

MQSeries for Windows NT IBM

System Management Guide
Version 2.0

 SC33-1643-00

MQSeries for Windows NT IBM

System Management Guide
Version 2.0

 SC33-1643-00

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix G, “Notices”
on page 305.

First Edition (March 1996)

This edition applies to the following product:

� IBM MQSeries for Windows NT Version 2.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994, 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . xi
Who this book is for . xi
What you need to know to understand this book xi
How to use this book . xii
MQSeries publications . xii

Evaluating products . xii
Planning . xii
Administration . xii
Application programming . xiii
Problem determination . xiii
Special topics . xiv
Softcopy books . xiv
Other MQSeries Version 1 publications . xiv

Information about MQSeries on the Internet . xiv

Part 1. Guidance . 1

Chapter 1. Introduction . 3
MQSeries and message queuing . 3
Messages and queues . 4
Objects . 5
System default objects . 10
Administration . 10
Clients and servers . 11
Extending queue manager facilities . 12
Security . 13
MQSeries for Windows NT and CICS . 13

Chapter 2. Installing MQSeries for Windows NT 15
Requirements . 15
Installing . 15
The MQSeries file tree . 21
Verifying your installation . 24
Applying maintenance . 25
Unattended installation and maintenance . 26
Deleting . 29
Verifying the uninstall process . 31
Unattended uninstall . 31

Chapter 3. Customizing your system . 33
Things you should customize . 33
Things you can customize . 33

Chapter 4. Understanding administration command sets 39
Control commands . 39
MQSeries commands (MQSC) . 40
PCF commands . 40
Attribute names in MQSC and PCFs . 41
Comparing command sets . 41

 Copyright IBM Corp. 1994, 1996 iii

 Contents

Chapter 5. Managing queue managers . 45
Getting started . 45
Guidelines for creating queue managers . 45
Working with queue managers . 48
Looking at object files . 53
Managing the command server for remote administration 55

Chapter 6. Administering local MQSeries objects 57
Supporting application programs that use the MQI 57
Issuing MQSC commands for administration . 58
Running MQSC commands from text files . 62
If you have problems with MQSC... 65
Working with local queues . 68
Working with alias queues . 74
Working with model queues . 76
Managing objects for triggering . 77

Chapter 7. Administering remote MQSeries objects 81
Understanding channels and remote queuing 81
Creating a local definition of a remote queue . 82
Remote administration . 85
Using remote queue definitions for aliases . 91

Chapter 8. Security . 93
Before you begin . 93
Why you need to protect MQSeries resources 94
Understanding the Object Authority Manager . 94
Using the Object Authority Manager commands 97
Object Authority Manager guidelines . 99
Understanding the authorization specification tables 103
Understanding authorization files . 109

Chapter 9. The MQSeries dead-letter queue handler 113
Invoking the DLQ handler . 113
The DLQ handler rules table . 114
How the rules table is processed . 121
An example DLQ handler rules table . 123

Chapter 10. Instrumentation events . 125
What instrumentation events are . 125
Why use events? . 126

Chapter 11. Transactional support and messaging 131
Using MQSeries in a CICS environment . 131
Using MQSeries in a TUXEDO environment 132

iv MQSeries for Windows NT V2.0 System Management Guide

 Contents

Chapter 12. Linking to Lotus Notes . 133
What is Lotus Notes? . 133
Linking applications . 133
Disconnected requests . 136
Setting up your system . 137
Starting the server add-in task . 138
Verifying that Lotus Notes can link to MQSeries 139
Stopping the link server task . 139
User notification . 140

Chapter 13. Recovery and restart . 141
What is in the log? . 141
Checkpointing—ensuring complete recovery 144
Managing logs . 147
Using the log for recovery . 149
Backup and restore . 152
Recovery scenarios . 153

Chapter 14. Configuration files . 155
What configuration files are . 155
MQSeries configuration file . 155
Queue manager configuration file . 157
Editing configuration files . 160
Configuring the logs . 160
Specifying log file sizes . 163

Chapter 15. Problem determination . 165
Preliminary checks . 165
Common programming errors . 169
What to do next . 169
Using MQSeries trace . 173
Application design considerations . 174
Incorrect output . 176
Error logs . 179
Dead-letter queues . 181
Configuration files and problem determination 181
First failure support technology (FFST) . 182
Problem determination with MQI clients . 183

 Contents v

 Contents

Part 2. Reference . 185

Chapter 16. MQSeries control commands 187
Names . 187
How to read syntax diagrams . 187
Flag indicators . 189
Syntax help . 189
crtmqcvx (Data conversion) . 191
crtmqm (Create queue manager) . 193
dltmqm (Delete queue manager) . 197
dspmqaut (Display authority) . 199
dspmqcsv (Display command server) . 203
dspmqfls (Display MQSeries files) . 204
dspmqtrn (Display MQSeries transactions) 206
endmqcsv (End command server) . 207
endmqm (End queue manager) . 209
endmqtrc (End MQSeries trace) . 211
rcdmqimg (Record media image) . 212
rcrmqobj (Recreate object) . 214
rsvmqtrn (Resolve MQSeries transactions) 216
runmqchi (Run channel initiator) . 218
runmqchl (Run channel) . 219
runmqdlq (Run dead-letter queue handler) 220
runmqlsr (Run listener) . 221
runmqsc (Run MQSeries commands) . 223
runmqtmc (Start client trigger monitor) . 226
runmqtrm (Start trigger monitor) . 227
scmmqm (Add the queue manager to, or delete the queue manager from,

theWindows NT Service Control Manager) 228
setmqaut (Set or reset authority) . 230
strmqcsv (Start command server) . 237
strmqm (Start queue manager) . 238
strmqtrc (Start MQSeries trace) . 239

vi MQSeries for Windows NT V2.0 System Management Guide

 Contents

Part 3. Appendixes . 241

Appendix A. MQSeries for Windows NT V2.0 at a glance 243
Program name . 243
Hardware requirements . 243
Software requirements . 243
Programming languages and compilers . 244
Distributed queuing with MQSeries for Windows NT Version 2.0 244
Delivery . 244
Installation . 244

Appendix B. System defaults . 245

Appendix C. Directory structure . 247
Queue manager log directory structure . 249

Appendix D. Sample MQI programs and MQSC command files 251

Appendix E. Stopping and removing queue managers manually 255
Stopping queue managers manually . 255
Removing queue managers manually . 255
Removing queue managers from the automatic start-up list 256

Appendix F. Messages . 257
Message format . 257
Structure of messages . 257
MQSeries messages . 258

Appendix G. Notices . 305
Trademarks . 306

Part 4. Glossary and index . 307

Glossary of terms and abbreviations . 309

Index . 319

 Contents vii

 Contents

viii MQSeries for Windows NT V2.0 System Management Guide

 Tables

 Figures

1. Run window . 16
2. File Manager window . 17
3. MQSeries Setup window . 17
4. MQSeries Setup - installation options window 19
5. Disk space window . 20
6. Install - progress window . 20
7. MQSeries folder . 21
8. Default file tree . 22
9. Uninstall program window . 30

10. Uninstall confirmation window . 30
11. Queues, messages, and applications . 57
12. Extract from the MQSC command file, myprog.in 63
13. Extract from the MQSC report file, myprog.out. 64
14. Remote administration . 86
15. Setting up channels and queues for remote administration 87
16. Administration authorities . 106
17. An example rule . 116
18. Understanding instrumentation events 126
19. Monitoring queue managers across different platforms, on a single node 127
20. Lotus Notes and MQSeries . 134
21. Configuration with the add-in task on the MQI client 136
22. Checkpointing . 145
23. Checkpointing with a long-running transaction 146
24. Example MQSeries configuration file . 156
25. Sample MQSeries trace . 174
26. Sample Windows NT First Failure Symptom Report. 182
27. Default file tree after a queue manager has been started 247

 Tables

1. Commands for queue manager administration 42
2. Commands for command server administration 42
3. Commands for queue administration . 42
4. Commands for process administration . 43
5. Commands for channel administration . 43
6. Other control commands . 43
7. Security authorization needed for MQI calls 104
8. MQSC commands and security authorization needed 107
9. PCF commands and security authorization needed 108

10. Log overhead sizes . 164
11. Security authorities . 200
12. Security authorities . 233
13. Objects included in AMQSCOMA.TST 245
14. MQSC command files . 251
15. Sample program source and associated files 252
16. Samples for transaction processing with CICS for Windows NT 253
17. Samples for transaction processing with TUXEDO 253

 Copyright IBM Corp. 1994, 1996 ix

 Tables

x MQSeries for Windows NT V2.0 System Management Guide

 What you need to know

About this book

IBM MQSeries for Windows NT Version 2.0, referred to in this book as MQSeries
for Windows NT or simply MQSeries, as the context permits, is part of the
MQSeries family of products. These products provide application programming
services that let application programs communicate with each other using message
queues. This form of communication is referred to as commercial messaging. The
applications involved can exist on different nodes on a wide variety of machine and
operating system types. They use a common application programming interface,
called the Message Queuing Interface or MQI, so that programs developed on one
platform can readily be transferred to another.

This book describes the system administration aspects of MQSeries for Windows
NT and the services it provides to support commercial messaging in an MQSeries
environment. This includes managing the queues that applications use to receive
their messages, and ensuring that applications have access to the queues that they
require. You should note that, although this statement implies that you should
control access to these queues as necessary, MQSeries for Windows NT does not
provide any security facilities to assist with this task.

Who this book is for
Primarily, this book is for system administrators, and system programmers who
manage the configuration and administration tasks for MQSeries. It is also useful
to application programmers who must have some understanding of MQSeries
administration tasks.

What you need to know to understand this book
To use this book, you should have a good understanding of the Windows NT
operating system, and utilities associated with it. However, you do not need to
have worked with message queuing products previously.

File systems and file names

The examples in this book may use either NTFS, HPFS, or FAT style file
names. The examples are valid for all systems, the name being transformed if
necessary when the FAT system is in use.

For information about name transformation, see “Understanding MQSeries file
names” on page 53.

 Copyright IBM Corp. 1994, 1996 xi

 MQSeries publications

How to use this book
This book gives you an understanding of MQSeries for Windows NT. It also
describes how to install and configure the product, manage queue managers and
queues, maintain security, recover from system failures, and analyze and solve any
problems that arise.

 MQSeries publications

 Evaluating products
MQSeries Brochure, G511-1908

MQSeries: An Introduction to Messaging and Queuing, GC33-0805

MQSeries Message Queue Interface Technical Reference, SC33-0850

 Planning
MQSeries Planning Guide, GC33-1349

MQSeries for MVS/ESA Version 1 Release 1.3 Licensed Program
Specifications, GC33-1350

MQSeries for OS/400 Version 2 Release 3 Licensed Program Specifications,
GC33-1353

MQSeries for OS/400 Version 3 Release 1 (and later) Licensed Program
Specifications, GC33-1360 (softcopy only)

 Administration
MQSeries Programmable System Management, SC33-1482

MQSeries Command Reference, SC33-1369

MQSeries Clients, GC33-1632

MQSeries for MVS/ESA Version 1 Release 1.3 Program Directory

MQSeries for MVS/ESA Version 1 Release 1.3 System Management Guide,
SC33-0806

MQSeries for AIX Version 2.2.1 System Management Guide, SC33-1373

MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

MQSeries for Windows NT Version 2.0 System Management Guide,
SC33-1643

MQSeries for OS/400 Version 2 Release 3 Administration Guide, SC33-1352

MQSeries for OS/400 Version 3 Release 1 (and later) Administration Guide,
SC33-1361

MQSeries for OS/400 Version 3 Release 1 (and later) Programmable
Command Formats, SC33-1228

MQSeries for HP-UX Version 2.2.1 System Management Guide, GC33-1633

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

xii MQSeries for Windows NT V2.0 System Management Guide

 MQSeries publications

MQSeries Three Tier Administration Guide, SC33-1451

MQSeries Three Tier Reference Summary, SX33-6098

 Application programming
MQSeries Application Programming Reference, SC33-1673

MQSeries Application Programming Reference Summary, SX33-6095

MQSeries Application Programming Guide, SC33-0807

MQSeries for MVS/ESA Version 1 Release 1.3 Application Programming
Reference, SC33-1212

MQSeries for OS/400 Version 2 Release 3 Application Programming Reference
(RPG), SC33-1199

MQSeries for OS/400 Version 2 Release 3 Application Programming Reference
(C and COBOL), SC33-1334

MQSeries for OS/400 Version 3 Release 1 (and later) Application Programming
Reference (RPG), SC33-1362

MQSeries for OS/400 Version 3 Release 1 (and later) Application Programming
Reference (C and COBOL), SC33-1363

MQSeries Three Tier Application Design, SC33-1636

MQSeries Three Tier Application Programming, SC33-1452

MQSeries Three Tier Reference Summary, SX33-6098

 Problem determination
MQSeries for MVS/ESA Version 1 Release 1.3 Problem Determination Guide,
SC33-0808

MQSeries for MVS/ESA Version 1 Release 1.3 Messages and Codes,
SC33-0819

MQSeries for AIX Version 2.2.1 System Management Guide, SC33-1373

MQSeries for OS/2 Version 2.0.1 System Management Guide, SC33-1371

MQSeries for Windows NT Version 2.0 System Management Guide,
SC33-1643

MQSeries for OS/400 Version 2 Release 3 Administration Guide, SC33-1352

MQSeries for OS/400 Version 3 Release 1 (and later) Administration Guide,
SC33-1361

MQSeries for HP-UX Version 2.2.1 System Management Guide, GC33-1633

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries Three Tier Administration Guide, SC33-1451

 About this book xiii

 Special topics
MQSeries Distributed Queuing Guide, SC33-1139

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.
You can view the softcopy books using the following IBM licensed programs:

 BookManager READ/2

 BookManager READ/6000

 BookManager READ/DOS

 BookManager READ/MVS

 BookManager READ/VM

BookManager READ for Windows

Other softcopy formats are available, depending on the platform being used.

Other MQSeries Version 1 publications
For information about other MQSeries platforms, see the following publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for Digital VMS VAX User’s Guide, SC33-1144

MQSeries for OS/400 Version 1 Release 3.1 License Program Specifications,
GC33-1484

MQSeries for OS/400 User’s Guide, SC33-1145 (OS/400 Version 2 Release 2)

MQSeries for SCO UNIX User’s Guide, SC33-1378

MQSeries for SunOS User’s Guide, SC33-1377

MQSeries for Sun Solaris User’s Guide, SC33-1439

MQSeries for Tandem NonStop Kernel User’s Guide, SC33-1755

MQSeries for UnixWare User’s Guide, SC33-1379

MQSeries for VSE/ESA Version 1 Release 3.1 License Program Specifications,
GC33-1483

MQSeries for VSE/ESA Version 1 Release 3.1 User’s Guide, SC33-1142

Information about MQSeries on the Internet
The MQSeries home page

The URL of the MQSeries product family home page is:

 http://www.hursley.ibm.com/mqseries/

xiv MQSeries for Windows NT V2.0 System Management Guide

 Part 1. Guidance

 Copyright IBM Corp. 1994, 1996 1

2 MQSeries for Windows NT V2.0 System Management Guide

 MQSeries and message queuing

 Chapter 1. Introduction

This chapter introduces IBM MQSeries for Windows NT Version 2.0 from an
administrator’s perspective, and describes the basic concepts of MQSeries and
message queuing. It contains these sections:

� “MQSeries and message queuing”
� “Messages and queues” on page 4
� “Objects” on page 5
� “System default objects” on page 10
� “Administration” on page 10
� “Clients and servers” on page 11
� “Extending queue manager facilities” on page 12
� “Security” on page 13
� “MQSeries for Windows NT and CICS” on page 13

MQSeries and message queuing
MQSeries lets Windows NT applications use message queuing to participate in
message-driven processing. Applications can communicate across different
platforms by using the appropriate message queuing software products. For
example, Windows NT and MVS/ESA applications can communicate through
MQSeries for Windows NT and MQSeries for MVS/ESA respectively. The
applications are shielded from the mechanics of the underlying communications.

MQSeries products implement a common application programming interface
(message queue interface or MQI) whatever platform the applications are run on.
This makes it easier to port applications from one platform to another.

The MQI is described in detail in the MQSeries Application Programming Reference
manual.

 Asynchronous processing
With message queuing, the exchange of messages between the sending and
receiving programs is asynchronous. This means that the sending and receiving
applications are time-independent so that the sender can continue processing
without having to wait for the receiver to acknowledge the receipt of the message.
In fact, the target application does not even have to be running when the message
is sent; it can retrieve the message after it is started.

 Message-driven processing
On arriving on a queue, messages can automatically start an application using a
mechanism known as triggering. If necessary, the applications can be stopped
when the message or messages have been processed.

 Copyright IBM Corp. 1994, 1996 3

 Messages and queues

Messages and queues
Messages and queues are the basic components of a message queuing system.

What messages are
A message is a string of bytes that has meaning to the applications that use it.
Messages transfer information from one application to (1) another application, or (2)
different parts of the same application. The applications can be running on the
same platform, or on different platforms.

MQSeries messages have two parts; the application data and a message
descriptor. The content and structure of the application data is defined by the
application programs that use them. The message descriptor identifies the
message and contains other control information, such as the type of message and
the priority assigned to the message.

The format of the message descriptor is defined by MQSeries. For a complete
description of the message descriptor, see the MQSeries Application Programming
Reference manual.

 Message lengths
In MQSeries for Windows NT, the maximum message length is 4 MB (where 1 MB
equals 1 048 576 bytes). In practice, the message length that can be transmitted
by a channel is defined by:

� The maximum message length defined for the receiving queue.

� The maximum message length defined for the queue manager.

� The maximum message length defined by either the sending or receiving
application.

� The amount of storage available for the message.

It may take several messages to send all the information that an application
requires.

What queues are
A queue is a data structure that stores zero or more messages. The messages
may be put on the queue by applications or by a queue manager as part of its
normal operation.

Each queue belongs to a queue manager, which is responsible for maintaining it.
The queue manager puts the messages it receives on the appropriate queues.

Applications send and receive messages using MQI calls. For example, one
application can put a message on a queue, and another application can retrieve the
message from the same queue. The sending application opens the queue for put
operations by making an MQOPEN call. Then it issues an MQPUT call to put the
message onto that queue. When the receiving application opens the same queue
for gets, it can retrieve the message from the queue by issuing an MQGET call.

For more information about MQI calls, see the MQSeries Application Programming
Reference manual.

4 MQSeries for Windows NT V2.0 System Management Guide

 Objects

Predefined and dynamic queues
Queues can be characterized by the way they are created:

� Predefined queues are created by an administrator using the appropriate
command set. For example, the MQSC command DEFINE QLOCAL creates a
predefined local queue. Predefined queues are permanent; they exist
independently of the applications that use them and survive MQSeries restarts.

� Dynamic queues are created when an application issues an open request
specifying the name of a model queue. The queue created is based on a
template queue definition, which is the model queue. You can create a model
queue using the MQSC command DEFINE QMODEL. The attributes of a
model queue, for example the maximum number of messages that can be
stored on it, are inherited by any dynamic queue that is created from it.

Model queues have an attribute that specifies whether the dynamic queue is to
be permanent or temporary. Permanent queues survive application and queue
manager restarts; temporary queues are lost on restart.

Retrieving messages from queues
In MQSeries, applications can retrieve messages from a queue according to these
retrieval algorithms:

 � First-in-first-out (FIFO).

� Message priority, as defined in the message descriptor. Messages that have
the same priority are retrieved on a FIFO basis.

� A program request for a specific message.

The MQGET request from the application determines the method used.

 Objects
Many of the tasks described in this book involve manipulating MQSeries objects. In
MQSeries for Windows NT, there are four different types of objects:

� Queue managers; see “MQSeries queue managers” on page 6.
� Queues; see “MQSeries queues” on page 7.
� Process definitions; see “Process definitions” on page 10.
� Channels; see “Channels” on page 10.

 Object names
Each instance of a queue manager is known by its name. This name must be
unique within the network of interconnected queue managers, so that one queue
manager can unambiguously identify the target queue manager to which any given
message should be sent.

For the other types of objects, each object has a name associated with it and can
be referenced in MQSeries by that name. These names must be unique within one
queue manager and object type. For example, you can have a queue and a
process with the same name, but you cannot have two queues with the same
name.

In MQSeries, names can have a maximum of 48 characters, with the exception of
channels, which have a maximum of 20 characters. For more information about
names, see “Names” on page 187.

 Chapter 1. Introduction 5

 Objects

 Managing objects
MQSeries provides commands for creating, altering, displaying, and deleting
objects. These include:

� MQSeries commands (MQSC), which can be typed in from a keyboard or read
from a file.

� Programmable Command Format (PCF) commands, which can be used in a
program.

For more information, see Chapter 4, “Understanding administration command
sets” on page 39.

 Object attributes
The properties of an object are defined by its attributes. Some you can specify;
others you can only view. For example, the maximum message length that a
queue can accommodate is defined by its MaxMsgLength attribute; you can specify
this attribute when you create a queue. The DefinitionType attribute specifies how
the queue was created; you can only display this attribute.

In MQSeries, there are two ways of referring to an attribute:

� Using its PCF name, for example, MaxMsgLength.
� Using its MQSC name, for example, MAXMSGL.

The formal name of an attribute is its PCF name. Because using the MQSC facility
is an important part of this book, you are more likely to see the MQSC name than
the PCF name of a given attribute in the worked examples.

MQSeries queue managers
A queue manager provides queuing services to applications, and manages the
queues that belong to it. It ensures that:

� Object attributes are changed according to the commands received.

� Special events such as trigger events or instrumentation events are generated
when the appropriate conditions are met.

� Messages are put on the correct queue, as requested by the application
making the MQPUT call. The application is informed if this cannot be done,
and an appropriate reason code is given.

Each queue belongs to a single queue manager and is said to be a local queue to
that queue manager. The queue manager to which an application is connected is
said to be the local queue manager for that application. For the application, the
queues that belong to its local queue manager are local queues. A remote queue
is simply a queue that belongs to another queue manager. A remote queue
manager is any queue manager other than the local queue manager. A remote
queue manager may exist on a remote machine across the network or it may exist
on the same machine as the local queue manager. MQSeries for Windows NT
supports multiple queue managers on the same machine.

6 MQSeries for Windows NT V2.0 System Management Guide

 Objects

 MQI calls
A queue manager object may be used in some MQI calls. For example, you can
inquire about the attributes of the queue manager object using the MQI call
MQINQ.

Note: You cannot put messages on a queue manager object; messages are
always put on queue objects, not on queue manager objects.

 MQSeries queues
Queues are defined to MQSeries using the appropriate MQSC DEFINE command
or the PCF Create Queue command. The command specifies the type of queue
and its attributes. For example, a local queue object has attributes that specify
what happens when applications reference that queue in MQI calls. Examples of
attributes are:

� Whether applications can retrieve messages from the queue (GET enabled).

� Whether applications can put messages on the queue (PUT enabled).

� Whether access to the queue is exclusive to one application or shared between
applications.

� The maximum number of messages that can be stored on the queue at the
same time (maximum queue depth).

� The maximum length of messages that can be put on the queue.

For further details about defining queue objects, see the MQSeries Command
Reference or the MQSeries Programmable System Management manual.

Using queue objects
In MQSeries, there are four types of queue object. Each type of object can be
manipulated by MQSeries commands and is associated with real queues in
different ways:

1. A local queue object identifies a local queue belonging to the queue manager
to which the application is connected. All queues are local queues in the sense
that each queue belongs to a queue manager and, for that queue manager, the
queue is a local queue.

2. A remote queue object identifies a queue belonging to another queue manager.
This queue must be defined as a local queue to that queue manager. The
information you specify when you define a remote queue object allows the local
queue manager to find the remote queue manager, so that any messages
destined for the remote queue go to the correct queue manager.

You must also define a transmission queue and channels between the queue
managers, before applications can send messages to a queue on another
queue manager.

3. An alias queue object allows applications to access a queue by referring to it
indirectly in MQI calls. When an alias queue name is used in an MQI call, the
name is resolved to the name of either a local or a remote queue at run time.
This allows you to change the queues that applications use without changing
the application in any way—you merely change the alias queue definition to
reflect the name of the new queue that the alias resolves to.

An alias queue is not really a queue, but it is a substitute for another queue
name.

 Chapter 1. Introduction 7

 Objects

4. A model queue object defines a set of queue attributes that are used as a
template for creating a dynamic queue. Dynamic queues are created by the
queue manager when an application issues an MQOPEN request specifying a
queue name that is the name of a model queue. The dynamic queue that is
created in this way is a local queue whose attributes are taken from the model
queue definition. The dynamic queue name can be specified by the application
or the queue manager can generate the name and return it to the application.

Dynamic queues defined in this way may be temporary queues, which do not
survive product restarts, or permanent queues, which do.

Specific local queues used by MQSeries
MQSeries uses some local queues for specific purposes related to its operation.
You must define them before MQSeries can use them.

 Application queues
A queue that is used by an application (through the MQI) is referred to as an
application queue. This can be a local queue on the queue manager to which an
application is linked, or it can be a remote queue that is owned by another queue
manager.

Applications can put messages on local or remote queues. However, they can only
get messages from a local queue.

 Initiation queues
Initiation queues are queues that are used in triggering. A queue manager puts a
trigger message on an initiation queue when a trigger event occurs. A trigger event
is a logical combination of conditions that is detected by a queue manager. For
example, a trigger event may be generated when the number of messages on a
queue reaches a predefined depth. This event causes the queue manager to put a
trigger message on a specified initiation queue. This trigger message is retrieved
by a trigger monitor, a special application that monitors an initiation queue. The
trigger monitor then starts up the application program that was specified in the
trigger message.

If a queue manager is to use triggering, at least one initiation queue must be
defined for that queue manager.

See “Managing objects for triggering” on page 77, and “runmqtrm (Start trigger
monitor)” on page 227. For more information about triggering, see the MQSeries
Application Programming Guide.

 Transmission queues
A transmission queue temporarily stores messages that are destined for a remote
queue manager. You must define at least one transmission queue for each remote
queue manager to which the local queue manager is to send messages directly.
These queues are also used in remote administration; see “Remote administration”
on page 85. For information about the use of transmission queues in distributed
queuing, see the MQSeries Distributed Queuing Guide.

8 MQSeries for Windows NT V2.0 System Management Guide

 Objects

 Dead-letter queues
A dead-letter queue receives messages that cannot be routed to their correct
destinations. This occurs when, for example, the destination queue is full. The
supplied dead-letter queue is called SYSTEM.DEAD.LETTER.QUEUE. These
queues are also referred to as undelivered-message queues on other platforms.

For distributed queuing, you should define a dead-letter queue on each queue
manager involved.

 Command queues
The command queue, named SYSTEM.ADMIN.COMMAND.QUEUE, is a local
queue to which applications can send MQSeries commands for processing. These
commands are then retrieved by an MQSeries component called the command
server. The command server validates the commands, passes the valid ones on
for processing by the queue manager, and returns any responses to the
appropriate reply-to queue.

You can define a command queue for each queue manager by running the
supplied command file AMQSCOMA.TST.

 Reply-to queues
When an application sends a request message, the application that receives the
message can send back a reply message to the sending application. This
message is put on a queue, called a reply-to queue, which is normally a local
queue to the sending application. The name of the reply-to queue is specified by
the sending application as part of the message descriptor.

 Event queues
MQSeries for Windows NT supports instrumentation events, which can be used to
monitor queue managers independently of MQI applications. Examples of
conditions generating instrumentation events include:

� An application attempting to put a message on a queue that is not available or
does not exist.

� A queue becoming full.

� A channel starting.

When an instrumentation event occurs, the queue manager puts an event message
on an event queue. This message can then be read by a monitoring application
which may inform an administrator or initiate some remedial action if the event
indicates a problem.

Note: Trigger events are quite different from instrumentation events in that trigger
events are not caused by the same conditions, and do not generate event
messages. For more information about instrumentation events, see the MQSeries
Programmable System Management manual.

 Chapter 1. Introduction 9

 Administation

 Process definitions
A process definition object defines an application that is to be started in response
to a trigger event on an MQSeries queue manager. See “Initiation queues” on
page 8 for more information.

The process definition attributes include the application ID, the application type, and
data specific to the application.

Use the MQSC command DEFINE PROCESS or the PCF command Create
Process to create a process definition.

 Channels
Channels are objects that provide a communication path from one queue manager
to another. Channels are used in distributed message queuing to move messages
from one queue manager to another. They shield applications from the underlying
communications protocols. The queue managers may exist on the same, or
different, platforms. For queue managers to communicate with one another, you
must define one channel object at the queue manager that is to send messages,
and another, complementary one, at the queue manager that is to receive them.

For information on channels and how to use them, see the MQSeries Distributed
Queuing Guide, and also “Preparing channels and transmission queues for remote
administration” on page 86.

System default objects
The system default objects are a set of object definitions that can be created for
each queue manager, using the command file AMQSCOMA.TST, which is supplied
with MQSeries. You can copy and modify any of these object definitions for use in
applications at your installation. Default object names have the stem
SYSTEM.DEF; for example, the default local queue is
SYSTEM.DEFAULT.LOCAL.QUEUE; the default receiver channel is
SYSTEM.DEF.RECEIVER. You cannot rename these objects; default objects of
these names are required.

When you define an object, any attributes that you do not specify explicitly are
copied from the appropriate default object. For example, if you define a local
queue, the attributes you do not specify are taken from the default queue
SYSTEM.DEFAULT.LOCAL.QUEUE.

 Administration
In MQSeries, you carry out administration tasks by issuing commands. Three
command sets are provided, depending on which tasks you want to perform and
how you want to perform them. The command sets are described in Chapter 4,
“Understanding administration command sets” on page 39.

Administration tasks include:

� Starting and stopping queue managers.

� Creating objects, particularly queues, for applications.

10 MQSeries for Windows NT V2.0 System Management Guide

 Clients and servers

� Working with channels to create communication paths to queue managers on
other (remote) systems. This is described in detail in the MQSeries Distributed
Queuing Guide.

Local and remote administration
Local administration means carrying out administration tasks on any queue
managers you have defined on your local system.

MQSeries supports administration from a single point through remote
administration. This allows you to issue commands from your local system that are
processed on another system. You do not have to log on to that system, although
you do need to have the appropriate channels defined. The queue manager and
command server on the target system must be running. For example, you can
issue a remote command to change a queue definition on a remote queue
manager.

Some commands cannot be issued in this way, in particular, creating or starting
queue managers and starting command servers. To perform this type of task, you
must either log onto the remote system and issue the commands from there or
create a process that can issue the commands for you.

Clients and servers
MQSeries for Windows NT supports client-server configurations for MQI
applications.

An MQI client is a part of the MQSeries product that is installed on a machine to
accept MQI calls from applications and pass them to an MQI server machine.
There they are processed by a queue manager. Typically, the client and server
reside on different machines but they can also exist on the same machine.

An MQI server is a queue manager that provides queuing services to one or more
clients. All the MQSeries objects, such as queues, exist only on the queue
manager machine, that is, on the MQI server machine. A server can support
normal local MQI applications as well.

The difference between an MQI server and an ordinary queue manager is that a
server has a dedicated communications link with each client. For more information
about creating channels for clients and servers, see the MQSeries Distributed
Queuing Guide.

You can run MQI clients on DOS, Windows 3.1, OS/2, Windows NT, or UNIX
platforms.

 Chapter 1. Introduction 11

 Queue manager facilities

MQI applications in a client-server environment
When linked to a server, client MQI applications can issue MQI calls in the same
way as local applications. The client application issues an MQCONN call to
connect to a specified queue manager. Any additional MQI calls that specify the
connection handle returned from the connect request are then processed by this
queue manager. You must link your applications to the appropriate client libraries.
See the MQSeries Application Programming Guide and the MQSeries Clients book
for further information.

Extending queue manager facilities
The facilities provided by a queue manager can be extended by:

 � User exits
 � Installable services

 User exits
User exits provide a mechanism for users to insert their own code into a queue
manager function. Two types of user exits are supported:

� Channel exits, which change the way that channels operate.

� Data conversion exits, which convert additional message formats, code pages,
and number encodings not inherently handled by the queue manager.

Both types of exit are related to distributed queueing. For more information about
these exits and how to use them, see the MQSeries Distributed Queuing Guide.

 Installable services
Installable services are more extensive than exits in that they have formalized
interfaces (an API) with multiple entry points.

An implementation of an installable service is called a service component.
Depending on the service, you can use the components supplied with the product,
or you can write your own component to perform the functions that you require.
Currently, the following installable services are provided:

� The authorization service , which allows you to build your own security facility.
If you want to implement your own authorization service, you must write your
own service component. For example, you can create your own security
features based on a third-party security product.

� The name service , which allows queue managers to share queues. If you
want to implement your own name service, you must write your own name
service component.

See the MQSeries Programmable System Management manual for more
information about installable services.

12 MQSeries for Windows NT V2.0 System Management Guide

 CICS

 Security
Authorization for using MQI calls, issuing commands, and accessing objects is
provided by the Object Authority Manager (OAM), which by default is enabled.
Access to MQSeries entities is controlled through Windows NT user groups and the
OAM. A command line interface is provided to enable administrators to grant or
revoke authorizations as required.

MQSeries for Windows NT and CICS
The operation of MQSeries for Windows NT is extended by using it with CICS.

MQSeries for Windows NT supports single-phase commit in transactions with CICS
for Windows NT. See Chapter 11, “Transactional support and messaging” on
page 131 for more information.

 Chapter 1. Introduction 13

 CICS

14 MQSeries for Windows NT V2.0 System Management Guide

 Installing

Chapter 2. Installing MQSeries for Windows NT

This chapter tells you how to install MQSeries for Windows NT. It also tells you
how to verify the installation, apply maintenance to the product, and delete it from
the system.

 Requirements
Before installing MQSeries for Windows NT, make sure that you have the
prerequisite software and the disk space you need.

 Prerequisite software
You can install MQSeries for Windows NT on Windows NT Version 3.5 or later.

Disk space requirements
MQSeries requires a minimum of 8 megabytes (MB) of disk space for product code
and data. In addition, you should allow a minimum of 20MB for working space.

 Clients
If you are installing client code, the storage required on the client machines for
each component is:

Windows 600KB
DOS 700KB
OS/2 2.0MB
Windows NT 2.0MB

 Toolkit
Toolkit requires 3 MB of storage.

 Online books
The online BookManager files require 23 MB of storage, and DynaText files require
30 MB of storage.

 Installing
To install MQSeries for Windows NT, you must be logged on as Administrator. Use
Setup to install the product, either from a CD-ROM or LAN.

If you have previously installed MQSeries for Windows NT, ensure that no queue
managers are running and that the IBMMQSeries Service is stopped.

A check is made for an existing MQSeries configuration file (MQS.INI). If one is
found, you can choose to use it with the newly installed system; if one is not found,
a new version is created. For information about this configuration file, its contents
and location, refer to Chapter 14, “Configuration files” on page 155.

The following procedures for installing MQSeries for Windows NT assumes that the
CD-ROM drive is E:\ and that the product will be installed to the C drive.

 Copyright IBM Corp. 1994, 1996 15

 Installing

READ ME file
Before starting to install MQSeries for Windows NT, review the READ ME file,
which you will find in the root directory of the CD-ROM.

The READ ME file contains any product and documentation updates after this book
was printed.

Preparing to install from CD-ROM
To install from CD-ROM:

1. Insert the MQSeries for Windows NT CD-ROM into the CD-ROM drive.

The directory from which you install depends on the national language you are
using:

Language Directory

German E:\SETUP\De_DE

US English E:\SETUP\En_US

Spanish E:\SETUP\Es_ES

French E:\SETUP\Fr_FR

Japanese E:\SETUP\Ja_JP

(US English (En_US) is used in the examples in this section.)

2. Run the appropriate SETUP.EXE file for your language in one of the following
ways:

a. From Program Manager, select File from the menu and click on Run . A
window titled Run is displayed (see Figure 1). In the Command Line field,
type E:\SETUP\EN_US\SETUP.EXE and press Enter or click on OK.

Figure 1. Run window

b. From File Manager, select SETUP.EXE from the EN_US folder and press
Enter. (see Figure 2 on page 17).

16 MQSeries for Windows NT V2.0 System Management Guide

 Installing

Figure 2. File Manager window

c. Open an MS-DOS window, type the file name, E:\SETUP\EN_US\SETUP.EXE,
at the MS-DOS prompt, and press Enter.

d. Open an MS-DOS window, change to the appropriate language directory,
type SETUP and press Enter.

An MQSeries Setup window appears (see Figure 3).

Figure 3. MQSeries Setup window

3. Follow the on-screen prompts.

See “Installation” on page 19 for a description of the screens that you see and
respond to.

 Chapter 2. Installing MQSeries for Windows NT 17

 Installing

Preparing to install from a LAN
There are two ways to put the MQSeries installation files on a LAN server for
easier access: you can copy the CD-ROM to the hard drive or share the CD-ROM
directory. The following procedures assume that we are installing the files to the J
drive.

To copy the CD-ROM to the hard drive, follow these steps:

1. Create a directory on the LAN server to store the MQSeries installation files.
For example:

MD J:\INSTMQS

2. Copy the contents of the CD-ROM into this directory. You can do this using
the XCOPY command from File Manager. For example:

XCOPY E:\\\ J:\INSTMQS /e

3. Give all licensed users access to the directory you copied the CD-ROM image
into (in this example, the J drive).

Alternatively, give all licensed users access to the CD-ROM drive (in this
example, the E drive).

Now you have copied the files from the CD-ROM onto the LAN, continue as
follows:

4. From the MS-DOS prompt, connect to the appropriate drive and directory for
your enterprise using the NET USE command as follows:

NET USE devicename \\servername\netname

For example:

NET USE X: \\MQMNT\INSTMQS

where X: is the redirected drive containing the MQSeries for Windows NT code
to be installed. This redirected drive could also map directly to the CD-ROM.

5. Change to the installation directory on the net drive (in this example, the X
drive).

6. Change to the appropriate language directory on the net drive.

7. Type SETUP and press Enter.

8. Follow the on-screen prompts.

See “Installation” on page 19 for a description of the screens that you see and
respond to.

18 MQSeries for Windows NT V2.0 System Management Guide

 Installing

 Installation
To install the MQSeries for Windows NT, follow these steps:

1. On the MQSeries Setup window (shown in Figure 3 on page 17), select the
option that updates the Registry (this is the default) and select OK.

Notes:

a. If this is not the first time you are installing MQSeries and you wish to keep
your current queue manager settings, do not select Overwrite MQS.INI
file .

b. A backup copy of any existing MQS.INI file is made under the name
MQS.ORI.

The MQSeries Setup - installation options window appears (see Figure 4).

Figure 4. MQSeries Setup - installation options window

When you install MQSeries for Windows NT, you can select the components
you want to install from the following:

Base product and Server
 Desktop clients
 Online information
 Toolkit

Windows NT client

From the MQSeries Setup - installation options window, click on Descriptions..
to see a description of each of the above.

2. From the MQSeries Setup - installation options window, select the components
that you want to install by clicking on them. Alternatively, click on Select all if
you want to install the complete product. Select all becomes grayed out when
you do this.

 Chapter 2. Installing MQSeries for Windows NT 19

 Installing

Notes:

a. Normally you install either a Windows NT client or the base product and
server components onto a user’s machine.

b. If you are a System administrator, you may want to install the whole
product.

c. If you do not want to install the product on the default drives or paths, you
can amend the directory paths in this window. The file directory is used for
MQSeries code; the work directory is for data.

Alternatively, you can change the target drive within the MQSeries Setup -
Disk space window (see Figure 5) by clicking on Disk space... . This
shows the disk space you have available, and the file systems on the
drives. When you have selected a directory in this window, it is reflected in
both the File and Work directory fields.

Figure 5. Disk space window

3. Select Install from the MQSeries Setup - installation options window. A
progress indicator window is displayed (see Figure 6).

Figure 6. Install - progress window

Note: The number of files transferred depends on the components selected.
The source and target file names are continually updated.

You receive a message when the installation is complete. The installation
program adds an MQSeries folder to your Windows NT desktop. The folder
looks similar to that shown in Figure 7 on page 21.

20 MQSeries for Windows NT V2.0 System Management Guide

 MQSeries file tree

Figure 7. MQSeries folder

4. Shutdown and restart your computer to ensure the product is installed.

For a fuller verification of your installation, see “Verifying your installation” on
page 24.

The MQSeries file tree
Figure 8 on page 22 shows the components of the Windows NT file tree for
MQSeries that exists if you install all components. The tree shown is the default
tree; that is, it appears only if you have not modified the locations of the files in any
way.

 Chapter 2. Installing MQSeries for Windows NT 21

 MQSeries file tree

CLIENTS

BIN

DOS

OS/2

BOOKMGR

DYNATEXT

BOOK

MQSC

TOOLS

C

COBOL

LIB

MQSC

TABLE

ERRORS

LOG

QMGRS

@SYSTEM

ERRORS

WIN3.1

File Directory
(For Code)

Work Directory
(For Data) CONV

C:\MQM

Figure 8. Default file tree

 Registry entries
The installation process adds the following entries to the Windows NT Registry
Hive: (They exist within the HKEY_LOCAL_MACHINE key).

� The key HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion
contains the following entries:

22 MQSeries for Windows NT V2.0 System Management Guide

 MQSeries file tree

Registry entry Meaning

AutoStart Contains a list of queue managers automatically invoked
at system start-up.

BaseComponent Indicates if the Base product and server is installed.

CCSIDComponent Indicates if the CCSID.TBL file is installed.

ConversionTablesComponent
Indicates if the conversion tables are installed.

DesktopClientsComponent
Indicates if the DOS, OS/2 and Windows clients are
installed.

FilePath Specifies where the MQSeries executable files reside.

GlobalComponent Indicates if global files are installed.

IgnoredErrorCodes Contains a list of error codes that are not added to the
Event Log.

MinimumFilesComponent
Indicates if files common to Windows NT server and
client are installed.

PublicationsComponent
Indicates if the online information is installed.

ToolkitComponent Indicates if the Toolkit is installed.

WindowsNTClientComponent
Indicates if the Windows NT client is installed.

WorkPath Specifies where the MQSeries queue files are saved.

� The key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
Eventlog\Application\MQSeries contains the entries that control which language
catalogue is used when displaying entries in the Event Log Viewer.

� The key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\IBMMQSeries
contains entries that affect the behavior of the MQSeries service.

 File permissions
Under NTFS, Setup provides a default set of file permissions for those files in the
\MQM directory. If these are not suitable for your installation, use the facilities
provided with Windows NT to modify them.

If you are installing into an existing directory structure, the file permissions will be
left as found.

 Chapter 2. Installing MQSeries for Windows NT 23

 Verifying your installation

Verifying your installation
Once you have installed the MQSeries server product, verify that the installation
has completed successfully, using the command file AMQSCOMA.TST. This file
initializes your MQSeries system and sets up the default objects that your system
requires. The objects that AMQSCOMA.TST creates for you are listed in
Appendix B, “System defaults” on page 245.

Here is how you make sure that your installation has worked.

Note: This description assumes that you are creating a queue manager called
QMNAME. If you are creating a different queue manager, simply replace each
occurrence of QMNAME with your chosen queue manager name, remembering that
it must be unique within your network.

1. Open a DOS window and enter:

crtmqm /q QMNAME

This creates the queue manager QMNAME.

Notes:

a. The queue manager name is case sensitive.

b. The /q flag denotes that this is the default queue manager.

2. Start the default queue manager by typing:

strmqm QMNAME

The strmqm command does not return control until the queue manager has
started and is ready to accept connections.

3. Create the system and default objects by typing:

runmqsc < C:\MQM\MQSC\AMQSCOMA.TST > DEFOBJ.OUT

DEFOBJ.OUT, in the current directory, contains the output from MQSC.

4. Open DEFOBJ.OUT using Notepad and check that all the commands ran
successfully, by looking at the end of the file.

You have successfully installed MQSeries for Windows NT. You can now
delete the queue manager, or if you prefer, continue using this one.

To delete the queue manager,

5. Stop it by typing:

endmqm QMNAME

24 MQSeries for Windows NT V2.0 System Management Guide

 Applying maintenance

6. Delete it by typing:

dltmqm QMNAME

 Installing clients
Information about installing clients can be found in MQSeries Clients.

 Applying maintenance
 Precaution

Do not have any queue managers running while applying maintenance updates
on MQSeries for Windows NT.

Applying the maintenance information
Maintenance is applied by PTFs.

To apply the maintenance information, follow these steps:

1. Ensure you are logged on as Administrator

2. Insert the MQSeries for Windows NT maintenance media into the appropriate
drive and review the MEMO.PTF file from the root directory to check if any
prerequisites exist.

The directory from which you install depends on the national language you are
using:

Language Directory

German E:\UPGRADE\De_DE

US English E:\UPGRADE\En_US

Spanish E:\UPGRADE\Es_ES

French E:\UPGRADE\Fr_FR

Japanese E:\UPGRADE\Ja_JP

(US English (En_US) is used in the examples in this section).

3. Run the appropriate SETUP.EXE file for your language. (To do this, see step 2
of “Preparing to install from CD-ROM” on page 16.)

An MQSeries Setup window appears (see Figure 3 on page 17).

4. On the MQSeries Setup window, use the default option that updates the
Registry. If you wish to retain the current queue manager settings, ensure that
the Overwrite MQS.INI option is not selected. Click on OK.

 Chapter 2. Installing MQSeries for Windows NT 25

 Unattended installation

Querying the service level
To query the service level, open the MQSeries folder, (see Figure 7 on page 21),
and double-click on the Memo icon. This shows the MEMO.PTF file containing the
service level and details of the maintenance applied (PTF number). This file is
included in the root directory of the CD-ROM.

Note: After initial installation, the service level has the value ‘0000000’. After one
or more updates the service level is a PTF number. For MQSeries, these PTFs
have a prefix of ‘U2’.

Unattended installation and maintenance
You can install or maintain MQSeries for Windows NT without interaction. This
process is known as unattended installation or maintenance and uses response
files. A sample response file, AMQISAMN.RSP, shows an example of unattended
installation. Response files are described in “Installation response files” on
page 28.

For unattended installation and maintenance, you must firstly set up the server and
then install on the remote machine, as described below.

Setting up your server
To set up your server, follow these steps:

1. Copy the contents of the MQSeries for Windows NT CD-ROM to a local or LAN
drive, for example:

XCOPY E:\\.\ /e

2. Edit the supplied response file AMQISAMN.RSP or create a new response file.

3. Enter the SETUP command together with the required parameters, for
example:

SETUP /r:J:\INSTMQS\AMQISAMN.RSP

Note: The SETUP command must be entered on a single line.

Valid parameters are:

/f:File directory
Specifies the directory used to store MQSeries code. By default, this is
C:\MQM, but if you have installed the product before, it is the directory that you
installed it into.

Example:

/f:C:\DMQM

/o:Yes/No
Updates the MQS.INI file. If you specify Y or YES (case insensitive), the
MQS.INI file is replaced. This is the default.

Example:

26 MQSeries for Windows NT V2.0 System Management Guide

 Unattended installation

/o:Yes

/r:Response file
Defines a response file location including the full path and file name. You must
indicate this parameter for unattended installation.

Example:

/r:C:\MQM\AMQISAMN.RSP

See “Installation response files” on page 28 for further information.

/s:Source directory
Defines the location of the MQSeries installable image that you want to install.
By default, Setup locates the IMAGE directory from the root directory of the
media it is being installed from. You can change this if appropriate.

Example:

/s:C:\MQINSTALL

/w:Work directory
Specifies the directory used to store MQSeries data. The default is C:\MQM.

Example:

/w:C:\DMQM

/u:Yes/No
Updates the Registry to reflect the current installation. If you specify N or NO
(case insensitive), no update is made. The default is Yes.

Example:

/u:No

Notes:

1. You can enter the parameters in any order.

2. Values can be upper- or lowercase.

3. If you enter the same parameter more than once, the value of the last entry in
the parameter list applies.

Now you have set up your server, you can go on to install on the remote machine.

Installing on the remote machine
Unattended installation is particularly useful for installing MQSeries for Windows NT
over a network because you can do it from a redirected drive on a LAN server.

To connect the workstation to the redirected drive on the server, follow these steps:

1. Use the NET USE command as follows:

NET USE devicename \\servername\netname

For example,

NET USE J: \\MQMNT\MQMSHARE

 Chapter 2. Installing MQSeries for Windows NT 27

 Unattended installation

where J: is either the redirected drive containing the MQSeries for Windows NT
system you are installing, or if you are applying maintenance, the PTF media
that is to be applied.

2. Change to the appropriate language directory and type SETUP together with the
required parameters (see step 3 on page 26 for an example of SETUP and its
valid parameters.

Errors are logged in the MQSetup.LOG file in the directory specified for MQSeries
code. However, if the errors occur before these directories are created, they are
logged in the local Windows directory, for example C:\WINNT35.

Remember, when applying maintenance upgrades you should use the Setup
program supplied with the maintenance media.

Installation response files
An installation response file is an ASCII text file containing values for the options
that you select when you install or maintain an MQSeries for Windows NT system.
This allows installation and maintenance to be performed automatically, without
interaction.

In an installation response file you can specify:

� Whether the Registry should be updated automatically
� The MQSeries for Windows NT components to be installed
� The path for installation or maintenance
� Whether the MQS.INI file should be overwritten
� The location of the Setup source files

The installation response file supplied with MQSeries for Windows NT can be found
as a sample file on the installation media. Initially, you have only one response file,
specified by the /r parameter of the installation program. To perform other actions
you must prepare your own installation response files using a suitable editor.

Structure of response files
There are two kinds of line in a response file:

 � Response lines

Response lines are used to determine what to install on the target system.

Response lines have the following syntax:

keyword=value

Keyword-value pairs can be in any order. However, there can be only one pair
per line.

See “Keywords for response files” on page 29 for information about keywords
and their values.

 � Comment lines

Comment lines are either blank or start with an asterisk (*) or a semicolon (;).

The maximum line length in a response file is 255 characters.

28 MQSeries for Windows NT V2.0 System Management Guide

 Deleting

Keywords for response files
CFGUPDATE Specifies whether the Registry is updated automatically. Valid

values for this keyword are:

AUTO Automatically updates the Registry.

MANUAL Does not update the Registry.

Example:

CFGUPDATE=AUTO

COMP Specifies the names of the components to install. Valid values
for MQSeries for Windows NT are:

� Base product and Server
 � Desktop Clients
 � Online Information
 � Toolkit
� Windows NT Client

Example:

COMP=Toolkit

FILE Specifies the drive and directory for MQSeries for Windows NT
code.

Example:

FILE=C:\MQM

OVERWRITE Specifies whether to overwrite or update the MQS.INI file.
Valid values for this keyword are YES and NO.

Example:

OVERWRITE=NO

SOURCE Specifies the location of the MQSeries installation image.

Example:

SOURCE=C:\IMAGE

WORK Specifies the location for MQSeries data files, for example the
C:\MQM directory.

Example:

WORK=C:\MQM

 Deleting
 MQSeries Service

Stop the MQSeries Service before deleting the product.

You can delete the whole of MQSeries, or files from the FILE directory, as follows:

1. Ensure that you are logged on as Administrator.

2. Double-click on the UninstMQ icon.

An Uninstall program window appears (see Figure 9 on page 30).

 Chapter 2. Installing MQSeries for Windows NT 29

 Deleting

Figure 9. Uninstall program window

Note: Here, the default option is Uninstall files from the FILE directory (all
binaries) and is appropriate if you want to install a later version of the product
while retaining current queue manager settings.

3. Select Uninstall files from the FILE directory (all binaries) to delete specific files,
or Uninstall the IBM MQSeries for Windows NT product to delete the whole
product.

4. Click on Yes.

A confirmation window is displayed, as shown in Figure 10.

Figure 10. Uninstall confirmation window

5. Click on Yes.

You receive a message when the uninstall process is complete.

6. Shutdown and restart your computer to ensure that the uninstall process has
taken effect.

Note: If you chose to delete the whole product, the directory where MQSeries was
installed, for example, C:\MQM, still remains. Within this directory, you must delete
the UninstMQ.exe file contained in the sub-directory \BIN.

To verify that the uninstall process is complete, see “Verifying the uninstall process”
on page 31.

30 MQSeries for Windows NT V2.0 System Management Guide

 Unattended uninstall

Verifying the uninstall process
When the uninstall ends, you can verify that the product or the FILE directory have
been deleted successfully.

Deleting the product
If you want to confirm that the IBM MQSeries for Windows NT product has been
deleted, check the following:

1. Entries related to the current MQSeries product are removed from the Registry.

2. The MQSeries file tree is deleted. Files with read-only access remain.

3. Any reference to MQSeries is removed from the PATH, LIB, and INCLUDE
environment variables.

4. The IBM MQSeries entry is removed from the Windows NT Service Control
Manager.

5. The mqm user group is deleted.

6. The file, MQSetup.Log, has been deleted from the Windows NT directory, for
example C:\WINNT35.

7. The IBM MQSeries folder is removed from the desktop.

Deleting files from the FILE directory
If you want to confirm that the files from the FILE directory have been deleted,
check the following:

1. The subdirectories that contain MQSeries executable files (\BIN, \CLIENTS,
\MQSC, \BOOK, and \TOOLS) are removed from the File directory.

2. Any reference to MQSeries is removed from the PATH, LIB, and INCLUDE
environment variables.

 Unattended uninstall
For an unattended uninstall, enter the UninstMQ command followed by one of the
following parameters:

/p Invokes a partial uninstall: it deletes the files from the FILE directory.

/f Invokes a full uninstall: it deletes the IBM MQSeries for Windows NT product.

Note: Parameters are case insensitive.

 Chapter 2. Installing MQSeries for Windows NT 31

 Unattended uninstall

32 MQSeries for Windows NT V2.0 System Management Guide

 Things you can customize

Chapter 3. Customizing your system

This chapter lists the tasks involved in customizing a queue manager to meet your
requirements.

Do I need to customize?
When you have installed the product, you can use it without having to customize
it in any way. The default configuration provides all the facilities you need to
build a working system that can participate in message queuing with other
MQSeries systems.

When do I customize?
Some customization tasks must be performed before you create a queue
manager; others require you to stop and restart the queue manager. Check each
task in turn, to see when you need to perform it.

What are configuration files?
There are two types of configuration files. One contains information about the
way your MQSeries system is set up or configured; this file is created when
MQSeries is installed. The other contains information about the attributes of an
individual queue manager; this file is generated when a queue manager is
created.

“Things you can customize” specifies which of these files to modify for each
relevant configuration task. For more information about the files themselves, see
Chapter 14, “Configuration files” on page 155.

What do I do now?
Check each item in the following two lists. “Things you should customize”
defines what you need to customize before going any further; “Things you can
customize” defines what you may want to customize depending on the system
you are using.

Things you should customize
� Defining the default and system objects; see page 36.
� Configuring a queue manager; see page 37.
� Enabling communications support; see page 35.

Note: The last item is not strictly essential initially. However, if you plan to
communicate with other queue managers, you will need to consider this support
early.

Things you can customize
Consider whether any of these items applies to systems in your enterprise:

� Setting the local time zone; see page 34.
� Configuring an authorization service component; see page 34.
� Implementing data conversion; see page 35.
� Specifying a default prefix for queue manager objects; see page 36.
� Specifying log parameters; see page 37.
� Providing transaction support for CICS for Windows NT; see page 38.

The terms in this list are explained in the following sections.

 Copyright IBM Corp. 1994, 1996 33

 Things you can customize

Setting the local time zone

� This task is required before you communicate with other queue
managers.

MQSeries for Windows NT adds a time and date record to each message.
Greenwich Mean Time (GMT) is used for this information. The time zone setting
from the Windows NT Control Panel calculates the GMT date and time values to be
added to the message header.

Configuring an authorization service component

� This task is not required on your first pass through this book.

� By default, authority checking is turned on.

The authorization service supports authority checking on commands and MQI calls
for the user ID associated with the command or call. The names of the
authorization service and the component that implements the service are specified
in the queue manager configuration file (QM.INI).

By default, the active authorization service component is the Object Authority
Manager (OAM), which is supplied with the product.

Changing the authorization service component
You can edit the configuration file for a specific queue manager to:

� Remove the OAM and therefore all security checking.
� Replace the OAM with a user-written authorization service component.
� Add a user-written authorization service component to augment the OAM.

These tasks are not required, unless you have specific security requirements that
cannot be accommodated by the OAM.

For more information about the queue manager configuration file, see“Queue
manager configuration file” on page 157. For information about writing your own
authorization service component, refer to theMQSeries Programmable System
Management.

Note: You can change the configuration file QM.INI after you have created and
started the queue manager to which it relates. This has no effect until the queue
manager is stopped and restarted. However, you should not create or change
objects when the authorization service is off and then turn authorization back on
again. If you do, you may compromise the security of your system.

34 MQSeries for Windows NT V2.0 System Management Guide

 Things you can customize

Enabling communications support

� This task is required before you can communicate with other
queue managers.

� You must stop and restart the queue manager to perform this
task.

� By default, the communications protocols are not defined.

You must specify the name of the communications protocol and other parameters
that are to be used for communication with other queue managers. This includes
the LAN protocol type, which must be one of the following:

 � LU 6.2
 � NetBIOS
 � TCP/IP

This must be specified in a communications stanza in the queue manager
configuration file QM.INI before starting the queue manager. For information about
configuration files, see Chapter 14, “Configuration files” on page 155. See the
MQSeries Distributed Queuing Guide for information about communicating between
queue managers.

Implementing data conversion

� This task is required only to communicate between different
types of nodes.

If you are using MQSeries with systems that have different encodings or character
set IDs, you may need to use a data conversion exit. The conversion of messages
is based on message formats, specified in the message descriptor, and all IBM
message formats can be converted without the need for exits. However, user
formats are not converted so that even ASCII-to-EBCDIC conversion must be done
using an exit (one per format).

You can use the supplied conversion exit utility if you wish to communicate with
queue managers using MQI calls or remote commands, where the systems
involved have formats outside those supported by MQSeries. The conversion exit
utility helps you to create the required conversions as C source code. You can
leave this task until run time. However, if you do, you may not be able to
communicate between the two different machines until then.

For more information about data conversion and language support tables, refer to
the MQSeries Distributed Queuing Guide.

 Chapter 3. Customizing your system 35

 Things you can customize

Defining the default and system objects

� This task is required, but is part of the standard
administration procedures.
See Chapter 5, “Managing queue managers” on page 45.

MQSeries for Windows NT provides an MQSC command file that you can use to
set up the default and system objects. Typically, when you define an object, you
do not define all the possible attributes. The ones you do not specify are inherited
from the corresponding default object. The supplied command file
AMQSCOMA.TST, when used with the runmqsc command, creates a set of default
and system objects. See “Running the supplied MQSC command files” on page 64
for information about running this sample.

If you change the attributes of the default object, any objects of the same type you
create inherit the new values.

Do not attempt this until you are familiar with the different commands and
command sets provided on MQSeries for Windows NT.

Modifying the AMQSCOMA.TST command file
You should consider modifying the command file AMQSCOMA.TST if, for example:

� You have a large number of objects to create and the values in
AMQSCOMA.TST are not the ones required.

� You have some specific requirements or limitations on the size of certain
resources.

To modify AMQSCOMA.TST, make a backup copy, make the required changes,
and then use the new version of the file to create the default objects. See also
“Creating the default and system objects” on page 50.

Specifying prefixes for queue manager objects

� This task is not normally required on your first pass through
this book.

� By default, the prefixes are already set.

� You should not perform this task if you have existing MQSeries
objects.

The name of a queue manager is prefixed with the name of the directory in which it
is located. The name is unique, and you must specify it when you create a queue
manager. You may specify the directory, or allow the queue manager to have a
default location.

36 MQSeries for Windows NT V2.0 System Management Guide

 Things you can customize

The default location may be common to all queue managers on this node, or it may
be unique to a specific queue manager. If the default is used, the directory
structure is stored in the MQSeries configuration file, MQS.INI, in the DefaultPrefix
field. If instead a unique directory is specified, this directory is stored in MQS.INI in
a stanza associated with the queue manager.

For more information about the configuration files, the prefix information, and how
to change them, refer to Chapter 14, “Configuration files” on page 155.

Attention: To modify the locations of queue manager objects, you must update the
QueueManager stanza in MQS.INI file before you create any objects. Do not change
this stanza if you have already created objects for this queue manager.

Specifying a default prefix
When you create a new queue manager, its prefix is taken from the default in
MQS.INI. The default prefix is specified in the DefaultPrefix stanza in the
MQS.INI file. Unless you have changed it, the default prefix is: C:\MQM.

Specifying logging parameters

� This task is not normally required on your first pass through
this book.

� By default, the logging parameters are adequate.

� You must stop and restart the queue manager to perform this
task.

The logging parameters determine the type and size of the logs your system will
use. These are specified in the configuration files MQS.INI and QM.INI, which are
read when a queue manager is started. See “Log configuration stanzas” on
page 161 for more information.

Configuring a queue manager

� This task is required, but is part of the standard
administration procedures,
see Chapter 5, “Managing queue managers” on page 45.

When you create a queue manager using the crtmqm command, you can specify
specific properties for that queue manager. For example, you can specify the
name of the dead-letter queue, and the default transmission queue.

Once you have created a queue manager, you may need to modify its properties.
For more information, see “Guidelines for creating queue managers” on page 45
and Chapter 14, “Configuration files” on page 155.

 Chapter 3. Customizing your system 37

 Things you can customize

Supporting transactions for CICS for Windows NT

� This task is not normally required on your first pass through
this book.

To use CICS for Windows NT as a transaction manager, you must configure it for
MQSeries for Windows NT. See Chapter 11, “Transactional support and
messaging” on page 131 for more information.

38 MQSeries for Windows NT V2.0 System Management Guide

 Control commands

Chapter 4. Understanding administration command sets

This chapter gives an overview of the different methods thay you can use to
perform system administration tasks on MQSeries objects, and when each method
should be used.

Administration tasks include creating, starting, altering, viewing, stopping, and
deleting MQSeries objects, that is, queue managers, queues, processes, and
channels. To perform these tasks, you must select the appropriate command from
one of the supplied command sets.

MQSeries for Windows NT provides three command sets for invoking administration
tasks:

 � Control commands
 � MQSC commands
 � PCF commands

This chapter describes the command sets that are available and provides a
summary of the different commands in “Comparing command sets” on page 41.

 Control commands
Control commands fall into three categories:

� Queue manager commands, including commands for creating, starting,
stopping, and deleting queue managers and command servers.

� Channel commands, including commands for starting and ending channels and
channel initiators.

� Utility commands, including commands associated with:

– Running MQSC commands
 – Conversion exits

– Recording and recovering media images of queue manager resources
– Displaying and resolving transactions

 – Trigger monitors
– Displaying the file names of MQSeries objects

Entering control commands
You type in control commands in a Windows NT window. Control commands and
their flags are not case-sensitive in Windows NT, but the arguments, such as
queue names and queue manager names, are. For example, in the command:

crtmqm /u SYSTEM.DEAD.LETTER.QUEUE jupiter.queue.manager

� The command name can be upper or lowercase, for example: CRTMQM,
crtmqm, or CRTmqm.

� The argument is specified as SYSTEM.DEAD.LETTER.QUEUE
jupiter.queue.manager; this is different from system.DEAD.LETTER.QUEUE
JUPITER.queue.manager.

 Copyright IBM Corp. 1994, 1996 39

 PCF commands

Chapter 16, “MQSeries control commands” on page 187 describes the syntax and
purpose of each command.

MQSeries commands (MQSC)
You use the MQSeries (MQSC) commands to manage queue manager objects,
including the queue manager itself, channels, queues, and process definitions. For
example, there are commands to define, alter, display, and delete a specified
queue.

When you display a queue, using the DISPLAY QUEUE command, you display the
queue attributes. For example, the MAXMSGL attribute specifies the maximum
length of a message that can be put on the queue. The command does not show
you the messages on the queue.

MQSC commands are available on other platforms including AS/400, MVS/ESA,
and UNIX systems.

These commands are summarized in “Comparing command sets” on page 41. For
detailed information about each MQSC command, see MQSeries Command
Reference manual.

Running MQSC commands
You run MQSC commands by invoking the control command runmqsc at the
command line. You can run MQSC commands:

� Interactively by typing them at the keyboard. See “Using the MQSC facility
interactively” on page 59.

� As a sequence of commands from an ASCII text file. See “Running MQSC
commands from text files” on page 62.

You can run the runmqsc command in three modes, depending on the flags set on
the command:

� Verification mode, where the MQSC commands are verified on a local queue
manager, but are not actually run.

� Direct mode, where the MQSC commands are run on a local queue manager.

� Indirect mode, where the MQSC commands are run on a remote queue
manager.

For more information about using the MQSC facility and text files, see “Using the
MQSC facility interactively” on page 59. For more information about the runmqsc
command, see “runmqsc (Run MQSeries commands)” on page 223.

 PCF commands
The purpose of the MQSeries programmable command format (PCF) commands is
to allow administration tasks to be programmed into an administration program. In
this way you can create queues and process definitions, and change queue
managers, from a program. In fact, PCF commands cover the same range of
functions that are provided by the MQSC facility. You can therefore write a
program to issue PCF commands to any queue manager in the network from a

40 MQSeries for Windows NT V2.0 System Management Guide

 Comparing command sets

single node. In this way, you can both centralize and automate administration
tasks.

Each PCF command is a data structure that is embedded in the application data of
an MQSeries message. Each command is sent to the target queue manager using
the MQI function MQPUT in the same way as any other message. The command
server on the queue manager receiving the message interprets it as a command
message and runs the command. To get the replies, the application issues an
MQGET call and the reply data is returned in another data structure. The
application can then process the reply and act accordingly.

Note: Unlike MQSC commands, PCF commands and their replies are not in a text
format that you can read.

Briefly, these are some of the things the application programmer must specify to
create a PCF command message:

Message descriptor
This is a standard MQSeries message descriptor, in which:

Message type specifies a management request.
Message format specifies administration commands.

Application data
Contains the PCF message including the PCF header, in which:

The PCF message type specifies command.

The command identifier specifies the command, for example, Change Queue.

For a complete description of the PCF data structures and how to implement them,
see the MQSeries Programmable System Management manual.

Attribute names in MQSC and PCFs
Object attributes specified in MQSC are shown in this book in uppercase, for
example RQMNAME, although they are not case sensitive. These names are
limited to eight characters, so some attributes, for example QDPHIEV, are not
easily understood. Object attributes in PCF are shown in italics, are not limited to
eight characters, and are therefore easier to read. The PCF equivalent of
RQMNAME is RemoteQMgrName and of QDPHIEV is QDepthHighEvent.

Comparing command sets
The following tables compare the facilities available from the different administration
command sets.

Note: Only MQSC commands that apply to MQSeries for Windows NT are shown.

 Chapter 4. Understanding administration command sets 41

 Comparing command sets

Table 1. Commands for queue manager administration

PCF MQSC Control

Change Queue Manager ALTER QMGR –

(Create queue manager)* – crtmqm

(Delete queue manager)* – dltmqm

Inquire Queue Manager DISPLAY QMGR –

(Stop queue manager)* – endmqm

Ping Queue Manager PING QMGR –

(Start queue manager)* – strmqm

(Service control manager)* – scmmqm

Note: * Not available as PCF commands.

Table 2. Commands for command server administration

Description Control

Display command server dspmqcsv

Start command server strmqcsv

Stop command server endmqcsv

Note: Functions in this group are available only as control commands. There are no equivalent
MQSC or PCF commands in this group.

Table 3. Commands for queue administration

PCF MQSC

Change Queue ALTER QLOCAL
ALTER QALIAS
ALTER QMODEL
ALTER QREMOTE

Clear Queue CLEAR QUEUE

Copy Queue DEFINE QLOCAL(x) LIKE(y)
DEFINE QALIAS(x) LIKE(y)
DEFINE QMODEL(x) LIKE(y)
DEFINE QREMOTE(x) LIKE(y)

Create Queue DEFINE QLOCAL
DEFINE QALIAS
DEFINE QMODEL
DEFINE QREMOTE

Delete Queue DELETE QLOCAL
DELETE QALIAS
DELETE QMODEL
DELETE QREMOTE

Inquire Queue DISPLAY QUEUE

Inquire Queue Names DISPLAY QUEUE

Note: There are no equivalent control commands in this group.

42 MQSeries for Windows NT V2.0 System Management Guide

 Comparing command sets

Table 4. Commands for process administration

PCF MQSC

Change Process ALTER PROCESS

Copy Process DEFINE PROCESS(x) LIKE(y)

Create Process DEFINE PROCESS

Delete Process DELETE PROCESS

Inquire Process DISPLAY PROCESS

Inquire Process Names DISPLAY PROCESS

Note: There are no equivalent control commands in this group.

Table 5. Commands for channel administration

PCF MQSC Control

Change Channel ALTER CHANNEL –

Copy Channel DEFINE CHANNEL(x) LIKE(y) –

Create Channel DEFINE CHANNEL –

Delete Channel DELETE CHANNEL –

Inquire Channel DISPLAY CHANNEL –

Inquire Channel Names DISPLAY CHANNEL –

Ping Channel PING CHANNEL –

Reset Channel RESET CHANNEL –

Resolve Channel RESOLVE CHANNEL –

Start Channel START CHANNEL runmqchl

Start Channel Initiator START CHINIT runmqchi

Start Channel Listener – runmqlsr

Stop Channel STOP CHANNEL –

Table 6. Other control commands

Description Control

Create MQSeries conversion exit crtmqcvx

Display authority dspmqaut

Display files used by objects dspmqfls

Display MQSeries transactions dspmqtrn

End MQSeries trace endmqtrc

Record media image rcdmqimg

Recreate media object rcrmqobj

Resolve MQSeries transactions rsvmqtrn

Run MQSC commands runmqsc

Start MQSeries trace strmqtrc

Run trigger monitor runmqtrm

Run client trigger monitor runmqtmc

Run dead-letter queue handler runmqdlq

Set or reset authority setmqaut

Note: Functions in this group are available only as control commands. There are no direct PCF or
MQSC equivalents.

 Chapter 4. Understanding administration command sets 43

 Comparing command sets

44 MQSeries for Windows NT V2.0 System Management Guide

 Creating queue managers

Chapter 5. Managing queue managers

This chapter describes how you can perform operations on queue managers and
command servers. It contains these sections:

 � “Getting started”
� “Guidelines for creating queue managers”
� “Working with queue managers” on page 48
� “Looking at object files” on page 53
� “Managing the command server for remote administration” on page 55

 Getting started
Before you can do anything with messages and queues, you must create at least
one queue manager. Once the installation process is complete, you can use the
MQSeries control commands to create a queue manager and start it. Then you
can use MQSC commands to create the required default objects and system
objects. Default objects form the basis of any object definitions that you make;
system objects are required for queue manager operation. You must create these
objects for each queue manager you create. The supplied command file
AMQSCOMA.TST, when used with the runmqsc command, creates a set of default
and system objects. See “Running the supplied MQSC command files” on page 64
for information about running this sample.

See Chapter 4, “Understanding administration command sets” on page 39 for more
information about commands that can be used with MQSeries for Windows NT, and
the different methods of invoking them.

Guidelines for creating queue managers
A queue manager manages the resources associated with it, in particular the
queues that it owns. It provides queueing services to applications for Message
Queuing Interface (MQI) calls and commands to create, modify, display, and delete
MQSeries objects. You create a queue manager using the crtmqm command.
However, before you try this, especially in a production environment, work through
this checklist:

� Specify a unique queue manager name.
� Limit the number of queue managers.
� Specify a default queue manager.
� Specify a dead-letter queue.
� Specify a default transmission queue.
� Specify the required logging parameters.

The terms in this list are explained in the sections that follow.

Specifying a unique queue manager name
When you create a queue manager, you must ensure that no other queue manager
has the same name, anywhere in your network. Queue manager names are not
checked at create time, and non-unique names will prevent you from creating
channels for distributed queuing.

 Copyright IBM Corp. 1994, 1996 45

 Creating queue managers

One method of ensuring uniqueness is to prefix each queue manager name with its
own (unique) node name. For example, if a node is called accounts, you could
name your queue manager accounts.saturn.queue.manager, where saturn
identifies a particular queue manager and queue.manager is an extension you can
give to all queue managers. Alternatively, you can omit this, but note that
accounts.saturn and accounts.saturn.queue.manager are different queue
manager names.

If you are using MQSeries for communicating with other enterprises, you can also
include your own enterprise as a prefix. We do not actually do this in the
examples, because it makes them more difficult to follow.

Note: Queue manager names in control commands are case-sensitive. This
means that you could create two queue managers with the names
jupiter.queue.manager and JUPITER.queue.manager. Such complications are best
avoided.

Limiting the number of queue managers
In MQSeries for Windows NT, you can create as many queue managers as
resources allow. However, because each queue manager requires its own
resources, it is generally better to have one queue manager with 100 queues than
ten queue managers with ten queues each. In production systems, many nodes
will be run with a single queue manager, but larger server machines may run with
multiple queue managers.

Specifying the default queue manager
Each node should have a default queue manager, though it is possible to configure
MQSeries on a node without one.

To create a default queue manager, specify the /q flag on the crtmqm command.
For a detailed description of this command and its parameters, see “crtmqm
(Create queue manager)” on page 193.

What is a default queue manager?
The default queue manager is the queue manager that applications connect
to if they do not specify a queue manager name in an MQCONN call. It is
also the queue manager that processes MQSC commands when you invoke
the runmqsc command without specifying a queue manager name.

How do you specify a default queue manager?
You include the /q flag on the crtmqm command to specify that the queue
manager you are creating is the default queue manager. Omit this flag if
you do not want to create a default queue manager.

Specifying a queue manager as the default replaces any existing default
queue manager specification for the node.

What happens if I make another queue manager the default?
If you change the default queue manager, this can affect other users or
applications. The change has no effect on currently-connected applications,
because they can use the handle from their original connect call in any
further MQI calls. This handle ensures that the calls are directed to the
same queue manager. Any applications connecting after the change
connect to the new default queue manager.

46 MQSeries for Windows NT V2.0 System Management Guide

 Creating queue managers

This may be what you intend, but you should take this into account before
you change the default.

Specifying a dead-letter queue
The dead-letter queue is a local queue where messages are put if they cannot be
routed to their correct destination.

Attention: You must have a dead-letter queue on each queue manager in your
network. Failure to do so may mean that errors in application programs cause
channels to be closed, or that replies to administration commands are not received.

You may change the name of the dead-letter queue if necessary by using the
ALTER QMGR command. See MQSeries Command Reference manual for further
information.

For example, if an application attempts to put a message on a queue on another
queue manager, but the wrong queue name is given, the channel is stopped, and
the message remains on the transmission queue. Other applications cannot then
use this channel for their messages.

The channels are not affected if the queue managers have dead-letter queues.
The undelivered message is simply put on the dead-letter queue at the receiving
end, leaving the channel and its transmission queue available.

Therefore, when you create a queue manager you should use the /u flag to specify
the name of the dead-letter queue. You can also use an MQSC command to alter
the attributes of a queue manager and specify the dead-letter queue to be used.
See “Altering queue manager attributes” on page 61 for an example of an MQSC
ALTER command.

A sample dead-letter queue definition is provided with the supplied sample
AMQSCOMA.TST. The queue is called SYSTEM.DEAD.LETTER.QUEUE. See
“Creating the default and system objects” on page 50 for information about running
this sample.

Specifying a default transmission queue
A transmission queue is a local queue on which messages in transit to a remote
queue manager are queued pending transmission. The default transmission queue
is the queue that is used when no transmission queue is explicitly defined. Each
queue manager can be assigned a default transmission queue.

When you create a queue manager you should use the /d flag to specify the name
of the default transmission queue. This does not actually create the queue; you
have to do this explicitly later on. See “Working with local queues” on page 68 for
more information.

Specifying the required logging parameters
You can specify logging parameters on the crtmqm command, including the type of
logging, and the path and size of the log files. In a development environment, the
default logging parameters should be adequate. However, you can change the
defaults if, for example:

� You have a low-end system configuration that cannot support large logs.

 Chapter 5. Managing queue managers 47

 Working with queue managers

� You anticipate a large number of long messages being on your queues at the
same time.

For more information about specifying logging parameters:

� On the crtmqm command, see “crtmqm (Create queue manager)” on
page 193.

� Using configuration files, see “Log configuration stanzas” on page 161.

Working with queue managers
MQSeries provides control commands for creating, starting, ending, and deleting
queue managers. You can also display a queue manager’s attributes using the
MQSC command DISPLAY QMGR and change them using ALTER QMGR. See
“Displaying queue manager attributes” on page 60 and “Altering queue manager
attributes” on page 61.

Creating a default queue manager
The following command creates a default queue manager called
saturn.queue.manager and specifies the names of both its default transmission
queue and its dead-letter queue:

crtmqm /q /d MY.DEFAULT.XMIT.QUEUE /u SYSTEM.DEAD.LETTER.QUEUE saturn.queue.manager

where:

/q Indicates that this queue manager is the default queue
manager.

/d MY.DEFAULT.XMIT.QUEUE
Is the name of the default transmission queue.

/u SYSTEM.DEAD.LETTER.QUEUE
Is the name of the dead-letter queue.

saturn.queue.manager Is the name of this queue manager. For crtmqm , this
must be the last parameter in the command.

Starting a queue manager
Although you have created a queue manager, it cannot process commands or MQI
calls until it has been started. Start the queue manager by typing in this command:

strmqm saturn.queue.manager

The strmqm command does not return control until the queue manager has started
and is ready to accept connect requests.

48 MQSeries for Windows NT V2.0 System Management Guide

 Working with queue managers

Starting a queue manager automatically
Windows NT can invoke a queue manager automatically when the system starts.
To request automatic start-up of a queue manager, enter:

scmmqm /a /s C:\MQM\STARTUP.CMD saturn.queue.manager

where:

/a Specifies that the queue manager is to be added to
the list of those that will be automatically started.

/s References a command file, of any name and location,
that describes what actions are taken when this queue
manager starts.

saturn.queue.manager Is the name of this queue manager. For scmmqm ,
this command must be the last parameter in the
command.

The command file, referenced by /s, is a text file containing a series of commands.
The commands are executed in order, and must start in column one. Valid
commands are:

 � strmqm
 � runmqchi
 � runmqchl
 � runmqlsr
 � strmqcsv

The commands must be followed by their correct parameters and each queue
manager included in the automatic start-up list needs its own command file.

For example, the following command file

strmqm saturn.queue.manager
runmqlsr /t TCP /m saturn.queue.manager /n server

starts a queue manager and starts a listener for that queue manager.

All queue managers in the automatic start-up list are started and stopped by one
service named IBM MQSeries. This service can be modified from the Control
Panel or from the DOS prompt and it accepts two commands only; start and stop.

You can also prevent a queue manager from starting automatically. See “
Removing a queue manager from the automatic start-up list” on page 50 for more
information.

 Chapter 5. Managing queue managers 49

 Working with queue managers

Removing a queue manager from the automatic start-up list
In order to prevent Windows NT from starting a queue manager automatically, use
the following command:

scmmqm /d saturn.queue.manager

See “scmmqm (Add the queue manager to, or delete the queue manager from,
theWindows NT Service Control Manager)” on page 228 for more information on
the scmmqm command.

Creating the default and system objects
You must create a set of default and system objects for each queue manager you
create. To do this, use the runmqsc command specifying both the name of the
queue manager and the name of the command file containing the commands.
(You can specify AMQSCOMA.TST, which is supplied as part of the product.) The
following command creates the default and system objects:

runmqsc saturn.queue.manager < C:\MQM\MQSC\AMQSCOMA.TST > DEFOBJ.OUT

Note: If you installed on a drive other than C, replace C with the actual drive.

You can run this command immediately after the strmqm command has
completed.

The file DEFOBJ.OUT is created, if it does not already exist. When the command
has completed, DEFOBJ.OUT contains the output from the MQSC file. You should
check that all the commands ran successfully before continuing.

For more information about running the MQSC facility (runmqsc), see “Running
MQSC commands from text files” on page 62.

Backing up configuration files after creating a queue manager
There are two configuration files to consider:

1. When you install the product, the MQSeries configuration file (MQS.INI) is
created. It contains a list of queue managers, which is updated each time you
create or delete a queue manager. There is one MQS.INI file per node.

2. When you create a new queue manager, a new queue manager configuration
file (QM.INI) is automatically created. This contains configuration parameters
for the queue manager.

You should make a backup of these files. If, later on, you create another queue
manager that causes you problems, you can reinstate the backups when you have
removed the source of the problem. As a general rule, you should back up your
configuration files each time you create a new queue manager.

For more information about configuration files, see Chapter 14, “Configuration files”
on page 155.

50 MQSeries for Windows NT V2.0 System Management Guide

 Working with queue managers

Stopping a queue manager
To stop a queue manager, use the endmqm command. For example, to stop a
queue manager called saturn.queue.manager use this command:

endmqm saturn.queue.manager

 Quiesced shutdown
By default, the above command performs a quiesced shutdown of the specified
queue manager. This may take a while to complete—a quiesced shutdown waits
until all connected applications have disconnected.

Use this type of shutdown to notify applications to stop; you are not told when they
have stopped.

 Immediate shutdown
For an immediate shutdown any current MQI calls are allowed to complete, but any
new calls fail. This type of shutdown does not wait for applications to disconnect
from the queue manager.

Use this as the normal way to stop the queue manager, optionally after a quiesce
period. For an immediate shutdown, the command is:

endmqm /i saturn.queue.manager

 Preemptive shutdown
 Preemptive shutdown

Do not use this method unless all other attempts to stop the queue manager
using the endmqm command have failed. This method can have unpredictable
consequences for connected applications.

If an immediate shutdown does not work, you must resort to a preemptive
shutdown, specifying the /p flag. For example:

endmqm /p saturn.queue.manager

This stops all queue manager code immediately.

If this method still does not work, see “Stopping queue managers manually” on
page 255 for an alternative.

For a detailed description of the endmqm command and its options, see “endmqm
(End queue manager)” on page 209.

 Chapter 5. Managing queue managers 51

 Working with queue managers

If you have problems
Problems in shutting down a queue manager are often caused by applications. For
example, when applications:

� Do not check MQI return codes properly
� Do not request a notification of a quiesce
� Terminate without disconnecting from the queue manager (by issuing an

MQDISC call)

If a problem does occur while stopping the queue manager, break out of the
endmqm command using Ctrl-C.

You can then issue another endmqm command, but this time with a flag that
specifies the type of shutdown that you require.

Restarting a queue manager
To restart a queue manager, use the command:

strmqm saturn.queue.manager

Making an existing queue manager the default
When you create a default queue manager, the name of the default queue
manager is inserted in the DefaultQueueManager stanza in the MQSeries
configuration file (MQS.INI). The stanza and its contents are automatically created
if they do not exist.

You may need to edit this stanza:

� To make an existing queue manager the default. To do this you have to
change the queue manager name in this stanza to the name of the new default
queue manager. You must do this manually, using a text editor.

� If you do not have a default queue manager on the node, and you want to
make an existing queue manager the default. To do this you must create the
DefaultQueueManager stanza—with the required name—yourself.

� If you accidentally make another queue manager the default and wish to revert
to the original default queue manager. To do this, edit the
DefaultQueueManager stanza in the MQSeries configuration file, replacing the
name of the unwanted default queue manager with that of the one you do
want.

See Chapter 14, “Configuration files” on page 155 for information about
configuration files.

When the stanza contains the required information, stop the queue manager and
restart it.

52 MQSeries for Windows NT V2.0 System Management Guide

 Understanding MQSeries file names

Deleting a queue manager
Deleting a queue manager

Be sure that you want to delete a queue manager as this also deletes all the
resources associated with it. This includes not only all queues and their
messages, but also all object definitions.

To delete a queue manager, first stop it, then use the following command:

dltmqm saturn.queue.manager

Note: The above command also removes a queue manager from the automatic
start-up list (see“ Removing a queue manager from the automatic start-up list” on
page 50).

For a description of the dltmqm command and its options, see “dltmqm (Delete
queue manager)” on page 197. You should ensure that only trusted administrators
have the authority to use this command.

If the usual methods for deleting a queue manager do not work, see “Removing
queue managers manually” on page 255 for an alternative.

Looking at object files
Each MQSeries queue, queue manager, or process object is represented by a file.
Because these object names are not necessarily valid file names, the queue
manager converts the object name into a valid file name, where necessary. This is
described in “Understanding MQSeries file names.”

To find out how to display the real file name of an object, see “dspmqfls (Display
MQSeries files)” on page 204.

Understanding MQSeries file names
Each MQSeries queue, queue manager, or process object is represented by a file.
Because these object names are not necessarily valid file names, the queue
manager converts the object name into a valid file name, where necessary.

The path to a queue manager directory is formed from:

� A prefix—the first part of the name:

C:\MQM

This prefix is defined in the queue manager configuration file.

 � A literal:

QMGRS

 Chapter 5. Managing queue managers 53

 Understanding MQSeries file names

� A coded queue manager name, which is the queue manager name transformed
into a valid directory name. For example, the queue manager

queue.manager

would be represented as:

queue!manager

This process is referred to as name transformation.

Queue manager name transformation
In MQSeries you can give an object a name containing up to 48 characters. For
example, you could name a queue manager:

QUEUE.MANAGER.ACCOUNTING.SERVICES

However, each object is represented by a file and, depending on the file system,
there are limitations to the maximum length a file name can be, and to the
characters that can be used in the name. As a result, the names of files
representing objects are automatically transformed to meet the requirements of the
file system.

The rules governing the transformation of a queue manager name, using the
example of a queue manager with the name queue.manager, are as follows:

1. Transform individual characters:

. becomes !
/ becomes &

2. If the name is still not valid:

a. Truncate it to eight characters.
b. Append a three-character numeric suffix.

For example, assuming the default prefix, the queue manager name becomes:

For Windows NT with HPFS or NTFS:

C:\MQM\QMGRS\QUEUE!MANAGER

For Windows NT with FAT:

C:\MQM\QMGRS\QUEUE!MA

The default drive used is the boot drive, usually the C: drive.

A further example demonstrates how the names of three very similarly named
queue managers are transformed:

These transformed names are used in the directory structure as shown at
Appendix C, “Directory structure” on page 247.

Input name Transformed name

qmgr_r012288a qmgr_r01

qmgr_r012288b qmgr_r01.000

qmgr_r012288c qmgr_r01.001

54 MQSeries for Windows NT V2.0 System Management Guide

 Managing the command server

The transformation algorithm also allows distinction between names that differ only
in case, on file systems that are not case sensitive, such as FAT and HPFS.

Object name transformation
Object names are not necessarily valid file system names. Therefore the object
names may need to be transformed. The method used is different from that for
queue manager names because, although there only a few queue manager names
per machine, there can be a large number of other objects for each queue
manager. Only process definitions and queues are represented in the file system;
channels are not affected by these considerations.

When a new name is generated by the transformation process there is no simple
relationship with the original object name. However, you can use the dspmqfls
command to convert between real and transformed object names. To find out how
to display the real file name of an object, see “dspmqfls (Display MQSeries files)”
on page 204.

Managing the command server for remote administration
Each queue manager has a command server associated with it. A command
server processes any incoming commands from remote queue managers, or PCF
commands from applications. It presents the commands to the queue manager for
processing and returns a completion code or operator message depending on the
origin of the command. There are separate control commands for starting and
stopping the command server.

Note: For remote administration, you must ensure that the target queue manager
is running. Otherwise, the messages containing commands cannot leave the
queue manager from which they are issued. Instead, these messages are queued
in the local transmission queue that serves the remote queue manager. This
situation should be avoided, if at all possible.

Starting the command server
To start the command server use this command:

strmqcsv saturn.queue.manager

where saturn.queue.manager is the queue manager for which the command server
is being started.

 Chapter 5. Managing queue managers 55

 Managing the command server

Displaying the status of the command server
For remote administration, you must ensure that the command server on the target
queue manager is running. If it is not running, no remote commands can be
processed. Any messages containing commands are queued in the target queue
manager’s command queue.

To display the status of the command server for a queue manager, called here
saturn.queue.manager, the command is:

dspmqcsv saturn.queue.manager

You must issue this command on the target machine. If the command server is
running, the following message is returned:

AMQ8ð27 MQSeries Command Server Status ..: Running

Stopping a command server
To end a command server, the command, using the previous example is:

endmqcsv saturn.queue.manager

You can stop the command server in two different ways:

� For a controlled stop, use the endmqcsv command with the /c flag. This is the
default.

� For an immediate stop, use the endmqcsv command with the /i flag.

Note: Stopping a queue manager also ends the command server associated with
it (if one has been started).

56 MQSeries for Windows NT V2.0 System Management Guide

 Supporting application programs

Chapter 6. Administering local MQSeries objects

This chapter describes how to administer local MQSeries objects to support
application programs that use the Message Queuing Interface (MQI). In this
context, local administration means creating, displaying, changing, copying, and
deleting MQSeries objects.

This chapter contains these sections:

� “Supporting application programs that use the MQI”
� “Issuing MQSC commands for administration” on page 58
� “Running MQSC commands from text files” on page 62
� “If you have problems with MQSC...” on page 65
� “Working with local queues” on page 68
� “Working with alias queues” on page 74
� “Working with model queues” on page 76
� “Managing objects for triggering” on page 77

Supporting application programs that use the MQI
MQI application programs need certain objects before they can run successfully.
For example, Figure 11 shows an application that removes messages from a
queue, processes them, and then sends some results to another queue on the
same queue manager.

Application

Queue Manager

From other
applications

To other
applications

getput

putget

Figure 11. Queues, messages, and applications

Whereas applications can put (using MQPUT) messages on local or remote
queues, they can only get (using MQGET) messages directly from local queues.

Before this application can be run, these conditions must be satisfied:

� The queue manager must exist and be running.

� The first application queue, from which the messages are to be removed, must
be defined.

� The second queue, on which the application puts the messages, must also be
defined.

 Copyright IBM Corp. 1994, 1996 57

 Issuing MQSC commands

� The application must be able to connect to the queue manager. To do this it
must be linked to the product code. See the MQSeries Application
Programming Guide for more information.

� The applications that put the messages on the first queue must also connect to
a queue manager. If they are remote, they must also be set up with
transmission queues and channels. This part of the system is not shown in
Figure 11 on page 57.

Issuing MQSC commands for administration
In this section, we assume that you will be issuing commands using the runmqsc
command. You can do this interactively—entering the commands at the
keyboard—or you can redirect the standard input device (stdin) to run a sequence
of commands from an ASCII text file. In both cases, the format of the commands is
the same.

The MQSeries Command Reference manual contains a description of each MQSC
command and its syntax.

Before you start
Before you can run MQSC commands, you must have created and started the
queue manager that is going to run the commands, see “Creating a default queue
manager” on page 48.

MQSeries object names
In examples, we use some long names for objects. This is to help you identify
what type of object it is you are dealing with.

When you are issuing MQSC commands, you need only specify the local name of
the queue. In our examples, we use queue names such as:

ORANGE.LOCAL.QUEUE

The LOCAL.QUEUE part of the name is simply to illustrate that this queue is a
local queue. It is not required for the names of local queues in general.

We also use the name saturn.queue.manager as a queue manager name.

The queue.manager part of the name is simply to illustrate that this object is a
queue manager. It is not required for the names of queue managers in general.

You do not have to use these names, but if you do not, you must modify any
commands in examples that specify them.

Case-sensitivity in MQSC commands
MQSC commands, including their attributes, can be written in upper or lower case.
Object names in MQSC commands are folded (that is, QUEUE and queue are not
differentiated), unless the names are put in single quotes. If quotes are not used,
the object is processed with a name in uppercase. See the MQSeries Command
Reference manual for more information.

58 MQSeries for Windows NT V2.0 System Management Guide

 Issuing MQSC commands

Standard input and output
The standard input device, also referred to as stdin, is the device from which input
to the system is taken. Typically, this is the keyboard, but you can redirect it to a
serial port, a (disk) file, and so on. The standard output device, also referred to as
stdout, is the device to which output from the system is sent. Typically, this is a
display, but it can be redirected to a serial port, a file, and so on.

On a Windows NT command or an MQSeries control command, the ‘<’ operator
redirects input. If this operator is followed by a file name, input is taken from the
file. Similarly, the ‘>’ operator redirects output; if this operator is followed by a file
name, the output is sent to the file.

Using the MQSC facility interactively
To enter commands interactively, open an MS-DOS window and type:

runmqsc

Then press Enter.

In this command, a queue manager name has not been specified, therefore the
MQSC commands will be processed by the default queue manager. Now you can
type in any MQSC commands, as required. For example, try this one:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE)

Feedback from MQSC commands
When you issue commands from the MQSC facility, the queue manager returns
operator messages that confirm your actions or tell you about the errors you have
made. For example:

AMQ8ðð6: MQSeries queue created
 .
 .
 .
AMQ84ð5: Syntax error detected at or near end of command segment below:-
Z

The first message confirms that a queue has been created; the second indicates
that you have made a syntax error. These messages are sent to the standard
output device. If you have not entered the command correctly, refer to the
MQSeries Command Reference manual for the correct syntax.

 Chapter 6. Administering local MQSeries objects 59

 Issuing MQSC commands

Ending interactive input to MQSC
If you are using MQSC interactively, you can exit by typing either CTRL+C or
CTRL+Z and then pressing Enter.

If you are redirecting input from other sources, such as a text file, you do not have
to do this.

Displaying queue manager attributes
To display the attributes of the queue manager specified on the runmqsc
command, use the following MQSC command:

DISPLAY QMGR ALL

A typical output is:

1 : display qmgr all
AMQ84ð8: Display Queue Manager details.
 DESCR()
 DEADQ(SYSTEM.DEAD.LETTER.QUEUE)
 DEFXMITQ(MY.DEFAULT.XMIT.QUEUE)
 COMMANDQ(SYSTEM.ADMIN.COMMAND.QUEUE)
 QMNAME(saturn.queue.manager)
 TRIGINT(999999999)
 MAXHANDS(256)
 MAXUMSGS(1ðððð)
 AUTHOREV(DISABLED)
 INHIBTEV(DISABLED)
 LOCALEV(DISABLED)
 REMOTEEV(DISABLED)
 PERFMEV(DISABLED)
 STRSTPEV(ENABLED)
 MAXPRTY(9)
 CCSID(85ð)
 MAXMSGL(41943ð4)
 CMDLEVEL(2ðð)
 PLATFORM(WINDOWSNT)
 SYNCPT

The ALL parameter on the DISPLAY QMGR command causes all the queue
manager attributes to be displayed. In particular, the output tells us the default
queue manager name (saturn.queue.manager), and the names of the dead-letter
queue (SYSTEM.DEAD.LETTER.QUEUE) and the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE). Both these queues should have been
created when you ran the sample AMQSCOMA.TST; see “Creating the default and
system objects” on page 50.

60 MQSeries for Windows NT V2.0 System Management Guide

 Issuing MQSC commands

Before you go further, confirm that these queues have been created by typing the
command:

DISPLAY QUEUE (SYSTEM.\)

This displays a list of queues that match the stem ‘SYSTEM.*’. The parentheses
are required.

Using a queue manager that is not the default
You can run your MQSC commands on another queue manager on the same node.
That is, on a queue manager that is not the default queue manager. To do this you
must specify the queue manager name on the runmqsc command. For example,
to run MQSC commands on queue manager jupiter.queue.manager use the
command:

runmqsc jupiter.queue.manager

After this, all the MQSC commands you type in are processed by this queue
manager—assuming that it is on the same node and is already running.

You can also run MQSC commands on a remote queue manager; see “Issuing
MQSC commands remotely” on page 89.

Altering queue manager attributes
To alter the attributes of the queue manager specified on the runmqsc command,
use the MQSC command ALTER QMGR, specifying the attributes and values that
you want to change. For example, use the following commands to alter the
attributes of jupiter.queue.manager:

runmqsc jupiter.queue.manager

ALTER QMGR DEADQ (ANOTHERDLQ) INHIBTEV (ENABLED)

The ALTER QMGR command changes the dead-letter queue used, and enables
inhibit events.

 Chapter 6. Administering local MQSeries objects 61

 Running MQSC commands

Running MQSC commands from text files
Running MQSC commands interactively is suitable for quick tests, but if you have
very long commands, or commands that you want to repeat, you should redirect
stdin to a text file. (See “Standard input and output” on page 59 for information
about stdin and stdout.) To do this, first create a text file containing the MQSC
commands using your usual text editor. When you use the runmqsc command,
use the Windows NT redirection operators. For example, the following command
runs a sequence of commands contained in the text file myprog.in:

runmqsc < myprog.in

Similarly, you can also redirect the output to a file. A file containing the MQSC
commands for input is called an MQSC command file; the output file containing
replies from the queue manager is called the report file.

To redirect both stdin and stdout on the runmqsc command, use this form of the
command:

runmqsc < myprog.in > myprog.out

This command invokes the MQSC commands contained in the MQSC command
file myprog.in. Because we have not specified a queue manager name, the
MQSC commands are run against the default queue manager. The output is sent
to the report file myprog.out. Figure 12 on page 63 shows an extract from the
MQSC command file myprog.in and Figure 13 on page 64 shows the
corresponding extract of the output in myprog.out.

To redirect stdin and stdout on the runmqsc command, for a queue manager
(saturn.queue.manager) that is not the default, use this form of the command:

runmqsc saturn.queue.manager < myprog.in > myprog.out

MQSC command files
MQSC commands are written in human-readable form, that is, in ASCII text.
Figure 12 on page 63 is an extract from an MQSC command file showing an
MQSC command (DEFINE QLOCAL) with its attributes. The MQSeries Command
Reference manual contains a description of each MQSC command and its syntax.

62 MQSeries for Windows NT V2.0 System Management Guide

 Running MQSC commands

 .
 .
DEFINE QLOCAL(ORANGE.LOCAL.QUEUE) REPLACE +

DESCR(' ') +
 PUT(ENABLED) +
 DEFPRTY(ð) +
 DEFPSIST(NO) +
 GET(ENABLED) +
 MAXDEPTH(5ððð) +
 MAXMSGL(1ð24) +
 DEFSOPT(SHARED) +
 NOHARDENBO +
 USAGE(NORMAL) +
 NOTRIGGER
 .
 .

Figure 12. Extract from the MQSC command file, myprog.in

You must limit lines to maximum of 80 characters. The plus sign indicates that the
command is continued on the next line.

 MQSC reports
The runmqsc command returns a report, which is sent to stdout. The report
contains:

� A header identifying MQSC as the source of the report:

Starting MQSeries Commands.

� An optional numbered listing of the MQSC commands issued. By default, the
text of the input is echoed to the output. Within this output, each command is
prefixed by a sequence number, as shown in Figure 13 on page 64. However,
you can use the /e flag on the runmqsc command to suppress the output.

� A syntax error message for any commands found to be in error.

� An operator message indicating the outcome of running each command. For
example, the operator message for the successful completion of a DEFINE
QLOCAL command is:

AMQ8ðð6: MQSeries queue created.

� Other messages resulting from general errors when running the script file.

� A brief statistical summary of the report indicating the number of commands
read, the number of commands with syntax errors, and the number of
commands that could not be processed.

Note: The queue manager will only attempt to process those commands that
have no syntax errors.

 Chapter 6. Administering local MQSeries objects 63

 Running MQSC commands

Starting MQSeries Commands.
 .
 .
 .
 12: DEFINE QLOCAL('RED.LOCAL.QUEUE') REPLACE +

: DESCR(' ') +
 : PUT(ENABLED) +
 : DEFPRTY(ð) +
 : DEFPSIST(NO) +
 : GET(ENABLED) +
 : MAXDEPTH(5ððð) +
 : MAXMSGL(1ð24) +
 : DEFSOPT(SHARED) +
 : USAGE(NORMAL) +
 : NOTRIGGER
AMQ8ðð6: MQSeries queue created.
 :
 .
 .
 .
15 MQSC commands read.
ð commands have a syntax error.
ð commands cannot be processed.

Figure 13. Extract from the MQSC report file, myprog.out.

Running the supplied MQSC command files
When you install MQSeries for Windows NT, these MQSC command files are
supplied:

AMQSCOMA.TST
Default and system objects, by default located in C:\MQM\MQSC.

AMQSCOS0.TST
Definitions of objects used by sample programs, by default located in
C:\MQM\TOOLS\MQSC\SAMPLES.

AMQSCIC0.TST
Definitions of queues for CICS for Windows NT transactions, by default located in
C:\MQM\TOOLS\MQSC\SAMPLES.

AMQSLNK0.TST
Definitions of queues used by the Lotus Notes link server task, by default located
in C:\MQM\TOOLS\MQSC\SAMPLES.

You should already have run runmqsc against the command file
AMQSCOMA.TST. If you have not done this, or if you have deleted any of the
objects created from it, run it again by typing:

runmqsc < AMQSCOMA.TST

64 MQSeries for Windows NT V2.0 System Management Guide

 Problem with MQSC

The DEFINE commands in AMQSCOMA.TST specify the REPLACE option, which
overwrites the existing definitions. See the MQSeries Command Reference manual
for more information about REPLACE.

Using runmqsc to verify commands
You can use the runmqsc command to verify MQSC commands on a local queue
manager without actually running them. To do this, set the /v flag in the runmqsc
command, for example:

runmqsc /v < myprog.in > myprog.out

When you invoke runmqsc against an MQSC command file, the queue manager
verifies each command and returns a report without actually running the MQSC
commands. This allows you to check the syntax of all the commands in your
command file. This is particularly important if you are:

� Running a large number of commands from a command file.

� Using an MQSC command file many times over.

This report is similar to that shown in Figure 13 on page 64.

You cannot use this method to verify MQSC commands remotely. For example, if
you attempt this command:

runmqsc /w 3ð /v jupiter.queue.manager < myprog.in > myprog.out

the /w flag is ignored, and the command is run locally. The /w flag indicates that
the command is to be run against a remote queue manager. In this example, it is
overridden by the /v flag.

You can see an example of running MQSC commands against a remote queue
manager in “Issuing MQSC commands remotely” on page 89.

If you have problems with MQSC...
If you cannot get your MQSC commands to run, use the following check list to see
if any of these common problems apply to you. It is not always obvious what the
problem is when you read the error generated.

When you use the runmqsc command, remember:

� Check your file paths. By default, the runmqsc executable file is located in
directory C:\MQM\BIN. Make sure that this is in your PATH statement or that
you specify fully-qualified names that include the path.

 Chapter 6. Administering local MQSeries objects 65

 Problem with MQSC

� Use the indirection operator < when redirecting input from a file. Otherwise, the
queue manager interprets the file name as a queue manager name. For
example:

 runmqsc AMQSCOMA.TST

5697-177 (C) Copyright IBM Corp. 1995. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

AMQ8118: MQSeries queue manager does not exist.
ð MQSC commands read.
ð commands have a syntax error.
ð commands cannot be processed.

� If you redirect output to a file, use the > indirection operator. By default, the
output goes to the directory from which you ran the runmqsc command.
Specify a fully-qualified file name to send your output to a specific file and
directory. For example:

runmqsc < AMQSCOMA.TST > D:\APPS\MYFILE.OUT

� Check that you really have created the queue manager that is going to run the
commands.

To do this, look in the configuration file MQS.INI, which by default is located in
the C:\MQM. directory. This file contains the names of the queue managers
and the name of the default queue manager, if you have one.

� The queue manager should already be started, if it is not, start it; see “Starting
a queue manager” on page 48. You get an error message if it is already
started.

� Specify a queue manager name on the runmqsc command if you have not
defined a default queue manager, otherwise you get this error:

runmqsc < AMQSCOMA.TST

5697-177 (C) Copyright IBM Corp. 1995. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

AMQ8146: MQSeries queue manager not available.
ð MQSC commands read.
ð commands have a syntax error.
ð commands cannot be processed.

To correct this type of problem, see “Making an existing queue manager the
default” on page 52.

� You cannot specify an MQSC command as a runmqsc parameter:

66 MQSeries for Windows NT V2.0 System Management Guide

 Problem with MQSC

runmqsc DEFINE QLOCAL(FRED)

5697-177 (C) Copyright IBM Corp. 1995. ALL RIGHTS RESERVED.
Usage: runmqsc [/e] [/v] [/wWaitTime] [/x] QMgrName

� You cannot enter MQSC commands at the command line before you issue the
runmqsc command. For example:

 DEFINE QLOCAL(ORANGE.LOCAL.QUEUE)

The name specified is not recognized as an
internal or external command, operable program or batch file.

� You cannot run control commands from runmqsc . For example, you cannot
start a queue manager once you are running MQSC interactively:

 runmqsc
5697-177 (C) Copyright IBM Corp. 1995. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

 strmqm saturn.queue.manager
1 : strmqm saturn.queue.manager

AMQ84ð5: Syntax error detected at or near end of command segment below:-
 s

See also “If you have problems using MQSC remotely” on page 91.

 Chapter 6. Administering local MQSeries objects 67

 Local queues

Working with local queues
This section contains examples of some of the MQSC commands that you can use
and describes how they can be used to manage:

 � Local queues
� Queue aliases (also referred to as alias queues)

 � Model queues

Refer to the MQSeries Command Reference manual for a complete description of
these commands.

Defining a local queue
For an application, the local queue manager is the queue manager to which the
application is connected. Queues that are managed by the local queue manager
are said to be local to that queue manager.

Use the MQSC command DEFINE QLOCAL to create a definition of a local queue
and also to create the data structure that is called a queue. You can also modify
the queue characteristics from those of the default local queue.

In this example, the queue we define, ORANGE.LOCAL.QUEUE, is specified to
have these characteristics:

� It is enabled for gets, disabled for puts, and operates on a first-in-first-out
(FIFO) basis.

� It is an ‘ordinary’ queue, that is, it is not an initiation queue or a transmission
queue, and it does not generate trigger messages.

� The maximum queue depth is 1000 messages; the maximum message length
is 2000 bytes.

The following MQSC command does this:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) +
DESCR('Queue for messages from other systems') +
PUT (DISABLED) +
GET (ENABLED) +

 NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1ððð) +
MAXMSGL (2ððð) +

 USAGE (NORMAL)

Notes:

1. Most of these attributes are the defaults as supplied with the product.
However, they are shown here for purposes of illustration. You can omit them
if you are sure that the defaults are what you want or have not been changed.
See also “Displaying default object attributes” on page 69.

2. USAGE (NORMAL) indicates that this queue is not a transmission queue.

68 MQSeries for Windows NT V2.0 System Management Guide

 Local queues

3. If you already have a local queue on the same queue manager with the name
ORANGE.LOCAL.QUEUE, this command fails. Use the REPLACE attribute, if
you want to overwrite the existing definition of a queue, but see also “Changing
local queue attributes” on page 71.

Defining a dead-letter queue
Each queue manager should have a local queue to be used as a dead-letter queue
so that messages that cannot be delivered to their correct destination can be stored
for later retrieval. You must explicitly tell the queue manager about the dead-letter
queue. You can do this by specifying a dead-letter queue on the crtmqm
command or you can use the ALTER QMGR command to specify one later. You
must also define the dead-letter queue before it can be used.

A sample dead-letter queue called SYSTEM.DEAD.LETTER.QUEUE is supplied
with the product in the file AMQSCOMA.TST. This queue is automatically created
when you run the sample. You can modify this definition if required. There is no
need to rename it, although you can if you like.

A dead-letter queue has no special requirements except that it must be a local
queue and its MAXMSGL (maximum message length) attribute must enable the
queue to accommodate the largest messages that the queue manager has to
handle.

MQSeries provides a dead-letter queue handler that allows you to specify how
messages found on a dead-letter queue are to be handled or disposed of. For
more information about the dead-letter queue handler, refer to Chapter 9, “The
MQSeries dead-letter queue handler” on page 113.

Displaying default object attributes
When you define an MQSeries object, it takes any attributes that you do not specify
from the default object. For example, when you define a local queue, the queue
inherits any attributes that you omit in the definition from the default local queue,
which is called SYSTEM.DEFAULT.LOCAL.QUEUE. To see exactly what these
attributes are, use the following command:

DISPLAY QUEUE (SYSTEM.DEFAULT.LOCAL.QUEUE) ALL

Note: The syntax of this command is different from that of the corresponding
DEFINE command.

You can selectively display attributes by specifying them individually. For example:

DISPLAY QUEUE (ORANGE.LOCAL.QUEUE) +
 MAXDEPTH +
 MAXMSGL +
 CURDEPTH

 Chapter 6. Administering local MQSeries objects 69

 Local queues

This command displays the three specified attributes as follows:

AMQ84ð9: Display Queue details.
 QUEUE(ORANGE.LOCAL.QUEUE)
 MAXDEPTH(1ððð)
 MAXMSGL(2ððð)
 CURDEPTH(ð)

CURDEPTH is the current queue depth, that is, the number of messages on the
queue. This is a useful attribute to display, because by monitoring the queue
depth, you can ensure that the queue does not become full.

Copying a local queue definition
You can copy a queue definition using the LIKE attribute on the DEFINE command.
For example:

DEFINE QLOCAL (MAGENTA.QUEUE) +
 LIKE (ORANGE.LOCAL.QUEUE)

This command creates a queue with the same attributes as our original queue
ORANGE.LOCAL.QUEUE, rather than those of the system default local queue.

You can also use this form of the DEFINE command to copy a queue definition, but
substituting one or more changes to the attributes of the original. For example:

DEFINE QLOCAL (THIRD.QUEUE) +
LIKE (ORANGE.LOCAL.QUEUE) +

 MAXMSGL(1ð24)

This command copies the attributes of the queue ORANGE.LOCAL.QUEUE to the
queue THIRD.QUEUE, but specifies that the maximum message length on the new
queue is to be 1024 bytes, rather than 2000.

Notes:

1. When you use the LIKE attribute on a DEFINE command, you are copying the
queue attributes only. You are not copying the messages on the queue.

2. If you a define a local queue, without specifying LIKE, it is the same as
DEFINE LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE).

70 MQSeries for Windows NT V2.0 System Management Guide

 Local queues

Changing local queue attributes
You can change queue attributes in two ways, using either the ALTER QLOCAL
command or the DEFINE QLOCAL command with the REPLACE attribute. In
“Defining a local queue” on page 68, we defined the queue
ORANGE.LOCAL.QUEUE. Suppose, for example, you wanted to increase the
maximum message length on this queue to 10 000 bytes.

� Using the ALTER command:

ALTER QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(1ðððð)

This command changes a single attribute, that of the maximum message
length; all the other attributes remain the same.

� Using the DEFINE command with the REPLACE option, for example:

DEFINE QLOCAL (ORANGE.LOCAL.QUEUE) MAXMSGL(1ðððð) REPLACE

This command changes not only the maximum message length, but all the
other attributes, which are given their default values. The queue is now put
enabled whereas previously it was put inhibited. Put enabled is the default, as
specified by the queue SYSTEM.DEFAULT.LOCAL.QUEUE, unless you have
changed it.

If you decrease the maximum message length on an existing queue existing
messages are not affected. Any new messages, however, must meet the new
criteria.

Clearing a local queue
To delete all the messages from a local queue called MAGENTA.QUEUE, use the
following command:

CLEAR QLOCAL (MAGENTA.QUEUE)

You cannot clear a queue if:

� There are uncommitted messages that have been put on the queue under
syncpoint.

� An application currently has the queue open.

 Chapter 6. Administering local MQSeries objects 71

 Local queues

Deleting a local queue
Use the MQSC command DELETE QLOCAL to delete a local queue. A queue
cannot be deleted if it has uncommitted messages on it. However, if the queue has
one or more committed messages, and no uncommitted messages, it can only be
deleted if you specify the PURGE option. For example:

DELETE QLOCAL (PINK.QUEUE) PURGE

Specifying NOPURGE instead of PURGE ensures that the queue is not deleted if it
contains any committed messages.

Browsing local queues
If you need to look at the contents of the messages on a queue, MQSeries for
Windows NT provides a sample queue browser for this purpose. The browser is
supplied both as source and as an executable module. By default, the file names
and paths are:

Source C:\MQM\TOOLS\C\SAMPLES\AMQSBCGð.C

Executable C:\MQM\TOOLS\C\SAMPLES\BIN\AMQSBCG.EXE

The sample takes two parameters, the queue name and the queue manager name.
For example

AMQSBCG BVTLOCAL bvt1

There are no defaults; both parameters are required. Typical results from this
command are:

AMQSBCGð - starts here
\\\\\\\\\\\\\\\\\\\\\\

 MQCONN to bvt1
 MQOPEN - 'BVTLOCAL'

 MQGET of message number 1
\\\\Message descriptor\\\\

 StrucId : 'MD ' Version : 1
Report : ð MsgType : 8
Expiry : -1 Feedback : ð
Encoding : 546 CodedCharSetId : 85ð
Format : ' '
Priority : ð Persistence : ð
MsgId : X'414D512ð627674312ð2ð2ð2ð2ð2ð2ð2ððððð4Bðð2EE2DB58'
CorrelId : X'ðð'
BackoutCount : ð

 ReplyToQ : ' '
 ReplyToQMgr : 'bvt1 '
\\ Identity Context
UserIdentifier : 'east '

72 MQSeries for Windows NT V2.0 System Management Guide

 Local queues

 AccountingToken :
 X'ð131ðð'
ApplIdentityData : ' '
\\ Origin Context

 PutApplType : '11'
 PutApplName : 'D:\MQM\BIN\UTTBVT5.EXE '
 PutDate : '19951212' PutTime : 'ð92ð2422'
ApplOriginData : ' '

\\\\ Message \\\\

 length - 39 bytes

ðððððððð: 412ð 6C69 7474 6C65 2ð6C 6561 726E 696E 'A little learnin'
ðððððð1ð: 672ð 6973 2ð61 2ð64 616E 6765 726F 7573 'g is a dangerous'
ðððððð2ð: 2ð74 6869 6E67 3B ' thing; '

 MQGET of message number 2
\\\\Message descriptor\\\\

 StrucId : 'MD ' Version : 1
Report : ð MsgType : 8
Expiry : -1 Feedback : ð
Encoding : 546 CodedCharSetId : 85ð
Format : ' '
Priority : ð Persistence : ð
MsgId : X'414D512ð627674312ð2ð2ð2ð2ð2ð2ð2ððððð4Bð12EE2DB58'
CorrelId : X'ðð'
BackoutCount : ð

 ReplyToQ : ' '
 ReplyToQMgr : 'bvt1 '
\\ Identity Context
UserIdentifier : 'east '

 AccountingToken :
 X'ð131ðð'
ApplIdentityData : ' '
\\ Origin Context

 PutApplType: '11'
 PutApplName : 'D:\MQM\BIN\UTTBVT5.EXE '
 PutDate : '19951212' PutTime : 'ð92ð2425'
ApplOriginData : ' '

\\\\ Message \\\\

 length - 39 bytes

ðððððððð: 412ð 6C69 7474 6C65 2ð6C 6561 726E 696E 'A little learnin'
ðððððð1ð: 672ð 6973 2ð61 2ð64 616E 6765 726F 7573 'g is a dangerous'
ðððððð2ð: 2ð74 6869 6E67 3B ' thing; '

 No more messages
 MQCLOSE
 MQDISC

 Chapter 6. Administering local MQSeries objects 73

 Alias queues

Working with alias queues
An alias queue (also known as a queue alias) provides a method of redirecting MQI
calls. An alias queue is not a real queue but a definition that resolves to a real
queue. The alias queue definition contains a target queue name which is specified
by the TARGQ attribute (BaseQName in PCF). When an application specifies an
alias queue in an MQI call, the queue manager resolves the real queue name at
run time.

For example, an application has been developed to put messages on a queue
called MY.ALIAS.QUEUE. It specifies the name of this queue when it makes an
MQOPEN request and, indirectly, it puts a message on this queue. The application
is not aware that the queue is an alias queue. For each MQI call using this alias,
the queue manager resolves the real queue name, which could be either a local
queue or a remote queue defined at this queue manager.

By changing the value of the TARGQ attribute, you can redirect MQI calls to
another queue, possibly on another queue manager. This is useful for
maintenance, migration, and load-balancing.

Defining an alias queue
The following command creates an alias queue:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (YELLOW.QUEUE)

This command redirects MQI calls that specify MY.ALIAS.QUEUE to the queue
YELLOW.QUEUE. The command does not create the target queue; the MQI calls
fail if the queue YELLOW.QUEUE does not exist at run time.

If you change the alias definition, you can redirect the MQI calls to another queue.
For example:

DEFINE QALIAS (MY.ALIAS.QUEUE) TARGQ (MAGENTA.QUEUE) REPLACE

This command redirects MQI calls to another queue, MAGENTA.QUEUE.

You can also use alias queues to make a single queue (the target queue) appear
to have different attributes for different applications. You do this by defining two
aliases, one for each application. Suppose there are two applications:

� Application ALPHA can put messages on YELLOW.QUEUE, but is not allowed
to get messages from it.

� Application BETA can get messages from YELLOW.QUEUE, but is not allowed
to put messages on it.

74 MQSeries for Windows NT V2.0 System Management Guide

 Alias queues

You can do this using the following commands:

\ This alias is put enabled and get disabled for application ALPHA

DEFINE QALIAS (ALPHAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (ENABLED) +

 GET (DISABLED)

\ This alias is put disabled and get enabled for application BETA

DEFINE QALIAS (BETAS.ALIAS.QUEUE) +
TARGQ (YELLOW.QUEUE) +
PUT (DISABLED) +

 GET (ENABLED)

ALPHA uses the queue name ALPHAS.ALIAS.QUEUE in its MQI calls; BETA uses
the queue name BETAS.ALIAS.QUEUE. They both access the same queue, but in
different ways.

You can use the LIKE and REPLACE attributes when you define queue aliases in
the same way that you use these attributes with local queues.

Using other commands with queue aliases
You can use the appropriate MQSC commands to display or alter queue alias
attributes, or delete the queue alias object. For example:

\ Display the queue alias' attributes
\ ALL = Display all attributes

DISPLAY QUEUE (ALPHAS.ALIAS.QUEUE) ALL

\ ALTER the base queue name, to which the alias resolves.
\ FORCE = Force the change even if the queue is open.

ALTER QALIAS (ALPHAS.ALIAS.QUEUE) TARGQ(ORANGE.LOCAL.QUEUE) FORCE

\ Delete this queue alias, if you can.

DELETE QALIAS (ALPHAS.ALIAS.QUEUE)

You cannot delete a queue alias if, for example, an application currently has the
queue open or has a queue open that resolves to this queue. See the MQSeries
Command Reference manual for more information about this and other queue alias
commands.

 Chapter 6. Administering local MQSeries objects 75

 Model queues

Working with model queues
A queue manager creates a dynamic queue if it receives an MQI call from an
application specifying a queue name that has been defined as a model queue. The
name of the new dynamic queue is generated by the queue manager when the
queue is created. A model queue is a template that specifies the attributes of any
dynamic queues created from it.

Model queues provide a convenient method for applications to create queues as
they are required.

Defining a model queue
You define a model queue with a set of attributes in the same way that you define
a local queue. Model queues and local queues have the same set of attributes
except that on model queues you can specify whether the dynamic queues created
are temporary or permanent. (Permanent queues are maintained across queue
manager restarts, temporary ones are not). For example:

DEFINE QMODEL (GREEN.MODEL.QUEUE) +
DESCR('Queue for messages from application X') +
PUT (DISABLED) +
GET (ENABLED) +

 NOTRIGGER +
MSGDLVSQ (FIFO) +
MAXDEPTH (1ððð) +
MAXMSGL (2ððð) +
USAGE (NORMAL) +

 DEFTYPE (PERMDYN)

This command creates a model queue definition. From the DEFTYPE attribute, the
actual queues created from this template will be permanent dynamic queues.

Note: The attributes not specified are automatically copied from the
SYSYTEM.DEFAULT.MODEL.QUEUE default queue.

You can use the LIKE and REPLACE attributes when you define model queues, in
the same way that you use them with local queues.

76 MQSeries for Windows NT V2.0 System Management Guide

 Managing objects for triggering

Using other commands with model queues
You can use the appropriate MQSC commands to display or alter a model queue’s
attributes, or delete the model queue object. For example:

\ Display the model queue's attributes
\ ALL = Display all attributes

DISPLAY QUEUE (GREEN.MODEL.QUEUE) ALL

\ ALTER the model to enable puts on any
\ dynamic queue created from this model.

ALTER QMODEL (BLUE.MODEL.QUEUE) PUT(ENABLED)

\ Delete this model queue:

DELETE QMODEL (RED.MODEL.QUEUE)

Managing objects for triggering
MQSeries provides a facility for starting an application automatically when certain
conditions on a queue are met. One example of the conditions is when the number
of messages on a queue reaches a specified number. This facility is called
triggering and is described in detail in the MQSeries Application Programming
Guide. This section describes how to set up the required objects to support
triggering on MQSeries for Windows NT.

Defining an application queue for triggering
An application queue is a local queue that is used by applications for messaging,
through the MQI. Triggering requires a number of queue attributes to be defined
on the application queue. Triggering itself is enabled by the Trigger attribute
(TRIGGER in MQSC).

In this example, a trigger event is to be generated when there are 100 messages of
priority 5 or greater on the local queue MOTOR.INSURANCE.QUEUE, as follows:

DEFINE QLOCAL (MOTOR.INSURANCE.QUEUE) +
PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
MAXMSGL (2ððð) +
DEFPSIST (YES) +
INITQ (MOTOR.INS.INIT.QUEUE) +

 TRIGGER +
TRIGTYPE (DEPTH) +

 TRIGDPTH (1ðð)+
 TRIGMPRI (5)

 Chapter 6. Administering local MQSeries objects 77

 Managing objects for triggering

QLOCAL (MOTOR.INSURANCE.QUEUE)
The name of the application queue being defined.

PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)
The name of the application to be started by a trigger monitor program.

MAXMSGL (2ððð)
The maximum length of messages on the queue.

DEFPSIST (YES)
The default is that messages are persistent on this queue.

INITQ (MOTOR.INS.INIT.QUEUE)
The name of the initiation queue on which the queue manager is to put the
trigger message.

TRIGGER
The trigger attribute value.

TRIGTYPE (DEPTH)
A trigger event is generated when the number of messages of the required
priority (TRIMPRI) reaches the number specified in TRIGDPTH.

TRIGDPTH (1ðð)
The number of messages required to generate a trigger event.

TRIGMPRI (5)
The priority of messages that are to be counted by the queue manager in
deciding whether to generate a trigger event. Only messages with priority 5
or higher are counted.

Defining an initiation queue
When a trigger event occurs, the queue manager puts a trigger message on the
initiation queue specified in the application queue definition. Initiation queues have
no special settings, but you can use the following definition of the local queue
MOTOR.INS.INIT.QUEUE for guidance:

DEFINE QLOCAL(MOTOR.INS.INIT.QUEUE) +
GET (ENABLED) +

 NOSHARE +
 NOTRIGGER +

MAXMSGL (2ððð) +
 MAXDEPTH (1ð)

78 MQSeries for Windows NT V2.0 System Management Guide

 Managing objects for triggering

Creating a process definition
Use the DEFINE PROCESS command to create a process definition. A process
definition associates an application queue with the application that is to process
messages from the queue. This is done through the PROCESS attribute on the
application queue MOTOR.INSURANCE.QUEUE. The following MQSC command
defines the required process, MOTOR.INSURANCE.QUOTE.PROCESS, identified
in this example:

DEFINE PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) +
DESCR ('Insurance request message processing') +
APPLTYPE (WINDOWSNT) +
APPLICID ('c:\appl\test\irmpð1.exe') +
USERDATA ('open, close, 235')

MOTOR.INSURANCE.QUOTE.PROCESS
The name of the process definition.

DESCR ('Insurance request message processing')
The text following the keyword is a description of the application
program to which the definition relates. This text is displayed when
you use the DISPLAY PROCESS command. This can help you to
identify what the process does. If you use spaces in the string, you
must enclose the string in single quotes.

APPLTYPE (Windows NT)
The type of the application is one that runs on Windows NT.

APPLICID ('c:\appl\test\irmpð1.exe')
The name of the application executable.

USERDATA ('open, close, 235')
User-defined data, which can be used by the application.

Displaying your process definition
Use the DISPLAY PROCESS command, with the ALL keyword, to examine the
results of your definition. For example:

DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL

24 : DISPLAY PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS) ALL
AMQ84ð7: Display Process details.

DESCR ('Insurance request message processing')
 APPLICID ('c:\appl\test\irmpð1.exe')

USERDATA (open, close, 235)
 PROCESS (MOTOR.INSURANCE.QUOTE.PROCESS)
 APPLTYPE (WINDOWSNT)

You can also use the MQSC command ALTER PROCESS to alter an existing
process definition and DELETE PROCESS to delete a process definition.

 Chapter 6. Administering local MQSeries objects 79

 Managing objects for triggering

80 MQSeries for Windows NT V2.0 System Management Guide

 Channels and remote queueing

Chapter 7. Administering remote MQSeries objects

This chapter describes how to administer MQSeries objects on another queue
manager. It also describes how you can use remote queue objects to control the
destination of messages and reply messages.

It contains these sections:

� “Understanding channels and remote queuing”
� “Creating a local definition of a remote queue” on page 82
� “Remote administration” on page 85
� “Using remote queue definitions for aliases” on page 91

For more information about channels, their attributes, and how to set them up, refer
to the MQSeries Distributed Queuing Guide.

Understanding channels and remote queuing
Queue managers communicate with each other using channels. For example, if an
application is to put a message on a queue managed by a remote queue manager,
a channel must be set up between the two queue managers. The channel is
defined to the queue managers at each end of the connection. Each channel is
named and has a number of attributes that define, for example, the type of channel
and the protocol to be used for communication.

Channels are used for sending messages between queue managers. These
messages may originate from:

� User-written application programs that transfer data from one node to another.

� User-written administration applications that use PCFs.

� Queue managers sending:

– Instrumentation event messages to another queue manager.

– MQSC commands issued from a runmqsc command in indirect
mode—where the commands are run on another queue manager.

Channels are unidirectional, that is, messages can only be sent in one direction.
Channel definitions are made in complementary pairs, one at each end of the
connection. For example, if one end is a sender, the other must be a receiver.

Channels are ‘linked’ to queue managers (and therefore the applications they
serve) by transmission queues and remote queue definitions. A transmission
queue is used to forward messages (through a channel) to another queue
manager. A remote queue definition identifies a queue on another queue manager.
To give you an idea of how these things can fit together:

� A remote queue definition specifies a transmission queue.

� A channel serves a transmission queue, which is specified when the channel is
defined.

“Preparing channels and transmission queues for remote administration” on
page 86 shows how to use these definitions to set up remote administration.

 Copyright IBM Corp. 1994, 1996 81

 Remote queues

You define a channel using the MQSC command, DEFINE CHANNEL. Channels,
their attributes, and how you use them in distributed queuing, are discussed at
length in the MQSeries Distributed Queuing Guide. In this section, the examples
concerned with channels use the default channel attributes unless otherwise
specified.

Creating a local definition of a remote queue
You can use a remote queue definition as a local definition of a remote queue.
You create a remote queue object on your local queue manager to identify a local
queue on another queue manager.

Understanding how local definitions of remote queues work
An application connects to a local queue manager and then issues an MQOPEN
call. In the open call, the queue name specified is that of a remote queue definition
on the local queue manager. The remote queue definition supplies the names of
the destination queue, the destination queue manager, and optionally, a
transmission queue. To put a message on the remote queue, the application
issues an MQPUT call, specifying the handle returned from the MQOPEN call. The
queue manager appends the remote queue name and the remote queue manager
name to a transmission header in the message. This information is used to route
the message to its correct destination in the network.

As administrator, you can control the destination of the message by altering the
remote queue definition.

Example: An application is required to put a message on a queue owned by a
remote queue manager.

How it works: The application connects to a queue manager, for example
saturn.queue.manager. The destination queue is owned by another queue
manager.

On the MQOPEN call, the application specifies these fields:

After this, the application issues an MQPUT call to put a message on to this queue.

Field Value Description

ObjectName
 CYAN.REMOTE.QUEUE

Specifies the local name of the remote queue object. This
defines the destination queue and the destination queue
manager.

ObjectType
 (Queue)

Identifies this object as a queue.

ObjectQmgrName
 Blank
 or
 saturn.queue.manager

This field is optional

If blank, the name of the local queue manager is assumed.
(This is the queue manager on which the remote queue
definition was made and to which the application is
connected.)

If not blank, the name of the local queue manager must be
specified.

82 MQSeries for Windows NT V2.0 System Management Guide

 Remote queues

On the local queue manager, you can create a local definition of a remote queue
using the following MQSC commands:

DEFINE QREMOTE (CYAN.REMOTE.QUEUE) +
DESCR ('Queue for auto insurance requests from the branches') +
RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE) +
RQMNAME (jupiter.queue.manager) +

 XMITQ (INQUOTE.XMIT.QUEUE)

Where:

QREMOTE (CYAN.REMOTE.QUEUE)

Specifies the local name of the remote queue object. This is the name that
applications connected to this queue manager must specify in the MQOPEN
call to open the queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE on the remote
queue manager jupiter.queue.manager.

DESCR ('Queue for auto insurance requests from the branches')

Is some descriptive text that you can put in to remind yourself and others
what this queue is for.

RNAME (AUTOMOBILE.INSURANCE.QUOTE.QUEUE)

Specifies the name of the destination queue on the remote queue manager.
This is the real destination queue for messages that are sent by applications
that specify the queue name CYAN.REMOTE.QUEUE. The queue
AUTOMOBILE.INSURANCE.QUOTE.QUEUE must be defined as a local queue on the
remote queue manager.

RQMNAME (jupiter.queue.manager)

Specifies the name of the remote queue manager that owns the destination
queue AUTOMOBILE.INSURANCE.QUOTE.QUEUE.

XMITQ (INQUOTE.XMIT.QUEUE)

Specifies the name of the transmission queue. This is optional; if not
specified, a queue with the same name as the remote queue manager is
used.

In either case, the appropriate transmission queue must be defined as a
local queue with a Usage attribute specifying that it is a transmission queue
(see “Creating a transmission queue” on page 84 for further details on using
USAGE(XMIT) in MQSC).

An alternative way of putting messages on a remote queue
Using a local definition of a remote queue is not the only way of putting messages
on a remote queue. Applications can specify the full queue name, which includes
the remote queue manager name, as part of the MQOPEN call. In this case, a
local definition of a remote queue is not required. However, this alternative means
that applications must either know or have access to the name of the remote queue
manager at run time.

 Chapter 7. Administering remote MQSeries objects 83

 Remote queues

Using other commands with remote queues
You can use the appropriate MQSC commands to display or alter the attributes of a
remote queue object, or you can delete the remote queue object. For example:

\ Display the remote queue's attributes.
\ ALL = Display all attributes

DISPLAY QUEUE (CYAN.REMOTE.QUEUE) ALL

\ ALTER the remote queue to enable puts.
\ This does not affect the destination queue,
\ only applications that specify this remote queue.

ALTER QREMOTE (CYAN.REMOTE.QUEUE) PUT(ENABLED)

\ Delete this remote queue
\ This does not affect the destination queue
\ only its local definition

DELETE QREMOTE (CYAN.REMOTE.QUEUE)

Note: If you delete a remote queue, you only delete the local representation of the
remote queue. You do not delete the target queue on the remote system, or any
messages on it.

Creating a transmission queue
A transmission queue is a local queue that is used when a queue manager
forwards messages to a remote queue manager through a message channel. The
channel provides a one-way link to the remote queue manager. Messages are
queued at the transmission queue until the channel can accept them. When you
define a channel, you must specify a transmission queue name at the sending end
of the message channel.

The Usage attribute (USAGE in MQSC) defines whether a queue is a transmission
queue or a normal queue.

Default transmission queues
Optionally, you can specify a transmission queue in a remote queue object, using
the XmitQName attribute (XMITQ in MQSC). If no transmission queue is defined, a
default is used. When applications put messages on a remote queue, if a
transmission queue with the same name as the destination queue manager exists,
that queue is used. If this queue does not exist, the queue specified by the
DefaultXmitQ attribute (DEFXMITQ in MQSC) on the local queue manager is used.

For example, the following MQSC command creates a default transmission queue
on source.queue.manager for messages going to target.queue.manager:

84 MQSeries for Windows NT V2.0 System Management Guide

 Remote administration

DEFINE QLOCAL ('target.queue.manager') +
DESCR ('Default transmission queue for target qm') +

 USAGE (XMITQ)

Applications can put messages directly on a transmission queue, or they can be put
there indirectly, for example, through a remote queue definition. See also “Creating
a local definition of a remote queue” on page 82.

 Remote administration
This section tells you how to administer a remote queue manager from a local
queue manager. You can implement remote administration from a local node
using:

 � MQSC commands
 � PCF commands

Preparing the queues and channels is essentially the same for both methods. In
this book, the examples show MQSC commands, because they are easier to
understand. However, you can convert the examples to PCFs if you wish. For
more information about writing administration programs using PCFs, see MQSeries
Programmable System Management.

In remote administration you send MQSC commands to a remote queue
manager—either interactively or from a text file containing the commands. The
remote queue manager may be on the same machine or, more typically, on a
different machine. You can remotely administer queue managers in different
MQSeries environments, including UNIX systems, AS/400, MVS/ESA, and OS/2.

To implement remote administration, you must create certain objects. Unless you
have specialized requirements, you should find that the default values (for example,
for message length) are sufficient.

Preparing queue managers for remote administration
Figure 14 on page 86 shows the configuration of queue managers and channels
that is required for remote administration. From the source queue manager,
source.queue.manager, you can (1) issue MQSC commands, and (2) receive the
results from these commands, if possible. The destination queue,
target.queue.manager, processes the commands and generates any operator
messages.

 Chapter 7. Administering remote MQSeries objects 85

 Remote administration

runmqsc
MQSC commands

replies

Process commands
for example:
DEFINE QLOCAL

Local system Remote system

source.queue.manager target.queue.manager

Figure 14. Remote administration

On both systems, if you have not already done so, you must:

� Create the queue manager, using the crtmqm command.
� Start the queue manager, using the strmqm command.
� Run the sample AMQSCOMA.TST, using the runmqsc command.

See “Creating the default and system objects” on page 50 for more information
about these steps. You have to run these commands locally or over a network
facility.

On the destination queue manager:

� The command queue, SYSTEM.ADMIN.COMMAND.QUEUE, must be present.
This is created from the sample command file AMQSCOMA.TST.

� The command server must be started, using the strmqcsv command.

Preparing channels and transmission queues for remote
administration

To run MQSC commands remotely, you must set up two channels, one for each
direction, and their associated transmission queues. This example assumes that
TCP/IP is being used as the transport type and that you know the TCP/IP address
involved.

The channel source.to.target is for sending MQSC commands from the source
queue manager to the destination. Its sender is at source.queue.manager and its
receiver is at queue manager target.queue.manager. The channel
target.to.source is for returning the output from commands and any operator
messages that are generated to the source queue manager. You must also define
a transmission queue for each sender. This queue is a local queue that is given
the name of the receiving queue manager. Figure 15 on page 87 summarizes this
configuration. However, you should be aware that the
SYSTEM.MQSC.REPLY.QUEUE is the name of the model queue in
AMQSCOMA.TST that is used by MQSC to develop its own dynamic reply queue.
This queue name varies and is internal to MQSC.

86 MQSeries for Windows NT V2.0 System Management Guide

 Remote administration

replies

runmqsc

Local system Remote system

source.queue.manager target.queue.manager

XMITQ=target.queue.manager

source.to.target

target.to.source

XMITQ=source.queue.manager

SYSTEM.ADMIN.COMMAND.QUEUE

SYSTEM.MQSC.REPLY.QUEUE

commands

Figure 15. Setting up channels and queues for remote administration

See the MQSeries Distributed Queuing Guide for more information about setting up
remote channels.

Defining channels and transmission queues
On the source queue manager, issue these MQSC commands to define the
channels and the transmission queue:

\ Define the sender channel on the source queue manager

DEFINE CHANNEL ('source.to.target') +
 CHLTYPE(SDR) +

CONNAME (RHX5498) +
XMITQ ('target.queue.manager') +

 TRPTYPE(TCP)

\ Define the receiver channel on the source queue manager

DEFINE CHANNEL ('target.to.source') +
 CHLTYPE(RCVR) +
 TRPTYPE(TCP)

\ Define the transmission queue on the source queue manager

DEFINE QLOCAL ('target.queue.manager') +
 USAGE (XMITQ)

 Chapter 7. Administering remote MQSeries objects 87

 Remote administration

Issue these commands on the destination queue manager (target.queue.manager),
to create the channels and the transmission queue there:

\ Define the sender channel on the destination queue manager

DEFINE CHANNEL ('target.to.source') +
 CHLTYPE(SDR) +

CONNAME (RHX7721) +
XMITQ ('source.queue.manager') +

 TRPTYPE(TCP)

\ Define the receiver channel on the destination queue manager

DEFINE CHANNEL ('source.to.target') +
 CHLTYPE(RCVR) +
 TRPTYPE(TCP)

\ Define the transmission queue on the destination queue manager

DEFINE QLOCAL ('source.queue.manager') +
 USAGE (XMITQ)

Note: The TCP/IP connection names specified for the CONNAME attribute in the
sender channel definitions are for illustration only. This is the network name of the
machine at the other end of the connection. Use the values appropriate for your
network.

Start the channels
The following description assumes that both ends of the channel are running on
MQSeries for Windows NT. If this is not the case, refer to the relevant
documentation for the non-Windows NT end of the channel.

To start the two channels, first start a listener as a background process at the
receiver end of each channel.

� On the source queue manager, type:

START runmqlsr /t TCP /m source.queue.manager

88 MQSeries for Windows NT V2.0 System Management Guide

 Remote administration

� On the destination queue.manager, type:

START runmqlsr /t TCP /m target.queue.manager

Then start the channels, again as background processes:

� On the source queue manager, type:

START runmqchl /c source.to.target

� On the destination queue manager, type:

START runmqchl /c target.to.source

The runmqlsr and runmqchl commands are MQSeries for Windows NT control
commands. They cannot be issued using runmqsc .

Issuing MQSC commands remotely
The command server must be running on the destination queue manager, if it is
going to process MQSC commands remotely. (This is not necessary on the source
queue manager.)

� On the destination queue manager, type:

 strmqcsv target.queue.manager

� On the source queue manager, you can then run MQSC interactively in queued
mode by typing:

runmqsc /w 3ð target.queue.manager

This form of the runmqsc command—with the /w flag—runs the MQSC commands
in queued mode, where commands are put (in a modified form) on the
command-server input queue and executed in order.

When you type in an MQSC command, it is redirected to the remote queue
manager, in this case, target.queue.manager. The timeout is set to 30 seconds; if
a reply is not received within 30 seconds, the following message is generated on
the local (source) queue manager:

AMQ8416: MQSC timed out waiting for a response from the command server.

At the end of the MQSC session, the local queue manager displays any timed-out
responses that have arrived. When the MQSC session is finished, any further
responses are discarded.

 Chapter 7. Administering remote MQSeries objects 89

 Remote administration

In queued mode, you can also run an MQSC command file on a remote queue
manager. For example:

runmqsc /w 6ð target queue manager < mycomds.in > report.out

where mycomds.in is a file containing MQSC commands and report.out is the
report file.

Working with queue managers on MVS/ESA
You can issue MQSC commands to an MVS/ESA queue manager from an
MQSeries for Windows NT queue manager. However, to do this, you must modify
the runmqsc command and the channel definitions at the sender.

In particular, you add the /x flag to the runmqsc command on a Windows NT node:

runmqsc /w 3ð /x target.queue.manager

On the sender channel, set the CONVERT attribute to YES. This specifies that the
required data conversion between the systems is performed at the Windows NT
end. The channel definition command now becomes:

\ Define the sender channel at the source queue manager on Windows NT

DEFINE CHANNEL (source.to.target) +
 CHLTYPE(SDR) +

CONNAME (RHX5498) +
XMITQ (target.queue.manager) +

 TRPTYPE(TCP) +
 CONVERT (YES)

You must also define the receiver channel and the transmission queue at the
source queue manager as before. Again, this example assumes that TCP/IP is the
transmission protocol being used.

Recommendations for remote queuing
When you are implementing remote queuing:

1. Put the MQSC commands to be run on the remote system in a command file.

2. Verify your MQSC commands locally, by specifying the /v flag on the runmqsc
command.

You cannot use runmqsc to verify MQSC commands on another queue
manager.

3. Check, as far as possible, that the command file runs locally without error.

4. Finally, run the command file against the remote system.

90 MQSeries for Windows NT V2.0 System Management Guide

 Remote queue definitions

If you have problems using MQSC remotely
If you have difficulty in running MQSC commands remotely, use the following check
list to see if you have:

� Started the command server on the destination queue manager.

� Defined a valid transmission queue.

� Defined the two ends of the message channels for both:

– The channel along which the commands are being sent.
– The channel along which the replies are to be returned.

� Specified the correct connection name (CONNAME) in the channel definition.

� Started the listeners before you started the message channels.

� Checked that the disconnect interval has not expired, for example, if a channel
started but then shut down after some time. This is especially important if you
start the channels manually.

See also “If you have problems with MQSC...” on page 65.

Using remote queue definitions for aliases
In addition to locating a queue on another queue manager, you can also use a
local definition of a remote queue for:

� Queue manager aliases
� Reply-to queue aliases

Both types of aliases are resolved through the local definition of a remote queue.

As usual in remote queuing, the appropriate channels must be set up if the
message is to arrive at its destination.

Queue manager aliases
With queue manager aliases, the name of the destination queue manager, as
specified in a message, is modified by a queue manager on the message route.
Queue manager aliases are important because you can use them to control the
destination of messages within a network of queue managers.

You do this by altering the remote queue definition on the queue manager at the
point of control. The sending application is not aware that the queue manager
name specified is an alias.

For more information about queue manager aliases, see the MQSeries Distributed
Queuing Guide.

Reply-to queue aliases
Optionally, an application can specify the name of a reply-to queue when it puts a
request message on a queue. If the application that processes the message
extracts the name of the reply-to queue, it knows where to send the reply message,
if required.

 Chapter 7. Administering remote MQSeries objects 91

 Remote queue definitions

A reply-to queue alias is a reply-to queue (as specified in a request message) that
is altered by a queue manager on the message route. The sending application is
not aware that the reply-to queue name specified is an alias.

A reply-to queue alias lets you alter the name of the reply-to queue and optionally
its queue manager. This in turn lets you control which route is used for reply
messages.

For more information about request messages, reply messages, and reply-to
queues, see MQSeries Application Programming Guide. For more information
about reply-to queue aliases, see the MQSeries Distributed Queuing Guide.

92 MQSeries for Windows NT V2.0 System Management Guide

 Before you begin

 Chapter 8. Security

This chapter describes the features of security control in MQSeries for Windows
NT, and explains how you can implement this control.

It contains these sections:

� “Before you begin”
� “Why you need to protect MQSeries resources” on page 94
� “Understanding the Object Authority Manager” on page 94
� “Using the Object Authority Manager commands” on page 97
� “Object Authority Manager guidelines” on page 99
� “Understanding the authorization specification tables” on page 103
� “Understanding authorization files” on page 109

MQSeries object security is available only when the Windows NT file system,
NTFS, is in use. Therefore, you are recommended to use NTFS.

Before you begin
If the mqm group does not already exist, MQSeries installation creates it.

User IDs in Windows NT user group mqm
If your user ID belongs to Windows NT group mqm, you have all authorities to all
resources. In order to run all the MQSeries for Windows NT control commands,
your user ID must belong to either the Windows NT Administrators group or the
mqm group. In particular, you need this authority to:

� Use the runmqsc command to run MQSC commands

� Administer authorities on MQSeries for Windows NT using the setmqaut
command

If you are sending channel commands to queue managers on a remote Windows
NT system, you must ensure that your user ID is a member of Windows NT group
mqm on the target system. For a list of PCF and MQSC channel commands, see
“Channel command security” on page 102.

Your user ID does not have to belong to group mqm in order to issue:

� PCF commands—including Escape PCFs—from an administration program
� MQI calls from an application program

Notes:

1. For MQSeries authorizations, user IDs and groups are limited to a maximum of
12 characters. This means that the Windows NT system defined Administrators
group cannot grant MQSeries authorities. You need to belong to the mqm
group to be able to do this.

2. When using a Domain user ID on a remote machine, you must be a member of
the Domain Administrators group to (1) issue commands (such as create queue
manager), and (2) grant MQSeries authorities.

 Copyright IBM Corp. 1994, 1996 93

 Object authority manager

For more information
For more information about:

� MQSeries for Windows NT command sets, see Chapter 4, “Understanding
administration command sets” on page 39.

� MQSeries for Windows NT control commands, see Part 2, “Reference” on
page 185.

� PCF commands and Escape PCFs, see the MQSeries Programmable System
Management manual.

� MQI calls, see the MQSeries Application Programming Guide and MQSeries
Application Programming Reference manual.

Why you need to protect MQSeries resources
MQSeries queue managers handle the transfer of information that is potentially
valuable, so you need the safeguard of an authority system. This ensures that the
resources that a queue manager owns and manages are protected from
unauthorized access, which could lead to the loss or disclosure of the information.
In a secure system, it is essential that none of the following is accessed or changed
by any unauthorized user or application:

� Connections to a queue manager

� Access to MQSeries objects such as queues, channels, and processes

� Commands for queue manager administration, including MQSC commands and
PCF commands

� Access to MQSeries messages

� Context information associated with messages

You should develop your own policy with respect to which users have access to
which resources.

Understanding the Object Authority Manager
By default, access to queue manager resources is controlled through an
authorization service installable component. This component is formally called the
Object Authority Manager (OAM) for MQSeries for Windows NT. It is supplied with
MQSeries for Windows NT and is automatically installed and enabled for each
queue manager you create, unless you specify otherwise. In this chapter, the term
OAM is used to denote the Object Authority Manager supplied with this product.

The OAM is an installable component of the authorization service. Providing the
OAM as an installable service gives you the flexibility to:

� Replace the supplied OAM with your own authorization service component
using the interface provided

� Augment the facilities supplied by the OAM with those of your own
authorization service component, again using the interface provided

� Remove or disable the OAM and run with no authorization service at all

For more information on installable services, see the MQSeries Programmable
System Management manual.

94 MQSeries for Windows NT V2.0 System Management Guide

 Object authority manager

The OAM manages users’ authorizations to manipulate MQSeries objects, such as
queues, process definitions, and channels. It also provides a command interface
through which you can grant or revoke access authority to an object for a specific
group of users. The decision to allow access to a resource is made by the OAM,
and the queue manager follows that decision. If the OAM cannot make a decision,
the queue manager prevents access to that resource.

How the OAM works
The OAM works by exploiting the security features of the underlying Windows NT
operating system. In particular, the OAM uses Windows NT user and group IDs.
Users can access queue manager objects only if they have the required authority.

Managing access through user groups
In the command interface, we use the term principal rather than user ID. The
reason for this is that authorities granted to a user ID can also be granted to other
entities, for example, an application program that issues MQI calls, or an
administration program that issues PCF commands. In these cases, the principal
associated with the program is not necessarily the user ID that was used when the
program was started. However, in this discussion, principals are always Windows
NT user IDs.

Group sets and the primary group
Managing access permissions to MQSeries resources is based on Windows NT
user groups, that is, groups of principals. A principal can belong to one or more
Windows NT groups. If it belongs to more than one group, the groups to which it
belongs are known as its group set.

Unlike MQSeries on Unix platforms, primary groups are not used. The role of the
primary group is fulfilled by the user ID. The Windows NT primary group
associated with a user ID is given no special treatment by MQSeries; it is handled
like any other group.

The OAM maintains authorizations at the level of groups and individual users.

When a principal belongs to more than one group
The authorizations that a principal has are the union of the authorizations of both its
group set and the user ID itself. Whenever a principal requests access to a
resource, the OAM computes this union, and then checks the authorization against
it. You can use the control command setmqaut to set the authorizations for a
specific principal. The queue manager must be running in order to issue the
setmqaut command. You must then stop and restart the queue manager so that
the command takes effect. This is because the group authorizations associated
with a principal are cached when they are computed by the OAM. Any changes
made to a group’s authorizations after it has been cached are not recognized until
the queue manager is restarted.

Default user group
The OAM recognizes a default user group to which all users are nominally
assigned. This group has the group ID, nobody. By default, no authorizations are
given to this group. Users without specific authorizations can be granted access to
MQSeries resources through this group ID.

 Chapter 8. Security 95

 Object authority manager

Resources you can protect with the OAM
Through OAM you can control:

� Access to MQSeries objects through the MQI. When an application program
attempts to access an object, the OAM checks if the user ID making the
request has the authorization (through its own user ID and its group set
authorities) for the operation requested.

In particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

� Permission to use MQSC commands.

� Permission to use control commands.

� Permission to use PCF commands.

Different groups of users may be granted different kinds of access authority to the
same object. For example, for a specific queue, one group may be allowed to
perform both put and get operations; another group may be allowed only to browse
the queue (MQGET with browse option). Similarly, some groups may have get and
put authority to a queue, but are not allowed to alter or delete the queue.

Using groups for authorizations
Using groups, rather than individual principals, for authorization reduces the amount
of administration required. Typically, a particular kind of access is required by more
than one principal. For example, you might define a group consisting of end users
who want to run a particular application.

The creator of an object is the owner of that object. Public access is always NONE
unless you change it explicitly. New users can be given access simply by adding
their Windows NT user ID to the appropriate group.

Try to keep the number of groups as small as possible. For example, dividing
principals into one group for application users and one for administrators is a good
place to start.

Disabling the object authority manager
By default, the OAM is enabled. You can disable it by setting the Windows NT
environment variable MQSNOAUT before the queue manager is created, as
follows:

SET MQSNOAUT=yes

However, if you do this you cannot, in general, restart the OAM later. A much
better approach is to have the OAM enabled and ensure that all users and
applications have access through an appropriate group ID.

You can also disable the OAM for testing purposes only by removing the
authorization service stanza in the queue manager configuration file (QM.INI).

96 MQSeries for Windows NT V2.0 System Management Guide

 Using OAM commands

Using the Object Authority Manager commands
The OAM provides a command interface for granting and revoking authority.
Before you can use these commands, you must be suitably authorized—your user
ID must belong to the Windows NT group mqm.

If your user ID is a member of mqm, you have a ‘super user’ authority to the queue
manager. This means that you are authorized to issue any MQI request or
command from your user ID.

The OAM provides two commands that you can invoke from your Windows NT
shell to manage the authorizations of users. These are:

� setmqaut (Set or reset authority)
� dspmqaut (Display authority)

Authority checking occurs in the following calls: MQCONN, MQOPEN, MQPUT1,
and MQCLOSE.

Authority checking is performed at the first instance only on any of these calls, and
authority is not amended until you close and reopen the object.

Therefore, any changes made to the authority of an object using setmqaut do not
take effect until you close and reopen the object.

What you specify when you use the OAM commands
The authority commands apply to the specified queue manager; if you do not
specify a queue manager, the default queue manager is used. On these
commands, you must specify the object uniquely, that is, you must specify the
object name and its type. You also have to specify the principal or group name to
which the authority applies.

 Authorization lists
On the setmqaut command you specify a list of authorizations. This is simply a
shorthand way of specifying whether authorization is to be granted or revoked, and
which resources the authorization applies to. Each authorization in the list is
specified as a lowercase keyword, prefixed with a plus sign (+) or a minus sign (-).
Use a plus sign (+) to add the specified authorization or a minus sign (-) to remove
the authorization. You can specify any number of authorizations in a single
command. For example:

+browse -get +put

 Chapter 8. Security 97

 Using OAM commands

Using the setmqaut command
Provided you have the required authorization, you can use the setmqaut command
to grant or revoke authorization of a principal or user group to access a particular
object. The following example shows how the setmqaut command is used:

setmqaut /m saturn.queue.manager /t queue
/n RED.LOCAL.QUEUE /g GroupA
+browse -get +put

In this example:

This term... Specifies the...

saturn.queue.manager Queue manager name.

queue Object type.

RED.LOCAL.QUEUE Object name.

GroupA ID of the group to be given the authorizations.

+browse -get +put Authorization list for the specified queue. There
must be no spaces between the ‘+’ or ‘-’ signs
and the keyword.

The authorization list specifies the authorizations to be given, where:

This term... Specifies...

+browse Add authorization to browse (MQGET with browse option)
messages on the queue.

-get Remove authorization to get (MQGET) messages from the
queue.

+put Add authorization to put (MQPUT) messages on the queue.

This means that applications started with user IDs that belong to Windows NT user
group GroupA have these authorizations.

You can specify one or more principals and, at the same time, one or more groups.
For example, the following command revokes put authority on the queue MyQueue to
the principal FvUser and to groups GroupA and GroupB.

setmqaut /m saturn.queue.manager
/t queue /n MyQueue /p FvUser /g GroupA /g GroupB -put

For a formal definition of the command and its syntax, see “setmqaut (Set or reset
authority)” on page 230.

98 MQSeries for Windows NT V2.0 System Management Guide

 OAM guidelines

Authority commands and installable services
The setmqaut command takes an additional parameter that specifies the name of
the installable service component to which the update applies. You must specify
this parameter if you have multiple installable components running at the same
time. By default, this is not the case. If the parameter is omitted, the update is
made to the first installable service of that type, if one exists. By default, this is the
supplied OAM.

 Access authorizations
Authorizations defined by the authorization list associated with the setmqaut
command can be categorized as follows:

� Authorizations related to MQI calls
� Authorization related administration commands

 � Context authorizations
� General authorizations, that is, for MQI calls, for commands, or both.

Each authorization is specified by a keyword used with the setmqaut and
dspmqaut commands. These are described in “setmqaut (Set or reset authority)”
on page 230.

Display authority command
You can use the command dspmqaut to view the authorizations that a specific
principal or group has for a particular object. The flags have the same meaning as
those in the setmqaut command. Authorization can be displayed for only one
group or principal at a time. See “dspmqaut (Display authority)” on page 199 for a
formal specification of this command.

For example, the following command displays the authorizations that the group
GpAdmin has to a process definition named Annuities on queue manager
QueueMan1.

dspmqaut /m QueueMan1 /t process /n Annuities /g GpAdmin

The keywords displayed as a result of this command identify the authorizations that
are active.

Object Authority Manager guidelines
Some operations are particularly sensitive and should be limited to privileged users.
For example,

� Accessing certain special queues, such as transmission queues or the
command queue SYSTEM.ADMIN.COMMAND.QUEUE

� Running programs that use full MQI context options

� Creating and copying application queues, in general

 Chapter 8. Security 99

 OAM guidelines

Queue manager directories
The directory containing queues and other queue manager data is private to the
product. Objects in this directory have Windows NT user authorizations that relate
to their OAM authorizations. However, do not use standard Windows NT
commands to grant or evoke authorizations to MQI resources because MQSeries
objects are not necessarily the same as the corresponding system object name.
See “Understanding MQSeries file names” on page 53 for more information about
this.

 Queues
The authority to a dynamic queue is based on—but not necessarily the same
as—that of the model queue from which it is derived. See page 105 for more
information.

For alias queues and remote queues, the authorization is that of the object itself,
not the queue to which the alias or remote queue resolves. It is, therefore, possible
to authorize a user ID to access an alias queue that resolves to a local queue to
which the user ID has no access permissions.

Limit the authority to create queues to privileged users. If you do not, some users
might bypass the normal access control simply by creating an alias.

Alternate user authority
Alternate user authority controls whether one user ID can use the authority of
another user ID when accessing an MQSeries object. This is essential where a
server receives requests from a program and the server wishes to ensure that the
program has the required authority for the request. The server may have the
required authority, but it needs to know whether the program has the authority for
the actions it has requested.

For example:

� A server program running under user ID PAYSERV retrieves a request
message from a queue that was put on the queue by user ID USER1.

� When the server program gets the request message, it processes the request
and puts the reply back into the reply-to queue specified with the request
message.

� Instead of using its own user ID (PAYSERV) to authorize opening the reply-to
queue, the server can specify some other user ID, in this case, USER1. In this
example, you can use alternate user authority to control whether PAYSERV is
allowed to specify USER1 as an alternate user ID when it opens the reply-to
queue.

The alternate user ID is specified on the AlternateUserId field of the object
descriptor.

Note: You can use alternate user IDs on any MQSeries object. Use of an
alternate user ID does not affect the user ID used by any other resource managers.

100 MQSeries for Windows NT V2.0 System Management Guide

 OAM guidelines

 Context authority
Context is information that applies to a particular message and is contained in the
message descriptor, MQMD, which is part of the message. The context information
comes in two sections:

Identity section
This section specifies who the message came from. It consists of the following
fields:

 � UserIdentifier
 � AccountingToken
 � ApplIdentityData

Origin section
This section specifies where the message came from, and when it was put onto
the queue. It consists of the following fields:

 � PutApplType
 � PutApplName
 � PutDate
 � PutTime
 � ApplOriginData

Applications can specify the context data when either an MQOPEN or an MQPUT
call is made. This data may be generated by the application, it may be passed on
from another message, or it may be generated by the queue manager by default.
For example, context data can be used by server programs to check the identity of
the requester, testing whether the message came from an application running
under an authorized user ID.

A server program can use the UserIdentifier to determine the user ID of an
alternate user.

You use context authorization to control whether the user can specify any of the
context options on any MQOPEN or MQPUT1 call. For information about the
context options, see the MQSeries Application Programming Guide. For
descriptions of the message descriptor fields relating to context, see the MQSeries
Application Programming Reference manual.

Remote security considerations
For remote security, you should consider:

Put authority For security across queue managers you can specify the put
authority that is used when a channel receives a message sent
from another queue manager.

Specify the channel attribute PUTAUT as follows:

DEF Default user ID. This is the user ID that the message
channel agent is running under.

CTX The user ID in the message context.

Transmission queues
Queue managers automatically put remote messages on a
transmission queue; no special authority is required for this.
However, putting a message directly on a transmission queue
requires special authorization; (see Table 7 on page 104).

 Chapter 8. Security 101

 OAM guidelines

Channel exits Channel exits can be used for added security.

For more information about remote security, see the MQSeries Distributed Queuing
Guide.

Channel command security
Channel commands can be issued as PCF commands, MQSC commands, and
control commands.

 PCF commands
You can issue PCF channel commands by sending a PCF message to the
SYSTEM.ADMIN.COMMAND.QUEUE on a Windows NT system. The user ID, as
specified in the message descriptor of the PCF message, must belong to the mqm
or the Administrators group on the target system. These commands are:

 � Change Channel
 � Copy Channel
 � Create Channel
 � Delete Channel
 � Ping Channel
 � Reset Channel
 � Start Channel
� Start Channel Initiator

 � Stop Channel
 � Resolve Channel

See the MQSeries Programmable System Management manual for the PCF
security requirements.

MQSC channel commands
You can issue MQSC channel commands to a remote Windows NT system either
by sending the command directly in a PCF escape message or by issuing the
command using runmqsc in indirect mode. The user ID as specified in the
message descriptor of the associated PCF message must belong to the mqm or
the Administrators group on the target system. (PCF commands are implicit in
MQSC commands issued from runmqsc in indirect mode.) These commands are:

 � ALTER CHANNEL
 � DEFINE CHANNEL
 � DELETE CHANNEL
 � PING CHANNEL
 � RESET CHANNEL
 � START CHANNEL
 � START CHINIT
 � STOP CHANNEL
 � RESOLVE CHANNEL

For MQSC commands issued from the runmqsc command, the user ID in the PCF
message is that of the current user.

102 MQSeries for Windows NT V2.0 System Management Guide

 Authorization specification tables

Control commands for channels
For the control commands for channels, the user ID that issues them must belong
to the mqm or the Administrators group. These commands are:

� runmqchi (Run channel initiator)
� runmqchl (Run channel)
� runmqlsr (Run listener)

Understanding the authorization specification tables
The authorization specification tables starting on page 104 define precisely how the
authorizations work and the restrictions that apply. The tables apply to these
situations:

� Applications that issue MQI calls
� Administration programs that issue MQSC commands as escape PCFs
� Adminstration programs that issue PCF commands

In this section, the information is presented as a set of tables that specify the
following:

Action to be performed MQI option, MQSC command, or PCF command.

Access control object Queue, process, or queue manager.

Authorization required Expressed as an ‘MQZAO_’ constant.

In the tables, the constants prefixed by MQZAO_ correspond to the keywords in the
authorization list for the setmqaut command for the particular entity. For example,
MQZAO_BROWSE corresponds to the keyword +browse; similarly, the keyword
MQZAO_SET_ALL_CONTEXT corresponds to the keyword +setall and so on.
These constants are defined in the header file cmqzc.h, which is supplied with the
product. See “What the authorization files contain” on page 110 for more
information.

 MQI authorizations
An application is allowed to issue certain MQI calls and options only if the user
identifier under which it is running (or whose authorizations it is able to assume)
has been granted the relevant authorization.

Four MQI calls, MQCONN, MQOPEN, MQPUT1, and MQCLOSE, may require
authorization checks.

For MQOPEN and MQPUT1, the authority check is made on the name of the object
being opened, and not on the name, or names, resulting after a name has been
resolved. For example, an application may be granted authority to open an alias
queue without having authority to open the base queue to which the alias resolves.
The rule is that the check is carried out on the first definition encountered during
the process of name resolution that is not a queue-manager alias, unless the
queue-manager alias definition is opened directly; that is, its name appears in the
ObjectName field of the object descriptor. Authority is always needed for the
particular object being opened; in some cases additional queue-independent
authority, which is obtained through an authorization for the queue-manager object,
is required.

Table 7 on page 104 summarizes the authorizations needed for each call.

 Chapter 8. Security 103

 Authorization specification tables

Table 7. Security authorization needed for MQI calls

Authorization required for: Queue object (1) Process object Queue manager object

MQCONN option Not applicable Not applicable MQZAO_CONNECT

MQOPEN Option

MQOO_INQUIRE MQZAO_INQUIRE (2) MQZAO_INQUIRE (2) MQZAO_INQUIRE (2)

MQOO_BROWSE MQZAO_BROWSE Not applicable No check

MQOO_INPUT_* MQZAO_INPUT Not applicable No check

MQOO_SAVE_ ALL_CONTEXT (3) MQZAO_INPUT Not applicable No check

MQOO_OUTPUT (Normal queue) (4) MQZAO_OUTPUT Not applicable No check

MQOO_PASS_ IDENTITY_CONTEXT (5) MQZAO_PASS_
IDENTITY_ CONTEXT

Not applicable No check

MQOO_PASS_ ALL_CONTEXT (5, 6) MQZAO_PASS
_ALL_CONTEXT

Not applicable No check

MQOO_SET_ IDENTITY_CONTEXT (5,
6)

MQZAO_SET_
IDENTITY_ CONTEXT

Not applicable MQZAO_SET_
IDENTITY_ CONTEXT
(7)

MQOO_SET_ ALL_CONTEXT (5, 8) MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

MQOO_OUTPUT (Transmission queue)
(9)

MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

MQOO_SET MQZAO_SET Not applicable No check

MQOO_ALTERNATE_
USER_AUTHORITY

(10) (10) MQZAO_ALTERNATE_
USER_ AUTHORITY
(10, 11)

MQPUT1 Option

MQPMO_PASS_ IDENTITY_CONTEXT MQZAO_PASS_
IDENTITY_ CONTEXT
(12)

Not applicable No check

MQPMO_PASS_ ALL_CONTEXT MQZAO_PASS_
ALL_CONTEXT (12)

Not applicable No check

MQPMO_SET_ IDENTITY_CONTEXT MQZAO_SET_
IDENTITY_ CONTEXT
(12)

Not applicable MQZAO_SET_
IDENTITY_ CONTEXT
(7)

MQPMO_SET_ ALL_CONTEXT MQZAO_SET_
ALL_CONTEXT (12)

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

(Transmission queue) (9) MQZAO_SET_
ALL_CONTEXT

Not applicable MQZAO_SET_
ALL_CONTEXT (7)

MQPMO_ALTERNATE_
USER_AUTHORITY

(13) Not applicable MQZAO_ALTERNATE_
USER_ AUTHORITY
(11)

MQCLOSE Option

MQCO_DELETE MQZAO_DELETE (14) Not applicable Not applicable

MQCO_DELETE_PURGE MQZAO_DELETE (14) Not applicable Not applicable

104 MQSeries for Windows NT V2.0 System Management Guide

 Authorization specification tables

Specific notes:

1. If a model queue is being opened:

� MQZAO_DISPLAY authority is needed for the model queue, in addition to
whatever other authorities (also for the model queue) are required for the
open options specified.

� MQZAO_CREATE authority is not needed to create the dynamic queue.

� The user identifier used to open the model queue is automatically granted
all of the queue-specific authorities (equivalent to MQZAO_ALL) for the
dynamic queue created.

2. Either the queue, process, or queue manager object is checked, depending on
the type of object being opened.

3. MQOO_INPUT_* must also be specified. This is valid for a local, model, or
alias queue.

4. This check is performed for all output cases, except the case specified in note
9.

5. MQOO_OUTPUT must also be specified.

6. MQOO_PASS_IDENTITY_CONTEXT is also implied by this option.

7. This authority is required for both the queue manager object and the particular
queue.

8. MQOO_PASS_IDENTITY_CONTEXT, MQOO_PASS_ALL_CONTEXT, and
MQOO_SET_IDENTITY_CONTEXT are also implied by this option.

9. This check is performed for a local or model queue that has a Usage queue
attribute of MQUS_TRANSMISSION, and is being opened directly for output. It
does not apply if a remote queue is being opened (either by specifying the
names of the remote queue manager and remote queue, or by specifying the
name of a local definition of the remote queue).

10. At least one of MQOO_INQUIRE (for any object type), or (for queues)
MQOO_BROWSE, MQOO_INPUT_*, MQOO_OUTPUT, or MQOO_SET must
also be specified. The check carried out is as for the other options specified,
using the supplied alternate user identifier for the specific-named object
authority, and the current application authority for the
MQZAO_ALTERNATE_USER_IDENTIFIER check.

11. This authorization allows any AlternateUserId to be specified.

12. An MQZAO_OUTPUT check is also carried out, if the queue does not have a
Usage queue attribute of MQUS_TRANSMISSION.

13. The check carried out is as for the other options specified, using the supplied
alternate user identifier for the specific-named queue authority, and the current
application authority for the MQZAO_ALTERNATE_USER_IDENTIFIER check.

14. The check is carried out only if both of the following are true:

� A permanent dynamic queue is being closed and deleted.

� The queue was not created by the MQOPEN which returned the object
handle being used.

Otherwise, there is no check.

 Chapter 8. Security 105

 Authorization specification tables

General notes:

1. The special authorization MQZAO_ALL_MQI includes all of the following that
are relevant to the object type:

 � MQZAO_CONNECT
 � MQZAO_INQUIRE
 � MQZAO_SET
 � MQZAO_BROWSE
 � MQZAO_INPUT
 � MQZAO_OUTPUT
 � MQZAO_PASS_IDENTITY_CONTEXT
 � MQZAO_PASS_ALL_CONTEXT
 � MQZAO_SET_IDENTITY_CONTEXT
 � MQZAO_SET_ALL_CONTEXT
 � MQZAO_ALTERNATE_USER_AUTHORITY

2. MQZAO_DELETE (see note 14 on page 105) and MQZAO_DISPLAY are
classed as administration authorizations. They are not therefore included in
MQZAO_ALL_MQI.

3. ‘No check’ means that no authorization checking is carried out.

4. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue an MQPUT call to a process object.

 Administration authorizations
Administration authorizations allow a user to send administration commands via a
program as a message to a queue manager, for execution on behalf of that user.
The administration commands can be PCF commands or MQSC commands as
escape PCF messages.

Figure 16 shows the administration authorities required to administer a queue
manager with a command server running:

target.queue.manager

XM ITQ=Source.queue.manager

SYSTEM.ADMIN.COMMAND.QUEUESource.queue.manager

Figure 16. Administration authorities

106 MQSeries for Windows NT V2.0 System Management Guide

 Authorization specification tables

The minimum authority required for issuing administration commands are:

� Display authority for target.queue.manager

� Put authority for system.admin.command.queue

� Put authority for sender queue

See “Authorizations for MQSC commands in escape PCFs” for details on
administering objects.

Authorizations for MQSC commands in escape PCFs
Table 8 summarizes the authorizations needed for each MQSC command that is
contained in Escape PCF.

Table 8. MQSC commands and security authorization needed

(1) Authorization required for: Queue object Process object Queue manager object

MQSC command

ALTER object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

CLEAR QLOCAL MQZAO_CLEAR Not applicable Not applicable

DEFINE object NOREPLACE (2) MQZAO_CREATE (3) MQZAO_CREATE (3) Not applicable

DEFINE object REPLACE (2, 4) MQZAO_CHANGE MQZAO_CHANGE Not applicable

DELETE object MQZAO_DELETE MQZAO_DELETE Not applicable

DISPLAY object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Specific notes:

1. The user identifier, under which the program (for example, runmqsc) which
submits the command is running, must also have MQZAO_CONNECT authority
to the queue manager.

Either the queue, process, or queue manager object is checked, depending on
the type of object.

2. For DEFINE commands, MQZAO_DISPLAY authority is also needed for the
LIKE object if one is specified, or on the appropriate SYSTEM.DEFAULT.xxx
object if LIKE is omitted.

3. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the setmqaut command.

4. This applies if the object to be replaced does in fact already exist. If it does
not, the check is as for DEFINE object NOREPLACE.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The authority to execute an escape PCF depends on the MQSC command
within the text of the escape PCF message.

3. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot issue a CLEAR QLOCAL on a queue
manager object.

 Chapter 8. Security 107

 Authorization specification tables

Authorizations for PCF commands
Table 9 summarizes the authorizations needed for each PCF command.

Table 9. PCF commands and security authorization needed

(1) Authorization required for: Queue object Process object Queue manager object

PCF command

Change object MQZAO_CHANGE MQZAO_CHANGE MQZAO_CHANGE

Clear Queue MQZAO_CLEAR Not applicable Not applicable

Copy object (without replace) (2) MQZAO_CREATE (3) MQZAO_CREATE (3) Not applicable

Copy object (with replace) (2, 5) MQZAO_CHANGE MQZAO_CHANGE Not applicable

Create object (without replace) (4) MQZAO_CREATE (3) MQZAO_CREATE (3) Not applicable

Create object (with replace) (4, 5) MQZAO_CHANGE MQZAO_CHANGE Not applicable

Delete object MQZAO_DELETE MQZAO_DELETE Not applicable

Inquire object MQZAO_DISPLAY MQZAO_DISPLAY MQZAO_DISPLAY

Inquire object names No check No check No check

Reset queue statistics MQZAO_DISPLAY and
MQZAO_CHANGE

Not applicable Not applicable

Specific notes:

1. The user identifier under which the program submitting the command is running
must also have authority to connect to its local queue manager, and to open
the command admin queue for output.

Either the queue, process, or queue-manager object is checked, depending on
the type of object.

2. For Copy commands, MQZAO_DISPLAY authority is also needed for the From
object.

3. The MQZAO_CREATE authority is not specific to a particular object or object
type. Create authority is granted for all objects, for a specified queue manager,
by specifying an object type of QMGR on the setmqaut command.

4. For Create commands, MQZAO_DISPLAY authority is also needed for the
appropriate SYSTEM.DEFAULT.* object.

5. This applies if the object to be replaced already exists. If it does not, the check
is as for Copy or Create without replace.

General notes:

1. To perform any PCF command, you must have DISPLAY authority on the
queue manager.

2. The special authorization MQZAO_ALL_ADMIN includes all of the following that
are relevant to the object type:

 � MQZAO_CHANGE
 � MQZAO_CLEAR
 � MQZAO_DELETE
 � MQZAO_DISPLAY

MQZAO_CREATE is not included, because it is not specific to a particular
object or object type.

3. ‘No check’ means that no authorization checking is carried out.

108 MQSeries for Windows NT V2.0 System Management Guide

 Authorization files

4. ‘Not applicable’ means that authorization checking is not relevant to this
operation. For example, you cannot use a Clear Queue command on a
process object.

Understanding authorization files
The information in this section is given for problem determination. Under normal
circumstances, use authorization commands to view and change authorization
information.

Windows NT uses a specific file structure to implement security. You do not have
to do anything with these files, except to ensure that all the authorization files are
themselves secure.

Security is implemented by authorization files. From this perspective, there are
three types of authorization:

� Authorizations applying to single object, for example, the authority to put a
message on a queue

� Authorizations applying to a class of objects, for example, the authority to
create a queue

� Authorizations applying across all classes of objects, for example, the authority
to perform operations on behalf of different users.

Authorization file paths
The path to an authorization file depends on its type. When you specify an
authorization for an object, for example, the queue manager creates the appropriate
authorization files. It puts these files into a sub directory, the path of which is
defined by the queue manager name, the type of authorization, and where
appropriate, the object name.

Not all authorizations apply directly to instances of objects. For example, the
authorization to create an object applies to the class of objects rather than to an
individual instance. Also, some authorizations apply across the entire queue
manager, for example, alternate user authority means that a user can assume the
authorities associated with another user.

 Authorization directories
By default, the authorization directories for a queue manager called SATURN are:

\MQM\QMGRS\SATURN\AUTH\QUEUES Authorization files for queues.

\MQM\QMGRS\SATURN\AUTH\PROCDEF Authorization files for process
definitions.

\MQM\QMGRS\SATURN\AUTH\QMANAGER Authorization files for the queue
manager.

\MQM\QMGRS\SATURN\AUTH\@ACLASS Authorizations applying to all classes.

In the object directories, the @CLASS files hold the authorizations related to the
entire class.

 Chapter 8. Security 109

 Authorization files

Note: There is a difference between @CLASS (the authorization file that specifies
authorization for a particular class) and @ACLASS (the directory that contains a file
that specifies authorizations to all classes).

The paths of the object authorization files are based on those of the object itself,
where AUTH is inserted ahead of the object type directory. You can use the
dspmqfls command to display the path to a specified object.

For example, if the name and path of SYSTEM.DEFAULT.LOCAL.QUEUE is:

\MQM\QMGRS\SATURN\QUEUES\SYSTEM!DEFAULT!LOCAL!QUEUE

The name and path of the corresponding authorization file is:

\MQM\QMGRS\SATURN\AUTH\QUEUES\SYSTEM!DEFAULT!LOCAL!QUEUE

Note: In this case, the actual names of the files associated with the queue are not
the same as the name of the queue itself. See “Understanding MQSeries file
names” on page 53 for details.

What the authorization files contain
The authorizations of a particular group or user are defined by a set of stanzas in
the authorization file. See “Understanding authorization files” on page 109 for
more information. The authorizations apply to the object associated with this file.
For example:

 groupB:
 Authority=ðxðð4ððð7

This stanza defines the authority for the group called groupB. The authority
specification is the union of the individual bit patterns (excluding crt) based on the
following assignments:

110 MQSeries for Windows NT V2.0 System Management Guide

 Authorization files

 Authorization Formal name Hexadecimal
 keyword Value

 connect MQZAO_CONNECT ðxððððððð1
 browse MQZAO_BROWSE ðxððððððð2
 get MQZAO_INPUT ðxððððððð4
 put MQZAO_OUTPUT ðxððððððð8
 inq MQZAO_INQUIRE ðxðððððð1ð
 set MQZAO_SET ðxðððððð2ð
 passid MQZAO_PASS_IDENTITY_CONTEXT ðxðððððð4ð
 passall MQZAO_PASS_ALL_CONTEXT ðxðððððð8ð
 setid MQZAO_SET_IDENTITY_CONTEXT ðxððððð1ðð
 setall MQZAO_SET_ALL_CONTEXT ðxððððð2ðð
 altusr MQZAO_ALTERNATE_USER_AUTHORITY ðxððððð4ðð
 allmqi MQZAO_ALL_MQI ðxððððð7FF
 crt MQZAO_CREATE ðxððð1ðððð
 dlt MQZAO_DELETE ðxððð2ðððð
 dsp MQZAO_DISPLAY ðxððð4ðððð
 chg MQZAO_CHANGE ðxððð8ðððð
 clr MQZAO_CLEAR ðxðð1ððððð
 chgaut MQZAO_AUTHORIZE ðxðð8ððððð
 alladm MQZAO_ALL_ADMIN ðxðð9Eðððð
 none MQZAO_NONE ðxðððððððð
 all MQZAO_ALL ðxðð9Eð7FF

These definitions are made in the header file cmqzc.h. In the following example,
groupB has been granted authorizations based on the hexadecimal number
ðx4ððð7. This corresponds to:

 MQZAO_CONNECT ðxððððððð1
 MQZAO_BROWSE ðxððððððð2
 MQZAO_INPUT ðxððððððð4
 MQZAO_DISPLAY ðxððð4ðððð

 Authority is: ðxððð4ððð7

These access rights mean that anyone in groupB can issue the MQI calls:

 MQCONN
MQGET (with browse)

 MQPUT

They also have DISPLAY authority for the object associated with this authorization
file.

Class authorization files
The class authorization files hold authorizations that relate to the entire class.
These files are called '@class' and exist in the same directory as the files for
specific objects. The entry MQZAO_CRT in the @class file gives authorization to
create an object in the class. This is the only class authority.

 Chapter 8. Security 111

 Authorization files

All class authorization files
The all class authorization file holds authorizations that apply to an entire queue
manager. This file is called '@ACLASS' and exists in the AUTH subdirectory of the
queue manager.

The following authorizations apply to the entire queue manager and are held in the
all class authorization file:

The entry... Gives authorization to...

MQZAO_ALTERNATE_USER_AUTHORITY
Assume the identity of another user when
interacting with MQSeries objects.

MQZAO_SET_ALL_CONTEXT Set the context of a message when issuing
MQPUT.

MQZAO_SET_IDENTITY_CONTEXT Set the identity context of a message when
issuing MQPUT.

Managing authorization files
Here are some pointers that you need to take into consideration when managing
your authorization files:

1. You must ensure that the authorization files are secure and not write-accessible
by non trusted general users. See “Authorizations to authorization files.”

2. To be able to reproduce your file authorizations, ensure that you do at least
one of the following:

� Back up the AUTH subdirectory after any significant updates
� Retain command files containing the commands used.

3. You can copy and edit authorization files. However, you should not have to
create or repair these files manually. Should an emergency occur, the
information given here can be used to recover lost or damaged authorization
files, if required.

Authorizations to authorization files
Authorization files must be readable by any principal. However, only the mqm or
Administrators group should be allowed to update these files.

To alter authorizations using the setmqaut command supplied with MQSeries for
Windows NT, your Windows NT user ID must belong to the mqm group.

112 MQSeries for Windows NT V2.0 System Management Guide

 DLQ handler

Chapter 9. The MQSeries dead-letter queue handler

A dead-letter queue (DLQ), is a queue that holds messages that cannot be
delivered to their destination queues. Every queue manager in a network should
have an associated DLQ.

Messages can be put on the DLQ by queue managers, by message channel
agents (MCAs), and by applications. All messages on the DLQ should be prefixed
with a dead-letter header structure, MQDLH. Messages put on the DLQ by a
queue manager or by a message channel agent always have an MQDLH;
applications putting messages on the DLQ are strongly recommended to supply an
MQDLH. The Reason field of the MQDLH structure contains a reason code that
identifies why the message is on the DLQ.

In all MQSeries environments, there should be a routine that runs regularly to
process messages on the DLQ. MQSeries supplies a default routine, called the
dead-letter queue handler (the DLQ handler), which you invoke using the
runmqdlq command. Instructions for processing messages on the DLQ are
supplied to the DLQ handler by means of a user-written rules table. That is, the
DLQ handler matches messages on the DLQ against entries in the rules table:
when a DLQ message matches an entry in the rules table, the DLQ handler
performs the action associated with that entry.

This chapter begins with a description of the DLQ handler, then describes the
contents and syntax of the rules table. The chapter concludes with an example
rules table.

It is often preferable to avoid placing messages on a DLQ. For information about
the use and avoidance of DLQs, see the MQSeries Application Programming
Guide.

Invoking the DLQ handler
You invoke the DLQ handler using the runmqdlq command. You can name the
DLQ you want to process and the queue manager you want to use in two ways:

� As parameters to runmqdlq from the command prompt. For example:

runmqdlq ABC1.DEAD.LETTER.QUEUE ABC1.QUEUE.MANAGER <qrule.rul

This method makes it possible for a single rules table to be used for multiple
DLQs.

� In the rules table. For example:

INPUTQ(ABC1.DEAD.LETTER.QUEUE) INPUTQM(ABC1.QUEUE.MANAGER)

The above examples apply to the DLQ called ABC1.DEAD.LETTER.QUEUE,
owned by the queue manager ABC1.QUEUE.MANAGER.

 Copyright IBM Corp. 1994, 1996 113

 Rules table

If you do not specify the DLQ or the queue manager as shown above, the default
queue manager for the installation is used along with the DLQ belonging to that
queue manager.

The runmqdlq command takes its input from stdin: you associate the rules table
with runmqdlq by redirecting stdin from the rules table.

If you wish to start the DLQ handler in a different MS-DOS window to the one you
are working in, enter the following command:

start cmd /c "runmqdlq < test.rules"

This enables you to deal with the DLQ handler as a separate task.

In order to run the DLQ handler, you must be authorized to access both the DLQ
itself and any message queues to which messages on the DLQ are forwarded.
Furthermore, if the DLQ handler is to be able to put messages on queues with the
authority of the user ID in the message context, you must be authorized to assume
the identity of other users.

For more information about the runmqdlq command, see “runmqdlq (Run
dead-letter queue handler)” on page 220.

The sample DLQ handler, AMQSDLQ
In addition to the DLQ handler invoked using the runmqdlq command, MQSeries
provides the source of a sample DLQ handler, AMQSDLQ, whose function is
similar to that provided via runmqdlq . You can customize AMQSDLQ to provide a
DLQ handler that meets specific, local requirements. For example, you might
decide that you want a DLQ handler that can process messages without dead-letter
headers. (Both the default DLQ handler and the sample, AMQSDLQ, process only
those messages on the DLQ that begin with a dead-letter header, MQDLH.
Messages that do not begin with an MQDLH are identified as being in error, and
remain on the DLQ indefinitely.)

The source of AMQSDLQ is supplied in the directory:

 C:\MQM\TOOLS\C\SAMPLES\DLQ

The DLQ handler rules table
The DLQ handler rules table defines how the DLQ handler is to process messages
that arrive on the DLQ. There are two types of entry in a rules table:

� The first entry in the table, which is optional, contains control data.

� All other entries in the table are rules for the DLQ handler to follow. Each rule
consists of a pattern (a set of message characteristics) that a message is
matched against, and an action to be taken when a message on the DLQ
matches the specified pattern. There must be at least one rule in a rules table.

Each entry in the rules table comprises one or more keywords.

114 MQSeries for Windows NT V2.0 System Management Guide

 Rules table

 Control data
This section describes the keywords that you can include in a control-data entry in
a DLQ handler rules table. Please note the following:

� The default value for a keyword, if any, is underlined.
� The vertical line (|) separates alternatives, only one of which can be specified.
� All keywords are optional.

INPUTQ (QueueName|' ')
Is the name of the DLQ to which this rules table applies.

An INPUTQ value specified as a parameter to the runmqdlq command
overrides any INPUTQ value in the table.

INPUTQ(' '), which is the default value, implies the following:

If the queue manager is supplied as a parameter to runmqdlq , the DLQ
belonging to that queue manager is used. Otherwise, the DLQ belonging
to the queue manager named in the INPUTQM keyword is used.

INPUTQM (QueueManagerName|' ')
Is the name of the queue manager that owns the DLQ.

An INPUTQM value specified as a parameter to the runmqdlq command
overrides any INPUTQM value in the table.

INPUTQM(' '), which is the default, requests that the default queue
manager for the installation be used.

RETRYINT (Interval|60)
Is the interval, in seconds, at which the DLQ handler should attempt to
reprocess messages on the DLQ that could not be processed at the first
attempt, and for which repeated attempts have been requested. By
default, the retry interval is 60 seconds.

WAIT (YES|NO|nnn)
Indicates whether the DLQ handler should wait for further messages to
arrive on the DLQ when it detects that there are no further messages that
it can process.

YES
Causes the DLQ handler to wait indefinitely.

NO
Causes the DLQ handler to terminate when it detects that the DLQ is
either empty or contains no messages that it can process.

nnn
Causes the DLQ handler to wait for nnn seconds for new work to arrive
before terminating, after it detects that the queue is either empty or
contains no messages that it can process.

You are recommended to specify WAIT (YES) for busy DLQs, and WAIT
(NO) or WAIT (nnn) for DLQs that have a low level of activity. If the DLQ
handler is allowed to terminate, you are recommended to reinvoke it by
means of triggering.

As an alternative to including control data in the rules table, you can supply the
names of the DLQ and its queue manager as input parameters of the runmqdlq
command. If any value is specified both in the rules table and on input to the

 Chapter 9. The MQSeries dead-letter queue handler 115

 Rules table

runmqdlq command, the value specified on the runmqdlq command takes
precedence.

Note: If a control-data entry is included in the rules table, it must be the first entry
in the table.

Rules (patterns and actions)
Figure 17 shows an example rule from a DLQ handler rules table.

 PERSIST(MQPER_PERSISTENT) REASON (MQRC_PUT_INHIBITED) +
ACTION (RETRY) RETRY (3)

Figure 17. An example rule

This rule instructs the DLQ handler to make three attempts to deliver its destination
queue any persistent message that was put on the DLQ because MQPUT and
MQPUT1 were inhibited.

All keywords that you can use on a rule are described in the remainder of this
section. Please note the following:

� The default value for a keyword, if any, is underlined. For most keywords, the
default value is * (asterisk), which matches any value.

� The vertical line (|) separates alternatives, only one of which can be specified.

� All keywords except ACTION are optional.

This section begins with a description of the pattern-matching keywords (those
against which messages on the DLQ are matched), and then describes the action
keywords (those that determine how the DLQ handler is to process a matching
message).

The pattern-matching keywords
The pattern-matching keywords, which you use to specify values against which
messages on the DLQ are matched, are described below. All pattern-matching
keywords are optional.

APPLIDAT (ApplIdentityData|*)
Is the ApplIdentityData value specified in the message descriptor, MQMD,
of the message on the DLQ.

APPLNAME (PutApplName|*)
Is the name of the application that issued the MQPUT or MQPUT1 call, as
specified in the PutApplName field of the message descriptor, MQMD, of
the message on the DLQ.

APPLTYPE (PutApplType|*)
Is the PutApplType value specified in the message descriptor, MQMD, of
the message on the DLQ.

DESTQ (QueueName|*)
Is the name of the message queue for which the message is destined.

DESTQM (QueueManagerName|*)
Is the name of the queue manager of the message queue for which the
message is destined.

116 MQSeries for Windows NT V2.0 System Management Guide

 Rules table

FEEDBACK (Feedback|*)
When the MsgType value is MQFB_REPORT, Feedback describes the
nature of the report.

Symbolic names can be used. For example, you can use the symbolic
name MQFB_COA to identify those messages on the DLQ that require
confirmation of their arrival on their destination queues.

FORMAT (Format|*)
Is the name that the sender of the message uses to describe the format of
the message data.

MSGTYPE (MsgType|*)
Is the message type of the message on the DLQ.

Symbolic names can be used. For example, you can use the symbolic
name MQMT_REQUEST to identify those messages on the DLQ that
require replies.

PERSIST (Persistence|*)
Is the persistence value of the message. (The persistence of a message
determines whether it survives restarts of the queue manager.)

Symbolic names can be used. For example, you can use the symbolic
name MQPER_PERSISTENT to identify those messages on the DLQ that
are persistent.

REASON (ReasonCode|*)
Is the reason code that describes why the message was put to the DLQ.

Symbolic names can be used. For example, you can use the symbolic
name MQRC_Q_FULL to identify those messages placed on the DLQ
because their destination queues were full.

REPLYQ (QueueName|*)
Is the name of the reply-to queue specified in the message descriptor,
MQMD, of the message on the DLQ.

REPLYQM (QueueManagerName|*)
Is the name of the queue manager of the reply-to queue, as specified in
the message descriptor, MQMD, of the message on the DLQ.

USERID (UserIdentifier|*)
Is the user ID of the user who originated the message on the DLQ, as
specified in the message descriptor, MQMD.

The action keywords
The action keywords, which you use to describe how a matching message is to be
processed, are described below.

ACTION (DISCARD|IGNORE|RETRY|FWD)
Is the action to be taken for any message on the DLQ that matches the
pattern defined in this rule.

DISCARD Causes the message to be deleted from the DLQ.

IGNORE Causes the message to be left on the DLQ.

RETRY Causes the DLQ handler to try again to put the message on
its destination queue.

 Chapter 9. The MQSeries dead-letter queue handler 117

 Rules table

FWD Causes the DLQ handler to forward the message to the
queue named on the FWDQ keyword.

The ACTION keyword must be specified. The number of attempts made
to implement an action is governed by the RETRY keyword. The interval
between attempts is controlled by the RETRYINT keyword of the control
data.

FWDQ (QueueName|&DESTQ|&REPLYQ)
Is the name of the message queue to which the message should be
forwarded when ACTION (FWD) is requested.

QueueName
Is the name of a message queue. FWDQ(' ') is not valid.

&DESTQ Causes the queue name to be taken from the DestQName
field in the MQDLH structure.

&REPLYQ Causes the name to be taken from the ReplyToQ field in the
message descriptor, MQMD.

To avoid error messages when a rule specifying FWDQ
(&REPLYQ) matches a message with a blank ReplyToQ
field, you can specify REPLYQ (?*) in the message pattern.

FWDQM (QueueManagerName|&DESTQM|&REPLYQM| ' ')
Identifies the queue manager of the queue to which a message is to be
forwarded.

QueueManagerName
Is the name of the queue manager of the queue to which a
message is to be forwarded when ACTION (FWD) is requested.

&DESTQM
Causes the queue manager name to be taken from the
DestQMgrName field in the MQDLH structure.

&REPLYQM
Causes the name to be taken from the ReplyToQMgr field in the
message descriptor, MQMD.

' '
FWDQM(' '), which is the default value, identifies the local
queue manager.

HEADER (YES|NO)
Specifies whether the MQDLH should remain on a message for which
ACTION (FWD) is requested. By default, the MQDLH remains on the
message. The HEADER keyword is not valid for actions other than FWD.

PUTAUT (DEF|CTX)
Defines the authority with which messages should be put by the DLQ
handler:

DEF Causes messages to be put with the authority of the DLQ handler
itself.

CTX Causes the messages to be put with the authority of the user ID
in the message context. If you specify PUTAUT (CTX), you must
be authorized to assume the identity of other users.

118 MQSeries for Windows NT V2.0 System Management Guide

 Rules table

RETRY (RetryCount|1)
Is the number of times, in the range 1–999,999,999, that an action should
be attempted (at the interval specified on the RETRYINT keyword of the
control data).

Note: The count of attempts made by the DLQ handler to implement any
particular rule is specific to the current instance of the DLQ handler; the
count does not persist across restarts. If the DLQ handler is restarted, the
count of attempts made to apply a rule is reset to zero.

Rules table conventions
The rules table must adhere to the following conventions regarding its syntax,
structure, and contents:

� A rules table must contain at least one rule.

� Keywords can occur in any order.

� A keyword can be included once only in any rule.

� Keywords are not case-sensitive.

� A keyword and its parameter value must be separated from other keywords by
at least one blank or comma.

� Any number of blanks can occur at the beginning or end of a rule, and between
keywords, punctuation, and values.

� Each rule must begin on a new line.

� For reasons of portability, the significant length of a line should not be greater
than 72 characters.

� Use the plus sign (+) as the last nonblank character on a line to indicate that
the rule continues from the first nonblank character in the next line. Use the
minus sign (−) as the last nonblank character on a line to indicate that the rule
continues from the start of the next line. Continuation characters can occur
within keywords and parameters.

For example,

APPLNAME('ABC+
 D')

results in 'ABCD', and

APPLNAME('ABC-
 D')

results in 'ABC D'.

� Comment lines, which begin with an asterisk (*), can occur anywhere in the
rules table.

� Blank lines are ignored.

 Chapter 9. The MQSeries dead-letter queue handler 119

 Rules table

� Each entry in the DLQ handler rules table comprises one or more keywords
and their associated parameters. The parameters must follow these syntax
rules:

– Each parameter value must include at least one significant character. The
delimiting quotation marks in quoted values are not considered significant.
For example, these parameters are valid:

FORMAT('ABC') 3 significant characters
FORMAT(ABC) 3 significant characters
FORMAT('A') 1 significant character
FORMAT(A) 1 significant character
FORMAT(' ') 1 significant character

These parameters are invalid because they contain no significant
characters:

FORMAT('')
FORMAT()
FORMAT()
FORMAT

– Wildcard characters are supported: you can use the question mark (?) in
place of any single character, except a trailing blank; you can use the
asterisk (*) in place of zero or more adjacent characters. The asterisk (*)
and the question mark (?) are always interpreted as wildcard characters in
parameter values.

– Wildcard characters cannot be included in the parameters of these
keywords: ACTION, HEADER, RETRY, FWDQ, FWDQM, and PUTAUT.

– Trailing blanks in parameter values, and in the corresponding fields in the
message on the DLQ, are not significant when performing wildcard
matches. However, leading and embedded blanks within strings in
quotation marks are significant to wildcard matches.

– Numeric parameters cannot include the question mark (?) wildcard
character. The asterisk (*) can be used in place of an entire numeric
parameter, but cannot be included as part of a numeric parameter. For
example, these are valid numeric parameters:

MSGTYPE(2) Only reply messages are eligible
MSGTYPE(\) Any message type is eligible
MSGTYPE('\') Any message type is eligible

However, MSGTYPE('2\') is not valid, because it includes an asterisk (*) as
part of a numeric parameter.

– Numeric parameters must be in the range 0–999,999,999. If the parameter
value is in this range, it is accepted, even if it is not currently valid in the
field to which the keyword relates. Symbolic names can be used for
numeric parameters.

120 MQSeries for Windows NT V2.0 System Management Guide

– If a string value is shorter than the field in the MQDLH or MQMD to which
the keyword relates, the value is padded with blanks to the length of the
field. If the value, excluding asterisks, is longer than the field, an error is
diagnosed. For example, these are all valid string values for an 8-character
field:

'ABCDEFGH' 8 characters
'A\C\E\G\I' 5 characters excluding asterisks
'\A\C\E\G\I\K\M\O\' 8 characters excluding asterisks

– Strings that contain blanks, lowercase characters, or special characters
other than period (.), forward slash (/), underscore (_), and percent sign (%)
must be enclosed in single quotation marks. Lowercase characters not
enclosed in quotation marks are folded to uppercase. If the string includes
a quotation, two single quotation marks must be used to denote both the
beginning and the end of the quotation. When the length of the string is
calculated, each occurrence of double quotation marks is counted as a
single character.

How the rules table is processed
The DLQ handler searches the rules table for a rule whose pattern matches a
message on the DLQ. The search begins with the first rule in the table, and
continues sequentially through the table. When a rule with a matching pattern is
found, the action from that rule is attempted. The DLQ handler increments the retry
count for a rule by 1 whenever it attempts to apply that rule. If the first attempt
fails, the attempt is repeated until the count of attempts made matches the number
specified on the RETRY keyword. If all attempts fail, the DLQ handler searches for
the next matching rule in the table.

This process is repeated for subsequent matching rules until an action is
successful. When each matching rule has been attempted the number of times
specified on its RETRY keyword, and all attempts have failed, ACTION (IGNORE)
is assumed. ACTION (IGNORE) is also assumed if no matching rule is found.

Notes:

1. Matching rule patterns are sought only for messages on the DLQ that begin
with an MQDLH. Messages that do not begin with an MQDLH are reported
periodically as being in error, and remain on the DLQ indefinitely.

2. All pattern keywords can be allowed to default, such that a rule may consist of
an action only. Note, however, that action-only rules are applied to all
messages on the queue that have MQDLHs and that have not already been
processed in accordance with other rules in the table.

3. The rules table is validated when the DLQ handler is started, and errors are
flagged at that time. (Error messages issued by the DLQ handler are
described in Appendix F, “Messages” on page 257.) You can make changes
to the rules table at any time, but those changes do not come into effect until
the DLQ handler is restarted.

4. The DLQ handler does not alter the content of messages, of the MQDLH, or of
the message descriptor. The DLQ handler always puts messages to other
queues with the message option MQPMO_PASS_ALL_CONTEXT.

5. The DLQ handler opens the DLQ with the MQOO_INPUT_AS_Q_DEF option.

 Chapter 9. The MQSeries dead-letter queue handler 121

6. Multiple instances of the DLQ handler could run concurrently against the same
queue, using the same rules table. However, it is more usual for there to be a
one-to-one relationship between a DLQ and a DLQ handler.

Ensuring that all DLQ messages are processed
The DLQ handler keeps a record of all messages on the DLQ that have been seen
but not removed. If you use the DLQ handler as a filter to extract a small subset of
the messages from the DLQ, the DLQ handler still has to keep a record of those
messages on the DLQ that it did not process. Also, the DLQ handler cannot
guarantee that new messages arriving on the DLQ will be seen, even if the DLQ is
defined as first-in-first-out (FIFO). Therefore, if the queue is not empty, a periodic
rescan of the DLQ is performed to check all messages. For these reasons, you
should try to ensure that the DLQ contains as few messages as possible; if
messages that cannot be discarded or forwarded to other queues (for whatever
reason) are allowed to accumulate on the queue, the workload of the DLQ handler
increases and the DLQ itself is in danger of filling up.

You can take specific measures to enable the DLQ handler to empty the DLQ. For
example, try not to use ACTION (IGNORE), which simply leaves messages on the
DLQ. (Remember that ACTION (IGNORE) is assumed for messages that are not
explicitly addressed by other rules in the table.) Instead, for those messages that
you would otherwise ignore, use an action that moves the messages to another
queue. For example:

 ACTION (FWD) FWDQ (IGNORED.DEAD.QUEUE) HEADER (YES)

Similarly, the final rule in the table should be a catch-all to process messages that
have not been addressed by earlier rules in the table. For example, the final rule in
the table could be something like this:

 ACTION (FWD) FWDQ (REALLY.DEAD.QUEUE) HEADER (YES)

This action causes messages that fall through to the final rule in the table to be
forwarded to the queue REALLY.DEAD.QUEUE, where they can be processed
manually. If you do not have such a rule, messages are likely to remain on the
DLQ indefinitely.

122 MQSeries for Windows NT V2.0 System Management Guide

 Rules table

An example DLQ handler rules table
Here is an example rules table that contains a single control-data entry and several
rules:

\
\\\
\ An example rules table for the runmqdlq command \
\\\
\ Control data entry
\ ------------------
\ If no queue manager name is supplied as an explicit parameter to
\ RUNMQDLQ, use the default queue manager for the machine.
\ If no queue name is supplied as an explicit parameter to RUNMQDLQ,
\ use the DLQ defined for the local queue manager.
\
inputqm(' ') inputq(' ')

\ Rules
\ -----
\ We include rules with ACTION (RETRY) first to try to
\ deliver the message to the intended destination.

\ If a message is placed on the DLQ because its destination
\ queue is full, attempt to forward the message to its
\ destination queue. Make 5 attempts at approximately
\ 6ð-second intervals (the default value for RETRYINT).

REASON(MQRC_Q_FULL) ACTION(RETRY) RETRY(5)

\ If a message is placed on the DLQ because of a put inhibited
\ condition, attempt to forward the message to its
\ destination queue. Make 5 attempts at approximately
\ 6ð-second intervals (the default value for RETRYINT).

REASON(MQRC_PUT_INHIBITED) ACTION(RETRY) RETRY(5)

\ The AAAA corporation are always sending messages with incorrect
\ addresses. When we find a request from the AAAA corporation,
\ we return it to the DLQ (DEADQ) of the reply-to queue manager
\ (&REPLYQM).
\ The AAAA DLQ handler attempts to redirect the message.

MSGTYPE(MQMT_REQUEST) REPLYQM(AAAA.\) +
ACTION(FWD) FWDQ(DEADQ) FWDQM(&REPLYQM)

\ The BBBB corporation never do things by half measures. If
\ the queue manager BBBB.1 is unavailable, try to
\ send the message to BBBB.2

DESTQM(bbbb.1) +
action(fwd) fwdq(&DESTQ) fwdqm(bbbb.2) header(no)

\ The CCCC corporation considers itself very security
\ conscious, and believes that none of its messages
\ will ever end up on one of our DLQs.
\ Whenever we see a message from a CCCC queue manager on our

 Chapter 9. The MQSeries dead-letter queue handler 123

 Rules table

\ DLQ, we send it to a special destination in the CCCC organisation
\ where the problem is investigated.

REPLYQM(CCCC.\) +
ACTION(FWD) FWDQ(ALARM) FWDQM(CCCC.SYSTEM)

\ Messages that are not persistent run the risk of being
\ lost when a queue manager terminates. If an application
\ is sending nonpersistent messages, it should be able
\ to cope with the message being lost, so we can afford to
\ discard the message.

PERSIST(MQPER_NOT_PERSISTENT) ACTION(DISCARD)

\ For performance and efficiency reasons, we like to keep
\ the number of messages on the DLQ small.
\ If we receive a message that has not been processed by
\ an earlier rule in the table, we assume that it
\ requires manual intervention to resolve the problem.
\ Some problems are best solved at the node where the
\ problem was detected, and others are best solved where
\ the message originated. We don't have the message origin,
\ but we can use the REPLYQM to identify a node that has
\ some interest in this message.
\ Attempt to put the message onto a manual intervention
\ queue at the appropriate node. If this fails,
\ put the message on the manual intervention queue at
\ this node.

REPLYQM('?\') +
ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION) FWDQM(&REPLYQM)

ACTION(FWD) FWDQ(DEADQ.MANUAL.INTERVENTION)

124 MQSeries for Windows NT V2.0 System Management Guide

 instrumentation events

 Chapter 10. Instrumentation events

You can use the MQSeries instrumentation events to monitor the operation of
queue managers. This chapter provides a short introduction to instrumentation
events. For a more complete description, see the section on instrumentation
events in the MQSeries Programmable System Management manual.

What instrumentation events are
Instrumentation events cause special messages, called event messages, to be
generated whenever the queue manager detects a predefined set of conditions.
For example, the following conditions give rise to a Queue Full event:

� Queue Full events are enabled for a specified queue

� An application issues an MQPUT call to put a message on that queue, but the
call fails because the queue is full.

Other conditions that can give rise to instrumentation events include:

� A threshold limit for the number of messages on a queue being reached.

� A queue not being serviced within a specified time period.

� A channel instance being started or stopped.

With the exception of channel events, all instrumentation events must be enabled
before they can be generated.

 Copyright IBM Corp. 1994, 1996 125

 Why use events?

Queue Manager

For example:
Queue full

+ event enabled1. Event conditions

2. Event message
put on event queue

3. Event message
processed by a
user application

Event message

Event queue

User Application

Figure 18. Understanding instrumentation events. When a queue manager detects that the
conditions for an event have been met, it puts an event message on the appropriate event
queue.

The event message, which contains information about the conditions giving rise to
the event, is put onto an event queue. An application can retrieve the event
message from this queue for analysis.

Why use events?
If you specify your event queues as remote queues, you can put all the event
queues on a single queue manager (for those nodes that support instrumentation
events). You can then use the events generated to monitor a network of queue
managers from a single node. Figure 19 on page 127 illustrates this.

126 MQSeries for Windows NT V2.0 System Management Guide

 Why use events?

Event monitoring
from a single node

Event
messages

MQSeries
for MVS/ESA

MQSeries
for AIX

MQSeries
for OS/2

Figure 19. Monitoring queue managers across different platforms, on a single node

Types of event
MQSeries events may be categorized as follows:

Queue manager events
These events are related to the definitions of resources within queue managers.
For example, an application attempts to put a message to a queue that does not
exist.

Performance events
These events are notifications that a threshold condition has been reached by a
resource. For example, a queue depth limit has been reached or, following a
get, the queue was not serviced within a predefined time limit.

Channel events
These events are reported by channels as a result of conditions detected during
their operation. For example, when a channel instance is stopped.

 Trigger events

When we discuss triggering in this and other MQSeries books, we sometimes
refer to a trigger event. This occurs when a queue manager detects that the
conditions for a trigger event have been met. For example, a queue can be
configured to generate a trigger event each time a message arrives. (The
conditions for trigger events and instrumentation events are quite different.)

A trigger event causes a trigger message to be put on an initiation queue and,
optionally, an application program is started.

 Chapter 10. Instrumentation events 127

 Why use events?

Event notification through event queues
When an event occurs, the queue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that you can retrieve by writing a suitable MQI application program that:

� Gets the message from the queue.

� Processes the message to extract the event data. For a description of event
message formats, see the MQSeries Programmable System Management
manual.

Each category of event has its own event queue. All events in that category result
in an event message being put onto the same queue.

This event queue... Contains messages from...

SYSTEM.ADMIN.QMGR.EVENT Queue manager events

SYSTEM.ADMIN.PERFM.EVENT Performance events

SYSTEM.ADMIN.CHANNEL.EVENT Channel events

You can define event queues as either local or remote queues. If you define all
your event queues as remote queues on the same queue manager, you can
centralize your monitoring activities.

Using triggered event queues
You can set up the event queues with triggers so that, when an event is generated,
the event message being put onto the event queue starts a (user-written)
monitoring application. This application can process the event messages and take
appropriate action. For example, certain events may require that an operator be
informed, other events may start an application that performs some administration
tasks automatically.

Enabling and disabling events
You enable and disable events by specifying the appropriate values for the queue
manager, or queue attributes, or both, depending on the type of event. You do this
using either of the following:

� MQSC commands. For more information, see the MQSeries Command
Reference manual.

� PCF commands for queue managers on AIX, OS/2, and Windows NT. For
more information, see the MQSeries Programmable System Management
manual.

Enabling an event depends on the category of the event:

� Queue manager events are enabled by setting attributes on the queue
manager.

� Performance events as a whole must be enabled on the queue manager, or no
performance events can occur. You then enable the specific performance
events by setting the appropriate queue attribute. You also have to specify the
conditions that give rise to the event, for example, a queue depth high limit.

� Channel events occur automatically; they do not need to be enabled. If you do
not want to monitor channel events, you can put-inhibit the channel event
queue.

128 MQSeries for Windows NT V2.0 System Management Guide

 Why use events?

 Event messages
Event messages contain information relating to the origin of an event, including the
type of event, the name of the application that caused the event, and, for
performance events, a short statistics summary for the queue.

The format of event messages is similar to that of PCF response messages. The
message data can be retrieved from them by user-written administration programs
using the data structures described in the MQSeries Programmable System
Management manual.

 Chapter 10. Instrumentation events 129

 Why use events?

130 MQSeries for Windows NT V2.0 System Management Guide

 Transactional support

Chapter 11. Transactional support and messaging

In applications that use the MQI, put and get operations can be performed under
syncpoint control. In MQSeries for Windows NT, there are two methods for
initiating commit and rollback:

� Using the MQI calls MQCMIT and MQBACK. This provides a single-phase
commit facility, with only the local queue manager involved.

� Using an external coordinator, such as CICS for Windows NT or TUXEDO**
System for Windows NT.

Note: In this chapter, CICS is used as a synonym for IBM CICS for Windows NT
(CICS for Windows NT) and TUXEDO** is used as a synonym for TUXEDO**
System for Windows NT.

Using MQSeries in a CICS environment
MQSeries for Windows NT supports CICS for Windows NT using CICS-specific
interfaces for single-phase commit only.

On a single physical machine, you can access any queue manager from a CICS
transaction, subject to the restriction that any transaction can connect to only one
queue manager at a time.

CICS transactions are not supported across distributed machines.

Context in a CICS environment
For transactions running in a CICS environment, the queue manager changes its
methods of authorization and determining context as follows:

� In the message context, the application type is MQAT_CICS.

� The application name in the context is copied from the CICS transaction name.

Using the CICS user exits
To use CICS for Windows NT as an external coordinator, you must install the
MQSeries code for the appropriate CICS user exits.

MQSeries for Windows NT requires access to the CICS for Windows NT user exits
15 and 17. This access is required in abend situations, and also to provide a
mechanism for disconnecting from the queue manager at task termination. Sample
exits, providing the minimum required function, are supplied in both source and
executable form.

If you are not currently using exits 15 and 17 in your CICS installation but want to,
copy the sample exits FAAEXP15.DLL and FAAEXP17.DLL into your LIBPATH,
such that they can be accessed by Windows NT. If you are currently using these
exits, you must add the MQSeries calls in the samples provided to your current
exits. C source for the user exits is included in the samples AMQZSC52.C and
AMQZSC72.C respectively.

These MQSeries calls enable support for CICS and disable the internal MQCMIT
and MQBACK calls such that they return MQRC_ENVIRONMENT_ERROR.

 Copyright IBM Corp. 1994, 1996 131

 Transactional support

Integrate the MQ calls (all beginning AMQ) in your existing exits at the appropriate
place in the program logic.

See the comments in the sample source for help with this.

Note: These AMQ calls are valid only in the context of these exits.

These exits enable support for CICS and disable the internal MQCMIT and
MQBACK calls so that they return MQRC_ENVIRONMENT_ERROR.

Using MQSeries in a TUXEDO environment
A TUXEDO** server can interface with a queue manager, enabling client
applications to put and get messages under syncpoint. See the MQSeries
Application Programming Guide for source code samples and for a description of
how to define and build the TUXEDO server environment for MQSeries for
Windows NT.

132 MQSeries for Windows NT V2.0 System Management Guide

 Linking applications

Chapter 12. Linking to Lotus Notes

MQSeries provides a Lotus Notes server add-in task that gives Lotus Notes
applications access to MQSeries messaging. This allows Lotus Notes users to
communicate with other systems connected by MQSeries.

If you are installing or maintaining MQSeries in order to link to Lotus Notes, you
should have Lotus Notes installed and have the documentation provided with Lotus
Notes.

This chapter contains these sections:

� “What is Lotus Notes?”
 � “Linking applications”
� “Server or client?” on page 135
� “Disconnected requests” on page 136
� “Setting up your system” on page 137
� “Starting the server add-in task” on page 138
� “Verifying that Lotus Notes can link to MQSeries” on page 139
� “Stopping the link server task” on page 139
� “User notification” on page 140

What is Lotus Notes?
Lotus Notes is a networked application that users can use to share information.
Lotus Notes has two main components; the server and the client. The Lotus Notes
server provides services to Lotus Notes clients and to other servers. The services
provided include storage and replication of shared databases and mail routing.
Lotus Notes clients connect to a Lotus Notes server to use shared databases, and
also to read and send mail.

The basic units of information in a Lotus Notes system are databases and the
documents that they contain. A database can be used by one person, or shared
among users who have common data requirements. Most databases in Lotus
Notes reside on a Lotus Notes server.

 Linking applications
MQSeries provides a Lotus Notes server add-in task that recognizes and interprets:

� Data from documents that Lotus Notes wants to send to MQSeries

� Messages from MQSeries sent in reply and used to update a Lotus Notes
document

Figure 20 on page 134 illustrates the major components that are used to service
the requests and responses.

 Copyright IBM Corp. 1994, 1996 133

 Linking applications

Lotus Notes environment MQSeries environment

Lotus Notes
application

add-in task
MQSeries

application
Mail-in

database

Link database
User

database

Figure 20. Lotus Notes and MQSeries

A Lotus Notes application consists of a database containing specially constructed
documents. These documents contain formulas (or macros) that can be executed
by the user. A formula that makes a link to MQSeries transfers parts of the
document to a Mail-In database associated with the server add-in task.

The Lotus Notes server add-in task monitors the Mail-In database. Documents
found there are used to construct MQSeries messages. The link database contains
entries describing the relationship of a Lotus Notes document to an MQSeries
message; that is, how a Lotus Notes document is mapped into an MQSeries
message. The link database must be set up to define the mapping required for
each type of document you want to use with MQSeries.

The name of the link database entry to use is specified in the mail message
containing the request.

The Lotus Notes server add-in task can also monitor response queues based on
any outstanding replies. The replies are interpreted and used to update the user
document in the user database.

Refer to the Application Programming Guide for information about writing the
MQSeries applications and the link database entries.

134 MQSeries for Windows NT V2.0 System Management Guide

 Linking applications

Add-in task requirements
The add-in task requires:

� On the Lotus Notes Server:

– A document in the link database for each document type that the task
processes.

– A Mail-In database from which the add-in task gets the information to send
to an MQSeries-connected system.

� In the MQSeries queue manager:

– A work queue (SYSTEM.NOTES.WORKQUEUE in Figure 21 on
page 136). If you use a different name for this queue, you need to supply
the name when you load the add-in task.

– Any queues that the add-in task uses to get replies if they do not already
exist. The names of these queues are contained in the link database
documents in Lotus Notes.

Server or client?
The add-in task always runs on the Lotus Notes server machine. This machine will
also be running either the MQSeries server or the MQI client code. Do not confuse
the server and client relationship between the MQSeries components with that
between a Lotus Notes server and its clients. The Lotus Notes server exists with
an associated MQSeries that is either a server or an MQI client.

Figure 21 on page 136 shows a simple configuration with the add-in task running
in an MQI client environment.

Notes:

1. The MQSeries application getting the messages from the REQUEST.QUEUE
can be running on any MQSeries platform.

2. When the add-in task is started, it reads all the template documents in the link
database and holds the information in memory. Therefore, any template you
add after the add-in task has been started will not not be recognized until the
add-in task has been stopped and restarted.

The add-in task program is known as $MQLINK or $MQLINKC.

$MQLINK and $MQLINKC

Use $MQLINK when the add-in task is running in a full MQSeries environment.

Use $MQLINKC when the add-in task is running in an MQI client environment.

Refer to the Distributed Queuing Guide for information about channel requirements.

 Chapter 12. Linking to Lotus Notes 135

 Disconnected requests

Lotus Notes
application

MQSeries
application

QUEUE MANAGER

MQI Server

MQI Server
or

MQI Client

REQUEST.QUEUE

REPLY.QUEUE

Add-In task
(MQLINKC)

Lotus Notes Server and MQI Client

Link database

Mail-In
database

User
database

SYSTEM. NOTES. WORKQUEUE

Figure 21. Configuration with the add-in task on the MQI client

 Disconnected requests
Lotus Notes provides two options for handling mail from a Lotus Notes client;
server-based mail and workstation-based mail.

A Lotus Notes client can replicate a given user database that has been designed to
generate MQSeries requests. Replication allows the client to disconnect from the
server and work remotely. When the client is reconnected to the server, Lotus
Notes can use the client-replicated database to update the server copy of the user
database.

If a client has been working disconnected, it is important to ensure that, on
reconnection, user databases are updated before any messages are passed to the
add-in task for transmission by MQSeries. You can do this by ensuring that any
user database is replicated before mail transfer takes place. A suggested method
is to turn off the Transfer Outgoing Mail option on the Lotus Notes Tools Replicate
window. Repeat the replication with the transfer enabled.

The Lotus Notes manuals deal with (1) the uses and methods of replication, and (2)
problem diagnosis and solving information. If you experience replication problems
or need further information, please refer to these manuals.

136 MQSeries for Windows NT V2.0 System Management Guide

 Setting up your system

Setting up your system
This section gives setup details for linking MQSeries to a Lotus Notes server,
together with details of how to set up your MQSeries for Windows NT system to
communicate with Lotus Notes. It is assumed that you have already installed both
MQSeries for Windows NT and Lotus Notes V 3.3 (or a later level).

When you install MQSeries for Windows NT, the Lotus Notes server add-in task
code is included in both server and MQI client versions.

Lotus Notes setup
To set up MQSeries for Windows NT to communicate with Lotus Notes, follow
these steps:

1. Configure the Lotus Notes server
2. Add the Lotus Notes server’s Mail file to the Lotus Notes Workspace
3. Set up Mail on Lotus Notes workspace
4. Create a new Mail-In database
5. Add Mail-In database to “Address Book”
6. Add people entry to the address book with the same name as the server

For further details on Lotus Notes setup, see the appropriate Lotus Notes
documentation.

Setting up the server add-in task
 Directory paths

In the following, a root directory of C: is assumed. If you have set this up
differently, use the correct drive identifier.

The steps required to prepare your Lotus Notes system to communicate with
MQSeries depend on the environment you are setting up.

Full MQSeries environment
� Copy MQLINK.EXE from C:\MQM\BIN to C:\NOTES as $MQLINK.EXE.

� Copy MQLINK.NSF from the MQSeries for Windows NT directory,
C:\MQM\TOOLS\LIB to the Lotus Notes directory (C:\NOTES).

� Copy AMQSAMPL.NSF from the MQSeries sample directory,
C:\MQM\TOOLS\C\SAMPLES\BIN, to the Lotus Notes directory (C:\NOTES).

MQI client environment
� Copy MQLINKC.EXE from C:\MQM\BIN on the server to the MQI client

C:\NOTES as $MQLINKC.EXE.

� Copy MQLINK.NSF from the MQSeries for Windows NT server directory,
C:\MQM\TOOLS\LIB to the Lotus Notes directory (C:\NOTES) on the MQI
client.

� Copy AMQSAMPL.NSF from the MQSeries server sample directory,
C:\MQM\TOOLS\C\SAMPLES\BIN, to the Lotus Notes directory (C:\NOTES) on
the MQI client.

 Chapter 12. Linking to Lotus Notes 137

 Server add-in task

Starting the server add-in task
You can do this either by issuing a command, or automatically, by specifying it in
the NOTES.INI file. If you require the latter, the Lotus Notes NOTES.INI file must
specify either ServerTasks=MQLINK or ServerTasks=MQLINKC for the server or MQI
client respectively. The program must exist in the Lotus Notes directory C:\NOTES
and have been copied there. The ‘.EXE’ files are prefixed with $ because they are
Lotus Notes started tasks.

Note: If you are running the Lotus Notes server add-in task from an MQI client
using MQLINKC, you must ensure that the Lotus Notes server shares the same
environment variables as your MQI client. You do this by starting the Lotus Notes
server from the same window that you set the MQSeries server variables in, or by
setting them in your CONFIG.SYS file. This ensures that Lotus Notes is aware of
the channel, protocol, and port that your MQI client is set up to use by the SET
MQSERVER command.

If you are starting the link server task manually, issue on the Lotus Notes server
screen:

LOAD MQLINK [/t] [/q WorkQName] [/w WaitTime]
[/d MailInDB] [/l LinkDB] [QMgrName]

Notes:

1. Start only one server add-in task on a Lotus Notes server.

2. In the command, the optional parameters are enclosed in brackets. The flag
indicator is a ‘/’ and the command parameters are shown in lowercase.
However, upper or mixed case is allowed, and the flag can be either a ‘/’ or a
‘-’.

3. The flags can be in any order, but the queue manager name must be the last
parameter.

where:

/t If specified, is the trace link database data and field updates using MQSeries
tracing. By default, tracing is set off.

/q Is the name of the work queue that is used by the link server task. The
default is SYSTEM.NOTES.WORKQUEUE.

/w Is the time in seconds to be allowed between scans of the mail-in database
and response queue for work. The default is 30 seconds.

/d Is the name of the mail-in database. The default is MAILINDB.NSF

/ll Is the name of the link database. The default is MQLINK.NSF

QMgrName
Is the queue manager name. This must be the last parameter.

138 MQSeries for Windows NT V2.0 System Management Guide

 Stopping link server

Verifying that Lotus Notes can link to MQSeries
You can verify your configuration by running the AMQSLNK0 sample application
that is included in the supplied Lotus Notes database. It demonstrates a simple
message exchange.

To run the sample, which is also described fully in its Help panels:

1. Create a queue manager, start it, and create the default queues by running
AMQSCOMA.TST.

2. Create the additional queues that are used by the sample by running
C:\MQM\TOOLS\MQSC\SAMPLES\AMQSLNK0.TST.

3. Start the AMQSLNK0 program:

AMQSLNKð [/q InputQueueName] [QMgrName]

4. Load MQLINK (see “Starting the server add-in task” on page 138).

5. Open the MQSeries sample database and compose a document.

6. Press the Send data push button. Fields from the document are read and sent
to the Mail-In database. The add-in task then reads the Mail-In database
together with the link database. MQSeries message data is constructed and
placed on the MQSeries target queue specified in the link database document
MQENTRY. The MQSeries sample program AMQSLNK0 reads the message
and replies appropriately. The add-in task reads the REPLY queue and
updates the original Lotus Notes document.

7. Refresh the screen to see the update that has been made to the document.

For more information about this sample, refer to the MQSeries Application
Programming Guide.

Stopping the link server task
To stop or close down the link server add-in task, issue one of the following
commands as appropriate from the Lotus Notes server.

TELL MQLINK QUIT

TELL MQLINKC QUIT

You should stop the add-in task before closing the queue manager.

 Chapter 12. Linking to Lotus Notes 139

 User notification

 User notification
If there is an error with the transfer of the request to the mail-in database, Lotus
Notes reports the error. If the transfer to the mail-in database is successful, the
add-in task attempts to process the request.

If there are no errors encountered when processing either the request or the reply,
the target user database specified in the link database entry is updated. If
MQSeries encounters an error, it attempts to inform the document’s author via
Lotus Notes electronic mail.

All add-in task activity is recorded in the Lotus Notes Server’s Note log and in the
MQSeries log.

140 MQSeries for Windows NT V2.0 System Management Guide

 The log

Chapter 13. Recovery and restart

One of the principal functions of MQSeries is to ensure that messages entered into
the system are delivered to their destination. To do this, MQSeries must know that
a message has been placed in the system and, eventually, that the message has
been delivered. It must also be capable of recovering messages if the system fails
for any reason.

To accomplish this, MQSeries maintains records (logs) of the activities of the queue
managers that handle the receipt, transmission, and delivery of messages. It can
use these logs for three types of recovery:

1. Restart recovery, when you stop MQSeries in a planned way.
2. Crash recovery, when MQSeries is stopped by a failure.
3. Media recovery, to restore damaged objects.

In all cases, the recovery restores the queue manager to the state it was in when
the queue manager stopped. Any in-flight transactions are rolled back, removing
from the queues any messages that were not committed at the time the queue
manager stopped. Recovery restores all persistent messages; non-persistent
messages are lost during the process.

The rest of this chapter introduces the concepts of recovery and restart in more
detail and then tells you how to recover if problems occur. It covers the following
topics:

� “What is in the log?”
� “Using the log for recovery” on page 149.

What is in the log?
MQSeries records all significant changes to the data controlled by the queue
manager in a log. This includes the creation and deletion of objects (except
channels), persistent messages and transaction states, together with changes to
object attributes and channel activities (but not including channel definitions).
Therefore, the log contains the information you need to recover all updates to
message queues by:

� Keeping records of queue manager changes.
� Keeping records of queue updates for use by the restart process.
� Enabling you to restore data after a hardware or software failure.

This section tells you more about logs, including:

� “What logs look like” on page 142
� “Types of logging” on page 142
� “Checkpointing—ensuring complete recovery” on page 144
� “How checkpointing works” on page 145
� “Managing logs” on page 147
� “Managing log files” on page 148

 Copyright IBM Corp. 1994, 1996 141

 The log

What logs look like
An MQSeries log consists of two components:

1. One or more log files
2. A log control file

The log files contain the data being recorded. You can define the number and size
(as explained in Chapter 14, “Configuration files” on page 155), or take the system
default of 3 files, each 1MB in size. See the note at the end of this section about
the default sizes.

When a queue manager is created, the number of log files you have defined (or
allowed to default) are allocated as the primary log files. If you haven’t changed
the log path, they are created in the directory:

C:\MQM\LOG\<QMgrName>

Log files are kept in the active log subdirectory associated with each queue
manager (see “Queue manager log directory structure” on page 249 for the
location of these files). The log file names, which are sequentially numbered, are
shown on page 249.

MQSeries starts with these primary log files, but, if the log starts to get full, it may
allocate secondary log files. It does this dynamically, and the disposition of these
files depends on the type of logging that is in use. By default, up to 2 secondary
log files can be allocated, providing a further 2MB of disk space. (The default
number can be changed; “Configuring the logs” on page 160 gives information
about changing the values.)

Active log files contain the log entries required to restart the queue manager. The
number of active log files is usually the same as the number of primary log files as
defined in the configuration files. Inactive log files are not required to restart the
queue manager.

The key event that controls whether a log file is termed active or inactive is a
checkpoint. See “Checkpointing—ensuring complete recovery” on page 144 for
further information about checkpoints.

The log control file contains the information needed to monitor the use of log files:
their size and location, the name of the next available file, and so on.

Note: You should ensure that the logs created when you start a queue manager
are large enough to accommodate the size and volume of messages that your
applications will handle. You can do this by changing the default log numbers and
sizes to meet your requirements. Changing the default values is described on page
160.

Types of logging
In MQSeries, the number of files that are used for logging depends on the values
defined in the MQSeries configuration file. The values set there will depend on the
numbers and lengths of messages that you expect to handle.

There are two ways of maintaining records of queue manager activities, circular
logging and linear logging. Both types of logging can cope with unexpected loss of
power, assuming that there is no hardware failure.

142 MQSeries for Windows NT V2.0 System Management Guide

 The log

 Circular logging
Use circular logging if all you want is restart recovery. The log is used to roll back
transactions that were in progress when the system stopped.

Circular logging keeps all restart data in a ring of log files. Logging fills the first file
in the ring, then moves on to the next, and so on, until all the files are filled. It then
goes back to the first file in the ring and starts again. This continues as long as the
product is in use and has the advantage that you never run out of log files.

There is a complication with circular logging. The log entries required to restart the
queue manager without loss of data are kept until they are no longer required to
ensure queue manager data recovery. MQSeries can add secondary log files to
the ring to extend the log capacity as necessary, possibly to accommodate a long
lived transaction. These files will be deleted when they become inactive and are no
longer needed. The mechanism for managing log files is described in
“Checkpointing—ensuring complete recovery” on page 144.

 Linear logging
Use linear logging if you want both restart recovery and media or forward recovery
(recreating lost or damaged data by replaying the contents of the log).

Linear logging keeps the log data in a continuous, ever extending sequence of files.
Space is not reused, so you can always retrieve any record logged from the time
that the queue manager was created.

The active log files are the log files at the end of this sequence. Previous or earlier
files are the inactive log files.

The configured number of primary and secondary log files refers to the number of
active log files.

Although secondary log files may be used for linear logging, they are not used in
normal operation. If a situation should arise when, probably due to long lived
transactions, it is not possible to free a file from the active pool because it may still
be required for a restart, secondary files are formatted and added to the active log
file pool.

As disk space is finite, you may have to think about some form of archiving.
MQSeries does not do this for you; you must manage disk space for the log,
reusing or extending the existing space as necessary.

You must decide when inactive log files are no longer required. You may select to
archive them (if, for example, your operation requires you to keep all records), or
you may delete them as being no longer of interest to you. Refer to “Managing
logs” on page 147 for further information about the disposition of log files.

 Chapter 13. Recovery and restart 143

 Checkpointing

Checkpointing—ensuring complete recovery
Persistent updates to message queues happen in two stages. First, the records
representing the update are written to the log, then the queue file is updated.
Because the queue files are updated asynchronously, the log files can become
more up-to-date than the queue files. To ensure that restart processing begins
from a consistent point, MQSeries uses checkpoints.

A checkpoint is a group of log records used to record a point in time when the data
held in the log is the same as the data held in the queue files. Although the
checkpoint spans more than one record, there is a single point of consistency. The
group of records contains the information needed to restart the queue manager; for
example, the state of all transactions active at the time of the checkpoint.

Checkpoints are generated automatically by MQSeries. They are taken when the
queue manager starts, at shutdown, and at other times which are frequent enough
to allow restart to take place quickly. As the queues handle further messages, the
checkpoint becomes inconsistent with the current state of the queues.

When MQSeries is restarted, it locates the latest checkpoint in the log. This
location is recorded in the checkpoint file and is updated whenever checkpoint
recording is completed. The checkpoint file is held in the queue manager’s
directory. (See Appendix C, “Directory structure” on page 247 for information
about the location of the checkpoint file.)

The ages of the queue manager data and the log data are tied together by the
checkpoint file. The checkpoint located by the file represents the most recent point
of consistency between the log and the data. Later entries in the log reflect queue
manager activities since the checkpoint was recorded.

The queues, unless known to have been damaged, are assumed to be as they
were at the time of the latest checkpoint, regardless of subsequent activity. The log
is then replayed from the checkpoint using the log records to update the queues up
to the end of the log. Effectively, any records in the log following the checkpoint
are reapplied to the queues. When this is complete, the queues are in the state
they were in prior to the system shutdown or failure. The queue contents match, or
are up to date with, the latest entry in the log.

MQSeries maintains internal pointers to the head and tail of the log; that is, to the
active portion of the log. The head pointer locates the first record that is consistent
with recovering message data. The tail of the log is the latest record added to the
log.

144 MQSeries for Windows NT V2.0 System Management Guide

 Checkpointing

How checkpointing works
Let’s look at a log to see how checkpoints are used to make recovery more
efficient, and to control the reuse of primary and secondary log files.

Checkpoint
1

Put PutGetGet

Get Get PutPut

Put Put GetGetGet

Checkpoint
2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

Figure 22. Checkpointing. For simplicity, only the ends of the log files are shown.

Figure 22 represents entries in a series of log files. In Log File 1, the first record is
shown as a checkpoint. This is followed by a series of log entries and, in Log File
2, a second checkpoint. Further log entries fill Log File 2 and Log File 3.

In Figure 22, when checkpoint 2 is recorded, all records before checkpoint 2 are no
longer needed by MQSeries. The queues can be recovered from the checkpoint
information and any later log entries. For circular logging, any files prior to the
checkpoint can be reused. For a linear log, the log files no longer need to be
accessed for normal operation and become inactive. In the example, the head
pointer is moved to point to the latest checkpoint, Checkpoint 2, which then
becomes the new log head, head 2. Log File 1 can now be reused if circular
logging is in use. If linear logging is in use, Log File 1, now inactive, can be
processed according to your own requirements (perhaps archived or deleted).

Figure 23 on page 146 shows how a long-running transaction affects reuse of log
files. In the example, a long-running transaction has caused an entry to the log,
shown as LR 1, after the first checkpoint shown. The transaction does not
complete, shown as LR 2, until after the third checkpoint. All the log information
from LR 1 onwards until the transaction has completed at LR 2 is retained to allow
recovery of that transaction if necessary.

After the long-running transaction has completed, at LR 2, the head of the log is
moved to checkpoint 3, the latest logged checkpoint. The files containing log
records prior to checkpoint 3, Head 2, are no longer needed.

 Chapter 13. Recovery and restart 145

 Checkpointing

Checkpoint
1

Put PutGetGet

Get Get PutPut

Put PutGetCheckpoint
3

Get

Checkpoint
2

Head 1

Head 2

Log File 1

Log File 2

Log File 3

LR 1

LR 2

Figure 23. Checkpointing with a long-running transaction. For simplicity, only the ends of
the log files are shown.

When the log head is moved and you are using circular logging, the log files prior
to the new head may become eligible for reuse and the logger, after filling the
current file, reuses the next file available to it.

If you are using linear logging, the log head is moved down the active pool and the
first file becomes inactive. A new file is formatted and added to the bottom of the
pool in readiness for future logging activities.

If the primary log files are completely filled before the long-running transaction
completes, secondary log files are used to avoid the risk of a log full situation if
possible.

If you are using circular logging, secondary log files are used to increase the size of
the ring; they are automatically deleted when no longer needed.

If the transaction does not complete before the secondary log files are filled, a
forced roll back of the transaction occurs. See page 147 for more information
about roll-back.

146 MQSeries for Windows NT V2.0 System Management Guide

 Managing logs

 Managing logs
Over time, some of the log records written are no longer needed for restarting the
queue manager. Of the log records, only those written since the start of the last
complete checkpoint, and those written by any active transactions, are needed to
restart the queue manager. Thus, the log may fill if a checkpoint has not been
taken for a long time, or if a long-running transaction wrote a log record a long time
ago. The queue manager tries to take checkpoints sufficiently frequently to avoid
the first problem.

If the number of secondary files available is used up, requests for most further
operations requiring log activity will be refused with
MQRC_RESOURCE_PROBLEM being returned to the application.

When a long-running transaction fills the log, attempts to write log records fail and
MQPUT, MQPUT1, and MQGET calls return MQRC_RESOURCE_PROBLEM.
(Space is reserved to commit or rollback all in-flight transactions, so MQCMIT or
MQBACK should not fail.)

The queue manager rolls back transactions that consume too much log space. An
application whose transaction is rolled back in this way is unable to perform
subsequent MQPUT or MQGET operations specifying syncpoint under the same
transaction. An attempt to put or get a message under syncpoint in this state
returns MQRC_BACKED_OUT. The application may then issue MQCMIT, which
returns MQRC_BACKED_OUT, or MQBACK, and start a new transaction. When
the transaction that is consuming too much space has bee rolled back, message
AMQ7469 is issued, and the transaction's log space is released and the queue
manager continues to operate normally.

If the log fills, message AMQ7463 is issued. In addition, if the log fills because a
long-running transaction has prevented the space being released, message
AMQ7465 is issued.

Finally, if records are being written to the log faster than the asynchronous
housekeeping processes can handle them, message AMQ7466 is issued. If you
see this message, you should increase the number of log files or reduce the
amount of data being processed by the queue manager.

What happens when a disk gets full
The queue manager logging component can cope with a full disk, and with full log
files. If the disk containing the log fills, the queue manager issues message
AMQ6708 and an FFST record is taken. (See “First failure support technology
(FFST)” on page 182 for further information about FFST records.)

If the log is full, the queue manager does not stop. However, it does not accept
new persistent messages until more log space has been made available.
Messages cannot be accepted by MQSeries if there is no way of protecting them
from possible loss.

The log files are created at their maximum size, rather than being extended as log
records are written to them. This means that MQSeries can only run out of disk
space when it is creating a new file. It therefore cannot run out of space when it is
writing a record to the log. MQSeries always knows how much space is available
in the existing log files and manages the space within the files accordingly.

 Chapter 13. Recovery and restart 147

 Managing logs

If you fill the drive containing the log files, you may be able to free some disk
space. If you are using a linear log, there may be some inactive log files in the log
directory which you can copy to another drive or device. If you still run out of
space, check that the configuration of the log in the queue manager’s configuration
file is correct. You may be able to reduce the number of primary or secondary log
files so that the log does not outgrow the available space. Note that it is not
possible to alter the size of the log files for an existing queue manager. The queue
manager assumes that all log files are the same size.

Managing log files
If you are using circular logging, ensure that there is sufficient space to hold the log
files. You do this when you configure your system (see “Log configuration stanzas”
on page 161). The amount of disk space used by the log does not increase
beyond the configured size, including space for secondary files to be created when
required.

If you are using a linear log, the log files are added continually as data is logged,
and the amount of disk space used increases with time. If the rate of data being
logged is high, disk space is consumed rapidly by new log files.

Over time, the older log files for a linear log are no longer required to restart the
queue manager or perform media recovery of any damaged objects. When
checkpoints are taken, the queue manager issues a pair of messages to indicate
which of the log files is required:

� Message AMQ7467 gives the name of the oldest log file needed to restart the
queue manager. This log file and all newer log files must be available during
queue manager restart.

� Message AMQ7468 gives the name of the oldest log file needed to do media
recovery.

Any log files older than these do not need to be online. You can copy them to an
archive medium such as tape for disaster recovery, and remove them from the
active log directory. You may want to keep these files for backup purposes. Any
log files needed for media recovery but not for restart can also be off-loaded to an
archive.

If any log file that is needed cannot be found, operator message AMQ6767 is
issued. Make the log file, and all subsequent log files, available to the queue
manager and retry the operation that caused the original problem.

Note: When performing media recovery, all the required log files must be available
in the log file directory at the same time. Make sure that you take regular media
images of any objects you may wish to recover to avoid running out of disk space
to hold all the required log files.

Log file location
When choosing a location for your log files, remember that operation is severely
impacted if MQSeries fails to format a new log file because of lack of disk space.
Put the log directory on a different drive from that used by the Windows NT
swapper file. Because the log files tend to be fairly large, this avoids the problem
of the log filling the disk and preventing expansion of the swapper file.

148 MQSeries for Windows NT V2.0 System Management Guide

 Log recovery

If you are using a circular log, ensure that there is sufficient space on the drive for
at least the configured primary log files. You should also leave space for at least
one secondary log file which is needed if the log has to grow.

If you are using a linear log, you should allow considerably more space; the space
consumed by the log increases continuously as data is logged.

Ideally, the log files should be placed on a separate disk drive from the queue
manager data. This has benefits in terms of performance. It may also be possible
to place the log files on multiple disk drives in a mirrored arrangement. This gives
protection against failure of the drive containing the log. Without mirroring, you
could be forced to go back to the last backup of your MQSeries system.

Using the log for recovery
There are several ways that your data can be damaged. MQSeries for Windows
NT helps you recover from:

� A damaged data object
� A power loss in the system
� A damaged log volume

If possible, the system issues operator messages to indicate the type of damage
that has occurred, and when it was noticed. MQI calls return
MQRC_OBJECT_DAMAGED.

This section looks at how the logs are used to recover from these problems.

Recovering from problems
MQSeries can recover from loss of power. In addition, it is sometimes possible to
recover from other types of problem, such as inadvertent deletion of a file.

If the queue manager is restarted after a loss of power, MQSeries restores the
queues to their state at the time of the failure. This ensures that no persistent
messages are lost. Nonpersistent messages are discarded; they do not survive
when MQSeries stops.

There are ways in which an MQSeries object can become unusable, for example
due to inadvertent damage. You then have to recover either your complete system
or some part of it. The action required depends on when the damage is detected,
whether the log method selected supports media recovery, and which objects are
damaged.

 Media recovery
Media recovery provides a way to rebuild objects from information recorded in a
linear log. (Media recovery cannot be performed with circular logging.) For
example, if an object’s file is inadvertently deleted, or becomes unusable for some
other reason, media recovery can be used to rebuild it. The information in the log
required for media recovery of an object is called a media image. Media images
can be recorded manually, using the rcdmqimg command, or automatically as
described later in this section.

 Chapter 13. Recovery and restart 149

 Log recovery

A media image is a sequence of log records containing an image of an object from
which the object itself can be rebuilt. It contains a copy of the object’s definition
and, for a local queue, all its persistent messages.

The first log record required to rebuild an object is known as its media recovery
record; it is the start of the object’s latest media image. The location of the media
recovery record of each object is one of the pieces of information recorded during a
checkpoint.

During replay, the log records are read and their information is used to return the
object to the most recent state recorded in the log. When rebuilding an object from
its media image, it is also necessary to replay any log records describing updates
performed on the object since the last image was taken.

Consider, for example, a local queue that has an image recorded. Later, a
persistent message is put onto the queue. In order to rebuild a current image of
the object, it is necessary to replay the log entries recording the putting of the
message to the queue, as well as replaying the image itself.

When an object is created, the log records written contain sufficient information to
completely recreate the object. These records thus make up the object’s first
media image. Subsequently, media images are recorded automatically by the
queue manager when:

� Images of the queue manager object and the object catalog are taken at each
checkpoint.

� Images of all process objects and non-local queues are taken at each
shutdown.

� Local queue images are taken when the queue is found to be empty during
shutdown, or is emptied by using the CLEAR QLOCAL command.

Note: Images are not taken of either channels or local queues that are not empty.
This is because local queues that contain messages may be very large, and
channel definitions are not logged.

Media images can also be recorded manually using the rcdmqimg command,
described on page 212.

Recovering media images
MQSeries automatically recovers some objects from their media image if it finds
during startup that they are corrupt or damaged. These objects are the catalog
(which contains a list of all objects used by the queue manager), the queue
manager object, and any local queues that have in-doubt messages. If any
transaction was incomplete at the time of the last shutdown of the queue manager,
any queue affected is recovered automatically in order to complete the startup
operation.

You must recover other objects manually, using the rcrmqobj command. Damage
to these objects will have been notified by an error message. The error message
can be found in the operator message log. This command replays the records in
the log to recreate the MQSeries object. The object is recreated from its latest
image found in the log, together with all applicable log events between the time the
image was saved and the time the recreate command is issued. Should an
MQSeries object become damaged, the only valid actions that can be performed

150 MQSeries for Windows NT V2.0 System Management Guide

 Log recovery

are either to delete it or to recreate it by this method. Note, however, that
nonpersistent messages cannot be recovered in this way.

See “rcrmqobj (Recreate object)” on page 214 for further details of the command.

It is important to remember that you must have the log file containing the start of
the media recovery image, and all subsequent log files, available in the log file
directory when attempting media recovery of an object. If a required file cannot be
found, operator message AMQ6767 is issued and the media recovery operation
fails. If you do not take regular media images of the objects that you may wish to
recreate, you can get into the situation where you have insufficient disk space to
hold all the log files required to recreate an object.

Recovering damaged objects during startup
If the queue manager discovers a damaged object during startup, the action it takes
depends on the type of object and whether the queue manager is configured to
support media recovery.

If the queue manager object is damaged, the queue manager cannot start unless it
can recover the object. If the queue manager is configured with a linear log, and
thus supports media recovery, MQSeries automatically tries to recreate the queue
manager object from its media images. If you are using circular logging, you can
either restore a backup of the queue manager or delete the queue manager.

Similarly, if the queue manager object catalog is found to be corrupt or damaged,
the queue manager automatically attempts to recover it in the same way.

If any transactions were active when the queue manager stopped, the local queues
containing the persistent, uncommitted messages put or got inside these
transactions are also needed to start the queue manager successfully. If any of
these local queues are found to be damaged, and the queue manager supports
media recovery, it automatically attempts to recreate them from their media images.
If any of the queues cannot be recovered, MQSeries cannot start.

If any damaged local queues containing uncommitted messages are discovered
during startup processing on a queue manager that does not support media
recovery, the queues are marked as damaged objects and the uncommitted
messages on them are ignored. This is because it is not possible to perform media
recovery of damaged objects on such a queue manager and the only action left is
to delete them. Message AMQ7472 is issued to report any damage.

Recovering damaged objects at other times
Media recovery of objects is only automatic during startup. At other times, when
object damage is detected, operator message AMQ7472 is issued and most
operations using the object fail. If the queue manager object is damaged at any
time after the queue manager has started, the queue manager performs a
preemptive shutdown. When an object has been damaged you may delete it or, if
the queue manager is using a linear log, attempt to recover it from its media image
using the rcrmqobj command (see page 214 for further details).

 Chapter 13. Recovery and restart 151

 Backup and restore

Backup and restore
Periodically, you may wish to take a backup of your queue manager’s data and log
information to provide protection against possible corruption due to hardware
failures. However, because message data is often short-lived, you may choose not
to take backups.

Backing up MQSeries
To take a backup of a queue manager’s data, follow these steps:

1. Ensure that the queue manager is not running. If your queue manager is
running, stop it with the endmqm command.

If you try to take a backup of a running queue manager, the backup may not be
consistent due to updates in progress when the files were copied.

2. Locate the directories under which the queue manager places its data and its
log files. You can use the information in the configuration files to determine
these directories.

For more information about this, refer to Chapter 14, “Configuration files” on
page 155.

You may have some difficulty in understanding the names that appear in the
directory. This is because the names are transformed to ensure that they are
compatible with the platform on which you are using MQSeries. For more
information about name transformations, refer to “Understanding MQSeries file
names” on page 53.

3. Take copies of all the queue manager’s data and log file directories, including
all subdirectories.

Make sure that you don’t miss any of the files, especially the log control file and
the configuration files. Some of the directories may be empty, but they will all
be required if you restore the backup at a later date, so it is advisable to save
them too.

 Restoring MQSeries
To restore a backup of a queue manager, follow these steps:

1. Ensure that the queue manager is not running (see step 1 of “Backing up
MQSeries”).

2. Locate the directories under which the queue manager places its data and its
log files (see step 2 of “Backing up MQSeries”).

3. Clear out the directories into which you are going to place the backed up data.

4. Copy the backed up queue manager data and log files into the correct places.

5. Check the resulting directory structure to ensure that you have all of the
required directories. (Refer to Appendix C, “Directory structure” on page 247
for more information about MQSeries directories and subdirectories.)

Make sure that you have a log control file as well as the log files. Also check
that the MQSeries and queue manager configuration files are consistent so that
MQSeries can look in the correct places for the restored data.

If the data was backed up and restored correctly, the queue manager will now start.

152 MQSeries for Windows NT V2.0 System Management Guide

 Recovery scenarios

Note: Even though the queue manager data and log files are held in different
directories, you should back up and restore the directories at the same time. If the
queue manager data and log files have different ages, the queue manager is not in
a valid state and will probably not start. If it does start, your data will almost
certainly be corrupt. An exception to this occurs with linear logging when it may be
possible to restore a backup of the queue manager data and not the log. This
could be used if the queue manager data was damaged but the log was left intact.
See “Recovery scenarios” for a description of recovery from this situation.

 Recovery scenarios
This section looks at a number of possible problems and indicates how to recover
from them.

Disk drive failures
You may suffer problems with a disk drive containing either the queue manager
data, the log, or both. Problems can include data loss or corruption. The three
cases differ only in the part of the data that survives, if any.

In all cases you must first check the directory structure for any damage and, if
necessary, repair such damage. If you lose queue manager data, there is a danger
that the queue manager directory structure has been damaged. If so, you must
recreate the directory tree manually before you try to restart the queue manager.
Having checked for structural damage, there are a number of alternative things you
can do, depending on the type of logging that you use.

� Where there is major damage to the directory structure or any damage to
the log , remove all the old files back to the QMgrName level, including the
configuration files, the log, and the queue manager directory, restore the last
backup and try to restart the queue manager.

� For linear logging with media recovery , ensure the directory structure is
intact and try to restart the queue manager. If it won’t restart, restore a
backup. If it restarts, check whether any other objects have been damaged
using MQSC commands such as DISPLAY QUEUE. Recover the ones you
find, using the rcrmqobj command. For example, the following command will
recover a local queue named Tickets on a queue manager named BoxOffice:

rcrmqobj /m BoxOffice /t ql Tickets

If only one or two objects have been reported as damaged, you may want to
specify those objects by name and type here.

Note: These commands do not apply to channels.

� For linear logging with media recovery and with an undamaged log , you
may be able to restore a backup of the queue manager data leaving the
existing log files and log control file unchanged. Starting the queue manager
applies the changes from the log to bring the queue manager back to its state
when the failure occurred.

 Chapter 13. Recovery and restart 153

 Recovery scenarios

This method relies on two facts. Firstly, it is vital that the checkpoint file be
restored as part of the queue manager data. This file contains the information
determining how much of the data in the log must be applied to give a
consistent queue manager.

Secondly, you must have the oldest log file which was required to start the
queue manager at the time of the backup, and all subsequent log files,
available in the log file directory.

If this is not possible, you must restore a backup of both the queue manager
data and the log, both of which were taken at the same time.

� For circular logging, or linear logging without media recovery , you must
restore the queue manager from the latest backup that you have. Once you
have restored the backup, restart the queue manager and check as above for
damaged objects. However, because you do not have media recovery, you
must find other ways of recreating the damaged objects.

Damaged queue manager object
If the queue manager object has been reported as damaged during normal
operation, the queue manager performs a preemptive shutdown. You can use the
directory structure (see Appendix C, “Directory structure” on page 247) to locate
the queue manager object. There are two ways of recovering in these
circumstances depending on the type of logging you use:

� For linear logging only , manually delete the file containing the damaged
object and restart the queue manager. You can use the dspmqfls to
determine the real file system name for a damaged object. Media recovery of
the damaged object is automatic.

� For circular or linear logging , restore the last backup of the queue manager
data and log and restart the queue manager.

Damaged single object
If a single object is reported as damaged during normal operation, there are two
ways of recovering, depending on the type of logging you use:

� For linear logging , recreate the object from its media image.

� For circular logging , restore the last backup of the queue manager data and
log and restart the queue manager.

Automatic media recovery failure
If a local queue required for queue manager startup with a linear log is damaged,
and the automatic media recovery fails, restore the last backup of the queue
manager data and log and restart the queue manager.

154 MQSeries for Windows NT V2.0 System Management Guide

 MQSeries configuration files

 Chapter 14. Configuration files

MQSeries for Windows NT uses configuration files to hold basic product
configuration information. This chapter describes what they are and how you can
use them to change the way that queue managers operate.

What configuration files are
Configuration files define optional values for individual queue managers and for
MQSeries on the node as a whole. These files have file name extensions of INI
and are also referred to as ini files or stanza files.

A configuration file contains one or more stanzas; a stanza is a group of lines in the
file that together have a common function or define part of a system. For example,
there are stanzas associated with logs, with channels, and installable services.

Configuration files may be modified automatically by commands that change the
configuration of queue managers on the node or by editing them manually.

There are two types of configuration file:

� The MQSeries configuration file, which specifies values for MQSeries on the
node as a whole. There is one MQSeries configuration file per node.

� Queue manager configuration files, which specify values for specific queue
managers. There is one queue manager configuration file for each queue
manager on the node.

MQSeries configuration file
The MQSeries configuration file MQS.INI contains information relevant to all the
queue managers on a node. It is created automatically during installation. In
particular, the MQSeries configuration file is used to locate the data associated with
each queue manager. The MQSeries configuration file is located in the MQM
directory on the root drive, by default C:\MQM.

What the MQSeries configuration file contains
The MQS.INI file contains the names of the queue managers, the name of the
default queue manager, and the location of the files associated with each of them.
The following stanzas can appear in MQS.INI:

AllQueueManagers
Specifies the path to the qmgrs directory, where the files associated with a queue
manager are stored. If, during installation, you specify a location for MQSeries
files that is not the default, the DefaultPrefix is automatically changed to reflect
this.

DefaultQueueManager
Specifies the default queue manager for the node. This queue manager
processes any commands where a queue manager name is not explicitly
specified. The stanza is automatically updated if you create a new default queue
manager. If you inadvertently create a default queue manager and then wish to
revert to the original, you must alter this stanza manually.

 Copyright IBM Corp. 1994, 1996 155

 MQSeries configuration files

QueueManager
There is one such stanza for each queue manager. This specifies the queue
manager name and the location of the files associated with that queue manager.
The names of these files are based on the queue manager name but are
transformed if the queue manager name is not a valid filename. See
“Understanding MQSeries file names” on page 53

LogDefaults
Specifies the default log parameters for the node. The DefaultPrefix and
LogDefaultPath entries allow for the queue manager and its log to be on different
physical drives. This is recommended, although by default they are on the same
drive. See “Configuring the logs” on page 160 for more information about the log
file stanzas.

Figure 24 shows an example of an MQSeries configuration file.

#\\\#
#\ Module Name: mqs.ini \#
#\ Type : MQSeries Configuration File \#
#\ Function : Define MQSeries resources for the node \#
#\ \#
#\\\#
#\ Notes : \#
#\ 1) This is the installation time default configuration \#
#\ \#
#\\\#
AllQueueManagers:
#\\\#
#\ The path to the qmgrs directory, below which queue manager data \#
#\ is stored \#
#\\\#
DefaultPrefix=c:\mqm

LogDefaults:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=256
 LogType=CIRCULAR
 LogBufferPages=17
 LogDefaultPath=c:\mqm\log

QueueManager:
 Name=saturn.queue.manager
 Prefix=c:\mqm
 Directory=saturn!queue!manager

QueueManager:
 Name=venus
 Prefix=c:\mqm
 Directory=venus

DefaultQueueManager:
 Name=saturn.queue.manager

Figure 24. Example MQSeries configuration file

In Figure 24, MQSeries on the node is using the default location for queue
managers (c:\mqm\qmgrs) and the default location for logs (c:\mqm\log).

156 MQSeries for Windows NT V2.0 System Management Guide

 Queue manager configuration file

The queue manager saturn.queue.manager is the default queue manager for the
node. The directory for files associated with this queue manager has been
automatically transformed into a valid file name for the file system.

Attention:: Because the MQSeries configuration file is used to locate the data
associated with queue managers, a nonexistent or incorrect configuration file can
cause some or all MQSeries commands to fail. Also, applications cannot connect
to a queue manager that is not defined in the MQSeries configuration file.

Queue manager configuration file
A queue manager configuration file, QM.INI, contains information relevant to a
specific queue manager. There is one queue manager configuration file for each
queue manager. It is created automatically when the queue manager it is
associated with is created.

The file is held in the root of the directory tree occupied by the queue manager.
For example, the path and name for a configuration file for a queue manager called
QMNAME is:

C:\MQM\QMGRS\QMNAME\QM.INI

Note: The queue manager name can be up to 48 characters in length. However,
this does not guarantee that the name is valid or unique. Therefore, a directory
name is generated based on the queue manager name. This process is known as
name transformation; for a description, see “Understanding MQSeries file names”
on page 53.

What the queue manager configuration file contains
The stanzas that can appear in a queue manager configuration file, QM.INI are:

Service
Specifies the name of one of the installable services, and the number of entry
points to that service. There is one stanza for each service. These services are
available:

 � Authorization service
 � Name service

The authorization service stanza and its associated ServiceComponent stanza
are added automatically when the queue manager is created.

Once the Object Authority Manager (OAM) has been enabled, you can only
disable it by:

� Deleting the queue manager (using the dltmqm command)
� Creating the queue manager again (using the crtmqm command) with the

MQSNOAUT environment variable set.

The name service stanza must be added manually, if you wish to enable a name
service.

 Chapter 14. Configuration files 157

 Queue manager configuration file

ServiceComponent
These stanzas define the service component associated with a particular service.
There can be more than one service component stanza for each service, but
each service component stanza must match the corresponding service stanza.
See the MQSeries Programmable System Management manual for more
information. By default, the authorization service stanza is present and the
associated component, the OAM is active.

Log
Specifies the default log parameters for this queue manager. The fields in this
stanza are same as those in the LogDefaults stanza in the MQS.INI file. The
values can be changed, if required. See “Configuring the logs” on page 160 for
more information about the log file stanzas.

Channels
This stanza contains information about the channels. In addition to defining the
maximum number of channels that can be defined for the queue manager, a
second parameter limits the number of channels that can be active at any time.

The MaxChannels parameter states the maximum number of channels that can
have current status. This includes channels that are retrying or stopped.

The MaxActiveChannels parameter limits the number of channels that have
current status but are neither retrying nor stopped.

See the MQSeries Distributed Queuing Guide for more information about
channels.

LU6.2, NETBIOS, and TCP/IP
Specifies network protocol configuration parameters. These stanzas override the
default parameters for channels. Only stanzas representing changed default
values are actually present.

KeepAlive, if specified, causes TCP/IP to periodically check that the other end of
the connection is still available. If it is not, the channel is terminated.

You do not usually need to override the supplied default values but, if necessary,
you can create them manually. See the MQSeries Distributed Queuing Guide for
more information.

This example shows how the stanzas might be arranged in a queue manager
configuration file for the queue manager named “venus”:

158 MQSeries for Windows NT V2.0 System Management Guide

 Queue manager configuration file

#\\\#
#\ Module Name: qm.ini \#
#\ Type : MQSeries queue manager configuration file \#
Function : Define the configuration of a single queue manager \#
#\ \#
#\\\#
#\ Notes : \#
#\ 1) This file defines the configuration of the queue manager \#
#\ \#
#\\\#
Service:
 Name=AuthorizationService
 EntryPoints=9

ServiceComponent:
 Service=AuthorizationService
 Name=MQSeries.WindowsNT.auth.service
 Module=amqzfu
 ComponentDataSize=ð
Log:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=1ð24
 LogType=CIRCULAR
 LogBufferPages=17
 LogPath=c:\mqm\log\venus\

Channels:
MaxChannels=1ð ; Maximum number of Channels allowed, the

; default value is 1ðð
 MaxActiveChannels=5 ; Maximum number of channels allowed to be active

; at any time. The default is the value of
 ; MaxChannels.

TCP: ; TCP/IP entries
Port = 18ðð ; use port 18ðð instead of the default 1414

 Library1=DLLName1 ; Name of TCP/IP Sockets DLL
 Library2=DLLName2 ; Same as above if code is in two libraries
KeepAlive=Yes ; Switch KeepAlive on

LU62: ; LU 6.2 entries
TPName= RECV ; TP Name to start on remote side

 Library1=DLLName1 ; Name of APPC DLL
 Library2=DLLName2 ; Same as above if code is in two libraries
 LocalLU=MyLocalLU ; LU to use on local system

NETBIOS: ; NetBIOS entries
LocalName = ROGER ; The name this machine will be known as on the LAN
AdapterNum = ð ; Use LAN adapter ð.

; The default adapter is adapter ð
NumSess = 2 ; number of sessions to allocate, default is 1
NumCmds = 2 ; number of commands to allocate, default is 1

 NumNames = 2 ; number of names to allocate, default is 1
 Library1=DLLName1 ; Name of NetBios DLL
 Library2=DLLName2 ; Same as above if code is in two libraries

 Chapter 14. Configuration files 159

 Configuring the logs

Editing configuration files
You can edit the default configuration files to alter the system defaults. However,
before editing any configuration file, make sure that you have a backup that you
can revert to.

In some circumstances, you may have to edit your configuration files. For example:

� If you lose a configuration file; recover from backup if possible.

� If you need to move one or more queue managers to a new directory.

� If you need to change your default queue manager; this could happen if you
accidentally delete the existing queue manager.

� When advised to do so by your IBM Support Center.

Changing the default prefix
If you change the default prefix, DefaultPrefix, for the message queue manager,
you must replicate the directory structure that was created at installation time (see
Figure 8 on page 22). In particular, the QMGRS subdirectory structure must be
created. You must stop MQSeries before changing the default prefix. Only restart
MQSeries after the structures have been moved to the new location and the default
prefix has been changed.

Implementing changes to configuration files
If you edit a configuration file, the changes are not implemented immediately by the
queue manager. Changes made to the MQSeries configuration file are
implemented only when MQSeries is started. Changes made to a queue manager
configuration file are implemented when the queue manager is started. If the
queue manager is running when you make the changes, you must stop and restart
the queue manager for any changes to be recognized by the system.

Recommendations for configuration files
When you create a new queue manager, you should:

� Back up the MQSeries configuration file
� Back up the new queue manager configuration file

Configuring the logs
The log parameters in the MQSeries configuration file are used as default values
when you create a queue manager. These defaults can be overridden if you
specify the log parameters on the crtmqm command. See “crtmqm (Create queue
manager)” on page 193 for details of this command.

The values specified in the queue manager configuration file are read when the
queue manager is started. The file is created when the queue manager is created.

The values in a configuration file are set according to these priorities:

1. Parameters entered on the command line override both the queue manager
configuration file and the MQSeries configuration file.

2. The queue manager configuration file overrides the MQSeries configuration file.

160 MQSeries for Windows NT V2.0 System Management Guide

 Configuring the logs

3. The MQSeries configuration file contains the supplied default values.

If you use an invalid value in a configuration file, it is ignored. The effect is the
same as missing out the value entirely. An operator message is issued to indicate
the problem.

You can edit the MQSeries configuration file after installation and change the
default values to your own requirements.

Log configuration stanzas
The size and location of the log is configured by stanzas in the MQSeries and
queue manager configuration files. These stanzas specify the type of logging to be
used, the log file size, and the log path.

The MQSeries configuration file contains a stanza called LogDefaults with the
following format:

LogDefaults:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=256
 LogType=CIRCULAR
 LogBufferPages=17
 LogDefaultPath=c:\mqm\log

The values specified in the MQSeries configuration file are read whenever a queue
manager is created, started, or deleted.

Each queue manager configuration file has a stanza called Log, which has the
following format:

Log:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=256
 LogType=CIRCULAR
 LogBufferPages=17
 LogPath=c:\mqm\log\<QM_Dir_Name>\

<QM_Dir_Name> is the subdirectory name for this queue manager, providing a
unique path to the logs. This is the queue manager name if it is valid for the file
system; otherwise, it is a transformed name. See “Understanding MQSeries file
names” on page 53.

LogPrimaryFiles
Primary log files are the log files allocated during creation for future use. The
default number is 3. The default can be overridden by editing the
LogPrimaryFiles value in the product and queue manager configuration files.

The value is examined when the queue manager is created or started. You can
change it after the queue manager has been created, however a change in the
value is not effective until the queue manager is restarted, and the effect may not
be immediate.

 Chapter 14. Configuration files 161

 Configuring the logs

The minimum number of primary log files is 2 and the maximum is 62. The total
number of primary and secondary log files must not exceed 63, and must not be
less than 3.

LogSecondaryFiles
Secondary log files are the log files allocated when the primary files are
exhausted. The default number is 2. The default can be overridden using the
LogSecondaryFiles value in the product and queue manager configuration files.

The value is examined when the queue manager is created or started. It may be
increased or decreased after the queue manager has been created. However, a
change in the value is not effective until the queue manager is restarted and the
effect may not be immediate.

The minimum number of secondary log files is 1 and the maximum is 61. The
total number of primary and secondary log files must not exceed 63, and must
not be less than 3.

LogFilePages
The log data is held in a series of files called log files. The default number of log
file pages is 256, equating to a log file size of 1 MB.

The log file size is specified in units of 4 KB pages. It can be specified only
during queue manager creation and the value used is obtained by taking the
default (256) and overriding it with the value in the LogFilePages attribute in the
MQSeries configuration file, or by overriding with the value specified on the
crtmqm command using the /ll flag.

The minimum size is 32 4 KB pages (128 KB) and the maximum is 4095 4 KB
pages (nearly 16 MB).

Note: The size of the log files is specified during queue manager creation and
cannot be changed for an existing queue manager.

LogType
The LogType parameter is used to define the type to be used, either CIRCULAR
or LINEAR. The default is CIRCULAR.

If you want to change the default, you can either edit the MQSeries configuration
file or specify linear logging with the crtmqm command. You cannot change the
logging method after a queue manager has been created.

LogBufferPages
The amount of memory allocated to buffer records for writing is configurable.
The size of the buffers is specified in units of 4 KB pages.

The default number of buffer pages is 17, equating to 68 KB.

The default can be overridden using the LogBufferPages value in the MQSeries
and queue manager configuration files.

The value is examined when the queue manager is created or started and may
be increased or decreased at either of these times. However, a change in the
value is not effective until the queue manager is restarted.

The minimum number of buffer pages is 4 and the maximum is 32. Larger
buffers lead to higher throughput, especially for larger messages.

162 MQSeries for Windows NT V2.0 System Management Guide

 Log file sizes

LogPath
You can specify the directory in which the log files for a queue manager reside.
The directory should exist on a local device to which the queue manager can
write and, preferably, should be on a different drive from the message queues.
Specifying a different drive gives added protection in case of system failure.

The default is C:\MQM\LOG\<QM_Dir_Name>\, where C is the MQSeries root
drive.

You can specify the name of a directory in the crtmqm command using the /ld
flag. As the queue manager is being created, a directory is also created under
the queue manager’s directory, with a name based on the queue manager’s
name, that is used to hold the log files. The aim is to ensure that the Log File
Path is unique, and also that it conforms to any limitations on directory name
lengths.

If you do not specify /ld on the crtmqm command, the value of the
LogDefaultPath attribute in the MQSeries configuration file is used. If this
attribute is missing, the default of C:\MQM\LOG is used, where C is the address
of the MQSeries root drive. The queue manager name is appended to the
directory name to ensure that multiple queue managers use different log
directories.

When the queue manager has been created, a LogPath value is created in the
log stanza in the queue manager configuration file giving the complete directory
name for the queue manager’s log. This value is used to locate the log when the
queue manager is started or deleted.

Specifying log file sizes
The size of the log file that you require depends on the number and size of
messages that are to be handled by your system. Each operation adds an
overhead to the size of the log. For example, when a persistent message is put to
a queue, the message data must be written to the log to make recovery of the
message possible. The message descriptor is also logged together with some
internal information that describes the effect of putting the message on the queue.

There is a trade-off between the size of your log files and the number of files that
you have. Larger files are more difficult to handle but are more efficient.

Table 10 on page 164 shows approximate values for the header information
required for various types of operation.

 Chapter 14. Configuration files 163

 Log file sizes

Table 10. Log overhead sizes. (All values are approximate).

Operation Size

Put persistent message 600 bytes + message length

If the message is large, it is divided into segments of
15700 bytes, each with a 300-byte overhead.

Get message 260 bytes

Syncpoint, commit 750 bytes

Syncpoint, roll-back 1000 bytes + 12 bytes for each get or put to be rolled
back

Create object 1500 bytes

Delete object 300 bytes

Alter attributes 1024 bytes

Record media image 800 bytes + image

The image is divided into segments of 15700 bytes, each
having a 300-byte overhead.

Checkpoint 750 bytes + 200 bytes for each active unit of work
+ a small amount for each object if media recovery is

active.

Additional data can be logged for any uncommitted puts
or gets that have been buffered for performance reasons.

164 MQSeries for Windows NT V2.0 System Management Guide

 Preliminary checks

 Chapter 15. Problem determination

This chapter suggests reasons for some of the problems you may have with
MQSeries for Windows NT. You usually start with a symptom, or set of symptoms,
and trace them back to their cause.

Problem determination is not problem solving. However, the process of problem
determination often enables you to solve a problem. For example, if you find that
the cause of the problem is an error in an application program, you can solve the
problem by correcting the error.

You may not always be able to solve a problem after determining its cause. For
example:

� A performance problem may be caused by a limitation of your hardware.

� You may find that the cause of the problem is in MQSeries for Windows NT. If
this happens, you need to contact your IBM Support Center for a solution.

This chapter contains the following sections:

 � “Preliminary checks.”
� “Common programming errors” on page 169.
� “What to do next” on page 169.
� “Using MQSeries trace” on page 173.
� “Application design considerations” on page 174.
� “Incorrect output” on page 176.
� “Error logs” on page 179.
� “Dead-letter queues” on page 181.
� “Configuration files and problem determination” on page 181.
� “First failure support technology (FFST)” on page 182.
� “Problem determination with MQI clients” on page 183.

 Preliminary checks
Before you start problem determination in detail, it is worth considering the facts to
see if there is an obvious cause of the problem, or a likely area in which to start
your investigation. This approach to debugging can often save a lot of work by
highlighting a simple error, or by narrowing down the range of possibilities.

The cause of your problem could be in any of:

 � MQSeries
 � The network
 � The application

The sections that follow raise some fundamental questions that you need to
consider.

As you go through the questions, make a note of anything that might be relevant to
the problem. Even if your observations do not suggest a cause immediately, they
could be useful later if you have to carry out a systematic problem determination
exercise.

 Copyright IBM Corp. 1994, 1996 165

 Preliminary checks

Has MQSeries for Windows NT run successfully before?
If MQSeries has not run successfully before, it is likely that you have not yet set it
up correctly. See Chapter 2, “Installing MQSeries for Windows NT” on page 15 to
check that you have carried out all the steps correctly and successfully.

Are there any error messages?
MQSeries uses a number of error logs, besides the Windows NT Event Log, to
capture messages concerning the operation of MQSeries itself, any queue
managers that you start, and error data coming from the channels that are in use.
Check both the Windows NT Event Log and the error logs to see if any messages
have been recorded that are associated with your problem.

Refer to “Error logs” on page 179 for information about the contents of the error
logs, and their locations.

Are there any return codes explaining the problem?
If your application gets a return code indicating that a Message Queue Interface
(MQI) call has failed, see the MQSeries Application Programming Reference
manual for a description of that return code.

Can you reproduce the problem?
If you can reproduce the problem, consider the conditions under which it can be
reproduced:

� Is it caused by a command or an equivalent administration request?

Does the operation work if it is entered by another method? If the command
works if it is entered on the command line, but not otherwise, check that the
command server has not stopped, and that the queue definition of the
SYSTEM.ADMIN.COMMAND.QUEUE has not been changed.

� Is it caused by a program? Does it fail on all MQSeries systems and all queue
managers, or only on some?

� Can you identify any program that always seems to be running in the system
when the problem occurs? If so, examine the program to see if it is in error.

Have any changes been made since the last successful run?
When you are considering changes that might recently have been made, think
about the MQSeries system, and also about the other programs it interfaces with,
the hardware, and any new applications. Consider also the possibility that a new
application that you are not aware of might have been run on the system.

� Have you changed, added, or deleted any queue definitions?

� Have you changed or added any new channel definitions? Changes may have
been made to either MQSeries channel definitions or any underlying
communications definitions required by your application.

� Do your applications deal with return codes that they might get as a result of
any changes you have made?

� Have you modified the Registry hive?

166 MQSeries for Windows NT V2.0 System Management Guide

 Preliminary checks

Has the application run successfully before?
If the problem appears to involve one particular application, consider whether the
application has run successfully before.

Before you answer Yes to this question, consider the following:

� Have any changes been made to the application since it last ran successfully?

If so, it is likely that the error lies somewhere in the new or modified part of the
application. Take a look at the changes and see if you can find an obvious
reason for the problem. Is it possible to retry using a back level of the
application?

� Have all the functions of the application been fully exercised before?

Could it be that the problem occurred when part of the application that had
never been invoked before was used for the first time? If so, it is likely that the
error lies in that part of the application. Try to find out what the application was
doing when it failed, and check the source code in that part of the program for
errors.

If a program has been run successfully on many previous occasions, check the
current queue status and files that were being processed when the error
occurred. It is possible that they contain some unusual data value that causes
a rarely used path in the program to be invoked.

� Does the application check all return codes?

Has your MQSeries system been changed, perhaps in a minor way, such that
your application does not check the return codes it receives as a result of the
change? For example, does your application assume that the queues it
accesses can be shared? If a queue has been redefined as exclusive, can
your application deal with return codes indicating that it can no longer access
that queue?

� Does the application run on other MQSeries systems?

Could it be that there is something different about the way that this MQSeries
system is set up which is causing the problem? For example, have the queues
been defined with the same message length or priority?

If the application has not run successfully before
If your application has not yet run successfully, you need to examine it carefully to
see if you can find any errors.

Before you look at the code, and depending upon which programming language the
code is written in, examine the output from the translator, or compiler and linkage
editor, if applicable, to see if any errors have been reported.

If your application fails to translate, compile, or link-edit into the load library, it will
also fail to run if you attempt to invoke it. See the MQSeries Application
Programming Guide manual for information about building your application.

If the documentation shows that each of these steps was accomplished without
error, you should consider the coding logic of the application. Do the symptoms of
the problem indicate the function that is failing and, therefore, the piece of code in
error? See “Common programming errors” on page 169 for some examples of
common errors that cause problems with MQSeries applications.

 Chapter 15. Problem determination 167

 Preliminary checks

Does the problem affect specific parts of the network?
You might be able to identify specific parts of the network that are affected by the
problem (remote queues, for example). If the link to a remote message queue
manager is not working, the messages cannot flow to a remote queue.

Check that the connection between the two systems is available, and that the
intercommunication component of MQSeries has been started.

Check that messages are reaching the transmission queue, and check the local
queue definition of the transmission queue, and any remote queues.

Have you made any network-related changes or changed any MQSeries definitions
that might account for the problem?

Does the problem occur at specific times of the day?
If the problem occurs at specific times of day, it could be that it is dependent on
system loading. Typically, peak system loading is at mid-morning and
mid-afternoon; so these are the times when load-dependent problems are most
likely to occur. (If your MQSeries network extends across more than one time
zone, peak system loading might seem to occur at some other time of day.)

Is the problem intermittent?
An intermittent problem could be caused by failing to take into account the fact that
processes can run independently of each other. For example, a program may
issue an MQGET call, without specifying a wait option, before an earlier process
has completed. An intermittent problem may also be seen if your application tries
to get a message from a queue while the call that put the message is in-doubt (that
is, before it has been committed or backed out).

Have you applied any service updates?
If a service update has been applied to MQSeries, check that the update action
completed successfully and that no error message was produced:

� Did the update have any special instructions?

� Was any test run to verify that the update had been applied correctly and
completely?

� Does the problem still exist if MQSeries is restored to the previous service
level?

� If the installation was successful, check with the IBM Support Center for any
PTF error.

� If a PTF has been applied to any other program, consider the effect it might
have on the way MQSeries interfaces with it.

168 MQSeries for Windows NT V2.0 System Management Guide

 What to do next

Common programming errors
The errors listed below illustrate the most common causes of problems
encountered while running MQSeries programs. You should consider the possibility
that the problem with your MQSeries system could be caused by one or more of
these errors:

� Assuming that queues can be shared, when they are in fact exclusive.

� Passing incorrect parameters in an MQI call.

� Passing insufficient parameters in an MQI call. This may mean that MQI
cannot set up completion and reason codes for your application to process.

� Failing to check return codes from MQI requests.

� Passing variables with incorrect lengths specified.

� Passing parameters in the wrong order.

� Failing to initialize MsgId and CorrelId correctly.

Problems with commands
Be careful when including special characters in descriptive text for some
commands. This is particularly true with the back slash, \, and double quote, ",
characters. If you use either of these in descriptive text, precede them with a \, that
is, enter \\ or \" if you want \ or " in your text.

What to do next
Perhaps the preliminary checks have enabled you to find the cause of the problem.
If so, you should now be able to resolve it, possibly with the help of other books in
the MQSeries library (see “MQSeries publications” on page xii) and in the libraries
of other licensed programs.

If you have not yet found the cause, you must start to look at the problem in
greater detail.

The purpose of this section is to help you identify the cause of your problem if the
preliminary checks have not enabled you to do so.

When you have established that no changes have been made to your system, and
that there are no problems with your application programs, choose the topic that
best describes the symptoms of your problem.

� “Have you obtained incorrect output?” on page 170.
� “Have you failed to receive a response from a PCF command?” on page 170.
� “Are some of your queues failing?” on page 171.
� “Does the problem affect only remote queues?” on page 172.
� “Is your application or system running slowly?” on page 172.

If none of these symptoms describe your problem, consider whether it might have
been caused by another component of your system.

 Chapter 15. Problem determination 169

 What to do next

Have you obtained incorrect output?
In this book, “incorrect output” refers to your application:

� Not receiving a message that it was expecting.

� Receiving a message containing unexpected or corrupted information.

� Receiving a message that it was not expecting, for example, one that was
destined for a different application.

In all cases, check that any queue or queue manager aliases that your applications
are using are correctly specified and accommodate any changes that have been
made to your network.

If you receive an MQSeries error message, all of which are prefixed with the letters
'AMQ', you should look in the error log. See “Error logs” on page 179 for further
information about the error logs.

The problem may cause an FFST record to be generated; a message will be
included in the error log indicating this has occurred. See “First failure support
technology (FFST)” on page 182 for further information about the FFST records.

Have you failed to receive a response from a PCF command?
If you have issued a command but have not received a response, consider the
following questions:

� Is the command server running?

Work with the dspmqcsv command to check the status of the command
server.

– If the response to this command indicates that the command server is not
running, use the strmqcsv command to start it.

– If the response to the command indicates that the
SYSTEM.ADMIN.COMMAND.QUEUE is not enabled for MQGET requests,
enable the queue for MQGET requests.

� Has a reply been sent to the dead-letter queue?

The dead-letter queue header structure contains a reason or feedback code
describing the problem. See the MQSeries Application Programming
Reference manual for information about the dead-letter queue header structure
(MQDLH).

If the dead-letter queue contains messages, you can use the browse sample
application (AMQSBCG) to browse the messages using the MQGET call. See
“Browsing local queues” on page 72 for information about running this sample.

� Has a message been sent to the error log?

See “Error logs” on page 179 for further information about the error logs.

� Are the queues enabled for put and get operations?

� Is the WaitInterval long enough?

If your MQGET call has timed out, you will see a completion code of
MQCC_FAILED and a reason code of MQRC_NO_MSG_AVAILABLE. (See
the MQSeries Application Programming Reference manual for information

170 MQSeries for Windows NT V2.0 System Management Guide

 What to do next

about the WaitInterval field, and completion and reason codes from the
MQGET call.)

� If you are using your own application program to put commands onto the
SYSTEM.ADMIN.COMMAND.QUEUE, do you need to take a syncpoint?

Unless you have specifically excluded your request message from syncpoint,
you must take a syncpoint before attempting to receive reply messages.

� Are the MAXDEPTH and MAXMSGL attributes of your queues set sufficiently
high?

� Are you using the CorrelId and MsgId fields correctly?

Set the values of MsgId and CorrelId in your application to ensure that you
receive all messages from the queue.

Try stopping the command server and then restarting it, responding to any error
messages that are produced.

If the system still does not respond, the problem could be with either a queue
manager or the whole of the MQSeries system. First try stopping individual queue
managers to try and isolate a failing queue manager. If this does not reveal the
problem, try stopping and restarting MQSeries, responding to any messages that
are produced in the error log.

If the problem still occurs after restart, contact your IBM Support Center for help.

Are some of your queues failing?
If you suspect the problem occurs with only a subset of queues, check the local
queues that you think are having problems.

1. Display the information about each queue. You can use the MQSC command
DISPLAY QUEUE to display the information.

2. Use the data displayed to do the following checks:

� If CURDEPTH is at MAXDEPTH, this indicates that the queue is not being
processed. Check that all applications are running normally.

� If CURDEPTH is not at MAXDEPTH, check the following queue attributes
to ensure that they are correct:

– If triggering is being used:

- Is the trigger monitor running?
- Is the trigger depth value set too high? That is, does it generate a

trigger event frequently enough?
- Is the process name correct?
- Is the process available and operational?

– Can the queue be shared? If not, another application could already
have it open for input.

– Is the queue enabled appropriately for GET and PUT?

 Chapter 15. Problem determination 171

 What to do next

� If there are no application processes getting messages from the queue,
determine why this is so. It may be that the applications need to be
started, a connection has been disrupted, or the MQOPEN call has failed
for some reason.

Check the queue attributes IPPROCS and OPPROCS. These attributes
indicate whether the queue has been opened for input and output. If a
value is zero, it indicates that no operations of that type can occur. Note
that the values may have changed and that the queue was open but is now
closed.

You need to check the status at the time you expect to put or get a
message.

If you are unable to solve the problem, contact your IBM Support Center for help.

Does the problem affect only remote queues?
If the problem affects only remote queues, check the following:

� Check that the required channels have been started, can be triggered, and that
any required initiators are running.

� Check that the programs that should be putting messages to the remote
queues have not reported problems.

� If you use triggering to start the distributed queuing process, check that the
transmission queue has triggering set on. Also, check that the trigger monitor
is running.

� Check the error logs for messages indicating channel errors or problems.

� If necessary, start the channel manually. See the MQSeries Distributed
Queuing Guide for information about how to do this.

See the MQSeries Distributed Queuing Guide for information about how to define
and check the status of a channel.

Is your application or system running slowly?
If your application is running slowly, this could indicate that it is in a loop, or waiting
for a resource that is not available.

This could also be caused by a performance problem. Perhaps it is because your
system is operating near the limits of its capacity. This type of problem is probably
worst at peak system load times, typically at mid-morning and mid-afternoon. (If
your network extends across more than one time zone, peak system load might
seem to occur at some other time.)

A performance problem may be caused by a limitation of your hardware.

If you find that performance degradation is not dependent on system loading, but
happens sometimes when the system is lightly loaded, then a poorly designed
application program is probably to blame. This could manifest itself as a problem
that only occurs when certain queues are accessed.

172 MQSeries for Windows NT V2.0 System Management Guide

 Using MQSeries trace

The following symptoms might indicate that MQSeries is running slowly:

� Your system is slow to respond to MQSeries commands.

� Repeated displays of the queue depth indicate that the queue is being
processed slowly for an application with which you would expect a large
amount of queue activity.

If the performance of your system is still degraded after reviewing the above
possible causes, the problem may lie with MQSeries for Windows NT itself. If you
suspect this, you need to contact your IBM Support Center for assistance.

Using MQSeries trace
MQSeries for Windows NT uses the following commands for the trace facility:

� strmqtrc – see “strmqtrc (Start MQSeries trace)” on page 239
� endmqtrc – see “endmqtrc (End MQSeries trace)” on page 211

The trace facility uses one file for each entity being traced, with the trace
information being recorded in the appropriate file.

You can create files associated with trace in any location by choosing the drive you
want to use as part of the installation process. However, the trace files are always
placed in the directory \mqm\errors.

All queue managers and all @SYSTEM tracing takes place to files in this directory.

Trace file names
Trace file names are constructed in the following way:

AMQppppp.TRC

where ppppp is the Process ID (PID) of the process producing the trace.

Notes:

1. The value of the PID can contain fewer, or more, digits than shown in the
example.

2. There will be one trace file for each process running as part of the entity being
traced.

 Chapter 15. Problem determination 173

 Application design

Sample MQSeries trace data
The following example is an extract from an MQSeries trace:

Trace for program d:\mqm\bin\runmqsc.exe
172:162 MQSeries Trace - Version ð2ðððð
172:162 !! - BuildDate Jan 9 1996
 ...
172:393 ---------> (19ð) xstSerialiseExtent
172:393 ----------> (19ð) xllSpinLockRequest
172:393 -----------> (19ð) xllAccessHandle
172:393 ------------> (19ð) xihHANDLEtoSUBPOOLFn
172:393 -------------> (19ð) xihGetConnSPDetailsFromList
172:393 --------------> (19ð) xihGetConnSPDetails
172:393 <-------------- (19ð) xihGetConnSPDetails (rc=OK)
172:393 <------------- (19ð) xihGetConnSPDetailsFromList (rc=OK)
172:393 <------------ (19ð) xihHANDLEtoSUBPOOLFn (rc=OK)
172:393 <----------- (19ð) xllAccessHandle (rc=OK)
172:393 <---------- (19ð) xllSpinLockRequest (rc=OK)
172:393 <--------- (19ð) xstSerialiseExtent (rc=OK)
172:393 ---------> (19ð) xstAllocateChunk
172:393 <--------- (19ð) xstAllocateChunk (rc=OK)
172:393 ---------> (19ð) xstInitialiseBlock
172:393 <--------- (19ð) xstInitialiseBlock (rc=OK)
172:393 ---------> (19ð) xstReleaseSerialisationOnExtent
172:393 ----------> (19ð) xllSpinLockRelease
 ...

Figure 25. Sample MQSeries trace

Notes:

1. In this example the data is truncated. In a real trace, the complete function
names and return codes are present.

2. The return codes are given as values, not literals.

Application design considerations
There are a number of ways in which poor program design can affect performance.
These can be difficult to detect because the program can appear to perform well,
while impacting the performance of other tasks. Several problems specific to
programs making MQSeries calls are discussed in the following sections.

For more information about application design, see the MQSeries Application
Programming Guide.

Effect of message length
Although MQSeries allows messages to hold up to 4 MB of data, the amount of
data in a message affects the performance of the application that processes the
message. To achieve the best performance from your application, you should send
only the essential data in a message; for example, in a request to debit a bank
account, the only information that may need to be passed from the MQI client to
the server application is the account number and the amount of the debit.

174 MQSeries for Windows NT V2.0 System Management Guide

 Application design

Effect of message persistence
Persistent messages are logged. Logging messages reduces the performance of
your application and the queue manager in general, so you should use persistent
messages for essential data only. If the data in a message can be discarded if the
queue manager stops or fails, use a nonpersistent message.

Searching for a particular message
The MQGET call usually retrieves the first message from a queue. If you use the
message and correlation identifiers (MsgId and CorrelId) in the message descriptor
to specify a particular message, the queue manager has to search the queue until it
finds that message. Using the MQGET call in this way affects the performance of
your application.

Queues that contain messages of different lengths
If the messages on a queue are of different lengths, to determine the size of a
message, your application could use the MQGET call with the BufferLength field
set to zero so that, even though the call fails, it returns the size of the message
data. The application could then repeat the call, specifying the identifier of the
message it measured in its first call and a buffer of the correct size. However, if
there are other applications serving the same queue, you might find that the
performance of your application is reduced because its second MQGET call spends
time searching for a message that another application has retrieved in the time
between your two calls.

If your application cannot use messages of a fixed length, another solution to this
problem is to use the MQINQ call to find the maximum size of messages that the
queue can accept, then use this value in your MQGET call. The maximum size of
messages for a queue is stored in the MaxMsgLength attribute of the queue. This
method could use large amounts of storage, however, because the value of this
queue attribute could be as high as 4MB, the maximum allowed by MQSeries for
Windows NT.

Frequency of syncpoints
Programs that issue numerous MQPUT calls within a syncpoint, without committing
them, can cause performance problems. Affected queues can fill up with
messages that are currently inaccessible, while other tasks might be waiting to get
these messages. This has implications in terms of storage, and in terms of threads
tied up with tasks that are attempting to get messages.

Use of the MQPUT1 call
Use the MQPUT1 call only if you have a single message to put on a queue. If you
want to put more than one message, use the MQOPEN call, followed by a series of
MQPUT calls and a single MQCLOSE call.

Number of threads in use
An application may require a large number of threads. Each queue manager
process is allocated a maximum allowable number of threads. If this number is
exceeded, it is up to the application to take action and respond when further
threads cannot be obtained.

 Chapter 15. Problem determination 175

 Incorrect output

If you discover that some applications are troublesome, it could be due to their
design using too many threads. Consider whether the application takes into
account this possibility and that it takes actions to either stop or report this type of
occurrence.

 Incorrect output
The term “incorrect output” can be interpreted in a lot of different ways. For the
purpose of problem determination within this book, the meaning is explained in
“Have you obtained incorrect output?” on page 170.

Two types of incorrect output are discussed in this section :

� Messages that do not appear when you are expecting them.

� Messages that contain the wrong information, or information that has been
corrupted.

Additional problems that you might find if your application includes the use of
distributed queues are also discussed.

Messages that do not appear on the queue
If messages do not appear when you are expecting them, check for the following:

� Has the message been put on the queue successfully?

– Has the queue been defined correctly? For example, is MAXMSGL large
enough?

– Is the queue enabled for putting?

– Is the queue already full? This could mean that an application was unable
to put the required message on the queue.

� Are you able to get any message from the queue?

– Do you need to take a syncpoint?

If messages are being put or retrieved within syncpoint, they are not
available to other tasks until the unit of recovery has been committed.

– Is your wait interval long enough?

You can set the wait interval as an option for the MQGET. You should
ensure that you are waiting long enough for a response.

– Are you waiting for a specific message that is identified by a message or
correlation identifier (MsgId or CorrelId)?

Check that you are waiting for a message with the correct MsgId or
Correlid. A successful MQGET call will set both these values to that of
the message retrieved, so you may need to reset these values in order to
get another message successfully.

Also, check whether you can get other messages from the queue.

– Can other applications get messages from the queue?

– Was the message you are expecting defined as persistent?

If not, and MQSeries has been restarted, the message will have been lost.

– Has another application got exclusive access to the queue?

176 MQSeries for Windows NT V2.0 System Management Guide

 Incorrect output

If you are unable to find anything wrong with the queue, and MQSeries is running,
make the following checks on the way that you expected to put the message on to
the queue:

� Did the application get started?

If it should have been triggered, check that the correct trigger options were
specified.

� Did the application stop?

� Is a trigger monitor running?

� Was the trigger process defined correctly?

� Did the application complete correctly?

Look for evidence of an abnormal end in the error log.

� Did the application commit its changes, or were they backed out?

If multiple transactions are serving the queue, they can conflict with one another.
For example, suppose one transaction issues an MQGET call with a buffer length
of zero to find out the length of the message, and then issues a specific MQGET
call specifying the MsgId of that message. However, in the meantime, another
transaction issues a successful MQGET call for that message, so the first
application receives a completion code of MQRC_NO_MSG_AVAILABLE.
Applications that are expected to run in a multi-server environment must be
designed to cope with this situation.

Consider that the message could have been received, but that your application
failed to process it in some way. For example, did an error in the expected format
of the message cause your program to reject it? If this is the case, refer to
“Messages that contain unexpected or corrupted information.”

Messages that contain unexpected or corrupted information
If the information contained in the message is not what your application was
expecting, or has been corrupted in some way, consider the following points:

� Has your application, or the application that put the message onto the queue,
changed?

Ensure that all changes are simultaneously reflected on all systems that need
to be aware of the change.

For example, the format of the message data may have been changed, in
which case both applications have to be recompiled to pick up the changes. If
one application has not been recompiled, the data appears corrupt to the other.

� Is an application sending messages to the wrong queue?

Check that the messages your application is receiving are not really intended
for an application servicing a different queue.

If your application has used an alias queue, check that the alias points to the
correct queue.

� Has the trigger information been specified correctly for this queue?

Check whether your application, or a different application, should have been
started.

 Chapter 15. Problem determination 177

 Incorrect output

If these checks do not enable you to identify the problem, check your application
logic, both for the program sending the message, and for the program receiving it.

Problems with incorrect output when using distributed queues
If your application uses distributed queues, you should also consider the following
points:

� Has MQSeries been correctly installed on both the sending and receiving
systems, and correctly configured for distributed queuing?

� Are the links available between the two systems?

Check that both systems are available, and connected to MQSeries. Check
that the connection between the two systems is active.

You can use a PING command against either the queue manager or the
channel to verify that the link is operable.

� Is triggering set on in the sending system?

� Is the message you are waiting for a reply message from a remote system?

Check that triggering is activated in the remote system.

� Is the queue already full?

This could mean that an application was unable to put the required message
onto the queue. If so, check if the message has been put onto the dead-letter
queue.

The dead-letter queue header structure contains a reason or feedback code
explaining why the message could not be put onto the target queue. See the
MQSeries Application Programming Reference manual for information about
the dead-letter queue header structure.

� Is there a mismatch between the sending and receiving queue managers?

For example, the message length may be longer than the receiving queue
manager can handle.

� Are the channel definitions of the sending and receiving channels compatible?

For example, a mismatch in sequence number wrap may stop the distributed
queuing component. See the MQSeries Distributed Queuing Guide for more
information about distributed queuing.

� Is data conversion involved? If the CCSIDs or number encoding of the data
formats between the sending and receiving applications differ, data conversion
is necessary. Automatic conversion can occur when the MQGET is issued if
the format is recognized as one of the built-in formats.

If the format is not recognized for conversion, a data conversion exit must
perform the translation.

An exception to the above occurs if you are sending data to MQSeries for
MVS/ESA. Here, any conversion must occur on message transmission from
MQSeries for Windows NT by specifying CONVERT(YES) in the definition of
the sending channel.

Refer to the MQSeries Distributed Queuing Guide for further details of data
conversion.

178 MQSeries for Windows NT V2.0 System Management Guide

 Error logs

 Error logs
MQSeries for Windows NT uses a number of error logs to capture messages
concerning the operation of MQSeries itself, any queue managers that you start,
and error data coming from the channels that are in use.

The location of the error logs depends on whether the queue manager name is
known, and on whether the error is associated with an MQI client.

� If the queue manager name is known and the queue manager is available, the
location of the error log is:

C:\MQM\QMGRS\QMgrName\ERRORS\AMQERRð1.LOG

� If the queue manager is not available, the location of the error log is:

C:\MQM\QMGRS\@SYSTEM\ERRORS\AMQERRð1.LOG

� If an error has occurred with an MQI client application, the location of the error
log is:

C:\MQM\ERRORS\AMQERRð1.LOG

An indication of the error is also added to the Application Log, which can be
examined with the Event Viewer application, as provided with Windows NT.

You can also examine the Registry to help resolve any errors. The Registry Editor
supplied with Windows NT allows you to filter errors that are placed in the Event
Log by placing the code in the following Registry entry:

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\IgnoredErrorCodes

For example, to ignore ERROR 5000, add AMQ5ððð to the list.

Notes:

1. The above examples assume that you have installed MQSeries on the C: drive
and in the MQM directory.

2. In the case of MQI clients, the errors are stored on the client’s root drive.

 Log files
At installation time an @SYSTEM\ERRORS directory is created in the QMGRS file
path. The ERRORS subdirectory can contain up to three error log files named:

 � AMQERR01.LOG.
 � AMQERR02.LOG.
 � AMQERR03.LOG.

When you create a queue manager, three error log files are created when they are
needed by the queue manager. These files have the same names as the
@SYSTEM ones, that is AMQERR01, AMQERR02, and AMQERR03, and each
has a capacity of 256KB. The files are placed in the ERRORS sub-directory of
each queue manager that you create.

As error log messages are generated they are placed in AMQERR01. When
AMQERR01 gets bigger than 256KB it is copied to AMQERR02. Before the copy,
AMQERR02 is copied to AMQERR03.LOG. The previous contents, if any, of
AMQERR03 are discarded.

 Chapter 15. Problem determination 179

 Error logs

The latest error messages are thus always placed in AMQERR01, the other files
being used to maintain a history of error messages.

All messages relating to channels are also placed in the appropriate queue
manager's ERRORS files unless the name of their queue manager is unknown or
the queue manager is unavailable. When the queue manager name is unavailable
or its name cannot be determined, channel related messages are logged in the
error files in the QMGR\@SYSTEM\ERRORS subdirectory.

To examine the contents of any error log file, use your usual Windows NT editor.

 Early errors
There are a number of special cases where the above error logs have not yet been
established and an error occurs. MQSeries attempts to record any such errors in
an error log. The location of the log depends on how much of a queue manager
has been established.

If no location information can be determined, errors are logged to an ERRORS
directory that is created at installation time on the root directory, C:\MQM. This
could be caused by a corrupt configuration file.

If the MQSeries configuration file is readable, and the DefaultPrefix attribute of the
AllQueueManagers stanza is readable, errors are logged in the
DefaultPrefix\ERRORS directory.

For further information about configuration files, see Chapter 14, “Configuration
files” on page 155.

 Operator messages
In MQSeries for Windows NT, operator messages identify normal errors, typically
caused directly by users doing things like using parameters that are not valid on a
command. Operator messages are national language (NLS) enabled, with
message catalogs installed in standard locations.

These messages are written to the associated window, if any, and are also written
to the error log AMQERR01.LOG in the queue manager directory. For example:

C:\MQM\QMGRS\queue!manager

Some errors are logged to the AMQERR01.LOG file in the queue manager
directory and others to the @SYSTEM directory copy of the error log.

180 MQSeries for Windows NT V2.0 System Management Guide

 Configuration files

Example Windows NT error log
This example shows an extract from a Windows NT error log:

 ...

ð2/12/96 12:ð9:39 AMQ9519: Channel 'triang.chl.tcp' not found.

EXPLANATION: The requested operation failed because the program could not find a definition
of channel 'triang.chl.tcp'.
ACTION: Check that the name is specified correctly and the channel definition is available.

ð2/12/96 12:ð9:39 AMQ9999: Channel program ended abnormally.

EXPLANATION: Channel program 'triang.chl.tcp' ended abnormally.
ACTION: Look at previous error messages for channel program 'triang.chl.tcp' in the error files
to determine the cause of the failure.

 ...

 Dead-letter queues
Messages that cannot be delivered for some reason are placed on the dead-letter
queue. You can check whether the queue contains any messages by issuing the
MQSC command DISPLAY QUEUE. If the queue contains messages, you can use
the browse sample application (AMQSBCG) to browse messages on a queue using
the MQGET call. The sample application steps through all messages on a named
queue for a named queue manager displaying both the message descriptor and the
message context fields of all messages on the specified queue. See “Browsing
local queues” on page 72 for more information about running this sample and the
kind of output it produces.

You must decide how to dispose of any messages found on the dead-letter queue,
depending on the reasons for the messages being placed on the queue.

Problems will occur if you do not have a dead-letter queue on each queue manager
you are using, or if you have not specified the name of the dead-letter queue to the
queue managers. If you use the supplied sample program (AMQSCOMA.TST) to
create the default queue objects for each queue manager, a dead-letter queue is
created called SYSTEM.DEAD.LETTER.QUEUE. Remember to specify this
dead-letter queue name when you create the queue manager, or the queue will not
be used.

Configuration files and problem determination
Configuration file errors typically prevent queue managers from being found and
result in 'queue manager unavailable' type errors.

There are some checks you can make on the configuration files:

� Ensure that the configuration files exist.

� Ensure that the MQSeries configuration file references the correct queue
manager and log directories.

 Chapter 15. Problem determination 181

 First failure support technology

First failure support technology (FFST)
Information that, on the OS/2 and AIX platforms, is normally recorded in FFST logs
is, on Windows NT, recorded in a file in the c:\mqm\errors directory.

These errors are normally severe, unrecoverable errors and indicate either a
configuration problem with the system or an MQSeries internal error.

How to examine the FFST records
The files are named AMQnnnnn.mm.FDC, where:

File name Meaning

nnnnn Is the process ID reporting the error

mm Is a sequence number, normally 0

When a process creates an FFST record it also sends a record to the Event Log.
The record contains the name of the FFST file to assist in automatic problem
tracking. The Event log entry is made at the "application" level.

A typical FFST log is shown in Figure 26.

+---+
| |
| MQSeries First Failure Symptom Report |
| ===================================== |
| |
| Date/Time :- Friday July 14 14:ð6:52 BST 1995 |
| Host Name :- unknown |
| PIDS :- 5697175 |
| LVLS :- 22ð |
| Product Long Name :- MQSeries for WINDOWSNT |
| Vendor :- IBM |
| Probe Id :- XC13ððð3 |
| Application Name :- MQM |
| Component :- xehExcepti |
| Build Date :- Jul 14 1995 |
| Userid :- ððððð231 (mqm) |
| Process :- ððð15967 |
| Major Errorcode :- xecSTOP |
| Minor Errorcode :- OK |
| Probe Type :- HALT61ð9 |
| Probe Severity :- 1 |
| Probe Description :- AMQ6125: An internal MQSeries error has occurred. |
| Arith1 :- 11 b |
| |
+---+

MQM Function Stack
xllTidyUpSems
xcsFFST

MQM Trace History
 ...

Figure 26. Sample Windows NT First Failure Symptom Report.

The Function Stack and Trace History are used by IBM to assist in problem
determination. In most cases there is little that the system administrator can do
when an FFST record is generated, apart from raising problems through the
support centers.

182 MQSeries for Windows NT V2.0 System Management Guide

 MQI clients

Problem determination with MQI clients
An MQI application issuing MQI calls but running as a client, receives the MQRC_*
reason codes as normal. However, these reason codes can be generated for many
more error conditions. For example:

� Remote machine not responding
� Communications line error
� Invalid machine address

The most common time for errors to occur is when an application issues an
MQCONN and receives the response MQRC_Q_MQR_NOT_AVAILABLE. An error
message is written to the MQI client log file explaining the cause of the error.
There may also be messages logged at the server depending on the nature of the
failure.

Terminating MQI clients
Even though an MQI client has terminated it is still possible for the process at the
server to be holding its queues open. Normally this will only be for a short time
until the communications layer notices that the partner has gone.

For more information about problem determination with MQI clients, refer to the
MQSeries Clients manual.

 Chapter 15. Problem determination 183

 MQI clients

184 MQSeries for Windows NT V2.0 System Management Guide

 Part 2. Reference

 Copyright IBM Corp. 1994, 1996 185

186 MQSeries for Windows NT V2.0 System Management Guide

 syntax diagrams

Chapter 16. MQSeries control commands

This chapter contains reference material for the control commands used with
MQSeries for Windows NT. All commands in this chapter can be issued from a
command line. These commands are not case-sensitive. They can be entered in
uppercase, lowercase, or a combination of upper and lowercase.

 Names
In general, the names of MQSeries objects can have up to 48 characters. This rule
applies to all the following objects:

 � Queue managers
 � Queues
 � Process definitions

The maximum length of channel names is 20 characters.

The characters that can be used for all MQSeries names are:

 � Uppercase A–Z
 � Lowercase a–z
 � Numerics 0–9
 � Period (.)
 � Underscore (_)
� Forward slash (/) (see note 1)
� Percent sign (%) (see note 1)

Notes:

1. Forward slash(/) and percent(%) are special characters. If you use either of
these characters in a name, the name must be enclosed in double quotation
marks whenever it is used.

2. Leading or embedded blanks are not allowed.

3. National language characters are not allowed.

4. Names may be enclosed in double quotation marks, but this is essential only if
special characters are included in the name.

How to read syntax diagrams
To use a syntax diagram, follow a path from left to right, top to bottom. In each
diagram, all spaces and other characters are significant.

Each diagram begins with a double right arrow and ends with a right and left arrow
pair. Lines beginning with single right arrows are continuation lines. Keywords for
MQSeries for Windows NT are shown in uppercase but, when used, may be in
either upper or lowercase.

55──KEYWORD──5%

 Copyright IBM Corp. 1994, 1996 187

 syntax diagrams

Variable values that you provide are shown in italics (variable-value), and may be in
mixed case:

55──variable-value───5%

or:

55──VariableName───5%

You must supply all the keywords and variable values that are on the main line.

Syntax diagrams can be broken into fragments. A fragment is indicated by vertical
bars with the name of the fragment between the bars. The fragment is shown
following the main diagram:

55──┤ a fragment ├───5%

A fragment:
├─ ──KEYWORD=value ───┤

Where there is a choice of syntax elements, and you must supply one of them, the
diagram looks like this:

55─ ──┬ ┬─CHOICE-KEYWORD1─ ───5%
 ├ ┤─CHOICE-KEYWORD2─
 └ ┘─CHOICE-KEYWORD3─

Optional syntax elements are shown below the main line:

55─ ──┬ ┬──────────────── ──5%
└ ┘──KEYWORD(value)

When a keyword is optional, the default value (in other words, the keyword used if
you do not supply a keyword) is shown above the line. If you supply the keyword,
you must supply a value. It looks like this:

55─ ──┬ ┬─────────────────────────────── ───────────────────────────────────5%
 │ │┌ ┐─DEFAULT-VALUE──

└ ┘──KEYWORD(──┼ ┼─OPTIONAL-VALUE─)
 └ ┘─OPTIONAL-VALUE─

When a choice of syntax elements is optional and there is a default (in other words,
what is used if you do not supply the syntax element), it looks like this:

 ┌ ┐─DEFAULT-KEYWORD───
55─ ──┼ ┼─────────────────── ───5%
 ├ ┤─OPTIONAL-KEYWORD1─
 └ ┘─OPTIONAL-KEYWORD2─

A syntax element that can be repeated is shown with a loop and a comma:

 ┌ ┐─,──────────────
55──KEYWORD──(─ ───6 ┴─variable-value─ ─)────────────────────────────────────5%

188 MQSeries for Windows NT V2.0 System Management Guide

Sample syntax diagram
The following is a sample syntax diagram and the possible valid expressions that it
indicates:

55──HELLO─ ──┬ ┬───────────── ──┬ ┬──────────────── ──────────────────────────5%
│ │┌ ┐─,───── └ ┘──, how are you?

 └ ┘ ──(1)───6 ┴── name

Note:
1 You can code up to three names.

The possible valid versions of the HELLO command are:

HELLO
HELLO name
HELLO name, name
HELLO name, name, name
HELLO, how are you?
HELLO name, how are you?
HELLO name, name, how are you?
HELLO name, name, name, how are you?

Note that the space before the name value is significant, and that if you do not
code a name at all, you must still code the comma before how are you?, because
you come to the comma when you follow the lines.

 Flag indicators
In the following command syntax descriptions, the standard Windows NT forward
slash (/) is used as a flag indicator. You may also use a hyphen (-) as a flag
indicator.

 Syntax help
You can obtain help about the syntax of any of the commands in this chapter by
entering the command followed by a question mark. MQSeries responds by listing
the syntax required for the selected command. The syntax shows all parameters
and variables associated with the command. Different forms of parentheses are
used to indicate whether a parameter in the list is required.

For example:

cmdname [/x OptParam] (/c |
/b) {/p principal } argument

where:

cmdname
The command name for which help has been requested.

[/x OptParam]
The square brackets indicate that this is an optional parameter.

(/c | /b)
A mandatory field. In this case, you must select one of the flags C and B.

 Chapter 16. MQSeries control commands 189

{ /p principal }
The braces indicate that this is a list of optional variables. However, although no
specific variable is mandatory, you must supply at least one of these variables
when you enter the command.

argument
An argument required to be supplied with this command, mandatory if shown on
the response to the query.

 Examples
1. Result of entering endmqm ?

endmqm [/Z][/c | \iif. | /p] QMgrName

2. Result of entering rcdmqimg ?

rcdmqimg [/z] [/m QMgrName]
/t ObjType [GenericObjName]

190 MQSeries for Windows NT V2.0 System Management Guide

 crtmqcvx

crtmqcvx (Data conversion)

 Purpose
Use the crtmqcvx command to create a fragment of code that performs data
conversion on data type structures. The command generates a C function that can
be used in an exit to convert your C structures.

The command reads an input file containing a structure or structures to be
converted. It then writes an output file containing a code fragment or fragments to
convert those structures.

For further information about this command and how to use it, refer to the
MQSeries Distributed Queuing Guide.

 Syntax

55──crtmqcvx──SourceFile──TargetFile───────────────────────────────────────5%

 Required parameters
SourceFile

Specifies the input file containing the C structures to be converted.

TargetFile
Specifies the output file containing the code fragments generated to convert the
structures.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
The following example shows the results of using the data conversion command
against a source C structure. The command issued is:

crtmqcvx SOURCE.TMP TARGET.C

 Chapter 16. MQSeries control commands 191

 crtmqcvx

The input file, source.tmp, looks like this:

 /\ This is a test C structure which can be converted by the \/
 /\ crtmqcvx utility \/

 struct my_structure
 {
 int code;
 MQLONG value;
 };

The output file, target.c, produced by the command is shown below. You can use
these code fragments in your applications to convert data structures. However, if
you do so, you should understand that the fragment uses macros supplied in the
MQSeries header file AMQSVMHA.H.

 MQLONG Convertmy_structure(
 PMQBYTE \in_cursor,
 PMQBYTE \out_cursor,
 PMQBYTE in_lastbyte,
 PMQBYTE out_lastbyte,
 MQHCONN hConn,
 MQLONG opts,
 MQLONG MsgEncoding,
 MQLONG ReqEncoding,
 MQLONG MsgCCSID,
 MQLONG ReqCCSID,
 MQLONG CompCode,
 MQLONG Reason)
 {

MQLONG ReturnCode = MQRC_NONE;

ConvertLong(1); /\ code \/

 AlignLong();
ConvertLong(1); /\ value \/

 Fail:
 return(ReturnCode);
 }

192 MQSeries for Windows NT V2.0 System Management Guide

 crtmqm

crtmqm (Create queue manager)

 Purpose
Use crtmqm to create a local queue manager. Once a queue manager has been
created, use the strmqm command to start it.

 Syntax

 ┌ ┐────────────────────────────────────
55──crtmqm─ ───6 ┴┬ ┬──────────────────────────────── ───────────────────────────5

├ ┤── /c Text ──────────────────────
├ ┤── /d DefaultTransmissionQueue ──
├ ┤── /h MaximumHandleLimit ────────
├ ┤─ /q ───────────────────────────
├ ┤── /t IntervalValue ─────────────
├ ┤── /u DeadLetterQueue ───────────
├ ┤── /x MaximumUncommittedMessages
└ ┘─ /z ───────────────────────────

 ┌ ┐─ /lc ─ ┌ ┐──────────────────────────────
5─ ──┼ ┼─────── ───6 ┴──┬ ┬──────────────────────── ─QMgrName─────────────────────5%

└ ┘─ /ll ─ ├ ┤── /lf LogFileSize ──────
├ ┤── /ld LogPath ──────────
├ ┤── /lp LogPrimaryFiles ──
└ ┘── /ls LogSecondaryFiles

 Required parameters
QMgrName

Specifies the name of the queue manager to be created. The name can
contain up to 48 characters. This must be the last item in the command.

 Optional parameters
/c Text Enables you to specify some descriptive text for this queue manager. The

default is all blanks.

You can use up to 64 characters. If special characters are required, the
description must be enclosed in double quotes. The maximum number of
characters is reduced if the system is using a double byte character set
(DBCS).

/d DefaultTransmissionQueue
Specifies the name of the local transmission queue that remote messages
are placed on if a transmission queue is not explicitly defined for their
destination. There is no default.

/h MaximumHandleLimit
Specifies the maximum number of handles that any one application can
have open at the same time.

Specify a value in the range 1 through 999 999 999. The default value is
256.

 Chapter 16. MQSeries control commands 193

 crtmqm

/q Specifies that this queue manager is to be made the default queue
manager. The new queue manager replaces any existing default queue
manager as the default.

If you accidentally use this flag and wish to revert to an existing queue
manager as the default queue manager, you can edit the
DefaultQueueManager stanza in the MQSeries configuration file. See
Chapter 14, “Configuration files” on page 155 for information about
configuration files.

/t IntervalValue
Specifies the trigger time interval in milliseconds for all queues controlled
by this queue manager. This value specifies the time after the receipt of a
trigger generating message when triggering is suspended. That is, if the
arrival of a message on a queue causes a trigger message to be put on
the initiation queue, any message arriving on the same queue within the
specified interval does not generate another trigger message.

You can use the trigger time interval to ensure that your application is
allowed sufficient time to deal with a trigger condition before it is alerted to
deal with another on the same queue. You may wish to see all trigger
events that happen; if so, set a low or zero value in this field.

Specify a value in the range 0 through 999 999 999. The default is
999 999 999 milliseconds, a time of more than 11 days. Allowing the
default to be taken effectively means that triggering is disabled after the
first trigger message. However, triggering can be re-enabled by an
application servicing the queue using an alter queue command to reset the
trigger attribute.

/u DeadLetterQueue
Specifies the name of the local queue that is to be used as the dead-letter
(undelivered-message) queue. Messages are put on this queue if they
cannot be routed to their correct destination.

The default if the attribute is omitted is no dead-letter queue.

/x MaximumUncommittedMessages
Specifies the maximum number of uncommitted messages under any one
syncpoint. That is, the sum of:

� The number of messages that can be retrieved from queues
� The number of messages that can be put on queues
� Any trigger messages generated within this unit of work

This limit does not apply to messages that are retrieved or put outside a
syncpoint.

Specify a value in the range 1 through 10 000. The default value is 1000
uncommitted messages.

/z Suppresses error messages.

This flag is normally used within MQSeries to suppress unwanted error
messages. As use of this flag could result in loss of information, it is
recommended that you do not use it when entering commands on a
command line.

194 MQSeries for Windows NT V2.0 System Management Guide

 crtmqm

The following set of flags is used to define the logging to be used by the queue
manager being created. For more information about logs, see “Using the log for
recovery” on page 149.

/lc
Circular logging is to be used. This is the default logging method.

/ll
Linear logging is to be used.

/lf LogFileSize
Specifies the size of the log files in units of 4 KB. The minimum value is 32 KB,
and the maximum is 4095 KB. The default is 256 KB, giving a default log size of
1 MB.

/ld LogPath
Specifies the directory to be used to hold the log files. The default is
C:\MQM\LOG (assuming that C is your MQSeries for Windows NT data drive).
The default can also be changed when MQSeries is customized.

Specify the path and name of the directory that is to hold the log files.

/lp LogPrimaryFiles
Specifies the number of primary log files to be allocated. The default value is 3,
the minimum is 2, and the maximum is 62.

/ls LogSecondaryFiles
Specifies the number of secondary log files to be allocated. The default value is
2, the minimum is 1, and the maximum is 61.

Note: The total number of log files is restricted to 63, regardless of the number
requested

 Return codes
0 Queue manager created

8 Queue manager already exists

49 Queue manager stopping

69 Storage not available

70 Queue space not available

71 Unexpected error

72 Queue manager name error

100 Log location invalid

111 Queue manager created. However, there was a problem processing the
default queue manager definition in the product configuration file. The
default queue manager specification may be incorrect.

115 Invalid log size

 Chapter 16. MQSeries control commands 195

 crtmqm

 Examples
1. This command creates a default queue manager named Paint.queue.manager,

which is given a description of Paint shop. It also specifies that linear logging
is to be used:

crtmqm /c "Paint shop" /ll /q Paint.queue.manager

2. This example requests a number of log files. Two primary and three secondary
log files are specified.

crtmqm /c "Paint shop" /ll /lp 2 /ls 3
/q Paint.queue.manager

3. In this example, another queue manager, travel, is created. The trigger
interval is defined as 5000 milliseconds (or 5 seconds) and its dead-letter
queue is specified as SYSTEM.DEAD.LETTER.QUEUE.

crtmqm /t 5ððð /u SYSTEM.DEAD.LETTER.QUEUE travel

Once a trigger event has been generated, further trigger events are disabled for
five seconds.

 Related commands
strmqm Start queue manager

endmqm End queue manager

dltmqm Delete queue manager

196 MQSeries for Windows NT V2.0 System Management Guide

 dltmqm

dltmqm (Delete queue manager)

 Purpose
Use the dltmqm command to delete a specified queue manager. All objects
associated with this queue manager are also deleted. Before you can delete a
queue manager you must end it using the endmqm command.

 Syntax

55──dltmqm─ ──┬ ┬────── ─QMgrName───5%
 └ ┘─ /z ─

 Required parameters
QMgrName

Specifies the name of the queue manager to be deleted.

 Optional parameters
/z Suppresses error messages.

 Return codes
0 Queue manager deleted

3 Queue manager being created

5 Queue manager running

10 Queue manager deleted, but not removed from the automatic start-up list

Note: If this happens, follow the steps in Appendix E, “Stopping and
removing queue managers manually” on page 255 to remove the queue
manager from the automatic start-up list.

16 Queue manager does not exist

49 Queue manager stopping

69 Storage not available

71 Unexpected error

72 Queue manager name error

100 Log location invalid

112 Queue manager deleted. However, there was a problem processing the
default queue manager definition in the product configuration file. The
default queue manager specification may be incorrect.

 Chapter 16. MQSeries control commands 197

 dltmqm

 Examples
1. The following command deletes the queue manager saturn.queue.manager.

dltmqm saturn.queue.manager

2. The following command deletes the queue manager travel and also
suppresses any messages caused by the command.

dltmqm /z travel

 Related commands
crtmqm Create queue manager

strmqm Start queue manager

endmqm End queue manager

198 MQSeries for Windows NT V2.0 System Management Guide

 dspmqaut

dspmqaut (Display authority)

 Purpose
Use the dspmqaut command to display the current authorizations to a specified
object. Only one group may be specified.

Note: You can use this command meaningfully only if an authorization service
component has been installed for the current queue manager. This is the default.
For more information about authorization service components, see the MQSeries
Programmable System Management book.

 Syntax

55──dspmqaut─ ──┬ ┬────────────── ──┬ ┬──────────────── ── /t ObjectType ─────────5
 └ ┘── /m QMgrName └ ┘── /n ObjectName

5─ ──┬ ┬── /g GroupName ──── ──┬ ┬────────────────────── ────────────────────────5%
└ ┘── /p PrincipalName └ ┘── /s ServiceComponent

 Required parameters
/t ObjectType

Specifies the type of object on which the inquiry is to be made. The
following list shows the valid object types. The abbreviated name is
shown first followed by the full name.

q or queue
A queue or queues matching the object name parameter

prcs or process
A process

qmgr
A queue manager object

 Optional parameters
/m QMgrName Specifies the name of the queue manager on which the inquiry is to

be made.

/n ObjectName
Specifies the name of the object on which the inquiry is to be made.

You must specify the name of a queue manager, queue, or process
definition.

/g GroupName
Specifies the name of the user group on which the inquiry is to be
made. You can specify only one name, which must be the name of
an existing user group.

/p PrincipalName
Specifies the name of a user whose authorizations to the specified
object are to be displayed.

 Chapter 16. MQSeries control commands 199

 dspmqaut

/s ServiceComponent
This parameter only applies if you are using installable authorization
services, otherwise it is ignored.

If installable authorization services are supported, this parameter
specifies the name of the authorization service to which the
authorizations apply. This parameter is optional; if it is not specified,
the authorization update is made to the first installable component for
the service.

 Results
This command returns an authorization list, which can contain none, one, or more
authorization parameters. Each authorization parameter returned means that any
user ID in the specified group has the authority to perform the operation defined by
that parameter.

Table 11 shows the authorities that can be given to the different object types.

Table 11. Security authorities

Authority Queue Process Qmgr

all √ √ √

alladm √ √ √

allmqi √ √ √

altusr √

browse √

chg √ √ √

chgaut √ √ √

clr √

connect √

cpy √ √ √

crt √ √ √

dlt √ √ √

dsp √ √ √

get √

inq √ √ √

passall √

passid √

put √

set √ √ √

setall √ √

setid √ √

200 MQSeries for Windows NT V2.0 System Management Guide

 dspmqaut

The following list defines the authorizations associated with each parameter:

all Use all operations relevant to the object.

alladm Perform all administration operations relevant to the object.

allmqi Use all MQI calls relevant to the object.

altusr Specify an alternate user ID on an MQI call.

browse Retrieve a message from a queue by issuing an MQGET with the
BROWSE option.

chg Change the attributes of the specified object, using the appropriate
command set.

chgaut Specify authorizations for other groups of users on the object, using
the setmqaut command.

clr Clear a queue (PCF command Clear queue only).

connect Connect the application to the specified queue manager by issuing an
MQCONN.

cpy Copy the definition of an object, for example, the PCF Copy queue
command.

crt Create objects of the specified type, using the appropriate command
set.

dlt Delete the specified object, using the appropriate command set.

dsp Display the attributes of the specified object, using the appropriate
command set.

get Retrieve a message from a queue by issuing an MQGET.

inq Make an inquiry on a specific queue by issuing an MQINQ.

passall Pass all context.

passid Pass the identity context.

put Put a message on a specific queue by issuing an MQPUT.

set Set attributes on a queue from the MQI by issuing an MQSET.

setall Set all context on a queue.

setid Set the identity context on a queue.

The authorizations for administration operations, where supported, apply to these
command sets:

 � Control commands
 � MQSC commands
 � PCF commands

 Chapter 16. MQSeries control commands 201

 dspmqaut

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing

 Examples
The following example shows a command to display the authorizations on queue
manager saturn.queue.manager associated with user group staff:

dspmqaut /m saturn.queue.manager /t qmgr /g staff

The results from this command are:

Entity staff has the following authorizations for object :
 get
 browse
 put
 inq
 set
 connect
 altusr
 passid
 passall
 setid

 Related commands
setmqaut Set or reset authority

202 MQSeries for Windows NT V2.0 System Management Guide

 dspmqcsv

dspmqcsv (Display command server)

 Purpose
Use the dspmqcsv command to display the status of the command server for the
specified queue manager.

The status can be one of the following:

 � Starting
 � Running
� Running with SYSTEM.ADMIN.COMMAND.QUEUE not enabled for gets

 � Ending
 � Stopped

 Syntax

55──dspmqcsv──QMgrName───5%

 Required parameters
QMgrName Specifies the name of the local queue manager for which the

command server status is being requested.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
The following command displays the status of the command server associated with
venus.q.mgr:

dspmqcsv venus.q.mgr

 Related commands
strmqcsv Start a command server

endmqcsv End a command server

 Chapter 16. MQSeries control commands 203

 dspmqfls

dspmqfls (Display MQSeries files)

 Purpose
Use the dspmqfls command to display the real file system name for all MQSeries
objects that match a specified criterion. You can use this command to identify the
files associated with a particular MQSeries object. This is useful for backing up
specific objects. See “Understanding MQSeries file names” on page 53 for further
information about name transformation.

 Syntax

55──dspmqfls─ ──┬ ┬────────────── ──┬ ┬───────────── ─ObjName───────────────────5%
 └ ┘── /m QMgrName └ ┘── /t ObjType

 Required parameters
ObjName Specifies the name of the MQSeries object. The name is a string with

no flag and is a required parameter. If the name is omitted an error is
returned.

This parameter supports a wild card character * at the end of the
string.

 Optional parameters
/m QMgrName Specifies the name of the queue manager for which files are to be

examined. If omitted, the command operates on the default queue
manager.

/t ObjType Specifies the MQSeries object type. The following list shows the valid
object types. The abbreviated name is shown first followed by the full
name.

* or all All object types; this is the default

cat or catalog The object catalog

q or queue A queue or queues matching the object name
parameter

ql or qlocal A local queue

qa or qalias An alias queue

qr or qremote A remote queue

qm or qmodel A model queue

qmgr A queue manager object

prcs or process A process

Note: You must enter these in lower case.

204 MQSeries for Windows NT V2.0 System Management Guide

 dspmqfls

 Return codes
0 Command completed normally
10 Command completed but not entirely as expected
20 An error occurred during processing

 Examples
1. The following command displays the details of all objects with names beginning

SYSTEM.ADMIN that are defined on the default queue manager.

dspmqfls SYSTEM.ADMIN\

2. The following command displays file details for all processes with names
beginning PROC defined on queue manager RADIUS.

dspmqfls /m RADIUS /t prcs PROC\

 Chapter 16. MQSeries control commands 205

 dspmqtrn

dspmqtrn (Display MQSeries transactions)

 Purpose
Use the dspmqtrn command to list the transactions that are in prepared status in
a two-phase commit procedure and that are known to a queue manager (see
attention note below).

Each transaction is displayed as a transaction number (a human-readable
transaction identifier), the transaction's state, and the transaction's ID. The
transaction ID could run up to 128 characters of unreadable text, hence the need
for a transaction number.

 Syntax

55──dspmqtrn─ ──┬ ┬─────────── ───5%
 └ ┘ ─ QMgrName─

Attention: The only time that you can expect to use this command is if you are
using an external transaction manager and are involved with two-phase
commitment procedures. If you do not use two-phase commit, do not use this
command. This command should be used only if the syncpoint manager has failed
to resolve a transaction.

 Optional parameters
QMgrName Specifies the name of the queue manager whose transactions are to

be examined. If omitted, the command operates on the default queue
manager.

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
102 No transactions found

 Related commands
rsvmqtrn Resolve MQSeries transaction

206 MQSeries for Windows NT V2.0 System Management Guide

 endmqcsv

endmqcsv (End command server)

 Purpose
Use the endmqcsv command to stop the command server on the specified queue
manager.

 Syntax

 ┌ ┐─ /c ─
55──endmqcsv─ ──┼ ┼────── ─QMgrName───5%

└ ┘─ /i ─

Note: The command server ends automatically if the queue manager ends.

 Required parameters
QMgrName Specifies the name of the queue manager for which the command

server is to be ended.

 Optional parameters
/c Specifies that the command server is to be stopped in a controlled

manner. The command server is allowed to complete the processing of
any command message that it has already started. No new message is
read from the command queue.

This is the default.

/i Specifies that the command server is to be stopped immediately.
Actions associated with a command message currently being processed
may not be completed.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
1. The following command stops the command server on queue manager

saturn.queue.manager:

endmqcsv /c saturn.queue.manager

The command server can complete processing any command it has already
started before it stops. Any new commands received remain unprocessed in
the command queue until the command server is restarted.

 Chapter 16. MQSeries control commands 207

 endmqcsv

2. The following command stops the command server on queue manager pluto
immediately:

endmqcsv /i pluto

 Related commands
strmqcsv Start a command server

dspmqcsv Display the status of a command server

208 MQSeries for Windows NT V2.0 System Management Guide

 endmqm

endmqm (End queue manager)

 Purpose
Use the endmqm command to end (stop) a specified local queue manager. This
command stops a queue manager in one of three modes:

� Normal or quiesced shutdown
 � Immediate shutdown
 � Preemptive shutdown

The attributes of the queue manager and the objects associated with it are not
affected. You can restart the queue manager using the strmqm (Start queue
manager) command.

To delete a queue manager, you must stop it and then use the dltmqm (Delete
queue manager) command.

 Syntax

 ┌ ┐─ /c ─
55──endmqm─ ──┼ ┼────── ──┬ ┬────── ─QMgrName───────────────────────────────────5%

├ ┤─ /i ─ └ ┘─ /z ─
└ ┘─ /p ─

 Required parameters
QMgrName

Specifies the name of the message queue manager to be stopped.

 Optional parameters
/c Controlled (or quiesced) shutdown. The queue manager stops but only

after all applications have disconnected. Any MQI calls currently being
processed are completed. This is the default.

/i Immediate shutdown. The queue manager stops after it has completed all
the MQI calls currently being processed. Any MQI requests issued after
the command has been issued fail. Any incomplete units of work are
rolled back when the queue manager is next started.

/p Preemptive shutdown.

Use this type of shutdown only in exceptional circumstances. For
example, when a queue manager does not stop as a result of a normal
endmqm command.

The queue manager stops without waiting for applications to disconnect or
for MQI calls to complete. This can give unpredictable results for MQI
applications. All processes in the queue manager that fail to stop are
terminated 30 seconds after the command is issued.

/z Suppresses error messages.

 Chapter 16. MQSeries control commands 209

 endmqm

 Return codes
0 Queue manager ended
3 Queue manager being created
16 Queue manager does not exist
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error

 Examples
The following examples show commands that end (stop) the specified queue
managers.

1. This command ends the default queue manager in a controlled way. All
applications currently connected are allowed to disconnect.

endmqm

2. This command ends the queue manager named saturn.queue.manager
immediately. All current MQI calls complete, but no new ones are allowed.

endmqm /i saturn.queue.manager

 Related commands
crtmqm Create a queue manager

strmqm Start a queue manager

dltmqm Delete a queue manager

210 MQSeries for Windows NT V2.0 System Management Guide

 endmqtrc

endmqtrc (End MQSeries trace)

 Purpose
Use the endmqtrc command to end tracing for the specified entity or all entities.

55──endmqtrc─ ──┬ ┬────────────── ──┬ ┬────── ──┬ ┬────── ────────────────────────5%
 └ ┘── -M QMgrName └ ┘─ -E ─ └ ┘─ -A ─

 Optional parameters
/m QMgrName

Specifies the name of the queue manager for which tracing is to be ended, or
is the literal value @SYSTEM used to end tracing of channels and the
command server.

A maximum of one /m flag and associated queue manager name can be
supplied on the command.

An /m flag and queue manager name can be specified on the same command
as the /e flag.

/e Specifies that early tracing is ended.

/a Specifies that all tracing is ended.

This flag must be specified alone.

 Return codes
AMQ5611

This message is issued if arguments that are not valid are supplied to the
command.

 Examples
This command ends tracing of data for a queue manager called QM1.

endmqtrc /m QM1

 Related commands
strmqtrc

Start MQSeries trace

 Chapter 16. MQSeries control commands 211

 rcdmqimg

rcdmqimg (Record media image)

 Purpose
Use the rcdmqimg command to write an image of an MQSeries object, or group of
objects, to the log for use in media recovery. Use the associated command,
rcrmqobj , to recreate the object from the image.

This command is used with an active queue manager. Further activity on the
queue manager is logged so that, although the image becomes out of date, the log
records reflect any changes to the object.

 Syntax

55──rcdmqimg─ ──┬ ┬──────────────── ──┬ ┬────── ─/t ObjectType─ ───(1) ─ObjectName─ ──5%
 └ ┘─ /m ──QMgrName─ └ ┘─ /z ─

Note:
1 This parameter is optional if you are recording a queue manager object.

 Required parameters
/t ObjectType

Specifies the type of objects whose images are to be recorded. Valid
object types are:

prcs or process Processes

q or queue All types of queue

ql or qlocal Local queues

qa or qalias Alias queues

qr or qremote Remote queues

qm or qmodel Model queues

qmgr Queue manager object

* or all All the above

ObjectName
Specifies the name of the object that is to be recorded. This parameter
may have a trailing asterisk to indicate that any objects with names
matching the portion of the name prior to the asterisk are to be
recorded.

 Optional parameters
/m QMgrName

Specifies the name of the queue manager for which images are to be
recorded. If omitted, the command operates on the default queue
manager.

/z Suppresses error messages.

212 MQSeries for Windows NT V2.0 System Management Guide

 rcdmqimg

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
68 Media recovery is not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed
131 Resource problem
132 Object damaged
135 Temporary object cannot be recorded

 Examples
The following command records an image of the queue manager object
saturn.queue.manager in the log.

rcdmqimg /t qmgr /m saturn.queue.manager

 Related commands
rcrmqobj Recreate a queue manager object

 Chapter 16. MQSeries control commands 213

 rcrmqobj

rcrmqobj (Recreate object)

 Purpose
Use the rcrmqobj command to recreate an object, or group of objects, from their
images contained in the log. Use the associated command, rcdmqimg , to record
the object images to the log.

This command must be used on a running queue manager. All activity on the
queue manager after the image was recorded is logged. To recreate an object you
must replay the log to recreate events that occurred after the object image was
captured.

 Syntax

55──rcrmqobj─ ──┬ ┬──────────────── ──┬ ┬────── ─ /t ──ObjectType────────────────5
 └ ┘─ /m ──QMgrName─ └ ┘─ /z ─

5─ ──┬ ┬──────────── ───5%
 └ ┘ ─ObjectName─

 Required parameters
/t ObjectType

Specifies the type of objects to be recreated. Valid object types are:

prcs or process Processes

q or queue All types of queue

ql or qlocal Local queues

qa or qalias Alias queues

qr or qremote Remote queues

qm or qmodel Model queues

* or all All the above

syncfil e The channel synchronization file

Note: Using this flag causes the channel synchronization
file to be regenerated for the queue manager specified.
This is necessary because the file is not saved by the
rcdmqimg command.

214 MQSeries for Windows NT V2.0 System Management Guide

 rcrmqobj

 Optional parameters
/m QMgrName Specifies the name of the queue manager for which objects are to be

recreated. If omitted, the command operates on the default queue
manager.

/z Suppresses error messages.

ObjectName Specifies the name of the object that is to be recreated. This
parameter may have a trailing asterisk to indicate that any objects
with names matching the portion of the name prior to the asterisk are
to be recreated.

This parameter is required unless the object type is the channel
synchronization file. If an object name is supplied for this type, it is
ignored.

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
66 Media image not available
68 Media recovery is not supported
69 Storage not available
71 Unexpected error
72 Queue manager name error
119 User not authorized
128 No objects processed
135 Temporary object cannot be recovered
136 Object in use

 Examples
1. The following command recreates all local queues for the default queue

manager:

rcrmqobj /t ql \

2. The following command recreates all remote queues associated with queue
manager store:

rcrmqobj /m store /t qr

 Related commands
rcdmqimg Record a queue manager object in the log

 Chapter 16. MQSeries control commands 215

 rsvmqtrn

rsvmqtrn (Resolve MQSeries transactions)

 Purpose
Use the rsvmqtrn command to give a commit or backout decision to an in-doubt
transaction.

Notes:

1. This command must be used only in situations where you are certain that the
transaction will not be resolved by the normal protocols. Issuing this command
may result in the loss of transactional integrity between resource managers for
a distributed transaction.

2. The only time that you can expect to use this command is if you are using an
external transaction manager and are involved with two-phase commitment
procedures. If you do not use two-phase commit, do not use this command.
This command should be used only if the syncpoint manager has failed to
resolve a transaction.

 Syntax

55──rsvmqtrn─ ──┬ ┬─ /c ─ ─ /m ──QMgrName──Transaction────────────────────────5%
└ ┘─ /b ─

 Required parameters
/c Specifies a commit decision.

/b Specifies a backout decision.

There is no default; you must supply one of these options.

/m QMgrName Specifies the name of the queue manager whose transactions are to
be resolved. The queue manager name must be specified.

Transaction Specifies the transaction number of the transaction of interest. The
number can be determined by using the dspmqtrn command to
display all transactions on a queue manager that have been left in a
prepared (in-doubt) state.

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
85 Transactions not known

216 MQSeries for Windows NT V2.0 System Management Guide

 rsvmqtrn

 Related commands
dspmqtrn Display list of prepared transactions

 Chapter 16. MQSeries control commands 217

 runmqchi

runmqchi (Run channel initiator)

 Purpose
Use the runmqchi command to run the channel initiator process. For more
information about the use of this command, refer to the MQSeries Distributed
Queuing Guide.

 Syntax

55──runmqchi─ ──┬ ┬───────────────────── ──┬ ┬────────────── ───────────────────5%
└ ┘── /q InitiationQName └ ┘── /m QMgrName

 Optional parameters
/q InitiationQName

Specifies the name of the initiation queue to be processed by this channel
initiator. If not specified, SYSTEM.CHANNEL.INITQ is used.

/m QMgrName
Specifies the name of the queue manager on which the initiation queue exists.
If the name is omitted, the default queue manager is used.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If errors occur that result in return codes of either 10 or 20, you should review the
queue manager error log that the channel is associated with for the error
messages. You should also review the @SYSTEM error log, as problems that
occur before the channel is associated with the queue manager are recorded there.
For more information about error logs, see “Error logs” on page 179.

218 MQSeries for Windows NT V2.0 System Management Guide

 runmqchl

runmqchl (Run channel)

 Purpose
Use the runmqchl command to run either a Sender (SDR) or a Requester
(RQSTR) channel.

The channel runs synchronously. To stop the channel, issue the MQSC command
STOP CHANNEL.

 Syntax

55──runmqchl─ ── /c ChannelName ──┬ ┬────────────── ───────────────────────────5%
└ ┘── /m QMgrName

 Required parameters
/c ChannelName

Specifies the name of the channel to run.

 Optional parameters
/m QMgrName

Specifies the name of the queue manager with which this channel is
associated. If no name is specified, the default queue manager is used.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

If return codes 10 or 20 are generated, review the error log of the associated queue
manager for the error messages. You should also review the @SYSTEM error log
because problems that occur before the channel is associated with the queue
manager are recorded there.

 Chapter 16. MQSeries control commands 219

 runmqdlq

runmqdlq (Run dead-letter queue handler)

 Purpose
Use the runmqdlq command to start the dead-letter queue (DLQ) handler, a utility
that you can run to monitor and handle messages on a dead-letter queue.

The DLQ handler can be used to perform various actions on selected messages by
specifying a set of rules that can both select a message and define the action to be
performed on that message.

The runmqdlq command takes its input from stdin. When the command is
processed, the results and a summary are put into a report that is sent to stdout.

By taking stdin from the keyboard, you can enter DLQ handler rules interactively.

By redirecting the input from a file, you can apply a rules table to the specified
queue. The rules table must contain at least one rule.

If the DLQ handler is used without redirecting stdin from a file (the rules table), the
DLQ handler reads its input from the keyboard. The DLQ handler does not start to
process the named queue until it receives an end_of_file (Ctrl-D) character.

For more information about rules tables and how to construct them, refer to “The
DLQ handler rules table” on page 114.

 Syntax

55──runmqdlq─ ──┬ ┬───────────────────────── ─────────────────────────────────5%
 └ ┘─ QName ─ ──┬ ┬────────────
 └ ┘─ QMgrName ─

 Optional parameters
The MQSC rules for comment lines and for joining lines also apply to the DLQ
handler input parameters.

QName Specifies the name of the queue to be processed.

If no name is specified the dead letter queue defined for the local queue
manager is used. If one or more blanks (' ') are used, the dead letter
queue of the local queue manager is explicitly assigned.

A DLQ handler can be used to select particular messages on a dead-letter
queue for special handling. You could, for example, redirect the
messages to different dead-letter queues. Subsequent handling with
another instance of the DLQ handler might then process the messages
according to a different rules table.

QMgrName
The name of the queue manager that owns the queue to be processed.

If no name is specified, the default queue manager for the installation is
used. If one or more blanks (' ') are used, the default queue manager
for this installation is explicitly assigned.

220 MQSeries for Windows NT V2.0 System Management Guide

 runmqlsr

runmqlsr (Run listener)

 Purpose
The runmqlsr (Run listener) command runs a listener process.

 Syntax

55──runmqlsr── /t ─ ──┬ ┬─ tcp ─ ──┬ ┬────────── ─────── ──┬ ┬────────────── ──────5%
│ │└ ┘── /p Port └ ┘── /m QMgrName

 ├ ┤─ lu62 ─ ──┬ ┬──────────── ────
│ │└ ┘── /n TpName

 │ │┌ ┐───────────────
 └ ┘─ netbios ─ ───6 ┴┬ ┬───────────

├ ┤─ /a ──────
 ├ ┤─Adapter───

├ ┤─ /l ──────
 ├ ┤─LocalName─

├ ┤─ /e ──────
 ├ ┤─Names─────

├ ┤─ /s ──────
 ├ ┤─Sessions──

├ ┤─ /o ──────
 └ ┘─Commands──

 Required parameters
/t Specifies the transmission protocol to be used:

tcp Transmission control protocol / Internet protocol (TCP/IP)

lu62 SNA LU 6.2

netbios NetBIOS

 Optional parameters
/p Port Port number for TCP/IP. This flag is valid only for TCP/IP. If a value is

not specified, the value is taken from the queue manager configuration file,
or from defaults in the program. The default value is 1414.

/n TpName
LU 6.2 transaction program name. This flag is valid only for the LU 6.2
transmission protocol. If a value is not specified, the value is taken from
the queue manager configuration file. If a value is not given, the
command fails.

/a Adapter
Specifies the adapter number on which NetBIOS listens. The default
value is 0, that is, the listener uses adapter 0.

/ll LocalName
Specifies the NetBIOS local name that the listener uses. The default is
specified in the queue manager configuration file.

/e Names
Specifies the number of names that the listener can use. The default
value is specified in the queue manager configuration file.

 Chapter 16. MQSeries control commands 221

 runmqlsr

/s Sessions
Specifies the number of sessions that the listener can use. The default
value is specified in the queue manager configuration file.

/o Commands
Specifies the number of commands that the listener can use. The default
value is specified in the queue manager configuration file.

/m QMgrName
Specifies the name of the queue manager. If no name is specified, the
command operates on the default queue manager.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
The following command runs a listener on the default queue manager using the
NetBIOS protocol. Five names, five commands, and five sessions are specified for
this listener, indicating the maximum number of each that this listener can use.
These resources must be within the limits set in the queue manager configuration
file.

runmqlsr /t NETBIOS /e 5 /s 5 /o 5

222 MQSeries for Windows NT V2.0 System Management Guide

 runmqsc

runmqsc (Run MQSeries commands)

 Purpose
Use the runmqsc command to issue MQSC commands to a queue manager.
MQSC commands enable you to perform administration tasks, such as defining,
altering, or deleting local queue objects. MQSC commands and their syntax are
described in the MQSeries Command Reference.

You can invoke the runmqsc command in three modes:

Verify mode
MQSC commands are verified but not actually run. An output report is generated
indicating the success or failure of each command. This mode is only available
on a local queue manager.

Direct mode
MQSC commands are sent directly to a local queue manager.

Indirect mode
MQSC commands are run on a remote queue manager. These commands are
put on the command queue on a remote queue manager and are run in the order
in which they were queued. Reports from the commands are returned to the
local queue manager.

Note: Indirect mode operation is performed through the default queue manager.

The runmqsc command takes its input from stdin. When the commands are
processed, the results and a summary are put into a report that is sent to stdout.

By taking stdin from the keyboard, you can enter MQSC commands interactively.

By redirecting the input from a file you can run a sequence of frequently-used
commands contained in the file. You can also redirect the output report to a file.

 Syntax

 ┌ ┐────────────────────────────
55──runmqsc─ ───6 ┴┬ ┬──────────────────────── ──┬ ┬────────── ───────────────────5%

├ ┤─ /e ─────────────────── └ ┘ ─QMgrName─
├ ┤─ /v ───────────────────

 └ ┘── /w WaitTime ──┬ ┬──────
 └ ┘─ /x ─

 Optional parameters
/e Prevents source text for the MQSC commands from being copied into a

report. This is useful when you enter commands interactively.

/v Specifies verification mode: verifies the specified commands without
performing the actions. This mode is only available locally. The /w and /x
flags are ignored if they are specified at the same time.

/w WaitTime
Specifies indirect mode, that is, the MQSC commands are to be run on
another queue manager. You must have the required channel and
transmission queues set up for this. See “Preparing channels and

 Chapter 16. MQSeries control commands 223

 runmqsc

transmission queues for remote administration” on page 86 for more
information.

WaitTime
Specifies the time, in seconds, that runmqsc waits for replies. Any
replies received after this are discarded, however, the MQSC commands
are still run. Specify a time between 1 and 999 999 seconds.

Each command is sent as an Escape PCF to the command queue
(SYSTEM.ADMIN.COMMAND.QUEUE) of the target queue manager.

The replies are received on queue SYSTEM.MQSC.REPLY.QUEUE and
the outcome is added to the report. This can be defined as either a
local queue or a model queue.

Indirect mode operation is performed through the default queue
manager.

This flag is ignored if the /v flag is specified.

/x Specifies that the target queue manager is running under MVS/ESA. This
flag applies only in indirect mode. The /w flag must also be specified. In
indirect mode, the MQSC commands are written in a form suitable for the
MQSeries for MVS/ESA command queue.

QMgrName
Specifies the name of the target queue manager on which the MQSC
commands are to be run. If omitted, the MQSC commands run on the
default queue manager.

 Return codes
00 MQSC command file processed successfully.

10 MQSC command file processed with errors—report contains reasons for
failing commands.

20 Error—MQSC command file not run.

 Examples
1. Type in this command at Windows NT command prompt:

runmqsc

Now you can type MQSC commands directly at the Windows NT command
prompt. No queue manager name was specified, therefore the MQSC
commands are processed on the default queue manager.

2. Use this command to specify that MQSC commands are verified only:

runmqsc /v BANK < C:\USER\COMMFILE.IN

This verifies the MQSC command file COMMFILE.IN in directory
C:\USER\MQSC. The queue manager name is BANK. The output is displayed
in the current window.

224 MQSeries for Windows NT V2.0 System Management Guide

 runmqsc

3. This command runs the MQSC command file C:\MQM\MQSC\MQSCFILE.IN
against the default queue manager:

runmqsc < C:\MQM\MQSC\MQSCFILE.IN > C:\MQM\MQSC\MQSCFILE.OUT

In this example, the output is directed to file C:\MQM\MQSC\MQSCFILE.OUT,
not to the Windows NT window.

 Chapter 16. MQSeries control commands 225

 runmqtmc

runmqtmc (Start client trigger monitor)

 Purpose
Use the runmqtmc command to invoke a trigger monitor for a client. For further
information about using trigger monitors, refer to the MQSeries Application
Programming Guide.

 Syntax

55──runmqtmc─ ──┬ ┬────────────── ──┬ ┬───────────────────── ───────────────────5%
 └ ┘── /m QMgrName └ ┘── /q InitiationQName

 Optional parameters
/m QMgrName

Specifies the name of the queue manager on which the client trigger
monitor operates. If omitted, the client trigger monitor operates on the
default queue manager.

/q InitiationQName
Specifies the name of the initiation queue to be processed. If omitted,
SYSTEM.DEFAULT.INITIATION.QUEUE is used.

 Return codes
0 Not used. The client trigger monitor is designed to run continuously and

therefore not to end. The value is reserved.

10 Client trigger monitor interrupted by an error.

20 Error—client trigger monitor not run.

226 MQSeries for Windows NT V2.0 System Management Guide

 runmqtrm

runmqtrm (Start trigger monitor)

 Purpose
Use the runmqtrm command to invoke a trigger monitor. For further information
about using trigger monitors, refer to the MQSeries Application Programming
Guide.

 Syntax

55──runmqtrm─ ──┬ ┬────────────── ──┬ ┬───────────────────── ───────────────────5%
 └ ┘── /m QMgrName └ ┘── /q InitiationQName

 Optional parameters
/m QMgrName

Specifies the name of the queue manager on which the trigger monitor
operates. If omitted, the trigger monitor operates on the default queue
manager.

/q InitiationQName
Specifies the name of the initiation queue to be processed. If omitted,
SYSTEM.DEFAULT.INITIATION.QUEUE is used.

 Return codes
0 Not used. The trigger monitor is designed to run continuously and therefore

not to end. Hence a value of 0 would not be seen. The value is reserved.

10 Trigger monitor interrupted by an error.

20 Error—trigger monitor not run.

 Chapter 16. MQSeries control commands 227

 scmmqm

scmmqm (Add the queue manager to, or delete the queue manager
from, theWindows NT Service Control Manager)

 Purpose
Use the scmmqm command to add a queue manager to, or delete a queue
manager from, the list of those that will be started automatically, by the
IBMMQSeries service, when the system starts.

 Syntax

55──scmmqm─ ──┬ ┬────── ──┬ ┬─ /a ── /s ──Commandfile─ ─QMgrName────────────────5%
 └ ┘─ /z ─ └ ┘─ /d ────────────────────

 Required parameters
/a Adds a queue manager to the list of those that start automatically.

/d Removes a queue manager from the list of those that start
automatically.

/s Commandfile
Locates the command file that is executed when a queue manager is
automatically started.

QMgrName Name of the queue manager concerned.

 Optional parameters
/z Suppresses error messages.

 Return codes
0 Windows NT Successful operation (Service Control Manager updated)
36 Invalid arguments supplied
71 Unexpected error

Note: If this happens when you are attempting to remove a queue manager
from the automatic start-up list, use the steps in Appendix E, “Stopping and
removing queue managers manually” on page 255 to remove it manually.

72 Queue manager name error

228 MQSeries for Windows NT V2.0 System Management Guide

 scmmqm

 Examples
The following examples show commands that update the Windows NT Service
Control Manager:

1. Add a queue manager to the automatic start-up list.

scmmqm /a /s C:\MQM\SATURNSTARTUP.CMD saturn.queue.manager

2. Modify the command file, NEWSTARTUP.CMD that is executed when a queue
manager is automatically started.

scmmqm /a /s C:\MQM\NEWSTARTUP.CMD saturn.queue.manager

3. Remove a queue manager from the automatic start-up list.

scmmqm /d saturn.queue.manager

Note: The command files can be stored in any location under any name. Each
queue manager needs its own command file.

For information on how to start a queue manager automatically, see “Starting a
queue manager automatically” on page 49.

 Chapter 16. MQSeries control commands 229

 setmqaut

setmqaut (Set or reset authority)

 Purpose
Use the setmqaut command to change the authorizations to an object or to a class
of objects. Authorizations can be granted to or revoked from any number of
principals or groups.

For more information about authorization service components, see the MQSeries
Programmable System Management book.

 Syntax

55──setmqaut─ ── /m QMgrName──(1) ───(2) ── /n ObjectName ── /t ObjectType ────────────5

 ┌ ┐───────────────────────────
5─ ──┬ ┬────────────────────── ───6 ┴──┬ ┬─ /p ──PrincipalName─ ───────────────────5

└ ┘── /s ServiceComponent └ ┘─ /g ──GroupName─────

 ┌ ┐───
5─ ───6 ┴──┬ ┬─┤ MQI authorizations ├──────────── ──────────────────────────────5%
 ├ ┤─┤ Context authorizations ├────────
 ├ ┤─┤ Administration authorizations ├─
 └ ┘─┤ Generic authorizations ├────────

Notes:
1 This parameter is optional if you are changing the authorizations of your

default queue manager.
2 This parameter is optional if you are changing the authorizations of a

queue manager object.

230 MQSeries for Windows NT V2.0 System Management Guide

 setmqaut

MQI authorizations:
 ┌ ┐──────────────────────
├─ ───6 ┴─── ───┬ ┬─ +get ───── ──┤

├ ┤─ –get ─────
├ ┤─ +browse ──
├ ┤─ –browse ──
├ ┤─ +put ─────
├ ┤─ –put ─────
├ ┤─ +inq ─────
├ ┤─ –inq ─────
├ ┤─ +set ─────
├ ┤─ –set ─────
├ ┤─ +connect ─
├ ┤─ –connect ─
├ ┤─ +altusr ──
└ ┘─ –altusr ──

Context authorizations:
 ┌ ┐──────────────────────
├─ ───6 ┴─── ───┬ ┬─ +passid ── ──┤

├ ┤─ –passid ──
├ ┤─ +passall ─
├ ┤─ –passall ─
├ ┤─ +setid ───
├ ┤─ –setid ───
├ ┤─ +setall ──
└ ┘─ –setall ──

Administration authorizations:
 ┌ ┐─────────────────────
├─ ───6 ┴─── ───┬ ┬─ +chgaut ─ ───┤

├ ┤─ –chgaut ─
├ ┤─ +crt ────
├ ┤─ –crt ────
├ ┤─ +dlt ────
├ ┤─ –dlt ────
├ ┤─ +chg ────
├ ┤─ –chg ────
├ ┤─ +dsp ────
├ ┤─ –dsp ────
├ ┤─ +cpy ────
├ ┤─ –cpy ────
├ ┤─ +clr ────
└ ┘─ –clr ────

Generic authorizations:
 ┌ ┐─────────────────────
├─ ───6 ┴─── ───┬ ┬─ +allmqi ─ ───┤

├ ┤─ –allmqi ─
├ ┤─ +alladm ─
├ ┤─ –alladm ─
├ ┤─ +all ────
└ ┘─ –all ────

 Description
You can use this command both to set an authorization, that is, give a user or
group permission to perform an operation, and to reset an authorization, that is,
remove the permission to perform an operation. You must specify the user groups
and principals to which the authorizations apply and also the queue manager,
object type, and object name of the object. You can specify any number of groups
and principals in a single command.

 Chapter 16. MQSeries control commands 231

 setmqaut

The authorizations that can be given are categorized as follows:

� Authorizations for issuing MQI calls
� Authorizations for MQI context
� Authorizations for issuing commands for administration tasks

 � Generic authorizations

Each authorization to be changed is specified in an authorization list as part of the
command. Each item in the list is a string prefixed by ‘+’ or ‘−’. For example, if
you include +put in the authorization list, you are giving authority to issue MQPUTs
against a queue. Alternatively, if you include −put in the authorization list, you are
removing the authorization to issue MQPUTs.

Authorizations can be specified in any order provided that they do not clash. For
example, specifying +allmqi with +set causes a clash.

If a user ID is a member of more than one group, the authorizations that apply are
the union of the authorizations of each group to which that user ID belongs, as well
as the authorizations of the user ID itself.

 Required parameters
/m QMgrName

Specifies the name of the queue manager of the object for which the
authorizations are to be changed. The name can contain up to 48
characters.

/n ObjectName
Specifies the name of the object for which the authorizations are to be
changed. You must not use a generic name.

/t ObjectType
Specifies the type of object for which the authorizations are to be changed.

Possible values are:

� queue or q
� process or prcs

 � qmgr

Note: You must enter these in lower case.

 Optional parameters
/p PrincipalName

Specifies the name of the principal for which the authorizations are to be
changed. You can specify more than one principal name, but each name
must be prefixed by the /p flag.

/g GroupName
Specifies the name of the user group whose authorizations are to be
changed. You can specify more than one group name, but each name
must be prefixed by the /g flag.

232 MQSeries for Windows NT V2.0 System Management Guide

 setmqaut

/s ServiceComponent
This parameter applies only if you are using installable authorization
services, otherwise it is ignored.

If installable authorization services are supported, this parameter specifies
the name of the authorization service to which the authorizations apply.
This parameter is optional; if it is not specified, the authorization update is
made to the first installable component for the service.

Authorizations
Specifies the authorizations to be given or removed. Each item in the list
is prefixed by a ‘+’ indicating that authority is to be given, or a ‘−’,
indicating that authorization is to be removed. For example, to give
authority to issue an MQPUT call from the MQI, specify +put in the list.
To remove authority to issue an MQPUT call, specify −put.

Table 12 shows the authorities that can be given to the different object types.

Table 12. Security authorities

Authority Queue Process Qmgr

all √ √ √

alladm √ √ √

allmqi √ √ √

altusr √

browse √

chg √ √ √

clr √

connect √

crt √ √ √

dlt √ √ √

dsp √ √ √

put √

inq √ √ √

get √

passall √

passid √

set √ √ √

setall √ √

setid √ √

 Chapter 16. MQSeries control commands 233

 setmqaut

Authorizations for MQI calls

altusr Use an alternate user ID in a message.

browse Retrieve a message from a queue by issuing an MQGET with the
BROWSE option.

connect Connect the application to the specified queue manager by issuing
an MQCONN.

get Retrieve a message from a queue by issuing an MQGET.

inq Make an inquiry on a specific queue by issuing an MQINQ.

put Put a message on a specific queue by issuing an MQPUT.

set Set attributes on a queue from the MQI by issuing an MQSET.

See the MQSeries Application Programming Guide for more
information about alternate user IDs.

Authorizations for context

passid Pass identity context on the specified queue.

passall Pass all context on the specified queue.

setid Set identity context on the specified queue.

setall Set all context on the specified queue.

Authorizations for commands

chgaut Specify authorizations for other groups of users on the object.

crt Create objects of the specified type.

dlt Delete the specified object.

chg Change the attributes of the specified object.

dsp Display the attributes of the specified object.

cpy Copy the attributes of the specified object (PCF Copy commands
only).

clr Clear the specified queue (PCF Clear queue command only).

Authorizations for generic operations

allmqi Use all MQI calls applicable to the object.

alladm Perform all administration operations applicable to the object.

all Use all operations applicable to the object.

See “What the authorization files contain” on page 110 for more detail of what each
of the above gives authorization to.

234 MQSeries for Windows NT V2.0 System Management Guide

 setmqaut

 Return codes
0 Successful operation
36 Invalid arguments supplied
40 Queue manager not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
133 Unknown object name
145 Unexpected object name
146 Object name missing
147 Object type missing
148 Invalid object type
149 Entity name missing
150 Authorization specification missing
151 Invalid authorization specification

 Examples
1. This example shows a command that specifies that the object on which

authorizations are being given is the queue orange.queue on queue manager
saturn.queue.manager.

setmqaut /m saturn.queue.manager /n orange.queue /t queue /g tango +inq +alladm

The authorizations are being given to user group tango and the associated
authorization list specifies that user group tango:

� Can issue MQINQ calls
� Has authority to perform all administration operations on that object

2. In this example, the authorization list specifies that user group foxy:

� Cannot issue any calls from the MQI to the specified queue
� Has authority to perform all administration operations on the specified

queue

setmqaut /m saturn.queue.manager /n orange.queue /t queue /g foxy -allmqi +alladm

3. In this example, the authorization list specifies that user group waltz has
authority to create and delete queue manager saturn.queue.manager.

setmqaut /m saturn.queue.manager /t qmgr /g waltz +crt +dlt

 Chapter 16. MQSeries control commands 235

 setmqaut

 Related commands
dspmqaut Display authority

236 MQSeries for Windows NT V2.0 System Management Guide

 strmqcsv

strmqcsv (Start command server)

 Purpose
Use the strmqcsv command to start the command server for the specified queue
manager. This enables MQSeries to process commands sent to the command
queue.

 Syntax

55──strmqcsv──QMgrName───5%

 Required parameters
QMgrName Specifies the name of the queue manager for which the command

server is to be started.

 Return codes
0 Command completed normally
10 Command completed with unexpected results
20 An error occurred during processing

 Examples
The following command starts a command server for queue manager QMGR1.

strmqcsv QMGR1

 Related commands
endmqcsv End a command server

dspmqcsv Display the status of a command server

 Chapter 16. MQSeries control commands 237

 strmqm

strmqm (Start queue manager)

 Purpose
Use the strmqm command to start a local queue manager.

 Syntax

55──strmqm─ ──┬ ┬────── ──┬ ┬────────── ──5%
 └ ┘─ /z ─ └ ┘ ─QMgrName─

 Optional parameters
QMgrName Specifies the name of a local queue manager to be started. If omitted,

the default queue manager is started.

/z Suppresses error messages.

This flag is usually used within MQSeries to suppress unwanted error
messages. As use of this flag could result in loss of information, do not
use it when entering commands on a command line.

 Return codes
0 Queue manager started
3 Queue manager being created
5 Queue manager running
16 Queue manager does not exist
23 Log not available
49 Queue manager stopping
69 Storage not available
71 Unexpected error
72 Queue manager name error
100 Log location invalid

 Examples
The following command starts the queue manager account.

strmqm account

 Related commands
crtmqm Create a queue manager

dltmqm Delete a queue manager

endmqm End a queue manager

238 MQSeries for Windows NT V2.0 System Management Guide

 strmqtrc

strmqtrc (Start MQSeries trace)

 Purpose
Use the strmqtrc command to enable tracing. This command can be run
regardless of whether tracing is enabled. If tracing is already enabled, the trace
options in effect are modified to those specified on the latest invocation of the
command.

55──strmqtrc─ ──┬ ┬─────────────── ───5%
└ ┘── /t TraceType

 Optional parameters
/t TraceType

Defines which points during processing can be traced. If this flag is omitted,
all trace points are enabled and a full trace generated.

Alternatively, one or more of the options in the following list can be supplied.

Note: If multiple trace types are supplied, each must have its own /t flag.
Any number of /t flags can be specified, provided that each has a valid
trace type associated with it.

It is not an error to specify the same trace type on multiple /t flags.

all
Output data for every trace point in the system. This is also the default if
the /t flag is not specified.

api
Output data for trace points associated with the MQI and major queue
manager components.

comms
Output data for trace points associated with data flowing over
communications networks.

csflows
Output data for trace points associated with processing flow in common
services.

lqmflows
Output data for trace points associated with processing flow in the local
queue manager.

remoteflows
Output data for trace points associated with processing flow in the
communications component.

otherflows
Output data for trace points associated with processing flow in other
components.

csdata
Output data for trace points associated with internal data buffers in
common services.

 Chapter 16. MQSeries control commands 239

 strmqtrc

lqmdata
Output data for trace points associated with internal data buffers in the
local queue manager.

remotedata
Output data for trace points associated with internal data buffers in the
communications component.

otherdata
Output data for trace points associated with internal data buffers in other
components.

versiondata
Output data for trace points associated with the version of MQSeries
running.

commentary
Output data for trace points associated with comments in the MQSeries
components.

 Related commands
endmqtrc End MQSeries trace

240 MQSeries for Windows NT V2.0 System Management Guide

 Part 3. Appendixes

 Copyright IBM Corp. 1994, 1996 241

242 MQSeries for Windows NT V2.0 System Management Guide

 MQSeries for Windows NT V2.0 at a glance

Appendix A. MQSeries for Windows NT V2.0 at a glance

This appendix is a summary of the requirements to run MQSeries for Windows NT,
the network protocols, the compilers supported, the delivery media, and the
installation method.

The information applies to server and client environments.

 Program name
IBM MQSeries for Windows NT Version 2.0

 Hardware requirements
 � MQSeries Servers:

Any Intel 486 (or above) processor-based IBM PC machine or compatible

� Any communications hardware supporting SNA/LU 6.2, TCP/IP, or NetBios.

 Software requirements
Minimum supported levels are shown. Later levels, if any, will be supported unless
otherwise stated.

� Microsoft Windows NT Version 3.5, 3.5/J, 3.5.1 Workstation and Server
including TCP/IP and NetBIOS

 � MQSeries clients

Client code for OS/2, DOS, Windows 3.1, and Windows NT workstations is
distributed with the server code.

 � Connectivity

For SNA connectivity (communications server), use Microsoft SNA Server 2.1.

For TCP/IP connectivity (communications server), use TCP/IP facilities within
Windows NT.

For NetBIOS connectivity (communications server), use NetBIOS facilities
within Windows NT.

� Options, not prerequisites

Transaction Processing monitors, including

– CICS for Windows NT V2
– TUXEDO** System 6 for Windows NT (coordination via X/Open XA

interface)

Lotus Notes V3.3

 Copyright IBM Corp. 1994, 1996 243

 MQSeries for Windows NT V2.0 at a glance

Programming languages and compilers
� C, using Microsoft Visual C++ V2.0 compiler for Windows NT
� COBOL, using Micro Focus** COBOL for Windows NT V3.3

Distributed queuing with MQSeries for Windows NT Version 2.0
The network protocols supported by MQSeries for Windows NT are:

 � TCP/IP
� SNA LU 6.2

 � NetBIOS

 Delivery
MQSeries for Windows NT Version 2.0 is supplied on CD-ROM.

 Installation
MQSeries for Windows NT Version 2.0 is installed using the setup utility.

The installation can be performed in approximately 15 minutes.

For specific information about installing this product, see Chapter 2, “Installing
MQSeries for Windows NT” on page 15.

244 MQSeries for Windows NT V2.0 System Management Guide

 System defaults

 Appendix B. System defaults

The sample MQSC command file AMQSCOMA.TST contains definitions for (1) the
standard objects, and (2) the standard default attributes. This file needs to be run
each time a queue manager is created, and can be processed when the queue
manager is started. It creates the objects if they are missing, or resets their
attributes to those you specify explicitly. The default objects are required for the
operation of a queue manager or channel.Table 13 lists the objects defined in
AMQSCOMA.TST.

To create these objects, see “Running the supplied MQSC command files” on
page 64.

Table 13. Objects included in AMQSCOMA.TST

Object name Description

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue.

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue.

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue.

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue.

SYSTEM.DEAD.LETTER.QUEUE Sample dead-letter
(undelivered-message) queue.

SYSTEM.DEFAULT.PROCESS Default process definition.

SYSTEM.DEF.SENDER Default sender channel.

SYSTEM.DEF.SERVER Default server channel.

SYSTEM.DEF.RECEIVER Default receiver channel.

SYSTEM.DEF.REQUESTER Default requester channel.

SYSTEM.DEF.SVRCONN Default server connection channel.

SYSTEM.DEF.CLNTCONN Default client connection channel.

SYSTEM.CHANNEL.INITQ Channel initiation queue.

SYSTEM.CHANNEL.SYNCQ Channel synchronisation queue.

SYSTEM.DEFAULT.INITIATION.QUEUE Default initiation queue.

SYSTEM.CICS.INITIATION.QUEUE Default CICS initiation queue.

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue. Used for
remote MQSC commands, and PCF
commands.

SYSTEM.MQSC.REPLY.QUEUE MQSC reply-to queue. This is a model
queue that creates a temporary dynamic
queue for replies to remote MQSC
commands.

SYSTEM.ADMIN.QMGR.EVENT Event queue for queue manager events.

SYSTEM.ADMIN.PERFM.EVENT Event queue for performance events.

SYSTEM.ADMIN.CHANNEL.EVENT Event queue for channel events.

 Copyright IBM Corp. 1994, 1996 245

 System defaults

246 MQSeries for Windows NT V2.0 System Management Guide

 Directory structure

 Appendix C. Directory structure

The following shows some of the directories and files found under the root C:\MQM\.
If you have installed the product under different directories, the root is modified
appropriately.

PLUGCOMP\

PROCDEF\

QMANAGER\

AMQERR01.LOG

AMQERR02.LOG

AMQERR03.LOG

QMANAGER

QMQMOBJCAT

QAADMIN

LOG\ QMNAME\

@ IPCC\

AMQHLCTL.LFH

ACTIVE\

QM.INI

QUEUES\

STARTPRM\

S0000000.LOG

S0000001.LOG

S0000002.LOG

QMNAME\

@ SYSTEM\

MQS.INI

QMGRS\ ERRORS\

C:\MQM\

AMQALCHK.FIL

AUTH\

DCE\

ERRORS\

PROCDEF\

QMANAGER\

QUEUES\

CONV

TABLE

ERRORS

Figure 27. Default file tree after a queue manager has been started. If you are using a FAT system, the name
QMQMOBJCAT is transformed.

 Copyright IBM Corp. 1994, 1996 247

 Directory structure

Figure 27 on page 247 shows the general layout of the data and log directories.
The layout is representative of MQSeries after a queue manager has been in use
for some time. However, the actual structure that you have depends on the
operations that have occurred on the queue manager. A brief description of the
files follows.

Notes:

1. The directory and file names are all shown in upper case. The case depends
on the file system you are using (NTFS, HPFS or FAT).

2. The queue manager names may have been transformed. See “Queue
manager name transformation” on page 54 for more information.

AMQALCHK.FIL
Checkpoint file containing information about last checkpoint.

AUTH\

PROCDEF\
Empty directory reserved for authority parameters.

QMANAGER\
Empty directory reserved for authority parameters.

QUEUES\
Empty directory reserved for authority parameters.

DCE\
Empty directory reserved for use by DCE support.

ERRORS\
The operator message files, from newest to oldest:

 AMQERR01.LOG
 AMQERR02.LOG
 AMQERR03.LOG

PLUGCOMP\
Empty directory reserved for use by installable services.

PROCDEF\
Each MQSeries process definition has a file in here.

Where possible, the file name matches the associated process definition name
but some characters have to be altered.

There may be a directory called @MANGLED here containing process definitions
with transformed or mangled names.

QMANAGER\

QMANAGER
The queue manager object.

QMQMOBJCAT
The object catalogue containing the list of all MQSeries objects, used
internally.

Note: If you are using a FAT system, this name will be transformed and a
subdirectory created containing the file with its name transformed.

QAADMIN
File used internally for controlling authorizations.

248 MQSeries for Windows NT V2.0 System Management Guide

 Directory structure

QM.INI
Queue manager configuration file.

QUEUES\
Each queue has a directory here containing a single file called Q.

Where possible, the directory name matches the associated queue name but
some characters have to be altered.

There may be a directory called @MANGLED here containing queues with
transformed or mangled names.

STARTPRM\
Directory containing temporary files used internally.

@IPCC\

AMQCLCHL.TAB
File containing the client channel table.

AMQRFCDA.DAT
File containing the channel table.

AMQRSYNA.DAT
Channel synchronization file.

Queue manager log directory structure
The following directories and files are found under C:\MQM\LOG\QMNAME\. If you
have installed the product under different directories or specified different log paths
in the configuration file, the root will be modified appropriately.

The following subdirectories and files will exist after you have installed MQSeries,
created and started a queue manager, and have been using that queue manager
for some time.

AMQHLCTL.LFH
Log control file.

ACTIVE\
This directory contains the log files numbered S0000000.LOG, S0000001.LOG,
S00000002.LOG, and so on.

 Appendix C. Directory structure 249

 Directory structure

250 MQSeries for Windows NT V2.0 System Management Guide

 Samples

Appendix D. Sample MQI programs and MQSC command
files

MQSeries for Windows NT provides a set of short sample MQI programs and
MQSC command files that you can use and experiment with.

MQSC command file samples
These are simply ASCII text files containing MQSC commands. You can invoke
the runmqsc command against any of these files to create the objects specified in
them. See “Running the supplied MQSC command files” on page 64.

By default, AMQSCOMA.TST is located in directory C:\MQM\MQSC\;
AMQSCOS0.TST, AMQSCIC0.TST, and AMQSLNK0.TST are in
C:\MQM\TOOLS\MQSC\.

Table 14. MQSC command files

File name Purpose

AMQSCOMA.TST Contains definitions of (1) the standard objects, and (2) the
standard default objects. It creates the objects if they are missing,
or resets their attributes to the ones you explicitly specify. The
default objects are required for the operation of a queue manager
or channel.

AMQSCIC0.TST Defines objects for use in the sample CICS for Windows NT
transaction.

AMQSCOS0.TST Creates a set of MQI objects for use with the C and COBOL
program samples.

AMQSLNK0.TST Defines objects for the Lotus Notes link sample.

C and COBOL program samples
Table 15 on page 252 lists the sample MQI source files, some of which have both
C and COBOL versions.

By default, the C source files are located in directory C:\MQM\TOOLS\C\SAMPLES\
and the corresponding executable files are in C:\MQM\TOOLS\C\SAMPLES\BIN\.

Also by default, the COBOL source files are located in directory
C:\MQM\TOOLS\COBOL\SAMPLES\ and the supporting copy files are in
C:\MQM\TOOLS\COBOL\COPYBOOK\.

To find out more about what the programs do and how to use them, see the
MQSeries Application Programming Guide.

 Copyright IBM Corp. 1994, 1996 251

 Samples

Table 15. Sample program source and associated files

C COBOL Purpose

AMQSBCG0.C – Reads and then outputs both the
message descriptor and message
context fields of all the messages on a
specified queue.

AMQSECHA.C AMQIECH2.CBL
or
AMQMECH2.CBL

Echoes a message from a message
queue to the reply-to queue. Can be
run as a triggered application program.

AMQSGBR0.C AMQ0GBR0.CBL Writes messages from a queue to
stdout, leaving the messages on the
queue. Uses MQGET with the browse
option.

AMQSGET0.C AMQ0GET0.CBL Removes the messages from the
named queue (using MQGET) and
writes them to stdout.

AMQSINQA.C AMQIINQ2.CBL
or
AMQMINQ2.CBL

Reads the triggered queue; reads each
request as a queue name; responds
with information about that queue.

AMQSPUT0.C AMQ0PUT0.CBL Copies stdin to a message and then
puts this message on a specified
queue.

AMQSREQ0.C AMQ0REQ0.CBL Puts request messages on a specified
queue and then displays the reply
messages.

AMQSSETA.C AMQISET2.CBL
or
AMQMSET2.CBL

Inhibits puts on a named queue and
responds with a statement of the result.
Runs as a triggered application.

AMQSTRG0.C – A trigger monitor that reads a named
initiation queue and then starts the
program associated with each trigger
message. Provides a subset of the full
triggering function of the supplied
runmqtrm command.

AMQSVFC2.C – A sample C skeleton of a Data
Conversion exit routine.

AMQSVFC2.DEF – DEF file for data conversion macros.

AMQSVMHA.H – Header file for data conversion macros.

AMQSZFC0.C – User Identifier Service program that
uses environment variables to pass a
user-specified password and user ID.

Note: You can create the objects required by these samples using the MQSC
command file AMQSCOS0.TST.

AMQMECH2.CBL, AMQMINQ2.CBL and AMQMSET2.CBL use the Micro Focus**
COBOL compiler.

252 MQSeries for Windows NT V2.0 System Management Guide

 Samples

Supporting CICS for transaction processing
The samples include a CICS for Windows NT transaction, some associated
headers and initialization programs, and exits.

Table 16. Samples for transaction processing with CICS for Windows NT

File name Purpose

AMQSCIC0.CCS Sample CICS for Windows NT transaction.

AMQSCIH0.H Header file for CICS for Windows NT transaction sample.

AMQZSC5N.C CICS for Windows NT user exit 15/16.

AMQZSC7N.C CICS for Windows NT user exit 17 - task abend.

Supporting TUXEDO for transaction processing
Table 17. Samples for transaction processing with TUXEDO

File name Purpose

AMQSTXSX.C Sample server

AMQSTXPX.C Sample PUT client application.

AMQSTXGX.C Sample GET client application.

AMQSTXVX.V View definition.

AMQSTXVX.FLD Field definition.

AMQSTXMN.MAK Makefile to build server and clients.

AMQSTXEN.ENV ENVFILE environment file.

UBBSTXCN.CFG UBBCONFIG configuration file.

 Appendix D. Sample MQI programs and MQSC command files 253

 Samples

254 MQSeries for Windows NT V2.0 System Management Guide

 Stopping queue managers

Appendix E. Stopping and removing queue managers
manually

If the normal methods for stopping and removing queue managers fail, you can
resort to the more drastic methods described here.

Stopping queue managers manually
If it is impossible to stop a queue manager in any other way, use the following
procedure:

1. List the names (IDs) of the processes running using the Windows NT Process
Viewer (PView)

2. Stop the processes using PView in the following order (if they are running):

AMQHASMN.EXE The logger
AMQHARMN.EXE Log formatter (LINEAR logs only)
AMQZLLP0.EXE Checkpoint process
AMQZLAA0.EXE LQM agents
AMQZTRCN.EXE Trace
AMQZXMA0.EXE Execution controller
AMQXSSVN.EXE Shared memory servers

3. Stop the queue manager service using the Windows NT Control Panel

4. If you have tried all methods and the queue manager has not stopped, reboot
your system.

Removing queue managers manually
If you encounter problems with the dltmqm command, use the following procedure
to delete a queue manager:

1. Locate the queue manager directory from the MQS.INI configuration file. By
default, this location is:

 C:\MQM\QMGRS\<QMgrName>

where <QMgrName> (or its transformed equivalent) is the name of the queue
manager to be deleted.

2. Delete this directory, all subdirectories and files.

3. Locate the associated log directory from the mqs.ini file.

4. Delete the directory, all subdirectories and files.

5. Remove its QueueManager stanza from MQS.INI.

6. Remove the DefaultQueueManager stanza, if the queue manager being deleted
is the default queue manager.

7. If appropriate, remove the queue manager from the automatic start-up list by
using the scmmqm command or by following the steps in “Removing queue
managers from the automatic start-up list” on page 256.

 Copyright IBM Corp. 1994, 1996 255

 Stopping queue managers

Removing queue managers from the automatic start-up list
If the scmmqm command fails to remove the queue manager from the list of those
that automatically start when the system starts, use the following procedure:

1. Type REGEDT32 from the command prompt.

2. Select the HKEY_LOCAL_MACHINE window.

3. Navigate the tree structure to find the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion

4. Select the autostart value to start the editor.

5. Remove the entry referring to the queue manager that you want to remove.

6. Close the registry editor.

256 MQSeries for Windows NT V2.0 System Management Guide

 structure of messages

 Appendix F. Messages

This appendix describes the format of the messages issued by MQSeries and how
they are documented.

 Message format
The format of the MQSeries messages is as follows:

� The message identifier, where the identifier has two components:

1. The characters “AMQ,” which identify the message as originating from
MQSeries

2. A four-digit decimal code.

� Text of the message

Structure of messages
This section describes the structure of MQSeries messages.

 Message variables
Some messages display text or numbers that vary according to the circumstances
giving rise to the message; these are known as message variables. The message
variables are indicated by the use of the '&' symbol.

Where there is more than one variable in a message, a number is added to the '&'
symbol.

Note: You should always look at the extended help for a message before carrying
out any other action, because, in certain cases, the variables are displayed in the
extended help only.

 Message information
For each message, this information is provided:

Explanation: Why the message was issued.

User action: Instructions to the user.

Note: The message file may contain the explanation of the message, in addition
to the message itself.

 Copyright IBM Corp. 1994, 1996 257

 MQSeries messages

 MQSeries messages
MQSeries messages are numbered 5000 through 9999, and they are listed in this
book in numeric order. Not all numbers have been used, so the list is not
continuous.

 Message groups
MQSeries messages are grouped according to the part of MQSeries from which
they originate:

5000 through 5999
Installable services – see page 259.

6000 through 6999
Common services – see page 265.

7000 through 7999
The MQSeries product – see page 268.

8000 through 8999
Administering MQSeries – see page 279.

9000 through 9999
Remote – see page 294.

258 MQSeries for Windows NT V2.0 System Management Guide

 AMQ5006 � AMQ5509

Installable services messages

AMQ5006 Unexpected error: rc = &1

Explanation: An unexpected error occurred in an
internal function of the product.

User action: Save the generated output files and
contact your IBM support center.

AMQ5203 An error occurred calling the XA
interface.

Explanation: The error number is &2 where a value
of 1 indicates the supplied flags value of &1 was
invalid, 2 indicates that there was an attempt to use
threaded and non-threaded libraries in the same
process, 3 indicates that there was an error with the
supplied queue manager name '&3', 4 indicates that
the resource manager id of &1 was invalid and 5
indicates that an attempt was made to use a second
queue manager called '&3' when another queue
manager was already connected.

User action: Correct the error and try the operation
again.

AMQ5501 There was not enough storage to satisfy
the request

Explanation: An internal function of the product
attempted to obtain storage, but there was none
available.

User action: Stop the product and restart it. If this
does not resolve the problem, save the generated
output files and contact your IBM support center.

AMQ5502 The CDS directory name '&3' is not in the
correct format.

Explanation: An internal function of the DCE Naming
service found a CDS directory name in the wrong
format. The name was expected to start with '/...' for a
fully qualified name (from global root).

User action: Save the generated output files and
contact your IBM support center.

AMQ5503 The name of the local DCE cell cannot
be determined, status = &1

Explanation: The DCE Naming Service attempted to
determine the name of the local DCE cell by calling
'dce_cf_get_cell_name()', which returned a nonzero
return code.

User action: Save the generated output files and
contact your IBM support center.

AMQ5504 DCE error. No value for the XDS
attribute found.

Explanation: The DCE Naming service called
om_get() to get the entry from the object returned by
ds_read(). Although the status was correct, no objects
were returned.

User action: Save the generated output files and
contact your IBM support center.

AMQ5505 DCE error. No value for the XDS
attribute number &1 found.

Explanation: The DCE Naming service called
om_get() to get the entry from the object returned by
ds_read(). Although the status was correct, no objects
were returned.

User action: Save the generated output files and
contact your IBM support center.

AMQ5506 DCE error. '&3' returned &1 for attribute
number &2.

Explanation: The DCE Naming service queried an
object by calling '&3' which returned a nonzero return
code.

User action: Save the generated output files and
contact your IBM support center.

AMQ5507 DCE error. '&3' failed for an unknown
reason.

Explanation: An unexpected error occurred in an
internal function of the DCE Naming service.

User action: Save the generated output files and
contact your IBM support center.

AMQ5508 DCE error. The requested attribute is
not present.

Explanation: The DCE Naming service was
attempting to extract the value from an attribute, but
the attribute cannot be found in the XDS object.

User action: Save the generated output files and
contact your IBM support center.

AMQ5509 DCE error. The XDS workspace cannot
be initialized.

Explanation: The DCE Naming service called
'ds_initialize()' to initialize the XDS workspace, but
'ds_initialize()' returned a nonzero return code.

User action: Save the generated output files and
contact your IBM support center.

 Appendix F. Messages 259

 AMQ5510 � AMQ5702

AMQ5510 DCE error. '&3' returned with problem
&1.

Explanation: The DCE Naming service found an
unexpected XDS error.

User action: Save the generated output files and
contact your IBM support center.

AMQ5511 Installable service component '&3'
returned '&4'.

Explanation: The internal function, that adds a
component to a service, called the component
initialization process. This process returned an error.

User action: Check the component was installed
correctly. If it was, and the component was supplied
by IBM, then save the generated output files and
contact your IBM support center. If the component
was not supplied by IBM, save the generated output
files and follow the support procedure for that
component.

AMQ5512 Installable service component '&3'
returned '&4' for queue manager name =
'&5'.

Explanation: An installable service component
returned an unexpected return code.

User action: Check the component was installed
correctly. If it was, and the component was supplied
by IBM, then save the generated output files and
contact your IBM support center. If the component
was not supplied by IBM, save the generated output
files and follow the support procedure for that
component.

AMQ5513 '&3' returned &1.

Explanation: An unexpected error occurred.

User action: Save the generated output files and
contact your IBM support center.

AMQ5519 Bad DCE identity. Status = &1, auth =
&2, keytab file = '&3', principle = '&4'.

Explanation: The keytab file was not installed
correctly, or the MQSeries user ID has a different
password from that used to create the keytab file.

User action: Make sure that the MQSeries user Id
defined when the product was installed has the same
password as that defined by the keytab file, and that
the keytab file has been installed correctly.

AMQ5520 The system could not load the module
'&5' for the installable service '&3'
component '&4'. The system return code
was &1. The Queue Manager is
continuing without this component.

Explanation: The queue manager configuration file
'qm.ini' included a stanza for the installable service '&3'
component '&4' with the module '&5'. The system
returned &1 when it tried to load this module. The
Queue Manager is continuing without this component.

User action: Make sure that the module can be
loaded. Put the module into a directory where the
system can load it, and specify its full path and name
in the 'qm.ini' file. Then stop and restart the queue
manager.

AMQ5600 Usage: crtmqm [-z] [-q] [-c Text] [-d
DefXmitQ] [-h MaxHandles]

AMQ5603 Usage: dltmqm [-z] QMgrName
AMQ5604 Usage: dspmqaut [-m QMgrName] [-n

ObjName] -t ObjType [-p Principal | -g
Group] [-s ServiceName]

AMQ5605 Usage: endmqm [-z] [-c | -i | -p]
QMgrName

AMQ5606 Usage: setmqaut -m QMgrName [-n
ObjName] -t ObjType [-p Principal | -g
Group] [-s ServiceName] Authorizations

AMQ5607 Usage: strmqm [-z] [QMgrName]
AMQ5608 Usage: dspmqtrn QMgrName
AMQ5609 Usage: rsvmqtrn -m QMgrName (-c | -b)

Transaction,Number
AMQ5700 Queue manager name '&3', work queue

name '&4'.

Explanation: These are the values of the parameters
with which the add-in task was started.

User action: None.

Programmer response: None.

AMQ5701 Checking mail-in database &3

Explanation: The add-in task is performing a periodic
check for mail memos that have arrived in the mail-in
database called &3.

User action: None.

Programmer response: None.

AMQ5702 Checking for replies.

Explanation: The add-in task is checking the reply
queues for responses from MQSeries applications.

User action:

Programmer response: None.

260 MQSeries for Windows NT V2.0 System Management Guide

 AMQ5703 � AMQ5715

AMQ5703 MQSeries add-in task ended.

Explanation: Termination of the MQSeries add-in
task has completed.

User action: None.

Programmer response: None.

AMQ5704 Terminating.

Explanation: The add-in task is terminating, either
due to a user request or an error.

User action: None.

Programmer response: None.

AMQ5705 Initializing.

Explanation: The add-in task is initializing. It
processes the link database and connects to the
queue manager in preparation to receive requests.

User action: None.

Programmer response: None.

AMQ5706 Mail-in database '&3', link database '&4',
wait time &1 seconds.

Explanation: These are the values of the parameters
with which the add-in task was started.

User action: None.

Programmer response: None.

AMQ5707 Add-in task initialization complete.

Explanation: The add-in task has finished reading
the link database and is now ready to process
requests.

User action: None.

Programmer response: None.

AMQ5708 Only two-byte integer values are
supported for S390 format.

Explanation: The add-in task supports conversion of
two-byte integers from S390 systems.

User action: Ensure that the entry in the link
database uses fields of only two bytes in length if they
are in the S390 format.

Programmer response: None.

AMQ5710 Text of user document causing previous
message: '&3'.

Explanation: The add-in task generated the previous
message in response to an error. This message
contains the text of the user note associated with the
error.

User action: None.

Programmer response: None.

AMQ5711 An error occurred in reading the link
database.

Explanation: The add-in task detected an error while
reading the link database.

User action: Use the information in previous error
messages to diagnose the error. Then, correct the
contents of the link database and restart the add-in
task.

Programmer response: None.

AMQ5712 An error occurred while setting field '&5'
in user document, return code &3

Explanation: The add-in task was trying to update a
document in response to a reply from an MQSeries
application. An error was encountered during the
update of the field '&5'. The link database entry '&4'
was being used to perform the update.

User action: Make sure that the entry in the link
database matches the description of the form being
used for the update.

Programmer response: None.

AMQ5714 Field '&4' not found in link database
entry.

Explanation: The add-in task could not find a field
called '&4' during processing of the link database. This
field is a required field.

User action: Examine the definition of the link
database being used to ensure that all of the required
fields are supplied. Refer to the IBM-supplied sample
link database for an example of a valid link database.

Programmer response: None.

AMQ5715 Data type '&4' not supported.

Explanation: The add-in task does not support the
data type '&4'.

User action: Consult the MQSeries documentation
for a description of the list of supported data types.
Update the entry in the link database using the
unsupported data type. Then, stop and restart the
add-in task.

Programmer response: None.

 Appendix F. Messages 261

 AMQ5716 � AMQ5729

AMQ5716 An error occurred connecting to
MQSeries queue manager '&4', reason
code &3

Explanation: The add-in task could not connect to
MQSeries queue manager '&4'. The reason code from
MQCONN was &3.

User action: Look up the reason code in the
MQSeries documentation to establish the cause of the
error. Ensure that the queue manager exists and is
running. If the add-in task is running as an MQSeries
client, ensure that it can communicate with the server
queue manager.

Programmer response: None.

AMQ5717 An error occurred disconnecting from
MQSeries queue manager '&4', return co

Explanation: The add-in task encountered an error
disconnecting from the MQSeries queue manager '&4'.
The reason code from MQDISC was &3.

User action: Look up the reason code in the
MQSeries documentation to establish the cause of the
error.

Programmer response: None.

AMQ5718 An error occurred during processing of a
request in the mail-in database.

Explanation: The add-in task encountered an error
during processing of a request in the mail-in database.
The processing involves transforming the contents of
the mail memo into a message which is placed on an
MQSeries queue. If the message has a reply, an
additional message is formatted and placed on the
internal work queue.

User action: Use the information in previous error
messages to diagnose the error.

Programmer response: None.

AMQ5720 Errors detected in response message
from MQSeries application.

Explanation: The response from an MQSeries
application to a message sent by the add-in task
satisfied the error conditions specified in the
corresponding link database entry. The error data is
'&4'.

User action: Examine the error conditions in the link
database entry to establish why the error conditions
were satisfied. If an invalid request message was sent
to the MQSeries application, correct the request
messages being sent. If the problem was due to an
error encountered by the MQSeries application, correct
the cause of the error and retry the request.

Programmer response: None.

AMQ5721 An error occurred opening internal work
file '&4'.

Explanation: The add-in task could not open the
internal work file used to hold the contents of a mail
memo during processing. Possible causes include
more than one program trying to use the same file.

User action: Ensure that there is only one copy of
the MQSeries add-in task running.

Programmer response: None.

AMQ5723 Memory allocation failed.

Explanation: The add-in task was unable to allocate
storage.

User action: Try to free up some system memory
and retry the operation.

Programmer response: None.

AMQ5725 Empty mail memo received from mail-in
database.

Explanation: The add-in task found a mail memo
with an empty body in the mail-in database. Mail
memos in the mail-in database must contain the
information required to generate a message to place
on an MQSeries queue.

User action: Ensure that all entries placed in the
mail-in database have the expected contents. None.

Programmer response: None.

AMQ5727 Link database entry '&4' cannot be
found.

Explanation: The add-in task received a request
without a corresponding entry in the link database. The
name of the required entry is '&4'.

User action: Either add an entry of the correct name
to the link database or change the request being
generated to use an existing entry in the link database.
If you add an entry to the link database, you will have
to stop and restart the add-in task before the change
takes effect.

Programmer response: None.

AMQ5729 An error was encountered by the add-in
task. Check the mail for details.

Explanation: This message is inserted into the
error_field_msg field of a user document if an error is
encountered by the add-in task during the processing
of the document's associated mail memo.

User action: None.

Programmer response: None.

262 MQSeries for Windows NT V2.0 System Management Guide

 AMQ5730 � AMQ5740

AMQ5730 Error encountered by MQSeries add-in
task

Explanation: This is the subject line of mail memos
sent by the add-in task.

User action: None.

Programmer response: None.

AMQ5731 Idle.

Explanation: The add-in task is waiting for the
configured time interval to elapse before checking the
mail-in database for new requests and checking the
reply queues for new replies.

User action: None.

Programmer response: None.

AMQ5732 LOAD MQLINK -t“ -q WorkQName“ -w
WaitTime“ -d MailInDB“ -l LinkDB“
QMgrName“

Explanation: This is a summary of the correct syntax
for invoking the MQSeries add-in task in Lotus Notes.
If you specify a queue manager name, it must the last
parameter. The order of the other parameters is not
significant.

User action: None.

Programmer response: None.

AMQ5733 MQSeries add-in task loading.

Explanation: The add-in task has been started and
is accessing the link database in preparation to receive
requests.

User action: None.

Programmer response: None.

AMQ5734 An error occurred opening the database
'&4'. The error code was &3.

Explanation: The add-in task could not open the
named database. This could be because the database
does not exist.

User action: Refer to the Lotus Notes documentation
for information to resolve the problem.

Programmer response: None.

AMQ5735 An error occurred opening the mail file
'&4'. The error code was &3.

Explanation: The add-in task could not open the
named mail file.

User action: Refer to the Lotus Notes documentation
for information to resolve the problem.

Programmer response: None.

AMQ5736 An error occurred searching the
database '&4'. The error code was &3.

Explanation: The add-in task could not search the
named database.

User action: Refer to the Lotus Notes documentation
for information to resolve the problem.

Programmer response: None.

AMQ5737 An error occurred deleting an entry from
the database '&4'. The error code was
&3.

Explanation: The add-in task could not delete an
entry from the named database.

User action: Refer to the Lotus Notes documentation
for information to resolve the problem.

Programmer response: None.

AMQ5738 An error occurred extracting the
contents of a mail memo in the mail-in
database '&5' to the file called '&4'. The
error code was &3.

Explanation: The add-in task could not extract the
body of a mail memo into the named file. Possible
causes include being unable to create the file or
another program already using the file.

User action: Ensure that there is only one copy of
the MQSeries add-in task running. If the problem was
due to the configuration in which you are operating
Lotus Notes, refer to the Lotus Notes documentation
for information to resolve the problem.

Programmer response: None.

AMQ5739 An error occurred opening a mail memo
in the mail-in database '&4'. The error
code was &3.

Explanation: The add-in task could not open a mail
memo in the named mail-in database.

User action: Refer to the Lotus Notes documentation
for information to resolve the problem.

Programmer response: None.

AMQ5740 An error occurred opening an entry in
the link database '&4'. The error code
was &3.

Explanation: The add-in task could not open an
entry in the link database.

User action: Refer to the Lotus Notes documentation
for information to resolve the problem.

Programmer response: None.

 Appendix F. Messages 263

 AMQ5741 � AMQ5747

AMQ5741 An error occurred creating a mail memo.
The error code was &3.

Explanation: The add-in task could not create a mail
memo. This is probably due to a shortage of
resources.

User action: Refer to the Lotus Notes documentation
for information to resolve the problem.

Programmer response: None.

AMQ5742 Could not send a mail memo to user '&4'.
The error code was &3.

Explanation: The add-in task could not send a mail
memo to the named user to report an error condition.

User action: Refer to the Lotus Notes documentation
for information to resolve the problem.

Programmer response: None.

AMQ5743 Could not find entry with ID '&5' in
database '&4'. The error code was &3.

Explanation: The add-in task could not find an entry
in the database '&4' which it was to update in
response to a reply from an MQSeries application.
This may indicate that the entry has been manually
deleted or that another application has already
updated the entry.

User action: Refer to the Lotus Notes documentation
for information to resolve the problem.

Programmer response: None.

AMQ5744 Could not update an entry in database
'&4'. The error code was &3.

Explanation: The add-in task could not update an
entry in the database '&4' in response to a reply from
an MQSeries application.

User action: Refer to the Lotus Notes documentation
for information to resolve the problem.

Programmer response: None.

AMQ5745 An error occurred opening MQSeries
queue '&4', reason code &3.

Explanation: The add-in task could not open
MQSeries queue '&4'. MQOPEN was called with open
options &5. The reason code from MQOPEN was &3.

User action: Look up the reason code in the
MQSeries documentation to establish the cause of the
error.

Programmer response: None.

AMQ5746 An error occurred putting a message on
MQSeries queue '&4', reason code &3.

Explanation: The add-in task could not put a
message on MQSeries queue '&4'. The reason code
from MQPUT was &3.

User action: Look up the reason code in the
MQSeries documentation to establish the cause of the
error.

Programmer response: None.

AMQ5747 An error occurred getting a message
from MQSeries queue '&4', reason code
&

Explanation: The add-in task could not get a
message from MQSeries queue '&4'. The reason
code from MQGET was &3.

User action: Look up the reason code in the
MQSeries documentation to establish the cause of the
error.

Programmer response: None.

264 MQSeries for Windows NT V2.0 System Management Guide

 AMQ6004 � AMQ6052

Common services messages

AMQ6004 An error occurred during MQSeries
initialization or ending.

Explanation: An error was detected during
initialization or ending of MQSeries. The MQSeries
error recording routine has been called.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ6025 Program not found.

Explanation: MQSeries is unable to start program &3
because it was not found.

User action: Check the program name is correctly
specified and rerun the program.

AMQ6026 A resource shortage prevented the
creation of an MQSeries process.

Explanation: An attempt to create an MQSeries
process was rejected by the operating system due to a
process limit (either the number of processes for each
user or the total number of processes running system
wide), or because the system does not have the
resources necessary to create another process.

User action: Investigate if a process limit is
preventing the creation of the process and if so why
the system is constrained in this way. Consider raising
this limit or reducing the workload on the system.

AMQ6035 MQSeries failed, no storage available.

Explanation: An internal function of the product
attempted to obtain storage, but there was none
available.

User action: Stop the product and restart it. If this
does not resolve the problem, save the generated
output files and contact your IBM support center.

AMQ6037 MQSeries was unable to obtain enough
storage.

Explanation: The product is unable to obtain enough
storage. The product's error recording routine may
have been called.

User action: Stop the product and restart it. If this
does not resolve the problem see if a problem has
been recorded. If a problem has been recorded, use
the standard facilities supplied with your system to
record the problem identifier, and to save the
generated output files. Contact your IBM support

center. Do not discard these files until the problem
has been resolved.

AMQ6047 Conversion not supported.

Explanation: MQSeries is unable to convert string
data tagged in CCSID &1 to data in CCSID &2.

User action: Check the appropriate National
Language Support publications to see if the CCSIDs
are supported by your system.

AMQ6048 DBCS error.

Explanation: MQSeries is unable to convert string
data due to a DBCS error. Conversion is from CCSID
&1 to CCSID &2.

User action: Check the appropriate National
Language Support publications to see if the CCSIDs
are supported by your system.

AMQ6049 DBCS only string not valid.

Explanation: MQSeries is unable to convert string
data in CCSID &1 to data in CCSID &2. Message
descriptor data must be in single byte form. CCSID &2
is a DBCS only CCSID.

User action: Check the CCSID of your job or system
and change it to one supporting SBCS or mixed
character sets. Refer to the appropriate National
Language Support publications for character sets and
CCSIDs supported.

AMQ6050 CCSID error.

Explanation: MQSeries is unable to convert string
data in CCSID &1 to data in CCSID &2.

User action: Check the appropriate National
Language Support publications to see if the CCSIDs
are supported by your system.

AMQ6051 Conversion length error.

Explanation: MQSeries is unable to convert string
data in CCSID &1 to data in CCSID &2, due to an
input length error.

User action: None.

AMQ6052 Conversion length error.

Explanation: MQSeries is unable to convert string
data in CCSID &1 to data in CCSID &2.

User action: None.

 Appendix F. Messages 265

 AMQ6053 � AMQ6120

AMQ6053 CCSID error.

Explanation: MQSeries is unable to convert string
data in CCSID &1 to data in CCSID &2.

User action: One of the CCSIDs is not supported by
the system. Check the appropriate National Language
Support publications to see if the CCSIDs are
supported by your system.

AMQ6064 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the
MQSeries error recording routine has been called.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ6090 MQSeries was unable to display an error
message.

Explanation: MQSeries has attempted to display the
message associated with return code &6. The return
code indicates that there is no message text
associated with the message. Associated with the
request are inserts &1 : &2 : &3 : &4 : &5.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ6091 An internal MQSeries error has occurred.

Explanation: Private memory has detected an error,
and is abending due to &3. The error data is &1.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ6100 An internal MQSeries error has occurred.

Explanation: MQSeries has detected an error, and is
abending due to &3. The error data is &1.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ6107 CCSID not supported.

Explanation: MQSeries is unable to convert string
data in CCSID &1 to data in CCSID &2, because one
of the CCSIDs is not recognized.

User action: Check the appropriate National
Language Support publications to see if the CCSIDs
are supported by your system.

AMQ6115 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the
MQSeries error recording routine has been called.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ6118 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the
MQSeries error recording routine has been called.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ6119 An internal MQSeries error has occurred.

Explanation: MQSeries detected an unexpected
error when calling the operating system. The
MQSeries error recording routine has been called.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ6120 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the
MQSeries error recording routine has been called.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

266 MQSeries for Windows NT V2.0 System Management Guide

 AMQ6121 � AMQ6767

AMQ6121 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the
MQSeries error recording routine has been called.

User action: MQSeries has detected a parameter
count of &1 that is not valid. Use the standard
facilities supplied with your system to record the
problem identifier, and to save the generated output
files. Contact your IBM support center. Do not
discard these files until the problem has been
resolved.

AMQ6122 An internal MQSeries error has occurred.

Explanation: An error has been detected, and the
MQSeries error recording routine has been called.

User action: MQSeries has detected parameter &1
that is not valid, having value &2&3. Use the standard
facilities supplied with your system to record the
problem identifier, and to save the generated output
files. Contact your IBM support center. Do not
discard these files until the problem has been
resolved.

AMQ6125 An internal MQSeries error has occurred.

Explanation: An internal error has occurred with
identifier &1. This message is issued in association
with other messages.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ6148 An internal MQSeries error has occurred.

Explanation: MQSeries has detected an error, and is
abending due to &3. The error data is &1.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ6172 No codeset found for current locale.

Explanation: No codeset could be determined for the
current locale. Check that the locale in use is
supported.

User action: None.

AMQ6173 No CCSID found for codeset &3.

Explanation: Codeset &3. has no supported CCSID.
Check that the locale in use is supported. CCSIDs
can be added by updating the file
/var/mqm/conv/table/ccsid.tbl.

User action: None.

AMQ6708 A disk full condition was encountered
when formatting a new log file in
location &3.

Explanation: The queue manager attempted to
format a new log file in directory &3. The drive or file
system containing this directory did not have sufficient
free space to contain the new log file.

User action: Increase the amount of space available
for log files and retry the request.

AMQ6710 Queue manager unable to access
directory &3.

Explanation: The queue manager was unable to
access directory &3 for the log. This could be because
the directory does not exist, or because the queue
manager does not have sufficient authority.

User action: Ensure that the directory exists and that
the queue manager has authority to read and write to
it. Ensure that the LogPath attribute in the queue
manager's configuration file matches the intended log
path.

AMQ6767 Log file &3 could not be opened for use.

Explanation: Log file &3 could not be opened for
use. Possible reasons include the file being missing,
the queue manager being denied permission to open
the file or the contents of the file being incorrect.

User action: If the log file was required to start the
queue manager, ensure that the log file exists and that
the queue manager is able to read from and write to it.
If the log file was required to recreate an object from
its media image and you do not have a copy of the
required log file, delete the object instead of recreating
it.

 Appendix F. Messages 267

 AMQ7001 � AMQ7016

MQSeries product messages

AMQ7001 The location specified for creation of the
queue manager is not valid.

Explanation: The directory under which queue
managers are to be created is not valid. It may not
exist, or there may be a problem with authorization.

User action: The location is specified in the
machine-wide ini file. Correct the file and submit the
request again.

AMQ7002 An error occurred manipulating a file.

Explanation: An internal error occurred while trying
to create or delete a queue manager file. It is likely
that the error was caused by there being insufficient
space on a disk, or by problems with authorization to
the underlying filesystem.

User action: Identify the file that caused the error,
using problem determination techniques. Correct the
error in the file system and submit the request again.

AMQ7005 The queue manager is running.

Explanation: You tried to perform an action that
requires the queue manager stopped, however, it is
currently running. You probably tried to delete or start
a queue manager that is currently running.

User action: If the queue manager should be
stopped, stop the queue manager and submit the
failed command again.

AMQ7006 Missing attribute &5 on stanza starting
on line &1 of ini file &3.

Explanation: The &4 stanza starting on line &1 of
configuration file &3 is missing the required &5
attribute.

User action: Check the contents of the file and retry
the operation.

AMQ7008 The queue manager already exists.

Explanation: You tried to create a queue manager
that already exists.

User action: If you specified the wrong queue
manager name, correct the name and submit the
request again.

AMQ7010 The queue manager does not exist.

Explanation: You tried to perform an action against a
queue manager that does not exist. You may have
specified the wrong queue manager name.

User action: If you specified the wrong name, correct
it and submit the command again. If the queue
manager should exist, create it, and then submit the
command again.

AMQ7012 The specified trigger interval is not valid.

Explanation: You specified a value for the trigger
interval that is not valid. The value must be not less
than zero and not greater than 999 999 999.

User action: Correct the value and resubmit the
request.

AMQ7013 There is an error in the name of the
specified dead letter queue.

Explanation: You specified a name for the dead
letter queue that is not valid.

User action: Correct the name and resubmit the
request.

AMQ7014 There is an error in the name of the
specified default transmission queue.

Explanation: You specified a name for the default
transmission queue that is not valid.

User action: Correct the name and submit the
command again.

AMQ7015 There is an error in the maximum
number of open object handles
specified.

Explanation: You specified a value for the maximum
number of open object handles to be allowed that is
not valid. The value must be not less than zero and
not greater than 999 999 999.

User action: Correct the value and submit the
command again.

AMQ7016 There is an error in the maximum
number of uncommitted messages
specified.

Explanation: You specified a value for the maximum
number of uncommitted messages to be allowed that
is not valid. The value must be not less than 1 and
not greater than 999 999 999.

User action: Correct the value and submit the
command again.

268 MQSeries for Windows NT V2.0 System Management Guide

 AMQ7017 � AMQ7042

AMQ7017 Log not available.

Explanation: The queue manager was unable to use
the log. This could be due to a log file being missing
or damaged, or the log path to the queue manager
being inaccessible.

User action: Ensure that the LogPath attribute in the
queue manager configuration file is correct. If a log file
is missing or otherwise unusable, restore a backup
copy of the file, or the entire queue manager.

AMQ7018 The queue manager has stopped
AMQ7019 An error occurred while creating the

directory structure for the new queue
manager.

Explanation: During creation of the queue manager
an error occurred while trying to create a file or
directory.

User action: Identify why the queue manager files
cannot be created. It is probable that there is
insufficient space on the specified disk, or that there is
a problem with access control. Correct the problem
and submit the command again.

AMQ7021 An error occurred while deleting the
directory structure for the queue
manager.

Explanation: While deleting the queue manager, an
error occurred deleting a file or directory. The queue
manager may not have been completely deleted.

User action: Follow problem determination
procedures to identify the file or directory and to
complete deletion of the queue manager.

AMQ7024 Arguments supplied to a command are
not valid.

Explanation: You supplied arguments to a command
that it could not interpret. It is probable that you
specified a flag not accepted by the command, or that
you included extra flags.

User action: Correct the command and submit it
again.

AMQ7025 Error in the supplied command
description.

Explanation: The descriptive text you supplied on
the command was in error.

User action: Correct the descriptive text and submit
the command again.

AMQ7026 A principal or group name was invalid.

Explanation: You specified the name of a principal
or group which does not exist.

User action: Correct the name and resubmit the
request.

AMQ7028 The queue manager is not available for
use.

Explanation: You have requested an action that
requires the queue manager running, however, the
queue manager is not currently running.

User action: Start the required queue manager and
submit the command again.

AMQ7030 Request to quiesce the queue manager
accepted. The queue manager will stop
when there is no further work for it to
perform.

Explanation: You have requested that the queue
manager end when there is no more work for it. In the
meantime, it will refuse new applications that attempt
to start, although it allows those already running to
complete their work.

User action: None.

AMQ7031 The queue manager is stopping.

Explanation: You issued a command that requires
the queue manager running, however, it is currently in
the process of stopping. The command cannot be run.

User action: None.

AMQ7041 Object already exists.

Explanation: A Define Object operation was
performed, but the name selected for the object is
already in use by an object that is unknown to
MQSeries. The object name selected by MQSeries
was &3, in directory &4, of object type &5.

User action: Remove the conflicting object from the
MQSeries system, then try the operation again.

AMQ7042 Media image not available for object &3
of type &4.

Explanation: The media image for object &3, type
&4, is not available for media recovery. A log file
containing part of the media image cannot be
accessed.

User action: A previous message indicates which log
file could not be accessed. Restore a copy of the log
file and all subsequent log files from backup. If this is
not possible, you must delete the object instead.

 Appendix F. Messages 269

 AMQ7044 � AMQ7069

AMQ7044 Media recovery not allowed.

Explanation: Media recovery is not possible on a
queue manager using a circular log. Damaged objects
must be deleted on such a queue manager.

User action: None.

AMQ7047 An unexpected error was encountered by
a command.

Explanation: An internal error occurred during the
processing of a command.

User action: Follow problem determination
procedures to identify the cause of the error.

AMQ7048 The queue manager name is either not
valid or not known

Explanation: Either the specified queue manager
name does not conform to the rules required by
MQSeries or the queue manager does not exist. The
rules for naming MQSeries objects are detailed in the
MQSeries Command Reference.

User action: Correct the name and submit the
command again.

AMQ7053 The transaction has been committed.

Explanation: The prepared transaction has been
committed.

User action: None.

AMQ7054 The transaction has been backed out.

Explanation: The prepared transaction has been
backed out.

User action: None.

AMQ7055 The transaction number is not
recognized.

Explanation: The number of the transaction you
supplied was not recognized as belonging to an
in-doubt transaction.

User action: Ensure that you entered a valid
transaction number. It is possible that the transaction
number you entered corresponds to a transaction
which was committed or backed out before you issued
the command to resolve it.

AMQ7056 Transaction number &1,&2.

Explanation: This message is used to report the
number of an in-doubt transaction.

User action: None.

AMQ7064 Log path not valid or inaccessible.

Explanation: The supplied log path could not be
used by the queue manager. Possible reasons for this
include the path not existing, the queue manager not
being able to write to the path, or the path residing on
a remote device.

User action: Ensure that the log path exists and that
the queue manager has authority to read and write to
it. If the queue manager already exists, ensure that the
LogPath attribute in the queue manager's configuration
file matches the intended log path.

AMQ7065 Insufficient space on disk.

Explanation: The operation cannot be completed
due to shortage of disk space.

User action: Either make more disk space available,
or reduce the disk requirements of the command you
issued.

AMQ7066 There are no prepared transactions.

Explanation: There are no prepared transactions to
be resolved.

User action: None.

AMQ7068 Authority file contains an authority
stanza that is not valid.

Explanation: A syntax error has been found in one
of the files containing authorization information for the
queue manager.

User action: Correct the contents of the incorrect
authorization file by editing it.

AMQ7069 The queue manager was created
successfully, but cannot be made the
default.

Explanation: The queue manager was defined to be
the default queue manager for the machine when it
was created. However, although the queue manager
has been created, an error occurred trying to make it
the default. There may not be a default queue
manager defined for the machine at present.

User action: There is probably a problem with the
machine-wide ini file. Verify the existence of the file, its
access permissions, and its contents. If its backup file
exists, reconcile the contents of the two files and then
delete the backup. Finally, either update the
machine-wide ini file by hand to specify the desired
default queue manager, or delete and recreate the
queue manager.

270 MQSeries for Windows NT V2.0 System Management Guide

 AMQ7073 � AMQ7088

AMQ7073 Log size not valid.

Explanation: Either the number of log files or the
size of the log files was outside the accepted values.

User action: Make sure that the log parameters you
enter lie within the valid range.

AMQ7074 Unknown stanza key &4 on line &1 of ini
file &3.

Explanation: Line &1 of the configuration file &3
contained a stanza called &3. This stanza is not
recognized.

User action: Check the contents of the file and retry
the operation.

AMQ7075 Unknown attribute &4 on line &1 of ini
file &3.

Explanation: Line &1 of the configuration file &3
contained an attribute called &4 that is not valid. This
attribute is not recognized in this context.

User action: Check the contents of the file and retry
the operation.

AMQ7076 Value &5 not valid for attribute &4 on
line &1 of ini file &3

Explanation: Line &1 of the configuration file &3
contained value &5 that is not valid for the attribute
&4.

User action: Check the contents of the file and retry
the operation.

AMQ7077 You are not authorized to perform the
requested operation.

Explanation: You tried to issue a command for the
queue manager. You are not authorized to perform the
command.

User action: Contact your system administrator to
perform the command for you. Alternatively, request
authority to perform the command from your system
administrator.

AMQ7080 No objects processed.

Explanation: No objects were processed, either
because no objects matched the criteria given, or
because the objects found did not require processing.

User action: None.

AMQ7081 Object &3, type &4 recreated.

Explanation: The object &3, type &4 was recreated
from its media image.

User action: None.

AMQ7082 Object &3, type &4 is not damaged.

Explanation: Object &3, type &4 cannot be recreated
since it is not damaged.

User action: None.

AMQ7083 A resource problem was encountered by
a command.

Explanation: The command failed due to a resource
problem. Possible causes include the log being full or
the command running out of memory.

User action: Look at the previous messages to
diagnose the problem. Rectify the problem and retry
the operation.

AMQ7084 Object &3, type &4 damaged.

Explanation: The object &3, type &4 was damaged.
The object must be deleted or, if the queue manager
supports media recovery, recreated from its media
image.

User action: Delete the object or recreate it from its
media image.

AMQ7085 Object &3, type &4 not found.

Explanation: Object &3, type &4 cannot be found.

User action: None.

AMQ7086 Media image for object &3, type &4
recorded.

Explanation: The media image for object &3, type
&4 has been recorded.

User action: None.

AMQ7087 Object &3, type &4 is a temporary object

Explanation: Object &3, type &4 is a temporary
object. Media recovery operations are not permitted
on temporary objects.

User action: None.

AMQ7088 Object &3, type &4 in use.

Explanation: Object &3, type &4 is in use. Either an
application has it open or, if it is a local queue, there
are uncommitted messages on it.

User action: Ensure that the object is not opened by
any applications, and that there are no uncommitted
messages on the object, if it is a local queue. Then,
retry the operation.

 Appendix F. Messages 271

 AMQ7089 � AMQ7306

AMQ7089 Media recovery already in progress.

Explanation: Another media recovery operation is
already in progress. Only one media recovery
operation is permitted at a time.

User action: Wait for the existing media recovery
operation to complete and retry the operation.

AMQ7090 The queue manager CCSID is not valid.

Explanation: The CCSID to be used by the QMGR is
not valid, probably because it is a DBCS CCSID.

User action: None.

AMQ7091 You are performing authorization for the
queue manager, but you specified an
object name.

Explanation: Modification of authorizations for a
queue manager can be performed only from that
queue manager. You must not specify an object name.

User action: Correct the command and submit it
again.

AMQ7092 An object name is required but you did
not specify one.

Explanation: The command needs the name of an
object, but you did not specify one.

User action: Correct the command and submit it
again.

AMQ7093 An object type is required but you did
not specify one.

Explanation: The command needs the type of the
object, but you did not specify one.

User action: Correct the command and submit it
again.

AMQ7094 You specified an object type that is not
valid, or more than one object type.

Explanation: Either the type of object you specified
was not valid, or you specified multiple object types on
a command which supports only one.

User action: Correct the command and submit it
again.

AMQ7095 An entity name is required but you did
not specify one.

Explanation: The command needs one or more
entity names, but you did not specify any. Entities can
be principals or groups.

User action: Correct the command and submit it
again.

AMQ7096 An authorization specification is required
but you did not provide one.

Explanation: The command sets the authorizations
on MQSeries objects. However you did not specify
which authorizations are to be set.

User action: Correct the command and submit it
again.

AMQ7097 You gave an authorization specification
that is not valid.

Explanation: The authorization specification you
provided to the command contained one or more items
that could not be interpreted.

User action: Correct the command and submit it
again.

AMQ7098 The command accepts only one entity
name. You specified more than one.

Explanation: The command can accept only one
principal or group name. You specified more than
one.

User action: Correct the command and submit it
again.

AMQ7099 Entity &3 has the following
authorizations for object &4:

Explanation: Informational message. The list of
authorizations follows.

User action: None.

AMQ7305 Trigger message could not be put on an
initiation queue.

Explanation: The attempt to put a trigger message
on queue &4 on queue manager &5 failed with reason
code &1. The message will be put on the dead-letter
queue.

User action: Ensure that the initiation queue is
available, and operational.

AMQ7306 The dead-letter queue must be a local
queue.

Explanation: An undelivered message has not been
put on the dead-letter queue &4 on queue manager
&5, because the queue is not a local queue. The
message will be discarded.

User action: Inform your system administrator.

272 MQSeries for Windows NT V2.0 System Management Guide

 AMQ7307 � AMQ7468

AMQ7307 A message could not be put on the
dead-letter queue.

Explanation: The attempt to put a message on the
undelivered-message queue &4 on queue manager &5
failed with reason code &1. The message will be
discarded.

User action: Ensure that the undelivered-message
queue is available, and operational.

AMQ7308 Trigger condition &1 was not satisfied.

Explanation: At least one of the conditions required
for generating a trigger message was not satisfied, so
a trigger message was not generated. If you were
expecting a trigger message, consult the MQSeries
Application Programming Guide for a list of the
conditions required. (Note that arranging for condition
&1 to be satisfied might not be sufficient because the
conditions are checked in an arbitrary order, and
checking stops when the first unsatisfied condition is
discovered.)

User action: If a trigger message is required, ensure
that all the conditions for generating one are satisfied.

AMQ7310 Report message could not be put on a
reply-to queue.

Explanation: The attempt to put a report message
on queue &4 on queue manager &5 failed with reason
code &1. The message will be put on the
undelivered-message queue.

User action: Ensure that the reply-to queue is
available, and operational.

AMQ7463 The log for queue manager &3 is full.

Explanation: This message is issued when an
attempt to write a log record is rejected because the
log is full. The queue manager will attempt to resolve
the problem.

User action: This situation may be encountered
during a period of unusually high message traffic.
However, if you persistently fill the log, you may have
to consider enlarging the size of the log. You can
either increase the number of log files by changing the
values in the queue manager configuration file. You
will then have to stop and restart the queue manager.
Alternatively, if you need to make the log files
themselves bigger, you will have to delete and
recreate the queue manager.

AMQ7464 The log for queue manager &3 is no
longer full.

Explanation: This message is issued when a log
was previously full, but an attempt to write a log record
has now been accepted. The log full situation has
been resolved.

User action: None.

AMQ7465 The log for queue manager &3 is full.
This is due to the presence of a
long-running transaction.

Explanation: This message is issued when an
attempt made to resolve a log full situation fails,
because the space is occupied by a long-running
transaction.

User action: Try to ensure that the duration of your
transactions is not excessive. Commit or roll back any
old transactions to release log space for further log
records.

AMQ7466 The log for queue manager &3 is too
small to support the current data rate.

Explanation: This message is issued when the
monitoring tasks maintaining the log cannot keep up
with the current rate of data being written.

User action: The number of primary log files
configured should be increased to prevent possible log
full situations.

AMQ7467 The oldest log file required to start
queue manager &3 is &4.

Explanation: The log file &4 contains the oldest log
record required to restart the queue manager. Log
records older than this may be required for media
recovery.

User action: You can move log files older than &4 to
an archive medium to release space in the log
directory. If you move any of the log files required to
recreate objects from their media images, you will
have to restore them to recreate the objects.

AMQ7468 The oldest log file required to perform
media recovery of queue manager &3 is
&4.

Explanation: The log file &4 contains the oldest log
record required to recreate any of the objects from
their media images. Any log files prior to this will not
be accessed by media recovery operations.

User action: You can move log files older than &4 to
an archive medium to release space in the log
directory.

 Appendix F. Messages 273

 AMQ7469 � AMQ7921

AMQ7469 Transactions rolled back to release log
space.

Explanation: The log space for the queue manager
is becoming full. One or more long-running
transactions have been rolled back to release log
space so that the queue manager can continue to
process requests.

User action: Try to ensure that the duration of your
transactions is not excessive. You may consider
increasing the size of the log to allow transactions to
last longer before the log starts to become full.

AMQ7472 Object &3, type &4 damaged.

Explanation: Object &3, type &4 has been marked
as damaged. This indicates that the queue manager
was either unable to access the object in the file
system, or that some kind of inconsistency with the
data in the object was detected.

User action: If a damaged object is detected, the
action performed depends on whether the queue
manager supports media recovery and when the
damage was detected. If the queue manager does not
support media recovery, you must delete the object as
no recovery is possible. If the queue manager does
support media recovery and the damage is detected
during the processing performed when the queue
manager is being started, the queue manager will
automatically initiate media recovery of the object. If
the queue manager supports media recovery and the
damage is detected once the queue manager has
started, it may be recovered from a media image using
the rcrmqobj command or it may be deleted.

AMQ7901 The data-conversion exit &3 has not
loaded.

Explanation: The data-conversion exit program, &3,
failed to load. The internal function gave exception
&4.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ7902 The data conversion exit &3 was not
loaded. The operating system call &4
returned &1.

User action: Specify REPLACE to over-write the
existing file, or choose a different output file name.

AMQ7903 The data-conversion exit &3 cannot be
found.

Explanation: Message data conversion has been
requested for an MQSeries message with a
user-defined format, but the necessary
data-conversion exit program, &3, cannot be found.
The internal function gave exception &4.

User action: Check that the necessary
data-conversion exit &3 exists.

AMQ7904 The data conversion exit &3 cannot be
found, or loaded.

Explanation: Message data conversion was
requested for an MQSeries message with a
user-defined format, but the necessary data
conversion exit program, &3, was not found, or loaded.
The &4 function call gave a return code of &1.

User action: Check that the necessary data
conversion exit routine exists one of the standard
directories for dynamically loaded modules. If
necessary, inspect the generated output to examine
the message descriptor (MQMD structure) of the
MQSeries message for which conversion was
requested. This may help you to determine where the
message originated.

AMQ7905 Unexpected exception &4 in
data-conversion exit.

Explanation: The data-conversion exit program, &3,
ended with an unexpected exception &4. The
message has not been converted.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ7907 Unexpected exception in data-conversion
exit.

Explanation: The data-conversion exit routine, &3,
ended with an unexpected exception. The message
has not been converted.

User action: Correct the error in the data-conversion
exit routine.

AMQ7921 An internal MQSeries error occurred.

Explanation: The MQDXP structure passed to the
Internal Formats Conversion routine contains an
incorrect eyecatcher field.

274 MQSeries for Windows NT V2.0 System Management Guide

 AMQ7922 � AMQ7928

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ7922 A PCF message is incomplete.

Explanation: Message data conversion cannot
convert a message in Programmable Command
Format (PCF) because the message is only &1 bytes
long and does not contain a PCF header. The
message has either been truncated, or it contains data
that is not valid.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor of the message to
determine the source of the message and to see how
data that is not valid became included in the message.

AMQ7923 A message had an unrecognized integer
encoding.

Explanation: Message data conversion cannot
convert a message because the integer encoding
value of the message, &1, was not recognized.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor of the message to
determine the source of the message and to see how
data that is not valid became included in the message.

AMQ7924 Bad length in the PCF header (length =
&1).

Explanation: Message data conversion cannot
convert a message in Programmable Command
Format (PCF) because the PCF header structure
contains an incorrect length field. Either the message
has been truncated, or it contains data that is not
valid.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor of the message to
determine the source of the message and to see how
data that is not valid became included in the message.

AMQ7925 Message version &1 is not supported.

Explanation: Message data conversion cannot
convert a message because the Version field of the
message contains an incorrect value.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor of the message to
determine the source of the message and to see how
data that is not valid became included in the message.

AMQ7926 A PCF message has an incorrect
parameter count value &1.

Explanation: Message data conversion cannot
convert a message in Programmable Command
Format (PCF) because the parameter count field of the
PCF header is incorrect.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor of the message to
determine the source of the message and to see how
data that is not valid became included in the message.

AMQ7927 Bad type in PCF structure number &1
(type = &2).

Explanation: A Programmable Command Format
(PCF) structure passed to the Internal Formats
Converter contained an incorrect type field.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor of the message to
determine the source of the message and to see how
data that is not valid became included in the message.

AMQ7928 Bad length in PCF structure number &1
(length = &2).

Explanation: A Programmable Command Format
(PCF) structure passed to the Internal Formats
Converter contained an incorrect length field.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor of the message to
determine the source of the message and to see how
data that is not valid became included in the message.

 Appendix F. Messages 275

 AMQ7929 � AMQ7935

AMQ7929 A PCF structure is incomplete.

Explanation: Message data conversion cannot
convert a message in Programmable Command
Format (PCF) because structure number &1, of Type
value &2, within the message is incomplete. The
message has either been truncated, or it contains data
that is not valid.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor of the message to
determine the source of the message and to see how
data that is not valid became included in the message.

AMQ7930 Bad CCSID in PCF structure number &1
(CCSID = &2).

Explanation: A Programmable Command Format
(PCF) structure passed to the Internal Formats
Converter contains an incorrect CCSID.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor of the message to
determine the source of the message and to see how
data that is not valid became included in the message.

AMQ7931 Bad length in PCF structure number &1
(length = &2).

Explanation: Message data conversion cannot
convert a message in Programmable Command
Format (PCF) because one of the structures of the
message contains an incorrect length field.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor of the message to
determine the source of the message and to see how
data that is not valid became included in the message.

AMQ7932 Bad count in PCF structure number &1
(count = &2).

Explanation: Message data conversion cannot
convert a message in Programmable Command
Format (PCF) because a StringList structure of the
message contains an incorrect count field.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor, the headers of the
message, and the incorrect structure to determine the

source of the message, and to see how data that is
not valid became included in the message.

AMQ7933 Bad string length in PCF structure.

Explanation: Message data conversion cannot
convert a message in Programmable Command
Format (PCF) because structure number &1 of the
message contains an incorrect string length value &2.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor, the headers of the
message, and the incorrect structure to determine the
source of the message and to see how data that is not
valid became included in the message.

AMQ7934 Wrong combination of
MQCCSI_DEFAULT with
MQCCSI_EMBEDDED.

Explanation: Message data conversion could not
convert a message in Programmable Command
Format (PCF) because structure &1 of the message
contained a CodedCharSetId field of
MQCCSI_DEFAULT while the message itself had a
CodedCharSetId of MQCCSI_EMBEDDED. This is an
incorrect combination.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor, the headers of the
message and the incorrect structure to determine the
source of the message and to see how data that is not
valid became included in the message.

AMQ7935 Bad CCSID in message header (CCSID =
&1).

Explanation: Message data conversion could not
convert a message because the Message Descriptor
of the message contained an incorrect
CodedCharSetId field.

User action: Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Do not discard these
files until the problem has been resolved. Use the file
containing the Message Descriptor of the message to
determine the source of the message and to see how
data that is not valid became included in the message.

276 MQSeries for Windows NT V2.0 System Management Guide

 AMQ7936 � AMQ7965

AMQ7936 The file &3 already exists.

Explanation: The output file already exists, but
REPLACE has not been specified.

User action: Specify REPLACE to over-write the
existing file, or select a different output file name.

AMQ7943 Usage: crtmqcvx SourceFile TargetFile
AMQ7953 One structure has been parsed.

Explanation: The crtmqcvx command has parsed
one structure.

User action: None.

AMQ7954 &1 structures have been parsed.

Explanation: The crtmqcvx command has parsed %1
structures.

User action: None.

AMQ7955 Unexpected field: &1.

Explanation: The field within the structure is of a
type that is not recognized.

User action: Correct the field and retry the
command.

AMQ7956 Bad array dimension.

Explanation: An array field of the structure has an
incorrect dimension value.

User action: Correct the field and retry the
command.

AMQ7957 Warning at line &1.

Explanation: The structure contains another field
after a variable length field.

User action: Correct the structure and retry the
command.

AMQ7958 Error at line &1 in field &3.

Explanation: Field name '&3' is a field of type 'float'.
Fields of type float are not supported by this
command.

User action: Either correct the structure to eliminate
fields of type float, or write your own routine to support
conversion of these fields.

AMQ7959 Error at line &1 in field &3.

Explanation: Field name '&3' is a field of type
'double'. Fields of type double are not supported by
this command.

User action: Either correct the structure to eliminate
fields of type double, or write your own routine to
support conversion of these fields.

AMQ7960 Error at line &1 in field &3.

Explanation: Field name '&3' is a 'pointer' field.
Fields of type pointer are not supported by this
command.

User action: Either correct the structure to eliminate
fields of type pointer, or write your own routine to
support conversion of these fields.

AMQ7961 Error at line &1 in field &3.

Explanation: Field name '&3' is a 'bit' field. Bit fields
are not supported by this command.

User action: Either correct the structure to eliminate
bit fields, or write your own routine to support
conversion of these fields.

AMQ7962 No input file specified.

Explanation: This command requires that an input
file is specified.

User action: Specify the name of the input file and
retry the command.

AMQ7963 No output file specified.

Explanation: This command requires that an output
file name is specified.

User action: Specify the name of the output file and
retry the command.

AMQ7964 Unexpected option &3.

Explanation: The option specified is not valid for this
command.

User action: Retry the command with a valid option.

AMQ7965 Incorrect number of arguments.

Explanation: The command was passed an incorrect
number of arguments.

User action: Retry the command, passing it the
correct number of arguments.

 Appendix F. Messages 277

 AMQ7968 � AMQ7970

AMQ7968 Cannot open file '&3'.

Explanation: You cannot open the file &3.

User action: Check that you have the correct
authorization to the file and retry the command.

AMQ7969 Syntax error.

Explanation: This line of the input file contains a
language syntax error.

User action: Correct the syntax error and retry the
command.

AMQ7970 Syntax error on line &1.

Explanation: This message identifies where, in the
input file, a previously reported error was detected.

User action: Correct the error and retry the
command.

278 MQSeries for Windows NT V2.0 System Management Guide

 AMQ8001 � AMQ8021

 Administration messages

AMQ8001 MQSeries queue manager created.

Explanation: MQSeries queue manager &5 created.

User action: None.

AMQ8002 MQSeries queue manager deleted.

Explanation: MQSeries queue manager &5 deleted.

User action: None.

AMQ8003 MQSeries queue manager started.

Explanation: MQSeries queue manager &5 started.

User action: None.

AMQ8004 MQSeries queue manager ended.

Explanation: MQSeries queue manager &5 ended.

User action: None.

AMQ8005 MQSeries queue manager changed.

Explanation: MQSeries queue manager &5 changed.

User action: None.

AMQ8006 MQSeries queue created.

Explanation: MQSeries queue &5 created.

User action: None.

AMQ8007 MQSeries queue deleted.

Explanation: MQSeries queue &5 deleted.

User action: None.

AMQ8008 MQSeries queue changed.

Explanation: MQSeries queue &5 changed.

User action: None.

AMQ8010 MQSeries process created.

Explanation: MQSeries process &5 created.

User action: None.

AMQ8011 MQSeries process deleted.

Explanation: MQSeries process &5 deleted.

User action: None.

AMQ8012 MQSeries process changed.

Explanation: MQSeries process &5 changed.

User action: None.

AMQ8013 MQM process copied.

Explanation: MQM process &5 created in library &3
by copying.

User action: None.

AMQ8014 MQSeries channel created.

Explanation: MQSeries channel &5 created.

User action: None.

AMQ8015 MQSeries channel deleted.

Explanation: MQSeries channel &5 deleted.

User action: None.

AMQ8016 MQSeries channel changed.

Explanation: MQSeries channel &5 changed.

User action: None.

AMQ8018 Start MQSeries channel accepted.

Explanation: MQSeries channel &5 is being started.
The start channel function has been initiated. This
involves a series of operations across the network
before the channel is actually started. The channel
status displays "BINDING" for a short period while
communication protocols are negotiated with the
channel with whom communication is being initiated.

User action: None.

AMQ8019 Stop MQSeries channel accepted.

Explanation: MQSeries channel &5 has been
requested to stop.

User action: None.

AMQ8020 Ping MQSeries channel complete.

Explanation: Ping MQSeries channel &5 complete.

User action: None.

AMQ8021 MQSeries Listener program started.

Explanation: The MQSeries channel listener
program has been started.

User action: None.

 Appendix F. Messages 279

 AMQ8022 � AMQ8043

AMQ8022 MQSeries queue cleared.

Explanation: All messages on MQSeries queue &5
have been deleted.

User action: None.

AMQ8023 MQSeries channel reset.

Explanation: MQSeries channel &5 has been reset.

User action: None.

AMQ8024 MQSeries channel initiator started.

Explanation: The channel initiator for MQSeries
queue &5 has been started.

User action: None.

AMQ8025 MQSeries channel resolved.

Explanation: In doubt messages for MQSeries
channel &5 have been resolved.

User action: None.

AMQ8026 End MQSeries queue manager accepted.

Explanation: A controlled stop request has been
initiated for MQSeries queue manager &5.

User action: None.

AMQ8027 MQSeries command server started.

Explanation: The MQSeries command server has
been started.

User action: None.

AMQ8028 MQSeries command server ended.

Explanation: The MQSeries command server has
been stopped.

User action: None.

AMQ8029 MQSeries authority granted.

Explanation: Authority for MQSeries object &5
granted.

User action: None.

AMQ8030 MQSeries authority revoked.

Explanation: Authority for MQSeries object &5
revoked.

User action: None.

AMQ8033 MQSeries object recreated.

Explanation: MQSeries object &5 has been
recreated from image.

User action: None.

AMQ8034 MQSeries object image recorded.

Explanation: Image of MQSeries object &5 has been
recorded.

User action: None.

AMQ8035 MQSeries command server status . . :
Running

AMQ8036 MQSeries command server status . . :
Stopping

AMQ8037 MQSeries command server status . . :
Starting

AMQ8038 MQSeries command server status . . :
Running with queue disabled

AMQ8039 MQSeries command server status . . :
Stopped

AMQ8040 MQSeries command server ending.
AMQ8041 The queue manager cannot be restarted

because processes, that were previously
connected, are still running.

Explanation: Processes, that were connected to the
queue manager the last time it was running, are still
active. The queue manager cannot be restarted.

User action: Stop the processes and try to start the
queue manager.

AMQ8042 Process &1 is still running.

User action: None.

AMQ8043 Non runtime application attempted to
connect to runtime only queue manager.

Explanation: A non runtime application attempted to
connect to a queue manager on a node where support
for non runtime applications has not been installed.
The connect attempt will be rejected with a reason of
MQRC_ENVIRONMENT_ERROR.

User action: If the node is intended to support only
runtime applications then investigate why a non
runtime application has attempted to connect to the
queue manager. If the node is intended to support
non runtime only applications then investigate if the
base option has been installed. The base option must
be installed if non runtime applications are to run on
this node.

280 MQSeries for Windows NT V2.0 System Management Guide

 AMQ8101 � AMQ8118

AMQ8101 Unexpected error (&1).

Explanation: An unexpected reason code with
hexadecimal value &4 was received from the
MQSeries queue manager during command
processing. (Note that hexadecimal values in the
range X'07D1'-X'0BB7' correspond to MQI reason
codes 2001-2999.) More information might be
available in the log. If the reason code value indicates
that the error was associated with a particular
parameter, the parameter concerned is &2.

User action: Correct the error and then try the
command again.

AMQ8102 MQSeries object name specified in &2
not valid.

Explanation: MQSeries object name &5 specified in
&2 is not valid. The length of the name must not
exceed 48 characters, or 20 characters if it is a
channel name. The name should contain the following
characters only: lowercase a-z, uppercase A-Z,
numeric 0-9, period (.), forward slash (/), underscore
(_) and percent sign (%).

User action: Change the length of the parameter
value or change the parameter value to contain a valid
combination of characters, then try the command
again.

AMQ8103 Insufficient storage available.

Explanation: There was insufficient storage available
to perform the requested operation.

User action: Free some storage and then try the
command again.

AMQ8104 MQSeries directory &3 not found.

Explanation: Directory &3 was not found. This
directory is created when MQSeries is installed
successfully. Refer to the log for more information.

User action: Verify that installation of MQSeries was
successful. Correct the error and then try the
command again.

AMQ8105 Object error.

Explanation: An object error occurred. Refer to the
log for more information.

User action: Correct the error and then try the
command again.

AMQ8106 MQSeries queue manager being created.

Explanation: The MQSeries queue manager is being
created.

User action: Wait for the creation process to
complete and then try the command again.

AMQ8107 MQSeries queue manager running.

Explanation: The MQSeries queue manager is
running.

User action: None.

AMQ8108 MQSeries queue manager ending.

Explanation: The MQSeries queue manager is
ending.

User action: Wait for the MQSeries queue manager
to end and then try the command again.

AMQ8109 MQSeries queue manager being deleted.

Explanation: The MQSeries queue manager is being
deleted.

User action: Wait for the deletion process to
complete.

AMQ8110 MQSeries queue manager already exists.

Explanation: MQSeries queue manager &5 already
exists.

User action: None.

AMQ8117 MQSeries queue manager deletion
incomplete.

Explanation: Deletion of MQSeries queue manager
&5 was only partially successful. An object was not
found, or could not be deleted. Refer to the log for
more information.

User action: Delete any remaining MQSeries queue
manager objects.

AMQ8118 MQSeries queue manager does not exist.

Explanation: MQSeries queue manager &5 does not
exist.

User action: Create the message queue manager
(crtmqm command) and then try the command again.

 Appendix F. Messages 281

 AMQ8135 � AMQ8147

AMQ8135 Not authorized.

Explanation: You are not authorized to perform the
requested operation for the MQSeries object &5
specified in &2. Either you are not authorized to
perform the requested operation, or you are not
authorized to the specified MQSeries object. For a
copy command, you may not be authorized to the
specified source MQSeries object, or, for a create
command, you may not be authorized to the system
default MQSeries object of the specified type.

User action: Obtain the necessary authority from
your security officer or MQSeries administrator. Then
try the command again.

AMQ8137 MQSeries queue manager already
starting.

Explanation: The strmqm command was
unsuccessful because MQSeries queue manager &5 is
already starting.

User action: Wait for the strmqm command to
complete.

AMQ8138 The MQSeries queue has an incorrect
type.

Explanation: The operation is not valid with
MQSeries queue &5 because it is not a local queue.

User action: Change the QNAME parameter to
specify an MQSeries queue of the correct type.

AMQ8139 Already connected.

Explanation: A connection to the MQSeries queue
manager already exists.

User action: None.

AMQ8140 Resource timeout error.

Explanation: A timeout occurred in the
communication between internal MQSeries queue
manager components. This is most likely to occur
when the system is heavily loaded.

User action: Wait until the system is less heavily
loaded, then try the command again.

AMQ8141 MQSeries queue manager starting.

Explanation: MQSeries queue manager &5 is
starting.

User action: Wait for the MQSeries queue manager
startup process to complete and then try the command
again.

AMQ8142 MQSeries queue manager stopped.

Explanation: MQSeries queue manager &5 is
stopped.

User action: Use the strmqm command to start the
MQSeries queue manager, and then try the command
again.

AMQ8143 MQSeries queue not empty.

Explanation: MQSeries queue &5 specified in &2 is
not empty or contains uncommitted updates.

User action: Commit or rollback any uncommitted
updates. If the command is DELETE QLOCAL, use
the CLEAR QLOCAL command to clear the messages
from the MQSeries queue. Then try the command
again.

AMQ8144 Log not available.

Explanation: The MQSeries logging resource is not
available.

User action: Use the dltmqm command to delete the
MQSeries queue manager and then the crtmqm
command to create the MQSeries queue manager.
Then try the command again.

AMQ8145 Connection broken.

Explanation: The connection to the MQSeries queue
manager failed during command processing. This may
be caused by an endmqm -i command being issued by
another user, or by an MQSeries queue manager
error.

User action: Use the strmqm command to start the
message queue manager, wait until the message
queue manager has started, and try the command
again.

AMQ8146 MQSeries queue manager not available.

Explanation: The MQSeries queue manager is not
available because it has been stopped or has not been
created.

User action: Use the crtmqm command to create the
message queue manager, or the strmqm command to
start the message queue manager as necessary.
Then try the command again.

AMQ8147 MQSeries object not found.

Explanation: If the command entered was Change,
the MQSeries object &5 specified in &2 does not exist.
If the command entered was Copy, the source
MQSeries object does not exist. If the command
entered was Create, the system default MQSeries
object of the specified type does not exist.

282 MQSeries for Windows NT V2.0 System Management Guide

 AMQ8148 � AMQ8159

User action: Correct the MQSeries object name and
then try the command again or, if you are creating a
new MQSeries queue or process object, either specify
all parameters explicitly or ensure that the system
default object of the required type exists. The system
default queue names are
SYSTEM.DEFAULT.LOCAL.QUEUE,
SYSTEM.DEFAULT.ALIAS.QUEUE and
SYSTEM.DEFAULT.REMOTE.QUEUE. The system
default process name is
SYSTEM.DEFAULT.PROCESS.

AMQ8148 MQSeries object in use.

Explanation: MQSeries object &5 specified in &2 is
in use by an MQSeries application program.

User action: Wait until the MQSeries object is no
longer in use and then try the command again, or
specify FORCE to force the processing of the
MQSeries ALTER command regardless of any
application program affected by the change. If the
object is the dead-letter queue and the open input
count is nonzero, it may be in use by an MQSeries
channel. If the object is another MQSeries queue
object with a nonzero open output count, it may be in
use by an MQSeries channel (of type RCVR or
RQSTR). In either case, use the STOP CHANNEL
and START CHANNEL commands to stop and restart
the channel in order to solve the problem.

AMQ8149 MQSeries object damaged.

Explanation: The MQSeries object &5 specified in
&2 is damaged.

User action: The MQSeries object contents are not
valid. Issue the DISPLAY CHANNEL, DISPLAY
QUEUE, or DISPLAY PROCESS command, as
required, to determine the name of the damaged
object. Issue the DEFINE command, for the
appropriate object type, to replace the damaged
object, then try the command again.

AMQ8150 MQSeries object already exists.

Explanation: MQSeries object &5 specified for &2
could not be created because it already exists.

User action: Check that the name is correct and try
the command again specifying REPLACE, or delete
the MQSeries object. Then try the command again.

AMQ8151 MQSeries object has different type.

Explanation: The type specified for MQSeries object
&5 is different from the type of the object being altered
or defined.

User action: Use the correct MQSeries command for
the object type, and then try the command again.

AMQ8152 Source MQSeries object has different
type.

Explanation: The type of the source MQSeries
object is different from that specified.

User action: Correct the name of the command, or
source MQSeries object name, and then try the
command again, or try the command using the
REPLACE option.

AMQ8153 Insufficient disk space for the specified
queue.

Explanation: The command failed because there
was insufficient disk space available for the specified
queue.

User action: Release some disk space and then try
the command again.

AMQ8155 Connection limit exceeded.

Explanation: The queue manager connection limit
has been exceeded.

User action: The maximum limit on the number of
MQSeries application programs that may be connected
to the MQSeries queue manager has been exceeded.
Try the command later.

AMQ8156 MQSeries queue manager quiescing.

Explanation: The MQSeries queue manager is
quiescing.

User action: The queue manager was stopping with
-c specified for endmqm. Wait until the queue
manager has been restarted and then try the
command again.

AMQ8157 Security error.

Explanation: An error was reported by the security
manager program.

User action: Inform your systems administrator, wait
until the problem has been corrected, and then try the
command again.

AMQ8159 MAXDEPTH not allowed with queue type
*ALS or *RMT.

Explanation: The MAXDEPTH parameter may not be
specified for an MQM queue of type *ALS or *RMT.

User action: Remove the MAXDEPTH parameter
from the command or, if the command is CRTMQMQ,
specify a different value for QTYPE. Then try the
command again.

 Appendix F. Messages 283

 AMQ8160 � AMQ8192

AMQ8160 DFTSHARE not allowed with queue type
*ALS or *RMT.

Explanation: The DFTSHARE parameter may not be
specified for an MQM queue of type *ALS or *RMT.

User action: Remove the DFTSHARE parameter
from the command or, if the command is CRTMQMQ,
specify a different value for QTYPE. Then try the
command again.

AMQ8172 Already disconnected.

Explanation: The MQI reason code of 2018 was
returned from the MQSeries queue manager in
response to an MQDISC request issued during
command processing.

User action: None.

AMQ8173 No processes to display.

Explanation: There are no matching processes
defined on this system.

User action: Using the DEFINE PROCESS
command to create a process.

AMQ8174 No queues to display.

Explanation: There are no matching queues defined
on this system.

User action: Using the appropriate command to
define a queue of the type that you require, that is,
DEFINE QALIAS, DEFINE QLOCAL, DEFINE
QMODEL, or DEFINE QREMOTE.

AMQ8185 Operating system object already exists.

Explanation: The MQSeries object cannot be
created because an object that is not known to
MQSeries already exists in the MQSeries directory
with the name that should be used for the new object.
Refer to the log for previous messages.

User action: Remove the non-MQSeries object from
the MQSeries library, and try the command again.

AMQ8186 Image not available for MQSeries object
&5.

Explanation: MQSeries object &5 type &3 cannot be
recreated because the image is not fully available in
the logs that are currently online. Refer to earlier
messages in the error log for information about the
error logs that need to be brought online for this object
to be recreated.

User action: Bring the relevant error logs online, and
try the command again.

AMQ8187 MQSeries object &5 is currently open.

Explanation: MQSeries object &5, type &3, is
currently in use, so the &1 command cannot be issued
against it. If a generic list was presented to the
command, the command is still issued against the
other objects in the list.

User action: Wait until the object is no longer in use,
and try the command again.

AMQ8188 Insufficient authorization to MQSeries
object &5.

Explanation: You are not authorized to issue the &1
command against MQSeries object &5 type &3. If a
generic list was presented to the command, the
command is still issued against the other objects in the
list.

User action: Obtain sufficient authorization for the
object, and retry the command.

AMQ8189 MQSeries object &5 is damaged.

Explanation: MQSeries object &5 type &3 is
damaged and the &1 command cannot be issued
against it. If a generic list was presented to the
command then the command is still issued against the
other objects in the list.

User action: Issue the appropriate DEFINE
command for the object, specifying REPLACE, and
then try the command again.

AMQ8190 &1 succeeded on &2 objects and failed
on &3 objects.

Explanation: An operation performed on a generic
list of objects was not completely successful.

User action: Examine the log for details of the errors
encountered, and take appropriate action.

AMQ8191 MQSeries command server is starting.

Explanation: The MQSeries command server is
starting.

User action: Wait for the strmqcsv command to
complete and then try the operation again.

AMQ8192 MQSeries command server already
starting.

Explanation: The request to start the MQSeries
command server was unsuccessful because the
MQSeries command server is already starting.

User action: Wait for the strmqcsv command to
complete.

284 MQSeries for Windows NT V2.0 System Management Guide

 AMQ8193 � AMQ8304

AMQ8193 MQSeries command server is ending.

Explanation: The MQSeries command server is
ending.

User action: Wait for the endmqcsv command to
complete and then try the command again.

AMQ8194 MQSeries command server already
ending.

Explanation: The end MQSeries command server
request was unsuccessful because the MQSeries
command server is already ending.

User action: Wait for the endmqcsv command to
complete.

AMQ8195 MQSeries command server already
running.

Explanation: The strmqcsv command was
unsuccessful because the MQSeries command server
is already running.

User action: None.

AMQ8196 MQSeries command server already
stopped.

Explanation: The request to end the MQSeries
command server was unsuccessful because the
MQSeries command server is already stopped.

User action: None.

AMQ8197 Deleted MQSeries queue damaged.

Explanation: The deleted MQSeries queue &5 was
damaged, and any messages it contained have been
lost.

User action: None.

AMQ8226 MQSeries channel already exists.

Explanation: MQSeries channel &3 cannot be
created because it already exists.

User action: Check that the name is correct and try
the command again specifying REPLACE, or delete
the MQSeries channel and then try the command
again.

AMQ8227 Channel &3 not found.

Explanation: ALTER CHANNEL has been issued for
a non-existent channel.

User action: Correct the MQSeries channel name
and then try the command again.

AMQ8296 &4 MQSC commands completed
successfully.

Explanation: The &1 command has completed
successfully. The &4 MQSeries commands from &5
have been processed without error and a report written
to the printer spool file.

User action: None.

AMQ8297 &4 MQSC commands verified
successfully.

Explanation: The &1 command completed
successfully. The &4 MQSeries commands from &5
have been verified and a report written to the printer
spool file.

User action: None.

AMQ8298 Error report generated for MQSC
command process.

Explanation: The &1 command attempted to process
the sequence of MQSeries commands from &5 and
encountered some errors, however, the operation may
have partially completed. A report has been written to
the printer spool file.

User action: Examine the spooled printer file for
details of the errors encountered, correct the MQSC
source file, and retry the operation.

AMQ8299 Cannot open &5 for MQSC process.

Explanation: The &1 command failed to open &5 for
MQSeries command processing.

User action: Check that the intended file exists, and
has been specified correctly. Correct the specification
or create the object, and try the operation again.

AMQ8302 Internal failure initializing MQSeries
services.

Explanation: An error occurred while attempting to
initialize MQSeries services.

User action: None.

AMQ8303 Insufficient storage available to process
request.

User action: None.

AMQ8304 Tracing cannot be started. Too many
traces are already running.

User action: Stop one or more of the other traces
and try the command again.

 Appendix F. Messages 285

 AMQ8305 � AMQ8416

AMQ8305 Tracing cannot be started. Too many
traces are already running.

User action: Stop one or more of the other traces
and try the command again.

AMQ8401 &1 MQSC commands read.

Explanation: The MQSC script contains &1
commands.

User action: None.

AMQ8402 &1 commands have a syntax error.

Explanation: The MQSC script contains &1
commands having a syntax error.

User action: None.

AMQ8403 &1 commands cannot be processed.

Explanation: The MQSC script contains &1
commands that failed to process.

User action: None.

AMQ8404 Command failed.

Explanation: An MQSC command has been
recognized, but cannot be processed.

User action: None.

AMQ8405 Syntax error detected at or near end of
command segment below:-

Explanation: The MQSC script contains &1
commands having a syntax error.

User action: None.

AMQ8406 Unexpected 'end of input' in MQSC.

Explanation: An MQSC command contains a
continuation character, but the 'end of input' has been
reached without completing the command.

User action: None.

AMQ8407 Display Process details.

Explanation: The MQSC DISPLAY PROCESS
command completed successfully, and details follow
this message.

User action: None.

AMQ8408 Display Queue Manager details.

Explanation: The MQSC DISPLAY QMGR command
completed successfully, and details follow this
message.

User action: None.

AMQ8409 Display Queue details.

Explanation: The MQSC DISPLAY QUEUE
command completed successfully, and details follow
this message.

User action: None.

AMQ8410 Parser error.

Explanation: The MQSC Parser has an internal
error.

User action: None.

AMQ8411 Duplicate Keyword error.

Explanation: A command in the MQSC script
contains duplicate keywords.

User action: None.

AMQ8412 Numeric Range error.

Explanation: The value assigned to an MQSC
command keyword is out of the permitted range.

User action: None.

AMQ8413 String Length error.

Explanation: A string assigned to an MQSC keyword
is either NULL, or longer than the maximum permitted
for that keyword.

User action: None.

AMQ8414 Display Channel details.

Explanation: The MQSC DISPLAY CHL command
completed successfully, and details follow this
message.

User action: None.

AMQ8415 MQSeries commands are active.

Explanation: The MQSC DISPLAY QMGR command
completed successfully, and details follow this
message.

User action: None.

AMQ8416 MQSC timed out waiting for a response
from the command server.

Explanation: MQSC did not receive a response
message from the remote command server in the time
specified.

User action: None.

286 MQSeries for Windows NT V2.0 System Management Guide

 AMQ8417 � AMQ8507

AMQ8417 Display Channel Status details.

Explanation: The MQSC DISPLAY CHANNEL
STATUS command completed successfully, and
details follow this message.

User action: None.

AMQ8418 &1 command responses received.

Explanation: Running in queued mode, &1 command
responses were received from the remote command
server.

User action: None.

AMQ8419 The Queue is already in the DCE cell.

Explanation: The Queue is already in the cell, that
is, its SCOPE attribute is already CELL.

User action: None.

AMQ8421 A required keyword was not specified.

Explanation: A keyword required in this command
was not specified.

User action: None.

AMQ8424 Error detected in a name keyword.

Explanation: A keyword in an MQSC command
contained a name string which was not valid. This may
be because it contained characters which are not
accepted in MQ names. Typical keywords which can
produce this error are QLOCAL (and the other q
types), CHANNEL, XMITQ, INITQ, MCANAME etc.

User action: None.

AMQ8498 Starting MQSeries Commands.

Explanation: The MQSC script contains &1
commands.

User action: None.

AMQ8499 Usage: runmqsc -e“ -v“ -w WaitTime“
-x“ QMgrName

Explanation: None.

User action: None.

AMQ8500 MQSeries Display MQ Files.

Explanation: Title for the dspmqfls command.

User action: None.

AMQ8501 Common services initialization failed
with return code &1.

Explanation: A request by the command server to
initialize common services failed with return code &1.

User action: None.

AMQ8502 Connect shared memory failed with
return code &1.

Explanation: A request by the command server to
connect shared memory failed with return code &1.

User action: None.

AMQ8503 Post event semaphore failed with return
code &1.

Explanation: A request by the command server to
post an event semaphore failed with return code &1.

User action: None.

AMQ8504 Command server MQINQ failed with
reason code &1.

Explanation: An MQINQ request by the command
server, for the MQSeries queue &3, failed with reason
code &1.

User action: None.

AMQ8505 Reallocate memory failed with return
code &1.

Explanation: A request by the command server to
reallocate memory failed with return code &1.

User action: None.

AMQ8506 Command server MQGET failed with
reason code &1.

Explanation: An MQGET request by the command
server, for the MQSeries queue &3, failed with reason
code &1.

User action: None.

AMQ8507 Command server MQPUT1 request for an
undelivered message failed with reason
code &1.

Explanation: An attempt by the command server to
put a message to the dead-letter queue, using
MQPUT1, failed with reason code &1. The MQDLH
reason code was &2.

User action: None.

 Appendix F. Messages 287

 AMQ8508 � AMQ8610

AMQ8508 Queue Manager Delete Object List failed
with return code &1.

Explanation: A request by the command server to
delete a queue manager object list failed with return
code &1.

User action: None.

AMQ8509 Command server MQCLOSE reply-to
queue failed with reason code &1.

Explanation: An MQCLOSE request by the
command server for the reply-to queue failed with
reason code &1.

User action: None.

AMQ8511 Usage: strmqcsv QMgrName

User action: None.

AMQ8512 Usage: endmqcsv [-c | -i] QMgrName
AMQ8513 Usage: dspmqcsv QMgrName
AMQ8514 No response received after &1 seconds.

Explanation: The command server has not reported
the status of running, to the start request, before the
timeout of &1 seconds was reached.

User action: None.

AMQ8601 MQSeries trigger monitor started.

Explanation: The MQSeries trigger monitor has been
started.

User action: None.

AMQ8602 MQSeries trigger monitor ended.

Explanation: The MQSeries trigger monitor has
ended.

User action: None.

AMQ8603 Usage: runmqtrm [-m QMgrName] [-q
InitQ]

AMQ8604 Use of MQSeries trigger monitor not
authorized.

Explanation: The MQSeries trigger monitor cannot
be run due to lack of authority to the requested queue
manager or initiation queue.

User action: Obtain the necessary authority from
your security officer or MQSeries administrator. Then
try the command again.

AMQ8605 Queue manager not available to the
MQSeries trigger monitor.

Explanation: The queue manager specified for the
trigger monitor does not exist, or is not active.

User action: Check that you named the correct
queue manager. Ask your systems administrator to
start it, if it is not active. Then try the command again.

AMQ8606 Insufficient storage available for the
MQSeries trigger monitor.

Explanation: There was insufficient storage available
for the MQSeries trigger monitor to run.

User action: Free some storage and then try the
command again.

AMQ8607 MQSeries trigger monitor connection
failed.

Explanation: The trigger monitor's connection to the
requested queue manager failed because of MQI
reason code &1 from MQCONN.

User action: Consult your systems administrator
about the state of the queue manager.

AMQ8608 MQSeries trigger monitor connection
broken.

Explanation: The connection to the queue manager
failed while the trigger monitor was running. This may
be caused by an endmqm command being issued by
another user, or by an MQSeries queue manager
error.

User action: Consult your systems administrator
about the state of the queue manager.

AMQ8609 Initiation queue missing or wrong type.

Explanation: The named initiation queue could not
be found; or the queue type is not correct for an
initiation queue.

User action: Check that the named queue exists,
and is a local queue, or that the named queue is an
alias for a local queue which exists.

AMQ8610 Initiation queue in use.

Explanation: The MQSeries trigger monitor could not
open the initiation queue because the queue is open
for exclusive use by another application.

User action: Wait until the queue is no longer in use,
and try the command again.

288 MQSeries for Windows NT V2.0 System Management Guide

 AMQ8611 � AMQ8709

AMQ8611 Initiation queue could not be opened.

Explanation: The MQSeries trigger monitor could not
open the initiation queue; reason code &1 was
returned from MQOPEN.

User action: Consult your systems administrator.

AMQ8612 Waiting for a trigger message.

Explanation: The MQSeries trigger monitor is waiting
for a message to arrive on the initiation queue.

User action: None.

AMQ8613 Initiation queue changed or deleted.

Explanation: The MQSeries trigger monitor is unable
to continue because the initiation queue has been
deleted or changed since it was opened.

User action: Retry the command.

AMQ8614 Initiation queue not enabled for input.

Explanation: The MQSeries trigger monitor cannot
read from the initiation queue because input is not
enabled.

User action: Ask your systems administrator to
enable the queue for input.

AMQ8615 MQSeries trigger monitor failed to get
message.

Explanation: The MQSeries trigger monitor failed
because of MQI reason code &1 from MQGET.

User action: Consult your systems administrator.

AMQ8616 End of application trigger.

Explanation: The action to trigger an application has
been completed.

User action: None.

AMQ8617 Not a valid trigger message.

Explanation: The MQSeries trigger monitor received
a message that is not recognized as

User action: Consult your systems administrator.

AMQ8618 Error starting triggered application.

Explanation: An error was detected when trying to
start the application identified in a trigger message.

User action: Check that the application the trigger
monitor was trying to start is available.

AMQ8619 Application type &1 not supported.

Explanation: A trigger message was received which
specifies application type &1; the trigger monitor does
not support this type.

User action: Use an alternative trigger monitor for
this initiation queue.

AMQ8620 Trigger message with warning &1.

Explanation: The trigger monitor received a
message with a warning. For example, it may have
been truncated or it could not be converted to the
trigger monitor's data representation. The reason code
for the warning is &1.

User action: None.

AMQ8621 Usage: runmqtmc [-m QMgrName] [-q
InitQ]

AMQ8622 Usage: CICS-Transaction-Name
[MQTMC2 structure]

AMQ8701 Usage: rcdmqimg [-z] [-m QMgrName] -t
ObjType [GenericObjName]

AMQ8702 Usage: rcrmqobj [-z] [-m QMgrName] -t
ObjType [GenericObjName]

AMQ8703 Usage: dspmqfls [-m QMgrName] [-t
ObjType] GenericObjName

AMQ8708 Dead letter queue handler started to
process INPUTQ(&3).

Explanation: The dead letter queue handler
(runmqdlq) has been started and has parsed the input
file without detecting any errors and is about to start
processing the queue identified in the message.

User action: None.

AMQ8709 Dead letter queue handler ending.

Explanation: The dead letter queue handler
(runmqdlq) is ending because the WAIT interval has
expired and there are no messages on the dead letter
queue, or because the queue manager is shutting
down, or because the dead letter queue handler has
detected an error. If the dead letter queue handler
has detected an error, an earlier message will have
identified the error.

User action: None.

 Appendix F. Messages 289

 AMQ8721 � AMQ8745

AMQ8721 Dead letter queue message not prefixed
by a valid MQDLH.

Explanation: The dead letter queue handler
(runmqdlq) retrieved a message from the nominated
dead letter queue, but the message was not prefixed
by a recognizeable MQDLH. This typically occurs
because an application is writing directly to the dead
letter queue but is not prefixing messages with a valid
MQDLH. The message is left on the dead letter
queue and the dead letter queue handler continues to
process the dead letter queue. Each time the dead
letter queue handler repositions itself to a position
before this message to process messages that could
not be processed on a previous scan it will reprocess
the failing message and will consequently reissue this
message.

User action: Remove the invalid message from the
dead letter queue. Do not write messages to the dead
letter queue unless they have been prefixed by a valid
MQDLH. If you require a dead letter queue handler
that can process messages not prefixed by a valid
MQDLH, you must change the sample program called
amqsdlq to cater for your needs.

AMQ8722 Dead letter queue handler unable to put
message: Rule &1 Reason &2.

Explanation: This message is produced by the dead
letter queue handler when it is requested to redirect a
message to another queue but is unable to do so. If
the reason that the redirect fails is the same as the
reason the message was put to the dead letter queue
then it is assumed that no new error has occured and
no message is produced. The retry count for the
message will be incremented and the dead letter
queue handler will continue.

User action: Investigate why the dead letter queue
handler was unable to put the message to the dead
letter queue. The line number of the rule used to
determine the action for the message should be used
to help identify to which queue the dead letter queue
handler attempted to PUT the message.

AMQ8741 Unable to connect to queue manager(&3)
: CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) could not connect to the requested queue
manager. This message is typically issued when the
requested queue manager has not been started or is
quiescing, or if the process does not have sufficient
authority. The completion code and the reason can be
used to identify the error. The dead letter queue
handler ends.

User action: Take appropriate action based upon the
completion code and reason.

AMQ8742 Unable to open queue manager:
CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) could not open the queue manager object.
This message is typically issued because of a
resource shortage or because the process does not
have sufficient authority. The completion code and the
reason can be used to identify the error. The dead
letter queue handler ends.

User action: Take appropriate action based upon the
completion code and reason.

AMQ8743 Unable to inquire on queue manager:
CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) could not inquire on the queue manager.
This message is typically issued because of a
resource shortage or because the queue manager is
ending. The completion code and the reason can be
used to identify the error. The dead letter queue
handler ends.

User action: Take appropriate action based upon the
completion code and reason.

AMQ8744 Unable to close queue manager:
CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) could not close the queue manager. This
message is typically issued because of a resource
shortage or because the queue manager is ending.
The completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

User action: Take appropriate action based upon the
completion code and reason.

AMQ8745 Unable to open dead letter queue(&3) for
browse: CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) could not open the dead letter queue for
browsing. This message is typically issued because
another process has opened the dead letter queue for
exclusive access, or because an invalid dead letter
queue name was specified. Other possible reasons
include resource shortages or insufficient authority.
The completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

User action: Take appropriate action based upon the
completion code and reason.

290 MQSeries for Windows NT V2.0 System Management Guide

 AMQ8746 � AMQ8756

AMQ8746 Unable to close dead letter queue:
CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) could not close the dead letter queue. This
message is typically issued because of a resource
shortage or because the queue manager is ending.
The completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

User action: Take appropriate action based upon the
completion code and reason.

AMQ8747 Integer parameter(&2) outside
permissable range for &3 on line &1.

Explanation: An integer supplied as input to the
dead letter handler was outside of the valid range of
values for a particular keyword.

User action: Correct the input data and restart the
dead letter queue handler.

AMQ8748 Unable to get message from dead letter
queue: CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) could not get the next message from the
dead letter queue. This message is typically issued
because of the queue manager ending, a resource
problem, or another process having deleted the dead
letter queue. The completion code and the reason can
be used to identify the error. The dead letter queue
handler ends.

User action: Take appropriate action based upon the
completion code and reason.

AMQ8749 Unable to commit/backout action on
dead letter queue: CompCode = &1
Reason.

Explanation: The dead letter queue handler
(runmqdlq) was unable to commit or backout an
update to the dead letter queue. This message is
typically issued because of the queue manager
ending, or because of a resource shortage. If the
queue manager has ended, the update to the dead
letter queue (and any associated updates) will be
backed out when the queue manager restarts. If the
problem was due to a resource problem then the
updates will be backed out when the dead letter queue
handler terminates. The completion code and the
reason can be used to identify the error. The dead
letter queue handler ends.

User action: Take appropriate action based upon the
completion code and reason.

AMQ8750 No valid input provided to runmqdlq.

Explanation: Either no input was provided to
runmqdlq, or the input to runmqdlq contained no valid
message templates. If input was provided to runmqdlq
but was found to be invalid, earlier messages will have
been produced explaining the cause of the error. The
dead letter queue handler will ends.

User action: Correct the input data and restart the
dead letter queue handler.

AMQ8751 Unable to obtain private storage.

Explanation: The dead letter queue handler
(runmqdlq) was unable to obtain private storage. This
problem would typically arise as a result of some more
global problem. For example if there is a persistent
problem that is causing messages to be written to the
DLQ and the same problem (for example queue full) is
preventing the dead letter queue handler from taking
the requested action with the message, it is
necessary for the dead letter queue handler to
maintain a large amount of state data to remember the
retry counts associated with each message, or if the
dead letter queue contains a large number of
messages and the rules table has directed the dead
letter queue handler to ignore the messages.

User action: Investigate if some more global problem
exists, and if the dead letter queue contains a large
number of messages. If the problem persists contact
your support center.

AMQ8752 Parameter(&3) exceeds maximum length
on line &1.

Explanation: A parameter supplied as input to the
dead letter handler exceeded the maximum length for
parameters of that type.

User action: Correct the input data and restart the
dead letter queue handler.

AMQ8753 Duplicate parameter(&3) found on line
&1.

Explanation: Two or more parameters of the same
type were supplied on a single input line to the dead
letter queue handler.

User action: Correct the input and restart the dead
letter queue handler.

AMQ8756 Error detected releasing private storage.

Explanation: The dead letter queue handler
(runmqdlq) was informed of an error while attempting
to release an area of private storage. The dead letter
queue handler ends.

User action: This message should be preceded by a
message or FFST information from the internal routine

 Appendix F. Messages 291

 AMQ8757 � AMQ8765

that detected the error. Take the action associated
with the earlier error information.

AMQ8757 Integer parameter(&3) outside
permissable range on line &1.

Explanation: An integer supplied as input to the
dead letter handler was outside of the valid range of
integers supported by the dead letter queue handler.

User action: Correct the input data and restart the
dead letter queue handler.

AMQ8758 &1 errors detected in input to runmqdlq.

Explanation: One or more errors have been detected
in the input to the dead letter queue
handler(runmqdlq). Error messages will have been
generated for each of these errors. The dead letter
queue handler ends.

User action: Correct the input data and restart the
dead letter queue handler.

AMQ8759 Invalid combination of parameters to
dead letter queue handler on line &1.

Explanation: An invalid combination of input
parameters has been supplied to the dead letter queue
handler. Possible causes are:
 no ACTION specified,
 ACTION(FWD) but no FWDQ specified,
 HEADER(YES|NO) specified without ACTION(FWD).

User action: Correct the input data and restart the
dead letter queue handler.

AMQ8760 Unexpected failure while initializing
process: Reason = &1.

Explanation: The dead letter queue handler
(runmqdlq) could not perform basic initialization
required to use MQ services because of an
unforeseen error. The dead letter queue handler
ends.

User action: Use the standard facilities supplied with
your system to record the problem identifier and to
save the generated output files. Contact your support
center. Do not discard these files until the problem
has been resolved.

AMQ8761 Unexpected failure while connecting to
queue manager: CompCode = &1
Reason.

Explanation: The dead letter queue handler
(runmqdlq) could not connect to the requested queue
manager because of an unforseen error. The dead
letter queue handler ends.

User action: Use the standard facilities supplied with
your system to record the problem identifier and to

save the generated output files. Contact your support
center. Do not discard these files until the problem
has been resolved.

AMQ8762 Unexpected error while attempting to
open queue manager: CompCode = &1
Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) could not open the queue manager
because of an unforeseen error. The completion code
and the reason can be used to identify the error. The
dead letter queue handler ends.

User action: Use the standard facilities supplied with
your system to record the problem identifier and to
save the generated output files. Contact your support
center. Do not discard these files until the problem
has been resolved.

AMQ8763 Unexpected error while inquiring on
queue manager: CompCode = &1 Reason
= &2.

Explanation: The dead letter queue handler
(runmqdlq) could not inquire on the queue manager
because of an unforeseen error. The completion code
and the reason can be used to identify the error. The
dead letter queue handler ends.

User action: Use the standard facilities supplied with
your system to record the problem identifier and to
save the generated output files. Contact your support
center. Do not discard these files until the problem
has been resolved.

AMQ8764 Unexpected error while attempting to
close queue manager: CompCode = &1
Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) could not close the queue manager
because of an unforeseen error. The completion code
and the reason can be used to identify the error. The
dead letter queue handler ends.

User action: Use the standard facilities supplied with
your system to record the problem identifier and to
save the generated output files. Contact your support
center. Do not discard these files until the problem
has been resolved.

AMQ8765 Unexpected failure while opening dead
letter queue for browse: CompCode =
&1 Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) could not open the dead letter queue for
browsing because of an unforeseen error. The
completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

292 MQSeries for Windows NT V2.0 System Management Guide

 AMQ8766 � AMQ8769

User action: Use the standard facilities supplied with
your system to record the problem identifier and to
save the generated output files. Contact your support
center. Do not discard these files until the problem
has been resolved.

AMQ8766 Unexpected error while closing dead
letter queue: CompCode = &1 Reason =
&2.

Explanation: The dead letter queue handler
(runmqdlq) could not close the dead letter queue
because of an unforeseen error. The completion code
and the reason can be used to identify the error. The
dead letter queue handler ends.

User action: Use the standard facilities supplied with
your system to record the problem identifier and to
save the generated output files. Contact your support
center. Do not discard these files until the problem
has been resolved.

AMQ8767 Unexpected error while getting message
from dead letter queue: CompCode = &1
Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) could not get the next message from the
dead letter queue because of an unforeseen error.
The completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

User action: Use the standard facilities supplied with
your system to record the problem identifier and to
save the generated output files. Contact your support
center. Do not discard these files until the problem
has been resolved.

AMQ8768 Unexpected error committing/backing
out action on dead letter queue:
CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) was unable to either commit or backout an
update to the dead letter queue because of an
unforeseen error. The completion code and the
reason can be used to identify the error. The dead
letter queue handler ends.

User action: Use the standard facilities supplied with
your system to record the problem identifier and to
save the generated output files. Contact your support
center. Do not discard these files until the problem
has been resolved.

AMQ8769 Unable to disconnect from queue
manager: CompCode = &1 Reason = &2.

Explanation: The dead letter queue handler
(runmqdlq) was unable to disconnect from the queue
manager because of an unexpected error. The
completion code and the reason can be used to
identify the error. The dead letter queue handler ends.

User action: Use the standard facilities supplied with
your system to record the problem identifier and to
save the generated output files. Contact your support
center. Do not discard these files until the problem
has been resolved.

 Appendix F. Messages 293

 AMQ9001 � AMQ9202

 Remote messages

AMQ9001 Channel program ended normally.

Explanation: Channel program '&3' ended normally.

User action: None.

AMQ9002 Channel program started.

Explanation: Channel program '&3' started.

User action: None.

AMQ9181 The response set by the exit is not valid.

Explanation: The user exit '&3' returned a response
code '&1' that is not valid in the ExitResponse field of
the channel exit parameters (MQCXP). Message
AMQ9190 is issued giving more details, and the
channel stops.

User action: Investigate why the user exit program
set a response code that is not valid.

AMQ9182 The secondary response set by the exit
is not valid.

Explanation: The user exit '&3' returned a secondary
response code '&1' in the ExitResponse2 field of the
channel exit parameters (MQCXP) that is not valid.
Message AMQ9190 is issued giving more details, and
the channel stops.

User action: Investigate why the user exit program
set a secondary response code that is not valid.

AMQ9184 The exit buffer address set by the exit is
not valid.

Explanation: The user exit '&3' returned an address
'&1' for the exit buffer that is not valid, when the
secondary response code in the ExitResponse2 field
of the channel exit parameters (MQCXP) is set to
MQXR2_USE_EXIT_BUFFER. Message AMQ9190 is
issued giving more details, and the channel stops.

User action: Investigate why the user exit program
set an exit buffer address that is not valid. The most
likely cause is the failure to set a value, so that the
value is 0.

AMQ9189 The data length set by the exit is not
valid.

Explanation: The user exit '&3' returned a data
length value '&1' that was not greater than zero.
Message AMQ9190 is issued giving more details, and
the channel stops.

User action: Investigate why the user exit program
set a data length that is not valid.

AMQ9190 Channel stopping because of an error in
the exit.

Explanation: The user exit '&3', invoked for channel
'&4' with id '&1' and reason '&2', returned values that
are not valid, as reported in the preceding messages.
The channel stops.

User action: Investigate why the user exit program
set values that are not valid.

AMQ9196 Data length is larger than the agent
buffer length.

Explanation: The data length '&1' set by exit '&3' is
larger than the agent buffer length. The user exit
returned data in the supplied agent buffer, but the
length specified is greater than the length of the buffer.
Message AMQ9190 is issued giving more details, and
the channel stops.

User action: Investigate why the user exit program
set a data length that is not valid.

AMQ9197 Data length is larger than the exit buffer
length.

Explanation: The data length '&1' set by exit '&3' is
larger than the exit buffer length. The user exit
returned data in the supplied exit buffer, but the length
specified is greater than the length of the buffer.
Message AMQ9190 is issued giving more details, and
the channel stops.

User action: Investigate why the user exit program
set a data length that is not valid.

AMQ9201 Allocate failed to host '&3'.

Explanation: The attempt to allocate a conversation
using &4 to host '&3' was not successful.

User action: The error may be due to an incorrect
entry in the &4 parameters contained in the channel
definition to host '&3'. Correct the error and try again.
If the error persists, record the error values and
contact your systems administrator. The return code
from &4 was &1 (X'&2'). It may be possible that the
listening program at host '&3' is not running. If this is
the case, perform the relevant operations to start the
listening program for protocol &4 and try again.

AMQ9202 Remote host '&3' not available, retry
later.

Explanation: The attempt to allocate a conversation
using &4 to host '&3' was not successful. However the
error may be a transitory one and it may be possible
to successfully allocate a &4 conversation later.

294 MQSeries for Windows NT V2.0 System Management Guide

 AMQ9203 � AMQ9212

User action: Try the connection again later. If the
failure persists, record the error values and contact
your systems administrator. The return code from &4
is &1 (X'&2'). The reason for the failure may be that
this host cannot reach the destination host. It may
also be possible that the listening program at host '&3'
was not running. If this is the case, perform the
relevant operations to start the &4 listening program,
and try again.

AMQ9203 A configuration error for &4 occurred.

Explanation: Allocation of a &4 conversation to host
'&3' was not possible.

User action: The configuration error may be one of
the following: 1. If the communications protocol is LU
6.2, it may be that one of the transmission parameters
(Mode, or TP Name) is incorrect. Correct the error
and try again. The mode name should be the same
as the mode defined on host &3. The TP name on &3
should be defined. 2. If the communications protocol
is LU 6.2, it may be that an LU 6.2 session has not
been established. Contact your systems administrator.
3. If the communications protocol is TCP/IP, it may be
that the host name specified is incorrect. Correct the
error and try again. 4. If the communications protocol
is TCP/IP, it may be that the host name specified
cannot be resolved to a network address. The host
name may not be in the nameserver. The return code
from &4 is &1 (X'&2'). Record the error values and tell
the system administrator.

AMQ9204 Connection to host '&3' rejected.

Explanation: Connection to host '&3' over &4 was
rejected.

User action: The remote system might not be
configured to allow connections from this host. Check
the &4 listener program has been started on host '&3'.
If the conversation uses LU 6.2, it is possible that
either the userid or password supplied to the remote
host is incorrect. If the conversation uses TCP/IP, it is
possible that the remote host does not recognize the
local host as a valid host. The return code from &4 is
&1 X('&2'). Record the values and tell the systems
administrator.

AMQ9205 The host name supplied is not valid.

Explanation: The supplied &4 host name '&3' could
not be resolved into a network address. Either the
name server does not contain the host, or the name
server was not available.

User action: Check the &4 configuration on your
host.

AMQ9206 Error on send to host '&3'.

Explanation: An error occurred sending data over &4
to '&3'. This may be due to a communications failure.

User action: Record the value &1 and the return
code &4 and tell your systems administrator.

AMQ9207 The data received from host '&3' is not
valid.

Explanation: Incorrect data format received from
host '&3' over &4. It may be that an unknown host is
attempting to send data. An FFST file has been
generated containing the invalid data received.

User action: Tell the systems administrator.

AMQ9208 Error on receive from host '&3'.

Explanation: An error occurred receiving data from
'&3' over &4. This may be due to a communications
failure.

User action: Record the &4 return code &1 (X'&2')
and tell the systems administrator.

AMQ9209 Connection to host '&3' closed.

Explanation: An error occurred receiving data from
'&3' over &4. The connection to the remote host has
unexpectedly terminated.

User action: Tell the systems administrator.

AMQ9210 Remote attach failed.

Explanation: There was an incoming attach from a
remote host but the local host could not complete the
bind.

User action: Record the &4 return code &1 (X'&2')
and tell the systems administrator who should check
the &4 configuration.

AMQ9211 Error allocating storage.

Explanation: The program was unable to obtain
enough storage.

User action: Stop some programs which are using
storage and retry the operation. If the problem
persists contact your Systems Administrator.

AMQ9212 A TCP/IP socket could not be allocated.

Explanation: A TCP/IP socket could not be created,
possibly because of a storage problem.

User action: Try the program again. If the failure
persists record the value &1 and tell the systems
administrator.

 Appendix F. Messages 295

 AMQ9213 � AMQ9225

AMQ9213 A communications error for &4 occurred.

Explanation: An unexpected error occurred in
communications.

User action: The return code from the &4&3 call was
&1 (X'&2'). Record these values and tell the systems
administrator.

AMQ9214 Attempt to use an unsupported
communications protocol.

Explanation: An attempt was made to use an
unsupported communications protocol type &2.

User action: Check the channel definition file. It may
be that the communications protocol entered is not a
currently supported one.

AMQ9215 Communications subsystem unavailable.

Explanation: An attempt was made to use the
communications subsystem, but it has not been
started.

User action: Start the communications subsystem,
and rerun the program.

AMQ9216 Usage: &3 -m QMgrName“ -n TPName“.

Explanation: Values passed to the responder
channel program are not valid. The parameter string
passed to this program is as follows :- -m QMgrName“
-n TPName“ Default values will be used for
parameters not supplied.

User action: Correct the parameters passed to the
Channel program and retry the operation.

AMQ9217 The TCP/IP listener program could not
be started.

Explanation: An attempt was made to start a new
instance of the listener program, but the program was
rejected.

User action: The failure could be because either the
subsystem has not been started (in this case you
should start the subsystem), or there are too many
programs waiting (in this case you should try to start
the listener program later).

AMQ9218 The TCP/IP listener program could not
bind to port number &1.

Explanation: An attempt to bind the TCP/IP socket
to the listener port was unsuccessful.

User action: The failure could be due to another
program using the same port number. Record the
return code &2 from the bind and tell the systems
administrator.

AMQ9219 The TCP/IP listener program could not
create a new connection for the
incoming conversation.

Explanation: An attempt was made to create a new
socket because an attach request was received, but
an error occurred.

User action: The failure may be transitory, try again
later. If the problem persists, record the return code
&1 and tell the systems administrator. It may be
necessary to free some jobs, or restart the
communications system.

AMQ9220 The &4 communications program could
not be loaded.

Explanation: The attempt to load the &4 library or
procedure '&3' failed with error code &1.

User action: Either the library must be installed on
the system or the environment changed to allow the
program to locate it.

AMQ9221 Unrecognized protocol was specified.

Explanation: The specified value of '&3' was not
recognized as one of the protocols supported.

User action: Correct the parameter and retry the
operation.

AMQ9222 Cannot find the configuration file.

Explanation: The configuration file '&3' cannot be
found. This file contains default definitions for
communication parameters. Default values will be
used.

User action: None.

AMQ9223 Enter a protocol type.

Explanation: The operation you are performing
requires that you enter the type of protocol.

User action: Add the protocol parameter and retry
the operation.

AMQ9224 Unexpected token detected.

Explanation: On line &1 of the INI file keyword '&3'
was read when a keyword was expected.

User action: Correct the file and retry the operation.

AMQ9225 File syntax error.

Explanation: A syntax error was detected on line &1
while processing the INI file.

User action: Correct the problem and retry the
operation.

296 MQSeries for Windows NT V2.0 System Management Guide

 AMQ9226 � AMQ9503

AMQ9226 Usage: &3 [-m QMgrName] -t (TCP | LU62
| NETBIOS) [ProtocolOptions]

Explanation: Values passed to the listener program
were invalid. The parameter string passed to this
program is as follows :- [-m QMgrName] (-t TCP [-p
Port] | -t LU62 [-n TPName] | -t NETBIOS [-l
LocalName] [-e Names] [-s Sessions] [-o Commands]
[-a Adaptor]) Default values will be used for
parameters not supplied.

User action: Correct the parameters passed to the
listener program and retry the operation.

AMQ9227 &3 local host name not provided.

User action: Add a local name to the configuration
file and retry the operation.

AMQ9228 The &4 responder program could not be
started.

Explanation: An attempt was made to start an
instance of the responder program, but the program
was rejected.

User action: The failure could be because either the
subsystem has not been started (in this case you
should start the subsystem), or there are too many
programs waiting (in this case you should try to start
the responder program later).

AMQ9229 The application has been ended.

Explanation: You have issued a request to end the
application.

User action: None.

AMQ9230 An unexpected &4 event occurred.

Explanation: During the processing of network
events, an unexpected event &1 occurred.

User action: None.

AMQ9231 The supplied parameter is not valid.

Explanation: The value of the &4 &5 parameter has
the value '&3'. This value has either not been specified
or has been specified incorrectly.

User action: Check value of the &5 parameter and
correct it if necessary. If the fault persists, record the
return code (&1,&2) and &4 and tell the systems
administrator.

AMQ9232 No &3 specified.

Explanation: The operation requires the specification
of the &3 field.

User action: Specify the &3 and retry the operation.

AMQ9233 Error creating Listener thread for &3.

Explanation: The process attempted to create a new
thread for an incoming connection.

User action: Contact the systems administrator.

AMQ9235 The supplied Local LU was invalid.

Explanation: The &4 Local LU name '&3' was invalid.

User action: Either the Local LU name was entered
incorrectly or it was not in the &4 communications
configuration. Correct the error and try again.

AMQ9236 The supplied Partner LU was invalid.

Explanation: The &4 Partner LU name '&3' was
invalid.

User action: Either the Partner LU name was
entered incorrectly or it was not in the &4
communications configuration. Correct the error and
try again.

AMQ9501 Usage: &3 [-m QMgrName] -c ChlName.

Explanation: Values passed to the channel program
are not valid. The parameter string passed to this
program is as follows :- [-m QMgrName] -c ChlName
Default values will be used for parameters not
supplied.

User action: Correct the parameters passed to the
Channel program and retry the operation.

AMQ9502 Type of channel not suitable for action
requested.

Explanation: The operation requested cannot be
performed on channel '&3'. Some operations are only
valid for certain channel types. For example, you can
only ping a channel from the end sending the
message.

User action: Check whether the channel name is
specified correctly. If it is check that the channel has
been defined correctly.

AMQ9503 Channel negotiation failed.

Explanation: Channel '&3' between this machine and
the remote machine could not be established due to a
negotiation failure.

User action: Tell the systems administrator who
should look at the log on the remote system for
messages explaining the cause of the negotiation
failure.

 Appendix F. Messages 297

 AMQ9504 � AMQ9515

AMQ9504 A protocol error was detected for
channel '&3'.

Explanation: During communications with the remote
queue manager, the channel program detected a
protocol error. The failure type was &1 with
associated data of &2.

User action: Contact the systems administrator who
should examine the error logs to determine the cause
of the failure.

AMQ9505 Channel sequence number wrap values
are different.

Explanation: The sequence number for channel '&3'
is &1, but the value specified at the remote location is
&2. The two values must be the same before the
channel can be started.

User action: Change either the local or remote
channel definitions so that the values specified for the
message sequence number wrap values are the same.

AMQ9506 Message receipt confirmation failed.

Explanation: Channel '&3' has ended because the
remote queue manager did not accept the last batch of
messages.

User action: The error log for the channel at the
remote site will contain an explanation of the failure.
Contact the remote Systems Administrator to resolve
the problem.

AMQ9507 Channel '&3' is currently in-doubt.

Explanation: The requested operation cannot
complete because the channel is in-doubt with host
'&4'.

User action: Examine the status of the channel, and
either restart a channel to resolve the in-doubt state,
or use the RESOLVE CHANNEL command to correct
the problem manually.

AMQ9508 Program cannot connect to the queue
manager.

Explanation: The connection attempt to queue
manager '&4' failed with reason code &1.

User action: Ensure that the queue manager is
available and operational.

AMQ9509 Program cannot open queue manager
object.

Explanation: The attempt to open either the queue
or queue manager object '&4' on queue manager '&5'
failed with reason code &1.

User action: Ensure that the queue is available and
retry the operation.

AMQ9510 Messages cannot be retrieved from a
queue.

Explanation: The attempt to get messages from
queue '&4' on queue manager '&5' failed with reason
code &1.

User action: Ensure that the required queue is
available and operational.

AMQ9511 Messages cannot be put to a queue.

Explanation: The attempt to put messages to queue
'&4' on queue manager '&5' failed with reason code
&1.

User action: Ensure that the required queue is
available and operational.

AMQ9512 Ping operation is not valid for channel
'&3'.

Explanation: Ping may only be issued for SENDER
or SERVER channel types.

User action: If the local channel is a receiver
channel, you must issue the ping from the remote
queue manager.

AMQ9513 Maximum number of channels reached.

Explanation: The maximum number of channels that
can be in use simultaneously has been reached.

User action: Either wait for some of the operating
channels to close or use the stop channel command to
close some channels. Retry the operation when some
channels are available. The number of permitted
channels is a configurable parameter in the queue
manager configuration file.

AMQ9514 Channel '&3' is in use.

Explanation: The requested operation failed because
channel '&3' is currently active.

User action: Either end the channel manually, or
wait for it to close, and retry the operation.

AMQ9515 Channel '&3' changed.

Explanation: The statistics shown are for the
channel requested, but it is a new instance of the
channel. The previous channel instance has ended.

User action: None.

298 MQSeries for Windows NT V2.0 System Management Guide

 AMQ9516 � AMQ9528

AMQ9516 File error occurred.

Explanation: The filesystem returned error code &1
for file '&3'.

User action: Record the name of the file '&3' and tell
the systems administrator, who should ensure that file
'&3' is correct and available.

AMQ9517 File damaged.

Explanation: The program has detected damage to
the contents of file '&3'.

User action: Record the values and tell the systems
administrator who must restore a saved version of file
'&3'. The return code was '&1' and the record length
returned was '&2'.

AMQ9518 File '&3' not found.

Explanation: The program requires that the file '&3'
is present and available.

User action: Record the name of the file and tell the
systems administrator who must ensure that file '&3' is
available to the program.

AMQ9519 Channel '&3' not found.

Explanation: The requested operation failed because
the program could not find a definition of channel '&3'.

User action: Check that the name is specified
correctly and the channel definition is available.

AMQ9520 Channel not defined remotely.

Explanation: There is no definition of channel '&3' at
the remote location.

User action: Add an appropriate definition to the
remote hosts list of defined channels and retry the
operation.

AMQ9521 Host is not supported by this channel.

Explanation: The connection across channel '&5'
was refused because the remote host '&4' did not
match the host '&3' specified in the channel definition.

User action: Update the channel definition, or
remove the explicit mention of the remote machine
connection name.

AMQ9522 Error accessing the status table.

Explanation: The program could not access the
channel status table.

User action: None.

AMQ9523 Remote host detected a protocol error.

Explanation: During communications through
channel '&3', the remote queue manager channel
program detected a protocol error. The failure type
was &1 with associated data of &2.

User action: Tell the systems administrator, who
should examine the error files to determine the cause
of the failure.

AMQ9524 Remote queue manager unavailable.

Explanation: Channel '&3' cannot start because the
remote queue manager is not currently available.

User action: Either start the remote queue manager,
or retry the operation later.

AMQ9525 Remote queue manager is ending.

Explanation: Channel '&3' is closing because the
remote queue manager is ending.

User action: None.

AMQ9526 Message sequence number error for
channel '&3'.

Explanation: The local and remote queue managers
do not agree on the next message sequence number.
A message with sequence number &1 has been sent
when sequence number &2 was expected.

User action: Determine the cause of the
inconsistency. It could be that the synchronization
information has become damaged, or has been
backed out to a previous version. If the situation
cannot be resolved, the sequence number can be
manually reset at the sending end of the channel using
the RESET CHANNEL command.

AMQ9527 Cannot send message through channel
'&3'.

Explanation: The channel has closed because the
remote queue manager cannot receive a message.

User action: Contact the systems administrator who
should examine the error files of the remote queue
manager, to determine why the message cannot be
received, and then restart the channel.

AMQ9528 User requested closure of channel '&3'.

Explanation: The channel is closing because of a
request by the user.

User action: None.

 Appendix F. Messages 299

 AMQ9529 � AMQ9542

AMQ9529 Target queue unknown on remote host.

Explanation: Communication using channel '&3' has
ended because the target queue for a message is
unknown at the remote host.

User action: Ensure that the remote host contains a
correctly defined target queue, and restart the channel.

AMQ9530 Program could not inquire queue
attributes.

Explanation: The attempt to inquire the attributes of
queue '&4' on queue manager '&5' failed with reason
code &1.

User action: Ensure that the queue is available and
retry the operation.

AMQ9531 Transmission queue specification error.

Explanation: Queue '&4' identified as a transmission
queue in the channel definition '&3' is not a
transmission queue.

User action: Ensure that the queue name is
specified correctly. If so, alter the queue usage
parameter of the queue to that of a transmission
queue.

AMQ9532 Program cannot set queue attributes.

Explanation: The attempt to set the attributes of
queue '&4' on queue manager '&5' failed with reason
code &1.

User action: Ensure that the queue is available and
retry the operation.

AMQ9533 Channel '&3' is not currently active.

Explanation: The channel was not stopped because
it was not currently active.

User action: None.

AMQ9534 Channel '&3' is currently not enabled.

Explanation: The channel program ended because
the channel is currently not enabled.

User action: Issue the START CHANNEL command
to re-enable the channel.

AMQ9535 User exit not valid.

Explanation: Channel program '&3' ended because
user exit '&4' is not valid.

User action: Ensure that the user exit is specified
correctly in the channel definition, and that the user
exit program is correct and available.

AMQ9536 Channel ended by an exit.

Explanation: Channel program '&3' was ended by
exit '&4'.

User action: None.

AMQ9537 Usage: &3 [-m QMgrName] [-q InitQ]

Explanation: Values passed to the Channel initiator
program are not valid. The parameter string passed to
this program is as follows :- [-m QMgrName] [-q InitQ]
Default values will be used for parameters not
supplied.

User action: Correct the parameters passed to the
program and retry the operation.

AMQ9538 Commit control error.

Explanation: An error occurred when attempting to
start commitment control. Either exception '&3' was
received when querying commitment status, or
commitment control could not be started.

User action: Refer to the error log for other
messages pertaining to this problem.

AMQ9539 No channels available.

Explanation: The channel initiator program received
a trigger message to start an MCA program to process
queue '&3'. The program could not find a defined,
available channel to start.

User action: Ensure that there is a defined channel,
which is enabled, to process the transmission queue.

AMQ9540 Commit failed.

Explanation: The program ended because return
code &1 was received when an attempt was made to
commit change to the resource managers. The
commit ID was '&3'.

User action: Tell the systems administrator.

AMQ9541 CCSID supplied for data conversion not
supported.

Explanation: The program ended because, either the
source CCSID '&1' or the target CCSID '&2' is not
valid, or is not currently supported.

User action: Correct the CCSID that is not valid, or
ensure that the requested CCSID can be supported.

AMQ9542 Queue manager is ending.

Explanation: The program will end because the
queue manager is quiescing.

User action: None.

300 MQSeries for Windows NT V2.0 System Management Guide

 AMQ9543 � AMQ9554

AMQ9543 Status table damaged.

Explanation: The channel status table has been
damaged.

User action: End all running channels and issue a
DISPLAY CHSTATUS command to see the status of
the channels. Use the standard facilities supplied with
your system to record the problem identifier, and to
save the generated output files. Contact your IBM
support center. Do not discard these files until the
problem has been resolved.

AMQ9544 Messages written to the 'dead-letter
queue'.

Explanation: During the processing of channel '&3'
one or more messages have been put to a dead-letter
queue. The location of the messages is &1, where 1
is the local dead-letter queue and 2 is the remote
dead-letter queue.

User action: Examine the contents of the dead-letter
queue. Each message is contained in a structure that
describes why the message was put to the queue, and
to where it was originally addressed. The program
identifier (PID) of the processing program was '&4'.

AMQ9545 Disconnect interval expired.

Explanation: Channel '&3' closed because no
messages arrived on the transmission queue within
the disconnect interval period.

User action: None.

AMQ9546 Error return code received.

Explanation: The program has ended because return
code &1 was returned from an internal function.

User action: Correct the reason for the failure and
retry the operation.

AMQ9547 Type of remote channel not suitable for
action requested.

Explanation: The operation requested cannot be
performed because channel '&3' on the remote
machine is not of a suitable type. For example, if the
local channel is defined as a sender the remote
machine must define its channel as either a receiver or
requester.

User action: Check that the channel name is
specified correctly. If it is, check that the remote
channel has been defined correctly.

AMQ9548 Message put to the 'dead-letter queue'.

Explanation: During processing a message has been
put to the dead-letter queue.

User action: Examine the contents of the dead-letter
queue. Each message is contained in a structure that
describes why the message was put to the queue, and
to where it was originally addressed.

AMQ9549 Transmission Queue '&3' inhibited for
MQGET.

Explanation: An MQGET failed because the
transmission queue had been previously inhibited for
MQGET.

User action: None.

AMQ9550 Channel program &3 cannot be stopped
at this time.

Explanation: The channel program is currently busy
and cannot be stopped at the moment.

User action: Issue the STOP CHANNEL command
again at a later time.

AMQ9551 Protocol not supported by remote host.

Explanation: The operation you are performing over
Channel '&3' to the host at '&4' is not supported by the
target host.

User action: Check that the connection name
parameter is specified correctly and that the levels of
the products in use are compatible.

AMQ9552 Security flow not received.

Explanation: During communications through
channel '&3' the local security exit requested security
data from the remote machine. The security data has
not been received so the channel has been closed.

User action: Tell the systems administrator who
should ensure that the security exit on the remote
machine is defined correctly.

AMQ9553 Not supported.

Explanation: The command or function attempted is
not currently supported on this platform.

User action: None.

AMQ9554 User not authorized.

Explanation: You are not authorized to perform the
Channel operation.

User action: Tell the systems administrator who
should ensure that the correct access permissions are
available to you, and then retry the operation.

 Appendix F. Messages 301

 AMQ9555 � AMQ9573

AMQ9555 File format error.

Explanation: The file '&3' does not have the
expected format.

User action: Ensure that the file name is specified
correctly.

AMQ9556 Channel synchronization file missing or
damaged.

Explanation: The channel synchronization file '&3' is
missing or does not correspond to the stored channel
information for queue manager '&4'.

User action: Rebuild the synchronization file using
the rcrmqobj command rcrmqobj -t syncfile (-m
q-mgr-name)

AMQ9557 Queue Manager UserID initialization
failed.

Explanation: The call to initialize the user ID failed
with CompCode &1 and Reason &2.

User action: Correct the error and try again.

AMQ9558 Remote Channel is not currently
available.

Explanation: The channel program ended because
the channel '&3' is not currently available on the
remote system. This could be because the channel is
disabled or that the remote system does not have
sufficient resources to run a further channel.

User action: Check the remote system to ensure that
the channel is available to run and retry the operation.

AMQ9560 Rebuild Synchronization File - program
started.

Explanation: Rebuilding the Synchronization file for
Queue Manager '&3' .

User action: None.

AMQ9561 Rebuild Synchronization File - program
completed normally.

Explanation: Rebuild Synchronization File program
completed normally.

User action: None.

AMQ9562 Synchronization file in use.

Explanation: The Synchronization file '&3' is in use
and cannot be recreated.

User action: Stop any channel activity and retry the
rcrmqobj command.

AMQ9563 Synchronization file cannot be deleted.

Explanation: The filesystem returned error code &1
for file '&3'.

User action: Tell the systems administrator who
should ensure that file '&3' is available and not in use.

AMQ9564 Synchronization File cannot be created.

Explanation: The filesystem returned error code &1
for file '&3'.

User action: Tell the systems administrator.

AMQ9565 No dead-letter queue defined.

Explanation: The queue manager '&4' does not have
a defined dead-letter queue.

User action: Either correct the problem that caused
the program to try and write a message to the
dead-letter queue or create a dead-letter queue for the
queue manager.

AMQ9566 Invalid MQSERVER value.

Explanation: The value of the MQSERVER
environment variable was '&3'. The variable should be
in the format
'ChannelName/Protocol/ConnectionName'.

User action: Correct the MQSERVER value and
retry the operation.

AMQ9572 Message header is not valid.

Explanation: Channel '&3' is stopping because a
message header is not valid. During the processing of
the channel, a message was found that has a header
that is not valid. The dead-letter queue has been
defined as a transmission queue, so a loop would be
created if the message had been put there.

User action: Correct the problem that caused the
message to have a header that is not valid.

AMQ9573 Maximum number of active channels
reached.

Explanation: There are too many channels active to
start another. The current defined maximum number of
active channels is &1.

User action: Either wait for some of the operating
channels to close or use the stop channel command to
close some channels. Retry the operation when some
channels are available. The maximum number of
active channels is a configurable parameter in the
queue manager configuration file.

302 MQSeries for Windows NT V2.0 System Management Guide

 AMQ9574 � AMQ9999

AMQ9574 Channel &3 can now be started.

Explanation: Channel &3 has been waiting to start,
but there were no channels available because the
maximum number of active channels was running.
One, or more, of the active channels has now closed
so this channel can start.

User action: None.

AMQ9999 Channel program ended abnormally.

Explanation: Channel program '&3' ended
abnormally.

User action: Look at previous error messages for
channel program '&3' in the error files to determine the
cause of the failure.

 Appendix F. Messages 303

304 MQSeries for Windows NT V2.0 System Management Guide

 notices

 Appendix G. Notices

The following paragraph does not apply to any country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independent created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact Laboratory Counsel, Mail Point 151,
IBM United Kingdom Laboratories Limited, Hursley Park, Winchester, Hampshire
SO21 2JN, England. Such information may be available, subject to appropriate
terms and conditions, including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, 500 Columbus Avenue, Thornwood, New York 10594, U.S.A.

 Copyright IBM Corp. 1994, 1996 305

 notices

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both.

Windows is a trademark of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

AFP AIX AS/400
AT BookManager CICS
FFST First Failure Support

Technology
IBM

IBMLink IMS MQSeries
MQSeries Three Tier MVS/ESA NetView
OS/2 OS/400 RACF
VSE/ESA

306 MQSeries for Windows NT V2.0 System Management Guide

Part 4. Glossary and index

 Copyright IBM Corp. 1994, 1996 307

308 MQSeries for Windows NT V2.0 System Management Guide

 add-in task � channel control function (CCF)

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
add-in task . A function provided by MQSeries for
OS/2 and MQSeries for Windows NT that coordinates
the passing of data between a Lotus Notes application
and an MQSeries application.

administrator commands . MQSeries commands used
to manage MQSeries objects, such as queues,
processes, and namelists.

alert . A message sent to a management services focal
point in a network to identify a problem or an impending
problem.

alias queue object . An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is
resolved and the requested operation is performed on
the associated base queue.

alternate user security . A security feature in which
the authority of one user ID can be used by another
user ID, for example, to open an MQSeries object.

APAR . Authorized program analysis report.

Application Log . In Windows NT, a log that records
significant application events.

application queue . A queue used by an application.

asynchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute . One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks . Security checks that are
performed when a user tries to open an MQSeries
object.

authorization service . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT,
provides authority checking of commands and MQI calls
for the user identifier associated with the command or
call.

authorized program analysis report (APAR) . A
report of a problem caused by a suspected defect in a
current, unaltered release of a program.

B
back out . An operation that reverses all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins.

basic mapping support (BMS) . An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

browse . In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor . In message queuing, an indicator
used when browsing a queue to identify the message
that is next in sequence.

C
call back . In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel . See message channel.

channel control function (CCF) . In MQSeries, a
program to move messages from a transmission queue

 Copyright IBM Corp. 1994, 1996 309

 channel definition file (CDF) � dead-letter queue handler

to a communication link, and from a communication link
to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF) . In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event . An event that indicates that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint . (1) A time when significant information is
written on the log. Contrast with syncpoint. (2) In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

circular logging . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, the
process of keeping all restart data in a ring of log files.
Logging fills the first file in the ring and then moves on
to the next, until all the files are full. At this point,
logging goes back to the first file in the ring and starts
again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

client . A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQI client.

client application . An application running on a
workstation and linked to a client that gives the
application access to queuing services on a server.

client connection channel type . The type of MQI
channel definition associated with an MQI client. See
also server connection channel type.

coded character set identifier (CCSID) . The name of
a coded set of characters and their code point
assignments.

command . In MQSeries, an instruction that can be
carried out by the queue manager.

command processor . The MQSeries component that
processes commands.

command server . The MQSeries component that
reads commands from the system-command input
queue, verifies them, and passes valid commands to
the command processor.

completion code . A return code indicating how an
MQI call has ended.

configuration file . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, a
file that contains configuration information related to, for
example, logs, communications, or installable services.
Synonymous with .ini file. See also stanza.

connect . To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle . The identifier, or token, by which
a program accesses the queue manager to which it is
connected.

context . Information about the origin of a message.

context security . In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, a
command that can be entered interactively from the
operating system command line. These commands
require only that the MQSeries product be installed;
they do not require a special utility or program to run
them.

controlled shutdown . See quiesced shutdown.

D
data conversion interface (DCI) . The MQSeries
interface to which customer- or vendor-written programs
that convert application data between different machine
encodings and CCSIDs must conform. A part of the
MQSeries Framework.

datagram . The simplest message that MQSeries
supports. This type of message does not require a
reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

dead-letter queue (DLQ) . A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler . An MQSeries utility that
monitors a dead-letter queue (DLQ) and processes
messages on the queue in accordance with a
user-written rules table.

310 MQSeries for Windows NT V2.0 System Management Guide

 default object � input parameter

default object . A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

distributed application . In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE) .
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management . In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

dynamic queue . A local queue that is created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic
queue.

E
event . See channel event, instrumentation event,
performance event, and queue manager event.

event data . In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header . In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log . See Application Log.

event message . Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics)
relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue . The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer . A tool provided by Windows NT to
examine and manage log files.

F
FFST. First Failure Support Technology.

FIFO. First-in-first-out.

First Failure Support Technology (FFST) . Used by
MQSeries on UNIX systems, MQSeries for OS/2,
MQSeries for Windows NT, and MQSeries for OS/400
to detect and report software problems.

first-in-first-out (FIFO) . A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

Framework . In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

� MQSeries data conversion interface (DCI)
� MQSeries message channel interface (MCI)
� MQSeries name service interface (NSI)
� MQSeries security enabling interface (SEI)
� MQSeries trigger monitor interface (TMI)

G
get . In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

H
handle . See connection handle and object handle.

I
immediate shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown has
been requested. Contrast with quiesced shutdown and
preemptive shutdown.

ini file . See configuration file.

initiation queue . A local queue on which the queue
manager puts trigger messages.

input/output parameter . A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter . A parameter of an MQI call in which
you supply information when you make the call.

 Glossary of terms and abbreviations 311

 installable services � message descriptor

installable services . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT,
additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name
service, and user identifier service.

instrumentation event . A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be
used by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

L
linear logging . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, the
process of keeping restart data in a sequence of files.
New files are added to the sequence as necessary.
The space in which the data is written is not reused
until the queue manager is restarted. Contrast with
circular logging.

listener . In MQSeries distributed queuing, a program
that monitors information about incoming network
connections.

local definition . An MQSeries object that belongs to a
local queue manager.

local definition of a remote queue . An MQSeries
object that belongs to a local queue manager. This
object defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale . On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log . In MQSeries, records the work done by queue
managers while they receive, transmit, and deliver
messages.

log control file . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, the
file containing information needed to monitor the use of
log files (for example, their size and location, and the
name of the next available file).

log file . In MQSeries on UNIX systems, MQSeries for
OS/2, and MQSeries for Windows NT, a file in which all
significant changes to the data controlled by a queue
manager are recorded. If the primary log files become
full, MQSeries allocates secondary log files.

logical unit of work (LUW) . See unit of work.

M
mail-in database . A Lotus Notes database for sole
use by the add-in task. It holds the request from a
Lotus Notes application before the request is passed to
the MQSeries application.

MCA. Message channel agent.

MCI. Message channel interface.

media image . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, the
sequence of log records that contain an image of an
object. The object can be recreated from this image.

message . (1) In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. (2) In
system programming, information intended for the
terminal operator or system administrator.

message channel . In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises
two message channel agents (a sender and a receiver)
and a communication link. Contrast with MQI channel.

message channel agent (MCA) . A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue.

message channel interface (MCI) . The MQSeries
interface to which customer- or vendor-written programs
that transmit messages between an MQSeries queue
manager and another messaging system must conform.
A part of the MQSeries Framework.

message descriptor . Control information describing
the message format and presentation that is carried as

312 MQSeries for Windows NT V2.0 System Management Guide

 message priority � object handle

part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority . In MQSeries, an attribute of a
message that can affect the order in which messages
on a queue are retrieved and whether a trigger event is
generated.

message queue . Synonym for queue.

message queue interface (MQI) . The programming
interface provided by the MQSeries queue managers.
This programming interface allows application programs
to access message queuing services.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering . A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging . See synchronous messaging and
asynchronous messaging.

model queue object . A set of queue attributes that
act as a template when a program creates a dynamic
queue.

MQI. Message queue interface.

MQI channel . Connects an MQI client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQI client . Part of an MQSeries product that can be
installed on a system without installing the full queue
manager. The MQI client accepts MQI calls from
applications and communicates with a queue manager
on a server system.

MQSC. MQSeries commands.

MQSeries . A family of IBM licensed programs that
provides message queuing services.

MQSeries commands (MQSC) . Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N
name service . In MQSeries for AIX, MQSeries for
OS/2, and MQSeries for Windows NT, the facility that
determines which queue manager owns a specified
queue.

name service interface (NSI) . The MQSeries
interface to which customer- or vendor-written programs
that resolve queue-name ownership must conform. A
part of the MQSeries Framework.

name transformation . In MQSeries on UNIX systems,
MQSeries for OS/2, and MQSeries for Windows NT, an
internal process that changes a queue manager name
so that it is unique and valid for the system being used.
Externally, the queue manager name remains
unchanged.

New Technology File System (NTFS) . A Windows
NT recoverable file system that provides security for
files.

nonpersistent message . A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character . The character that is represented by
X'00'.

O
OAM. Object authority manager.

object . In MQSeries, an object is a queue manager, a
queue, a process definition, a namelist (MVS/ESA only),
or a channel.

Object authority manager (OAM) . In MQSeries on
UNIX systems and MQSeries for Windows NT, the
default authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

object descriptor . A data structure that identifies a
particular MQSeries object (MQOD). Included in the
descriptor are the name of the object and the object
type.

object handle . The identifier, or token, by which a
program accesses the MQSeries object with which it is
working.

 Glossary of terms and abbreviations 313

 output parameter � quiescing

output parameter . A parameter of an MQI call in
which the queue manager returns information when the
call completes or fails.

P
PCF. Programmable command format.

PCF command . See programmable command format.

pending event . An unscheduled event that occurs as
a result of a connect request from a CICS adapter.

percolation . In error recovery, the passing along a
preestablished path of control from a recovery routine to
a higher-level recovery routine.

performance event . A category of event that indicates
a limit condition has occurred.

performance trace . An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue . A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered
if the queue manager fails, so they can contain
persistent messages. Contrast with temporary dynamic
queue.

persistent message . A message that survives a
restart of the queue manager. Contrast with
nonpersistent message.

ping . In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel is functioning.

platform . In MQSeries, the operating system under
which a queue manager is running.

preemptive shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal . In MQSeries on UNIX systems, MQSeries
for OS/2, and MQSeries for Windows NT, a term used
for a user identifier (ID). Used by the object authority
manager for checking authorizations to system
resources.

process definition object . An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF) . A type of
MQSeries message that is used by:

� User administration applications that put PCF
commands onto the system command input queue
of a specified queue manager.

� User administration applications, to get the results
of a PCF command from a specified queue
manager.

� A queue manager, as a notification that an event
has occurred.

Contrast with MQSC.

program temporary fix (PTF) . A solution or by-pass
of a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager . (1) A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and
remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

queue manager event . An event that indicates:

� An error condition has occurred in relation to the
resources used by a queue manager. For example,
an error condition caused by a queue being
unavailable.

� A significant change has occurred in the queue
manager. For example, a queue manager has
stopped or started.

queuing . See message queuing.

quiesced shutdown . (1) In MQSeries, a shutdown of
a queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. (2) A type of shutdown of the
CICS adapter where the adapter disconnects from
MQSeries, but only after all the currently active tasks
have been completed. Contrast with forced shutdown.

quiescing . In MQSeries, the state of a queue
manager prior to it being stopped. In this state,

314 MQSeries for Windows NT V2.0 System Management Guide

 RBA � server

programs are allowed to finish processing, but no new
programs are allowed to start.

R
RBA . Relative byte address.

reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

Registry . In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor . In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive . In Windows NT, the structure of the
data stored in the registry. See also Registry.

remote queue . A queue that belongs to a remote
queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager . To a program, a queue
manager is remote if it is not the queue manager to
which the program is connected.

remote queue object . See local definition of a remote
queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message . A type of message used for replies to
request messages.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message . A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason.

requester channel . In message queuing, a channel
that may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the
message. See also server channel.

request message . A type of message used for
requesting a reply from another program.

resolution path . The set of queues that are opened
when an application specifies an alias or a remote
queue on input to the MQOPEN call.

responder . In distributed queuing, a program that
replies to network connection requests from another
system.

resynch . In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes . The collective name for completion
codes and reason codes.

rollback . Synonym for back out.

rules table . A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
security enabling interface (SEI) . The MQSeries
interface to which customer- or vendor-written programs
that check authorization, supply a user identifier, or
perform authentication must conform. A part of the
MQSeries Framework.

SEI. Security enabling interface.

sender channel . In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery . In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value . In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a
sequence number ensures that the receiving channel
can reestablish the message sequence when storing
the messages.

server . (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

 Glossary of terms and abbreviations 315

 server channel � trigger monitor

server channel . In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type . The type of MQI
channel definition associated with the server that runs a
queue manager. See also client connection channel
type.

service interval . A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event . An event related to the service
interval.

shutdown . See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

single-phase backout . A method in which an action
that is in progress must not be allowed to finish, and all
changes that are part of that action must be undone.

single-phase commit . A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

stanza . A group of lines in a configuration file that
assigns a value to a parameter that modifies the
behavior of a queue manager, client, or channel. In
MQSeries on UNIX systems, MQSeries for OS/2, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

store and forward . The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

symptom string . Diagnostic information displayed in a
structured format designed for searching the IBM
software support database.

synchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,

changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

system.command.input queue . A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands . Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system initialization table (SIT) . A table containing
parameters used by CICS on start up.

T
temporary dynamic queue . A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast
with permanent dynamic queue.

thread . In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging . See asynchronous
messaging.

TMI. Trigger monitor interface.

tranid . See transaction identifier.

transaction identifier . In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transmission program . See message channel agent.

transmission queue . A local queue on which
prepared messages destined for a remote queue
manager are temporarily stored.

trigger event . An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering . In MQSeries, a facility that allows a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message . A message that contains information
about the program that a trigger monitor is to start.

trigger monitor . A continuously-running application
that serves one or more initiation queues. When a
trigger message arrives on an initiation queue, the
trigger monitor retrieves the message. It uses the
information in the trigger message to start a process

316 MQSeries for Windows NT V2.0 System Management Guide

 trigger monitor interface (TMI) � utility

that serves the queue on which a trigger event
occurred.

trigger monitor interface (TMI) . The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit . A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
UIS. User identifier service.

undelivered-message queue . See dead-letter queue.

undo/redo record . A log record used in recovery.
The redo part of the record describes a change to be
made to an MQSeries object. The undo part describes

how to back out the change if the work is not
committed.

unit of recovery . A recoverable sequence of
operations within a single resource manager. Contrast
with unit of work.

unit of work . A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends
either at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user identifier service (UIS) . In MQSeries for OS/2
and MQSeries for Windows NT, the facility that allows
MQI applications to associate a user ID, other than the
default user ID, with MQSeries messages.

utility . In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

 Glossary of terms and abbreviations 317

318 MQSeries for Windows NT V2.0 System Management Guide

 index

 Index

Special Characters
$MQLINK 135
$MQLINKC 135

A
a queue manager

starting 48
starting automatically 49

ACTION keyword, rules table 117
action keywords, rules table 117
add queue manager to the Windows NT Service Control

Manager 228
administration

authorizations 106
command set

control commands 39
description 39
introduction 10
MQSeries control (MQSC), commands 40
programmable command format commands

(PCF) 40
local

description 57
introduction 11

remote
channels 86
description 85
introduction 11
objects 81
transmission queues 86

alias
local queue 74
queue description 7
remote queue 91
reply-to queue 91

alias queues
authorizations to 100

altering
model queue 77
queue alias 75
queue manager attributes 61
remote queue 84

alternate user authority 100
AMQSCOMA.TST

contents 245
location 251
supplied 50
when to modify 36

AMQSDLQ, the sample DLQ handler 114

application
administration support for MQI 57
common programming errors 169
data description 4
design 174
program on local queue 57
queue setup 58

APPLIDAT keyword, rules table 116
APPLNAME keyword, rules table 116
APPLTYPE keyword, rules table 116
attributes

ALL attribute 69
altering 61
changing 71
default 69
displaying queue manager 60
name, construction of 41
of queues 7
queue manager

altering 61
displaying 60

authority
alternate user 100
commands 99
context 101
installable services 99

authority, set or reset command 230
authorization

administration 106
dspmqaut command 99
lists 97
MQI 103
setmqaut command 99
user groups 96

authorization files
all class 112
authorization to 112
class 111
contents 110
directories 109
managing 112
paths 109
understanding 109

authorization service
configuring 34
introduction 12

B
backup of queues 152
basic concepts of MQSeries 3

 Copyright IBM Corp. 1994, 1996 319

 index

bibliography xii
BookManager xiv
books, online 15
browsing messages, on a queue 72

C
C program samples 251
case-sensitivity, control commands 39
CD-ROM, installing from 16
changing

configuration files 160
default prefix 160
local queue attributes 71
model queue 77
prefix 36
queue alias 75
queue manager attributes 61
remote queue 84

channel
command security requirements 102
commands 102
configuration 158
defining 87
description 10, 81
escape command authorizations 107
queue manager configuration 158
remote administration 86
run command 219
run initiator command 218
security 102
starting 88

channel events 127
checkpointing 144
CICS

introduction 13
sample transaction 253
transactions 131

circular logging 143
clearing a local queue 71
client based mail 136
client trigger monitor

start command 226
clients

installation 25
introduction 11
problem determination 183

COBOL program samples 251
command files 62
command queue 9
command server

display command 203
displaying status of 56
end command 207
remote administration 55
start command 237

command server (continued)
starting 55
stopping 56

command set
comparison 41
control commands 39
description 39
introduction 10
MQSeries control (MQSC) commands 40
PCF (programmable command format)

commands 40
commands

add or delete queue manager from Windows NT
Service Control Manager 49

add queue manager to the Windows NT Service
Control Manager 228

comparison of sets 41
control commands 39
control, runmqsc 59
create queue manager (crtmqm) 193
data conversion (crtmqcvx) 191
delete queue manager (dltmqm) 197
display authority (dspmqaut) 199
display command server (dspmqcsv) 203
display MQSeries files (dspmqfls) 204
display MQSeries transactions (dspmqtrn) 206
end command server (endmqcsv) 207
end MQSeries trace (endmqtrc) 211
end queue manager (endmqm) 209
help with syntax 189
model queues 77
MQSC

ALTER QLOCAL 71
command files, input 62
command files, output 63
DEFINE QALIAS 74
DEFINE QLOCAL 70
DEFINE QLOCAL LIKE 70
DEFINE QLOCAL REPLACE 71
DEFINE QMODEL 76
DEFINE QREMOTE 82
DELETE QLOCAL 72
description 40
using 40
verifying 65

problems with 169
programmable command format (PCF) 40
queue alias 75
record media image (rcdmqimg) 212
recreate object (rcrmqobj) 214
resolve MQSeries transactions (rsvmqtrn) 216
run channel (runmqchl) 219
run channel initiator (runmqchi) 218
run dead-letter queue handler (runmqdlq) 113, 220
run listener (runmqlsr) 221
run MQSeries commands (runmqsc) 223

320 MQSeries for Windows NT V2.0 System Management Guide

 index

commands (continued)
security commands

dspmqaut 99
setmqaut 97

set or reset authority (setmqaut) 98, 230
start client trigger monitor (runmqtmc) 226
start command server (strmqcsv) 237
start MQSeries trace (strmqtrc) 239
start queue manager (strmqm) 238
start trigger monitor (runmqtrm) 227

commit
CICS 131
log 147

communications, customizing 35
components of MQSeries for Windows NT

service level information 26
configuration files

description 33
editing 160
Log stanza 161
LogBufferPages value 162
LogDefaultPath attribute 163
LogDefaults stanza 161
LogFilePages attribute 162
LogPath value 163
LogPrimaryFile value 161
LogSecondayFiles value 162
MQSeries 155
overview 155
queue manager 157, 161
queue manager (qm.ini)

disabling the object authority manager 96
size and location of log 160

configuration, Lotus Notes 137
configuring

logs 160
queue manager 33

contents of MQS.INI 155
contents of QM.INI 157
context authority 101
context, CICS user IDs 131
control commands 39

case-sensitivity 39
description 39
names 187
runmqsc command 59
syntax 187

controlled shutdown 51
copying a local queue definition 70
Correlid, performance considerations 175
creating

default objects 50
process definitions 79
queue manager

crtmqm command 193
default 48
guidelines 45

creating (continued)
remote queue, local definition 82
system objects 50
transmission queue 84

crtmqcvx command 191
example 191
parameters 191
return codes 191

crtmqm
parameters 193

crtmqm command 193
crtmqm command 196
examples 196
related commands 196
return codes 195

current queue depth 70
customizing

authorization service 34
communications 35
data conversion 35
default objects 36
description 33
options 33
overview 33
time zone 34

D
data conversion

crtmqcvx command 191
customizing 35

dead-letter header, MQDLH 113
dead-letter queue

attention 47
description 9
handler 220
problems with 181
specifying 47
using 181

default 36
attributes of objects 69
command files

running 64
creating objects 50
objects

creating 50
defining 36
introduction 10

overriding the configuration file 160
prefix, specifying 37
queue attributes 76
queue manager 46

accidental change 52
accidental deletion 194
from existing 52
making an existing the default 52
using one that is not 61

 Index 321

 index

default (continued)
system objects 245
transmission queue 47, 84
user group for authority 95

DEFINE QUEUE command, REPLACE attribute 63
defining

alias queue 74
channel 87
dead-letter queue 69
default objects 36
initiation queue 78
local queue 68
model queue 76
queue attributes 7
system objects 36
transmission queue 87
triggering queue 77

deleting
FILE directory 29
files from the FILE directory 29
local queue 72
model queue 77
MQSeries for Windows NT 29
queue alias 75
queue manager

description 53
dltmqm command 197

remote queue 84
desktop folder 21
DESTQ keyword, rules table 116
DESTQM keyword, rules table 116
directories 100

authorization 109
queue manager 100

directory structure 247
disabling events 128
disabling the object authority manager 96
disconnected requests 136
disk drive recovery 153
disk space

for installation 15
for logging 147

displaying
authority (dspmqaut command) 199
command server (dspmqcsv command) 203
default object attributes 69
model queue 77
MQSeries files (dspmqfls command) 204
MQSeries transactions (dspmqtrn command) 206
process definition 79
queue alias 75
queue manager attributes 60
remote queue 84
status of command server 56

distributed queuing
dead-letter queue 9

distributed queuing (continued)
problems with incorrect output 178
undelivered-message queue 9

DLQ handler
invoking 113
rules table 114
sample, AMQSDLQ 114

dltmqm command 197
examples 198
parameters 197
related commands 198
return codes 197

dspmqaut command 199
example 202
parameters 199
related command 202
return codes 202
using 97, 99

dspmqcsv command 203
example 203
parameters 203
related commands 203
return codes 203

dspmqfls command 204
examples 205
parameter 204
return codes 205

dspmqtrn command 206
parameter 206
related commands 206
return codes 206

dynamic queues 5
authorizations to 100

E
enabling

security 96
enabling events 128
end command server (endmqcsv command) 207
end MQSeries trace 211
end queue manager (endmqm command) 209
ending

command server 56
input to MQSC 60
interactive MQSC 60
queue manager 51

endmqcsv command 207
examples 207
parameter 207
related commands 208
return codes 207

endmqm command 51, 209
examples 210
parameters 209
related commands 210

322 MQSeries for Windows NT V2.0 System Management Guide

 index

endmqm command (continued)
return codes 210

endmqtrc command 211
examples 211
parameters 211
related commands 211
return codes 211

entering control commands
description 39
syntax 187

environment variable, disabling security 96
error log

errors occurring before established 180
example 181
for automatic installation 26
in problem determination 179

error messages 59
event queue

instrumentation events 128
introduction 9

event-driven processing 3
events

trigger 127
triggered, in event queues 128
types of 127

events, instrumentation
description 125
disabling 128
enabling 128
message 129
types of 127
what they are 125
why use them 126

examples
crtmqcvx command 191
crtmqm command 196
dltmqm command 198
dspmqaut command 202
dspmqcsv command 203
dspmqfls command 205
endmqcsv command 207
endmqm command 210
endmqtrc command 211
error log 181
of common programming errors 169
rcdmqimg command 213
rcrmqobj command 215
runmqlsr command 222
runmqsc command 224
scmmqm command 229
setmqaut command 235
strmqcsv command 237
strmqm command 238

F
FAT file names xi
feedback from MQSC commands 59
FEEDBACK keyword, rules table 117
FFST

introduction 13
FFST, examining 182
FILE directory, files

deleting 29
file names xi
file size, for logs 147, 163
file systems xi
files

authorization
all class 112
authorizations to 112
class 111
contents 110
managing 112
paths 109
understanding 109

configuration
in problem determination 181
overview 155

log control 142
MQSeries configuration 155
names 53
queue manager configuration 157

flag indicators 189
folder, MQSeries 21
FORMAT keyword, rules table 117
format of logs 142
further questions for problem determination 169—172
FWDQ keyword, rules table 118
FWDQM keyword, rules table 118

G
glossary 309
group set authorizations
group sets, for authority 95

H
HEADER keyword, rules table 118
help for syntax 189
HPFS file names xi

I
incorrect output 176
initiation queue

defining 78
description 8

input
from a text file 62

 Index 323

 index

input (continued)
standard 59

INPUTQ keyword, rules table 115
INPUTQM keyword, rules table 115
installable component

authority manager (OAM) 94
installable services

disabling object authority manager 96
disabling 96

introduction 12
object authority manager 94

installation 19
installation parameters 26

for unattended installation 26
installation requirements 15
installation response file

specification 28
installing

base product 15
clients 25
description 15
error log parameters 26
file tree 21
from CD-ROM 16
from LAN 18

preparation for 18
maintenance updates 25
MQSeries for Windows NT 15
optional components 15
precautions 15
unattended 26
verifying installation 24

instrumentation events
description 125
disabling 128
enabling 128
messages 129
types of 127
why use them 126

interactive commands 58
interactive MQSC

ending 60
feedback from 59
using 59

issuing MQSeries commands 58

K
keywords for response files 29

L
LAN, installing from 18
LIKE attribute 70
linear logging 143

local administration 57
local queues

clearing 71
command 9
copying definitions 70
dead-letter 9
defining 68
deleting 72
description 7
initiation 8
transmission 8
undelivered-message 9

log
configuration 160
directory structure 249
disk space 147
error 179

error occurring before established 180
example of 181

file
@SYSTEM 179
control 142
management 148
page size 162
path 163
reuse 144
sizes 163

format 142
managing 147
MQSeries defaults 156
number of buffers 162
overheads 163
parameters 37, 47
primary files 161
queue manager 141
queue manager configuration 158
recovery using 149
secondary files 162
type of 162
using for recovery 149

logging
checkpoints 144
circular 143
forward recovery 143
linear 143
media recovery 143, 150
restart recovery 143
types of 142

looking at messages on a queue 72
Lotus Notes

and MQSeries 133
linking to 133

LU6.2 158, 244

324 MQSeries for Windows NT V2.0 System Management Guide

 index

M
maintenance of MQSeries for Windows NT

installing updates 25
unattended 26

managing access 95
managing log files 148
managing objects for triggering 77
mapping Lotus Notes 133
maximum line length for MQSC commands 63
media images

description 149
record 150
record (rcdmqimg command) 212
recovering 150

message
administration 279—293
browsing 72
common service 265—267
containing unexpected information 177
description of 4
descriptor 4
format 257
from instrumentation events 129
groups 258
information 257
installable services 259—260
lengths of 4
MQSeries product 268—278
not appearing on queues 176
operator 180
performance considerations 174
persistent, performance considerations 175
putting on remote queue 83
remote 294—303
retrieval algorithms 5
searching for particular 175
structure 257
variable length 175
variables 257

message length, decreasing 71
message queue interface (MQI)

description 3
local administration support 57
queue manager in calls 7

message queuing 3
message-driven processing 3
model queues

defining 76
description 8
working with 76

monitoring queue managers 126
MQDLH, dead-letter header 113
MQI

authorizations 103

MQI (message queue interface)
description 3
local administration support 57
queue manager in calls 7

mqm
user group 93
user ID 93

MQOPEN authorizations 103
MQPUT and MQPUT1, performance

considerations 175
MQPUT authorizations 103
MQS.INI

path 65
stanzas 155

MQSC
command files

input 62
output 63
running 64

commands
ALTER QLOCAL 71
ALTER QMGR 61
ALTER QMODEL 77
ALTER QREMOTE 84
CLEAR QLOCAL 71
DEFINE CHANNEL 87
DEFINE PROCESS 79
DEFINE QALIAS 74
DEFINE QLOCAL 70
DEFINE QLOCAL LIKE 70
DEFINE QLOCAL REPLACE 71
DEFINE QMODEL 76
DEFINE QREMOTE 82
DELETE QLOCAL 72
DELETE QREMOTE 84
DISPLAY PROCESS 79
DISPLAY QUEUE 69

ending interactive input 60
how to issue 58
interactive use 59
introduction 40
issuing remotely 89
maximum line length 63
problems

local 65
remote 91

sample files 251
security requirements on channels 102
timed out command responses 89
using 40
verifying 65

MQSeries
super user, mqm 93

MQSeries commands
 see MQSC

 Index 325

 index

MQSeries configuration file 155
LogDefaultPath attribute 163
LogDefaults stanza 161
LogFilePages attribute 162
path 65

MQSeries folder 21
MQSeries for Windows NT

installation 19
MQSeries for Windows NT at a glance 243
MQSeries publications xii
MQSNOAUT environment variable 96
MQZAO constants and authority 104
MsgId, performance considerations 175
MSGTYPE keyword, rules table 117
MVS/ESA queue manager 90

N
name service

introduction 12
name transformation 54
names

allowed for objects 187
construction of attributes 41
MQSeries files 53
MQSeries objects 58
of objects 5

NetBios 158, 244
network protocols

LU6.2 158, 244
NetBios 158, 244
TCP/IP 158, 244

nobody, default user group 95
Notes configuration 137
Notes setup 137
notification of events 128

O
OAM 94
object authority manager 94

default user group 95
disabling 96
dspmqaut command 99
how it works 95
principals 95
sensitive operations 99
setmqaut command 97, 98

objects
access to 93
customizing 36
default

attributes 69
creating 50

introduction 5
managing 6

objects (continued)
media image

description 150
recovery 150

name transformation 54
names 5
naming conventions 187
process definition 10
queue 7
queue manager

in MQI calls 7
prefixes 36

recovery of damaged 154
recreate object (rcrmqobj command) 214
remote administration 81
system default 10, 245
system, creating 50
triggering 77
types of

channel 10
process definition 10
queue 7
queue manager 6

online books 15
operating system variable, disabling security 96
operator messages 180
output

problems with 170, 176
standard 59
to a text file 62

overheads, for logs 163
overrides in configuration files 160

P
parameters

crtmqcvx command 191
dltmqm command 197
dspmqfls command 204
runmqchi command 218
runmqchl command 219
runmqlsr command 221
runmqsc command 223
runmqtmc command 226
runmqtrm command 227
scmmqm command 228
setmqaut command 232

path to MQS.INI 65
pattern-matching keywords, rules table 116
PCF (programmable command format)

commands 40
problems with 170

performance considerations
advantages of MQPUT1 175
application design 174
CorrelId 175

326 MQSeries for Windows NT V2.0 System Management Guide

 index

performance considerations (continued)
message length 174
message persistence 175
MsgId 175
syncpoint 175
trace 173
variable message length 175

performance events 127
performance problems 172
permanent queues 5
PERSIST keyword, rules table 117
predefined queues 5
preemptive queue manager shutdown 51
prefix, default 37
preparing

channel 86
remote queue manager 85

primary log files 161
principals

belonging to more than one group 95
managing access to 95

problem determination
clients 183
command errors 169
common programming errors 169
configuration files 181
further checks 169—172
incorrect output

messages containing unexpected
information 177

messages not appearing on queues 176
using distributed queues 178

preliminary checks 165—168
trace 173

problems
recovering from 149
running MQSC 65
using MQSC locally 65
using MQSC remotely 91

process definitions
creating 79
description 10
displaying 79
naming 187

processing, event-driven 3
product status 26
program temporary fix (PTF) 168
programmable command format (PCF)

administration with 40
problems with 170

programming, common errors 169
programs using samples 251
protected resources 96
PTF (program temporary fix) 168
publications

MQSeries xii

PUTAUT keyword, rules table 118

Q
QM.INI stanzas 157
queue browsing 72
queue depth

current 70
determining 70

queue manager
alias, remote queue 91
authorization directories 109
authorizations 100
circular logging, restart recovery 143
command server 55
configuration files

description 157
Log stanza 161
LogPath value 163
specifying 50

configuration overview 37
creating

crtmqm command 193
default 48
guidelines 45

default
accidental change 52
accidental deletion 194
from existing 52
specifying 46

deleting 53
deleting queue manager (dltmqm command) 197
description 6
directories 100
directory names 54
end queue manager (endmqm command) 209
events 127
getting started 45
guidelines 45
immediate shutdown 51
linear logging 143
local administration 57
logs 141
managing 45
monitoring 126
MQSeries configuration file 155
MVS/ESA 90
name 45
name transformation 54
naming rules 187
numbers of 46
object authority manager

description 94
disabling 96

objects
in MQI calls 7
prefixes 36

 Index 327

 index

queue manager (continued)
preemptive shutdown 51
recording media images 150
recovery 154
remote

administration 81
preparation 85

removing manually 255
restart 52
shutdown

controlled 51
immediate 51
preemptive 51
quiesce 51

specifying on runmqsc 61
stopping 51
stopping manually 255

queue naming 187
queue, transmission

creating 84
default 84

queued mode, of RUNMQSC 89
queues

alias 7
aliases 74
application, defining for triggering 77
attributes 7
authorizations to 100
browsing 72
changing attributes 71
command 9
dead-letter 9, 47
defining 7
description of 4
dynamic 5
event 9
event notification 128
for MQI applications 57
initiation

defining 78
trigger messages 8

local
clearing 71
copying 70
defining 68
deleting 72
introduction 7

model
defining 76
introduction 8
working with 76

objects
alias 7
local 7
model 8
remote 7
using 7

queues (continued)
predefined 5
problems with 171
remote

creating 82
introduction 7
queue manager alias 91
working with 91

reply-to 9
temporary 5
transmission

default 47
defining 87
introduction 8
remote administration 86

undelivered-message 9, 47
working with 68

quiesce shutdown 51

R
rcdmqimg command 212

example 213
parameters 212
related commands 213
return codes 213

rcrmqobj command 214
examples 215
parameters 214
related command 215
return codes 215

READ ME file 16
REASON keyword, rules table 117
record media image (rcdmqimg command) 212
recovering

during start up 151
from problems 149
media 149
media images 150

recovery and restart concepts 141
recovery scenarios

damaged queue manager object 154
damaged single object 154
disk drive failures 153

recreate object (rcrmqobj command) 214
redirecting input and output on MQSC commands 59,

62
registry entries 22
related commands

dltmqm command 198
dspmqaut command 202
dspmqcsv command 203
dspmqtrn command 206
endmqcsv command 208
endmqm command 210
rcdmqimg command 213

328 MQSeries for Windows NT V2.0 System Management Guide

 index

related commands (continued)
rcrmqobj command 215
rsvmqtrn command 217
setmqaut command 236
strmqcsv command 237
strmqm command 238

remote
administration

command server 55
description 85
initial problems 91
of objects 81

issuing of MQSC commands 89
queue

description 81
introduction 7
recommendations 90

queue definition, creating 82
queue object, working with 91
queues

problems with 172
putting messages directly 83

security considerations 101
remote queues

as queue manager aliases 91
as reply-to queue aliases 91
authorizations to 100

removing queue manager manually 255
REPLACE attribute, DEFINE command 63
replication 136
reply-to queue 9
reply-to queue aliasing 91
REPLYQ keyword, rules table 117
REPLYQM keyword, rules table 117
required software

MQSeries for Windows NT 243
resolve MQSeries transactions (rsvmqtrn

command) 216
resources

protected 96
why protect 94

response files
installation 28
keywords 29
structure 28

restart and recovery concepts 141
restart recovery

circular logging 143
linear logging 143

restarting queue manager 52
restoring

queue manager 152
restrictions 93

access to MQM objects 93
restrictions, object names 187

retrieval algorithms for messages 5
RETRY keyword, rules table 119
RETRYINT keyword, rules table 115
return codes

crtmqcvx command 191
crtmqm command 195
dltmqm command 197
dspmqaut command 202
dspmqcsv command 203
dspmqfls command 205
dspmqtrn command 206
endmqcsv command 207
endmqm command 210
endmqtrc command 211
rcdmqimg command 213
rcrmqobj command 215
rsvmqtrn command 216
runmqchi command 218
runmqchl command 219
runmqlsr command 222
runmqsc command 224
runmqtmc command 226
runmqtrm command 227
scmmqm command 228
strmqcsv command 237
strmqm command 238

rollback
CICS 131
log 147

rsvmqtrn command 216
parameters 216
related commands 217
return codes 216

rules table, DLQ handler 114
See also DLQ handler
control data entry 115

INPUTQ keyword 115
INPUTQM keyword 115
RETRYINT keyword 115
WAIT keyword 115

example 123
patterns and actions (rules) 116

ACTION keyword 117
APPLIDAT keyword 116
APPLNAME keyword 116
APPLTYPE keyword 116
DESTQ keyword 116
DESTQM keyword 116
FEEDBACK keyword 117
FORMAT keyword 117
FWDQ keyword 118
FWDQM keyword 118
HEADER keyword 118
MSGTYPE keyword 117
PERSIST keyword 117
PUTAUT keyword 118
REASON keyword 117

 Index 329

 index

rules table, DLQ handler (continued)
patterns and actions (rules) (continued)

REPLYQ keyword 117
REPLYQM keyword 117
RETRY keyword 119
USERID keyword 117

processing of 121
syntax 119

run channel (runmqchl command) 219
run channel initiator (runmqchi command) 218
run listener (runmqlsr command) 221
run MQSeries commands (runmqsc command) 223
runmqchi command 218

parameters 218
return codes 218

runmqchl command 219
parameter 219
return codes 219

RUNMQDLQ command 113
runmqlsr command 221

example 222
parameters 221
return codes 222

RUNMQSC command
default objects 36
description 223
ending 60
examples 224
feedback 59
issuing 58
MQSC commands

alias queue handling 74
from text files 62
introduction 58
issuing remotely 89
local queue handling 68
model queue handling 77
problems with 65
problems, remote running 91
process definition 79
remote queue handling 81
report 63
running supplied command files 64
transmission queues 84
triggering 77
verifying commands 65

parameters 223
problems 65
queued mode 89
redirecting input and output 62
return codes 224
running 40
running (runmqsc) 223
specifying a queue manager 61
using 62
using interactively 59

RUNMQSC command (continued)
verifying 65

runmqtmc command 226
parameters 226
return codes 226

runmqtrm command 227
parameters 227
return codes 227

running MQSC commands
description 40
from text file 62
interactively 59

S
sample MQSC files 251
sample programs 251
samples

trace data (MQSeries) 174
scmmqm command 49, 228

parameters 228
return codes 228

secondary log files 162
security 93

authorization service 12
configuring authorization service 34
enabling 96
remote 101
using the commands 97, 99

server based mail 136
servers 11
service queue manager configuration 157
service-level status 26
set or reset authority (setmqaut command) 230
setmqaut command 230

example 235
installable services 99
parameters 232
related commands 236
return codes 235
using 97, 98

setting up
data conversion exit 35

setup, Lotus Notes 137
configuration 137

shell commands for MQSeries 39
shutdown queue manager

controlled 51
immediate 51
preemptive 51
quiesce 51

simple questions for problem determination 165—168
softcopy books xiv
software required

MQSeries for Windows NT 243

330 MQSeries for Windows NT V2.0 System Management Guide

 index

specifying a default prefix 37
standard input 59
standard output 59
stanzas

MQS.INI 155
QM.INI 157

start client trigger monitor (runmqtmc command) 226
start command server (strmqcsv command) 237
start message queue manager (strmqm

command) 238
start MQSeries trace command 239
start queue manager command 238
start trigger monitor (runmqtrm command) 227
start up recovery 151
starting

a queue manager 48
a queue manager automatically 49
channel 88
command server 55

stdin, on runmqsc 62
stdout, on runmqsc 62
stopping

command server 56
queue manager

manually 255
using ENDMQM command 51

storage requirements 15
strmqcsv command 237

example 237
parameters 237
related commands 237
return codes 237

strmqm command 238
examples 238
parameters 238
related commands 238
return codes 238

strmqtrc command 239
parameters 239
related commands 240

structure of response files 28
super user (MQSeries)

mqm 93
syncpoint, performance considerations 175
syntax diagram

sample 189
using 187

syntax error, in MQSC 59
syntax help 189
system default objects 10
system defaults 245
system objects

creating 50
defining 36

system setup 137
setup 137

T
TCP/IP 158, 244
temporary queues 5
terminology used in this book 309
time zone 34
timed out responses from MQSC commands 89
trace

data sample (MQSeries) 174
performance considerations 173
using 173
when using trace 173

tracing
Windows NT trace 173

transaction recovery 147
transaction support 131
transactions

display MQSeries command 206
resolve MQSeries command 216

transformation of object names 54
transmission queue 84

creating 84
default 47, 84
defining 87
description 8
remote administration 86

trigger
event queues 128
events 127
messages on initiation queue 8

trigger monitor 8
trigger monitor start command 227
triggering

application queue 77
managing objects for 77

types of event 127
types of object

channel 10
process definition 10
queue 7
queue manager 6

U
unattended installation 26
unauthorized access, protecting from 94
undelivered-message queue

defining 69
description 9
specifying 47
using 181

updating MQSeries for Windows NT 25
user exits

introduction 12
using CICS 131

 Index 331

 index

user group
default for authority 95
default, nobody 95
for authorization 96
mqm 93

user ID
authority 93
belonging to group nobody 95

user identifier service
introduction 12

user interface 12
USERID keyword, rules table 117
users

groups
principals 95

using syntax diagrams 187

V
variable, environment - disabling security 96
verifying

installation 24
MQSC commands 65

W
WAIT keyword, rules table 115
Windows NT user group

default, nobody 95
mqm 93

332 MQSeries for Windows NT V2.0 System Management Guide

Sending your comments to IBM
MQSeries for Windows NT

System Management Guide

SC33-1643-00

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: WINVMD(IDRCF)
 – Internet: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries for Windows NT

System Management Guide

SC33-1643-00
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries for Windows NT

MQSeries for Windows NT V2.0 System Management Guide SC33-1643-00

IBM

REPONSE PAYEE
GRANDE-BRETAGNE

NE PAS AFFRANCHIR

NO STAMP REQUIRED

IBM United Kingdom Laboratories Limited
Information Development Department (MP 095)
Hursley Park
WINCHESTER, Hants
SO21 2ZZ United Kingdom

IBRS/CCRI NUMBER: PHQ - D/1348/SO

Fold along this line

Fold along this line

C
u

t
a

lo
n

g
th

is
lin

e
C

u
t

a
lo

n
g

th
is

lin
e

You can send your comments POST FREE on this form from any one of these countries:
Australia
Belgium
Bermuda
Cyprus
Denmark

Finland
France
Germany
Greece
Hong Kong

Iceland
Israel
Italy
Luxembourg
Monaco

Netherlands
New Zealand
Norway
Portugal
Republic of Ireland

Singapore
Spain
Sweden
Switzerland
United Arab Emirates

United States
of America

If your country is not listed here, your local IBM representative will be pleased to forward your comments
to us. Or you can pay the postage and send the form direct to IBM (this includes mailing in the U.K.).

By air mail
Par avion

Name
Company or Organization
Address

EMAIL
Telephone

Fasten here with adhesive tape

From:

IBM

SC33-1643-ðð

	About this book
	Who this book is for
	What you need to know to understand this book
	How to use this book
	MQSeries publications
	Evaluating products
	Planning
	Administration
	Application programming
	Problem determination
	Special topics
	Softcopy books
	Other MQSeries Version 1 publications

	Information about MQSeries on the Internet

	Part 1. Guidance
	Chapter 1. Introduction
	MQSeries and message queuing
	Messages and queues
	Objects
	System default objects
	Administration
	Clients and servers
	Extending queue manager facilities
	Security
	MQSeries for Windows NT and CICS

	Chapter 2. Installing MQSeries for Windows NT
	Requirements
	Installing
	The MQSeries file tree
	Verifying your installation
	Applying maintenance
	Unattended installation and maintenance
	Deleting
	Verifying the uninstall process
	Unattended uninstall

	Chapter 3. Customizing your system
	Things you should customize
	Things you can customize

	Chapter 4. Understanding administration command sets
	Control commands
	MQSeries commands (MQSC)
	PCF commands
	Attribute names in MQSC and PCFs
	Comparing command sets

	Chapter 5. Managing queue managers
	Getting started
	Guidelines for creating queue managers
	Working with queue managers
	Looking at object files
	Managing the command server for remote administration

	Chapter 6. Administering local MQSeries objects
	Supporting application programs that use the MQI
	Issuing MQSC commands for administration
	Running MQSC commands from text files
	If you have problems with MQSC...
	Working with local queues
	Working with alias queues
	Working with model queues
	Managing objects for triggering

	Chapter 7. Administering remote MQSeries objects
	Understanding channels and remote queuing
	Creating a local definition of a remote queue
	Remote administration
	Using remote queue definitions for aliases

	Chapter 8. Security
	Before you begin
	Why you need to protect MQSeries resources
	Understanding the Object Authority Manager
	Using the Object Authority Manager commands
	Object Authority Manager guidelines
	Understanding the authorization specification tables
	Understanding authorization files

	Chapter 9. The MQSeries dead-letter queue handler
	Invoking the DLQ handler
	The DLQ handler rules table
	How the rules table is processed
	An example DLQ handler rules table

	Chapter 10. Instrumentation events
	What instrumentation events are
	Why use events?

	Chapter 11. Transactional support and messaging
	Using MQSeries in a CICS environment
	Using MQSeries in a TUXEDO environment

	Chapter 12. Linking to Lotus Notes
	What is Lotus Notes?
	Linking applications
	Disconnected requests
	Setting up your system
	Starting the server add-in task
	Verifying that Lotus Notes can link to MQSeries
	Stopping the link server task
	User notification

	Chapter 13. Recovery and restart
	What is in the log?
	Checkpointing—ensuring complete recovery
	Managing logs
	Using the log for recovery
	Backup and restore
	Recovery scenarios

	Chapter 14. Configuration files
	What configuration files are
	MQSeries configuration file
	Queue manager configuration file
	Editing configuration files
	Configuring the logs
	Specifying log file sizes

	Chapter 15. Problem determination
	Preliminary checks
	Common programming errors
	What to do next
	Using MQSeries trace
	Application design considerations
	Incorrect output
	Error logs
	Dead-letter queues
	Configuration files and problem determination
	First failure support technology (FFST)
	Problem determination with MQI clients

	Part 2. Reference
	Chapter 16. MQSeries control commands
	Names
	How to read syntax diagrams
	Flag indicators
	Syntax help
	crtmqcvx (Data conversion)
	crtmqm (Create queue manager)
	dltmqm (Delete queue manager)
	dspmqaut (Display authority)
	dspmqcsv (Display command server)
	dspmqfls (Display MQSeries files)
	dspmqtrn (Display MQSeries transactions)
	endmqcsv (End command server)
	endmqm (End queue manager)
	endmqtrc (End MQSeries trace)
	rcdmqimg (Record media image)
	rcrmqobj (Recreate object)
	rsvmqtrn (Resolve MQSeries transactions)
	runmqchi (Run channel initiator)
	runmqchl (Run channel)
	runmqdlq (Run dead-letter queue handler)
	runmqlsr (Run listener)
	runmqsc (Run MQSeries commands)
	runmqtmc (Start client trigger monitor)
	runmqtrm (Start trigger monitor)
	scmmqm (Add the queue manager to, or delete the queue manager from, theWindows NT Service Control Manager)
	setmqaut (Set or reset authority)
	strmqcsv (Start command server)
	strmqm (Start queue manager)
	strmqtrc (Start MQSeries trace)

	Part 3. Appendixes
	Appendix A. MQSeries for Windows NT V2.0 at a glance
	Program name
	Hardware requirements
	Software requirements
	Programming languages and compilers
	Distributed queuing with MQSeries for Windows NT Version 2.0
	Delivery
	Installation

	Appendix B. System defaults
	Appendix C. Directory structure
	Queue manager log directory structure

	Appendix D. Sample MQI programs and MQSC command files
	Appendix E. Stopping and removing queue managers manually
	Stopping queue managers manually
	Removing queue managers manually
	Removing queue managers from the automatic start-up list

	Appendix F. Messages
	Message format
	Structure of messages
	MQSeries messages

	Appendix G. Notices
	Trademarks

	Part 4. Glossary and index
	Glossary of terms and abbreviations
	Index

