

exceptionSource
public Object exceptionSource

The object instance that threw the exception. You can use this as part of your
diagnostics when determining the cause of an error.

 Constructors
MQException

public MQException(int completionCode,
 int reasonCode,
 Object source)

Construct a new MQException object.

 Chapter 7. The Java classes and interfaces for MQSeries 59

 MQException

Parameters

completionCode
The MQSeries completion code

reasonCode
The MQSeries reason code

source
The object in which the error occurred

60 MQSeries Using Java

 MQGetMessageOptions

 MQGetMessageOptions

java.lang.Object
 │
 └─ com.ibm.mq.MQGetMessageOptions

public class MQGetMessageOptions
extends Object

This class contains options that control the behavior of MQQueue.get().

Note: The behavior of some of the options available in this class depends on the
environment in which they are used. These elements are marked with a *. See
Chapter 6, “Environment dependent behavior” on page 39 for details.

 Variables
options

public int options

Options that control the action of MQQueue.get. Any or none of the following
values can be specified. If more than one option is required the values can be
added together or combined using the bitwise OR operator.

MQC.MQGMO_NONE

MQC.MQGMO_WAIT
Wait for a message to arrive.

MQC.MQGMO_NO_WAIT
Return immediately if there is no suitable message.

MQC.MQGMO_SYNCPOINT
Get the message under syncpoint control; the message is marked as
being unavailable to other applications, but it is deleted from the queue
only when the unit of work is committed. The message is made available
again if the unit of work is backed out.

MQC.MQGMO_NO_SYNCPOINT
Get message without syncpoint control.

MQC.MQGMO_BROWSE_FIRST
Browse from start of queue.

MQC.MQGMO_BROWSE_NEXT
Browse from the current position in the queue.

MQC.MQGMO_BROWSE_MSG_UNDER_CURSOR
Browse message under browse cursor.

MQC.MQGMO_MSG_UNDER_CURSOR
Get message under browse cursor.

MQC.MQGMO_LOCK*
Lock the message that is browsed.

MQC.MQGMO_UNLOCK*
Unlock a previously locked message.

 Chapter 7. The Java classes and interfaces for MQSeries 61

 MQGetMessageOptions

MQC.MQGMO_ACCEPT_TRUNCATED_MSG
Allow truncation of message data.

MQC.MQGMO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

MQC.MQGMO_CONVERT
Request the application data to be converted, to conform to the
characterSet and encoding attributes of the MQMessage, before the data
is copied into the message buffer. Because data conversion is also
applied as the data is retrieved from the message buffer, applications do
not usually set this option.

MQC.MQGMO_SYNCPOINT_IF_PERSISTENT*
Get message with syncpoint control if message is persistent.

MQC.MQGMO_MARK_SKIP_BACKOUT*
Allow a unit of work to be backed out without reinstating the message on
the queue.

Segmenting and grouping
MQSeries messages can be sent or received as a single entity, can be split
into several segments for sending and receiving, and can also be linked to
other messages in a group. Each piece of data that is sent is known as a
physical message which can be a complete logical message, or a segment of
a longer logical message. Each physical message usually has a different
MsgId. All the segments of a single logical message have the same groupId
value, and MsgSeqNumber value, but the Offset value is different for each
segment. The Offset field gives the offset of the data in the physical message
from the start of the logical message. The segments usually have different
MsgId values as they are individual physical messages. Logical messages
which form part of a group, have the same groupId value, but each message
in the group has a different MsgSeqNumber value. Messages in a group can
also be segmented.

The following options can be used for dealing with segmented or grouped
messages:

MQC.MQGMO_LOGICAL_ORDER*
Return messages in groups, and segments of logical messages, in logical
order.

MQC.MQGMO_COMPLETE_MSG*
Retrieve only complete logical messages.

MQC.MQGMO_ALL_MSGS_AVAILABLE*
Retrieve messages from a group only when all the messages in the group
are available.

MQC.MQGMO_ALL_SEGMENTS_AVAILABLE*
Retrieve the segments of a logical message only when all the segments in
the group are available.

waitInterval
public int waitInterval

The maximum time (in milliseconds) that an MQQueue.get call waits for a
suitable message to arrive (used in conjunction with MQC.MQGMO_WAIT). A
value of MQC.MQWI_UNLIMITED indicates that an unlimited wait is required.

62 MQSeries Using Java

 MQGetMessageOptions

resolvedQueueName
public String resolvedQueueName

This is an output field set by the queue manager to the local name of the
queue from which the message was retrieved. This will be different from the
name used to open the queue if an alias queue or model queue was opened.

matchOptions*
public int matchOptions

Selection criteria that determine which message is retrieved. The following
match options can be set:

MQC.MQMO_MATCH_MSG_ID
Message id to be matched

MQC.MQMO_MATCH_CORREL_ID
Correlation id to be matched

MQC.MQMO_MATCH_GROUP_ID
Group id to be matched

MQC.MQMO_MATCH_MSG_SEQ_NUMBER
Match message sequence number

MQC.MQMO_NONE
No matching required

groupStatus*
public char groupStatus

This is an output field which indicates whether the retrieved message is in a
group, and if it is, whether it is the last in the group. Possible values are:

MQC.MQGS_NOT_IN_GROUP
Message is not in a group.

MQC.MQGS_MSG_IN_GROUP
Message is in a group, but is not the last in the group.

MQC.MQGS_LAST_MSG_IN_GROUP
Message is the last in the group. This is also the value returned if the
group consists of only one message.

segmentStatus*
public char segmentStatus

This is an output field that indicates whether the retrieved message is a
segment of a logical message. If the message is a segment, the flag indicates
whether or not it is the last segment. Possible values are:

MQC.MQSS_NOT_A_SEGMENT
Message is not a segment.

MQC.MQSS_SEGMENT
Message is a segment, but is not the last segment of the logical message.

MQC.MQSS_LAST_SEGMENT
Message is the last segment of the logical message. This is also the
value returned if the logical message consists of only one segment.

 Chapter 7. The Java classes and interfaces for MQSeries 63

 MQGetMessageOptions

segmentation*
public char segmentation

This is an output field that indicates whether or not segmentation is allowed for
the retrieved message is a segment of a logical message. Possible values
are:

MQC.MQSEG_INHIBITED
Segmentation not allowed.

MQC.MQSEG_ALLOWED
Segmentation allowed.

 Constructors
MQGetMessageOptions

public MQGetMessageOptions()

Construct a new MQGetMessageOptions object with options set to
MQC.MQGMO_NO_WAIT, a wait interval of zero, and a blank resolved queue
name.

64 MQSeries Using Java

 MQManagedObject

 MQManagedObject

java.lang.Object
 │
 └─ com.ibm.mq.MQManagedObject

public class MQManagedObject
extends Object

MQManagedObject is a superclass for MQQueueManager, MQQueue and
MQProcess. It provides the ability to inquire and set attributes of these resources.

 Variables
alternateUserId

public String alternateUserId

The alternate user id specified (if any) when this resource was opened.
Setting this attribute has no effect.

name
public String name

The name of this resource (either the name supplied on the access method, or
the name allocated by the queue manager for a dynamic queue). Setting this
attribute has no effect.

openOptions
public int openOptions

The options specified when this resource was opened. Setting this attribute
has no effect.

isOpen
public boolean isOpen

Indicates whether this resource is currently open. Setting this attribute has no
effect.

connectionReference
public MQQueueManager connectionReference

The queue manager to which this resource belongs. Setting this attribute has
no effect.

closeOptions
public int closeOptions

Set this attribute to control the way the resource is closed. The default value is
MQC.MQCO_NONE, and this is the only permissible value for all resources
other than permanent dynamic queues. For these queues, the following
additional values are permissible:

MQC.MQCO_DELETE
Delete the queue if there are no messages.

MQC.MQCO_DELETE_PURGE
Delete the queue, purging any messages on it.

 Chapter 7. The Java classes and interfaces for MQSeries 65

 MQManagedObject

 Constructors
MQManagedObject

 protected MQManagedObject()

Constructor method.

 Methods
getDescription

public String getDescription()

Throws IOException.

Return the description of this resource as held at the queue manager.

If this method is called after the resource has been closed, an IOException is
thrown.

inquire

public void inquire(int selectors[],
 int intAttrs[],
 byte charAttrs[])

Throws MQException.

Returns an array of integers and a set of character strings containing the
attributes of an object (queue, process or queue manager).

The attributes to be queried are specified in the selectors array. Refer to the
MQSeries Application Programming Reference for details of the permissible
selectors and their corresponding integer values.

Note that many of the more common attribute values can be queried using the
getXXX() methods defined in MQManagedObject, MQQueue,
MQQueueManager, and MQProcess.

Parameters

selectors
Integer array identifying the attributes with values to be inquired on.

intAttrs
The array in which the integer attribute values are returned. Integer
attribute values are returned in the same order as the integer attribute
selectors in the selectors array.

charAttrs
The buffer in which the character attributes are returned, concatenated.
Character attributes are returned in the same order as the character
attribute selectors in the selectors array. The length of each attribute
string is fixed for each attribute.

Throws MQException if the inquire fails.

isOpen
public Boolean isOpen()

Returns the value of the isOpen variable.

66 MQSeries Using Java

 MQManagedObject

set

public synchronized void set(int selectors[],
 int intAttrs[],
 byte charAttrs[])

Throws MQException.

Set the attributes defined in the selector's vector.

The attributes to be set are specified in the selectors array. Refer to the
MQSeries Application Programming Reference for details of the permissible
selectors and their corresponding integer values.

Note that some queue attribute values can be set using the setXXX() methods
defined in MQQueue.

Parameters

selectors
Integer array identifying the attributes with values to be set.

intAttrs
The array of integer attribute values to be set. These values must be in
the same order as the integer attribute selectors in the selectors array.

charAttrs
The buffer in which the character attributes to be set are concatenated.
These values must be in the same order as the character attribute
selectors in the selectors array. The length of each character attribute is
fixed.

Throws MQException if the set fails.

close

public synchronized void close()

Throws MQException.

Close the object. No further operations against this resource are permitted after
this method has been called. The behavior of the close method may be altered
by setting the closeOptions attribute.

Throws MQException if the MQSeries call fails

 Chapter 7. The Java classes and interfaces for MQSeries 67

 MQMessage

 MQMessage

java.lang.Object
 │
 └─ com.ibm.mq.MQMessage

public class MQMessage
implements DataInput , DataOutput

MQMessage represents both the message descriptor and the data for an MQSeries
message. There is group of readXXX methods for reading data from a message,
and a group of writeXXX data for writing data into a message. The format of
numbers and strings used by these read and write methods can be controlled by
the encoding and characterSet member variables. The remaining member
variables contain control information that accompanies the application message
data when a message travels between sending and receiving applications. The
application can set values into the member variable before putting a message to a
queue and can read values after retrieving a message from a queue.

 Variables
report

public int report

A report is a message about another message. This member variable enables
the application sending the original message to specify which report messages
are required, whether the application message data is to be included in them,
and also how the message and correlation identifiers in the report or reply are
to be set. Any, all or none of the following report types can be requested:

 � Exception
 � Expiration
� Confirm on arrival
� Confirm on delivery

For each type, only one of the three corresponding values below should be
specified, depending on whether the application message data is to be
included in the report message.

Note: Values marked with ** in the following list are not supported by MVS
queue managers and should not be used if your application is likely to access
an MVS queue manager, regardless of the platform on which the application is
running.

The valid values are:

 � MQC.MQRO_EXCEPTION
 � MQC.MQRO_EXCEPTION_WITH_DATA
 � MQC.MQRO_EXCEPTION_WITH_FULL_DATA**
 � MQC.MQRO_EXPIRATION
 � MQC.MQRO_EXPIRATION_WITH_DATA
 � MQC.MQRO_EXPIRATION_WITH_FULL_DATA**
 � MQC.MQRO_COA
 � MQC.MQRO_COA_WITH_DATA
 � MQC.MQRO_COA_WITH_FULL_DATA**

68 MQSeries Using Java

 MQMessage

 � MQC.MQRO_COD
 � MQC.MQRO_COD_WITH_DATA
 � MQC.MQRO_COD_WITH_FULL_DATA**

You can specify one of the following to control how the message Id is
generated for the report or reply message:

 � MQC.MQRO_NEW_MSG_ID
 � MQC.MQRO_PASS_MSG_ID

You can specify one of the following to control how the correlation Id of the
report or reply message is to be set:

 � MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID
 � MQC.MQRO_PASS_CORREL_ID

You can specify one of the following to control the disposition of the original
message when it cannot be delivered to the destination queue:

 � MQC.MQRO_DEAD_LETTER_Q
 � MQC.MQRO_DISCARD_MSG **

If no report options are specified, the default is:

MQC.MQRO_NEW_MSG_ID |
MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID |
MQC.MQRO_DEAD_LETTER_Q

You can specify one or both of the following to request that the receiving
application send a positive action or negative action report message.

 � MQRO_PAN
 � MQRO_NAN

messageType
public int messageType

Indicates the type of the message. The following values are currently defined
by the system:

 � MQC.MQMT_DATAGRAM
 � MQC.MQMT_REQUEST
 � MQC.MQMT_REPLY
 � MQC.MQMT_REPORT

Application-defined values can also be used. These should be in the range
MQC.MQMT_APPL_FIRST to MQC.MQMT_APPL_LAST.

The default value of this field is MQC.MQMT_DATAGRAM.

expiry
public int expiry

An expiry time expressed in tenths of a second, set by the application that puts
the message. After a message's expiry time has elapsed, it is eligible to be
discarded by the queue manager. If the message specified one of the
MQC.MQRO_EXPIRATION flags, a report is generated when the message is
discarded.

The default value is MQC.MQEI_UNLIMITED, meaning that the message never
expires.

 Chapter 7. The Java classes and interfaces for MQSeries 69

 MQMessage

feedback
public int feedback

This is used with a message of type MQC.MQMT_REPORT to indicate the
nature of the report. The following feedback codes are defined by the system:

 � MQC.MQFB_EXPIRATION
 � MQC.MQFB_COA
 � MQC.MQFB_COD
 � MQC.MQFB_QUIT
 � MQC.MQFB_PAN
 � MQC.MQFB_NAN
 � MQC.MQFB_DATA_LENGTH_ZERO
 � MQC.MQFB_DATA_LENGTH_NEGATIVE
 � MQC.MQFB_DATA_LENGTH_TOO_BIG
 � MQC.MQFB_BUFFER_OVERFLOW
 � MQC.MQFB_LENGTH_OFF_BY_ONE
 � MQC.MQFB_IIH_ERROR

Application-defined feedback values in the range MQC.MQFB_APPL_FIRST to
MQC.MQFB_APPL_LAST can also be used.

The default value of this field is MQC.MQFB_NONE, indicating that no
feedback is provided.

encoding
public int encoding

This member variable specifies the representation used for numeric values in
the application message data; this applies to binary, packed decimal, and
floating point data. The behavior of the read and write methods for these
numeric formats is altered accordingly.

The following encodings are defined for binary integers:

MQC.MQENC_INTEGER_NORMAL
Big-endian integers, as in Java

MQC.MQENC_INTEGER_REVERSED
Little-endian integers, as used by PCs

The following encodings are defined for packed-decimal integers:

MQC.MQENC_DECIMAL_NORMAL
Big-endian packed-decimal, as used by System/390

MQC.MQENC_DECIMAL_REVERSED
Little-endian packed-decimal

The following encodings are defined for floating-point numbers:

MQC.MQENC_FLOAT_IEEE_NORMAL
Big-endian IEEE floats, as in Java

MQC.MQENC_FLOAT_IEEE_REVERSED
Little-endian IEEE floats, as used by PCs

MQC.MQENC_FLOAT_S390
System/390 format floating points

A value for the encoding field should be constructed by adding together one
value from each of these three sections (or using the bitwise OR operator).
The default value is:

70 MQSeries Using Java

 MQMessage

MQC.MQENC_INTEGER_NORMAL |
MQC.MQENC_DECIMAL_NORMAL |
MQC.MQENC_FLOAT_IEEE_NORMAL

For convenience, this value is also represented by MQC.MQENC_NATIVE.
This setting causes writeInt() to write a big-endian integer, and readInt() to read
a big-endian integer. If the flag MQC.MQENC_INTEGER_REVERSED flag
had been set instead, writeInt() would write a little-endian integer, and readInt()
would read a little-endian integer.

Note that a loss in precision can occur when converting from IEEE format
floating points to System/390 format floating points.

characterSet
public int characterSet

This specifies the coded character set identifier of character data in the
application message data. The behavior of the readString, readLine and
writeString methods is altered accordingly.

The default value for this field is MQC.MQCCSI_Q_MGR, which specifies that
character data in the application message data is in the queue manager's
character set. The additional character set values shown in Table 6 are
supported.

Table 6 (Page 1 of 2). Character set identifiers

characterSet Description

819 iso-8859-1 / latin1 / ibm819
912 iso-8859-2 / latin2 / ibm912
913 iso-8859-3 / latin3 / ibm913
914 iso-8859-4 / latin4 / ibm914
915 iso-8859-5 / cyrillic / ibm915
1089 iso-8859-6 / arabic / ibm1089
813 iso-8859-7 / greek / ibm813
916 iso-8859-8 / hebrew / ibm916
920 iso-8859-9 / latin5 / ibm920
37 ibm037
273 ibm273
277 ibm277
278 ibm278
280 ibm280
284 ibm284
285 ibm285
297 ibm297
420 ibm420
424 ibm424
437 ibm437 / PC Original
500 ibm500
737 ibm737 / PC Greek
775 ibm775 / PC Baltic
838 ibm838
850 ibm850 / PC Latin 1
852 ibm852 / PC Latin 2
855 ibm855 / PC Cyrillic
856 ibm856
857 ibm857 / PC Turkish
860 ibm860 / PC Portuguese
861 ibm861 / PC Icelandic

 Chapter 7. The Java classes and interfaces for MQSeries 71

 MQMessage

Table 6 (Page 2 of 2). Character set identifiers

characterSet Description

862 ibm862 / PC Hebrew
863 ibm863 / PC Canadian French
864 ibm864 / PC Arabic
865 ibm865 / PC Nordic
866 ibm866 / PC Russian
868 ibm868
869 ibm869 / PC Modern Greek
870 ibm870
871 ibm871
874 ibm874
875 ibm875
918 ibm918
921 ibm921
922 ibm922
930 ibm930
933 ibm933
935 ibm935
937 ibm937
939 ibm939
942 ibm942
948 ibm948
949 ibm949
950 ibm950 / Big 5 Traditional Chinese
964 ibm964 / CNS 11643 Traditional Chinese
970 ibm970
1006 ibm1006
1025 ibm1025
1026 ibm1026
1097 ibm1097
1098 ibm1098
1112 ibm1112
1122 ibm1122
1123 ibm1123
1124 ibm1124
1381 ibm1381
1383 ibm1383
2022 JIS
932 PC Japanese
954 EUCJIS
1250 Windows Latin 2
1251 Windows Cyrillic
1252 Windows Latin 1
1253 Windows Greek
1254 Windows Turkish
1255 Windows Hebrew
1256 Windows Arabic
1257 Windows Baltic
1258 Windows Vietnamese
33722 ibm33722
5601 ksc-5601 Korean
1200 Unicode
1208 UTF-8

72 MQSeries Using Java

 MQMessage

format
public String format

A format name used by the sender of the message to indicate to the receiver
the nature of the data in the message. You can use your own format names,
but names beginning with the letters "MQ" have meanings that are defined by
the queue manager. The queue manager built-in formats are:

MQC.MQFMT_NONE
No format name

MQC.MQFMT_ADMIN
Command server request/reply message

MQC.MQFMT_COMMAND_1
Type 1 command reply message

MQC.MQFMT_COMMAND_2
Type 2 command reply message

MQC.MQFMT_DEAD_LETTER_HEADER
Dead letter header

MQC.MQFMT_EVENT
Event message

MQC.MQFMT_PCF
User-defined message in programmable command format

MQC.MQFMT_STRING
Message consisting entirely of characters

MQC.MQFMT_TRIGGER
Trigger message

MQC.MQFMT_XMIT_Q_HEADER
Transmission queue header

The default value is MQC.MQFMT_NONE.

priority
public int priority

The message priority. The special value MQC.MQPRI_PRIORITY_AS_Q_DEF
can also be set in outbound messages, in which case the priority for the
message is taken from the default priority attribute of the destination queue.

The default value is MQC.MQPRI_PRIORITY_AS_Q_DEF.

persistence
public int persistence

Message persistence. The following values are defined:

 � MQC.MQPER_PERSISTENT
 � MQC.MQPER_NOT_PERSISTENT
 � MQC.MQPER_PERSISTENCE_AS_Q_DEF

The default value is MQC.MQPER_PERSISTENCE_AS_Q_DEF, which
indicates that the persistence for the message should be taken from the default
persistence attribute of the destination queue.

 Chapter 7. The Java classes and interfaces for MQSeries 73

 MQMessage

messageId
public byte messageId[]

For an MQQueue.get() call, this field specifies the message identifier of the
message to be retrieved. Normally the queue manager returns the first
message with a message identifier and correlation identifier match those
specified. The special value MQC.MQMI_NONE allows any message identifier
to match.

For an MQQueue.put() call, this specifies the message identifier to use. If
MQC.MQMI_NONE is specified,the queue manager generates a unique
message identifier when the message is put. The value of this member
variable is updated after the put to indicate the message identifier that was
used.

The default value is MQC.MQMI_NONE.

correlationId
public byte correlationId[]

For an MQQueue.get() call, this field specifies the correlation identifier of the
message to be retrieved. Normally the queue manager returns the first
message with a message identifier and correlation identifier that match those
specified. The special value MQC.MQCI_NONE allows any correlation
identifier to match.

For an MQQueue.put()() call, this specifies the correlation identifier to use.

The default value is MQC.MQCI_NONE.

backoutCount
public int backoutCount

A count of the number of times the message has previously been returned by
an MQQueue.get() call as part of a unit of work, and subsequently backed out.

The default value is zero.

replyToQueueName
public String replyToQueueName

The name of the message queue to which the application that issued the get
request for the message should send MQC.MQMT_REPLY and
MQC.MQMT_REPORT messages.

The default value is "".

replyToQueueManagerName
public String replyToQueueManagerName

The name of the queue manager to which reply or report messages should be
sent.

The default value is "".

If the value is "" on an MQQueue.put() call, the QueueManager fills in the
value.

userId
public String userId

Part of the identity context of the message; it identifies the user that originated
this message.

The default value is "".

74 MQSeries Using Java

 MQMessage

accountingToken
public byte accountingToken[]

Part of the identity context of the message; it allows an application to cause
work done as a result of the message to be appropriately charged.

The default value is "MQC.MQACT_NONE".

applicationIdData
public String applicationIdData

Part of the identity context of the message; it is information that is defined by
the application suite, and can be used to provide additional information about
the message or its originator.

The default value is "".

putApplicationType
public int putApplicationType

The type of application that put the message. This may be a system or user
defined value. The following values are defined by the system:

 � MQC.MQAT_AIX
 � MQC.MQAT_CICS
 � MQC.MQAT_DOS
 � MQC.MQAT_IMS
 � MQC.MQAT_MVS
 � MQC.MQAT_OS2
 � MQC.MQAT_OS400
 � MQC.MQAT_QMGR
 � MQC.MQAT_UNIX
 � MQC.MQAT_WINDOWS
 � MQC.MQAT_JAVA

The default value is the special value MQC.MQAT_NO_CONTEXT, which
indicates that no context information is present in the message.

putApplicationName
public String putApplicationName

The name of the application that put the message. The default value is "".

putDateTime
public GregorianCalendar putDateTime

The time and date that the message was put.

applicationOriginData
public String applicationOriginData

Information defined by the application that can be used to provide additional
information about the origin of the message.

The default value is "".

groupId
public byte[] groupId

A byte string that identifies the message group to which the physical message
belongs.

The default value is "MQC.MQGI_NONE".

 Chapter 7. The Java classes and interfaces for MQSeries 75

 MQMessage

messageSequenceNumber
public int messageSequenceNumber

The sequence number of a logical message within a group.

offset
public int offset

In a segmented message, the offset of data in a physical message from the
start of a logical message.

messageFlags
public int messageFlags

Flags controlling the segmentation and status of a message.

originalLength
public int originalLength

The original length of a segmented message.

 Constructors
MQMessage

public MQMessage()

Create a new message with default message descriptor information and an
empty message buffer.

 Methods
getTotalMessageLength

public int getTotalMessageLength()

The total number of bytes in the message as stored on the message queue
from which this message was retrieved (or attempted to be retrieved). When an
MQQueue.get() method fails with a message-truncated error code, this method
tells you the total size of the message on the queue.

See also "MQQueue.get" on page 94.

getMessageLength

public int getMessageLength

Throws IOException.

The number of bytes of message data in this MQMessage object.

getDataLength

public int getDataLength()

Throws MQException.

The number of bytes of message data remaining to be read.

seek

public void seek(int pos)

Throws IOException.

Move the cursor to the absolute position in the message buffer given by pos.
Subsequent reads and writes will act at this position in the buffer.

Throws EOFException if pos is outside the message data length.

76 MQSeries Using Java

 MQMessage

setDataOffset

public void setDataOffset(int offset)

Throws IOException.

Move the cursor to the absolute position in the message buffer. This method
is a synonym for seek(), and is provided for cross-language compatibility with
the other MQSeries APIs.

getDataOffset

public int getDataOffset()

Throws IOException.

Return the current cursor position within the message data (the point at which
read and write operations take effect).

clearMessage

public void clearMessage()

Throws IOException.

Discard any data in the message buffer and set the data offset back to zero.

getVersion
public int getVersion()

Returns the version of the structure in use.

resizeBuffer

public void resizeBuffer(int size)

Throws IOException.

A hint to the MQMessage class about the size of buffer that may be required
for subsequent get operations. If the message currently contains message
data, and the new size is less than the current size, the message data is
truncated.

readBoolean

public boolean readBoolean()

Throws IOException.

Read a (signed) byte from the current position in the message buffer.

readChar

public char readChar()

Throws IOException, EOFException.

Read a Unicode character from the current position in the message buffer.

readDouble

public double readDouble()

Throws IOException, EOFException.

Read a double from the current position in the message buffer. The behavior
of this method is determined by the value of the encoding member variable.

 Chapter 7. The Java classes and interfaces for MQSeries 77

 MQMessage

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard doubles in
big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 reads a System/390 format floating
point number.

readFloat

public float readFloat()

Throws IOException, EOFException.

Read a float from the current position in the message buffer. The behavior of
this method is determined by the value of the encoding member variable.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED read IEEE standard floats in
big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 reads a System/390 format floating
point number.

readFully

public void readFully(byte b[])

Throws Exception, EOFException.

Fill the byte array b with data from the message buffer.

readFully

public void readFully(byte b[],
 int off,
 int len)

Throws IOException, EOFException.

Fill len elements of the byte array b with data from the message buffer, starting
at offset off.

readInt

public int readInt()

Throws IOException, EOFException.

Read an integer from the current position in the message buffer. The behavior
of this method is determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian integer, a
value of MQC.MQENC_INTEGER_REVERSED reads a little-endian integer.

readInt4

public int readInt4()

Throws IOException, EOFException.

Synonym for readInt(), provided for cross-language MQSeries API
compatibility.

readLine

public String readLine()

Throws IOException.

78 MQSeries Using Java

 MQMessage

Converts from the codeset identified in the characterSet member variable to
Unicode, and then reads in a line that has been terminated by \n, \r, \r\n, EOF,
or the end of a UTF string.

Note that if you use readLine to read part of a UTF string, you are not able to
use readString() or readLine() to read the remainder of that string. This is
because the Java UTF format requires a length of string prefix in front of the
character data that is not present if you try to read from midway to a string.

readLong

public long readLong()

Throws IOException, EOFException.

Read a long from the current position in the message buffer. The behavior of
this method is determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian long, a
value of MQC.MQENC_INTEGER_REVERSED reads a little-endian long.

readInt8

public long readInt8()

Throws IOException, EOFException.

Synonym for readLong(), provided for cross-language MQSeries API
compatibility.

readObject

public Object readObject()

Throws OptionalDataException, ClassNotFoundException, IOException.

Read an object from the message buffer. The class of the object, the
signature of the class, and the value of the non-transient and non-static fields
of the class are all read.

readShort

public short readShort()

Throws IOException, EOFException.

readInt2

public short readInt2()

Throws IOException, EOFException.

Synonym for readShort(), provided for cross-language MQSeries API
compatibility.

readUTF

public String readUTF()

Throws IOException.

Read a UTF format String from the current position in the message buffer.

readUnsignedByte

public int readUnsignedByte()

Throws IOException, EOFException.

Read an unsigned byte from the current position in the message buffer.

 Chapter 7. The Java classes and interfaces for MQSeries 79

 MQMessage

readUnsignedShort

public int readUnsignedShort()

Throws IOException, EOFException.

Read an unsigned short from the current position in the message buffer. The
behavior of this method is determined by the value of the encoding member
variable.

A value of MQC.MQENC_INTEGER_NORMAL reads a big-endian unsigned
short, a value of MQC.MQENC_INTEGER_REVERSED reads a little-endian
unsigned short.

readUInt2

public int readUInt2()

Throws IOException, EOFException.

Synonym for readUnsignedShort(), provided for cross-language MQSeries API
compatibility.

readString

public String readString(int length)

Throws IOException, EOFException.

Read a string in the codeset identified by the characterSet member variable,
and convert it into Unicode.

Parameters:

length The number of characters to read (which may differ from the
number of bytes according to the codeset, because some codesets
use more than one byte per character).

readDecimal2

public short readDecimal2()

Throws IOException, EOFException.

Read a 2-byte packed decimal number (-999..999). The behavior of this
method is controlled by the value of the encoding member variable. A value of
MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed decimal
number, and a value of MQC.MQENC_DECIMAL_REVERSED reads a
little-endian packed decimal number.

readDecimal4

public int readDecimal4()

Throws IOException, EOFException.

Read a 4-byte packed decimal number (-9999999..9999999). The behavior of
this method is controlled by the value of the encoding member variable. A
value of MQC.MQENC_DECIMAL_NORMAL reads a big-endian packed
decimal number, and a value of MQC.MQENC_DECIMAL_REVERSED reads a
little-endian packed decimal number.

readDecimal8

public long readDecimal8()

Throws IOException, EOFException.

80 MQSeries Using Java

 MQMessage

Read an 8-byte packed decimal number (-999999999999999 to
999999999999999). The behavior of this method is controlled by the encoding
member variable. A value of MQC.MQENC_DECIMAL_NORMAL reads a
big-endian packed decimal number, and
MQC.MQENC_DECIMAL_REVERSED reads a little-endian packed decimal
number.

setVersion
public void setVersion(int version)

Specifies which version of the structure to use. Possible values are:

 � MQC.MQMD_VERSION_1
 � MQC.MQMD_VERSION_2

You should not normally need to call this method unless you wish to force the
client to use a version 1 structure when connected to a queue manager that is
capable of handling version 2 structures. In all other situations, the client
determines the correct version of the structure to use by querying the queue
manager's capabilities.

skipBytes

public int skipBytes(int n)

Throws IOException, EOFException.

Move forward n bytes in the message buffer.

write

public void write(int b)

Throws IOException.

Write a byte into the message buffer at the current position.

write

public void write(byte b[])

Throws IOException.

Write an array of bytes into the message buffer at the current position.

write

public void write(byte b[],
 int off,
 int len)

Throws IOException.

Write a series of bytes into the message buffer at the current position. len
bytes will be written, taken from offset off in the array b.

writeBoolean

public void writeBoolean(boolean v)

Throws IOException.

Write a boolean into the message buffer at the current position.

 Chapter 7. The Java classes and interfaces for MQSeries 81

 MQMessage

writeByte

public void writeByte(int v)

Throws IOException.

Write a byte into the message buffer at the current position.

writeBytes

public void writeBytes(String s)

Throws IOException.

Write a string as a sequence of bytes into the message buffer at the current
position.

writeChar

public void writeChar(int v)

Throws IOException.

Write a Unicode character into the message buffer at the current position.

writeChars

public void writeChars(String s)

Throws IOException.

Write a string as a sequence of Unicode characters into the message buffer at
the current position.

writeDouble

public void writeDouble(double v)

Throws IOException

Write a double into the message buffer at the current position. The behavior of
this method is determined by the value of the encoding member variable.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in
Big-endian and Little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 writes a System/390 format floating
point number. Note that the range of IEEE doubles is greater than the range
of S/390 double precision floating point numbers, and so very large numbers
cannot be converted.

writeFloat

public void writeFloat(float v)

Throws IOException.

Write a float into the message buffer at the current position. The behavior of
this method is determined by the value of the encoding member variable.

Values of MQC.MQENC_FLOAT_IEEE_NORMAL and
MQC.MQENC_FLOAT_IEEE_REVERSED write IEEE standard floats in
big-endian and little-endian formats respectively.

A value of MQC.MQENC_FLOAT_S390 will write a System/390 format floating
point number.

82 MQSeries Using Java

 MQMessage

writeInt

public void writeInt(int v)

Throws IOException.

Write an integer into the message buffer at the current position. The behavior
of this method is determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian integer, a
value of MQC.MQENC_INTEGER_REVERSED writes a little-endian integer.

writeInt4

public void writeInt4(int v)

Throws IOException.

Synonym for writeInt(), provided for cross-language MQSeries API
compatibility.

writeLong

public void writeLong(long v)

Throws IOException.

Write a long into the message buffer at the current position. The behavior of
this method is determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian long, a
value of MQC.MQENC_INTEGER_REVERSED writes a little-endian long.

writeInt8

public void writeInt8(long v)

Throws IOException.

Synonym for writeLong(), provided for cross-language MQSeries API
compatibility.

writeObject

public void writeObject(Object obj)

Throws IOException.

Write the specified object to the message buffer. The class of the object, the
signature of the class, and the values of the non-transient and non-static fields
of the class and all its supertypes are all written.

writeShort

public void writeShort(int v)

Throws IOException.

Write a short into the message buffer at the current position. The behavior of
this method is determined by the value of the encoding member variable.

A value of MQC.MQENC_INTEGER_NORMAL writes a big-endian short, a
value of MQC.MQENC_INTEGER_REVERSED writes a little-endian short.

 Chapter 7. The Java classes and interfaces for MQSeries 83

 MQMessage

writeInt2

public void writeInt2(int v)

Throws IOException.

Synonym for writeShort(), provided for cross-language MQSeries API
compatibility.

writeDecimal2

public void writeDecimal2(short v)

Throws IOException.

Write a 2-byte packed decimal format number into the message buffer at the
current position. The behavior of this method is determined by the value of the
encoding member variable.

A value of MQC.MQENC_DECIMAL_NORMAL writes a Big-endian packed
decimal, a value of MQC.MQENC_DECIMAL_REVERSED writes a
Little-endian packed decimal.

Parameters

v can be in the range -999 to 999.

writeDecimal4

public void writeDecimal4(int v)

Throws IOException.

Write a 4-byte packed decimal format number into the message buffer at the
current position. The behavior of this method is determined by the value of the
encoding member variable.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed
decimal, a value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian
packed decimal.

Parameters

v can be in the range -9999999 to 9999999.

writeDecimal8

public void writeDecimal8(long v)

Throws IOException.

Write an 8-byte packed decimal format number into the message buffer at the
current position. The behavior of this method is determined by the value of the
encoding member variable.

A value of MQC.MQENC_DECIMAL_NORMAL writes a big-endian packed
decimal, a value of MQC.MQENC_DECIMAL_REVERSED writes a little-endian
packed decimal.

Parameters:

v can be in the range -999999999999999 to 999999999999999.

84 MQSeries Using Java

 MQMessage

writeUTF

public void writeUTF(String str)

Throws IOException.

Write a string in UTF format into the message buffer at the current position.

writeString

public void writeStringString(str)

Throws IOException.

Write a string into the message buffer at the current position, converting it to
the codeset identified by the characterSet member variable.

 Chapter 7. The Java classes and interfaces for MQSeries 85

 MQMessageTracker

 MQMessageTracker

java.lang.Object
 │
 └─ com.ibm.mq.MQMessageTracker

public abstract class MQMessageTracker
extends Object

Note: You can use this class only when connected to an MQSeries Version 5 (or
higher) queue manager.

This class is inherited by MQDistributionListItem (on page 53) where it is used to
tailor message parameters for a given destination in a distribution list.

 Variables
feedback

public int feedback

This is used with a message of type MQC.MQMT_REPORT to indicate the
nature of the report. The following feedback codes are defined by the system:

 � MQC.MQFB_EXPIRATION
 � MQC.MQFB_COA
 � MQC.MQFB_COD
 � MQC.MQFB_QUIT
 � MQC.MQFB_PAN
 � MQC.MQFB_NAN
 � MQC.MQFB_DATA_LENGTH_ZERO
 � MQC.MQFB_DATA_LENGTH_NEGATIVE
 � MQC.MQFB_DATA_LENGTH_TOO_BIG
 � MQC.MQFB_BUFFER_OVERFLOW
 � MQC.MQFB_LENGTH_OFF_BY_ONE
 � MQC.MQFB_IIH_ERROR

Application defined feedback values in the range MQC.MQFB_APPL_FIRST to
MQC.MQFB_APPL_LAST can also be used.

The default value of this field is MQC.MQFB_NONE, indicating that no
feedback is provided.

messageId
public byte messageId[]

This specifies the message identifier to use when the message is put. If
MQC.MQMI_NONE is specified, the queue manager generates a unique
message identifier when the message is put. The value of this member
variable is updated after the put to indicate the message identifier that was
used.

The default value is MQC.MQMI_NONE.

86 MQSeries Using Java

 MQMessageTracker

correlationId
public byte correlationId[]

This specifies the correlation identifier to use when the message is put.

The default value is MQC.MQCI_NONE.

accountingToken
public byte accountingToken[]

This is part of the identity context of the message. It allows an application to
cause work done as a result of the message to be appropriately charged.

The default value is "MQC.MQACT_NONE".

groupId
public byte[] groupId

A byte string that identifies the message group to which the physical message
belongs.

The default value is "MQC.MQGI_NONE".

 Chapter 7. The Java classes and interfaces for MQSeries 87

 MQProcess

 MQProcess

java.lang.Object
 │
 └─ com.ibm.mq.MQManagedObject
 │
 └─ com.ibm.mq.MQProcess

public class MQProcess
extends MQManagedObject . (on page 65.)

MQProcess provides inquire operations for MQSeries processes.

 Constructors
MQProcess

public MQProcess(MQQueueManager qMgr,
 String processName,
 int openOptions,
 String queueManagerName,
 String alternateUserId)

Throws MQException.

Access a process on the queue manager qMgr. See accessProcess in the
“MQQueueManager” on page 101 for details of the remaining parameters.

 Methods
getApplicationId

public String getApplicationId()

A character string that identifies the application to be started. This information
is for use by a trigger monitor application that processes messages on the
initiation queue; the information is sent to the initiation queue as part of the
trigger message.

Throws MQException if you call this method after you have closed the process.

getApplicationType
public int getApplicationType() throws MQException (see page 59)

This identifies the nature of the program to be started in response to the
receipt of a trigger message. The application type can take any value, but the
following values are recommended for standard types:

 � MQC.MQAT_AIX
 � MQC.MQAT_CICS
 � MQC.MQAT_DOS
 � MQC.MQAT_IMS
 � MQC.MQAT_MVS
 � MQC.MQAT_OS2
 � MQC.MQAT_OS400
 � MQC.MQAT_UNIX
 � MQC.MQAT_WINDOWS
 � MQC.MQAT_WINDOWS_NT

88 MQSeries Using Java

 MQProcess

� MQC.MWQAT_USER_FIRST (lowest value for user-defined application
type)

� MQC.MQAT_USER_LAST (highest value for user-defined application type)

getEnvironmentData

public String getEnvironmentData()

Throws MQException.

A string containing environment-related information pertaining to the application
to be started.

getUserData

public String getUserData()

Throws MQException.

A string containing user information relevant to the application to be started.

close

public synchronized void close()

Throws MQException.

Override of "MQManagedObject.close" on page 67

Throws MQException if you have already closed the queue when you call this
method.

 Chapter 7. The Java classes and interfaces for MQSeries 89

 MQPutMessageOptions

 MQPutMessageOptions

java.lang.Object
 │
 └─ com.ibm.mq.MQPutMessageOptions

public class MQPutMessageOptions
extends Object

This class contains options that control the behavior of MQQueue.put().

Note: The behavior of some of the options available in this class depends on the
environment in which they are used. These elements are marked with a *.
See“Version 5 extensions operating in other environments” on page 41 for details.

 Variables
options

public int options

Options that control the action of MQQueue.put. Any or none of the following
values can be specified. If more than one option is required the values can be
added together or combined using the bitwise OR operator.

MQC.MQPMO_SYNCPOINT
Put a message with syncpoint control. The message is not visible outside
the unit of work until the unit of work is committed. If the unit of work is
backed out, the message is deleted.

MQC.MQPMO_NO_SYNCPOINT
Put a message without syncpoint control.

MQC.MQPMO_NO_CONTEXT
No context is to be associated with the message.

MQC.MQPMO_DEFAULT_CONTEXT
Associate default context with the message.

MQC.MQPMO_SET_IDENTITY_CONTEXT
Set identity context from the application.

MQC.MQPMO_SET_ALL_CONTEXT
Set all context from the application.

MQC.MQPMO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

MQC.MQPMO_NEW_MSG_ID*
Generate a new message id for each sent message.

MQC.MQPMO_NEW_CORREL_ID*
Generate a new correlation id for each sent message.

MQC.MQPMO_LOGICAL_ORDER*
Put logical messages and segments in message groups into their logical
order.

90 MQSeries Using Java

 MQPutMessageOptions

MQC.MQPMO_NONE
No options specified. Do not use in conjunction with other options.

MQC.MQPMO_PASS_IDENTITY_CONTEXT
Pass identity context from an input queue handle.

MQC.MQPMO_PASS_ALL_CONTEXT
Pass all context from an input queue handle.

MQC.MQPMO_ALTERNATE_USER_AUTHORITY
Validate with specified user identifier.

contextReference
public MQQueue ContextReference

This is an input field which indicates the source of the context information.

If the options field includes MQC.MQPMO_PASS_IDENTITY_CONTEXT, or
MQC.MQPMO_PASS_ALL_CONTEXT, set this field to refer to the MQQueue
from which the context information should be taken.

The initial value of this field is null.

recordFields *
public int recordFields

Flags indicating which fields are to be customized on a per-queue basis when
putting a message to a distribution list. One or more of the following flags can
be specified:

MQC.MQPMRF_MSG_ID
Use the messageId attribute in the MQDistributionListItem.

MQC.MQPMRF_CORREL_ID
Use the correlationId attribute in the MQDistributionListItem.

MQC.MQPMRF_GROUP_ID
Use the groupId attribute in the MQDistributionListItem.

MQC.MQPMRF_FEEDBACK
Use the feedback attribute in the MQDistributionListItem.

MQC.MQPMRF_ACCOUNTING_TOKEN
Use the accountingToken attribute in the MQDistributionListItem.

The special value MQC.MQPMRF_NONE indicates that no fields are to be
customized.

resolvedQueueName.
public String resolvedQueueName

This is an output field that is set by the queue manager to the name of the
queue on which the message is placed. This may be different from the name
used to open the queue if the opened queue was an alias or model queue.

resolvedQueueManagerName
public String resolvedQueueManagerName

This is an output field set by the queue manager to the name of the queue
manager that owns the queue specified by the remote queue name. This may
be different from the name of the queue manager from which the queue was
accessed if the queue is a remote queue.

 Chapter 7. The Java classes and interfaces for MQSeries 91

 MQPutMessageOptions

knownDestCount *
public int knownDestCount

This is an output field set by the queue manager to the number of messages
that the current call has sent successfully to queues that resolve to local
queues. This field is also set when opening a single queue that is not part of a
distribution list.

unknownDestCount *
public int unknownDestCount

This is an output field set by the queue manager to the number of messages
that the current call has sent successfully to queues that resolve to remote
queues. This field is also set when opening a single queue that is not part of a
distribution list.

invalidDestCount *
public int invalidDestCount

This is an output field set by the queue manager to the number of messages
that could not be sent to queues in a distribution list. The count includes
queues that failed to open as well as queues that were opened successfully,
but for which the put operation failed. This field is also set when opening a
single queue that is not part of a distribution list.

 Constructors
MQPutMessageOptions

public MQPutMessageOptions()

Construct a new MQPutMessageOptions object with no options set, and a
blank resolvedQueueName and resolvedQueueManagerName.

92 MQSeries Using Java

 MQQueue

 MQQueue

java.lang.Object
 │
 └─ com.ibm.mq.MQManagedObject
 │
 └─ com.ibm.mq.MQQueue

public class MQQueue
extends MQManagedObject . (See page 65.)

MQQueue provides inquire, set, put, and get operations for MQSeries queues. The
inquire and set capabilities are inherited from MQ.MQManagedObject

See also "MQQueueManager.accessQueue" on page 104.

 Constructors
MQQueue:

public MQQueue(MQQueueManager qMgr, String queueName, int openOptions,
String queueManagerName, String dynamicQueueName,

Throws MQException.

Access a queue on the queue manager qMgr.

See "MQQueueManager.accessQueue" on page 104 for details of the
remaining parameters.

 Methods
get

public synchronized void get(MQMessage message,
 MQGetMessageOptions getMessageOptions,
 int MaxMsgSize)

Throws MQException.

Retrieves a message from the queue, up to a maximum specified message
size.

This method takes an MQMessage object as a parameter. It uses some of the
fields in the object as input parameters - in particular the messageId and
correlationId, so it is important to ensure that these are set as required. (See
the MQMessage documentation for details.)

If the get fails the MQMessage object is unchanged. If it succeeds the
message descriptor (member variables) and message data portions of the
MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

Note that all calls to MQSeries from a given MQQueueManager are
synchronous. Therefore, if you perform a get with wait, all other threads using
the same MQQueueManager are blocked from making further MQSeries calls
until the get completes. If you need multiple threads to access MQSeries
simultaneously, each thread must create its own MQQueueManager object.

 Chapter 7. The Java classes and interfaces for MQSeries 93

 MQQueue

Parameters

message
An input/output parameter containing the message descriptor information
and the returned message data.

getMessageOptions
Options controlling the action of the get. (See the MQGetMessageOptions
documentation for details.)

MaxMsgSize
The largest message this call will be able to receive. If the message on
the queue is larger than this size, one of two things can occur:

1. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is set in the
options member variable of the MQGetMessageOptions object, then
the message is filled with as much of the message data as will fit in
the specified buffer size, and an exception is thrown with completion
code MQException.MQCC_WARNING and reason code
MQException.MQRC_TRUNCATED_MSG_ACCEPTED.

2. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is not set
then the message is left on the queue and an MQException is raised
with completion code MQException.MQCC_FAILED and reason code
MQException.MQRC_TRUNCATED_MSG_FAILED.

Throws MQException if the get fails.

get

public synchronized void get MQMessage message,
 MQGetMessageOptions getMessageOptions)

Throws MQException.

Retrieves a message from the queue, regardless of the size of the message.
For large messages, the get method may have to issue two calls to MQSeries
on your behalf, one to establish the required buffer size and one to get the
message data itself.

This method takes an MQMessage object as a parameter. It uses some of the
fields in the object as input parameters - in particular the messageId and
correlationId, so it is important to ensure that these are set as required. (See
the MQMessage documentation for details.)

If the get fails, the MQMessage object is unchanged. If it succeeds, the
message descriptor (member variables) and message data portions of the
MQMessage are completely replaced with the message descriptor and
message data from the incoming message.

Note that all calls to MQSeries from a given MQQueueManager are
synchronous. Therefore, if you perform a get with wait, all other threads using
the same MQQueueManager are blocked from making further MQSeries calls
until the get completes. If you need multiple threads to access MQSeries
simultaneously, each thread must create its own MQQueueManager object.

Parameters

message
An input/output parameter containing the message descriptor information
and the returned message data.

94 MQSeries Using Java

 MQQueue

getMessageOptions
Options controlling the action of the get. (See “MQGetMessageOptions”
on page 61 for details.)

Throws MQException if the get fails.

get

public synchronized void get(MQMessage message)

This is a simplified version of the get method previously described.

Parameters

MQmessage
An input/output parameter containing the message descriptor information
and the returned message data.

This method uses a default instance of MQGetMessageOptions to do the get.
The message option used is MQGMO_NOWAIT.

put

public synchronized void put(MQMessage message,
 MQPutMessageOptions putMessageOptions)

Throws MQException.

Places a message onto the queue.

This method takes an MQMessage object as a parameter. The message
descriptor properties of this object may be altered as a result of this method.
The values they have immediately after the completion of this method are the
values that were put onto the MQSeries queue.

Modifications to the MQMessage object after the put has completed do not
affect the actual message on the MQSeries queue.

Note that performing a put updates the messageId and correlationId, which
must be taken into consideration when making further calls to put/get using the
same MQMessage object. Also note that calling put does not clear the
message data, so:

msg.writeString("a");
q.put(msg,pmo);
msg.writeString("b");
q.put(msg,pmo);

puts two messages. The first contains "a" and the second "ab".

Parameters

message
Message Buffer containing the Message Descriptor data and message to
be sent.

putMessageOptions
Options controlling the action of the put. (See the MQPutMessageOptions
documentation for details.)

Throws MQException if the put fails.

 Chapter 7. The Java classes and interfaces for MQSeries 95

 MQQueue

put

public synchronized void put(MQMessage message)

This is a simplified version of the put method previously described.

Parameters

MQmessage
Message Buffer containing the Message Descriptor data and message to
be sent.

This method uses a default instance of MQPutMessageOptions to do the put.

Note: All the following methods throw MQException if you call the method after
you have closed the queue.

getCreationDateTime

public GregorianCalander getCreationDateTime()

Throws MQException.

The date and time that this queue was created.

getQueueType
public int getQueueType()

Throws MQException.

Returns
The type of this queue with one of the following values:

 � MQC.MQQT_ALIAS
 � MQC.MQQT_LOCAL
 � MQC.MQQT_MODEL
 � MQC.MQQT_REMOTE
 � MQC.MQQT_CLUSTER

getCurrentDepth

public int getCurrentDepth()

Throws MQException.

Get the number of messages currently on the queue. This value is
incremented during a put call, and during backout of a get call. It is
decremented during a non-browse get and during backout of a put call.

getDefinitionType

public int getDefinitionType()

Throws MQException.

Indicates how the queue was defined.

Returns
One of the following:

 � MQC.MQQDT_PREDEFINED
 � MQC.MQQDT_PERMANENT_DYNAMIC
 � MQC.MQQDT_TEMPORARY_DYNAMIC

96 MQSeries Using Java

 MQQueue

getMaximumDepth

public int getMaximumDepth()

Throws MQException.

The maximum number of messages that can exist on the queue at any one
time. An attempt to put a message to a queue that already contains this many
messages fails with reason code MQException.MQRC_Q_FULL.

getMaximumMessageLength

public int getMaximumMessageLength()

Throws MQException.

This is the maximum length of the application data that can exist in each
message on this queue. An attempt to put a message larger than this value
fails with reason code MQException.MQRC_MSG_TOO_BIG_FOR_Q.

getOpenInputCount

public int getOpenInputCount()

Throws MQException.

The number of handles that are currently valid for removing messages from the
queue. This is the total number of such handles known to the local queue
manager, not just those created by the MQSeries classes for Java (using
accessQueue).

getOpenOutputCount

public int getOpenOutputCount()

Throws MQException.

The number of handles that are currently valid for adding messages to the
queue. This is the total number of such handles known to the local queue
manager, not just those created by the MQSeries classes for Java (using
accessQueue).

getShareability

public int getShareability()

Throws MQException.

Indicates whether the queue can be opened for input multiple times.

Returns
One of the following:

 � MQC.MQQA_SHAREABLE
 � MQC.MQQA_NOT_SHAREABLE

getInhibitPut

public int getInhibitPut()

Throws MQException.

Indicates whether or not put operations are allowed for this queue.

Returns
One of the following:

 � MQC.MQQA_PUT_INHIBITED

 Chapter 7. The Java classes and interfaces for MQSeries 97

 MQQueue

 � MQC.MQQA_PUT_ALLOWED

setInhibitPut

public void setInhibitPut(int inhibit)

Throws MQException.

Controls whether or not put operations are allowed for this queue. The
permissible values are:

 � MQC.MQQA_PUT_INHIBITED
 � MQC.MQQA_PUT_ALLOWED

getInhibitGet

public int getInhibitGet()

Throws MQException.

Indicates whether or not get operations are allowed for this queue.

Returns
The possible values are:

 � MQC.MQQA_GET_INHIBITED
 � MQC.MQQA_GET_ALLOWED

setInhibitGet

public void setInhibitGet(int inhibit)

Throws MQException.

Controls whether or not get operations are allowed for this queue. The
permissible values are:

 � MQC.MQQA_GET_INHIBITED
 � MQC.MQQA_GET_ALLOWED

getTriggerControl

public int getTriggerControl()

Throws MQException.

Indicates whether or not trigger messages are written to an initiation queue, in
order to cause an application to be started to service the queue.

Returns
The possible values are:

 � MQC.MQTC_OFF
 � MQC.MQTC_ON

setTriggerControl

public void setTriggerControl(int trigger)

Throws MQException.

Controls whether or not trigger messages are written to an initiation queue, in
order to cause an application to be started to service the queue. The
permissible values are:

 � MQC.MQTC_OFF
 � MQC.MQTC_ON

98 MQSeries Using Java

 MQQueue

getTriggerData

public String getTriggerData()

Throws MQException.

The free-format data that the queue manager inserts into the trigger message
when a message arriving on this queue causes a trigger message to be written
to the initiation queue.

setTriggerData

public void setTriggerData(String data)

Throws MQException.

Sets the free-format data that the queue manager inserts into the trigger
message when a message arriving on this queue causes a trigger message to
be written to the initiation queue. The maximum permissible length of the
string is given by MQC.MQ_TRIGGER_DATA_LENGTH.

getTriggerDepth

public int getTriggerDepth()

Throws MQException.

The number of messages that have to be on the queue before a trigger
message is written when trigger type is set to MQC.MQTT_DEPTH.

setTriggerDepth

public void setTriggerDepth(int depth)

Throws MQException.

Sets the number of messages that have to be on the queue before a trigger
message is written when trigger type is set to MQC.MQTT_DEPTH.

getTriggerMessagePriority

public int getTriggerMessagePriority()

Throws MQException.

This is the message priority below which messages do not contribute to the
generation of trigger messages (that is, the queue manager ignores these
messages when deciding whether a trigger should be generated). A value of
zero causes all messages to contribute to the generation of trigger messages.

setTriggerMessagePriority

public void setTriggerMessagePriority(int priority)

Throws MQException.

Sets the message priority below which messages do not contribute to the
generation of trigger messages (that is, the queue manager ignores these
messages when deciding whether a trigger should be generated). A value of
zero causes all messages to contribute to the generation of trigger messages.

 Chapter 7. The Java classes and interfaces for MQSeries 99

 MQQueue

getTriggerType

public int getTriggerType()

Throws MQException.

The conditions under which trigger messages are written as a result of
messages arriving on this queue.

Returns
The possible values are:

 � MQC.MQTT_NONE
 � MQC.MQTT_FIRST
 � MQC.MQTT_EVERY
 � MQC.MQTT_DEPTH

setTriggerType

public void setTriggerType(int type)

Throws MQException.

Sets the conditions under which trigger messages are written as a result of
messages arriving on this queue. The possible values are:

 � MQC.MQTT_NONE
 � MQC.MQTT_FIRST
 � MQC.MQTT_EVERY
 � MQC.MQTT_DEPTH

close

public synchronized void close()

Throws MQException.

Override of "MQManagedObject.close" on page 67

100 MQSeries Using Java

 MQQueueManager

 MQQueueManager

java.lang.Object
 │
 └─ com.ibm.mq.MQManagedObject
 │
 └─ com.ibm.mq.MQQueueManager

public class MQQueueManager
extends MQManagedObject . (See page 65.)

Note: The behavior of some of the options available in this class depends on the
environment in which they are used. These elements are marked with a *. See
Chapter 6, “Environment dependent behavior” on page 39 for details.

 Variables
isConnected

public boolean isConnected

True if the connection to the queue manager is still open.

 Constructors
MQQueueManager

public MQQueueManager(String queueManagerName)

Throws MQException.

Create a connection to the named queue manager.

Note: When using the MQSeries classes for Java, the hostname, channel
name and port to use during the connection request are specified in the
MQEnvironment class. This must be done before calling this constructor.

The following example shows a connection to a queue manager "MYQM",
running on a machine with hostname fred.mq.com.

MQEnvironment.hostname = "fred.mq.com"; // host to connect to
MQEnvironment.port = 1414; // port to connect to.

// If I don't set this,
// it defaults to 1414
// (the default MQSeries port)

MQEnvironment.channel = "channel.name"; // the CASE-SENSITIVE
// name of the
// SVR CONN channel on
// the queue manager

MQQueueManager qMgr = new MQQueueManager("MYQM");

If the queue manager name is left blank (null or ""), a connection is made to
the default queue manager.

See also “MQEnvironment” on page 55.

 Chapter 7. The Java classes and interfaces for MQSeries 101

 MQQueueManager

MQQueueManager

public MQQueueManager(String queueManagerName, int options)

Throws MQException.

This version of the constructor is intended for use only in bindings mode and it
uses the extended connection API (MQCONNX) to connect to the queue
manager. The options parameter allows you to choose fast or normal bindings.
Possible values are:

� MQC.MQCNO_FASTPATH_BINDING for fast bindings *
� MQC.MQCNO_STANDARD_BINDING for normal bindings

MQQueueManager

public MQQueueManager(String queueManagerName,
java.util.Hashtable properties)

The properties parameter takes a series of key/value pairs that describe the
MQSeries environment for this particular queue manager. These properties,
where specified, override the values set by the MQEnvironment class, and
allow the individual properties to be set on a queue manager by queue
manager basis. See "MQEnvironment.properties" on page 56.

 Methods
getCharacterSet

public int getCharacterSet()

Throws MQException.

Returns the CCSID (Coded Character Set Identifier) of the queue manager's
codeset. This defines the character set used by the queue manager for all
character string fields in the application programming interface.

Throws MQException if you call this method after disconnecting from the
queue manager.

getMaximumMessageLength

public int getMaximumMessageLength()

Throws MQException.

Returns the maximum length of a message (in bytes) that can be handled by
the queue manager. No queue can be defined with a maximum message
length greater than this.

Throws MQException if you call this method after disconnecting from the
queue manager.

getCommandLevel

public int getCommandLevel()

Throws MQException.

Indicates the level of system control commands supported by the queue
manager. The set of system control commands that correspond to a particular
command level varies according to the architecture of the platform on which
the queue manager is running. See the MQSeries documentation for your
platform for further details.

102 MQSeries Using Java

 MQQueueManager

Throws MQException if you call this method after disconnecting from the
queue manager.

Returns
One of the MQC.MQCMDL_LEVEL_xxx constants

getCommandInputQueueName

public String getCommandInputQueueName()

Throws MQException.

Returns the name of the command input queue defined on the queue
manager. This is a queue to which applications can send commands, if
authorized to do so.

Throws MQException if you call this method after disconnecting from the
queue manager.

getMaximumPriority

public int getMaximumPriority()

Throws MQException.

Returns the maximum message priority supported by the queue manager.
Priorities range from zero (lowest) to this value.

Throws MQException if you call this method after disconnecting from the
queue manager.

getSyncpointAvailability

public int getSyncpointAvailability()

Throws MQException.

Indicates whether the queue manager supports units of work and syncpointing
with the MQQueue.get and MQQueue.put methods.

Returns

� MQC.MQSP_AVAILABLE if syncpointing is available
� MQC.MQSP_NOT_AVAILABLE if syncpointing is not available

Throws MQException if you call this method after disconnecting from the
queue manager.

getDistributionListCapable

public boolean getDistributionListCapable()

Indicates whether the queue manager supports distribution lists

disconnect

public synchronized void disconnect()

Throws MQException.

Terminates the connection to the queue manager. All open queues and
processes accessed by this queue manager are closed, and hence become
unusable. When you have disconnected from a queue manager the only way
to reconnect is to create a new MQQueueManager object.

 Chapter 7. The Java classes and interfaces for MQSeries 103

 MQQueueManager

commit

public synchronized void commit()

Throws MQException.

Calling this method indicates to the queue manager that the application has
reached a syncpoint, and that all of the message gets and puts that have
occurred since the last syncpoint are to be made permanent. Messages put as
part of a unit of work (with the MQC.MQPMO_SYNCPOINT flag set in the
options field of MQPutMessageOptions) are made available to other
applications. Messages retrieved as part of a unit of work (with the
MQC.MQGMO_SYNCPOINT flag set in the options field of
MQGetMessageOptions) are deleted.

See also the description of "backout" that follows.

backout

public synchronized void backout()

Throws MQException.

Calling this method indicates to the queue manager that all the message gets
and puts that have occurred since the last syncpoint are to be backed out.
Messages put as part of a unit of work (with the MQC.MQPMO_SYNCPOINT
flag set in the options field of MQPutMessageOptions) are deleted; messages
retrieved as part of a unit of work (with the MQC.MQGMO_SYNCPOINT flag
set in the options field of MQGetMessageOptions) are reinstated on the queue.

See also the decription of "commit" above.

accessQueue

public synchronized MQQueue accessQueue
 (

String queueName, int openOptions,
 String queueManagerName,
 String dynamicQueueName,
 String alternateUserId
)

Throws MQException.

Establishes access to an MQSeries queue on this queue manager to get or
browse messages, put messages, inquire about the attributes of the queue or
set the attributes of the queue.

If the queue named is a model queue, then a dynamic local queue is created.
The name of the created queue can be determined by inspecting the name
attribute of the returned MQQueue object.

Parameters

queueName
Name of queue to open

openOptions
Options that control the opening of the queue. Valid options are:

MQC.MQOO_BROWSE
Open to browse message.

104 MQSeries Using Java

 MQQueueManager

MQC.MQOO_INPUT_AS_Q_DEF
Open to get messages using queue-defined default.

MQC.MQOO_INPUT_SHARED
Open to get messages with shared access.

MQC.MQOO_INPUT_EXCLUSIVE
Open to get messages with exclusive access.

MQC.MQOO_OUTPUT
Open to put messages.

MQC.MQOO_INQUIRE
Open for inquiry - required if you wish to query properties.

MQC.MQOO_SET
Open to set attributes.

MQC.MQOO_SAVE_ALL_CONTEXT
Save context when message retrieved*.

MQC.MQOO_SET_IDENTITY_CONTEXT
Allows identity context to be set.

MQC.MQOO_SET_ALL_CONTEXT
Allows all context to be set.

MQC.MQOO_ALTERNATE_USER_AUTHORITY
Validate with the specified user identifier.

MQC.MQOO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

MQC.MQOO_BIND_AS_QDEF
Use default binding for queue.

MQC.MQOO_BIND_ON_OPEN
Bind handle to destination when queue is opened.

MQC.MQOO_BIND_NOT_FIXED
Do not bind to a specific destination.

If more than one option is required the values can be added together or
combined using the bitwise OR operator. See the MQSeries Application
Programming Reference for a fuller description of these options.

queueManagerName
Name of the queue manager on which the queue is defined. A name
which is entirely blank, or which is null, denotes the queue manager to
which this MQQueueManager object is connected.

dynamicQueueName
This parameter is ignored unless queueName specifies the name of a
model queue. If it does, this parameter specifies the name of the dynamic
queue to be created. A blank or null name is not valid if queueName
specifies the name of a model queue. If the last non-blank character in
the name is an asterisk (*), the queue manager replaces the asterisk with
a string of characters that guarantees that the name generated for the
queue is unique on this queue manager.

alternateUserId
If MQOO_ALTERNATE_USER_AUTHORITY is specified in the
openOptions parameter this parameter specifies the alternate user

 Chapter 7. The Java classes and interfaces for MQSeries 105

 MQQueueManager

identifier that is to be used to check the authorization for the open. If
MQOO_ALTERNATE_USER_AUTHORITY is not specified this parameter
can be left blank (or null).

Returns
MQQueue that has been successfully opened

Throws MQException if the open fails.

See also "accessProcess" on page 106.

accessQueue

public synchronized MQQueue accessQueue
 (
 String queueName,
 int openOptions,
)

Throws MQException if you call this method after disconnecting from the
queue manager.

Parameters

queueName
Name of queue to open.

openOptions
Options that control the opening of the queue.

See "accessQueue" on page 104 for details of the parameters.

queueManagerName, dynamicQueueName, and alternateUserId are set to "".

accessProcess

public synchronized MQProcess accessProcess
 (
 String processName,
 int openOptions,
 String queueManagerName,
 String alternateUserId
)

Throws MQException.

Establishes access to an MQSeries process on this queue manager to inquire
about the process attributes.

Parameters

processName
Name of process to open.

openOptions
Options that control the opening of the process. Inquire is automatically
added to the options specified, so there is no need to specify it explicitly.

Valid options are:

MQC.MQOO_ALTERNATE_USER_AUTHORITY
Validate with the specified user id.

MQC.MQOO_FAIL_IF_QUIESCING
Fail if the queue manager is quiescing.

106 MQSeries Using Java

 MQQueueManager

If more than one option is required,the values can be added together or
combined using the bitwise OR operator. See the MQSeries Application
Programming Reference for a fuller description of these options.

queueManagerName
Name of the queue manager on which the process is defined.
Applications should leave this parameter blank or null.

alternateUserId
If MQOO_ALTERNATE_USER_AUTHORITY is specified in the
openOptions parameter this parameter specifies the alternate user
identifier that is to be used to check the authorization for the open. If
MQOO_ALTERNATE_USER_AUTHORITY is not specified this parameter
can be left blank (or null).

Returns
MQProcess that has been successfully opened.

Throws MQException if the open fails.

See also "accessQueue" on page 104

accessProcess
This is a simplified version of the AccessProcess method previously described.

public synchronized MQProcess accessProcess
 (
 String processName,
 int openOptions,
)

This is a simplified version of the AccessQueue method previously described.

Parameters

processName
The name of the process to open.

openOptions
Options that control the opening of the process.

See "accessProcess" on page 106 for details of the options.

queueManagerName and alternateUserId are set to "".

accessDistributionList

public synchronized MQDistributionList accessDistributionList
 (

MQDistributionListItem[] litems, int openOptions,
 String alternateUserId
)

Throws MQException.

Parameters

litems
The items to be included in the distribution list.

openOptions
Options that control the opening of the distribution list.

 Chapter 7. The Java classes and interfaces for MQSeries 107

 MQQueueManager

alternateUserId
If MQOO_ALTERNATE_USER_AUTHORITY is specified in the
openOptions parameter this parameter specifies the alternate user
identifier that is to be used to check the authorization for the open. If
MQOO_ALTERNATE_USER_AUTHORITY is not specified this parameter
can be left blank (or null).

Returns
A newly created MQDistributionList which is open and ready for put
operations.

Throws MQException if the open fails.

See also "accessQueue" on page 104.

accessDistributionList
This is a simplified version of the AccessDistributionList method previously
described.

public synchronized MQDistributionList accessDistributionList
 (
 MQDistributionListItem[] litems,
 int openOptions,
)

Parameters

litems
The items to be included in the distribution list.

openOptions
Options that control the opening of the distribution list.

See "accessDistributionList" on page 107 for details of the parameters.

alternateUserId is set to "".

begin* (bindings connection only)
public synchronized void begin()
Throws MQException.

This method is supported only by the MQSeries classes for Java in bindings
mode and it signals the queue manager that a new unit of work is starting.

isConnected

public boolean void isConnected()

Returns the value of the isConnected variable.

108 MQSeries Using Java

 MQC

 MQC
public interface MQC
extends Object

The MQC interface defines all the constants used by the MQSeries classes for
Java. To refer to one of these constants from within your programs, prefix the
constant name with "MQC.". For example, you can set the close options for a
queue as follows:

MQQueue queue;
 ...
queue.closeOptions = MQC.MQCO_DELETE; // delete the

// queue when
// it is closed

 ...

A full description of these constants can be found inChapter 6, “MQSeries
constants” in the MQSeries Application Programming Reference book.

 Chapter 7. The Java classes and interfaces for MQSeries 109

 MQReceiveExit

 MQReceiveExit
public interface MQReceiveExit
extends Object

The receive exit interface allows you to examine and possibly alter the data
received from the queue manager by the MQSeries classes for Java.

Note: This class does not apply when connecting directly to MQSeries in bindings
mode.

To provide your own receive exit, define a class that implements this interface.
Create a new instance of your class and assign the MQEnvironment.receiveExit
variable to it before constructing your MQQueueManager object. For example:

// in MyReceiveExit.java
class MyReceiveExit implements MQReceiveExit {
// you must provide an implementation
// of the receiveExit method
public byte[] receiveExit(

 MQChannelExit channelExitParms,
 MQChannelDefinition channelDefinition,
 byte[] agentBuffer)
 {

// your exit code goes here...
 }
}
// in your main program...
MQEnvironment.receiveExit = new MyReceiveExit();
 ... // other initialization
MQQueueManager qMgr = new MQQueueManager("");

 Methods
receiveExit

public abstract byte[] receiveExit(MQChannelExit channelExitParms,
 MQChannelDefinition channelDefinition,
 byte agentBuffer[])

The receive exit method that your class must provide. This method will be
invoked whenever the MQSeries classes for Java receive some data from the
queue manager.

Parameters

channelExitParms
Contains information regarding the context in which the exit is being
invoked. The exitResponse member variable is an output parameter that
you use to tell the MQSeries classes for Java what action to take next.
See “MQChannelExit” on page 48 for further details.

channelDefinition
Contains details of the channel through which all communications with the
queue manager take place.

110 MQSeries Using Java

 MQReceiveExit

agentBuffer
If the channelExitParms.exitReason is MQChannelExit.MQXR_XMIT,
agentBuffer contains the data received from the queue manager; otherwise
agentBuffer is null.

Returns

If the exit response code (in channelExitParms) is set so that the MQSeries
classes for Java can now process the data (MQXCC_OK), your receive exit
method must return the data to be processed. The simplest receive exit,
therefore, consists of the single line "return agentBuffer;".

See also:

� “MQC” on page 109
� “MQChannelDefinition” on page 46

 Chapter 7. The Java classes and interfaces for MQSeries 111

 MQSecurityExit

 MQSecurityExit
public interface MQSecurityExit
extends Object

The security exit interface allows you to customize the security flows that occur
when an attempt is made to connect to a queue manager.

Note: This class does not apply when connecting directly to MQSeries in bindings
mode.

To provide your own security exit, define a class that implements this interface.
Create a new instance of your class and assign the MQEnvironment.securityExit
variable to it before constructing your MQQueueManager object. For example:

// in MySecurityExit.java
class MySecurityExit implements MQSecurityExit {
// you must provide an implementation
// of the securityExit method
public byte[] securityExit(

 MQChannelExit channelExitParms,
 MQChannelDefinition channelDefinition,
 byte[] agentBuffer)
 {

// your exit code goes here...
 }
}
// in your main program...
MQEnvironment.securityExit = new MySecurityExit();
 ... // other initialization
MQQueueManager qMgr = new MQQueueManager("");

 Methods
securityExit

public abstract byte[] securityExit(MQChannelExit channelExitParms,
 MQChannelDefinition channelDefinition,
 byte agentBuffer[])

The security exit method that your class must provide.

Parameters

channelExitParms
Contains information regarding the context in which the exit is being
invoked. The exitResponse member variable is an output parameter that
you use to tell the MQSeries classes for Java what action to take next.
See the “MQChannelExit” on page 48 for further details.

channelDefinition
Contains details of the channel through which all communications with the
queue manager take place.

agentBuffer
If the channelExitParms.exitReason is MQChannelExit.MQXR_SEC_MSG,
agentBuffer contains the security message received from the queue
manager; otherwise agentBuffer is null.

112 MQSeries Using Java

 MQSecurityExit

Returns
If the exit response code (in channelExitParms) is set so that a message is to
be transmitted to the queue manager, your security exit method must return
the data to be transmitted.

See also:

� “MQC” on page 109
� “MQChannelDefinition” on page 46

 Chapter 7. The Java classes and interfaces for MQSeries 113

 MQSendExit

 MQSendExit
public interface MQSendExit
extends Object

The send exit interface allows you to examine and possibly alter the data sent to
the queue manager by the MQSeries classes for Java.

Note: This class does not apply when connecting directly to MQSeries in bindings
mode.

To provide your own send exit, define a class that implements this interface.
Create a new instance of your class and assign the MQEnvironment.sendExit
variable to it before constructing your MQQueueManager object. For example:

// in MySendExit.java
class MySendExit implements MQSendExit {
// you must provide an implementation of the sendExit method
public byte[] sendExit(

 MQChannelExit channelExitParms,
 MQChannelDefinition channelDefinition,
 byte[] agentBuffer)
 {

// your exit code goes here...
 }
}
// in your main program...
MQEnvironment.sendExit = new MySendExit();
 ... // other initialization
MQQueueManager qMgr = new MQQueueManager("");

 Methods
sendExit

public abstract byte[] sendExit(MQChannelExit channelExitParms,
 MQChannelDefinition channelDefinition,
 byte agentBuffer[])

The send exit method that your class must provide. This method is invoked
whenever the MQSeries classes for Java wish to transmit some data to the
queue manager.

Parameters

channelExitParms
Contains information regarding the context in which the exit is being
invoked. The exitResponse member variable is an output parameter that
you use to tell the MQSeries classes for Java what action to take next.
See “MQChannelExit” on page 48 for further details.

channelDefinition
Contains details of the channel through which all communications with the
queue manager take place.

114 MQSeries Using Java

 MQSendExit

agentBuffer
If the channelExitParms.exitReason is MQChannelExit.MQXR_XMIT,
agentBuffer contains the data to be transmitted to the queue manager;
otherwise agentBuffer is null.

Returns

If the exit response code (in channelExitParms) is set so that a message is to
be transmitted to the queue manager (MQXCC_OK), your send exit method
must return the data to be transmitted. The simplest send exit, therefore,
consists of the single line "return agentBuffer;".

See also:

� “MQC” on page 109
� “MQChannelDefinition” on page 46

 Chapter 7. The Java classes and interfaces for MQSeries 115

 MQSendExit

116 MQSeries Using Java

 Part 4. Appendix

 Copyright IBM Corp. 1997,1999 117

118 MQSeries Using Java

 Notices

 Appendix A. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this information
at any time without notice.

Any references in this information to non-IBM documentation or non-IBM Web sites
are provided for convenience only and do not in any manner serve as an
endorsement of those documents or Web sites. The materials for those documents
or Web sites are not part of the materials for this IBM product and use of those
documents or Web sites is at your own risk.

 Copyright IBM Corp. 1997,1999 119

 Notices

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

 Hursley Park,
 Winchester,
 Hampshire,
 England
 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

120 MQSeries Using Java

 Notices

 Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, or service names, may be the trademarks or service
marks of others.

AIX AS/400 BookManager
IBM IBMLink MQSeries
MVS/ESA OS/2 OS/390
OS/400 System/390

 Appendix A. Notices 121

 Notices

122 MQSeries Using Java

Part 5. Glossary and Index

 Copyright IBM Corp. 1997,1999 123

124 MQSeries Using Java

 Glossary

Glossary of terms and abbreviations

This glossary describes terms used in this book and
words used with other than their everyday meaning. In
some cases, a definition may not be the only one
applicable to a term, but it gives the particular sense in
which the word is used in this book.

If you do not find the term you are looking for, see the
index or the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

applet . A Java program which is designed to run only
on a web page.

Application Programming Interface (API) . An
Application Programming Interface consists of the
functions and variables that programmers are allowed to
use in their applications.

channel . See MQI channel.

class . A class is an encapsulated collection of data
and methods to operate on the data. A class may be
instantiated to produce an object that is an instance of
the class.

client . In MQSeries, a client is a run-time component
that provides access to queuing services on a server for
local user applications.

encapsulation . Encapsulation is an object-oriented
programming technique that makes an object's data
private or protected and allows programmers to access
and manipulate the data only through method calls.

HTML. HTML (Hypertext Markup Language) is a
language used to define information that is to be
displayed on the World Wide Web.

IIOP. Internet Inter-ORB Protocol. A standard for
TCP/IP communications between ORBs from different
vendors.

instance . An instance is an object. When a class is
instantiated to produce an object, we say that the object
is an instance of the class.

interface . An interface is a class that contains only
abstract methods and no instance variables. An
interface provides a common set of methods that can
be implemented by subclasses of a number of different
classes.

Internet . The Internet is a cooperative public network
of shared information. Physically, the Internet uses a
subset of the total resources of all the currently existing
public telecommunication networks. Technically, what
distinguishes the Internet as a cooperative public
network is its use of a set of protocols called TCP/IP
(Transport Control Protocol/Internet Protocol).

Java Developers Kit (JDK) . A package of software
distributed by Sun Microsystems for Java developers. It
includes the Java interpreter, Java classes and Java
development tools: compiler, debugger, disassembler,
appletviewer, stub file generator, and documentation
generator.

message . In message queuing applications, a
message is a communication sent between programs.

message queue . See queue

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

method . Method is the object-oriented programming
term for a function or procedure.

MQI channel . An MQI channel connects an MQSeries
client to a queue manager on a server system and
transfers MQI calls and responses in a bidirectional
manner.

MQSeries . MQSeries is a family of IBM licensed
programs that provide message queuing services.

object . (1) In Java, an object is an instance of a class.
A class models a group of things; an object models a
particular member of that group. (2) In MQSeries, an
object is a queue manager, a queue, or a channel.

 Copyright IBM Corp. 1997,1999 125

 Glossary

Object Request Broker (ORB) . An application
framework that provides interoperability between
objects, built in different languages, running on different
machines, in heterogeneous distributed environments.

package . A package in Java is a way of giving a piece
of Java code access to a specific set of classes. Java
code that is part of a particular package has access to
all the classes in the package and to all non-private
methods and fields in the classes.

private . A private field is not visible outside its own
class.

protected . A protected field is visible only within its
own class, within a subclass, or within packages of
which the class is a part

public . A public class or interface is visible
everywhere. A public method or variable is visible
everywhere that its class is visible

queue . A queue is an MQSeries object. Message
queueing applications can put messages on, and get
messages from, a queue

queue manager . a queue manager is a system
program the provides message queuing services to
applications.

server . (1) An MQSeries a server is a queue
manager that provides message queuing services to
client applications running on a remote workstation. (2)
More generally, a server is a program that responds to

requests for information in the particular two-program
information flow model of client/server. (3) The
computer on which a server program runs.

servlet . A Java program which is designed to run only
on a web server.

subclass . A subclass is a class that extends another.
The subclass inherits the public and protected methods
and variables of its superclass.

superclass . A superclass is a class that is extended
by some other class. The superclass's public and
protected methods and variables are available to the
subclass.

TCP/IP. Transmission Control Protocol/Internet
Protocol. A set of communication protocols that support
peer-to-peer connectivity functions for both local and
wide area networks.

Visibroker for Java . An Object Request Broker (ORB)
written in Java

Web. See World Wide Web.

Web browser . A program that formats and displays
information that is distributed on the World Wide Web.

World Wide Web (Web) . The World Wide Web is an
Internet service, based on a common set of protocols,
which allows a particularly configured server computer
to distribute documents across the Internet in a
standard way.

126 MQSeries Using Java

 index

 Index

A
about this book vii
accessing queues and processes 29
advantages of Java interface 17
applet example 22
applet viewer, using 9
applets versus applications 21
applets, running 28
application example 26
applications versus applets 21

B
behavior in different environments 39
bibliography viii
bindings

connection 5
connection, programming 22
verifying 11

BookManager xiii

C
changed function vii
changes in this version vii
class library 19
classes, MQSeries classes for Java 45

MQC 109
MQChannelDefinition 46
MQChannelExit 48
MQDistributionList 51
MQDistributionListItem 53
MQEnvironment 55
MQException 59
MQGetMessageOptions 61
MQManagedObject 65
MQMessage 68
MQMessageTracker 86
MQProcess 88
MQPutMessageOptions 90
MQQueue 93
MQQueueManager 101
MQReceiveExit 110
MQSecurityExit 112
MQSendExit 114

CLASSPATH, updating 6
clients

configuring queue manager 9
connection 4
programming 21
verifying 11

code examples 22
com.ibm.mq.iiop.jar 6
com.ibm.mq.jar 6
com.ibm.mqbind.jar 6
compiling MQSeries classes for Java programs 35
configuring

queue manager for clients 9
Web server 7

connecting to a queue manager 29
connection type, defining 22
connections vii

binding 5
client 4
client, programming 21
options 4
programming 21

core classes 39
exceptions 40
extensions for V5 41

customizing the sample applet 11

D
defining connection type 22
differences between applets and applications 21
differences due to environment 39
directories, installation 6
disconnecting from a queue manager 29

E
environment differences 39
error messages 14
errors, handling 32
example code 22
exceptions to core classes 40
extensions to core classes for V5 41

F
function, changes vii

G
getting started 3
glossary 125

H
handling

errors 32
messages 30

 Copyright IBM Corp. 1997,1999 127

 index

HTML (Hypertext Markup Language) xiii
Hypertext Markup Language (HTML) xiii

I
IIOP support viii
inquire and set 32
installation directories 6
installing the MQSeries classes for Java 5
interface, programming 18
introduction 3
introduction for programmers 17

J
jar files 6
Java classes 19, 45
Java Developers Kit 18
Java interface, advantages 17
JDK 18

L
library, Java classes 19

M
messages

error 14
handling 30

MQC 109
MQChannelDefinition 46
MQChannelExit 48
MQDistributionList 51
MQDistributionListItem 53
MQEnvironment 22, 28, 55
MQException 59
MQGetMessageOptions 61
MQIVP

listing 12
sample application 11
tracing 13

mqjavac
tracing 13
using to verify 9

MQManagedObject 65
MQMessage 68
MQMessageTracker 86
MQProcess 88
MQPutMessageOptions 90
MQQueue 93
MQQueueManager 29, 101
MQReceiveExit 110
MQSecurityExit 112
MQSendExit 114
MQSeries classes for Java classes 45

MQSeries publications viii
MQSeries software client CD 5
MQSeries software server CD 5
MQSeries supported verbs 18
MQSeriesV5 extensions 41
multithreaded programs 33

N
Netscape Navigator, using 4
new function vii

O
Operations on queue managers 28
options

connection vii, 4
transport vii

P
packaging vii
PDF (Portable Document Format) xiii
platform differences 39
Portable Document Format (PDF) xiii
PostScript format xiv
prerequesites 5
problems, solving 13
processes, accessing 29
progams, running 35
programmers, introduction 17
programming

bindings connection 22
client connections 21
compiling 35
connections 21
multithreaded 33
tracing 35
writing 21

programming interface 18
publications

MQSeries viii

Q
queue manager, configuring for clients 9
queues, accessing 29

R
reading strings 31
running

applets 28
in a Web browser 4
MQSeries classes for Java programs 35
stand-alone 4
with applet viewer 4

128 MQSeries Using Java

 index

running (continued)
your own programs 12

S
sample applet

customizing 11
tracing 13
using to verify 9
with applet viewer 10
with Web browser 10

sample application
tracing 13
using to verify 11

set and inquire 32
softcopy books xiii
software requirements 5
solving problems 13
stand-alone, running 4
strings 31
strings, reading and writing 31

T
TCP/IP

client verifying 11
connection, programming 21
using 4

testing MQSeries classes for Java progams 35
tracing

programs 35
sample applet 13
the sample application 13

transport options vii

U
updating your CLASSPATH 6
user exits, writing 33
uses for MQSeries 3
using

applet viewer 9
the MQSeries classes for Java 9

V
v5 extensions 41
verbs, MQSeries supported 18
verifying

client mode installation 9
TCP/IP clients 11
with the sample applet 9
with the sample application 11

Visibroker viii
using 4, 12

W
Web browser

using 4
with sample applet 10

Web server, configuring 7
Windows Help xiv
writing

programs 21
user exits 33

 Index 129

Sending your comments to IBM
MQSeries 

Using Java 

SC34-5456-00

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries 

Using Java 

SC34-5456-00
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries 

MQSeries Using Java SC34-5456-00

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-5456-ðð

S
pine inform

ation:

I
B

M
M

Q
Series

U
sing Java

	About this book
	Who this book is for
	What you need to know
	How to use this book
	Changes in this version
	MQSeries publications
	MQSeries cross-platform publications
	MQSeries platform-specific publications
	MQSeries Level 1 product publications
	Softcopy books

	MQSeries information available on the Internet

	Part 1. Guidance for users
	Chapter 1. Getting started with the MQSeries classes for Java
	What are the MQSeries classes for Java?
	Who should use the MQSeries classes for Java?
	Connection options
	Prerequisites
	Installing the MQSeries classes for Java

	Chapter 2. Using the MQSeries classes for Java
	Using the sample applet to verify the TCP/IP client
	Verifying with the sample application
	Running your own programs

	Chapter 3. Solving MQSeries classes for Java problems
	Tracing the sample applet
	Tracing the sample application
	Error messages

	Part 2. Programming with the MQSeries classes for Java
	Chapter 4. Introduction for programmers
	Why should I use the Java interface?
	The MQSeries classes for Java interface
	Java Developer's Kit
	The MQSeries classes for Java class library

	Chapter 5. Writing Java programs for MQSeries
	Should I write applets or applications?
	Connection differences
	Example code fragments
	Running MQSeries classes for Java applets
	Operations on queue managers
	Accessing queues and processes
	Handling messages
	Handling errors
	Getting and setting attribute values
	Multithreaded programs
	Writing user exits
	Compiling and testing MQSeries classes for Java programs

	Part 3. MQSeries classes for Java reference
	Chapter 6. Environment dependent behavior
	Core details
	Restrictions and variations for core classes
	Version 5 extensions operating in other environments

	Chapter 7. The Java classes and interfaces for MQSeries
	MQChannelDefinition
	MQChannelExit
	MQDistributionList
	MQDistributionListItem
	MQEnvironment
	MQException
	MQGetMessageOptions
	MQManagedObject
	MQMessage
	MQMessageTracker
	MQProcess
	MQPutMessageOptions
	MQQueue
	MQQueueManager
	MQC
	MQReceiveExit
	MQSecurityExit
	MQSendExit

	Part 4. Appendix
	Appendix A. Notices
	Trademarks

	Part 5. Glossary and Index
	Glossary of terms and abbreviations
	Index

