

MQSeries for Windows**

User’s Guide

Version 2.1

GC33-1965-00

IBM

MQSeries for Windows**

User’s Guide

Version 2.1

GC33-1965-00

 Note

Before using this information and the product it supports, be sure to read the general information in Appendix F,
“Notices” on page 225.

First Edition (September 1997)

This edition applies to IBM MQSeries for Windows, Version 2.1, program number 5639-B69, and to any subsequent
releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

At the back of this publication is a page titled “Sending your comments to IBM.” If you want to make comments, but
the methods described are not available to you, please address them to IBM United Kingdom Laboratories, Information
Development, Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

 Contents

About this book . ix
Who this book is for . ix
What you need to know to understand this book ix
How to use this book . x

Appearance of text in this book . xi
Terms used in this book . xi

MQSeries for Windows publications . xi
MQSeries publications . xii

MQSeries cross-platform publications . xii
MQSeries platform-specific publications . xiv
MQSeries Level 1 product publications . xvi
Softcopy books . xvi

MQSeries information available on the Internet xvii

Summary of Changes . xix

Part 1. For all users . 1

Chapter 1. Introduction to MQSeries for Windows 3
What MQ connections are for . 3
What the Compact version provides . 4
What the Complete version provides . 4
Where to use MQSeries for Windows . 5
Comparing queue managers, clients, and servers 7
The features of MQSeries for Windows . 8
Where to find the information you need . 9

Chapter 2. Planning for MQSeries for Windows 11
Suggested hardware . 11
Required software . 12
Migrating from MQSeries for Windows Version 2.0 13
Migrating from MQSeries for Windows NT . 14

Chapter 3. Installing MQSeries for Windows 15
Installing the product . 15
Changing your installation . 19
Verifying your installation . 20

 Copyright IBM Corp. 1994, 1997 iii

Contents

Chapter 4. Using the Compact version . 23
Starting and stopping MQSeries for Windows 23
Choosing an MQ connection . 24
Monitoring the status of MQ components . 26
Choosing options . 29
Installing a new MQD file . 30
Getting information about your installation . 31
Using the administration features . 31

Part 2. For MQ administrators . 33

Chapter 5. What an MQ administrator can do 35

Chapter 6. Understanding the components of MQ 37
Introduction to messaging and queuing . 37
Why you need channels . 38
Why you need channel groups . 44
Why you need MQ connections . 46

Chapter 7. Installing MQSeries for Windows automatically 51
Preparing your server . 51
Installing from a file server . 54
Installing using a software distribution package 54
Changing an automatic installation . 55

Chapter 8. Creating an MQD file . 57
The format of the MQD file . 58
How MQ processes the MQD file . 62
Creating MQD files . 63
The ChannelGroup section . 69
The Connection section . 73
The Controls section . 78
The Process section . 79
The QueueManager section . 82

Chapter 9. Working with the components of MQSeries for Windows 87
Creating MQ components individually . 88
Deleting MQ components individually . 97
Viewing and changing object attributes . 98
Viewing the status of an MQ object . 101
Configuring for verification using a LAN . 102

Chapter 10. Using MQSC commands . 107
Issuing MQSC commands . 107
The MQSC page . 108
Writing MQSC command files . 111
MQSC commands supported by MQSeries for Windows 116

iv MQSeries for Windows** User’s Guide

Contents

Chapter 11. Making changes for a user . 119
Controlling the command server . 119
Making changes using a PCF application . 120
PCF commands supported by MQSeries for Windows 121
Restrictions on using PCF commands . 122
Controlling access to the administration features 125

Chapter 12. Running the sample programs on one workstation 127
Creating your test connection . 127
Putting messages on a queue . 128
Browsing messages on a queue . 130
Getting messages from a queue . 131
Notes about the sample programs . 132

Chapter 13. Running the sample programs on two workstations 133
Setting up the two connections . 133
Setting up the two connections without using MQD files 138
Running the sample programs on VENUS and MARS 140
When one of your workstations is on a different platform 141
Other tests you might want to try . 142

Chapter 14. Diagnosing problems . 143
Preliminary checks . 143
Problems with queues and queue managers 144
Problems with channels and channel groups 145
Problems with messages . 147
Service information . 149
Service Trace . 150
Monitoring MQSeries events . 151
MQSeries events generated by MQSeries for Windows 152

Part 3. For application programmers . 155

Chapter 15. Writing applications using the MQI on Windows 157
Using the C programming language . 157
Using the Visual Basic programming language 168

Chapter 16. How the MQI differs on MQSeries for Windows 175
Restrictions in the MQI calls . 175
Using signaling with the MQGET call . 176
Restrictions in the MQI structures . 178
MQI attributes on Windows . 180

 Contents v

Contents

Chapter 17. Understanding the sample programs 185
General design . 186
The design of the Putting Messages sample program 187
The design of the Browsing Messages sample program 187
The design of the Getting Messages sample program 188
Building the executable files . 189

Part 4. Appendixes . 193

Appendix A. Differences from the other members of the MQSeries family . 195

Appendix B. MQSeries control commands 201

Appendix C. Predefined queues and channels 203
Default and system objects . 203
Objects for running the sample programs on one workstation 204
Objects for running the sample programs on two workstations 205

Appendix D. Return codes . 207

Appendix E. Error messages . 213

Appendix F. Notices . 225
Trademarks . 226

Part 5. Glossary and index . 227

Glossary of terms and abbreviations . 229

Index . 235

vi MQSeries for Windows** User’s Guide

Figures and tables

 Figures

1. A network of server queue managers and three leaf-node queue managers . 5
2. The default directory structure . 18
3. The Status page of the MQSeries Properties dialog box showing the default

MQ components . 27
4. Programs connected to the same queue manager 39
5. Queue definitions from the supplied file MARS.TST 40
6. Communication between two queue managers 41
7. Examples of MQ connections . 48
8. The directory structure for automatic installation from a server 52
9. The file CREATEMQ.MQD supplied with the Compact version 61

10. The supplied file MARS.MQD . 62
11. The Create Queue Manager window . 88
12. The Create Channel Group window . 91
13. The Create Connection window . 92
14. The Create Queue window . 95
15. The Delete Queue window . 99
16. The objects defined in the file LANVFY.TST 103
17. The MQSC page . 110
18. An extract from VENUS.TST . 111
19. The supplied file MARS.TST . 114
20. The supplied file VENUS.TST . 115
21. The Putting Messages Sample window 128
22. The objects that VENUS.TST and MARS.TST create 136

 Tables

1. Comparison of supported features . 7
2. Suggested hardware configurations for MQSeries for Windows 11
3. How to perform tasks using the two versions of MQSeries for Windows . . 14
4. Allowed combinations of MCA types . 44
5. The composition of MQ connections . 47
6. The composition of the example MQ connections 48
7. How MQ displays the list of connections 67
8. Which connection MQ starts when the user is not prompted to select one . 67
9. The channel attributes you must always set 96

10. Maximum number of characters in the names of MQ objects 96
11. State of connection for changing component attributes 99
12. The format of MQSC command files . 112
13. MQSC commands and MQSeries for Windows 116
14. PCF commands and MQSeries for Windows 121
15. MQSeries events . 152
16. C header files . 158

 Copyright IBM Corp. 1994, 1997 vii

Figures and tables

17. Elementary data types in C . 165
18. Visual Basic header files . 168
19. Elementary data types in Visual Basic . 172
20. Attributes of queue managers on Windows 181
21. Attributes of queues on Windows . 182
22. Attributes of channels on Windows . 183
23. MQI calls used in the MQSeries for Windows sample programs 186
24. Files for the C-language version of the Putting Messages sample 189
25. Files for the Visual Basic version of the Putting Messages sample 189
26. Files for the C-language version of the Browsing Messages sample 189
27. Files for the Visual Basic version of the Browsing Messages sample . . . 190
28. Files for the C-language version of the Getting Messages sample 190
29. Files for the Visual Basic version of the Getting Messages sample 190
30. Control commands and MQSeries for Windows 201
31. Objects defined in AMQSCOMW.TST . 204
32. Object defined in AMQSCOSW.TST . 204
33. Objects defined in VENUS.TST . 205
34. Objects defined in MARS.TST . 205
35. Completion codes returned by MQI calls 207
36. Reason codes returned by MQI calls and MQSC commands 207

viii MQSeries for Windows** User’s Guide

About this book

About this book

IBM MQSeries for Windows** Version 2.1 provides messaging and queuing services on
Microsoft Windows 95 and Windows NT Version 4.0. It contains many improvements
over Version 2.0: the main changes are listed in “Summary of Changes” on page xix.

This book tells you how to install, set up, administer, and operate MQSeries for
Windows. However, this book is just to get you started with MQSeries, so for more
advanced topics (such as detailed guidance on how to write an MQSeries application) it
refers you to other MQSeries publications.

This book introduces you to the MQSeries Properties dialog box, which is the user
interface for MQSeries for Windows. Using this, you can control the operation of
MQSeries for Windows. For detailed information on this dialog box, see the online
help. This book does not contain descriptions of the commands you can use when you
are running or administering MQSeries for Windows; for descriptions of those
commands, see the online MQSeries for Windows Command Reference that is installed
as part of the product.

Who this book is for
This book is for:

� Users of MQSeries applications who want to install and configure MQSeries for
Windows.

� MQSeries administrators and operators who want to add an MQSeries for Windows
queue manager to an existing MQSeries network.

� Application programmers who want to modify an existing MQSeries application or
write a new application to run with MQSeries for Windows. This book explains
those features of the IBM Message Queue Interface (MQI) that MQSeries for
Windows does not support.

What you need to know to understand this book
The knowledge you need in order to understand this book depends on what you want
to use MQSeries for Windows for:

� If you want to use MQSeries for Windows on your own workstation to run
MQSeries applications, you need basic skills in the Microsoft Windows operating
system to understand the descriptions and procedures in this book. Also, it is
helpful to have a basic understanding of TCP/IP and the local area network you will
use. You do not need experience of other MQSeries products.

� If you want to support other users of MQSeries for Windows, you need some
experience of system administration, in addition to the skills required by application
users. This book gives you an introduction to using standard MQSeries
administration features on MQSeries for Windows, and it describes how the
administration features of MQSeries for Windows differ from those of other

 Copyright IBM Corp. 1994, 1997 ix

About this book

members of the MQSeries family. For more detailed information on the standard
MQSeries administration features, you must read the MQSeries Programmable
System Management manual.

� If you want to write applications to run under MQSeries for Windows, you need
experience of designing and writing MQSeries applications. This book gives you
an introduction to writing MQSeries applications, and it describes how the
programming features of MQSeries for Windows differ from those of other
members of the MQSeries family. For more detailed information on writing
MQSeries applications, you must read the MQSeries Application Programming
Guide and the MQSeries Application Programming Reference.

How to use this book
This book is divided into parts, one for each of the types of user of MQSeries for
Windows. Within each part, the chapters are organized in a task-oriented way, so you
should use the chapter that is appropriate to the task you are performing. The parts of
the book are:

Part 1, For all users
This part tells you what you need to know and what you need to do before
you start using MQSeries for Windows to run your applications (this
includes installing the product and verifying that it has installed correctly).

Use this part of the book to learn what you can do with MQSeries for
Windows if you install the Compact version of the product.

Part 2, For MQ administrators
This part is for those who administer MQ applications and their users. It
tells you how to prepare files for your users to install remotely, how to
create, delete, and change MQSeries for Windows components, and how
to make changes and diagnose problems for your users.

Part 3, For application programmers
This part describes the application programming support that MQSeries for
Windows provides, and lists the MQI features that MQSeries for Windows
does not support. This book does not tell you how to write an MQSeries
application; for that information, it refers you to the MQSeries Application
Programming Guide and to the MQSeries Application Programming
Reference.

This part also describes the sample programs that are supplied with
MQSeries for Windows.

Part 4, Appendixes
This part provides reference information. It describes the differences
between MQSeries for Windows and other MQSeries products, and it
describes the reason codes and error messages returned by MQSeries for
Windows.

Part 5, Glossary and index
The glossary contains descriptions of the new terms introduced in this
book, and those terms used with other than their everyday meanings.

x MQSeries for Windows** User’s Guide

MQSeries publications

Appearance of text in this book
This book uses the following type styles:

Example Used for

channel In text, the first occurrence of a term that is defined in the
“Glossary of terms and abbreviations”

Open The name of a command, option, or push button

Name=Sample_QM An example of text you see on the screen or in a program
listing

you must not Emphasizing a word or phrase

Terms used in this book
All new terms used in this book are defined in the “Glossary of terms and
abbreviations.” These terms are shown like this when they first occur in this book.

In the body of this book, Windows refers to Microsoft Windows 95 and Windows NT
Version 4.0 or later. MQSeries for Windows Version 2.1 does not run on earlier
versions of Windows, nor on WIN-OS/2.

The name of the product, MQSeries for Windows, is sometimes shortened to MQSeries
or MQ. These short names are also used for any member of the MQSeries family of
products when the text does not refer specifically to MQSeries for Windows.

MQSeries for Windows publications
The following information is available for MQSeries for Windows:

� MQSeries for Windows Version 2.1 User’s Guide, GC33-1965 (available as a
printed book and as an online book)

� MQSeries for Windows Command Reference (available as an online book only)

� Online help for the MQSeries Properties dialog box

To use an online book, open it from the menu of any of the help windows, or click on
its icon in the MQSeries for Windows directory.

For information that became available after the books and the help were completed:

� Read the READ.ME file (use My Computer to find the file in the \Program
Files\MQSeries for Windows directory)

� See the IBM MQSeries site on the Internet (see “MQSeries information available
on the Internet” on page xvii)

 About this book xi

MQSeries publications

 MQSeries publications
This section describes the documentation available for all current MQSeries products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries “family”
books, apply to all MQSeries Level 2 products. The latest MQSeries Level 2 products
are:

� MQSeries for AIX V5.0
� MQSeries for AT&T GIS V5.0
� MQSeries for Digital OpenVMS V2.2
� MQSeries for HP-UX V5.0
� MQSeries for MVS/ESA V1.2
� MQSeries for OS/2 Warp V5.0
� MQSeries for OS/400 V3R2
� MQSeries for OS/400 V3R7
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for SunOS V2.2
� MQSeries for Sun Solaris V5.0
� MQSeries Three Tier
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1
� MQSeries for Windows NT V5.0

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xvi. For a functional comparison of the Level 1 and Level 2 MQSeries products,
see the MQSeries Planning Guide.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes briefly
what MQSeries is, how it works, and how it can solve some classic interoperability
problems. This book is intended for a more technical audience than the MQSeries
Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries concepts,
identifies items that need to be considered before MQSeries is installed, including
storage requirements, backup and recovery, security, and migration from earlier
releases, and specifies hardware and software requirements for every MQSeries
platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a

xii MQSeries for Windows** User’s Guide

MQSeries publications

variety of MQSeries environments. In particular, it demonstrates how to (1) configure
communications to and from a representative sample of MQSeries products, (2) create
required MQSeries objects, and (3) create and configure MQSeries channels. The use
of channel exits is also described.

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use, and
manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as security,
recovery and restart, transactional support, problem determination, the dead-letter
queue handler, and the MQSeries links for Lotus Notes**. It also includes the syntax of
the MQSeries control commands.

This book applies to the following MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides both
reference and guidance information for users of MQSeries events, programmable
command formats (PCFs), and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages issued
by MQSeries, applies to these MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions of
the sample programs supplied with MQSeries.

 About this book xiii

MQSeries publications

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes; constants;
and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095, summarizes
the information in the MQSeries Application Programming Reference manual.

MQSeries Using C ++
MQSeries Using C++, SC33-1877, provides both guidance and reference information for
users of the MQSeries C++ programming-language binding to the MQI. MQSeries C++
is supported by V5.0 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and
Windows NT, and by MQSeries clients supplied with those products and installed in the
following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1
 � Windows 95

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication, in
addition to the MQSeries family books.

MQSeries for AIX

MQSeries for AIX V5.0 Quick Beginnings, GC33-1867

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2.2 System Management Guide,
GC33-1791

MQSeries for HP-UX

MQSeries for HP-UX V5.0 Quick Beginnings, GC33-1869

MQSeries for MVS/ESA

MQSeries for MVS/ESA Version 1 Release 2 Licensed Program Specifications,
GC33-1350

MQSeries for MVS/ESA Version 1 Release 2 Program Directory

MQSeries for MVS/ESA Version 1 Release 2 System Management Guide,
SC33-0806

xiv MQSeries for Windows** User’s Guide

MQSeries publications

MQSeries for MVS/ESA Version 1 Release 2 Messages and Codes, GC33-0819

MQSeries for MVS/ESA Version 1 Release 2 Problem Determination Guide,
GC33-0808

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp V5.0 Quick Beginnings, GC33-1868

MQSeries for OS/400

MQSeries for OS/400 Version 3 Release 2 Licensed Program Specifications,
GC33-1360 (softcopy only)

MQSeries for OS/400 Version 3 Release 2 Administration Guide, GC33-1361

MQSeries for OS/400 Version 3 Release 2 Application Programming Reference
(RPG), SC33-1362

Note: The MQSeries for OS/400 Version 3 Release 2 publications apply also to
MQSeries for OS/400 Version 3 Release 7.

MQSeries link for R/3

MQSeries link for R/3 Version 1.0 User’s Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide,
GC33-1768

MQSeries for SunOS

MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris

MQSeries for Sun Solaris V5.0 Quick Beginnings, GC33-1870

MQSeries Three Tier

MQSeries Three Tier Administration Guide, SC33-1451
MQSeries Three Tier Reference Summary, SX33-6098
MQSeries Three Tier Application Design, SC33-1636
MQSeries Three Tier Application Programming, SC33-1452

MQSeries for Windows

MQSeries for Windows Version 2.0 User’s Guide, GC33-1822
MQSeries for Windows Version 2.1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT V5.0 Quick Beginnings, GC33-1871

 About this book xv

MQSeries publications

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and Codes,
SC33-1754

MQSeries for Digital VMS VAX Version 1.5 User’s Guide, SC33-1144

MQSeries for SCO UNIX Version 1.4 User’s Guide, SC33-1378

MQSeries for Tandem NonStop Kernel Version 1.5.1 User’s Guide, SC33-1755

MQSeries for UnixWare Version 1.4.1 User’s Guide, SC33-1379

MQSeries for VSE/ESA Version 1 Release 4 Licensed Program Specifications,
GC33-1483

MQSeries for VSE/ESA Version 1 Release 4 User’s Guide, SC33-1142

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager format
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using the
following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

Portable Document Format (PDF)
PDF files can be viewed and printed using the Adobe** Acrobat Reader**.

If you need to obtain the Adobe Acrobat Reader, or would like up-to-date information
about the platforms on which the Acrobat Reader is supported, visit the Adobe Systems
Inc. web site at URL:

 http://www.adobe.com/acrobat/acrodist.html

PDF files for MQSeries are shipped with these MQSeries products:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

xvi MQSeries for Windows** User’s Guide

MQSeries on the Internet

They are also available from the MQSeries software-server home page at URL:

 http://www.software.ibm.com/is/sw-servers/mqseries/

 HTML format
The MQSeries documentation is provided in HTML format with these MQSeries
products:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

The MQSeries books are also available from the MQSeries software-server home page
at URL:

 http://www.software.ibm.com/is/sw-servers/mqseries/

The following browsers are recommended:

� Lotus Notes 4.5 or later
� Netscape Navigator 3.0 or later
� Microsoft Internet Explorer

 � HotJava

Information Presentation Facility (IPF) format
In the OS/2 environment, the MQSeries documentation is supplied in IBM IPF format on
the MQSeries product CD-ROM.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

MQSeries information available on the Internet
 MQSeries URLs

The URL of the MQSeries product family home page is:

 http://www.hursley.ibm.com/mqseries/

You can find MQSeries SupportPacs at the following URL:

 http://www.hursley.ibm.com/mqseries/txppacs/txpsumm.html

 About this book xvii

MQSeries on the Internet

xviii MQSeries for Windows** User’s Guide

Summary of changes

Summary of Changes

Version 2.1 of MQSeries for Windows differs from Version 2.0 in the following areas:

� Version 2.1 is a 32-bit product, so it supports multithreaded applications. It runs on
Windows 95 and Windows NT Version 4.0 only.

� Version 2.1 provides a choice of two versions at installation time:

– The Compact version is for the users of MQ applications; these users do not
need to configure MQ themselves so much of MQ is hidden from them.

– The Complete version is for the administrators of the users of MQ applications,
and for application developers; it contains extra features to help to administer
users and develop applications.

� Version 2.1 integrates the utilities of Version 2.0 into a single properties dialog box.

� Version 2.1 uses a new component known as an MQ connection to hide queue
managers and their components from users. An MQ connection contains all the
MQ objects an application user needs to run an MQ application.

� Version 2.1 uses definition (MQD) files to configure MQ components automatically.
These are similar to the initialization (INI) files that Version 2.0 uses, but Version
2.1 adds more keywords and more choices on when the file is run.

� Version 2.1 provides support for dial-up networking connections.

� Version 2.1 provides a command server, like that of other MQSeries queue
manager products. This means that an MQSeries for Windows queue manager
can be administered remotely using the PCF commands that are available on other
Level 2 MQ products.

� Version 2.1 provides support for MQSeries events.

� Version 2.1 provides support for some extra MQSC commands.

� Version 2.1 provides support for signaling when an application uses the MQGET
call.

� Version 2.1 provides fast-message support for nonpersistent messages.

� Version 2.1 provides some Visual Basic sample programs.

 Copyright IBM Corp. 1994, 1997 xix

Summary of changes

xx MQSeries for Windows** User’s Guide

Part 1. For all users

Chapter 1. Introduction to MQSeries for Windows 3

Chapter 2. Planning for MQSeries for Windows 11

Chapter 3. Installing MQSeries for Windows 15

Chapter 4. Using the Compact version . 23

 Copyright IBM Corp. 1994, 1997 1

2 MQSeries for Windows** User’s Guide

Introduction

Chapter 1. Introduction to MQSeries for Windows

MQSeries for Windows Version 2.1 is a lightweight 32-bit messaging product that
provides MQSeries functions on workstations that run Microsoft Windows** 95 or
Windows NT Version 4.0. It uses significantly fewer resources than other MQSeries
products, so it is a good choice to use as a single-user queue manager running on a
small or medium-sized personal computer.

There are two groups of users of MQSeries for Windows, so it offers two versions:

Compact version
MQSeries for Windows is particularly well suited to users of messaging
applications who want to use a standard configuration. It can create and
start automatically the messaging components you need when you start
your workstation. These features mean that users of MQ applications do
not need to get involved with MQSeries so they can concentrate on the
applications they want to use. Users of MQ applications should install the
Compact version of MQSeries for Windows.

Complete version
The Complete version is for those who administer the users of MQ
applications and for the developers of MQ applications who want to test
and deploy their applications. This version contains additional features
(including administration tools and sample programs) to help you with these
tasks.

This chapter contains the following sections:

� “What MQ connections are for”
� “Where to use MQSeries for Windows” on page 5
� “Comparing queue managers, clients, and servers” on page 7
� “The features of MQSeries for Windows” on page 8
� “Where to find the information you need” on page 9

What MQ connections are for
To hide the many MQSeries objects from application users, MQSeries for Windows
introduces the connection component. Typically, when MQSeries for Windows starts, it
displays a dialog in which you choose a connection appropriate to the application you
want to use. The application might exchange data with another computer using a LAN
or dial-up telephone link, but all the information MQ needs to manage this is contained
in the definition of the connection you select.

 Copyright IBM Corp. 1994, 1997 3

Introduction

For example, if you always use a single MQ application through a LAN connection in
your office, you need only a single connection to the office server, and you can
configure MQ so that it starts this connection automatically for you. But if you are a
mobile user, such as a travelling salesman, you might require three connections for the
same application:

� One for access by telephone while working from home
� Another for working without a connection in a customer’s office
� Another for access through the LAN while working in your own office

You can select which connection to use when you start your workstation.

If you use more than one application, you will need more connections. For example:

� Connection A for using application X over a LAN
� Connection B for using application X over a telephone link
� Connection C for using application Y over a LAN
� Connection D for using application Y over a telephone link
� Connection E for using application Z over a telephone link

You can have only one active connection, so if you want to use a different connection,
you must first stop the active one.

If you want to learn more about MQ connections, see “Why you need MQ connections”
on page 46.

If you want to learn about the MQ components that are included in your connections,
see Chapter 6, “Understanding the components of MQ” on page 37.

What the Compact version provides
If you use the Compact version of MQSeries for Windows, MQ creates the connections
you will need to run your MQ applications. This is because they are defined in a
definition (MQD) file that MQ runs when it starts. If you need to change these
connections or add new ones, your MQ administrator will give you a new MQD file and
MQ can run that for you automatically as well.

If you need to, you can monitor the status of your connections using the MQSeries
Properties dialog box.

What the Complete version provides
If you use the Complete version of MQSeries for Windows, you have all the facilities
provided by the Compact version, and in addition you can create, change, and delete
objects using the MQSeries Properties dialog box.

Also, there is information in this book to help you create MQD files for your application
users and use MQ commands (MQSC and PCF) to administer their applications.

You can also write applications using the supplied header files and libraries.

4 MQSeries for Windows** User’s Guide

Introduction

Where to use MQSeries for Windows
MQSeries for Windows is designed for use as a leaf node in a network of queue
managers; that is, it is intended for use by a single user on a workstation that is
connected to only one other computer in an MQSeries network of computers (see
Figure 1).

Leaf-node
queue

managers

Server queue managers

Figure 1. A network of server queue managers and three leaf-node queue managers. The leaf
node queue managers run on Windows; they each connect to only one server. The server queue
managers run on any other MQSeries platform; they can each be connected to other servers.

 Chapter 1. Introduction to MQSeries for Windows 5

Introduction

There are important differences between a leaf-node queue manager, an MQSeries
client, and a server-node queue manager:

� A leaf-node queue manager is a lightweight product that connects to a network of
one or more larger servers. It manages its own queues, so an application that
runs on a leaf-node queue manager can continue to work, even if there is a failure
in the messaging network or if the user decides to work in standalone
(disconnected) mode (for example, away from their own office or in a branch office
that does not currently have a connection to a server).

A leaf-node queue manager is not intended for use as an intermediate queue
manager that passes messages from one queue manager to another or one that
serves many users. For this reason it does not support MQSeries clients. It is
intended for a single user working on their own workstation.

� An MQSeries client provides no queue manager functions and it has no queues. It
is dependent on an MQSeries server (of the type that supports MQSeries clients).
The server owns the queues that the client uses, so if the communication link
between the client and the server is broken, the client cannot use those queues.
MQSeries for Windows does not support MQSeries clients.

� A server-node queue manager is a product (such as MQSeries for Windows NT)
that manages the queues and communication channels required to support the
transfer of messages between queue managers. The computer on which the
server-node queue manager runs is large enough to manage the volume of
messages such a server might be required to process, and it may also support
MQSeries clients. Such a queue manager is likely to be used by a network
administrator.

MQSeries for Windows typically runs on workstations that are not powerful enough to
act as a server. Like a server though, MQSeries for Windows manages its own queues
and the channels to communicate with other queue managers. However, because it is
intended to be a leaf node, MQSeries for Windows does not provide all the server
functions available on other MQSeries queue managers; these include media recovery,
two-phase commit, instrumentation events, and MQSeries client support. For a full list
of the MQSeries features that MQSeries for Windows does not support, see
Appendix A, “Differences from the other members of the MQSeries family” on
page 195.

MQSeries for Windows is designed to run in the Windows environment, so it provides
Windows programs that help to make the queue manager easier to use. These
programs are not provided by other MQSeries products.

6 MQSeries for Windows** User’s Guide

Introduction

Comparing queue managers, clients, and servers
MQSeries for Windows is a single-user queue manager; it is not an MQSeries client or
a server, and it does not support MQSeries clients. For a summary of the differences
between an MQSeries for Windows queue manager, an MQSeries client, and an
MQSeries server (such as MQSeries for Windows NT or MQSeries for OS/2), see
Table 1.

Table 1. Comparison of supported features

Feature MQSeries for
Windows

MQSeries client
on Windows

MQSeries server

Independent
operation

Yes No Yes

Queue manager Yes No Yes

Queues Yes No Yes

Message channels Yes No Yes

Run MQSC
commands

Interactively or from
a command file

No On a command line
or from a command
file

Persistence of
MQSeries objects

Yes All objects are on
the server

Yes

Logging and media
recovery

No All objects are on
the server

Yes

Automatic
installation

Yes Yes Yes

Automatic startup Yes No No

Supports MQSeries
clients

No Not applicable Yes

 Chapter 1. Introduction to MQSeries for Windows 7

Introduction

The features of MQSeries for Windows
MQSeries for Windows provides the following features of the MQSeries family of
products, but on the Windows operating system:

� The MQSeries Message Queue Interface (MQI) for application development on
Windows

� Communication between queue managers using TCP/IP

� Standard MQSeries message types and formats

� Support for multithreaded applications

� Persistent messages (which survive restarts of the workstation) and nonpersistent
messages

� Standard MQSC commands to create, alter, or delete MQSeries objects (but
MQSeries for Windows does not support all the commands)

� Remote administration using PCF commands and MQ events

� Automatic installation using InstallShield and silent install

� Report generation, including confirmation of arrival (COA), confirmation of delivery
(COD), and message expiry

MQSeries for Windows is a small footprint, 32-bit queue manager that runs on Windows
95 and Windows NT Version 4.0. In addition to the general MQSeries features,
MQSeries for Windows provides extra features:

� To help users of applications to get started quickly and easily the first time they
use the product, MQSeries for Windows can automatically create and start the
messaging components the users need.

� To help users of applications to get started every time they start their workstations,
MQSeries for Windows can automatically start its components.

� To help you to set up and work with your MQ components, MQSeries for Windows
provides an MQSeries Properties dialog box. You can open this from the Windows
taskbar and Control Panel. The pages of this dialog box have extensive online
help.

� To make it easier to work with MQ components, MQSeries for Windows provides
MQ connections. An MQ connection contains all the objects an application user
needs to run an MQ application.

� To make it easier to work with the message channels that you must use to send
messages between queue managers, MQSeries for Windows provides channel
groups. A channel group is a collection of channels that are started and stopped
together.

� To make it easier to work with dial-up devices (such as modems) when you
connect two queue managers, MQSeries for Windows allows you to create dial-up
connections that use the dial-up networking features provided by Windows.

8 MQSeries for Windows** User’s Guide

Introduction

� To prevent application users having to organize MQ windows on their desktop, you
can reduce MQSeries for Windows to an icon on the Windows taskbar. You can
even hide this icon if you want to.

� To support application development, MQSeries for Windows provides support for
the C and Visual Basic programming languages.

Where to find the information you need
The information you need when you use MQSeries for Windows depends on what you
want to use the product for and how much MQSeries experience you have:

If you are new to MQSeries
For an introduction to MQSeries for Windows, see:

� Part 1, “For all users” on page 1

If you want to use the online information
To learn how to use the online information supplied with MQSeries for Windows,
see:

� “The online information” on page 10

If you want information on installing MQSeries for Windows
To learn more about how to install MQSeries for Windows, see:

� Chapter 3, “Installing MQSeries for Windows” on page 15

If you want to run an MQSeries application
To learn how to use MQSeries for Windows to run an MQSeries application, see:

� Chapter 4, “Using the Compact version” on page 23

If you have used MQSeries on other platforms
To understand how MQSeries for Windows differs, see:

� Chapter 2, “Planning for MQSeries for Windows” on page 11
� Part 3, “For application programmers” on page 155
� Appendix A, “Differences from the other members of the MQSeries family”

on page 195

If you want to support other users of MQSeries for Windows
To learn about the facilities MQSeries for Windows provides to help you, see:

� Part 2, “For MQ administrators” on page 33

If you are new to writing MQSeries applications
To learn how to write MQSeries applications, see:

� The MQSeries Application Programming Guide

� The MQSeries Application Programming Reference

� Part 3, “For application programmers” on page 155

� Appendix A, “Differences from the other members of the MQSeries family”
on page 195

 Chapter 1. Introduction to MQSeries for Windows 9

Introduction

If you have written MQSeries applications for other platforms
To learn how to migrate an existing MQSeries application to Windows, see:

� The programming restrictions described in Part 3, “For application
programmers” on page 155

� Appendix A, “Differences from the other members of the MQSeries family”
on page 195

The online information
When you are looking at the MQSeries Properties dialog box, you can get help about
the current page by clicking on the Help push button.

To get help about other parts of the product and to see the online documentation:

1. Open the MQSeries Properties dialog box.

2. On any page of this dialog, click on the Help push button.

3. On the help page, select the Help Topics menu item.

4. Select the online book you want to use, then click on the Open push button (or
double-click on the name of the book).

10 MQSeries for Windows** User’s Guide

Chapter 2. Planning for MQSeries for Windows

This chapter describes the hardware and software you should plan to acquire before
you use MQSeries for Windows, and it lists things you need to consider if you are
migrating to MQSeries for Windows from other products. This chapter contains the
following sections:

 � “Suggested hardware”
� “Required software” on page 12
� “Migrating from MQSeries for Windows Version 2.0” on page 13
� “Migrating from MQSeries for Windows NT” on page 14

 Suggested hardware
MQSeries for Windows is a 32-bit product, so it runs on computers that run Windows
95 or Windows NT Version 4.0. Table 2 suggests two configurations: one for running
applications and the other for developing applications.

Note: These recommendations are for guidance only. They do not take into account
the effects of any other software that may be running on the computer at the same time
as MQSeries for Windows.

Table 2. Suggested hardware configurations for MQSeries for Windows

Configuration Processor RAM Hard disk (Note 1)

For running
applications

386DX or better At least 4 MB At least 3.5 MB
available

For developing
applications
(Note 2)

486 66 MHz or
better

At least 8 MB At least 5 MB
available

Note:

1. This is the space required to install MQSeries for Windows. In addition to this, you need
disk space to store the MQ components you create.

2. The specification for developing applications does not include hardware requirements for
other development tools (for example, compilers).

 Copyright IBM Corp. 1994, 1997 11

Required software

 Required software
This section describes the software you require before you can use MQSeries for
Windows. This depends on whether you want to run MQSeries applications on
MQSeries for Windows, or develop your own applications for it.

For running MQSeries applications
For running applications on MQSeries for Windows, you need the following software (or
later versions):

� Microsoft Windows 95
or Windows NT Version 4.0

� A TCP/IP product for the operating system you are using. (You can use the
TCP/IP that is supplied as part of the operating system.)

MQSeries for Windows uses the TCP/IP port 1414. If you want to use a different port,
add a different TCP/IP services entry in the TCP/IP configuration file named Services.
You must use the name shown here (and you must type this name exactly as it is
shown here, in mixed case):

 MQSeries

Note: MQSeries for Windows does not run on any of the following operating systems:

� Microsoft Windows 3.1

� Versions of Windows NT earlier than 4.0

� Win32s (the Windows 32-bit subsystem that is available for 16-bit Windows)

� WIN-OS/2 on OS/2 Warp

Before you can use dial-up MQ connections, you must define dial-up networking
connections using the dial-up networking support provided by Windows.

For developing MQSeries applications
To develop and test MQSeries applications that run on Windows, in addition to the
software listed in “For running MQSeries applications” , you need only the compiler
for the programming language you will use:

� Microsoft Visual C++ Version 4.0
 � Borland C
� Microsoft Visual Basic Version 4.0

12 MQSeries for Windows** User’s Guide

Migrating from V2.0

Migrating from MQSeries for Windows Version 2.0
If you have used Version 2.0 of MQSeries for Windows, note the following when you
move to Version 2.1:

� You are not recommended to install Version 2.1 of MQSeries for Windows on a
workstation that has Version 2.0 already installed. You should uninstall Version 2.0
before you install Version 2.1.

� The appearance of Version 2.1 on the desktop is like that of other 32-bit Windows
products. However, if you prefer to access features using icons, you can use the
shortcuts that Version 2.1 puts in the MQSeries for Windows folder.

To see how to perform the tasks you are used to performing using the Version 2.0
utilities, see Table 3 on page 14.

� Version 2.1 does not have a Create and Go utility; instead, it tests the file named
CREATEMQ.MQD each time it starts. (But you can use a different file name if you
use an environment variable to define it.) MQ runs this file if its date or time has
changed since it was last run. Also, the user can choose to run the MQD file at
any time. For more information, see Chapter 8, “Creating an MQD file” on
page 57.

� If you want to reuse the INI files you used with the Create and Go utility in Version
2.0, you must compare your files with the syntax described in Chapter 8, “Creating
an MQD file” on page 57.

� Version 2.1 runs only 32-bit applications, so you must change your 16-bit
applications.

� Version 2.1 provides support for some additional MQSC commands. For more
information, see “MQSC commands supported by MQSeries for Windows” on
page 116.

 Chapter 2. Planning for MQSeries for Windows 13

Migrating

Table 3. How to perform tasks using the two versions of MQSeries for Windows

Task MQSeries for Windows V2.0 MQSeries for Windows V2.1

To create new components Use the Create Components utility Use the Components page of the
MQSeries Properties dialog box in
the Complete version, or add
definitions of each component to
the MQD file.

To delete components Use the Delete Components utility Use the Components page of the
MQSeries Properties dialog box in
the Complete version, or use the
MQD file.

To start and stop components, and
monitor their status

Use the Standard and Advanced
Controls utilities

Use the MQSeries Properties
dialog box or the MQ taskbar icon.

To change components Use the Advanced Controls utility Use the MQSeries Properties
dialog box or the MQD file.

To run a definition (MQD) or
initialization (INI) file

Use the Create and Go utility to
run an INI file

The MQD file is run automatically
when MQSeries for Windows
starts. Also, you can run it at any
time from the menu of the MQ
status icon on the Windows
taskbar.

Migrating from MQSeries for Windows NT
If your workstation already has MQSeries for Windows NT installed (this is a server
product), note the following:

� If your workstation has a version of MQSeries for Windows NT earlier than Version
5.0 already installed, you are not recommended to install Version 2.1 of MQSeries
for Windows. You should uninstall MQSeries for Windows NT before you install
MQSeries for Windows.

� If your workstation has Version 5.0 of MQSeries for Windows NT already installed,
you can also install Version 2.1 of MQSeries for Windows, but you are not
recommended to do this except in a test environment.

14 MQSeries for Windows** User’s Guide

Installing the product

Chapter 3. Installing MQSeries for Windows

This chapter tells you how to install MQSeries for Windows on a single workstation
using the supplied diskettes or CD-ROM. It contains the following sections:

� “Installing the product”
� “Changing your installation” on page 19
� “Verifying your installation” on page 20

MQSeries for Windows is enabled for remote (or silent) installation so you can put the
installation files on a LAN server for easier access. For more information on this, see
Chapter 7, “Installing MQSeries for Windows automatically” on page 51.

Installing the product
If you already have the following products installed on your workstation, read the
migration notes before you install Version 2.1 of MQSeries for Windows:

� MQSeries for Windows Version 2.0; see “Migrating from MQSeries for Windows
Version 2.0” on page 13

� MQSeries for Windows NT; see “Migrating from MQSeries for Windows NT” on
page 14

Starting the installation
To install the product:

1. On the Windows desktop, click on Start .

2. Select Settings and open the Control Panel.

3. Double-click on Add/Remove Programs .

4. Click on Install .

5. Insert the first MQSeries for Windows diskette in your diskette drive, or insert the
CD-ROM in your drive.

6. Follow the instructions shown in the windows to start the InstallShield wizard
(which is named Setup).

On the CD-ROM, the setup program is in the DISK1 directory.

7. Proceed to “Completing the installation” on page 16.

 Copyright IBM Corp. 1994, 1997 15

Installing the product

Completing the installation
When Setup prompts you to select a type of installation, choose one of the following
versions of MQSeries for Windows:

Compact If you are installing MQSeries for Windows only so that you can run
MQSeries applications, select the Compact version. It includes:

� The MQSeries for Windows runtime code

� The online help

� The definitions of default MQSeries objects

� The online MQSeries for Windows User’s Guide

� The online MQSeries for Windows Command Reference

� The READ.ME file, which contains information that was not available
when this book was published

Complete If you are installing MQSeries for Windows so that you can create your
own MQSeries applications, or so that you can administer other users of
MQSeries applications, select the Complete version. It includes:

� All the features provided by the Compact version

� Administration features to help you, for example, create and delete
components (these features are available in the Compact version, but
they can be hidden from the user)

� The header files and libraries to enable you to compile an MQSeries
for Windows application

� Sample MQSC command files

� Sample applications (in both source and executable forms) written in
the C language and in Visual Basic

� A Service Trace utility

You cannot install both the Compact and the Complete versions of the product on your
workstation. But if MQSeries for Windows is already installed on your workstation,
Setup selects the same version automatically and reinstalls it. So, for example, if you
have the Compact version of MQSeries for Windows already installed, Setup
automatically reinstalls the Compact version in the same directory. If you want to
change to the other version, you must first uninstall the existing version.

If you do not want to install the product on the default drive or directory, or in the
default folder, Setup gives you a chance to change them.

An indicator shows the progress of the installation process; the process takes only a
few minutes.

16 MQSeries for Windows** User’s Guide

Installing the product

When the installation process finishes

When the installation of the Compact version finishes, MQSeries for Windows
starts automatically.

When the installation of the Complete version finishes, you are given the choice of
starting MQSeries for Windows immediately or of delaying the start of MQSeries for
Windows until you restart your computer.

However in both cases, if MQ detects that a shared file is being used by another
application, you are instructed to restart your computer.

When the installation process finishes, MQ runs the MQD file named CREATEMQ.MQD
to configure MQ on your workstation. For information on how to create a new MQD
file, see Chapter 8, “Creating an MQD file” on page 57.

Registering your installation
When the installation has finished, you are prompted to register your installation with
IBM so we can keep you informed of changes to your product and give you information
about new products. If you choose not to register now, you are reminded every 8 days.

If you want to make changes to your registration at any time, use the Registration
shortcut in the MQSeries for Windows directory.

Starting to use MQSeries for Windows
MQ runs whenever Windows is running; you will see an MQ icon on your Windows
taskbar. To see the MQSeries Properties dialog box (which you use to work with MQ),
double-click on this icon. If you want to hide this icon, set the option in the MQSeries
Properties dialog box. For more information on how to use MQ, see Chapter 4, “Using
the Compact version” on page 23.

Setup also adds an MQ icon to your Control Panel (after installing the product, you
cannot see the icon until you refresh the Control Panel). So if you choose to hide the
MQ icon from the taskbar, you can open the MQSeries Properties dialog box from the
Control Panel.

Setup also adds some shortcuts to the MQSeries for Windows folder. You can use
these to open things like the online Command Reference.

 Chapter 3. Installing MQSeries for Windows 17

Installing the product

Directories after installation
Figure 2 shows the directory structure after you have installed the Complete version of
MQSeries for Windows. If you install the Compact version, the directories installed are
a subset of those shown.

\Program Files\MQSeries for Windows

Data

Include

Lib

QMgrs

Samples

Figure 2. The default directory structure

In Figure 2, the directories are:

Data Data files for the product, including the product log files.

Include Include files for the Complete version.

Lib Product libraries for the Complete version.

QMgrs A subdirectory for each queue manager you create (this includes the
channel log files). Initially, this directory is empty.

Samples The source code and executable files for the sample programs.

Testing your installation
After you have installed MQSeries for Windows, use the procedures described in
“Verifying your installation” on page 20 to verify that the installation completed
successfully.

18 MQSeries for Windows** User’s Guide

Installing the product

Changing your installation
After installing the product, you can use the Control Panel to:

� Apply maintenance updates
� Remove the product

Applying maintenance updates
When you receive a maintenance update (or “fix”) for MQSeries for Windows, read the
READ.ME file supplied with it to check that it applies to your system, and for
instructions on how to apply it.

If you want to apply the maintenance update automatically to one or more workstations,
you will need response files that you can copy to a LAN server. For more information
on this method, see “Changing an automatic installation” on page 55.

Removing the product
 Note

When you remove MQSeries for Windows from your workstation, all MQ objects
(such as connections, queue managers, and queues) are deleted as well.

To remove the product:

1. On the Windows desktop, click on Start .
2. Select Settings and open the Control Panel.
3. Double-click on Add/Remove Programs .
4. Select MQSeries for Windows from the list of installed software.
5. Click on Add/Remove .
6. Follow the on-screen instructions.

If you want to reinstall the product, you must first restart your computer.

Moving the product to another directory
You are recommended not to move the product files to different directories after
installation. Setup writes configuration information to the system registry, and this
information includes the location of the MQSeries product.

If you want to move the product to another directory, you must first remove it from your
workstation, then reinstall it at the new location. This ensures the information in the
system registry is correct.

 Chapter 3. Installing MQSeries for Windows 19

Verifying your installation

Verifying your installation
When you have finished installing MQSeries for Windows, you should verify that the
installation was successful before you try to use the product. You can use Verify at any
time to test that your copy of MQSeries for Windows is working correctly. To do this,
use the Verify function on the Service page of the MQSeries Properties dialog box.

You can choose to run the Verify function on your own workstation using a standalone
connection, or you can run it using a connection to a server on a LAN:

� If you run Verify in standalone mode, it uses a standalone MQ connection on your
own workstation to confirm MQ is installed and configured correctly.

� If you run Verify in LAN mode, it uses a LAN MQ connection to a server on your
LAN so you can be sure you can exchange messages with that server.

However, you can use LAN mode only if:

� You have no active connection
� Your workstation has been configured for LAN verification
� The remote server has been configured for LAN verification

For information on how to configure the workstation and the server for LAN verification,
see “Configuring for verification using a LAN” on page 102.

If you install the Complete version, you can also use the sample programs to test your
installation:

� Chapter 12, “Running the sample programs on one workstation” on page 127
explains how to create a test connection and to run the sample programs on that
connection.

� Chapter 13, “Running the sample programs on two workstations” on page 133
explains how to set up two connections (each on a separate workstation) and to
use the sample programs to send messages between them.

Running the Verify function
To start the Verify function:

1. Open the Service page of the MQSeries Properties dialog box.

2. Open the Verify page.

3. Select either a Standalone or a LAN type of verification.

4. If you choose LAN verification, ensure the wait interval allows time for the response
from the server to arrive (30 seconds should be sufficient).

5. Click on the Start push button.

The verification process runs automatically and takes only a few minutes. If the
verification is successful, Verify displays a confirmation message.

20 MQSeries for Windows** User’s Guide

Verifying your installation

If any of the verification tasks fail, Verify stops and displays message AMQ3601. The
message shows the verification task that failed. If you can rectify the problem, do so,
then restart the verification by clicking on the Start push button on the Verify page. If
you cannot rectify the problem, try restarting your computer; otherwise you must
remove the product and try again. If the error persists, contact your MQ administrator.
For more information, see “If standalone verification fails.”

If standalone verification fails
The most likely reasons for failure of a standalone verification are:

� There is not enough space available on the disk on which MQSeries for Windows
is installed to run Verify. Or there is insufficient memory available.

The Service page of the MQSeries Properties dialog box provides information on
the amount of resources available.

Free some space on the disk on which you have installed MQSeries for Windows,
or close some of the programs you are running, then retry Verify.

� The MQSC command file that defines the default queues is missing.

The file AMQSCOMW.TST must be in the \Program Files\MQSeries for
Windows\QMgrs directory. If you have moved this file, move it back to this
directory; otherwise reinstall MQSeries for Windows.

� A queue manager named SYSTEM.LCLVFY.USER.QUEUE.MANAGER already
exists.

If you have created a queue manager of this name, you must delete it before you
run Verify.

� A connection named SYSTEM.LCLVFY.USER.CONNECTION already exists.

If you have created a connection of this name, you must delete it before you run
Verify.

For information on the most likely reasons for failure of a LAN verification, see “If
LAN-mode verification fails” on page 104.

How standalone verification works
In standalone mode, Verify performs the following tasks if there is no active connection:

1. Create a connection
2. Start the connection
3. Open the default queue
4. Put a test message on the queue
5. Get the message from the queue
6. Close the queue
7. Stop the connection
8. Delete the connection

 Chapter 3. Installing MQSeries for Windows 21

Verifying your installation

If there is a connection already active, Verify uses that connection to perform the
following tasks:

1. Open the default queue
2. Put a test message on the queue
3. Get the message from the queue
4. Close the queue

22 MQSeries for Windows** User’s Guide

User tasks

Chapter 4. Using the Compact version

The Compact version of MQSeries for Windows is for the users of MQSeries
applications. However, these users need very little contact with the MQSeries product;
they need it running only so that their applications can run. If they want to make use of
all the features of MQ, or make changes to their installation, this chapter describes the
tasks they can perform with MQSeries for Windows. Those tasks are:

� “Starting and stopping MQSeries for Windows”
� “Choosing an MQ connection” on page 24
� “Monitoring the status of MQ components” on page 26
� “Choosing options” on page 29
� “Installing a new MQD file” on page 30
� “Getting information about your installation” on page 31
� “Using the administration features” on page 31

Starting and stopping MQSeries for Windows
MQSeries for Windows starts automatically every time Windows starts. You can
choose to be prompted to select a particular connection when MQ starts; you make this
choice on the Options page of the MQSeries Properties dialog box:

� If you choose to be prompted, MQ displays the Connections page of the MQSeries
Properties dialog box; on this page, double-click on the name of the connection
you want to start.

� If you choose not to be prompted, MQ starts the connection that is defined to start
automatically. If there is no such connection, MQ does not start one.

When a connection is active, use the MQSeries icon on your Windows taskbar to
monitor the status of that connection (see “The taskbar icon” on page 26).

If you choose (from the Options page of the MQSeries Properties dialog box) not to
have the MQSeries icon visible on your Windows taskbar, you can open the MQSeries
Properties dialog box either by:

� Opening the Control Panel and double-clicking on the MQSeries icon

� Selecting the MQSeries properties shortcut from the MQSeries for Windows folder

If you want to stop the active connection, do one of the following:

� Select Stop connection from the menu of the taskbar icon.

� Click the Stop push button on the Connections page of the MQSeries Properties
dialog box.

� Double-click on the entry for the connection on the Connections page of the
MQSeries Properties dialog box.

 Copyright IBM Corp. 1994, 1997 23

User tasks

You cannot stop MQSeries for Windows without stopping Windows. However,
MQSeries for Windows uses very few resources when it has no connection active and
the MQSeries Properties dialog box is not displayed, so you can leave MQ running all
the time.

The remaining sections of this chapter describe the tasks you can perform using the
pages of the MQSeries Properties dialog box.

Choosing an MQ connection
If there is more than one MQ connection defined on your workstation, MQ can be set
up so that it opens the Connections page of the MQSeries Properties dialog box when
you start your workstation. On this page, you can choose the connection you want to
work with. To help you understand how you might need to choose your connection,
read the following example.

A travelling salesman, named John, collects sales orders during his working day, filling
in a form on his laptop computer for each order. He uses a standalone form-filling MQ
application for this, which creates an MQ message for each form he fills. In the
evening, John has to send the day’s orders to his office. He uses another MQ
application for this, and his home telephone. On some days, John has to go to his
office to work, where he uses other MQ applications.

To make it easier for John to organize his work, his MQ administrator has installed
MQSeries for Windows on John’s laptop computer and defined three MQ connections
for him to use. The connections are named:

� Collecting an order
 � Sending orders
� Working at the office

Collecting an order
On the days that John is out visiting customers’ offices collecting orders, he works like
this:

1. When John starts to work with a customer, he powers on his laptop computer.
This starts Windows 95 and MQSeries for Windows.

2. On the Connections page of MQSeries for Windows, John selects the ‘Collecting
an order’ connection. This is a standalone MQ connection, so the only queue
manager it uses is the one on his laptop.

3. John starts his form-filling application and fills in the details of his customer’s order.
The application saves this data as a number of persistent MQ messages on a
queue on his laptop.

4. John ends his application and powers off his laptop.

24 MQSeries for Windows** User’s Guide

User tasks

 Sending orders
At the end of those days that he has been out collecting orders, John has to send the
day’s orders to his office. On those evenings, John does this from his home like this:

1. John powers on his laptop computer. This starts Windows 95 and MQSeries for
Windows.

2. John connects his laptop computer to his modem so the Windows 95 dial-up
networking software can connect to the office server.

3. On the Connections page of MQSeries for Windows, John selects the ‘Sending
orders’ connection. This is a dial-up MQ connection that can transmit messages
from the queue manager running on his laptop to one running on the office server.

4. When the MQ icon on his Windows taskbar shows that the dial-up connection is
ready, John starts the MQ application that processes his orders and sends them to
the server.

5. When the application has sent all his messages, John ends it and powers off his
laptop.

Working at the office
On the days that John has to work at the office, he works like this when he arrives
there:

1. John connects his laptop computer to the office LAN, then powers on the laptop.
This starts Windows 95 and MQSeries for Windows.

2. On the Connections page of MQSeries for Windows, John selects the ‘Working at
the office’ connection. This is a LAN MQ connection that can exchange messages
with the queue manager running on the office server.

3. When the MQ icon on his Windows taskbar shows that the LAN connection is
ready, John starts the MQ application he uses to work with his data. He sends
data to, and gets data from, the office server using this application.

4. When he has finished his work, John ends his application and powers off his
laptop.

 Chapter 4. Using the Compact version 25

User tasks

Monitoring the status of MQ components
The MQSeries icon on the Windows taskbar gives you a quick indication of the status
of your MQ connection. This is described in “The taskbar icon.”

If you want information about each of the MQ components that make up your
connection, look at the Status page of the MQSeries Properties dialog box; this page is
described in “The Status page” on page 27.

The taskbar icon

If you have set the option on the Options page of the MQSeries Properties dialog box,
you can see an MQSeries icon on the Windows taskbar. The presence of this icon
shows that MQSeries is running. In addition, the icon can have a marker to show the
status of the current connection, so that you can see at a glance whether you can use
it (if there is no marker, there is no active connection):

You can also use the icon to:

� Display the MQSeries Properties dialog box (by double-clicking on the icon)

� Stop the active connection or start a new one (select these items from the menu
that appears when you click on the icon using mouse button 2)

� Run an MQD file, provided the MQSeries Properties dialog box is not displayed
and there is no active connection (for more information, see “Installing a new MQD
file” on page 30)

The connection is running correctly. You can use it to transmit
messages.

The connection is starting or stopping. If you are starting the connection,
you cannot use it until this marker changes to show the connection is
running correctly.

The connection has started, but it has found a problem. For more
information, see the Status page of the MQSeries Properties dialog box.

26 MQSeries for Windows** User’s Guide

User tasks

The Status page
The Status page of the MQSeries Properties dialog box of the Compact version of
MQSeries for Windows has a tree view showing the components that comprise your
connections. You can expand each component to see the components it owns. For
example, if you expand the Sample Connection that is supplied with MQSeries for
Windows, you see that it has a queue manager named Sample_QM. If you expand this
queue manager while the connection is active, you see that the queue manager owns
some sample and default queues. If the queue manager owned any channel groups,
channels, or a phonebook entry, they would appear in this tree view.

Figure 3 shows the Status page.

Figure 3. The Status page of the MQSeries Properties dialog box showing the default MQ
components. In the Complete version, this information is shown in the Components page.

 Chapter 4. Using the Compact version 27

User tasks

Alongside each name in the tree view there is an icon that shows the type and the
status of that component. The types of component are:

If the component is idle (that is, it has not started), the icon appears as it is shown
above. Otherwise, the icon for each component can have one of three markers to
show its status:

A dial-up connection ; use this to transmit data to a computer that is
connected to yours through a telephone link.

A LAN connection ; use this to transmit data to a computer that is
connected to yours through a local area network.

A standalone connection ; use this when you want to work with MQ on
your own workstation and you do not need a connection to another
computer.

The queue manager that the connection uses. This queue manager
owns the queues and channels your connection uses to transmit your
messages.

The channel group that the connection uses. This channel group
contains the channels your connection uses to transmit your messages.

A channel that belongs to the channel group. This is one of the
channels your connection uses to transmit your messages.

The channel listener program. This monitors connection requests from
other computers. The listener belongs to a channel group.

A queue that belongs to the queue manager. This is one of the queues
your connection uses to transmit your messages.

The phonebook entry that the dial-up connection uses when it uses the
Windows dial-up networking support to call another computer.

The component is active. You can use it to transmit data.

The component is starting or stopping. For a channel, this state could
mean that the channel is retrying to transmit data. If you are starting the
connection, you cannot use it until this marker changes to show that the
component is running correctly.
The component has not started correctly. You will find problems if you
try to use the component when it is in this state. For more information,
select the component, then click on the Status push button.

28 MQSeries for Windows** User’s Guide

User tasks

This tree view shows you at a glance which components you are currently using, and
which, if any, are not working.

If you need more information about a component, select it in the tree view, then click on
the Status push button. In the resulting window, you can select a status attribute to
see its value. These attributes describe transient status information such as the
number of bytes sent or received on a channel. For more information on these
attributes, see the online help.

 Choosing options
On the Options page of the MQSeries Properties dialog box you can choose options
that change the following parts of MQ:

The size of the MQ icons
You can choose between displaying small and large icons on the pages of
the MQSeries Properties dialog box.

The Windows taskbar
You can choose whether you want the MQ status icon to appear in the
Windows taskbar. If you choose to show the icon, you can see at a glance
the status of your MQ connection (see “The taskbar icon” on page 26).
When you double-click on this icon, MQSeries for Windows displays the
MQSeries Properties dialog box. If you choose not to have the MQ icon
visible on your taskbar, you can see the MQSeries Properties dialog box by
opening the Control Panel and double-clicking on the MQ icon, or by using
the shortcut in the MQSeries for Windows folder.

The connection that MQ starts
You can choose to select a connection next time MQ starts:

� If you choose this option, MQ displays the Connections page of the
MQSeries Properties dialog box when it starts. On this page,
double-click on the name of the connection you want to start.

� If you do not choose this option, MQ starts the connection that is
defined to start automatically. If there is no such connection, MQ does
not start one.

The Service Trace program
You can make Service Trace start next time MQ starts. Service Trace
collects trace information to help you isolate any problem with your
application or with MQ. It is intended primarily for use under the guidance
of IBM Service personnel. If you need to use it, see “Service Trace” on
page 150.

The refresh of status information
You can choose how often MQ refreshes the status information shown on
its icons and on the pages of the MQSeries Properties dialog box. If you
do not choose this option, you can still refresh the status information
manually by pressing the F5 key. Note that if you choose a frequent
refresh, MQ will perform more slowly.

 Chapter 4. Using the Compact version 29

User tasks

Installing a new MQD file
Your MQSeries administrator may give you a new MQ definition (MQD) file that
changes, adds, or removes the MQ components you use with your applications. Copy
the file to your workstation:

� If the file is named CREATEMQ.MQD, copy it to replace the file that MQ supplies.
In a default installation, this is in the \Program Files\MQSeries for Windows
directory.

� If the file has another name, copy it to the directory your administrator specifies
and set the value of the MQW_MQDPATH environment variable to the name and
location of the file.

If your administrator tells you to use the new MQD file immediately:

1. Stop the active MQ connection (see “Starting and stopping MQSeries for Windows”
on page 23).

2. If you cannot see the MQ icon on the Windows taskbar, make it visible:

a. Open the Control Panel.
b. Double-click on the MQSeries icon.
c. In the MQSeries Properties dialog box, open the Options page.
d. Check the box to display the status icon on the taskbar.
e. Click on the OK push button.

3. Close the MQSeries Properties dialog box by clicking on the OK or Cancel push
button.

4. Click with mouse button 2 on the MQ icon on the Windows taskbar.

5. Click on the Run MQD file now item on the menu.

MQ shows its progress while it processes the MQD file. If MQ cannot process the
file (for example, because the file contains errors), it undoes any changes the file
has made to your installation and continues to use your previous MQD file.

If you do not run the MQD file straight away, MQ automatically runs the file (and
performs the definitions it contains) next time you start Windows.

However, whichever method you use to run the new file, MQ does not process it if the
file contains instructions to MQ to process it only after a specified date or time. In this
case, MQ processes the file the first time it starts (or the first time you use the Run
MQD file now action, whichever is the sooner), after that date or time.

If you need to know how to create an MQD file, see Chapter 8, “Creating an MQD file”
on page 57.

30 MQSeries for Windows** User’s Guide

User tasks

Getting information about your installation
If you have a problem with MQ, you or your MQ administrator can use the Service page
of the MQSeries Properties dialog box to see information that may help you solve the
problem. This page provides information about the version of MQSeries for Windows
that is installed, together with information about the resources on your system. The
page is described in “Service information” on page 149.

The Service page also contains the Verify function. Use this at any time to test that
your installation is working correctly. For more information, see “Verifying your
installation” on page 20.

Using the administration features

 Note

Use the administration features of MQSeries for Windows only under the guidance
of your MQSeries administrator.

If your MQSeries administrator asks you to make changes to your installation, you need
to use the Administration page of the MQSeries Properties dialog box. To prevent you
accidentally changing your installation, your administrator can define a password to lock
this page. If the page is locked, you must type the password your administrator gives
you before you can see the page.

Note: The administration password is case sensitive, so you must type it exactly as
your administrator has defined it.

If you had to unlock the Administration page, MQ locks it again when you close the
MQSeries Properties dialog box.

On the Administration page you can:

� View and change the attributes of MQ components
� Use MQSC commands
� Control the command server

Viewing and changing attributes
If you want to look at or change the attributes of MQ components, see “Viewing and
changing object attributes” on page 98.

Using MQSC commands
If you want to use MQSC commands to change your MQ objects (either by typing the
commands or by running a command file), see Chapter 10, “Using MQSC commands”
on page 107.

 Chapter 4. Using the Compact version 31

User tasks

Controlling the command server
If your MQ administrator wants to make changes to your MQ installation while working
from their own server, they will ask you to start the command server on your
workstation.

If there is no active connection, you cannot use the command server. To start and stop
the command server, first open the Administration page of the MQSeries Properties
dialog box, then use the push buttons on the Command Server page. When the
command server is running, MQ adds a check mark to the tab of the Command Server
page of the MQSeries Properties dialog box.

If you stop the active connection, the command server also stops.

The command server processes the programmable command format (PCF) commands
that administration applications put on a special queue. The command server runs on
the queue manager owned by the active connection.

32 MQSeries for Windows** User’s Guide

Part 2. For MQ administrators

Chapter 5. What an MQ administrator can do 35

Chapter 6. Understanding the components of MQ 37

Chapter 7. Installing MQSeries for Windows automatically 51

Chapter 8. Creating an MQD file . 57

Chapter 9. Working with the components of MQSeries for Windows 87

Chapter 10. Using MQSC commands . 107

Chapter 11. Making changes for a user . 119

Chapter 12. Running the sample programs on one workstation 127

Chapter 13. Running the sample programs on two workstations 133

Chapter 14. Diagnosing problems . 143

 Copyright IBM Corp. 1994, 1997 33

34 MQSeries for Windows** User’s Guide

Administration tasks

Chapter 5. What an MQ administrator can do

If you administer the users of MQSeries for Windows applications, you will need to
create and change objects for them and diagnose their problems. So that you have the
tools you need to do this, you should install the Complete version of MQSeries for
Windows on your own workstation.

The following list gives an overview of the tasks you will want to perform; it also shows
where to find information on how to perform the tasks.

Understand MQ components
To administer the users of MQSeries for Windows applications, you need to
understand the MQ components you will be working with. For more information,
see Chapter 6, “Understanding the components of MQ” on page 37.

Install MQ automatically on your users’ workstations
If you want to install MQSeries for Windows on a LAN so that your users can install
it automatically from there, see Chapter 7, “Installing MQSeries for Windows
automatically” on page 51.

Customize MQ for your users
You can provide a customized MQ definition (MQD) file to your application users so
that MQ can create working connections for them automatically. For more
information, see Chapter 8, “Creating an MQD file” on page 57.

Create, change, and delete MQ components manually
You may need to change quickly the configuration of an MQ connection on a
workstation when you are developing, testing, or supporting MQ applications. In the
Complete version, the MQSeries Properties dialog box provides a Components
page in which you can create, change, and delete components. For more
information, see Chapter 9, “Working with the components of MQSeries for
Windows” on page 87.

Make changes to queue managers using MQSC commands
Users of the Compact version can issue MQSC commands and run command files
to make changes to queue managers on their workstations, but they must first make
the administration features available. You can choose to hide these features from
the user by specifying a password in the user’s MQD file.

With the Complete version, you can issue MQSC commands and run command
files directly from the MQSeries Properties dialog box. For more information, see
Chapter 10, “Using MQSC commands” on page 107.

Remotely administer a user’s queue manager
You can make changes to a user’s queue manager using a PCF application on your
own server. You may want to do this if you are at a different location from the user.
For more information, see Chapter 11, “Making changes for a user” on page 119.

 Copyright IBM Corp. 1994, 1997 35

Administration tasks

Run the sample programs
The Complete version provides some sample programs. For information on how to
run them, see:

� Chapter 12, “Running the sample programs on one workstation” on page 127
� Chapter 13, “Running the sample programs on two workstations” on page 133

Diagnose problems
If your users have problems on their queue managers, you can use the Service
Trace utility and MQ events to get more information to help you solve those
problems. For information on these features, and for advice on diagnosing
problems, see Chapter 14, “Diagnosing problems” on page 143.

If you need to migrate your application users from other MQ products, see:

� “Migrating from MQSeries for Windows Version 2.0” on page 13
� “Migrating from MQSeries for Windows NT” on page 14

36 MQSeries for Windows** User’s Guide

Messaging

Chapter 6. Understanding the components of MQ

This chapter helps you to understand the MQ components you will work with
(connections, queue managers, channel groups, channels, and queues). It contains the
following sections:

� “Introduction to messaging and queuing”
� “Why you need channels” on page 38
� “Why you need channel groups” on page 44
� “Why you need MQ connections” on page 46

Introduction to messaging and queuing
The IBM MQSeries range of products provides application programming services that
enable application programs to communicate with each other using messages and
queues. This form of communication is referred to as commercial messaging. It
provides assured, once-only delivery of messages. Using MQSeries means that you
can separate application programs, so that the program sending a message can
continue processing without having to wait for a reply from the receiver. If the receiver,
or the communication channel to it, is temporarily unavailable, the message can be
forwarded at a later time. MQSeries also provides mechanisms for providing
acknowledgements of messages received.

The programs that comprise an MQSeries application can be running on different
workstations, on different operating systems, and at different locations. The
applications are written using a common programming interface known as the Message
Queue Interface (MQI), so that applications developed on one platform can be
transferred to another.

When two applications communicate using messages and queues, one application puts
a message on a queue, and the other application gets that message from the queue.
In MQSeries, queues are managed by a component called a queue manager. The
queue manager provides messaging services for the applications and processes the
MQI calls they issue. The queue manager ensures that messages are put on the
correct queue or that they are routed to another queue manager.

Before applications can send any messages, you must create a queue manager and
some queues. MQSeries for Windows provides features to help you do this.

How applications identify themselves to queue managers
Any MQSeries application must make a successful MQI connect call to a queue
manager before it can make any other MQI calls. If the call is successful, the queue
manager returns a connection handle. This is an identifier that the application must
specify each time it issues an MQI call. An application can connect to only one queue
manager at a time (known as its local queue manager), but many application threads
can connect to the same queue manager. When the application has connected to a
queue manager, all the MQI calls it issues are processed by that queue manager until it
issues another MQI call to disconnect from that queue manager.

 Copyright IBM Corp. 1994, 1997 37

Channels

Opening a queue
Before your application can use a queue for messaging, it must open the queue. If you
are putting a message on a queue, your application must open the queue for putting.
Similarly, if you are getting a message from a queue, your application must open the
queue for getting. You can specify that a queue is opened for both getting and putting,
if required. The queue manager returns an object handle if the open request is
successful. The application specifies this handle, together with the connection handle,
when it issues a put or a get call. This ensures that the request is carried out on the
correct queue.

Putting and getting messages
When the open request is confirmed, your application can put a message on the queue.
To do this, it uses another MQI call in which you have to specify a number of
parameters and data structures. These define all the information about the message
you are putting, including the message type, its destination, which options are set, and
so on. The message data (that is, the application-specific contents of the message
your application is sending) is defined in a buffer, which you specify in the MQI call.
When the queue manager processes the call, it adds a message descriptor, which
contains information that is needed to ensure the message can be delivered properly.
The message descriptor is in a format defined by MQSeries; the message data is
defined by your application (this is what you put into the message data buffer in your
application code).

The program that gets the messages from the queue must first open the queue for
getting messages. It must then issue another MQI call to get the message from the
queue. On this call, you have to specify which message you want to get.

Figure 4 on page 39 shows how messaging works in the simple case where the
program putting the message and the program getting the message are both on the
same workstation and connected to the same queue manager.

Messaging using more than one queue manager
The arrangement shown in Figure 4 on page 39 is not typical for a commercial
messaging application because both programs are running on the same workstation,
and connected to the same queue manager. In a commercial application, the putting
and getting programs would probably be on different workstations, and so connected to
different queue managers. In this situation, you also need to create message channels
to carry MQSeries messages between the queue managers. This situation is described
in “Why you need channels.”

Why you need channels
The queue manager to which an application is connected is known as its local queue
manager. Any other queue manager is known as a remote queue manager, whether it
is running on the same workstation or on any other, no matter where that workstation is
situated. So any queues owned by the local queue manager are known as local
queues and those owned by a remote queue manager are known as remote queues.

38 MQSeries for Windows** User’s Guide

Channels

Figure 4. Programs connected to the same queue manager. Program A puts messages on the
queue; program B gets messages from the queue. In this case, the programs and the queue
manager are running on the same workstation.

When an application issues a call to put a message on a remote queue, the local
queue manager first puts the message on one of its transmission queues. A
transmission queue is a special type of local queue. The local queue manager stores a
copy of the message on the transmission queue until the message is successfully
transmitted to the remote queue manager.

The local queue manager needs to know where the remote queue is. For this reason,
when you set up your queue manager you must provide a local definition of each
remote queue the queue manager will use. This definition includes the name of the
queue, the name of its owning queue manager, and the name of the transmission
queue you want to use on the local queue manager to store messages destined for the
remote queue. If you do not specify the name of a transmission queue, the local queue
manager looks for a transmission queue with the same name as the remote queue
manager. You can also define a default transmission queue for the local queue
manager to use.

For example, the sample file MARS.TST that is used in Chapter 13, “Running the
sample programs on two workstations” on page 133 uses the queue definitions shown
in Figure 5 on page 40.

 Chapter 6. Understanding the components of MQ 39

Channels

\ Define a local transmission queue.
DEFINE QLOCAL('SAMPLE.MARS.XMIT') REPLACE +

DESCR('Local transmission queue') +
 USAGE(XMITQ)

\ Define the remote queue.
DEFINE QREMOTE('SAMPLE.MARS.REMOTE') REPLACE +

DESCR('Remote queue defined on MARS') +
 DEFPSIST(YES) +
\ This is the name of the local queue on the remote machine.
 RNAME('SAMPLE.VENUS.LOCAL') +
\ This is the name of the queue manager on the remote machine.
 RQMNAME('VENUS') +
\ This is the name of the local transmission queue to be used.
 XMITQ('SAMPLE.MARS.XMIT')

...
\ Define the local queue where the remote machine will put its messages.
DEFINE QLOCAL('SAMPLE.MARS.LOCAL') REPLACE +

DESCR('Local queue') +
 DEFPSIST(YES) +
 SHARE

Figure 5. Queue definitions from the supplied file MARS.TST

MQ transfers the message from the transmission queue to the remote queue manager
through a message channel. A channel is a one-way communication link between two
queue managers. This means that MQSeries messages flow in only one direction
(although channel control messages flow in both directions). For two-way message
flow, you must have two channels running between the two queue managers. Each
end of a channel is controlled by an MQSeries-supplied program called a message
channel agent (MCA).

An example of how to use two queue managers
To help you to understand all these features, study the example shown in Figure 6 on
page 41. This shows the relationship between applications, queue managers, queues,
and channels. In this example, application A (which is connected to queue manager
MARS) wants to send a message, using Queue1, to application B (which is connected
to queue manager VENUS).

But to application A, Queue1 is a remote queue because it is not owned by MARS. So
for this communication to be successful, MARS must have:

� A local definition of remote queue Queue1
� A transmission queue to transfer messages to VENUS
� A message channel to VENUS

40 MQSeries for Windows** User’s Guide

Channels

MCA

MCA

Message
Channel

Transmission
Queue
Figure 6. Communication between two queue managers. Application A puts a message on a local definition of
Queue1. Application B gets the message from Queue1.

When application A puts a message (specifying the local definition of Queue1), MARS
takes that message and moves it to the transmission queue. The MCA running on
MARS then transfers the message to the MCA running on VENUS. The receiving MCA
transfers the message from the channel to Queue1.

Note that this is a simple example, and application B cannot send replies or new
messages to application A. For application B to be able do this, there must also be:

� A transmission queue on VENUS to temporarily hold messages destined for MARS

� A second channel to carry messages from VENUS to MARS (remember that
message channels carry messages in one direction only)

� An MCA running on VENUS, and one on MARS, to run the new channel

� An application queue on MARS so that application A can get messages

In reality, you will probably need to use more than two queue managers in your work,
but the same principles apply. If there is no direct connection between the sending
queue manager and the target queue manager, the message may have to pass from

 Chapter 6. Understanding the components of MQ 41

Channels

one queue manager to another until it reaches the target. This is sometimes known as
multi-hopping. To ensure the message can reach its destination, you must create a
channel from each queue manager to the next one in the network, and there must be a
transmission queue on each queue manager to store messages until they can be
forwarded to the next queue manager in the network.

How a channel starts
An MCA can act either as a caller or as a responder. A caller MCA is the MCA that
starts a channel by sending a connection request to a responder MCA at the other end
of the channel. MQ supplies a program known as the channel listener, which listens for
connection requests from caller MCAs. A connection request contains the channel
name of the MCA for which the request is intended; the listener uses this information to
start the correct responder MCA. When a responder MCA receives a connection
request, it responds to the caller; the channel is now ready to carry MQSeries
messages.

MQSeries for Windows uses components known as channel groups (see “Why you
need channel groups” on page 44). You can work with channels only as part of a
channel group, and that channel group must belong to an MQ connection. To start a
channel, you must start the MQ connection that owns the channel group to which the
channel belongs.

 Channel definitions
A channel is defined by a pair of compatible definitions—one at each end of the
channel. The two definitions must have the same name to identify them as a pair. You
should consider using meaningful names for the definitions so it is easy to see their
purpose; for example, MARS.TO.VENUS.

The definitions of the channel determine which end sends messages and which end
receives them. There are four types of channel definition:

� Sender (sends messages)
� Receiver (receives messages)
� Server (sends messages)
� Requester (receives messages)

Sender, server, and requester channels can be callers or responders. A receiver
channel can be a responder only, so it cannot start a channel.

You must use compatible channel definitions at each end of the channel. One end
must be a sender or server (to move messages from a transmission queue and put
them on the channel), and the other end must be a receiver or requester (to move
messages from the channel to the destination queue).

42 MQSeries for Windows** User’s Guide

Channels

You can use any of the following combinations when you define the two ends of a
channel (they are summarized in Table 4 on page 44):

Sender-receiver
The sender is the caller, and the receiver is the responder. The sender
calls the receiver to start the channel, then sends messages from its
transmission queue to the receiver. The receiver puts the messages on
the destination queues.

An example of an application that would use this type of channel is an
e-mail application that allows the user to send messages.

Requester-server
The requester is the caller, and the server is the responder. The requester
calls the server to start the channel. The server then sends messages
from its transmission queue to the requester.

An example of an application that would use this type of channel is a
mailing application that allows users to collect their mail by making a call.

You can also use a server-requester channel, which is similar, but the
server initiates it. An example of this is a mailing application that delivers
mail by making a call.

Requester-sender
Initially, the requester is the caller, and the sender is the responder. But
the sender terminates the connection, then it becomes the caller. The
sender calls back the requester, which becomes the responder. The
sender then sends messages from its transmission queue to the requester.
This arrangement is known as call back.

An example of an application that would use this type of channel is a
mailing application that allows users to request their mail by making an
initial call. The application then calls them back to deliver the mail, so the
users do not have to pay for the deliveries.

The remaining combinations perform in the same way as those already described:

Sender-requester
This performs like a sender-receiver channel.

Server-receiver
This performs like a sender-receiver channel.

Server-requester
This performs like a sender-receiver channel.

 Chapter 6. Understanding the components of MQ 43

Channel groups

The two ends of a channel are defined on different queue managers, so they can have
different attributes. Some attributes are compatible, but others are not. To resolve any
differences, there is a negotiation between the two MCAs when the channel starts. If
they cannot resolve the differences, the channel ends without transferring any
messages.

Table 4. Allowed combinations of MCA types

 Receiver
(on responder)

Requester
(on responder)

Sender
(on responder)

Server
(on responder)

Receiver
(on caller)

No No No No

Requester
(on caller)

No No Yes Yes

Sender
(on caller)

Yes Yes No No

Server
(on caller)

Yes Yes No No

Why you need channel groups
Channels are unidirectional, so you always need at least two of them. For this reason,
MQSeries for Windows allows you to group channels together into channel groups. A
channel group is an MQSeries for Windows component; it is simply a named collection
of channels and it can include the channel listener. You define an MQ connection to
include the channel group; this means that when you start or stop the connection, the
channels it uses also start or stop.

A channel group is owned by the queue manager the connection uses. Each queue
manager can own many channel groups, but a connection can own only one channel
group.

A group can contain a maximum of 8 channels (including the listener), and all the
channels in the group must belong to the same queue manager. A channel can belong
to more than one channel group.

You can create a channel group at any time using the Components page of the
MQSeries Properties dialog box in the Complete version of MQSeries for Windows.
Use the same page to add a channel to an existing channel group or to change the
attributes of the group. For more information, see “Creating a channel group” on
page 90.

You can also create, change, or delete channels individually using, for example, MQSC
commands. But you must not start them individually; if you do, the MQ connection to
which they belong will not know their status.

Note: You cannot create, change, or delete channel groups using PCF or MQSC
commands.

44 MQSeries for Windows** User’s Guide

Channel groups

Designing a channel group
When you add a channel to a channel group, you are defining a caller MCA that is
started when you start the group. You cannot add a responder to a group. This means
you cannot add a receiver to a group because a receiver is always a responder (it
cannot be a caller).

Instead of adding responder MCAs to a group, you add the MQSeries for Windows
channel listener. The listener starts any number of responder MCAs.

Here are some examples to help you.

For a sender-receiver channel
For a sender-receiver channel, you must create two channel groups, one at each end
of the channel:

The listener starts the receiver MCA.

Group at the calling end Group at the responding end

Group contains sender channel Group contains the listener

For two channels
If there are two channels (allowing two-way communication), you still need two channel
groups. For example, if the two channels are a sender-receiver and a requester-server:

The listener starts the receiver MCA for the sender-receiver channel, and it starts the
server MCA for the requester-server channel.

Group at the calling end Group at the responding end

Group contains the sender channel and the
requester channel

Group contains the listener

For two channels using call back
If there are two channels using call back, you need two channel groups. The two
channels are a sender-receiver and a requester-sender.

The listener at the responding end starts the receiver MCA for the sender-receiver
channel, and it starts the sender MCA for the requester-sender channel. When the
sender MCA for the requester-sender channel ends the connection and calls back, the
listener on the original caller restarts the requester MCA.

Group at the calling end Group at the responding end

Group contains the sender channel and the
requester channel and the listener

Group contains the listener

 Chapter 6. Understanding the components of MQ 45

MQSeries connections

Why you need MQ connections
To hide the complexities of queue managers, channel groups, and phonebook entries
from application users, MQSeries for Windows introduces the connection component.
An MQSeries for Windows connection comprises a queue manager and all the objects
the queue manager needs in order to communicate with another queue manager. So
all the application user has to do is start the appropriate connection. A connection has
a name, just like other MQ components.

So that your application users do not have to do any MQ administration tasks (such as
creating queues and changing definitions), you should create connections for them to
use. Typically you will define connections in an MQD file so that all they have to do is
run that file, then choose a connection that sets up the MQ environment they need to
run their application.

There are three types of MQ connection:

You can configure MQ either to prompt the user to choose a connection each time MQ
starts, or to start one automatically.

You can create connections using the MQSeries Properties dialog box (see “Creating a
connection” on page 92), but this allows you to create connections on one workstation

A standalone connection is for using MQ without connecting to other
computers. It comprises a queue manager only.

Users need a standalone connection to run an application that does not
need to communicate with another queue manager during the current
session. For example, they might be working at a location where they
do not have access to a LAN or telephone, and they just want to enter
some data into their MQ applications.

A LAN connection is for using MQ together with queue managers on
servers to which your workstation is connected by a local area network.
It comprises a queue manager and a channel group.

Users need a LAN connection to run an application that has to
communicate with another queue manager running on a workstation
connected to the same LAN. For example, they might be working in
their own offices where they have access to a LAN.

A dial-up connection is for using MQ together with queue managers on
servers to which your workstation can connect using a dial-up telephone
link. It comprises a queue manager, a channel group, and the
phonebook entry that Windows uses to dial the server.

Users need a dial-up connection to run an application that has to
communicate with another queue manager running on a computer to
which they can dial in. For example, they might be working in their own
homes or in a hotel room. For more information, see “Dial-up
connections” on page 47.

46 MQSeries for Windows** User’s Guide

MQSeries connections

only. Alternatively, you can create definitions in a file you can give to many users; for
more information on this, see Chapter 8, “Creating an MQD file” on page 57.

Other features of an MQ connection are:

� There must be at least one connection defined on an MQSeries for Windows
workstation.

� Only one connection can be active at one time.

� A queue manager can belong to more than one connection.

� You can create a queue manager without defining a connection, but you cannot
use the facilities of MQSeries for Windows to manage that queue manager until
you define a connection that includes the queue manager.

� You cannot create, delete, or change connections using MQSC or PCF commands.

 Dial-up connections
A dial-up connection uses the built in dial-up networking support provided by the
Windows operating system. If this is not installed, you must install it before you can
create a dial-up connection. Then you must use Windows to create what Windows
calls dial-up networking connections; MQ calls these phonebook entries. These entries
are like a paper phone book; they relate a person’s name to a telephone number.
When you have defined the phonebook entry, you can use the name to access the
telephone number.

When you create an MQ dial-up connection, you must select a phonebook entry from
the list of those you have defined on your workstation. You must also select a channel
group that contains the channels to carry messages to and from the queue manager
you have dialed.

Examples of connections
Table 5 shows the composition of the three types of MQ connection.

Table 5. The composition of MQ connections

Connection type First MQ
component

Second MQ
component

Transport
component

Standalone connection Queue manager

LAN connection Queue manager Channel group

Dial-up connection Queue manager Channel group Phonebook entry

Note:

� A standalone connection requires a queue manager only.
� A LAN connection uses the transport services provided by the LAN.

 Chapter 6. Understanding the components of MQ 47

MQSeries connections

Figure 7 shows examples of five MQ connections. Table 6 shows the composition of
each of the example connections. Notice that a queue manager can belong to more
than one connection. Also note that each queue manager owns a set of channel
groups, but the phonebook entry (PBE) is independent of the queue manager (it is
managed by the operating system).

QM1

QM2

CG1.1

CG2.1

CG1.2

CG2.2

Connection B

Connection D

Connection A

Connection C

Connection E
PBE(“E”)

Figure 7. Examples of MQ connections

Table 6. The composition of the example MQ connections

Connection
name

Connection
type

Queue
manager

name

Channel
group name

Phonebook
entry name

A Standalone QM1

B LAN QM1 CG1.1

C LAN QM1 CG1.2

D LAN QM2 CG2.1

E Dial-up QM2 CG2.2 E

48 MQSeries for Windows** User’s Guide

MQSeries connections

Users who always run a single MQ application through a LAN connection in their offices
require only a single connection to the office server. But mobile users, such as utilities
engineers, might require three connections for the same application:

� One for access by telephone while working from home
� Another for working without a connection in a customer’s office
� Another for access through the LAN while working in their own office

Such users can choose to be prompted to select which connection to use when they
start their workstations. If they choose not to be prompted, MQ can automatically start
one of the connections.

Users who run more than one application might require more connections. For
example:

� Connection 1 for using application X over a LAN
� Connection 2 for using application X over a telephone link
� Connection 3 for using application Y over a LAN
� Connection 4 for using application Y over a telephone link
� Connection 5 for using application Z over a telephone link

 Chapter 6. Understanding the components of MQ 49

MQSeries connections

50 MQSeries for Windows** User’s Guide

Automatic installation

Chapter 7. Installing MQSeries for Windows automatically

This chapter tells you how to install MQSeries for Windows on one or more
workstations connected to a LAN, with either little or no user intervention. You will find
this method especially useful if you have to install MQSeries for Windows on a large
number of workstations. You can do both the initial installation and the installation of
any maintenance updates in this way.

There are two ways of starting an automatic installation:

� If you want to start the automatic installation manually on each workstation
(sometimes known as an attended automatic installation), you must install
MQSeries for Windows on a server, prepare installation response files, then start
the installation process from each workstation. The installation process takes
instructions from your response files. This process is described in “Installing from
a file server” on page 54.

� If you want to start the automatic installation remotely using a software distribution
package such as Microsoft’s Systems Management Server (SMS), you must create
some installation response files for the package to use. (This is sometimes known
as an unattended installation.) This process is described in “Installing using a
software distribution package” on page 54.

For both types of installation, you must first prepare your server as described in
“Preparing your server.”

Preparing your server
Before you perform an automatic installation (either attended or unattended), you must
prepare your server as follows:

1. Copy the MQSeries for Windows product files to your server as described in
“Preparing your files” on page 52.

2. If you want to change the drive or directory into which MQSeries for Windows is
installed on your target workstations, change the supplied response files. For
information on how to do this, see “Changing the destination drive and directory”
on page 52.

3. If you want to change the program folder into which MQSeries for Windows is
installed on your target workstations, change the supplied response files. For
information on how to do this, see “Changing the program folder” on page 53.

4. If you want to change the supplied product so that your users do not have to do
any configuration themselves, see “Customizing MQ for your users” on page 53.

5. Proceed to one of:

� “Installing from a file server” on page 54
� “Installing using a software distribution package” on page 54

 Copyright IBM Corp. 1994, 1997 51

Automatic installation

Preparing your files
You must copy on to your server the files that MQSeries for Windows supplies on
diskettes and CD-ROM. Create a directory on your server to hold these files and within
the directory create the structure shown in Figure 8. In this figure, the name
MyDirectory is an example only; you must use all the other names.

\MyDirectory

Disk1

Disk2

Disk3

Figure 8. The directory structure for automatic installation from a server. The name MyDirectory
is an example only; you must use all the other names.

Then copy the supplied files to this structure:

sms.bat This is the supplied batch file that runs InstallShield; you need it for both
attended and unattended installation. Copy this file into the directory you
create (for example, MyDirectory).

Disk1 Copy into this directory the files supplied on Diskette 1 or in the DISK1
directory of the CD-ROM.

Disk2 Copy into this directory the files supplied on Diskette 2 or in the DISK2
directory of the CD-ROM.

Disk3 Copy into this directory the files supplied on Diskette 3 or in the DISK3
directory of the CD-ROM.

MQSeries for Windows supplies the following response files to help you with automatic
installation. They are supplied on Diskette 1 and in the DISK1 directory of the
CD-ROM.

COMPACT.ISS
Response file for silently installing the Compact version of MQSeries for
Windows

COMPLETE.ISS
Response file for silently installing the Complete version of MQSeries for
Windows

Changing the destination drive and directory
If you want to change the drive or directory in which MQSeries for Windows is installed
on your target workstations, you must change the text shown like this in the following
line of the supplied response (.ISS) files:

szDir=C:\Program Files\MQSeries for Windows

52 MQSeries for Windows** User’s Guide

Automatic installation

Changing the program folder
If you want to change the name of the program folder in which MQSeries for Windows
is installed on your target workstations, you must change the text shown like this in
the following line of the supplied response (.ISS) files:

szFolder=MQSeries for Windows

Customizing MQ for your users
You can use an MQSeries for Windows definition (MQD) file to define automatically the
MQ components you want on each workstation. Chapter 8, “Creating an MQD file” on
page 57 describes how to create an MQD file.

After you have created your MQD file, you must choose one of the following methods to
make it available for your users:

� MQSeries for Windows supplies a file named CREATEMQ.MQD, which creates a
sample connection. After you have copied on to your server the files that
MQSeries for Windows supplies, you can replace this file with the MQD file you
have created, making sure you use the same file name. Your file will be installed
on each workstation when users install MQ automatically, and because it has the
default name, MQ will run it.

Note that the procedures described in Chapter 12, “Running the sample programs
on one workstation” on page 127 will not work if you replace the supplied file.

� If you want all your users to use the same MQD file that is on a server, load the
MQD file on to a server to which your users’ workstations have access. Then set
the MQW_MQDPATH environment variable on each workstation to specify the
name and location of your MQD file. When the installation process runs on each
workstation, it runs this MQD file.

� If you do not want all your users to use the same MQD file, but you do want them
to run an MQD file from a server, create a set of different files on your server. You
must then set the MQW_MQDPATH environment variable on each workstation to
locate the relevant file.

� Copy your MQD file on to each workstation after you have completed the
installation. You must set the environment variable to locate the file on the
workstation, then run the MQD file from the MQ icon on the Windows taskbar.

If you want your users to use the Verify facility of MQSeries for Windows to test that
their installation is working correctly, you must configure their workstations as described
in “Configuring for verification using a LAN” on page 102.

 Chapter 7. Installing MQSeries for Windows automatically 53

Automatic installation

Installing from a file server
After you have prepared your server as described in “Preparing your server” on
page 51, you can install MQSeries for Windows from it on to a workstation as follows.
This is sometimes known as an attended installation.

1. From the workstation, log on to the server on which you have prepared the MQ
files.

2. Change to the Disk1 subdirectory you created on the server.

3. Run one of the following batch commands, depending on which type of installation
you require:

 sms compact

or:

 sms complete

This runs InstallShield in silent mode using your response files.

When the installation process has completed, you should verify that it was successful.
If you have set up the server as described in “Customizing MQ for your users” on
page 53, you can use the Verify facility in the MQSeries Properties dialog box. For
more information, see “Verifying your installation” on page 20.

Installing using a software distribution package
This section describes how to install MQSeries for Windows using Microsoft’s Systems
Management Server (SMS), although you can use other software distribution packages
instead. This is sometimes known as an unattended installation.

When you use SMS, you need to:

� Install the SMS server on your LAN server
� Install the SMS client on each target workstation

MQSeries for Windows supplies the following files for you to use with SMS:

COMPACT.PDF SMS package definition file (PDF) for installing the Compact
version of MQSeries for Windows

COMPLETE.PDF SMS package definition file (PDF) for installing the Complete
version of MQSeries for Windows

After you have prepared your server as described in “Preparing your server” on
page 51, you can perform an unattended installation as follows:

1. If you want to change the name or location of the MQSeries installation log file or
the Management Information File (MIF), change the supplied batch file (SMS.BAT)
as described in “Changing the name and location of the log file” on page 55.

2. Create an SMS package for each type of installation (Compact or Complete) you
require.

54 MQSeries for Windows** User’s Guide

3. Import the appropriate supplied PDF file (COMPACT.PDF or COMPLETE.PDF) into
your SMS package.

4. Create an SMS job to distribute your package to your target workstations.

5. Run your SMS job. On the target workstation, SMS runs InstallShield in silent
mode, using the information in your response files.

When the installation process has completed, you should ask each user to verify that it
was successful. If you have set up the server as described in “Customizing MQ for
your users” on page 53, they can use the Verify facility in the MQSeries Properties
dialog box. For more information, see “Verifying your installation” on page 20.

Changing the name and location of the log file
If you want to change the name of the log file that InstallShield creates, or change its
location, you must change one line in the supplied batch file (SMS.BAT). You can also
change the name of the Management Information File (MIF).

� If you are installing the Compact version, change the text shown like this in the
following line of the file SMS.BAT to the names you want to use:

setup -s -SMS -mMQSeries.mif -f1.\compact.iss
 -f2C:\Windows\MQSeries.log

Note: This is a single line in the file.

� If you are installing the Complete version, change the text shown like this in the
following line of the file SMS.BAT to the names you want to use:

setup -s -SMS -mMQSeries.mif -f1.\complete.iss
 -f2C:\Windows\MQSeries.log

Note: This is a single line in the file.

Changing an automatic installation
If you want to remove the product after you have installed it, you must use the Control
Panel as described in “Removing the product” on page 19.

You can apply maintenance updates automatically if those updates include response
files for this purpose. You can use those response files in either attended or
unattended mode, in the same way you did for the original installation.

 Chapter 7. Installing MQSeries for Windows automatically 55

56 MQSeries for Windows** User’s Guide

Creating MQD files

Chapter 8. Creating an MQD file

This chapter describes how to create an MQSeries definition (MQD) file to define the
MQ components your application users need on their workstations. When this file runs
on their workstations, MQSeries for Windows creates those MQ components
automatically, so the users do not have to create their own components. You can also
use an MQD file to change existing components (by replacing them with components of
the same name) or to delete them.

When you have created your own MQD file (using any editor) to define the components
needed for your users’ applications, you can put the file on the MQSeries for Windows
diskettes you give your users to install. All the users need to do is run the installation
program on the diskettes; the installation process installs MQ, then runs the MQD file to
create the MQ objects they need.

MQ stores the date, time, and size of the MQD file. It checks these values each time it
starts; if they are different from those of the MQD file that was last run, MQ prompts the
user to choose whether to process the new file. If they choose to process it, MQ
creates the components you define in the file. This means you can supply a new MQD
file to your users at any time, and MQ will run it next time it starts. In addition, the user
can force MQ to run the MQD file at any time. To do this, they must first stop the
active connection and close the MQSeries Properties dialog box. Then, in the menu of
the MQ icon on the taskbar, click on the Run MQD file now item.

However, you can specify a date and time within the file so that MQ runs the file only
after this date and time.

This chapter describes:

� “The format of the MQD file” on page 58
� “How MQ processes the MQD file” on page 62
� “Creating MQD files” on page 63

The remainder of the chapter describes the sections of the MQD file and the keywords
you can use. The sections are in alphabetic order:

� “The ChannelGroup section” on page 69
� “The Connection section” on page 73
� “The Controls section” on page 78
� “The Process section” on page 79
� “The QueueManager section” on page 82

 Copyright IBM Corp. 1994, 1997 57

Format of MQD

The format of the MQD file
By default, MQSeries for Windows runs the MQD file named CREATEMQ.MQD. In a
default installation, MQ looks for this file in the \Program Files\MQSeries for Windows
directory. The installation process puts an example of this file in this directory. For a
description of this example file, see “Example MQD files” on page 60.

When you create your own MQD file, you must either rename it to CREATEMQ.MQD
and copy it to the default directory, or use the MQW_MQDPATH environment variable
to specify the name and location of your file. If you set the environment variable, you
must specify the full path and file name. You can use any file name and file-name
extension. You can put the MQD file in any directory (which can be on another
workstation or a LAN server). This allows you to create only one copy of the file and to
set up your users to use this copy.

Note: Chapter 12, “Running the sample programs on one workstation” on page 127,
describes how to run the sample programs that are supplied with the Complete version.
The procedures in that chapter will not work if you replace the supplied file
CREATEMQ.MQD.

You can include comments in the MQD file, but each line of comments must have an
asterisk (*) or a semicolon (;) in the first column.

 Section names
The MQD file comprises one or more sections, each having the format:

 [section name]
 keyword=value

...
 keyword=value

The section names in the MQD file must either be of the form [Component_n] (where n
is an integer), or one of the special section names described in “Special sections” on
page 60. You must enclose the section names in square brackets []. The section
names are not case sensitive so, for example, MQ allows either [ChannelGroup] or
[channelgroup].

If you use one or more Component_n sections in the MQD file, one of them must be
named Component_1. MQ processes any remaining Component_ sections in numeric
order, but they do not have to be in numeric order in the file. MQ stops processing the
file when the next number in the sequence is missing.

Note: If you define a connection that refers either to a queue manager or channel
group definition in the same file, you must number those definitions so that MQ
processes them before the connection definition.

58 MQSeries for Windows** User’s Guide

Format of MQD

For example, consider this MQD file:

 [Component_3]
 ComponentType=Connection

...
 [Component_1]
 ComponentType=QueueManager

...

 [Component_2]
 ComponentType=ChannelGroup

...

When MQ processes this file, it first processes the QueueManager section, then the
ChannelGroup section, then the Connection section.

Now consider this MQD file:

 [Component_5]
 ComponentType=Connection

...

 [Component_1]
 ComponentType=QueueManager

...

 [Component_2]
 ComponentType=ChannelGroup

...

 [Component_3]
 ComponentType=ChannelGroup

...

When MQ processes this file, it first processes the QueueManager section, followed by
the two ChannelGroup sections. It then stops processing the file (without processing
the Connection section) because there is a gap in the sequence of component
definitions.

 Chapter 8. Creating an MQD file 59

Format of MQD

 Component types
You can define sections in the MQD file using the following component types:

Connection
Defines the properties of an MQ connection

QueueManager
Defines the properties of a queue manager

ChannelGroup
Defines the properties of a channel group

Note: To use the features of MQSeries for Windows, you need an MQ connection, so
you should always define a Connection component in the MQD file. To run an MQ
application, you must have a queue manager running, so unless the users of your
applications are going to create their queue managers themselves, you should always
define a QueueManager component in the MQD file. However, you can omit the
Connection and QueueManager sections if you are creating an MQD file for users to
change installations that have connections and queue managers defined already.

 Special sections
In addition to the sections that have names of the form [Component_n], the MQD file
can contain the following special sections:

[Process]
This section defines options that control how the MQD file is run and how MQ
appears on the user’s workstation.

[Controls]
MQSeries for Windows Version 2.0 used this section. Version 2.1 ignores it.

 Keywords
The keyword=value statements in the MQD file define the attributes of the components.
The keywords must be followed immediately by an equals (=) sign.

The keywords you can use within each section of the MQD file are described in this
chapter. They are not case sensitive, so you can type them using uppercase,
lowercase, or mixed case letters.

Example MQD files
Figure 9 on page 61 shows the file CREATEMQ.MQD that is supplied with the
Compact version. This file creates a queue manager and a connection, and in addition
it specifies some process options. These options specify that:

� MQ runs the MQD file only after the given date and time

� Users of the Compact version must type the password Hursley before they can
use the administration features of MQSeries for Windows

� The MQ status icon appears in the Windows taskbar

� The user cannot choose a connection when MQ starts

60 MQSeries for Windows** User’s Guide

Format of MQD

The sample connection uses the sample queue manager and does not have a channel
group. The connection starts automatically when MQ starts.

The file named CREATEMQ.MQD that is supplied with the Complete version contains
an extra line; this runs the MQSC command file that defines the MQ objects the sample
programs use.

[Process]
UseAfterDate=1996/12/11
UseAfterTime=12:ðð
Password=Hursley
ShowIcon=yes
PromptForConnection=no

[component_1]
ComponentType=QueueManager
Name=Sample_QM
Description=Sample queue manager
Replace=yes

[component_2]
ComponentType=Connection
Name=Sample_Connection
Description=Sample connection
QueueManagerName=Sample_QM
HasChannelGroup=no
Replace=yes
AutoStart=yes

Figure 9. The file CREATEMQ.MQD supplied with the Compact version

Figure 10 on page 62 shows the supplied file MARS.MQD; this creates the queue
manager MARS that is used in Chapter 13, “Running the sample programs on two
workstations” on page 133. When it creates the MARS queue manager, MQ runs the
MQSC command file MARS.TST to create the queues and channels that MARS uses.
The MQD file also creates a channel group and a connection. The channel group
contains the two channels defined by MARS.TST. The connection starts automatically
when MQ starts.

 Chapter 8. Creating an MQD file 61

Processing MQD

 [Component_1]
 ComponentType=QueueManager
 Name=MARS

Description=Queue manager to communicate with VENUS
LoadUserMQSC_1=\Program Files\MQSeries for Windows\Samples\mars.tst

 Replace=yes

 [Component_2]
 ComponentType=ChannelGroup
 Name=MARSGroup

Description=Channel group to communicate with VENUS
 QueueManagerName=MARS
 AllUserChannels=no
 Channel_1=MARS.TO.VENUS
 Channel_2=VENUS.TO.MARS
 Replace=yes

 [Component_3]
 ComponentType=Connection
 Name=Mars_Connection

Description=Connection to use on MARS machine
 QueueManagerName=MARS
 HasChannelGroup=yes
 ChannelGroupName=MARSGroup
 Replace=yes
 AutoStart=yes

Figure 10. The supplied file MARS.MQD

MQSeries for Windows also supplies a file named SAMPLE.MQD, which shows all the
keywords you can use in an MQD file. You can use this as a template for your own
MQD files; for more information, see “Creating MQD files” on page 63.

How MQ processes the MQD file
When MQSeries for Windows processes an MQD file, it writes any warning or error
messages to a log file named CREATEMQ.LOG in the \Program Files\MQSeries for
Windows\Data directory. This file is overwritten each time MQ processes a file. If any
errors or warnings occur during the processing of the MQD file, the way MQ warns you
depends on which version of the product you are using:

Compact version
MQ warns you that it will use the previous MQD file. MQ deletes all
components it has created and restores any components it has replaced to
their former state.

62 MQSeries for Windows** User’s Guide

Creating MQD files

Complete version
MQ gives you the choice of:

� Viewing the log file

� Reverting to the previous MQD file (MQ deletes all components it has
created and restores any components it has replaced to their former
state)

� Using the new MQD file, even though it has errors

Creating MQD files
When you want to create an MQD file, you may find it easier to copy and edit the file
SAMPLE.MQD that is supplied (in a default installation) in the \Program Files\MQSeries
for Windows\Samples directory. This file shows all the keywords you can use in an
MQD file: all you have to do is remove the comments from the keywords you want to
use and add your own data. Alternatively, you can use any editor to create your MQD
file.

Note: When you edit an MQD file, make sure you save it as a text (ASCII) file (that is,
not in a word-processing format). If you open an MQD file using the Windows Explorer,
Windows opens the file using WordPad and loads it as a text file.

Whichever method you use, remember either to rename your file to CREATEMQ.MQD
and put it in the default directory, or use the MQW_MQDPATH environment variable to
specify the name of the file and its full path.

Start by defining the connections your users will need. This will help you to specify the
queue managers, channel groups, and other MQ objects you must define. You can
then go on to define the options you want to use to control how MQ appears on your
users’ workstations.

Defining a connection
An MQ connection comprises a queue manager and the objects the application needs
in order to communicate from that queue manager to another. Even if the application
can run when the workstation is not connected to a queue manager on a server, you
still need an MQ standalone connection.

Define each connection in a separate Connection section in your MQD file. Remember
that the only MQ objects an application user should see are connections. Users have
to choose an MQ connection when MQ starts (unless you set one connection to start
automatically every time), so you need to give your connections recognizable names.

 Chapter 8. Creating an MQD file 63

Creating MQD files

When you define your connection:

� If the user does not need to communicate with another queue manager, include
only a queue manager.

� If the user will use a LAN to communicate with another queue manager, include a
queue manager and a channel group.

� If the user will use a telephone for the communication, include a queue manager, a
channel group, and a phonebook entry.

You must define the components the connection uses as follows:

� Define the queue manager in the QueueManager section of the MQD file.

� Define the channel group in the ChannelGroup section of the MQD file.

� The phonebook entry must already exist on the user’s workstation. Create it using
the dial-up networking features provided by Windows.

You must number these sections so that MQ processes them before the connection
definition.

MQSeries for Windows allows only one queue manager to run at a time, so you may
choose to define only a single queue manager. But this means that all the user’s data
is stored on the queues owned by this queue manager, so you may instead want to
define a separate queue manager for each type of data. You can administer each
queue manager separately, viewing and changing its characteristics.

The single queue manager that is running is determined by the connection that the user
chooses. So you need to define a separate connection for each combination of queue
manager and access type. For example:

� Connection A for using queue manager X on a LAN
� Connection B for using queue manager X with a telephone link
� Connection C for using queue manager Y on a LAN
� Connection D for using queue manager Y with a telephone link
� Connection E for using queue manager Z with a telephone link

You can define one connection to start automatically when MQ starts. Do this for the
connection the user will use most often, and certainly if there is only one connection.
The user can override this by setting the option in their MQSeries Properties dialog box
to select a connection from a list when MQ starts.

When you define a connection, you can also specify that the command server starts
whenever the connection starts. For information on this, see “Controlling the command
server” on page 65.

For information on the keywords you can use in a Connection section in your MQD file,
see “The Connection section” on page 73.

64 MQSeries for Windows** User’s Guide

Creating MQD files

Controlling the command server
In the definition of a connection, you can specify that MQ runs the command server
whenever the connection is running. The command server runs on the queue manager
that the connection owns. It gets PCF command messages from the administration
command queue. You need the command server running on the user’s workstation if
you want to administer that workstation from an administration application running on
your server. You can create, change, and delete objects using PCF commands in an
administration application, monitor MQ activity using MQ events, and diagnose
problems (using events and display commands).

But the command server is a heavy user of system resources, so start it through the
MQD file only if you want to use it regularly. If you want to use the command server
only occasionally, ask the user to start it using the MQSeries Properties dialog box
when you are ready; in the Compact version, the user must first enable the
administration features. The user can stop the command server at any time using the
MQSeries Properties dialog box. Also, the command server stops if the queue
manager stops, so if the user stops the connection you cannot use PCF commands or
MQ events.

Defining a queue manager
Define a QueueManager section for each queue manager you need in order to make
the connections you defined in “Defining a connection” on page 63. You must give the
queue manager a name. If you want all your users to use a queue manager of the
same name, you can give them all the same MQD file. However, you may want them
to use queue managers with unique names but having otherwise identical properties.
You can still give all your users the same MQD file if you specify a question mark (?)
for the name of the queue manager. When MQ runs the MQD file, it prompts the user
to type the name of their own queue manager. In the MQD file, you can define the
wording of the dialog that the users see when they have to type the name of their
queue manager.

For information on the keywords you can use in a QueueManager section in your MQD
file, see “The QueueManager section” on page 82.

Creating queues and channels
A queue manager is of no use without other MQ objects. It needs at least a local
queue, and if it is going to communicate with other queue managers it needs a
transmission queue, a local definition of a remote queue, and some channels. If you
want to create channels and queues using the MQD file, you must do this as part of the
definition of the queue manager. You must define these objects using MQSC DEFINE
commands in one or more MQSC command files. (For more information on this, see
“Writing MQSC command files” on page 111.) Specify in the QueueManager section of
the MQD file the names of these command files. You can specify many MQSC files, so
you can separate your MQSC commands in any way you want. MQ runs the MQSC
command files when it has created the queue manager.

 Chapter 8. Creating an MQD file 65

Creating MQD files

Defining a channel group for the queue manager
Define a ChannelGroup section for each channel group you need in order to make the
connections you defined in “Defining a connection” on page 63. A channel group is
simply a collection of channels, so all you have to do is give the group a name and
specify which channels it includes. Note that a channel can belong to more than one
group.

To make it easy for you to define a channel group, you can use the AllUserChannels
keyword to include all the channels you create for the queue manager. This excludes
the default channels that MQ defines for each queue manager, and any receiver
channels. If you do not want to include all the channels (you may want to exclude
some if there are a lot of them), you must list each channel name separately. You can
include a maximum of 8 channels in the group, one of which can be the channel
listener program.

For more information on channels and channel groups, see “Why you need channels”
on page 38. For information on the keywords you can use in a ChannelGroup section
in your MQD file, see “The ChannelGroup section” on page 69.

Defining the appearance of MQ
After you have defined in your MQD file all the MQ objects your users will need, you
should think about how you want to control the appearance of MQ on the user’s
workstation.

In the Process section of the MQD file you can specify keywords that determine the
appearance of MQ (the user can change these options using the Options page of the
MQSeries Properties dialog box):

� Whether the MQ status icon appears on the Windows taskbar
� Whether the user has to select from a list of connections when MQ starts
� Whether MQ uses small or large icons in the MQSeries Properties dialog box
� The interval between automatic refreshes of the component status displays
� The maximum size of the channel log file

Table 7 on page 67 and Table 8 on page 67 explain how the option to display a list of
connections affects which connection MQ starts.

66 MQSeries for Windows** User’s Guide

Creating MQD files

You can also set the password that allows the user to access the administration
features of the Compact version. You may want to do this to prevent the user
accidentally changing their MQ installation. If you need to divulge this password to the
user (for example, if they find a problem and they must make changes), you can
change this password by giving them a new MQD file. For more information, see
“Using an MQD file to change an existing installation” on page 68.

For information on the keywords you can use in a Process section in your MQD file,
see “The Process section” on page 79.

Table 7. How MQ displays the list of connections

 One connection is defined
to start automatically

No connection is defined
to start automatically

No connections defined in
the file

Not applicable MQ issues a warning
message when it starts.

One connection defined in
the file

MQ displays the
Connections dialog and
highlights the single
connection.

MQ displays the
Connections dialog and
highlights the single
connection.

More than one connection
defined in the file

MQ displays the
Connections dialog and
highlights the connection
that is marked for automatic
starting.

MQ displays the
Connections dialog and
highlights the first
connection in the list.

Table 8. Which connection MQ starts when the user is not prompted to select one

 One connection is defined
to start automatically

No connection is defined
to start automatically

No connections defined in
the file

Not applicable MQ does not start a
connection.

One connection defined in
the file

MQ starts the connection
that is defined.

MQ does not start a
connection.

More than one connection
defined in the file

MQ starts the connection
that is defined for automatic
starting.

MQ does not start a
connection.

Enabling LAN verification of MQ
If you want your users to use the Verify feature in LAN mode (that is, to send test
messages to a remote server), you must enable this in the Process section of the MQD
file. If you do not, the LAN option remains grayed out on the Verify page of the user’s
MQSeries Properties dialog box.

For more information, see:

� “Verifying your installation” on page 20
� “The Process section” on page 79
� “Configuring for verification using a LAN” on page 102

 Chapter 8. Creating an MQD file 67

Creating MQD files

Using an MQD file to change an existing installation
You can use your MQD files for more than just creating objects for your users. You
can also change existing objects or delete them. To do this, you must create a new
MQD file and give the new file to your users. After they copy this new file to their
workstations, MQ runs the file next time it starts or they can force MQ to run it at any
time.

Alternatively, you can delay the use of the file by specifying in its Process section a
date and time before which MQ will not run it. Even if the user tries to force MQ to run
the MQD file by selecting the Run MQD file now option from the menu of the MQ
taskbar icon, MQ still tests the file to see if you have specified a time delay.

For information on the keywords you can use in a Process section in your MQD file,
see “The Process section” on page 79.

To change connections, queue managers, and channel groups, use the Replace
keyword in your MQD definitions to force MQ to replace the objects of the same name.
You must specify all the keywords you want to use for each new object, not just the
keywords you want to change. This is because MQ deletes the existing object before it
creates the new one. Note that if you replace a queue manager, MQ deletes the
queues (including any messages on them) and channels that the queue manager owns.
To delete these objects, you need to specify only the object name and the two delete
keywords in the component sections of your MQD file. The second keyword is simply
to make you check that you really want to delete the object.

For information on the keywords you can use to change these objects in your MQD file,
see

� “The ChannelGroup section” on page 69
� “The Connection section” on page 73
� “The QueueManager section” on page 82

To change queues and channels, you cannot use an MQD file. Instead you must issue
MQSC commands using the MQSeries Properties dialog box (see Chapter 10, “Using
MQSC commands” on page 107).

Testing your MQD file
When you have created your MQD file, you can test it by selecting the Run MQD file
now option from the menu that appears when you click with mouse button 2 on the MQ
taskbar icon. You must first stop your active connection and close the MQSeries
Properties dialog box.

If there are any errors in your file, MQ writes messages in the log file named
CREATEMQ.LOG. In a default installation, this log file is in the \Program
Files\MQSeries for Windows\Data directory. Note that this file is overwritten each time
MQ processes a file.

68 MQSeries for Windows** User’s Guide

ChannelGroup section

The ChannelGroup section
To define a channel group, use a section that starts with the lines:

 [Component_n]
 ComponentType=ChannelGroup

You can define zero or more ChannelGroup sections in an MQD file.

For advice on how to create a ChannelGroup section, see “Defining a channel group for
the queue manager” on page 66.

The following list explains the keywords you can use within the section:

Use this keyword To do this

Name= Specify the name of the channel group you want to create.

You can use a maximum of 48 characters. If you use a
nonvalid character, MQ replaces it with a period (.) and logs a
warning. For more information on the characters you can use
in the name of a channel group, see “Naming MQ objects” on
page 96.

If you do not specify a name, MQ selects the first name that
has not already been used from the following list:

 ChannelGroup
 ChannelGroup_1
 ChannelGroup_2

...
 ChannelGroup_n

Description= Describe the channel group.

Use this keyword to add a text description of the channel
group. You can use a maximum of 64 characters.

The default value is all blanks.

 Chapter 8. Creating an MQD file 69

ChannelGroup section

QueueManagerName= Specify the name of the queue manager to which the channel
group is to belong.

Each queue manager can own a maximum of 16 channel
groups.

If the queue manager you specify does not exist, MQ logs an
error.

If you do not specify the name of a queue manager, and MQ
has created one during its current operation, it uses that name;
otherwise it uses the name of any queue manager it can find.
If there is no queue manager on the workstation, MQ logs an
error.

StartListener= Specify whether the listener is started when the channel group
is started.

Specify either yes or no. The default value is no. You need
the listener if the channel group contains a channel that acts
as a responder (that is, a channel that has to be started by
requests from a queue manager other than the one that owns
the channel group).

AllUserChannels= Specify whether to include in the channel group all the
user-defined channels that are defined for the owning queue
manager.

This excludes the MQ default channels that are defined in the
AMQSCOMW.TST file and any receiver channels.

Specify either yes or no. The default value is no. This means
you must use Channel_n keywords to specify one or more
channel names.

If you specify AllUserChannels=yes, this saves you having to
specify the names of individual channels.

Channel_ n= Specify the name of a channel to be included in the channel
group.

You can specify this keyword a maximum of 8 times,
substituting successive integers for n, starting with 1. The
entries are read in numeric order.

If MQ cannot find the specified channel, it logs an error and
continues processing the next component.

If you specify AllUserChannels=yes, MQ ignores all Channel_n
keywords.

Replace= If a channel group of this name already exists, specify whether
to replace it with this one.

Specify either yes or no. The default value is no.

70 MQSeries for Windows** User’s Guide

ChannelGroup section

Delete= Specify whether to delete the channel group defined by the
Name keyword.

Specify either yes or no. The default value is no. If you
specify yes, you must also:

� Specify ConfirmDelete=yes; this is to attempt to prevent
accidental deletions.

� Use the QueueManagerName keyword to specify the
name of the queue manager to which the channel group
belongs.

If you want to delete a channel group, you must first delete the
connections that use it. To do this, give the sections of the
MQD file that delete the connections a lower component
number than the section that deletes the channel group.

If you specify both Delete=yes and ConfirmDelete=yes, the
channel group specified by the Name keyword is deleted and
the other keywords in the section are ignored. If the channel
group does not exist, a warning is logged and MQ continues
processing the remainder of the MQD file.

ConfirmDelete= Specify whether to confirm that you want to delete the channel
group defined by the Name keyword.

Specify either yes or no. The default value is no.

If you specify both Delete=yes and ConfirmDelete=yes, the
channel group specified by the Name keyword is deleted and
the other keywords in the section are ignored. If the channel
group does not exist, a warning is logged and MQ continues
processing the remainder of the MQD file.

Example ChannelGroup components
The first example defines a channel group named MY_CHANNEL_GROUP on the
queue manager named MY_QUEUE_MANAGER, using default values. This creates a
channel group that includes all the user-defined channels, but not the listener. If there
is already a channel group of that name defined on the workstation, MQ does not
replace it. The channel group has no description.

 [Component_2]
 ComponentType=ChannelGroup
 Name=MY_CHANNEL_GROUP
 QueueManagerName=MY_QUEUE_MANAGER
 AllUserChannels=yes

 Chapter 8. Creating an MQD file 71

ChannelGroup section

The second example is from MARS.MQD, the sample file that creates the components
you can use to run the sample programs across two workstations (see Chapter 13,
“Running the sample programs on two workstations” on page 133). When MQ creates
the channel group, it includes only two channels (named MARS.TO.VENUS and
VENUS.TO.MARS). If there is already a channel group named MARSGroup on the
workstation, MQ replaces it.

 [Component_2]
 ComponentType=ChannelGroup
 Name=MARSGroup

Description=Channel group to communicate with VENUS
 QueueManagerName=MARS
 AllUserChannels=no
 Channel_1=MARS.TO.VENUS
 Channel_2=VENUS.TO.MARS
 Replace=yes

The last example deletes MY_CHANNEL_GROUP from MY_QUEUE_MANAGER:

 [Component_1]
 ComponentType=ChannelGroup
 Name=MY_CHANNEL_GROUP
 QueueManagerName=MY_QUEUE_MANAGER
 Delete=yes
 ConfirmDelete=yes

72 MQSeries for Windows** User’s Guide

Connection section

The Connection section
To define a connection, use a section that starts with the lines:

 [Component_n]
 ComponentType=Connection

Note: You can define zero or more Connection sections in the MQD file, but to run an
MQSeries application there must be at least one connection running. So you should
always define a Connection component in an MQD file, unless you are using the file to
make changes to an existing installation that already has a connection defined.

For advice on how to create a Connection section, see “Defining a connection” on
page 63.

The following list explains the keywords you can use within the section:

Use this keyword To do this

Name= Specify the name of the connection you want to create.

The name of the connection must be unique on the
workstation. It can have a maximum of 48 characters.

If you use a nonvalid character, MQ replaces it with a
period (.) and logs a warning. For more information on the
characters you can use in the name of a connection, see
“Naming MQ objects” on page 96.

If you do not specify a name, MQ selects the first name
that has not already been used from the following list:

 Connection
 Connection_1
 Connection_2

...
 Connection_n

Description= Describe the connection.

Use this keyword to add a text description of the
connection. You can use a maximum of 64 characters.

The default value is all blanks.

 Chapter 8. Creating an MQD file 73

Connection section

QueueManagerName= Specify the name of the queue manager to be started
when this connection is started.

If this queue manager does not already exist, you can
define it in a QueueManager section of the MQD file (see
“The QueueManager section” on page 82). You must
define the QueueManager section before the Connection
section in the file (that is, give it a lower value of the
Component_n keyword).

If the queue manager you specify does not exist, an error
is logged. If you do not specify the name of a queue
manager, and MQ has created one during its current
operation, it uses that one; otherwise it uses the name of
the first queue manager it finds. If there are no queue
managers defined, MQ logs an error.

HasChannelGroup= Specify that the connection uses a channel group.

Specify either yes or no. The default value is no.

You need a channel group for a LAN or dial-up connection.
If you omit this keyword or specify HasChannelGroup=no,
MQ ignores the ChannelGroupName keyword.

If you do not specify the name of a channel group using
the ChannelGroupName keyword, and MQ has created
one during its current operation, it uses that one; otherwise
it uses the first channel group it finds.

ChannelGroupName= Specify the name of the channel group to be started when
this connection is started.

If this channel group does not already exist, you can define
it in a ChannelGroup section of the MQD file (see “The
ChannelGroup section” on page 69). You must define the
ChannelGroup section before the Connection section in the
file (that is, give it a lower value of the Component_n
keyword).

If the channel group you specify does not exist, an error is
logged.

If you omit this keyword, and you specify
HasChannelGroup=no, the connection MQ creates will be of
type standalone. No channel group is started.

HasPhonebookEntry= Specify that the connection uses a phonebook entry.

Specify either yes or no. The default value is no. If you
omit this keyword or specify HasPhonebookEntry=no, MQ
ignores the PhonebookEntryName keyword.

You need a phonebook entry for a dial-up connection only.
The phonebook entry must already exist on the workstation

74 MQSeries for Windows** User’s Guide

Connection section

that runs the MQD file; you create phonebook entries using
the dial-up networking support provided by Windows.

If you specify HasPhonebookEntry=yes, but you do not
specify the name of a phonebook entry using the
PhonebookEntryName keyword, MQ displays a list of the
phonebook entries defined on the workstation when it
processes the MQD file. The user can select one of these.

If you specify HasPhonebookEntry=yes and there are no
phonebook entries defined on the workstation when MQ
processes the MQD file, MQ logs a warning and processes
the next section of the file.

PhonebookEntryName= Specify the name of the phonebook entry you want MQ to
dial when this connection is started.

The phonebook entry must already exist on the workstation
that runs the MQD file. If the phonebook entry you specify
does not exist, an error is logged.

Alternatively, you can make MQ prompt the user to select
a phonebook entry from a list of those defined on their
workstation. MQ displays the list of phonebook entries
when it runs the MQD file. To do this, specify the
PhonebookEntryName keyword in the following way:

 PhonebookEntryName=?

If you omit this keyword, and you specify
HasPhonebookEntry=no, the connection MQ creates will be
of type standalone or LAN.

AutoStart= Specify whether the connection is started automatically
when MQ is started.

Specify either yes or no. The default value is no.

Note: Only one connection can be started automatically.
If you specify AutoStart=yes for more than one connection,
the last one you define is started automatically.

Specify AutoStart=yes for the connection the user will use
most often. The user can override this by setting the
option to select a connection when MQ starts, but the
connection you specify with this keyword will be
highlighted.

RunCommandServer= Specify whether to run the command server when the
connection is running.

Specify either yes or no. The default value is no. If you
specify yes, the command server starts when the
connection starts and ends when the connection ends.

 Chapter 8. Creating an MQD file 75

Connection section

The command server is a heavy user of system resources,
so start it using this keyword only if you want to use it
frequently. For more information on starting the command
server, see “Controlling the command server” on page 65.

Replace= If a connection of this name already exists, specify whether
to replace it with this one.

Specify either yes or no. The default value is no.

Delete= Specify whether to delete the connection defined by the
Name keyword.

Specify either yes or no. The default value is no. If you
specify yes, you must also specify ConfirmDelete=yes; this
is to attempt to prevent accidental deletions.

If you specify both Delete=yes and ConfirmDelete=yes, the
connection specified by the Name keyword is deleted and
the other keywords in the section are ignored. If the
connection does not exist, a warning is logged and MQ
continues processing the remainder of the MQD file.

ConfirmDelete= Specify whether to confirm that you want to delete the
connection defined by the Name keyword.

Specify either yes or no. The default value is no.

If you specify both Delete=yes and ConfirmDelete=yes, the
connection specified by the Name keyword is deleted and
the other keywords in the section are ignored. If the
connection does not exist, a warning is logged and MQ
continues processing the remainder of the MQD file.

Example Connection components
The first example defines a connection named MY_CONNECTION using the default
values. This connection uses the queue manager that is defined in the QueueManager
section of the MQD file. The connection does not start automatically, and if there is
already a connection of this name, MQ ignores this section.

 [Component_1]
 ComponentType=Connection
 Name=MY_CONNECTION

76 MQSeries for Windows** User’s Guide

Connection section

The second example is from MARS.MQD, the sample file that creates the components
you can use to run the sample programs across two workstations (see Chapter 13,
“Running the sample programs on two workstations” on page 133). The
Mars_Connection comprises the MARS queue manager and the MARSGroup channel
group. This connection starts automatically when MQ starts.

 [Component_3]
 ComponentType=Connection
 Name=Mars_Connection

Description=Connection to use on MARS machine
 QueueManagerName=MARS
 HasChannelGroup=yes
 ChannelGroupName=MARSGroup
 Replace=yes
 AutoStart=yes

The third example deletes MY_CONNECTION:

 [Component_1]
 ComponentType=Connection
 Name=MY_CONNECTION
 Delete=yes
 ConfirmDelete=yes

 Chapter 8. Creating an MQD file 77

Controls section

The Controls section
With MQSeries for Windows Version 2.0, you could use a Controls section to define
some options. This section started with the line:

 [Controls]

MQSeries for Windows Version 2.1 ignores the Controls section. No warnings or errors
are logged.

78 MQSeries for Windows** User’s Guide

Process section

The Process section
To define options that control how the MQD file is run and how MQ appears on the
user’s workstation, use a section that starts with the line:

 [Process]

You can omit the Process section, or you can define a single Process section in an
MQD file.

For advice on how to create a Process section, see “Defining the appearance of MQ”
on page 66 and “Using an MQD file to change an existing installation” on page 68.

The following list explains the keywords you can use within the section:

Use this keyword To do this

UseAfterDate= Specify the date after which you want MQ to run the MQD file.

The date must be in YYYY/MM/DD format. There is no
default. If you do not specify a date, or you specify a nonvalid
date, MQ logs a warning; MQ runs the MQD file next time MQ
starts or when the user instructs it.

UseAfterTime= Specify the time (on the UseAfterDate day) after which you
want MQ to run the MQD file.

The time must be in HH:MM 24-hour format. If you omit this
keyword, the default value is 00:00; that is, MQ runs the file
next time MQ starts on or after the date specified in the
UseAfterDate keyword.

MQ ignores this keyword if you do not specify a date using the
UseAfterDate keyword.

ShowIcon= Specify whether the MQ status icon appears on the Windows
taskbar.

Specify either yes or no. The default value is yes.

PromptForConnection=
Specify whether to show the Connections dialog when MQ
starts.

Specify either yes or no. The default value is no.

If you specify yes, MQ displays the Connections dialog every
time it starts. In this dialog, the user can select which
connection they want to start. For more information, see
Table 7 on page 67.

 Chapter 8. Creating an MQD file 79

Process section

If you specify no, MQ automatically starts the connection you
have defined it should start (see the AutoStart keyword in “The
Connection section” on page 73). If there is no such
connection, MQ does not start a connection. For more
information, see Table 8 on page 67.

Password= Specify or change the administration-access password.

A user of the Compact version must type this password before
they can see the Administration page of the MQSeries
Properties dialog box. If you do not specify a password, the
user can use the administration page without typing a
password. If you omit this keyword, any existing password still
applies. If you want to remove an existing password, specify
Password=<>

The password is case sensitive, so if your application user has
to type the password, make sure they type it exactly as you
specify it in this keyword.

The maximum length of the password is 12 characters.

When the Complete version processes the MQD file, it ignores
this keyword. Users of the Complete version can use
administration features without entering a password.

RefreshRate= Specify the interval (in seconds) between automatic refreshes
of the status of MQ components in the MQSeries Properties
dialog box.

Specify one of the following values:

 � 0
 � 5
 � 30
 � 60
 � 600

To prevent automatic refreshes of the component status
information, specify RefreshRate=ð. When you do this, the
user must use the F5 function key to manually refresh the
status information.

If you specify any value other than one of those listed, MQ
does not change the refresh interval. It logs a warning in the
MQD log file.

The default value is 600 seconds.

UseSmallIcons= Choose whether to display small icons on the pages of the
MQSeries Properties dialog box.

Specify either yes or no. The default value is yes.

If you specify the value no, MQ uses large icons.

80 MQSeries for Windows** User’s Guide

Process section

EnableLANVerify= Choose whether to allow the user to verify the operation of MQ
using a remote server.

Specify either yes or no. The default value is no.

If you specify the value no, or you omit this keyword, the option
to verify MQ using a remote server is not available to the user.

For more information, see “Configuring for verification using a
LAN” on page 102.

ChannelLogSize= Specify the maximum number of entries the channel log can
hold.

You can specify any number, but note that each entry in the
log file is about 300 bytes long. The default value for this
keyword is 100.

If you want to stop channel logging, specify the value 0 for this
keyword. If you change the value of this keyword, MQ
discards the current log.

Example Process sections
The first example specifies that MQ runs the MQD file only after 9 p.m. on 30
November 1997. It sets the administration password to Hursley, so after 9 p.m., the
user of the Compact version must use this new password to gain access to the
administration features. The example also makes MQ display its status icon on the
Windows taskbar, and prompts the user to choose a connection when MQ starts.

 [Process]
 UseAfterDate=1997/11/3ð
 UseAfterTime=21:ðð
 ShowIcon=yes
 PromptForConnection=yes
 Password=Hursley

The second example removes the existing password. It shows the MQ status icon on
the Windows taskbar and does not prompt the user to choose a connection when MQ
starts; these are the default values.

 [Process]
 Password=<>

 Chapter 8. Creating an MQD file 81

QueueManager section

The QueueManager section
To define a queue manager, use a section that starts with the lines:

 [Component_n]
 ComponentType=QueueManager

Note: You can define zero or more QueueManager sections in the MQD file, but to
run an MQSeries application, there must be one queue manager running. So you
should always define a QueueManager component in an MQD file, unless you are
using the file to make changes to an existing installation that already has a queue
manager defined.

For advice on how to create a QueueManager section, see “Defining a queue manager”
on page 65.

The following list explains the keywords you can use within the section:

Use this keyword To do this

Name= Specify the name of the queue manager you want to
create.

The name of the queue manager can have a maximum of
48 characters. If you use a nonvalid character, MQ
replaces the character with a period (.) and logs a warning.
For more information on the characters you can use in the
name of a queue manager, see “Naming MQ objects” on
page 96.

The name of the queue manager must be unique on the
workstation. If you want each of your users to have a
queue manager with a different name, but all the other
definitions are the same, you can still create only one MQD
file. Specify the Name keyword in the following way:

 Name=?

Now, when the MQD file runs on the user’s workstation,
MQ prompts them to type the name they want to use for
their own queue manager. You can control the wording of
the dialog that the user sees by using the NamePrompt
and NameInformationText keywords.

82 MQSeries for Windows** User’s Guide

QueueManager section

If you do not specify a name, MQ selects the first name
that has not already been used from the following list:

 QueueManager
 QueueManager_1
 QueueManager_2

...
 QueueManager_n

NamePrompt= Specify the text that appears above the Queue Manager
Name field if the user has to type the name.

This is valid only when you specify Name=? in the Name
keyword. You can use a maximum of 60 characters.

The default text is:

Enter the name of the queue manager

NameInformationText= Specify the text that appears in the information line at the
bottom of the window if the user has to type the name of
the queue manager.

This is valid only when you specify Name=? in the Name
keyword. You can use a maximum of 60 characters.

The default text is all blanks.

Description= Describe the queue manager.

Use this keyword to add a text description of the queue
manager. You can use a maximum of 64 characters.

The default value is all blanks.

LoadSamplesMQSC= Specify whether to load the MQSC command file for the
sample programs when the queue manager is created.

Specify either yes or no. The default value is no.

The MQSC command file for the sample programs is
named AMQSCOSW.TST.

LoadUserMQSC_ n= Specify the name of an MQSC command file you want
loaded when the queue manager is created.

You can specify this keyword many times, substituting
successive integers for n, starting with 1. The entries are
read in numeric order.

You can use these MQSC command files to define
MQSeries objects (such as queues and channels) that you
want MQ to create when it creates the queue manager.
You can also use these commands to change or delete
MQ objects.

 Chapter 8. Creating an MQD file 83

QueueManager section

If MQ cannot find the specified file, it logs an error and
continues by processing the next component.

If an error occurs while running an MQSC command file,
MQ puts an entry in the MQD log file, and that entry refers
you to an MQSC log file.

Replace= If a queue manager of this name already exists, specify
whether to replace it with this one.

Specify either yes or no. The default value is no.

Note: If you specify Replace=yes, all the queues,
channels, and messages associated with the first queue
manager are destroyed. If you have defined any queues
and channels in an MQSC command file that you specify in
the LoadUserMQSC_n keyword, those queues and
channels are created for the new queue manager.

Delete= Specify whether to delete the queue manager defined by
the Name keyword.

Specify either yes or no. The default value is no. If you
specify yes, you must also specify ConfirmDelete=yes; this
is to attempt to prevent accidental deletions.

If you want to delete a queue manager, you must first
delete the connections that use it. To do this, give the
sections of the MQD file that delete the connections a
lower component number than the section that deletes the
queue manager.

If you specify both Delete=yes and ConfirmDelete=yes, the
queue manager specified by the Name keyword is deleted
and the other keywords in the section are ignored. If the
queue manager does not exist, a warning is logged and
MQ continues processing the remainder of the MQD file.

ConfirmDelete= Specify whether to confirm that you want to delete the
queue manager defined by the Name keyword.

Specify either yes or no. The default value is no.

If you specify both Delete=yes and ConfirmDelete=yes, the
queue manager specified by the Name keyword is deleted
and the other keywords in the section are ignored. If the
queue manager does not exist, a warning is logged and
MQ continues processing the remainder of the MQD file.

84 MQSeries for Windows** User’s Guide

QueueManager section

Example QueueManager components
The first example defines a queue manager named MY_QUEUE_MANAGER using the
default values. If there is already a queue manager of this name, MQ ignores this
section.

 [Component_1]
 ComponentType=QueueManager
 Name=MY_QUEUE_MANAGER

The second example is from MARS.MQD, the sample file that creates the components
you can use to run the sample programs across two workstations (see Chapter 13,
“Running the sample programs on two workstations” on page 133). When MQ creates
the queue manager, it runs the file MARS.TST. This file defines the objects the queue
manager needs when it communicates with the queue manager named VENUS. If
there is already a queue manager named MARS on the workstation, MQ replaces it
with this one.

 [Component_1]
 ComponentType=QueueManager
 Name=MARS

Description=Queue manager to communicate with VENUS
LoadUserMQSC_1=\Program Files\MQSeries for Windows\Samples\MARS.TST

 Replace=yes

The third example defines a queue manager using the name the user supplies. When
MQ creates the queue manager, it displays a window in which the user is prompted to
type the name of the queue manager they have been given by their head office. MQ
replaces an existing queue manager of the same name.

 [Component_1]
 ComponentType=QueueManager
 Name=?

NamePrompt=Type the name given to you by Head Office
NameInformationText=Type the name, then press OK
Description=Queue manager for payroll application

 LoadUserMQSC_1=A:\PAYROLL.TST
 Replace=yes

 Chapter 8. Creating an MQD file 85

QueueManager section

The last example deletes MY_QUEUE_MANAGER:

 [Component_1]
 ComponentType=QueueManager
 Name=MY_QUEUE_MANAGER
 Delete=yes
 ConfirmDelete=yes

86 MQSeries for Windows** User’s Guide

MQ components

Chapter 9. Working with the components of MQSeries for Windows

This chapter describes the following tasks:

� “Creating MQ components individually” on page 88
� “Deleting MQ components individually” on page 97
� “Viewing and changing object attributes” on page 98
� “Viewing the status of an MQ object” on page 101
� “Configuring for verification using a LAN” on page 102

There are two ways to create, change, and delete MQ components:

� You can define components in a definition (MQD) file. If this file has changed
since the last time MQ was started, MQ runs the file automatically when it starts.
Alternatively, you can run the file at any time using the Run MQD file now item on
the menu of the MQ icon on the Windows taskbar.

You can use an MQD file to create new components, to replace existing
components, and to delete components. Use this method if you want to create the
same components many times while you are testing an application, or if you want
many users to use identical components on their own workstations without them
having to define the components themselves. You can give each of your users a
copy of the MQD file; when MQ runs this file, it performs all the definitions you
specify in the file.

For information on how to create a definition file, see Chapter 8, “Creating an MQD
file” on page 57.

� If you have installed the Complete version of MQSeries for Windows, you can use
the Components page of the MQSeries Properties dialog box to create, change, or
delete components individually. Use this method if you want to work on the
components on your own workstation. Only MQ administrators are advised to use
this method.

For information on how to use the MQSeries Properties dialog box, see:

– “Creating MQ components individually” on page 88
– “Deleting MQ components individually” on page 97

In addition, you can work with some MQ objects using MQSC and programmable
command format (PCF) commands:

� You can issue MQSC commands either by:

– Running an MQSC command file when you create the queue manager using
the MQSeries Properties dialog box (see “Creating a queue manager” on
page 88).

– Using the MQSC page of the MQSeries Properties dialog box (this allows you
to enter commands individually or by running an MQSC command file). To
find out more about the MQSC page, see Chapter 10, “Using MQSC
commands” on page 107.

 Copyright IBM Corp. 1994, 1997 87

Creating components

� You can use PCF commands in an administration application in the same way you
do for other MQ products. For a list of the PCF commands that MQSeries for
Windows supports, see “PCF commands supported by MQSeries for Windows” on
page 121. For information on how to use PCF commands, see the MQSeries
Programmable System Management manual.

Creating MQ components individually
To create MQ components individually, use the Components page of the MQSeries
Properties dialog box. This page appears only if you have installed the Complete
version.

Note: If you have a connection running, you must stop it before you try to create a
new component.

Creating a queue manager
To create a queue manager, open the Components page of the MQSeries Properties
dialog box and click on the Create push button. Select Queue Manager from the
menu. MQ opens the window shown in Figure 11.

Figure 11. The Create Queue Manager window

88 MQSeries for Windows** User’s Guide

Creating components

Complete the fields in the Create Queue Manager window as follows:

Queue Manager Name
Specify the name of the queue manager you want to create.

When you run MQSeries applications, you need to use this name to
identify this queue manager. You can use a maximum of 48 characters.
For more information on the characters you can use in the name of a
queue manager, see “Naming MQ objects” on page 96.

Note: The name of a queue manager is case sensitive, so if you type the
name in uppercase letters when you create the queue manager, you must
always use uppercase letters whenever you type the name.

Queue Manager Description
Specify a text description of the function or purpose of this queue manager.

This field is optional. If you do not give a description, all subsequent
windows show: (none). Remember that, at a later date, a description
could help you to identify the queue manager you want to work with. You
can change it at any time by changing the attributes of the queue manager
(see “Changing the attributes of a queue manager, queue, or channel” on
page 101).

You can type any text you like in this field.

Load MQSC Command File for Sample Programs
If you want to run the supplied sample programs after you have created
your queue manager, make sure this check box is marked. When MQ
creates the queue manager, it runs the MQSC command file that generates
the queues used by the sample programs.

The sample file is named AMQSCOSW.TST; for more information on it,
see “Objects for running the sample programs on one workstation” on
page 204.

Load MQSC Files for your Application
Select the names of any MQSC command files you want to run when you
create the queue manager.

This field is optional. If you are using MQ for the first time, or just running
the samples, you can leave this field blank.

You can use one or more MQSC command files to create other MQ
objects (such as queues and channels). To find out more about MQSC
command files, see Chapter 10, “Using MQSC commands” on page 107.

If there is an existing queue manager with the name you have chosen, you can replace
it by checking the Replace box in the Create Queue Manager window.

When you have completed the input fields in this window, click on OK. When MQ has
created the queue manager, it displays a confirmation message.

When you create a queue manager, it always runs one MQSC command file
automatically. This is AMQSCOMW.TST, which defines default and system queues

 Chapter 9. Working with the components of MQSeries for Windows 89

Creating components

and channels. For more information on it, see “Default and system objects” on
page 203.

If an error occurs when any of the MQSC files are run, you are prompted to look at the
MQSC log to find out more about the error. MQ creates the log file in a separate
directory for each queue manager. For example, for a queue manager named TEST,
the log file is \Program Files\MQSeries for Windows\QMgrs\TEST\MQSC.LOG (if you
installed MQSeries for Windows in the default directory). For information about these
error messages, see Appendix E, “Error messages” on page 213.

After you have created the queue manager, you must add it to an MQ connection .
You can do this either:

� When you create the connection (see “Creating a connection” on page 92)

� Or by changing the attributes of an existing connection (see “Changing the
attributes of an MQ connection” on page 100).

If you do not do this, you cannot see or work with the queue manager using the
MQSeries Properties dialog box.

Creating a channel group
You must create a channel group if you want to create a LAN or dial-up connection.

To create a channel group, use the Components page of the MQSeries Properties
dialog box. Remember that a channel group contains channels, so you must create the
channels first. Typically you will create the channels using an MQSC command file and
specify the name of that file when you create the queue manager. If you do not do
this, you must create the channels as described in “Creating a channel” on page 95.
However, you can create a channel group that contains just the listener.

Open the Components page of the MQSeries Properties dialog box and click on the
Create push button. Select Channel Group from the menu. MQ opens the window
shown in Figure 12 on page 91.

When you complete the fields in the Create Channel Group window, you must:

� Specify the name of the channel group you want to create.

� Select the queue manager for which you want to create a channel group. This
queue manager will own the channel; each queue manager can own a maximum of
16 channel groups.

For more information on the characters you can use in the name of a channel group,
see “Naming MQ objects” on page 96.

To select which existing channels you want to add to the channel group, click on the
Add Channels push button. Note you cannot add receiver channels to a channel
group.

90 MQSeries for Windows** User’s Guide

Creating components

Figure 12. The Create Channel Group window

Alternatively, you can automatically add all the user-defined channels the queue
manager owns. This excludes the receiver channels and the MQ default channels.
This saves you having to add individual channels to the channel group.

You can have a maximum of 8 channels (or 7 and the listener) in a channel group.

If you need to add the listener to this channel group, make sure you mark the Start
Listener check box.

If there is an existing channel group with the name you have chosen, you can replace it
by checking the Replace box in the Create Channel Group window.

After you have created the channel group, you must add it to an MQ connection .
You can do this either:

� When you create the connection (see “Creating a connection” on page 92)

� Or by changing the attributes of an existing connection (see “Changing the
attributes of an MQ connection” on page 100).

If you do not do this, you cannot see or work with the channel group using the
MQSeries Properties dialog box. Note that a connection can include only one channel
group.

If you want to add more channels to the group after you have created it, see “Changing
the attributes of a channel group” on page 100.

 Chapter 9. Working with the components of MQSeries for Windows 91

Creating components

Creating a connection
Before you create a connection, you must:

� For a standalone connection, create a queue manager
� For a LAN connection, create a queue manager and a channel group
� For a dial-up connection, create a queue manager, a channel group, and a

phonebook entry

A dial-up connection uses the built in dial-up networking support provided by the
Windows operating system. If this is not installed on you workstation, you cannot
create a dial-up connection. You must first install the dial-up networking support, then
use it to create what Windows calls dial-up networking connections; MQ calls these
phonebook entries. These entries are like a paper phone book; they relate a person’s
name to a telephone number. When you have defined the phonebook entry, you can
use the name to access the telephone number.

To create a connection, open the Components page of the MQSeries Properties dialog
box and click on the Create push button. Select Connection from the menu. MQ
opens the window shown in Figure 13.

Figure 13. The Create Connection window

92 MQSeries for Windows** User’s Guide

Creating components

Complete the fields in the Create Connection window as follows:

Connection Name
Specify the name of the connection you want to create.

When you run MQSeries applications, you need to use this name to
identify this connection. You can use a maximum of 48 characters. For
more information on the characters you can use in the name of a
connection, see “Naming MQ objects” on page 96.

Note: The name of a connection is case sensitive, so if you type the
name in uppercase letters when you create the connection, you must
always use uppercase letters whenever you type the name.

Connection Description
Specify a text description of the function or purpose of this connection.

This field is optional. If you do not give a description, all subsequent
windows show: (none). Remember that, at a later date, a description
could help you to identify the connection you want to work with. You can
change it at any time by changing the attributes of the connection (see
“Changing the attributes of an MQ connection” on page 100).

You can type any text you like in this field.

Connection Type
Select from the list the type of connection you want to create:

Standalone Use a standalone connection when you want to work with
MQ without establishing a connection to another queue
manager. For example, you use a standalone connection
when you just want to enter data without sending it to
another computer. You might do this when you are working
with a laptop computer in a customer’s office.

LAN Use a LAN connection when you want to communicate with
another queue manager that is running on a computer you
can access through a local area network (LAN). For
example, you could use a LAN connection when you want to
use the application in your own office.

Dial-up Use a dial-up connection when you want to communicate
with another queue manager that is running on a computer
you can access through a dial-up telephone link. For
example, you could use a dial-up connection when you want
to use the application in your own home or in a hotel room.

You must always select the queue manager you want to use for the new connection
(select a queue manager from the list of those available). In addition:

� If you are creating a LAN connection, you must select a single channel group from
the list of those available.

� If you are creating a dial-up connection, you must select a single channel group
and a single phonebook entry from the lists of those available.

 Chapter 9. Working with the components of MQSeries for Windows 93

Creating components

You can check a box to specify that your new connection is started automatically
whenever MQ starts. But there can be only one connection marked for automatic
starting; if there is already a connection marked, and you mark the new connection you
create, MQ removes the mark from the previous connection. When MQ starts, and you
have chosen the option to select a connection, MQ displays the Connections window
and highlights the connection you have marked for automatic starting.

You can check a box to specify that MQ runs the command server automatically
whenever this connection is active. The command server runs on the queue manager
that the connection owns. The command server stops when the connection ends. But
the command server is a heavy user of system resources, so set it to start
automatically only if you want to use it regularly. If you want to use the command
server only occasionally, start it using the MQSeries Properties dialog box when you
are ready. You can stop the command server at any time using the MQSeries
Properties dialog box.

If there is an existing connection with the name you have chosen, you can replace it by
checking the Replace box in the Create Connection window. If you want to change the
composition or properties of a connection after you have created it, see “Changing the
attributes of an MQ connection” on page 100.

Creating a queue
This section tells you how to create a queue using the MQSeries Properties dialog box.
You can also create queues using MQSC and PCF commands.

To create a queue using the MQSeries Properties dialog box, open the Components
page and click on the Create push button. Select Queue from the menu. MQ opens
the window shown in Figure 14 on page 95.

When you complete the fields in the Create Queue window, you must:

� Specify the name of the queue you want to create.

� Specify the type of queue you want to create.

� Select the queue manager for which you want to create a queue.

� If you want to set any attributes for the new queue, click on the Change attributes
push button.

� Select an existing queue from which MQ can copy any queue attributes you do not
specify. You will usually use the system default queue for this.

For more information on the characters you can use in the name of a queue, see
“Naming MQ objects” on page 96.

If there is an existing queue with the name you have chosen, you can replace it by
checking the Replace box in the Create Queue window.

Note: You cannot see the queue in the MQSeries Properties dialog box until you start
the connection that uses it.

94 MQSeries for Windows** User’s Guide

Creating components

Figure 14. The Create Queue window

Creating a channel
This section tells you how to create a channel using the MQSeries Properties dialog
box. You can also create channels using MQSC and PCF commands.

The procedure for creating a channel using the MQSeries Properties dialog box is
similar to that for creating a queue. Open the Components page and click on the
Create push button. Select Channel from the menu, then complete the fields in the
Create Channel window. You must:

� Specify the name of the channel you want to create

� Specify the type of channel you want to create

� Select the queue manager for which you want to create a channel (this queue
manager will own the channel)

� If you want to set any attributes for the new channel, click on the Change
attributes push button. For some types of channel, you must specify some
attributes; see Table 9 on page 96.

� Select an existing channel from which MQ can copy any channel attributes you do
not specify. You will usually use the system default channel for this.

 Chapter 9. Working with the components of MQSeries for Windows 95

Creating components

For more information on the characters you can use in the name of a channel, see
“Naming MQ objects” on page 96.

If there is an existing channel with the name you have chosen, you can replace it by
checking the Replace box in the Create Channel window.

Note: You cannot see the channel in the MQSeries Properties dialog box until you
start a connection that uses it.

Table 9. The channel attributes you must always set

Channel type Required attributes

Receiver None

Requester ConnectionName

Sender ConnectionName and XmitQName

Server XmitQName

Naming MQ objects
Table 10 shows the maximum number of characters you can use in the name when
you create MQ objects.

You can use any of the following characters in the name:

� Uppercase letters A through Z
� Lowercase letters a through z
� Numerics 0 through 9

 � Period (.)
 � Underscore (_)
� Forward slash (/) (see Note 1)
� Percent (%) (see Note 1)

Table 10. Maximum number of characters in the names of MQ objects

MQ object Maximum number of characters

MQ connection 48

Channel group 48

Queue manager 48

Queue 48

Channel 20

96 MQSeries for Windows** User’s Guide

Deleting components

Notes:

1. Forward slash (/) and percent (%) are special characters. If you use either of
these characters in a name, you must enclose the name in double quotation marks
whenever you use it.

2. You cannot use leading or embedded blank characters.

3. You cannot use national language characters.

Deleting MQ components individually
Each MQ component you create uses system resources, so you should delete a
component you no longer use. However, deleting some components has an effect on
others, so read through the following sections before you delete a component:

� “Deleting a connection”
� “Deleting a queue manager”
� “Deleting a queue”
� “Deleting a channel”
� “Deleting a channel group” on page 98

Deleting a connection
When you delete an MQ connection, no other MQ components are affected. However,
this may leave a queue manager or channel group on your workstation that is not
owned by a connection. You cannot work with these components using the MQSeries
Properties dialog box until you create a new connection that uses these components.

Deleting a queue manager
You cannot delete a queue manager if it is owned by a connection. If you want to
delete the queue manager, you must first change the attributes of its owning connection
so that the connection owns another queue manager. Alternatively, you could delete
the connection.

When you delete a queue manager, any queues and channels it owns are deleted, and
the messages on the queues are deleted.

Deleting a queue
When you delete a queue, be warned that the messages on it are deleted.

Deleting a channel
If there is only one channel in a channel group and the group does not include the
listener, MQ deletes the channel group if you delete that channel. This is because the
channel group is now empty.

 Chapter 9. Working with the components of MQSeries for Windows 97

Changing attributes

Deleting a channel group
You cannot delete a channel group if it is owned by a connection. If you want to delete
the channel group, you must first change the attributes of its owning connection so that
the connection no longer owns the channel group. Alternatively, you could delete the
connection.

When you delete a channel group, the channels that belong to the group are not
deleted.

How to delete a component
To delete a component:

1. Open the Components page of the MQSeries Properties dialog box.

2. Click on the Delete push button.

3. Select from the menu the type of component you want to delete.

4. In the resulting Delete window, select the components you want to delete. You
can select as many components as you want. Figure 15 on page 99 shows the
Delete Queue window.

5. You are prompted to confirm that you want to delete the components.

When the component has been deleted, you can reuse its name when you create
another component.

If you uninstall MQSeries for Windows, all MQ components are deleted.

Viewing and changing object attributes
On the Compact version of MQSeries for Windows, your application users can see a
tree view that shows the status of all the MQ components defined on their workstations.
If they enable the administration features of the product, they can also view and change
the attributes of MQ objects. On the Complete version of MQSeries for Windows, you
can change attributes directly from the Components page of the MQSeries Properties
dialog box.

All MQ components have attributes (or properties) that control their behavior. To see
the attributes of a component, select the component on the Components page of the
MQSeries Properties dialog box and click on the Attributes push button. In the
resulting window you can select each attribute to see its value. For more information
on these attributes, see the online help.

You can change some of the attributes of a component, but the connection must be in
the correct state; see Table 11 on page 99.

98 MQSeries for Windows** User’s Guide

Changing attributes

Figure 15. The Delete Queue window

Note: If you want to change the properties of a phonebook entry, you must use the
dial-up networking features of the operating system.

For more information, see:

� “Changing the attributes of an MQ connection” on page 100
� “Changing the attributes of a channel group” on page 100
� “Changing the attributes of a queue manager, queue, or channel” on page 101

Table 11. State of connection for changing component attributes

Component State of connection for changing component
attributes

Connection Stopped

Channel group Stopped

Queue manager Active

Queue Active

Channel Active

 Chapter 9. Working with the components of MQSeries for Windows 99

Changing attributes

Changing the attributes of an MQ connection
When an MQ connection is active, you can view (but not change) its attributes. When
the connection is stopped, you can change:

� The description if you want to make the purpose of the connection clearer
� The queue manager that the connection uses
� The channel group that the connection uses
� The phonebook entry that the connection uses
� Whether the connection starts automatically when MQ starts
� Whether the command server runs when the connection is active

For example, if you want MQ to start a different connection automatically:

1. Stop the connection.

2. Open the Components page of the MQSeries Properties dialog box.

3. Select the connection you want to start automatically.

4. Click on the Attributes push button.

5. In the resulting window, select the Autostart attribute. The current value of this
attribute is displayed.

6. Change this value to Yes.

7. Click on the OK push button.

MQ displays a message to confirm that it has changed the connection that is started
automatically.

Changing the attributes of a channel group
When an MQ connection is active, you can view (but not change) the attributes of its
channel group. When the connection is stopped, you can change:

� The description of the channel group if you want to make the purpose of the
channel group clearer

� Which channels are included in the channel group

� Whether the listener belongs to the channel group

For example, if you want to add more channels to a channel group (up to the maximum
of 8 channels, or 7 plus the listener), change the attributes of the channel group as
follows:

1. Stop the connection.

2. Open the Components page of the MQSeries Properties dialog box.

3. Expand the tree view until you can see the channel group you want to change,
then select the channel group.

4. Click on the Attributes push button.

5. In the resulting window, select the Channels attribute. The list of available
channels is displayed.

100 MQSeries for Windows** User’s Guide

Viewing object status

6. Select all the channels you want in the channel group.

7. Click on the OK push button.

If there is only one channel in the channel group and the group does not include the
listener, MQ deletes the channel group if you delete that channel. This is because the
channel group is now empty.

Changing the attributes of a queue manager, queue, or channel
The attributes of queue managers, queues, and channels are part of the Message
Queue Interface (MQI). For information on the attributes that MQSeries for Windows
supports, see the online help. Also:

� The queue manager attributes are listed in Table 20 on page 181.
� The queue attributes are listed in Table 21 on page 182.
� The channel attributes are listed in Table 22 on page 183.

Before you change these attributes, you must start a connection that uses the queue
manager you want to change.

For example, if you want to block a queue so that applications cannot put messages on
it while you fix a problem:

1. Start a connection that uses the queue manager that owns the queue.

2. Open the Components page of the MQSeries Properties dialog box.

3. Expand the tree view until you can see the queue you want to change, then select
the queue.

4. Click on the Attributes push button.

5. In the resulting window, select the InhibitPut attribute. The current value of this
attribute is displayed.

6. Select the value PUT_INHIBITED from the list box.

7. Click on the OK push button.

Viewing the status of an MQ object
We have already seen two ways in which you can get information about an MQ object:

� The icons in the tree view on the Components page of the MQSeries Properties
dialog box give an indication of the status of an object (they show you whether the
object is active or stopped).

� The Attributes push button on the Components page of the MQSeries Properties
dialog box shows you the values of the attributes of an object (such as the
maximum message length of a queue).

In addition, MQ reports transient status information about its objects. An example of
this status information is the number of bytes sent or received on a channel. To see
this information, select the object on the Components page of the MQSeries Properties

 Chapter 9. Working with the components of MQSeries for Windows 101

LAN verification

dialog box, then click the Status push button. In the resulting window, you can select
each status attribute to see its value. For more information on these status attributes,
see the online help. You cannot change these status attributes because they report the
current state of the object.

Configuring for verification using a LAN
You may want your users to use the LAN option of the Verify function (see “Verifying
your installation” on page 20) to confirm that their system is configured correctly to
transmit messages to a queue manager on a server. Before they can do this, you must
configure their workstation and the server for LAN-mode verification.

Configuring the workstation
You must configure the user’s workstation to enable verification using a connection to a
server on a LAN. You can do this on the installation media before you install MQSeries
for Windows on the workstation.

1. Enable LAN verification in the user’s MQD file. See the description of the
EnableLANVerify keyword in “The Process section” on page 79.

2. Edit the supplied file LANVFY.TST to add the TCP/IP address of the server to
which you want Verify to connect. You must add the address to the definition of
both the USER.TO.ADMIN sender channel and the ADMIN.TO.USER requester
channel.

Alternatively, supply your own MQSC command file that defines the MQ objects
you need. If you do this, you must set environment variable MQW_LANVFYPATH
on the user’s workstation to specify the name and location of this file. You could
put this file on your server.

Configuring the server
To enable users to run Verify in LAN mode, you must configure a server to which Verify
can connect. You can run any MQSeries queue manager product on this server, but
you must configure it using the definitions the Verify program uses. If the server is
running MQSeries for Windows, you must perform some extra configuration steps.

Configure the server as follows:

1. Create a queue manager.

You must name the queue manager
SYSTEM.LANVFY.ADMIN.QUEUE.MANAGER.

2. Create a transmission queue, a remote queue, a server channel, and a receiver
channel.

MQSeries for Windows supplies the object definitions you need in the MQSC
command file named LANVFY.TST, but the definitions are commented out. Copy
the commented-out section (labeled ‘ADMINISTRATION machine’) from this file
into a new file, remove the comment characters, then run that file on the queue
manager you have created on your server.

102 MQSeries for Windows** User’s Guide

LAN verification

3. Start the listener or, if the server is running MQSeries for Windows, create a
channel group that includes only the listener.

When you create the channel group, you must:

� Specify its owning queue manager as
SYSTEM.LANVFY.ADMIN.QUEUE.MANAGER

� Add the listener to it (for example, by marking the Start Listener box in the
Create Channel Group window)

4. If the server is running MQSeries for Windows, create a connection.

When you create the connection, you must:

� Specify the name of its queue manager as
SYSTEM.LANVFY.ADMIN.QUEUE.MANAGER

� Specify the name of the channel group you have created

If you want to use objects with names that are different from those listed here, you
must provide your own definitions. However, if you do this, you must make sure the
objects are compatible with those defined on the user’s workstation.

Objects required for verifying in LAN mode
Figure 16 shows the MQ objects you need for verifying in LAN mode. The supplied file
LANVFY.TST creates the queues and channels. MQ creates the user’s queue
manager; you must create the server queue manager yourself.

SYSTEM.LANVFY.USER.QUEUE.MANAGER SYSTEM.LANVFY.ADMIN.QUEUE.MANAGER

LANVFY.USER.XMIT.QUEUE

LANVFY.USER.REMOTE.QUEUE

LANVFY.USER.LOCAL.QUEUE

LANVFY.ADMIN.XMIT.QUEUE

LANVFY.ADMIN.REMOTE.QUEUE

User’s workstation Server

SDR RCVR

RQSTR SVR

USER.TO.ADMIN

ADMIN.TO.USER

Figure 16. The objects defined in the file LANVFY.TST

 Chapter 9. Working with the components of MQSeries for Windows 103

LAN verification

How LAN-mode verification works
In LAN mode, Verify uses MQ objects defined in the MQSC command file named
LANVFY.TST. Verify can run in LAN mode only if there is no active connection.

In LAN mode, Verify:

1. Creates the test connection (unless it exists already)
2. Starts the connection
3. Opens the remote queue
4. Puts a test message on the remote queue
5. Closes the remote queue
6. Opens the local queue
7. Gets the message from the local queue
8. Closes the local queue
9. Stops the connection

The queues are defined so that the remote queue on which Verify puts the test
message resolves to a queue on the remote server. The queue on the server is itself a
remote queue which resolves to a local queue on the user’s workstation. This means
that when Verify puts the test message on the remote queue, MQ moves the message
from the workstation to the server, then back to the local queue on the workstation.

If LAN-mode verification fails
The most likely reasons for failure of a LAN verification are:

� The TCP/IP connection to the server is broken.

You can confirm this by trying to ping the workstation from the server. You must
reestablish this connection before Verify can send messages to the server.

If the workstation cannot connect to the server, look at the errors recorded in the
channel log. To do this, open the Channel Logs tab on the Service page of the
MQSeries Properties dialog box, then select the
SYSTEM.LANVFY.USER.QUEUE.MANAGER queue manager.

� A queue manager named SYSTEM.LANVFY.ADMIN.QUEUE.MANAGER already
exists on the server.

If you have created a queue manager of this name, you must delete it before you
run Verify.

� A queue manager named SYSTEM.LANVFY.USER.QUEUE.MANAGER already
exists on the workstation.

If you have created a queue manager of this name, you must delete it before you
run Verify.

� A connection named SYSTEM.LANVFY.USER.CONNECTION already exists on
the workstation.

If you have created a connection of this name, you must delete it before you run
Verify.

� The server is not set up correctly for LAN verification.

104 MQSeries for Windows** User’s Guide

LAN verification

Make sure you set up the server as described in “Configuring for verification using
a LAN” on page 102, using either the supplied file LANVFY.TST or your own
object definitions.

� Verify cannot get messages from the queue.

Try increasing the wait interval on the Verify tab of the Service page of the
MQSeries Properties dialog box.

� If you still find problems:

1. Delete the queue manager named
SYSTEM.LANVFY.USER.QUEUE.MANAGER from the workstation.

2. Reset the sequence number at the server end of the channel by issuing the
MQSC command RESET CHANNEL on the server.

3. Run the verification again.

 Chapter 9. Working with the components of MQSeries for Windows 105

LAN verification

106 MQSeries for Windows** User’s Guide

Using MQSC commands

Chapter 10. Using MQSC commands

MQSeries provides commands (known as MQSC commands) with which you can
create, change, and delete MQSeries objects. This chapter describes how to use those
commands on MQSeries for Windows. It contains the following sections:

� “Issuing MQSC commands”
� “The MQSC page” on page 108
� “Writing MQSC command files” on page 111
� “MQSC commands supported by MQSeries for Windows” on page 116

MQSC commands are common across all MQSeries platforms, but MQSeries for
Windows does not support all the commands available on other MQSeries products:

� If you are used to using MQSC commands on other operating systems, see
“MQSC commands supported by MQSeries for Windows” on page 116 to see if
the commands you want to use are available on Windows.

� For a description of each MQSC command you can use on MQSeries for Windows,
see the online MQSeries for Windows Command Reference.

Issuing MQSC commands
To issue MQSC commands, use the MQSC page of the MQSeries Properties dialog
box. This page performs and extends the functions of the RUNMQSC command that
other MQSeries products provide. You can type MQSC commands one at a time,
recall commands you have issued previously, or you can save many commands in a
file and run that file.

Note: The MQSC page is grayed out if there is no active connection. You must start
a connection that uses the queue manager on which you want to issue your MQSC
commands. If you are using the Compact version, you may find that the Administration
page of the MQSeries Properties dialog box is protected by a password (it is in a
default installation).

In addition, you can run MQSC command files:

� When you create a queue manager using the Components page of the MQSeries
Properties dialog box of the Complete version

� When you use an MQD file to create a queue manager (list the names of the
command files in the MQD file)

Specifying MQSeries object names
When you are issuing MQSC commands, you need specify only the local name of the
object on which you are operating. In the examples showing MQSC commands in this
chapter, the queues have names such as SAMPLE.VENUS.REMOTE. They have this format
simply to show the function of the queue. You do not need to use names of this form,
but you are recommended to use a naming scheme of some sort.

 Copyright IBM Corp. 1994, 1997 107

MQSC commands

You can write MQSC commands and their attributes in uppercase or lowercase. But
the names of MQSeries objects are case sensitive, so always ensure you type them in
the same way in which they were defined.

Quotation marks are significant in the names of MQSeries objects:

� If you enclose a name in single quotation marks, MQ leaves the name as it is.

� If you do not enclose a name in single quotation marks, MQ changes the name to
uppercase.

So, for example, MQ treats the following as the same name:

 hursley
 Hursley
 HURSLEY

But MQ treats the following as different names:

 'hursley'
 'Hursley'
 'HURSLEY'

The MQSC page
The MQSC page of the MQSeries Properties dialog box allows you to type MQSC
commands and to run MQSC command files. The page is shown in Figure 17 on
page 110. You can:

Edit and rerun a command
If a command results in an error, you can edit the command and rerun it
without having to type the whole command again.

Run an MQSC command file
You can run an MQSC command file. If there are any errors, they are
displayed on the MQSC page. You can then correct them and run the file
again.

Use the Windows clipboard
You can use the clipboard to transfer commands to and from other files.
You can save a complex command in the clipboard so that you can load it
next time you use MQSC (provided you have not added something else to
the clipboard or restarted your workstation).

Recall commands
MQ stores the last 32 successful commands until you close the MQSeries
Properties dialog box. You can recall these commands using the scroll
buttons in the Command window, then rerun any of them.

108 MQSeries for Windows** User’s Guide

MQSC commands

Log commands in a window
MQ logs in the Results window of the MQSC page the result of each
command it processes, and a summary of every MQSC file it runs. There
is one log message for each command issued and each file run. Each log
message also contains an icon, which provides a visual representation of
the success or failure of the command.

Log commands in a file
MQ logs in a file all the commands it processes from MQSC command
files. The log file is called MQSC.LOG and it is stored in the directory of
the active queue manager. Each command is appended to the end of the
existing log file. To view the log file, click the View MQSC.LOG push
button on the MQSC page of the MQSeries Properties dialog box.

Save user preferences
When you stop using MQSC, MQ saves the name of the directory
containing the last MQSC file you ran.

Look up descriptions of MQSC commands
The MQSC commands that MQSeries for Windows supports are described
in the online MQSeries for Windows Command Reference. If you are
using the Complete version, you can open this book by clicking the Open
Command Reference push button on the MQSC page of the MQSeries
Properties dialog box.

Differences from other platforms
The main differences between the MQSC page of the MQSeries Properties dialog box
and the RUNMQSC utility provided by other MQSeries products are:

� You cannot specify the name of a queue manager to run the MQSC commands
against. This is because MQSeries for Windows allows only one queue manager
to run at a time, so it runs your commands against the active queue manager.

� There are some small differences in how you must write commands in an MQSC
command file; see “The format of MQSC files” on page 112.

� You cannot issue MQSC commands on an MQSeries for Windows queue manager
to run on another queue manager (known as indirect mode). Also, you cannot
issue MQSC commands on another queue manager (using the runmqsc /w
command) to run on an MQSeries for Windows queue manager.

 Chapter 10. Using MQSC commands 109

MQSC commands

Issuing MQSC commands
You can issue MQSC commands either interactively (by typing them in a field of the
MQSC page of the MQSeries Properties dialog box) or by saving them in an MQSC
command file and running that file.

Issuing commands interactively
To issue an MQSC command by typing its parameters, type it in the Command field of
the MQSC page of the MQSeries Properties dialog box. The page is shown in
Figure 17. You can split the command across multiple lines by ending each line except
the last one with a plus (+) sign. When you have finished typing the command, press
the Enter key to submit the command. A message indicating the success or failure of
the command is displayed in the Results field.

Figure 17. The MQSC page

If the command is successful, the command is selected in the Command field. If you
press any keys other than the direction keys, the Command field is cleared. The
command is saved, and you can recall it using the scroll buttons.

If the command is unsuccessful, it is not selected. You can correct it and resubmit it
without having to retype the whole command.

110 MQSeries for Windows** User’s Guide

MQSC command files

Running a command file
To run an MQSC command file, click the Run MQSC File push button on the MQSC
page of the MQSeries Properties dialog box. This displays a window that allows you to
select the file you want to run.

To view an MQSC file, select the file in the Run MQSC File dialog, click mouse button
2, then select Open from the menu. This loads the file into the Windows WordPad
program. You can view and edit the file using WordPad.

When you have chosen the file you want to use, click the Run push button in the Run
MQSC File dialog. This runs the file against the active queue manager. If any errors
or warnings occur, MQSeries for Windows provides an option to view the log file. A
message indicating the success or failure of the command is displayed in the Results
field.

Writing MQSC command files
Write MQSC command files in plain (ASCII) text. By convention, command files have a
file-name extension of TST. If you open a TST file using the Windows Explorer,
Windows opens the file using WordPad and loads it as a text file.

Figure 18 is an extract from the MQSC command file VENUS.TST that is supplied in
the \Program Files\MQSeries for Windows\Samples directory (if you installed MQSeries
for Windows in the default directory). This extract shows the command DEFINE
QLOCAL and its attributes.

...
DEFINE QLOCAL('SAMPLE.VENUS.LOCAL') REPLACE +

DESCR('Local queue') +
 DEFPSIST(YES) +
 SHARE

Figure 18. An extract from VENUS.TST

 Chapter 10. Using MQSC commands 111

MQSC command files

The format of MQSC files
If you are using MQSC files you have copied from other MQSeries platforms, be aware
that they may contain unrecognizable control characters, which the MQSC interpreter
will reject. You can prevent this happening by editing and resaving the .TST file before
you use it.

Most command files from other systems will work with MQSeries for Windows, but
Table 12 shows differences you should note.

For more information on the format of command files, see the online MQSeries for
Windows Command Reference.

Table 12. The format of MQSC command files

On MQSeries for Windows On other MQSeries platforms

You cannot use commas as separators. You can use commas as separators.

You cannot use a minus sign (−) as a
continuation character.

You can use a minus sign (−) as a
continuation character.

The continuation character must be at the
end of a keyword, data value, or quoted
string.

The continuation character can appear
anywhere within the command.

The description you specify using the
DESCR keyword cannot contain characters
from a double-byte character set (DBCS).

The DESCR keyword can use DBCS
characters.

Understanding errors in the MQSC log files
When you run an MQSC command file, the queue manager creates a log file called
MQSC.LOG in the directory for the active queue manager. For example, if your queue
manager is called TEST, the log file is \Program Files\MQSeries for
Windows\QMgrs\TEST\MQSC.LOG (if you installed MQSeries for Windows in the
default directory).

To look at the contents of the log file, click the View MQSC.LOG push button on the
MQSC page of the MQSeries Properties dialog box while the queue manager is
running.

If an MQSC command that is run when you are creating a queue manager generates
an error, you are prompted to view the MQSC log. The messages in the log file explain
the error (for example, the syntax of the command is incorrect). If you need more
information about these errors, see Appendix E, “Error messages” on page 213.

Note: MQSeries parses MQSC commands from left to right, and it stops parsing when
it finds the first error. If your command still does not run after you have fixed the
reported errors, the command contains more errors following those first reported.

If a command fails even when its syntax is correct, this means the queue manager was
unable to run the command. In this case, the command returns a code that shows the
reason for its failure; Appendix D, “Return codes” on page 207 lists these codes.

112 MQSeries for Windows** User’s Guide

MQSC command files

If you cannot view the log file, this may be because the log file is empty or incomplete.
This can happen if there is not enough free disk space to write the file. You should
move some data or applications to another disk to free some working space on the disk
on which MQSeries for Windows is installed. You can use the Service page of the
MQSeries Properties dialog box to see how much disk space you have available.

Examples of MQSC command files
The following figures show simple MQSC command files that are supplied with
MQSeries for Windows:

� Figure 19 on page 114 shows the file MARS.TST
� Figure 20 on page 115 shows the file VENUS.TST

Both of these files are supplied in directory \Program Files\MQSeries for
Windows\Samples (if you installed MQSeries for Windows in the default directory).

 Chapter 10. Using MQSC commands 113

MQSC command files

\ Define a local transmission queue - messages will be put here
\ before being sent to the remote queue manager.
DEFINE QLOCAL('SAMPLE.MARS.XMIT') REPLACE +

DESCR('Local transmission queue') +
 USAGE(XMITQ)

\ Define the remote queue.
\ The sample application should put messages on this queue.
DEFINE QREMOTE('SAMPLE.MARS.REMOTE') REPLACE +

DESCR('Remote queue defined on MARS') +
 DEFPSIST(YES) +
\ This is the name of the local queue on the remote machine
 RNAME('SAMPLE.VENUS.LOCAL') +
\ This is the name of the queue manager on the remote machine
 RQMNAME('VENUS') +
\ This is the name of the local transmission queue to be used
 XMITQ('SAMPLE.MARS.XMIT')

\ Define the channel that will remove messages from the transmission
\ queue SAMPLE.MARS.XMIT and send them to the machine specified
\ by CONNAME.
\ Change CONNAME to the TCP/IP name of the machine where
\ the remote queue manager is running.
\
DEFINE CHANNEL ('MARS.TO.VENUS') CHLTYPE(SDR) TRPTYPE(TCP) +
 XMITQ('SAMPLE.MARS.XMIT') +

CONNAME('VENUS TCP/IP machine name') +
DESCR('Sender channel for messages to queue manager VENUS') +

 REPLACE

\ Define the channel that will accept messages from the remote
\ queue manager on the machine specified by CONNAME.
\ Change CONNAME to the TCP/IP name of the machine where
\ the remote queue manager is running.
\
DEFINE CHANNEL ('VENUS.TO.MARS') CHLTYPE(RQSTR) TRPTYPE(TCP) +

CONNAME('VENUS TCP/IP machine name') +
DESCR('Requester channel for messages from queue manager VENUS') +

 REPLACE

\ Define the local queue where the remote machine will put its
\ messages. The sample application should get messages from this queue.
DEFINE QLOCAL('SAMPLE.MARS.LOCAL') REPLACE +

DESCR('Local queue') +
 DEFPSIST(YES) +
 SHARE

Figure 19. The supplied file MARS.TST

114 MQSeries for Windows** User’s Guide

MQSC command files

\ Define a local transmission queue - messages will be put here
\ before being sent to the remote queue manager
DEFINE QLOCAL('SAMPLE.VENUS.XMIT') REPLACE +

DESCR('Local transmission queue') +
 USAGE(XMITQ)

\ Define the remote queue.
\ The sample application should put messages on this queue
DEFINE QREMOTE('SAMPLE.VENUS.REMOTE') REPLACE +

DESCR('Remote queue defined on VENUS') +
 DEFPSIST(YES) +
\ This is the name of the local queue on the remote machine
 RNAME('SAMPLE.MARS.LOCAL') +
\ This is the name of the queue manager on the remote machine
 RQMNAME('MARS') +
\ This is the name local transmission queue to be used
 XMITQ('SAMPLE.VENUS.XMIT')

\ Define the channel that will remove messages from the transmission
\ queue SAMPLE.VENUS.XMIT and send them to the remote queue
\ manager.
DEFINE CHANNEL ('VENUS.TO.MARS') CHLTYPE(SVR) TRPTYPE(TCP) +
 XMITQ('SAMPLE.VENUS.XMIT') +

DESCR('Server channel for messages to queue manager MARS') +
 REPLACE

\ Define the channel that will accept messages from the remote
\ queue manager.
DEFINE CHANNEL ('MARS.TO.VENUS') CHLTYPE(RCVR) TRPTYPE(TCP) +

DESCR('Receiver channel for messages from queue manager MARS') +
 REPLACE

\ Define the local queue where the remote machine will place
\ its messages.
\ The sample application should get messages from this queue
DEFINE QLOCAL('SAMPLE.VENUS.LOCAL') REPLACE +

DESCR('Local queue') +
 DEFPSIST(YES) +
 SHARE

Figure 20. The supplied file VENUS.TST

 Chapter 10. Using MQSC commands 115

MQSC commands

MQSC commands supported by MQSeries for Windows
MQSeries for Windows supports a subset of the MQSeries commands (MQSC). This
subset is shown in Table 13. Version 2.1 of MQSeries for Windows adds support for
some commands that Version 2.0 does not support.

For a description of the syntax of each command, see the online MQSeries for
Windows Command Reference.

Table 13 (Page 1 of 3). MQSC commands and MQSeries for Windows

Command Available in V2.0 Available in V2.1

ALTER CHANNEL Yes Yes

ALTER NAMELIST No No

ALTER PROCESS No No

ALTER QALIAS Yes Yes

ALTER QLOCAL Yes Yes

ALTER QMGR Yes Yes

ALTER QMODEL Yes Yes

ALTER QREMOTE Yes Yes

ALTER SECURITY No No

ALTER TRACE No No

ARCHIVE LOG No No

CLEAR QLOCAL Yes Yes

DEFINE BUFFPOOL No No

DEFINE CHANNEL Yes Yes

DEFINE MAXSMSGS No No

DEFINE NAMELIST No No

DEFINE PROCESS No No

DEFINE PSID No No

DEFINE QALIAS Yes Yes

DEFINE QLOCAL Yes Yes

DEFINE QMODEL Yes Yes

DEFINE QREMOTE Yes Yes

DEFINE STGCLASS No No

DELETE CHANNEL Yes Yes

DELETE NAMELIST No No

DELETE PROCESS No No

DELETE QALIAS Yes Yes

DELETE QLOCAL Yes Yes

116 MQSeries for Windows** User’s Guide

MQSC commands

Table 13 (Page 2 of 3). MQSC commands and MQSeries for Windows

Command Available in V2.0 Available in V2.1

DELETE QMODEL Yes Yes

DELETE QREMOTE Yes Yes

DISPLAY CHANNEL No Yes

DISPLAY CHSTATUS No No

DISPLAY DQM No No

DISPLAY CMDSERV No No

DISPLAY MAXSMSGS No No

DISPLAY NAMELIST No No

DISPLAY PROCESS No No

DISPLAY QMGR No Yes

DISPLAY QUEUE No Yes

DISPLAY SECURITY No No

DISPLAY STGCLASS No No

DISPLAY THREAD No No

DISPLAY TRACE No No

DISPLAY USAGE No No

PING CHANNEL No No

PING QMGR No No

RECOVER BSDS No No

REFRESH SECURITY No No

RESET CHANNEL Yes Yes

RESOLVE CHANNEL Yes Yes

RESOLVE INDOUBT No No

RVERIFY SECURITY No No

START CHANNEL Yes Yes

START CHINIT No No

START CMDSERV No No

START LISTENER No No

START QMGR No No

START TRACE No No

STOP CHANNEL Yes Yes

STOP CHINIT No No

STOP CMDSERV No No

STOP LISTENER No No

STOP QMGR No No

 Chapter 10. Using MQSC commands 117

MQSC commands

Table 13 (Page 3 of 3). MQSC commands and MQSeries for Windows

Command Available in V2.0 Available in V2.1

STOP TRACE No No

118 MQSeries for Windows** User’s Guide

PCF commands

Chapter 11. Making changes for a user

If you do not want to use MQSC commands to change the MQ components on a user’s
workstation, you can make changes using an administration application running on a
server to which the workstation can connect. Such an application sends MQSeries
programmable command format (PCF) command messages to create, change, and
delete MQ objects. However, you cannot use PCF commands to change MQ
connections or channel groups.

This chapter uses the following sections to explain how to use PCF commands:

� “Controlling the command server”
� “Making changes using a PCF application” on page 120
� “PCF commands supported by MQSeries for Windows” on page 121
� “Restrictions on using PCF commands” on page 122
� “Controlling access to the administration features” on page 125

Controlling the command server
Before PCF commands can run on a workstation:

� There must be an active connection on the workstation.
� The command server must be running on that workstation.

The active connection can be any connection that uses the queue manager you want to
change. You can use PCF commands to change any of the objects that this queue
manager owns.

Users of the Compact version of MQSeries for Windows can start the command server
from the Administration page of the MQSeries Properties dialog box. If you have
defined a password in their MQD files, they must type this password before they can
open the Administration page.

Alternatively, when you create an MQD file, you can define a connection in such a way
that the command server always runs when that connection is active. This way, you do
not have to give the user the password to the administration features. However, the
command server is a heavy user of system resources, so you should allow it to run
only with a connection used for administration purposes, not with one that is used
frequently.

Users can stop the command server in two ways:

� If they have access to the Administration page of the MQSeries Properties dialog
box, they can click the Stop push button on the Command Server tab.

� They can stop the active connection; this also stops the command server.

 Copyright IBM Corp. 1994, 1997 119

PCF commands

Making changes using a PCF application
To understand how to use a PCF application to make changes to a user’s workstation,
read the following example.

A travelling salesman, named John, uses MQSeries for Windows applications to send
his sales orders to an office server. We saw how he might do this in the example
described in “Choosing an MQ connection” on page 24. But he is finding that he is
having to type more data than he used to for each order. He has told his MQ
administrator, named Janet, that he will soon exceed the limits he was told for the
application he uses. When Janet investigates this, she finds that, although the
application will accept more data, the queue she defined for John to use on his laptop
cannot hold messages greater than 500 KB in size. This means that some of the data
that John types could be lost.

Janet realizes that she can easily increase the size of John’s queue using the PCF
application she uses to administer her other MQ users. This is how she does it:

1. Janet telephones John, and tells him to start the Administration connection on his
laptop computer. This is a dial-up connection that she defined so he can dial in to
her server. She also tells him to start the command server on his laptop; for this,
she has to tell him the administration password she has set up on the Compact
version of MQSeries for Windows he has on his laptop.

2. John powers on his laptop computer. This starts Windows 95 and MQSeries for
Windows.

3. John connects his laptop computer to his modem so the Windows 95 dial-up
networking software can connect to Janet’s server.

4. On the Connections page of MQSeries for Windows, John selects the
Administration connection

5. When the MQ icon on his Windows taskbar shows that the dial-up connection is
ready, John opens the Administration page of the MQSeries Properties dialog box.
He has to type the password Janet tells him.

6. On the Command Server tab of the Administration page, John clicks on the push
button to start the command server.

7. Janet starts the MQ administration application she uses to send PCF command
messages. She uses this application to change the queue attribute that specifies
the maximum size of messages on John’s queue.

8. When Janet stops her application, John stops the command server on his laptop,
then powers off his laptop.

This simple example shows how you can make changes to a user’s workstation without
having to sit in front of it yourself. If Janet wanted to make the changes by sitting at
the laptop herself, she could do this using MQSC commands. Alternatively, she could
give John instructions over the telephone on how to type the MQSC commands.

120 MQSeries for Windows** User’s Guide

PCF commands

Now that Janet has told John the password that opens the Administration page on his
MQSeries Properties dialog box, she may want to change the password to hide that
page again. She must do this in the MQD file that John uses. John is a mobile
worker, so he uses an MQD file that is physically located on his laptop computer, rather
than one located on a server. This means Janet must send him a new MQD file
(containing keywords to change the password) for him to copy on to his laptop. MQ
runs this file automatically next time John powers on his laptop.

PCF commands supported by MQSeries for Windows
MQSeries for Windows Version 2.1 supports a subset of the MQSeries Programmable
Command Format (PCF) commands. This subset is shown in Table 14.

For a description of each command, see the MQSeries Programmable System
Management manual. However, MQSeries for Windows does not support all the
parameters and values of the commands; for more information, see “Restrictions on
using PCF commands” on page 122.

Table 14 (Page 1 of 2). PCF commands and MQSeries for Windows

Command Available in V2.1

Change Channel Yes

Change Process No

Change Queue Yes

Change Queue Manager Yes

Clear Queue Yes

Copy Channel Yes

Copy Process No

Copy Queue Yes

Create Channel Yes

Create Process No

Create Queue Yes

Delete Channel Yes

Delete Process No

Delete Queue Yes

Escape No

Inquire Channel Yes

Inquire Channel Names Yes

Inquire Channel Status Yes

Inquire Process No

Inquire Process Names No

Inquire Queue Yes

 Chapter 11. Making changes for a user 121

PCF commands

Table 14 (Page 2 of 2). PCF commands and MQSeries for Windows

Command Available in V2.1

Inquire Queue Manager Yes

Inquire Queue Names Yes

Ping Channel No

Ping Queue Manager Yes

Reset Channel Yes

Reset Queue Statistics Yes

Resolve Channel Yes

Start Channel Yes

Start Channel Initiator No

Start Channel Listener No

Stop Channel Yes

Restrictions on using PCF commands
MQSeries for Windows does not support the following MQ features so you cannot
specify values related to them in PCF commands:

� Client connection or server connection channel types
 � Application triggering
 � Data conversion
 � Dead-letter queues
 � Authority events

Also, you cannot use PCF commands to work with MQ connections and channel
groups.

For more information, see:

� “Restrictions on the Change, Copy, and Create Queue commands” on page 123

� “Restrictions on the Change Queue Manager command” on page 124

� “Restrictions on the Change, Copy, and Create Channel commands” on page 124

� “Restrictions on the Delete Channel command” on page 124

� “Restrictions on the Inquire Channel and Inquire Channel Names commands” on
page 124

122 MQSeries for Windows** User’s Guide

PCF commands

In addition, MQSeries for Windows does not support the new command parameters
marked with vertical bars in the left margin of the -05 edition of the MQSeries
Programmable System Management book (SC33-1482). However, MQSeries for
Windows does support fast nonpersistent messages, so on the following commands
you can use any of the values of the NonPersistentMsgSpeed parameter:

 � Change Channel
 � Copy Channel
 � Create Channel
 � Inquire Channel
� Inquire Channel Status

When you write a PCF application that you will run on an MQSeries for Windows queue
manager, you must use the C programming language. MQSeries for Windows supplies
definitions of the data types and constants you need in the include file CMQCFC.H. If
you installed MQSeries for Windows in the default directory, this include file is supplied
in the \Program Files\MQSeries for Windows\Include directory.

MQSeries for Windows does not do any data conversion. If the data you are sending
in a PCF command to an MQSeries for Windows queue manager requires conversion
to a different machine encoding, integer representation, or coded character set, the
channel that sends the data must do it. To make the channel perform the data
conversion, use the keyword CONVERT=YES in its definition.

Restrictions on the Change, Copy, and Create Queue commands
MQSeries for Windows does not support triggering, so although you can set the
following parameters of the queue commands to any value, MQSeries for Windows
does not use that value:

 � InitiationQName
 � ProcessName
 � TriggerData
 � TriggerDepth
 � TriggerMsgPriority
 � TriggerType

Also, you can set the following parameters only to the value shown:

� Scope must be set to MQSCO_Q_MGR
� TriggerControl must be set to MQTC_OFF

 Chapter 11. Making changes for a user 123

PCF commands

Restrictions on the Change Queue Manager command
MQSeries for Windows does not support triggering, so although you can set the
TriggerInterval parameter of the Change Queue Manager command to any value,
MQSeries for Windows does not use that value.

Also, MQSeries for Windows does not support a dead-letter queue or authority events,
so you can set the following parameters only to the value shown:

� DeadLetterQName must be set to all blanks
� AuthorityEvent must be set to MQEVR_DISABLED

Restrictions on the Change, Copy, and Create Channel commands
You can set the following parameters of the Change, Copy, and Create Channel
commands to any value, but MQSeries for Windows does not use that value:

 � MCAName
 � ModeName
 � MsgRetryUserData
 � Password
 � QMgrName
 � TpName
 � UserIdentifier

Also note the restrictions on the values you can specify in the following parameters:

� ChannelType cannot be set to MQCHT_CLNTCONN or MQCHT_SVRCONN
� DataConversion must be set to MQCDC_NO_SENDER_CONVERSION
� MCAType must be set to MQMCAT_PROCESS
� MsgRetryCount must be set to 0
� MsgRetryExit must be set to all blanks
� MsgRetryInterval must be set to 0
� TransportType must be set to MQXPT_TCP

Restrictions on the Delete Channel command
MQSeries for Windows does not support client connection or server connection
channels, so in the ChannelTable parameter of the DeleteChannel command, you
cannot use the value MQCHTAB_CLNTCONN.

Restrictions on the Inquire Channel and Inquire Channel Names commands
MQSeries for Windows does not support client connection or server connection
channels, so in the ChannelType parameter of the Inquire Channel and Inquire Channel
Names commands, you cannot use the values MQCHT_CLNTCONN or
MQCHT_SVRCONN.

124 MQSeries for Windows** User’s Guide

Controlling access to the administration features
If you decide to make changes by sitting in front of the workstation yourself, you may
have to type the password to open the Administration page of the MQSeries Properties
dialog box. To hide this page again, simply close the MQSeries Properties dialog box.

If you want to change the password (maybe after telling it to the user so they can start
the command server), either change it in their MQD file, or give them a new MQD file
that changes the password. If you give them a new MQD file, you can tell them to run
it immediately, but MQ runs the file next time it starts anyway.

 Chapter 11. Making changes for a user 125

126 MQSeries for Windows** User’s Guide

Running the samples

Chapter 12. Running the sample programs on one workstation

Use the procedures described in this chapter if you want to run the supplied sample
programs on a single workstation. The samples are:

The Putting Messages sample
This sample puts a message on a specified queue.

The Browsing Messages sample
This sample browses (that is, copies without removing) a message on a
specified queue. By specifying the same queue that you used with the
Putting Messages sample, you can browse the messages you put on the
queue.

The Getting Messages sample
This sample gets a message from a specified queue. By specifying the
same queue that you used with the Putting Messages sample, you can
retrieve the messages you put on the queue.

Note that to run the sample programs, you must have installed the Complete version of
MQSeries for Windows.

When you know how to run the samples, you may want to move on to the following:

� Chapter 13, “Running the sample programs on two workstations” on page 133
explains how to use the sample programs to exchange messages between two
workstations.

� Chapter 17, “Understanding the sample programs” on page 185 explains the
design of the sample programs.

Creating your test connection
The definition file CREATEMQ.MQD that MQSeries for Windows supplies creates a
connection you can use to run the sample programs. Unless you have replaced this
file with one of your own, MQ creates the test connection when you install the product.

The supplied MQD file:

� Creates a connection named Sample_Connection

� Creates a queue manager named Sample_QM

� Runs the MQSC command file named AMQSCOSW.TST, which creates a sample
local queue

� Starts the sample connection

 Copyright IBM Corp. 1994, 1997 127

Running the samples

To run the sample programs, the sample connection must be active. If it is not, start it
as follows:

1. Double-click on the MQ icon on the Windows taskbar or in the Control Panel. This
displays the MQSeries Properties dialog box.

2. On the Connections page of the MQSeries Properties dialog box, double-click on
the Sample connection, or select it and click on the Start push button.

You can see that the connection has started because a green check mark appears
beside its name on the Connections page and (if you have set the option to display the
MQ icon) on the MQ icon on the Windows taskbar.

You can then use the procedures described in the remainder of this chapter to put
some messages on the queue, and, with the connection still running, browse or get the
messages from the queue.

Putting messages on a queue

To start the Putting Messages sample, double-click on the name of its executable file.
The file is named AMQSPUTW.EXE; use the Windows Explorer to find this file in the
\MQSeries for Windows\Samples\C directory. This starts the program and connects it
to the active queue manager. Figure 21 shows the window that appears.

Figure 21. The Putting Messages Sample window

128 MQSeries for Windows** User’s Guide

Running the samples

If you want to run the Visual Basic version of the file, you must build an executable file
first; see “Building the Visual Basic samples” on page 191.

To put messages on a queue:

1. In the Queue field of the Putting Messages Sample window, type the following
name in uppercase letters:

 SYSTEM.SAMPLE.LOCAL

2. Click the Open push button to open the queue.

3. Check that the reason code for the MQOPEN call displayed in the API Return
Code field is zero; if it is not, the workstation beeps.

If the reason code is not zero, the program has not opened the queue. The reason
codes are listed in Appendix D, “Return codes” on page 207. You are most likely
to see the following reason codes:

2018 or 2059 This means the queue manager is not running. If this happens:

a. Close the sample by selecting Exit from the File menu.

b. Start the Sample connection by double-clicking on its entry
in the Connections page of the MQSeries Properties dialog
box.

c. Restart the Putting Messages sample.

2085 This means the queue does not exist. If this happens, check
that you have typed the name correctly, using uppercase letters.

4. Type some message text in the Data field.

5. Click the Put push button.

MQ puts the message on the queue. The message text also appears in the Log
list box.

6. Check that the reason code for the MQPUT call displayed in the API Return Code
field is zero.

7. Repeat steps 4 and 5 as many times as you want to put more messages on the
queue.

You can leave the Putting Messages sample running so you can continue putting
messages after you have used the other samples to browse or get the messages.

When you have finished using the Putting Messages sample program:

1. Click the Close push button.

This closes the queue and disconnects the sample from the queue manager.

2. Close the sample by selecting Exit from the File menu.

 Chapter 12. Running the sample programs on one workstation 129

Running the samples

Browsing messages on a queue

To start the Browsing Messages sample, double-click on the name of its executable file.
The file is named AMQSBCGW.EXE; use the Windows Explorer to find this file in the
\MQSeries for Windows\Samples\C directory. This starts the program and connects it
to the active queue manager.

If you want to run the Visual Basic version of the file, you must build an executable file
first; see “Building the Visual Basic samples” on page 191.

To browse (that is, view) the messages on a queue:

1. In the Queue field of the Browsing Messages Sample window, type the following
name in uppercase letters:

 SYSTEM.SAMPLE.LOCAL

2. Click the Open push button to open the queue.

3. Check that the reason code for the MQOPEN call displayed in the API Return
Code field is zero; if it is not, the workstation beeps.

If the reason code is not zero, the program has not opened the queue. This is
likely to be for one of the reasons explained in “Putting messages on a queue” on
page 128.

4. Click the Browse push button.

MQ finds the oldest message on the queue and displays it:

� The Data field shows the message data you typed when you put the message
on the queue.

� The Length field shows the number of characters in the message data.

� The Header list box shows the fields of the message descriptor structure
(MQMD) that MQ adds when it puts the message on the queue.

5. Check that the reason code for the MQGET call displayed in the API Return Code
field is zero.

You are most likely to see the following reason code:

2033 This means there are no messages on the queue, or you have
browsed all the messages and you are at the end of the queue.

The reason codes are listed in Appendix D, “Return codes” on page 207.

6. You can keep repeating step 4 to browse any other messages on the queue.

The sample steps through the messages until it reaches the end of the queue.
After it has displayed the last message, if you click on Browse again, the
workstation beeps and reason code 2033 is displayed, showing you there are no
more messages on the queue. If you want to start browsing at the start of the
queue again, click the Close push button, then open the queue again and browse
as before.

130 MQSeries for Windows** User’s Guide

Running the samples

You can leave the program running so you can continue browsing messages after you
have used the Putting Messages sample program to put some more on the queue.

When you have finished using the Browsing Messages sample program:

1. Click the Close push button.

This closes the queue and disconnects the sample from the queue manager.

2. Close the sample by selecting Exit from the File menu.

Getting messages from a queue

To start the Getting Messages sample, double-click on the name of its executable file.
The file is named AMQSGETW.EXE; use the Windows Explorer to find this file in the
\MQSeries for Windows\Samples\C directory. This starts the program and connects it
to the active queue manager.

If you want to run the Visual Basic version of the file, you must build an executable file
first; see “Building the Visual Basic samples” on page 191.

To get messages from a queue:

1. In the Queue field of the Getting Messages Sample window, type the following
name in uppercase letters:

 SYSTEM.SAMPLE.LOCAL

2. Click the Open push button to open the queue.

3. Check that the reason code for the MQOPEN call displayed in the API Return
Code field is zero; if it is not, the workstation beeps.

If the reason code is not zero, the program has not opened the queue. This is
likely to be for one of the reasons explained in “Putting messages on a queue” on
page 128.

4. Click the Get push button.

MQ removes the oldest message from the queue and displays it:

� The Data field shows the message data you typed when you put the message
on the queue.

� The Length field shows the number of characters in the message data.

If there are no messages on the queue, the sample waits for 15 seconds, then it
returns reason code 2033. Use the Putting Messages sample to put some more
messages on the queue.

5. Check that the reason code for the MQGET call displayed in the API Return Code
field is zero.

You are most likely to see the following reason code:

 Chapter 12. Running the sample programs on one workstation 131

Running the samples

2033 This means there are no messages on the queue. If this happens,
you can use the Putting Messages sample to put more messages on
the queue.

The reason codes are listed in Appendix D, “Return codes” on page 207.

6. You can keep repeating step 4 on page 131 to get any other messages from the
queue.

The sample removes each message until it reaches the end of the queue. After
you have removed the last message, if you click on Get again, the sample waits 15
seconds for a new message to arrive. If a message does not arrive in this time,
the workstation beeps and the sample displays reason code 2033 to show you
there are no more messages on the queue. You must put another message on the
queue before you can use the Getting Messages sample again.

You can leave the program running so you can continue getting messages after you
have used the Putting Messages sample program to put some more on the queue.

When you have finished using the Getting Messages sample program:

1. Click the Close push button.

This closes the queue and disconnects the sample from the queue manager.

2. Close the sample by selecting Exit from the File menu.

Notes about the sample programs
When you are using the sample programs, remember:

� The Browsing Messages sample does not remove messages from the queue; it
just displays them.

� The Getting Messages sample removes messages from the queue.

� The Browsing Messages and Getting Messages samples retrieve messages in the
same order in which the messages were put on the queue.

� The put, browse, and get operations are independent, so the sample programs can
operate at the same time, or one at a time.

132 MQSeries for Windows** User’s Guide

Running the samples

Chapter 13. Running the sample programs on two workstations

This chapter describes how to set up connections on two workstations so they can
send messages to each other. It then describes how to use the sample programs
supplied with MQSeries for Windows to exchange messages between the two
workstations.

In the examples, the two connections are named Mars_Connection and
Venus_Connection. MQSeries for Windows supplies files that contain definitions for
these two connections, and for the components they use. They use queue managers
named MARS and VENUS. The channels are initiated from MARS, but you can send
messages from either of the queue managers.

The procedure involves:

1. Setting up the two connections.

If both of your workstations are to run MQSeries for Windows, see “Setting up the
two connections.”

If one of your workstations is to run another MQSeries product, see “When one of
your workstations is on a different platform” on page 141.

2. Running the sample programs.

This is described in “Running the sample programs on VENUS and MARS” on
page 140.

Setting up the two connections
Before you can set up your two connections, install MQSeries for Windows on each of
the two workstations you are going to use. Make sure you install the Complete version
of MQSeries for Windows on each one.

It is then advisable to use the TCP/IP ping command to test the TCP/IP connection
between them.

 Copyright IBM Corp. 1994, 1997 133

Running the samples

Using the ping command

Before you can use the ping command, you need to find the internet protocol (IP)
address of each workstation. This is also known as the network address, computer
name, host name, or machine name. The IP address has a dotted-decimal format
(for example, 152.78.108.4). But if your TCP/IP uses a domain name service, you
can create a text alias for your IP address (note that this alias is case sensitive).
To find the IP address of your own workstation, look in the Windows Control Panel.

When you know the addresses, try pinging one workstation by typing the ping
command at a DOS command prompt on the other workstation; for example:

 ping 152.78.1ð8.4

If the ping is successful, the command displays messages that show the time taken
for the test message to be delivered. If the ping is not successful, you need to
establish a TCP/IP connection between the two workstations before you proceed.

You are now ready to use the supplied definition (MQD) files to create a connection, a
queue manager, its queues, and its channels on each workstation.

Note: If you do not want to use the MQD files to set up your queue managers, see
“Setting up the two connections without using MQD files” on page 138.

Setting up VENUS
Set up VENUS as follows:

1. By default, MQSeries for Windows is installed in the directory \Program
Files\MQSeries for Windows. If you have installed it elsewhere, edit the file
VENUS.MQD to change the line (highlighted below) that refers to this directory.
(You will find VENUS.MQD in the Samples subdirectory.)

 [Component_1]
 ComponentType=QueueManager
 Name=VENUS
 Description=Queue manager to communicate with MARS
 LoadUserMQSC_1=\Program Files\MQSeries for Windows\Samples\venus.tst
 Replace=yes

2. Make a backup copy of the supplied file named CREATEMQ.MQD.

For example, from the directory \Program Files\MQSeries for Windows, type at a
DOS command prompt:

copy CREATEMQ.MQD CREATEMQ.OLD

134 MQSeries for Windows** User’s Guide

Running the samples

3. From the directory \Program Files\MQSeries for Windows\Samples (or the directory
in which the samples are installed), copy the file VENUS.MQD to replace the
supplied file CREATEMQ.MQD:

copy VENUS.MQD CREATEMQ.MQD

This is because by default, MQ uses the file named CREATEMQ.MQD.

4. Run the MQD file.

To do this:

a. Stop the active connection.
b. Close the MQSeries Properties dialog box.
c. Click with mouse button 2 on the MQ icon on the Windows taskbar.
d. Click on the Run MQD file now item on the menu that appears.

When MQ runs the MQD file (supplied as VENUS.MQD), it uses the definitions in
the file to:

� Create a connection named Venus_Connection.

� Create a queue manager named VENUS.

� Run the MQSC command file named VENUS.TST. This creates the three
queues and two channel definitions on VENUS that are shown in Figure 22 on
page 136.

� Create a channel group named VENUSGroup.

5. Start Venus_Connection from the Connections page of the MQSeries Properties
dialog box. When the connection starts, the listener starts automatically.

If the connection starts successfully, a check mark appears beside its icon on the
Connections page of the MQSeries Properties dialog box. If you have the taskbar icon
visible, that also has a check mark. If the listener starts successfully, a check mark
appears beside the channel group icon on the Connections page.

VENUS is now ready to respond to incoming channel-connect requests.

Setting up MARS
On your second workstation, set up MARS as follows:

1. By default, MQSeries for Windows is installed in the directory \Program
Files\MQSeries for Windows. If you have installed it elsewhere, edit the file
MARS.MQD to change the line (highlighted below) that refers to this directory.
(You will find MARS.MQD in the Samples subdirectory.)

 [Component_1]
 ComponentType=QueueManager
 Name=MARS
 Description=Queue manager to communicate with VENUS
 LoadUserMQSC_1=\Program Files\MQSeries for Windows\Samples\mars.tst
 Replace=yes

 Chapter 13. Running the sample programs on two workstations 135

Running the samples

SAMPLE.MARS.XMIT SAMPLE.VENUS.XMIT

SAMPLE.MARS.REMOTE

SAMPLE.MARS.LOCAL

SAMPLE.VENUS.REMOTE

SAMPLE.VENUS.LOCAL

MARS
queue manager

VENUS
queue manager

SDR RCVR

RQSTR SVR

MARS.TO.VENUS

VENUS.TO.MARS

Figure 22. The objects that VENUS.TST and MARS.TST create

2. Make a backup copy of the supplied file named CREATEMQ.MQD.

For example, from the directory \Program Files\MQSeries for Windows, type at a
DOS command prompt:

copy CREATEMQ.MQD CREATEMQ.OLD

3. From the directory \Program Files\MQSeries for Windows\Samples (or the directory
in which the samples are installed), copy the file MARS.MQD to replace the
supplied file CREATEMQ.MQD:

copy MARS.MQD CREATEMQ.MQD

This is because by default, MQ runs the file named CREATEMQ.MQD.

4. Edit the MQSC command file named MARS.TST.

This file is in the \Program Files\MQSeries for Windows\Samples subdirectory in a
default installation. Change the CONNAME attribute on both the Sender and
Requester channel definitions to the IP address of the VENUS workstation:

136 MQSeries for Windows** User’s Guide

Running the samples

DEFINE CHANNEL ('MARS.TO.VENUS') CHLTYPE(SDR) TRPTYPE(TCP) +
 XMITQ('SAMPLE.MARS.XMIT') +

CONNAME('VENUS TCP/IP machine name') +
DESCR('Sender channel for messages to queue manager VENUS') +

 REPLACE

DEFINE CHANNEL ('VENUS.TO.MARS') CHLTYPE(RQSTR) TRPTYPE(TCP) +
CONNAME('VENUS TCP/IP machine name') +
DESCR('Requester channel for messages from queue manager VENUS') +

 REPLACE

Note: The IP names you use for the CONNAME attribute are case sensitive.

5. Run the MQD file.

To do this:

a. Stop the active connection.
b. Close the MQSeries Properties dialog box.
c. Click with mouse button 2 on the MQ icon on the Windows taskbar.
d. Click on the Run MQD file now item on the menu that appears.

When MQ runs the MQD file (supplied as MARS.MQD), it uses the definitions in
the file to:

� Create a connection named Mars_Connection.

� Create a queue manager named MARS.

� Run the MQSC command file named MARS.TST. This creates the three
queues and two channel definitions that are shown in Figure 22 on page 136.

� Create a channel group named MARSGroup.

6. Start Mars_Connection from the Connections page of the MQSeries Properties
dialog box.

When the MARSGroup channel group starts, it sends channel-connect requests to
VENUS. If this is successful, a check mark appears beside the channel group icon on
the Components page of the MQSeries Properties dialog box. If the check mark does
not appear, or if an exclamation mark appears instead, the channels have not started.
The two most likely reasons for this are:

� In the MARS.TST file, the CONNAME attribute does not contain the correct IP
name for the VENUS workstation. For example, you may have typed the name
using lowercase letters, but the name should be in uppercase letters.

You can correct this error by changing the value of the ConnectionName attribute
for the appropriate channel. Do this from the Components page of the MQSeries
Properties dialog box.

� There is a TCP/IP problem. Restart the workstation and try again. You do not
need to re-create the queue manager.

 Chapter 13. Running the sample programs on two workstations 137

Running the samples

When the VENUS and MARS queue managers are running, you are ready to run the
sample programs. Proceed to “Running the sample programs on VENUS and MARS”
on page 140.

Setting up the two connections without using MQD files

 Note

Read this section only if you do not want to use the supplied MQD files to set up
your workstations. You may want to use the information supplied here to help you
understand how to create your own MQ components.

Before you can set up your two workstations, install MQSeries for Windows on each of
the two workstations you are going to use. Make sure you install the Complete version
of MQSeries for Windows on each one.

It is then advisable to use the TCP/IP ping command to send a test message from one
workstation to the other to ensure that there is a TCP/IP connection between them. If
you need more information on how to do this, see “Setting up the two connections” on
page 133.

Setting up VENUS yourself
Set up VENUS as follows, using the Components page of the MQSeries Properties
dialog box:

1. Create a queue manager named VENUS.

Specify the MQSC command file VENUS.TST. In a default installation, this is in
the \Program Files\MQSeries for Windows\Samples subdirectory.

2. Create a channel group named VENUSGroup on the VENUS queue manager.

Ensure that you mark the Start Listener box.

3. Create a connection named Venus_Connection.

The connection must comprise:

� The VENUS queue manager
� The VENUSGroup channel group

Setting up MARS yourself
On your second workstation, set up MARS as follows:

1. Edit the MQSC command file named MARS.TST to add the IP address of the
VENUS workstation. For information on how to do this, see “Setting up MARS” on
page 135.

2. Create a queue manager named MARS, using the Components page of the
MQSeries Properties dialog box.

Specify the MQSC command file MARS.TST.

138 MQSeries for Windows** User’s Guide

Running the samples

3. Create a channel group named MARSGroup on the MARS queue manager, using
the Components page of the MQSeries Properties dialog box.

Check the Include all user channels check box. You do not need the listener.

4. Create a connection named Mars_Connection, using the Components page of the
MQSeries Properties dialog box.

The connection must comprise:

� The MARS queue manager
� The MARSGroup channel group

Starting the two connections
When you have created Venus_Connection and Mars_Connection, and their queue
managers and channel groups, you are ready to start them. Perform the following
steps:

1. On your first workstation, use the Connections page of the MQSeries Properties
dialog box to start Venus_Connection.

If this is successful, a check mark appears beside the connection icon. VENUS is
now ready to respond to incoming channel-connect requests.

2. On your second workstation, use the Connections page of the MQSeries Properties
dialog box to start Mars_Connection.

If this is successful, a check mark appears beside the connection icon.

This sends channel-connect requests to the VENUS queue manager. If this is
successful, a check mark appears beside the channel group icon on the
Components page of the MQSeries Properties dialog box.

If the check marks do not appear, or an exclamation mark appears instead, there has
been an error in starting the channels. The two main reasons for failure are:

� In the MARS.TST file, the CONNAME attribute does not contain the correct IP
name for the VENUS workstation. For example, you may have typed the name
using lowercase letters, but the name uses uppercase letters.

Correct the error by changing the value of the ConnectionName attribute for the
appropriate channel using the Components page of the MQSeries Properties dialog
box.

� There is a TCP/IP problem. Restart the workstation and try again. It is not
necessary to re-create the queue manager.

When the VENUS and MARS queue managers are running, you are ready to run the
sample programs. Proceed to “Running the sample programs on VENUS and MARS”
on page 140.

 Chapter 13. Running the sample programs on two workstations 139

Running the samples

Running the sample programs on VENUS and MARS
When you have set up VENUS and MARS, you can use the sample programs supplied
with MQSeries for Windows to send messages between them:

The Putting Messages sample
Run the Putting Messages sample on MARS to put messages on the local
queue owned by VENUS.

The Browsing Messages sample
Run the Browsing Messages sample on VENUS to browse messages on
the same queue.

The Getting Messages sample
Run the Getting Messages sample on VENUS to get messages from the
same queue.

Sending messages to VENUS
On MARS, use the Putting Messages sample program to send messages to the queue
named SAMPLE.VENUS.LOCAL, which is owned by the VENUS queue manager.
Follow the same steps you used when you ran the Putting Messages sample on a
single workstation (see “Putting messages on a queue” on page 128), but in the Queue
field of the Putting Messages Sample window, type the following name in uppercase
letters:

 SAMPLE.MARS.REMOTE

Notes:

1. The queue SAMPLE.MARS.REMOTE is defined in the file MARS.TST. It is a
remote queue.

2. This is not the true name of the destination queue—it is the name of the local
definition (on MARS) of the remote queue. MARS.TST resolves this name to
SAMPLE.VENUS.LOCAL. Figure 22 on page 136 shows these queues.

Browsing messages on VENUS
On VENUS, use the Browsing Messages sample program to browse messages on the
queue named SAMPLE.VENUS.LOCAL. Follow the same steps you used when you
ran the Browsing Messages sample on a single workstation (see “Browsing messages
on a queue” on page 130), but in the Queue field of the Browsing Messages Sample
window, type the following name in uppercase letters:

 SAMPLE.VENUS.LOCAL

The queue SAMPLE.VENUS.LOCAL is defined in the file VENUS.TST. It is a local
queue.

140 MQSeries for Windows** User’s Guide

Running the samples

Getting messages on VENUS
On VENUS, use the Getting Messages sample program to get messages from the
queue named SAMPLE.VENUS.LOCAL. Follow the same steps you used when you
ran the Getting Messages sample on a single workstation (see “Getting messages from
a queue” on page 131), but in the Queue field of the Getting Messages Sample
window, type the following name in uppercase letters:

 SAMPLE.VENUS.LOCAL

The queue SAMPLE.VENUS.LOCAL is defined in the file VENUS.TST. It is a local
queue.

Sending messages to MARS
You should also test that you can send messages in the opposite direction, that is, from
VENUS to MARS. The configuration tasks you performed in “Setting up the two
connections” on page 133 allows you to do this without making any further changes.
All you need to do is:

1. Start the Putting Messages sample on VENUS.

2. Put some messages on the queue named SAMPLE.VENUS.REMOTE (which is a
remote queue whose name resolves to SAMPLE.MARS.LOCAL).

3. Start the Browsing Messages or Getting Messages sample on MARS.

4. Browse or get the messages from the queue named SAMPLE.MARS.LOCAL.

When one of your workstations is on a different platform
If the workstation you are using for the VENUS queue manager is running MQSeries on
a platform (or operating system) other than Windows, use the following steps to verify
that they are configured correctly.

1. Create and start the queue manager VENUS, following the instructions given in the
documentation for the queue manager on the platform you are using.

2. Create all the queues and channels defined in the MQSC command file named
VENUS.TST, following the instructions for the platform you are using.

3. Start the listener on VENUS, following the instructions for the platform you are
using.

4. Set up the MARS queue manager on Windows by following the procedure
described in “Setting up MARS” on page 135.

5. Run the sample programs as described in “Running the sample programs on
VENUS and MARS” on page 140.

If the workstation you are using for the MARS queue manager is running MQSeries on
a platform other than Windows, use the following steps to verify that they are
configured correctly.

1. Create and start the queue manager MARS, following the instructions given in the
documentation for the queue manager on the platform you are using.

 Chapter 13. Running the sample programs on two workstations 141

Running the samples

2. Create all the queues and channels defined in the MQSC command file named
MARS.TST, following the instructions for the platform you are using.

You must edit MARS.TST to add the IP address of VENUS in the CONNAME
attributes of the two channel definitions. For information on how to do this, see
“Setting up MARS” on page 135.

3. Set up the VENUS queue manager on Windows by following the procedure
described in “Setting up VENUS” on page 134.

4. Start the two channels VENUS.TO.MARS and MARS.TO.VENUS, following the
instructions for the platform you are using.

5. Run the sample programs as described in “Running the sample programs on
VENUS and MARS” on page 140.

Note: MQSeries for Windows does not perform any data conversion so, if the
operating system on which your other queue manager is running uses a code page or
integer representation that is different from that of Windows, you must make sure the
other queue manager does the required conversion. To make it do this before it sends
a message to your Windows queue manager, specify CONVERT(YES) in the definition of
the channel at the sending end.

Other tests you might want to try
When you are satisfied that your queue managers are operating as you would expect,
you might want to try some of these other tests:

Can I put messages when the destination queue manager, or the channel to it, is
not running?
Yes. When the queue manager, and the channel to it, start running,
MQSeries for Windows delivers the messages you have put.

Can I put messages at the same time as getting them?
Yes, you can run the Putting Messages and Getting Messages sample
programs at the same time. They can both use the same queue, but note
that the Getting Messages sample always gets the oldest message from
the queue.

Also, you can put messages from both queue mangers at the same time.
This is because there is a separate channel for messages flowing in each
direction.

How can I put messages on the local queue?
You might want to put messages on a queue that is local to the queue
manager that is running the Putting Messages sample, instead of sending
them to the other queue manager. To do this on MARS, in the Queue field
of the Putting Messages Sample window, type the name
SAMPLE.MARS.LOCAL.

142 MQSeries for Windows** User’s Guide

Diagnosing problems

 Chapter 14. Diagnosing problems

This chapter suggests reasons for problems you may have with MQSeries for Windows.
You usually start with a symptom, or set of symptoms, and trace them back to their
cause.

Problem diagnosis is not problem solving. However, the process of problem diagnosis
often enables you to solve a problem. For example, if you find that the cause of the
problem is an error in an application program, you can solve the problem by correcting
that error.

You may not always be able to solve a problem after determining its cause. For
example, a performance problem may be caused by a limitation of your hardware, or
you may find that the cause of your problem is in MQSeries for Windows, in which case
you need to contact your IBM Support Center for a solution.

This chapter first describes:

 � “Preliminary checks”
� “Problems with queues and queue managers” on page 144
� “Problems with channels and channel groups” on page 145
� “Problems with messages” on page 147

It then goes on to describe the service tools that MQSeries for Windows provides:

� “Service information” on page 149
� “Service Trace” on page 150
� “Monitoring MQSeries events” on page 151
� “MQSeries events generated by MQSeries for Windows” on page 152

 Preliminary checks
Before you start problem determination in detail, it is worth looking for an obvious cause
of the problem, or a likely area in which to start your investigation.

Has MQSeries for Windows run successfully before?
Even if MQSeries for Windows has run successfully before, you should check that the
installation is correct. You can verify the installation at any time by running the Verify
program. This tests the basic functions of MQSeries for Windows, so it can be a useful
first step for problem diagnosis. For information on how to do this, see “Verifying your
installation” on page 20.

Is there enough disk space?
You may not have enough free disk space available to run MQSeries for Windows.
Use the Service page of the MQSeries Properties dialog box to display the amount of
free disk space on the installed drive. Each new queue manager you create uses
approximately 10 KB of disk space to hold its configuration information (such as queue
definitions), so consider deleting any queue managers you no longer use.

 Copyright IBM Corp. 1994, 1997 143

Diagnosing problems

Is there enough memory?
You may not have enough physical memory available to run MQSeries for Windows.
Use the Service page of the MQSeries Properties dialog box to display the amount of
physical memory available.

Is the service information correct?
Check the tabs on the Service page of the MQSeries Properties dialog box. If any of
them contain blank or corrupted fields, this indicates a problem with your installation.
To correct this, uninstall then reinstall MQSeries for Windows.

Problems with queues and queue managers
This section outlines some possible problems you may have with your queue managers
and queues.

Is the receiving queue full?
If the queue to which you are sending messages is full, you could increase the value of
its MaxDepth attribute. To do this, use the MQSeries Properties dialog box, the MQSC
command ALTER QUEUE, or the PCF command CHANGE QUEUE.

Are some of your queues failing?
If you suspect the problem occurs with only some of your queues, examine the local
queues that you think are showing problems:

1. Display the attributes of each queue using the MQSeries Properties dialog box.

2. Make the following tests:

� If the CurDepth attribute has the same value as the MaxDepth attribute, the
queue is full and is not being processed. Check that the applications that
process the queue are running normally.

� If the value of the CurDepth attribute is less than that of the MaxDepth
attribute, check the following queue attributes to ensure they are correct:

– The Shareability attribute defines whether the queue can be shared by
more than one program. If this attribute is set so that the queue cannot
be shared, another application could already have opened the queue for
input; this prevents other programs opening the queue.

– The InhibitGet and InhibitPut attributes define whether programs can get
and put messages on the queue. If these attributes are set to the value
INHIBITED, programs cannot use the queue.

� If there are no programs getting messages from the queue, determine why this
is so. It may be that the programs need to be started, a communications link
has been broken, or a program cannot open the queue.

Check the OpenInputCount and OpenOutputCount queue attributes. These
attributes indicate whether the queue has been opened for input or output. If a
value is zero, it indicates that no operations of that type can occur. Note that

144 MQSeries for Windows** User’s Guide

Diagnosing problems

the values may have changed—the queue may have been open, but it is now
closed.

You need to check the status at the time you expect to put or get a message.

Have data files been lost?
MQSeries for Windows does not support media recovery. If a disk error or disk failure
causes loss or corruption of the queue manager data files, you cannot recover this
data. You must re-create the queue manager and all the other objects you need.

Problems with channels and channel groups
This section outlines some possible problems with channels and channel groups. For
all problems with channels or channel groups, you should use the MQSeries Properties
dialog box to check the status of the channels; for information on how to do this, see
“Viewing the status of an MQ object” on page 101.

Are the channels working?
You can see if a channel is currently sending messages by looking at the status
markers in the MQSeries Properties dialog box. You can get more information by
checking the status of the channel. Among the status attributes you can check are:

� The number of messages processed by the channel
� The number of bytes sent
� The number of bytes received

Why does a channel stop request not work?
A problem can sometimes arise when the receiving end of a channel stops, but the
sending end does not. When this happens and there are no messages waiting to be
sent, the sending end of the channel is monitoring its transmission queue, and not the
TCP/IP connection. Therefore it does not recognize that the receiving end of the
channel has stopped. In this situation, you must use the MQSeries Properties dialog
box to stop the connection.

Why does the channel group not start?
If the channel group icon shows an exclamation mark or a cross when you start the
channel group, one or more of the channels in the group are not running correctly. You
should check the status of each channel. The following list shows status messages
and possible causes for each message:

Status Explanation

User exit error There is a problem associated with a user-written exit
program.

Invalid code page The code pages of the sending and receiving MCAs are
different. MQSeries for Windows cannot convert between
the two code pages.

 Chapter 14. Diagnosing problems 145

Diagnosing problems

Configuration error There is a problem with the channel definition; for example,
the connection name is unknown.

Queue manager error The MCA has received an unexpected return code from
the queue manager.

TCP/IP error The network is not available, the remote system is not
responding, the listener is not running, or there is a
problem with TCP/IP.

System error There is either a resource error (for example, no memory
available) or an internal error in MQSeries for Windows.

Error at remote MCA The remote MCA has had a problem and has stopped the
channel, or bad data has been received.

This message can also occur if the remote MCA stops the
channel when the user stops the connection.

Message sequence error The channel has sent or received a message whose
sequence number does not match the one expected.

Unknown error Any situation not covered by the other status messages.

For each of the preceding status messages, you can do any of the following:

� Retry the operation
� Restart the workstation, then retry the operation
� Ask your MQ administrator for help

Unrecoverable system error
If you have an unrecoverable system error, for example a problem with the
synchronization file, you may need to reset the channel. The synchronization file is
named AMQRSYNA.DAT, and it is in the queue manager’s directory. You may need to
do one or more of the following, but only if you are an MQSeries administrator:

� Delete the synchronization file

� Reset the message sequence number using the MQSC command RESET
CHANNEL

� Resolve the status of any in-doubt messages using the MQSC command
RESOLVE CHANNEL

146 MQSeries for Windows** User’s Guide

Diagnosing problems

Problems with messages
This section outlines some possible problems with sending and receiving messages.

A message cannot be delivered
MQSeries for Windows does not support dead-letter queues, therefore a message that
it cannot deliver can stop your system running.

If an MCA cannot deliver a message:

� The channel stops.

� An error status is set on the workstations at both ends of the channel.

� The unit of work is backed out, and the messages reappear on the transmission
queue at the sending end of the channel. The sending channel is now blocked by
the undeliverable message.

If a message cannot be delivered to a remote queue, you should check that the remote
queue and its associated objects are defined to MQSeries for Windows.

Why are messages not being sent or received?
If your messages are not being sent or received, this indicates a problem with the
channel. You can:

� Check the status of the channel in the Channel Status window of the MQSeries
Properties dialog box

� Check that the queue, the transmission queue name (the XMITQ channel attribute),
and the channel definitions are correct

Why do messages not appear on the queue?
If messages do not appear when you are expecting them, check for the following.

Has the message been put on the queue successfully?
If the message has not been put on the queue successfully, check the following:

� Has the queue been defined correctly? For example, is the MaxMsgLength
attribute of the queue large enough to allow a message of the required size?

� Is the queue enabled for putting?

� Is the queue already full? This could mean that an application was unable to put
the required message on the queue.

� Has another application got exclusive access to the queue?

Are you able to get any message from the queue?
If you cannot get any message from the queue, check the following:

� Can other applications get messages from the queue?
� Has another application got exclusive access to the queue?

 Chapter 14. Diagnosing problems 147

Diagnosing problems

If you are developing an application, check the following:

� Do you need to take a syncpoint?

If messages are being put or retrieved with syncpoint control, they are not available
to other tasks until the unit of work has been committed.

� Is your wait interval long enough?

You can set the wait interval as an option on the MQGET call. You should ensure
that you are waiting long enough for a response.

� Are you waiting for a specific message that is identified by a message or
correlation identifier (MsgId or CorrelId)?

Check that you are waiting for a message with the correct MsgId or CorrelId. A
successful MQGET call will set both these values to that of the message retrieved,
so you may need to reset these values in order to get another message
successfully.

Also check if you can get another message from the queue.

� Was the message you are expecting defined as persistent?

If not, and MQSeries for Windows has been restarted, the message will have been
lost.

If many programs are serving the queue, they can conflict with one another. For
example, suppose one program issues an MQGET call with a buffer length of zero to
find out the length of the message, and then issues a specific MQGET call specifying
the MsgId of that message. However, in the meantime, another program issues a
successful MQGET call for that message, so the first program receives a completion
code of MQRC_NO_MSG_AVAILABLE. Applications must be designed to cope with
this situation.

Consider that the message could have been received, but that your application failed to
process it in some way. For example, did an error in the expected format of the
message cause your program to reject it?

The data is not converted
MQSeries for Windows does not convert data in messages to other code pages or
integer representations. It converts only the message header. Therefore, any data
conversion must be done by the queue manager that sends a message to an MQSeries
for Windows queue manager.

148 MQSeries for Windows** User’s Guide

Service information

 Service information
The Service page of the MQSeries Properties dialog box provides information that may
help you solve the problems of users of an MQSeries for Windows application. The
information it provides includes:

� Information about the version of MQSeries for Windows you have installed,
including the name of the directory in which it is installed

� The release levels of the MQSeries for Windows files, so you can determine if any
maintenance fixes have been applied

� The amount of free disk space remaining on the drive on which MQSeries for
Windows is installed and the amount of physical memory available

� Information about the TCP/IP product that is installed on the workstation

� Access to the channel logs (for more information, see “Channel logging”)

In addition, MQSeries for Windows writes the release levels of its files to a file named
AMQLEVLW.LOG in the \Program Files\MQSeries for Windows\Data directory.

If you want to use the Verify function to test your MQ installation, start it from the
Service page. For more information on this, see “Verifying your installation” on
page 20.

 Channel logging
On MQSeries for Windows, the message channel agents of each channel create a log
file named CHANNEL.LOG. They put this file in the directory for the active queue
manager. The log file records events such as the starting and stopping of the channel,
and any errors that occur. Each entry in the log contains:

 � A timestamp
� The name of the channel
� Upto three text strings
� Three hexadecimal codes

To view the channel log, open the Channel Logs tab on the Service page of the
MQSeries Properties dialog box. To get more information about a log entry, click on
the question button, then drag the question mark icon to that log entry.

The channel log has a fixed size, set by the ChannelLogSize keyword in the MQD file.
When the log is full, MQ overwrites the oldest entry.

If you want to stop channel logging, specify the value 0 for the ChannelLogSize
keyword. If you change the value of this keyword, MQ discards the current log.

 Chapter 14. Diagnosing problems 149

Service trace

 Service Trace

To trace the operation of an MQSeries for Windows application, use the Service Trace
utility. This can provide trace information that includes:

� The time of each trace event
� The identifiers of the processes that are running
� The names of the MQI calls that have been issued
� Information associated with control and data flow

 Note

The Service Trace utility is designed for use under the direction of IBM Service
personnel. This chapter does not describe all the features of the trace output.

 Starting tracing
Before you use the Service Trace utility, note that MQ traces only those processes that
start after the Service Trace utility starts. Before using trace, close all MQSeries for
Windows applications . If you do not do this, the trace output will be incomplete.

You can start tracing in any of the following ways:

� To start tracing next time MQ starts (that is, next time you start your workstation),
check the Start Service Trace box on the Options page of the MQSeries Properties
dialog box. Remember to clear this check box if you do not want to use tracing
next time you start MQ.

� To start tracing immediately, click on the Service Trace shortcut in the MQSeries
for Windows folder.

� To start tracing immediately by typing a command, select Run from the Start menu
on the Windows desktop. In the Run window, type the command:

 AMQXTRCW

If you want to set some options before tracing starts, type the following command
to open the Trace Utility Properties window:

 AMQXTRCW /S

Controlling the trace output
The trace output is always shown in the Service Trace Utility window, but you can also
log it in a file. Do this by selecting an option from the File menu in the Service Trace
Utility window. At any time, you can change whether the output is logged in a file.

In the Service Trace Utility window you can choose which trace points to trace, but you
should do this only under the guidance of IBM service personnel.

If you log trace output in a file, by default it is written to the file named
AMQTRACW.LOG in the trace output directory. In a default installation, this file is in
the \Program Files\MQSeries for Windows\Data directory.

150 MQSeries for Windows** User’s Guide

MQ events

To log the trace output in a different file, you must supply the file name, and the path to
it, when you type the start trace command. For example, to send trace output to the
file NEWTRACE.LOG in the C:\MQTRACE directory:

1. On the Windows desktop, select Run from the Start menu.

2. In the Run window, type the following:

 AMQXTRCW C:\MQTRACE\NEWTRACE.LOG

The new file name is displayed in the title bar of the Service Trace Utility window.

To set options for tracing, select Properties from the View menu of the Service Trace
Utility window. You can set:

� How often the trace output is written to the log file.

� Whether the trace output is logged to one file continuously, or toggled between two
files. If you choose two files, you can control the size of the files.

� Whether the existing log file is erased before you start logging.

If you choose to log the trace output frequently, this can make tracing run very slowly,
especially during startup. If your application uses timers, they may time out
unexpectedly, causing the application to fail. Use frequent logging only under the
direction of IBM service personnel. You are advised not to log frequently when you are
running applications in a production environment.

 Stopping tracing
Stop tracing either by selecting Exit from the File menu of the Service Trace Utility
window, or by pressing ALT+F4 in the Service Trace Utility window.

When you do this, all tracing is stopped and the Service Trace Utility window is closed.

Monitoring MQSeries events
MQSeries instrumentation events provide information about errors, warnings, and other
significant occurrences on a queue manager or channel. You can use these events to
monitor the operation of these objects.

This section tells you how to capture MQ events on MQSeries for Windows. If you
need more information:

� For a list of the events that MQSeries for Windows generates, see “MQSeries
events generated by MQSeries for Windows” on page 152.

� For more information on MQ events, see the MQSeries Programmable System
Management manual.

 Chapter 14. Diagnosing problems 151

MQ events

When an event occurs on a queue manager or channel, that object puts an event
message on an event queue. For each queue manager, each category of event has its
own event queue. All events in that category result in an event message being put on
the same queue:

This event queue: Contains messages from:
SYSTEM.ADMIN.QMGR.EVENT Queue manager events
SYSTEM.ADMIN.PERFM.EVENT Performance events
SYSTEM.ADMIN.CHANNEL.EVENT Channel events

MQSeries for Windows defines the queue manager event queue and the performance
event queue in the file AMQSCOMW.TST. In a default installation, this file is supplied
in the \Program Files\MQSeries for Windows\QMgrs directory. MQ runs this file every
time you create a queue manager so these two event queues are always available.

However, MQ does not define the channel event queue for you, so the default action is
not to generate channel events . This is because, once you have defined a channel
event queue, you cannot stop channel event messages being generated. If you want
MQ to generate channel events, you must define the channel event queue yourself
using the name SYSTEM.ADMIN.CHANNEL.EVENT. To make it easier for you to
define this queue, the supplied file AMQSCOMW.TST contains a commented-out
definition of it. Either remove the comments from this file and run the file, or use the
attributes described in the file when you create the queue using the MQSeries
Properties dialog box.

You can stop channel events by disabling put operations on the channel event queue.

MQSeries events generated by MQSeries for Windows
MQSeries for Windows Version 2.1 generates a subset of the MQSeries
instrumentation events. This subset is shown in Table 15.

For a description of the message generated by each event, see the MQSeries
Programmable System Management manual.

Note: Version 2.0 of MQSeries for Windows does not generate MQSeries events.

Table 15 (Page 1 of 2). MQSeries events

Event Generated by V2.1

Alias Base Queue Type Error Yes

Bridge Started No

Bridge Stopped No

Channel Activated No

Channel Auto-definition Error No

Channel Auto-definition OK No

Channel Conversion Error Yes (1)

152 MQSeries for Windows** User’s Guide

MQ events

Table 15 (Page 2 of 2). MQSeries events

Event Generated by V2.1

Channel Not Activated Yes (1)

Channel Started Yes (1)

Channel Stopped Yes (1)

Default Transmission Queue Type Error Yes

Default Transmission Queue Usage Error Yes

Get Inhibited Yes

Not Authorized (type 1) No

Not Authorized (type 2) No

Not Authorized (type 3) No

Not Authorized (type 4) No

Put Inhibited Yes

Queue Depth High Yes

Queue Depth Low Yes

Queue Full Yes

Queue Manager Active Yes

Queue Manager Not Active Yes

Queue Service Interval High Yes

Queue Service Interval OK Yes

Queue Type Error Yes

Remote Queue Name Error Yes

Transmission Queue Type Error Yes

Transmission Queue Usage Error Yes

Unknown Alias Base Queue Yes

Unknown Default Transmission Queue Yes

Unknown Object Name Yes

Unknown Remote Queue Manager Yes

Unknown Transmission Queue Yes

Note: (1) If you want MQ to generate channel events, you must create the channel event
queue yourself. For more information, see “Monitoring MQSeries events” on page 151.

 Chapter 14. Diagnosing problems 153

MQ events

154 MQSeries for Windows** User’s Guide

Part 3. For application programmers

Chapter 15. Writing applications using the MQI on Windows 157

Chapter 16. How the MQI differs on MQSeries for Windows 175

Chapter 17. Understanding the sample programs 185

 Copyright IBM Corp. 1994, 1997 155

156 MQSeries for Windows** User’s Guide

The MQI in C

Chapter 15. Writing applications using the MQI on Windows

When you write an MQ application to run on MQSeries for Windows, you need the
following information:

Information on how to design an application
For this information, see the MQSeries Application Programming Guide.

Information about the MQI
This chapter describes the MQI calls, data types, and structures in the
programming languages that MQSeries for Windows supports. It has the
following sections:

� “Using the C programming language”
� “Using the Visual Basic programming language” on page 168

Information about how to migrate an existing application to Windows
If you have written MQSeries applications before, or you are migrating an existing
MQSeries application to Windows from another operating system, note that
MQSeries for Windows does not support the full MQI. Make sure you read
Chapter 16, “How the MQI differs on MQSeries for Windows” on page 175 to
understand the differences.

Examples of existing applications
Chapter 17, “Understanding the sample programs” on page 185 describes the
design of the sample programs supplied with MQSeries for Windows.

You can write applications for MQSeries for Windows using either of the following
programming languages:

 � C
 � Visual Basic

For a list of the compilers you can use, see “Required software” on page 12.

Using the C programming language
This section describes the support that MQSeries for Windows provides for the C
programming language. It contains:

� “Considerations for the C language” on page 158
� “MQI calls in C” on page 161
� “Elementary data types in C” on page 165
� “Structure data types in C” on page 166

 Copyright IBM Corp. 1994, 1997 157

The MQI in C

Considerations for the C language
This section gives information you need before you start to use the MQI in the C
programming language.

Header files in C
Header files are provided as part of the definition of the MQI to assist with the writing of
C application programs that use message queuing. These header files are summarized
in Table 16.

To improve the portability of applications, it is recommended that you code the name of
the header file in lowercase on the #include preprocessor directive:

 #include "cmqc.h"

Your applications must be 32-bit, so link your programs with the library MQM.LIB.

In a default installation, the include files (.H) are supplied in the \Program
Files\MQSeries for Windows\Include subdirectory. The library files are supplied in the
\Program Files\MQSeries for Windows\Lib subdirectory.

Table 16. C header files

File name Contents

CMQC.H Call prototypes, data types, and named constants for the main MQI

CMQXC.H Call prototypes, data types, and named constants for the channel exits

CMQCFC.H Data types and named constants for the PCF commands

Parameters of the MQI calls
Parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG are
passed by value; for all other parameters, the address of the parameter is passed by
value.

Not all parameters that are passed by address need to be specified every time a
function is invoked. Where a particular parameter is not required, a null pointer can be
specified as the parameter on the function invocation, in place of the address of the
parameter data. Parameters for which this is possible are identified in the call
descriptions.

No parameter is returned as the value of the function; in C terminology, this means that
all functions return void .

The attributes of the function are defined by the MQENTRY macro variable; the value
of this macro variable depends on the environment.

Parameters with undefined data type
The MQGET, MQPUT, and MQPUT1 functions each have one parameter that has an
undefined data type; this is the Buffer parameter. This parameter is used to send and
receive the application’s message data.

158 MQSeries for Windows** User’s Guide

The MQI in C

Parameters of this sort are shown in the C examples as arrays of MQBYTE. It is valid
to declare the parameters in this way, but it is usually more convenient to declare them
as the particular structure that describes the layout of the data in the message. The
function parameter is declared as a pointer-to-void, and so the address of any sort of
data can be specified as the parameter on the function invocation.

 Data types
All data types are defined by means of the C typedef statement. For each data type,
the corresponding pointer data type is also defined. The name of the pointer data type
is the name of the elementary or structure data type prefixed with the letter ‘P’ to
denote a pointer. The attributes of the pointer are defined by the MQPOINTER macro
variable; the value of this macro variable depends on the environment. The following
illustrates how pointer data types are declared:

#define MQPOINTER _far \ /\ depends on environment \/
...
typedef MQLONG MQPOINTER PMQLONG; /\ pointer to MQLONG \/
typedef MQMD MQPOINTER PMQMD; /\ pointer to MQMD \/

Manipulating binary strings
Strings of binary data are declared as one of the MQBYTEn data types. Whenever
fields of this type are copied, compared, or set, the C functions memcpy , memcmp , or
memset should be used; for example:

#include <string.h>
#include "cmqc.h"

MQMD MyMsgDesc;

memcpy(MyMsgDesc.MsgId, /\ set MsgId field to nulls \/
MQMI_NONE, /\ ... using named constant \/

 sizeof(MyMsgDesc.MsgId));

memset(MyMsgDesc.CorrelId, /\ set CorrelId field to nulls \/
ðxðð, /\ ... using a different method \/

 sizeof(MQBYTE24));

Do not use the string functions strcpy , strcmp , strncpy , or strncmp , because these
do not work correctly for data declared with the MQBYTEn data types.

Manipulating character strings
When the queue manager returns character data to the application, the queue manager
always pads the character data with blanks to the defined length of the field; the queue
manager does not return null-terminated strings. Therefore, when copying, comparing,

 Chapter 15. Writing applications using the MQI on Windows 159

The MQI in C

or concatenating such strings, the string functions strncpy , strncmp , or strncat should
be used.

Do not use the string functions, which require the string to be terminated by a null
(strcpy , strcmp , strcat). Also, do not use the function strlen to determine the length
of the string; use instead the sizeof function to determine the length of the field.

Initial values for structures
The header file CMQC defines various macro variables that may be used to provide
initial values for the message queuing structures when instances of those structures are
declared. These macro variables have names of the form MQxxx_DEFAULT, where
MQxxx represents the name of the structure. They are used in the following way:

MQMD MyMsgDesc = {MQMD_DEFAULT};
MQPMO MyPutOpts = {MQPMO_DEFAULT};

For some character fields (for example, the StrucId fields which occur in most
structures, or the Format field which occurs in MQMD), the MQI defines particular
values that are valid. For each of the valid values, two macro variables are provided:

� One macro variable defines the value as a string whose length excluding the
implied null matches exactly the defined length of the field. For example, for the
Format field in MQMD the following macro variable is provided (the symbol “␣”
represents a blank character):

#define MQFMT_STRING "MQSTR␣␣␣"

Use this form with the memcpy and memcmp functions.

� The other macro variable defines the value as an array of characters; the name of
this macro variable is the name of the string form suffixed with “_ARRAY”. For
example:

#define MQFMT_STRING_ARRAY 'M','Q','S','T','R','␣','␣','␣'

Use this form to initialize the field when an instance of the structure is declared
with values different from those provided by the MQMD_DEFAULT macro variable.1

Initial values for dynamic structures
When a variable number of instances of a structure is required, the instances are
usually created in main storage obtained dynamically using the calloc or malloc
functions. To initialize the fields in such structures, the following technique is
recommended:

1. Declare an instance of the structure using the appropriate MQxxx_DEFAULT
macro variable to initialize the structure. This instance becomes the “model” for
other instances:

MQMD Model = {MQMD_DEFAULT}; /\ declare model instance \/

1 This is not always necessary; in some environments the string form of the value can be used in both situations. However, the array
form is recommended for declarations, since this is required for compatibility with the C++ programming language.

160 MQSeries for Windows** User’s Guide

The MQI in C

The static or auto keywords can be coded on the declaration in order to give the
model instance static or dynamic lifetime, as required.

2. Use the calloc or malloc functions to obtain storage for a dynamic instance of the
structure:

PMQMD Instance;
Instance = malloc(sizeof(MQMD)); /\ get storage for dynamic instance \/

3. Use the memcpy function to copy the model instance to the dynamic instance:

memcpy(Instance,&Model,sizeof(MQMD)); /\ initialize dynamic instance \/

 Notational conventions
The sections that follow show how the:

� Calls should be invoked
� Parameters should be declared
� Various data types should be declared

In a number of cases, parameters are arrays whose size is not fixed. For these, a
lowercase ‘n’ is used to represent a numeric constant. When the declaration for that
parameter is coded, the ‘n’ must be replaced by the numeric value required.

MQI calls in C

 MQBACK
MQBACK (Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQCLOSE
MQCLOSE (Hconn, &Hobj, Options, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG Options; /\ Options that control the action of MQCLOSE \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 Chapter 15. Writing applications using the MQI on Windows 161

The MQI in C

 MQCMIT
MQCMIT (Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQCONN
MQCONN (Name, &Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 Name; /\ Name of queue manager \/
MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQDISC
MQDISC (&Hconn, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQGET
MQGET (Hconn, Hobj, &MsgDesc, &GetMsgOpts, BufferLength, Buffer,

&DataLength, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQMD MsgDesc; /\ Message descriptor \/
MQGMO GetMsgOpts; /\ Options that control the action of MQGET \/
MQLONG BufferLength; /\ Length in bytes of the Buffer area \/
MQBYTE Buffer[n]; /\ Area to contain the message data \/
MQLONG DataLength; /\ Length of the message \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

162 MQSeries for Windows** User’s Guide

The MQI in C

 MQINQ
MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

CharAttrLength, CharAttrs, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG SelectorCount; /\ Count of selectors \/
MQLONG Selectors[n]; /\ Array of attribute selectors \/
MQLONG IntAttrCount; /\ Count of integer attributes \/
MQLONG IntAttrs[n]; /\ Array of integer attributes \/
MQLONG CharAttrLength; /\ Length of character attributes buffer \/
MQCHAR CharAttrs[n]; /\ Character attributes \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQOPEN
MQOPEN (Hconn, &ObjDesc, Options, &Hobj, &CompCode,
 &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQOD ObjDesc; /\ Object descriptor \/
MQLONG Options; /\ Options that control the action of MQOPEN \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQPUT
MQPUT (Hconn, Hobj, &MsgDesc, &PutMsgOpts, BufferLength, Buffer,
 &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQMD MsgDesc; /\ Message descriptor \/
MQPMO PutMsgOpts; /\ Options that control the action of MQPUT \/
MQLONG BufferLength; /\ Length of the message in Buffer \/
MQBYTE Buffer[n]; /\ Message data \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 Chapter 15. Writing applications using the MQI on Windows 163

The MQI in C

 MQPUT1
MQPUT1 (Hconn, &ObjDesc, &MsgDesc, &PutMsgOpts,

BufferLength, Buffer, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQOD ObjDesc; /\ Object descriptor \/
MQMD MsgDesc; /\ Message descriptor \/
MQPMO PutMsgOpts; /\ Options that control the action of MQPUT1 \/
MQLONG BufferLength; /\ Length of the message in Buffer \/
MQBYTE Buffer[n]; /\ Message data \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 MQSET
MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

CharAttrLength, CharAttrs, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONN Hconn; /\ Connection handle \/
MQHOBJ Hobj; /\ Object handle \/
MQLONG SelectorCount; /\ Count of selectors \/
MQLONG Selectors[n]; /\ Array of attribute selectors \/
MQLONG IntAttrCount; /\ Count of integer attributes \/
MQLONG IntAttrs[n]; /\ Array of integer attributes \/
MQLONG CharAttrLength; /\ Length of character attributes buffer \/
MQCHAR CharAttrs[n]; /\ Character attributes \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

164 MQSeries for Windows** User’s Guide

The MQI in C

Elementary data types in C
Table 17. Elementary data types in C

Data type Representation

MQBYTE typedef unsigned char MQBYTE;

MQBYTE16 typedef MQBYTE MQBYTE16[16];

MQBYTE24 typedef MQBYTE MQBYTE24[24];

MQBYTE32 typedef MQBYTE MQBYTE32[32];

MQBYTE64 typedef MQBYTE MQBYTE64[64];

MQCHAR typedef char MQCHAR;

MQCHAR4 typedef MQCHAR MQCHAR4[4];

MQCHAR8 typedef MQCHAR MQCHAR8[8];

MQCHAR12 typedef MQCHAR MQCHAR12[12];

MQCHAR16 typedef MQCHAR MQCHAR16[16];

MQCHAR28 typedef MQCHAR MQCHAR28[28];

MQCHAR32 typedef MQCHAR MQCHAR32[32];

MQCHAR48 typedef MQCHAR MQCHAR48[48];

MQCHAR64 typedef MQCHAR MQCHAR64[64];

MQCHAR128 typedef MQCHAR MQCHAR128[128];

MQCHAR256 typedef MQCHAR MQCHAR256[256];

MQHCONN typedef MQLONG MQHCONN;

MQHOBJ typedef MQLONG MQHOBJ;

MQLONG typedef long MQLONG;

PMQLONG typedef MQLONG MQPOINTER PMQLONG;

 Chapter 15. Writing applications using the MQI on Windows 165

The MQI in C

Structure data types in C

 MQGMO–Get-message options
typedef struct tagMQGMO {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Options; /\ Options that control the action of

 MQGET \/
MQLONG WaitInterval; /\ Wait interval \/
MQLONG Signal1; /\ Signal \/
MQLONG Signal2; /\ Signal message identifier \/

 MQCHAR48 ResolvedQName; /\ Resolved name of destination queue \/
 } MQGMO;

 MQMD–Message descriptor
typedef struct tagMQMD {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Report; /\ Report options \/
MQLONG MsgType; /\ Message type \/
MQLONG Expiry; /\ Expiry time \/
MQLONG Feedback; /\ Feedback or reason code \/
MQLONG Encoding; /\ Data encoding \/
MQLONG CodedCharSetId; /\ Coded character set identifier \/
MQCHAR8 Format; /\ Format name \/
MQLONG Priority; /\ Message priority \/
MQLONG Persistence; /\ Message persistence \/

 MQBYTE24 MsgId; /\ Message identifier \/
 MQBYTE24 CorrelId; /\ Correlation identifier \/
MQLONG BackoutCount; /\ Backout counter \/

 MQCHAR48 ReplyToQ; /\ Name of reply-to queue \/
 MQCHAR48 ReplyToQMgr; /\ Name of reply queue manager \/
 MQCHAR12 UserIdentifier; /\ User identifier \/
 MQBYTE32 AccountingToken; /\ Accounting token \/
 MQCHAR32 ApplIdentityData; /\ Application data relating to
 identity \/
MQLONG PutApplType; /\ Type of application that put the

 message \/
 MQCHAR28 PutApplName; /\ Name of application that put the
 message \/
MQCHAR8 PutDate; /\ Date when message was put \/
MQCHAR8 PutTime; /\ Time when message was put \/
MQCHAR4 ApplOriginData; /\ Application data relating to origin \/

 } MQMD;

166 MQSeries for Windows** User’s Guide

The MQI in C

 MQOD–Object descriptor
typedef struct tagMQOD {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG ObjectType; /\ Object type \/

 MQCHAR48 ObjectName; /\ Object name \/
 MQCHAR48 ObjectQMgrName; /\ Object queue manager name \/
 MQCHAR48 DynamicQName; /\ Dynamic queue name \/
 MQCHAR12 AlternateUserId; /\ Alternate user identifier \/
 } MQOD;

 MQPMO–Put-message options
typedef struct tagMQPMO {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/
MQLONG Options; /\ Options that control the action of

MQPUT or MQPUT1 \/
MQLONG Timeout; /\ Reserved \/
MQHOBJ Context; /\ Object handle of input queue \/
MQLONG KnownDestCount; /\ Reserved \/
MQLONG UnknownDestCount; /\ Reserved \/
MQLONG InvalidDestCount; /\ Reserved \/

 MQCHAR48 ResolvedQName; /\ Resolved name of destination queue \/
 MQCHAR48 ResolvedQMgrName; /\ Resolved name of destination queue
 manager \/
 } MQPMO;

MQXQH–Transmission queue header
typedef struct tagMQXQH {
MQCHAR4 StrucId; /\ Structure identifier \/
MQLONG Version; /\ Structure version number \/

 MQCHAR48 RemoteQName; /\ Name of destination queue \/
 MQCHAR48 RemoteQMgrName; /\ Name of destination queue manager \/
MQMD MsgDesc; /\ Original message descriptor \/

 } MQXQH;

 Chapter 15. Writing applications using the MQI on Windows 167

The MQI in Visual Basic

Using the Visual Basic programming language
This section describes the support that MQSeries for Windows provides for the Visual
Basic programming language. It contains:

� “Considerations for the Visual Basic language”
� “MQI calls in Visual Basic” on page 169
� “Elementary data types in Visual Basic” on page 172
� “Structure data types in Visual Basic” on page 173

Considerations for the Visual Basic language
This section gives information you need before you start to use the MQI in the Visual
Basic programming language.

Header files in Visual Basic
Header (or form) files are provided as part of the definition of the MQI to assist with the
writing of Visual Basic application programs that use message queuing. These header
files are summarized in Table 18.

In a default installation, the form files (.BAS) are supplied in the \Program
Files\MQSeries for Windows\Include subdirectory. The library files are supplied in the
\Program Files\MQSeries for Windows\Lib subdirectory.

Table 18. Visual Basic header files

File name Contents

CMQB.BAS Call declarations, data types, and named constants for the main MQI.

CMQXB.BAS Call declarations, data types, and named constants for the channel exits.

Parameters of the MQI calls
Parameters that are input-only and of type MQHCONN, MQHOBJ, or MQLONG are
passed by value; all other parameters are passed by address.

Initial values for structures
The supplied header files define various subroutines that may be invoked to initialize
the message queuing structures with the default values. These subroutines have
names of the form MQxxx_DEFAULTS , where MQxxx represents the name of the
structure. They are used in the following way:

MQMD_DEFAULTS (MyMsgDesc) 'Initialize message descriptor'
MQPMO_DEFAULTS (MyPutOpts) 'Initialize put-message options'

 Notational conventions
The sections that follow show how to:

� Invoke the calls
� Declare the parameters
� Declare the data types

168 MQSeries for Windows** User’s Guide

The MQI in Visual Basic

In some cases, parameters are arrays whose sizes are not fixed. For these, a
lowercase ‘n’ represents a numeric constant. When you code the declaration for that
parameter, you must replace the ‘n’ with the numeric value you require.

MQI calls in Visual Basic

 MQBACK
MQBACK Hconn, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

 MQCLOSE
MQCLOSE Hconn, Hobj, Options, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim Hobj As Long 'Object handle'
Dim Options As Long 'Options that control the action of MQCLOSE'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

 MQCMIT
MQCMIT Hconn, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

 MQCONN
MQCONN Name, Hconn, CompCode, Reason

Declare the parameters as follows:

Dim Name As String\48 'Name of queue manager'
Dim Hconn As Long 'Connection handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

 Chapter 15. Writing applications using the MQI on Windows 169

The MQI in Visual Basic

 MQDISC
MQDISC Hconn, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

 MQGET
MQGET Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength, Buffer,

DataLength, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim Hobj As Long 'Object handle'
Dim MsgDesc As MQMD 'Message descriptor'
Dim GetMsgOpts As MQGMO 'Options that control the action of MQGET'
Dim BufferLength As Long 'Length in bytes of the Buffer area'
Dim Buffer As String 'Area to contain the message data'
Dim DataLength As Long 'Length of the message'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

 MQINQ
MQINQ Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

CharAttrLength, CharAttrs, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim Hobj As Long 'Object handle'
Dim SelectorCount As Long 'Count of selectors'
Dim Selectors As Long 'Array of attribute selectors'
Dim IntAttrCount As Long 'Count of integer attributes'
Dim IntAttrs As Long 'Array of integer attributes'
Dim CharAttrLength As Long 'Length of character attributes buffer'
Dim CharAttrs As String 'Character attributes'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

170 MQSeries for Windows** User’s Guide

The MQI in Visual Basic

 MQOPEN
MQOPEN Hconn, ObjDesc, Options, Hobj, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim ObjDesc As MQOD 'Object descriptor'
Dim Options As Long 'Options that control the action of MQOPEN'
Dim Hobj As Long 'Object handle'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

 MQPUT
MQPUT Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength, Buffer, CompCode,
 Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim Hobj As Long 'Object handle'
Dim MsgDesc As MQMD 'Message descriptor'
Dim PutMsgOpts As MQPMO 'Options that control the action of MQPUT'
Dim BufferLength As Long 'Length of the message in Buffer'
Dim Buffer As String 'Message data'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

 MQPUT1
MQPUT1 Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength, Buffer,
 CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim ObjDesc As MQOD 'Object descriptor'
Dim MsgDesc As MQMD 'Message descriptor'
Dim PutMsgOpts As MQPMO 'Options that control the action of MQPUT1'
Dim BufferLength As Long 'Length of the message in Buffer'
Dim Buffer As String 'Message data'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

 Chapter 15. Writing applications using the MQI on Windows 171

The MQI in Visual Basic

 MQSET
MQSET Hconn, Hobj, SelectorCount, Selectors, IntAttrCount, IntAttrs,

CharAttrLength, CharAttrs, CompCode, Reason

Declare the parameters as follows:

Dim Hconn As Long 'Connection handle'
Dim Hobj As Long 'Object handle'
Dim SelectorCount As Long 'Count of selectors'
Dim Selectors As Long 'Array of attribute selectors'
Dim IntAttrCount As Long 'Count of integer attributes'
Dim IntAttrs As Long 'Array of integer attributes'
Dim CharAttrLength As Long 'Length of character attributes buffer'
Dim CharAttrs As String 'Character attributes'
Dim CompCode As Long 'Completion code'
Dim Reason As Long 'Reason code qualifying CompCode'

Elementary data types in Visual Basic
Table 19. Elementary data types in Visual Basic

Data type Representation

MQBYTE String\1

MQBYTE24 String\24

MQBYTE32 String\32

MQCHAR String\1

MQCHAR4 String\4

MQCHAR8 String\8

MQCHAR12 String\12

MQCHAR28 String\28

MQCHAR32 String\32

MQCHAR48 String\48

MQCHAR64 String\64

MQCHAR128 String\128

MQCHAR256 String\256

MQHCONN Long

MQHOBJ Long

MQLONG Long

172 MQSeries for Windows** User’s Guide

The MQI in Visual Basic

Structure data types in Visual Basic

 MQGMO—Get-message options
Type MQGMO
 StrucId As String\4 'Structure identifier'
Version As Long 'Structure version number'
Options As Long 'Options that control the action of MQGET'

 WaitInterval As Long 'Wait interval'
 Signal1 As Long 'Signal'
Signal2 As Long 'Signal message identifier'
ResolvedQName As String\48 'Resolved name of destination queue'

End Type

 MQMD—Message descriptor
Type MQMD
 StrucId As String\4 'Structure identifier'
Version As Long 'Structure version number'

 Report As Long 'Report options'
 MsgType As Long 'Message type'
 Expiry As Long 'Expiry time'
Feedback As Long 'Feedback or reason code'

 Encoding As Long 'Data encoding'
CodedCharSetId As Long 'Coded character set identifier'

 Format As String\8 'Format name'
 Priority As Long 'Message priority'
 Persistence As Long 'Message persistence'
 MsgId(23) As Byte 'Message identifier'
 CorrelId(23) As Byte 'Correlation identifier'
 BackoutCount As Long 'Backout counter'
ReplyToQ As String\48 'Name of reply-to queue'
ReplyToQMgr As String\48 'Name of reply queue manager'
UserIdentifier As String\12 'User identifier'

 AccountingToken(31) As Byte 'Accounting token'
ApplIdentityData As String\32 'Application data relating to identity'
PutApplType As Long 'Type of application that put the message'
PutApplName As String\28 'Name of application that put the message'
PutDate As String\8 'Date when message was put'
PutTime As String\8 'Time when message was put'
ApplOriginData As String\4 'Application data relating to origin'

End Type

 Chapter 15. Writing applications using the MQI on Windows 173

The MQI in Visual Basic

 MQOD—Object descriptor
Type MQOD
 StrucId As String\4 'Structure identifier'
Version As Long 'Structure version number'

 ObjectType As Long 'Object type'
ObjectName As String\48 'Object name'

 ObjectQMgrName As String\48 'Object queue manager name'
DynamicQName As String\48 'Dynamic queue name'
AlternateUserId As String\12 'Alternate user identifier'

End Type

 MQPMO—Put-message options
Type MQPMO
 StrucId As String\4 'Structure identifier'
Version As Long 'Structure version number'
Options As Long 'Options that control the action of MQPUT or'

 'MQPUT1'
 Timeout As Long 'Reserved'
Context As Long 'Object handle of input queue'

 KnownDestCount As Long 'Reserved'
UnknownDestCount As Long 'Reserved'
InvalidDestCount As Long 'Reserved'
ResolvedQName As String\48 'Resolved name of destination queue'
ResolvedQMgrName As String\48 'Resolved name of destination queue manager'

End Type

MQXQH—Transmission queue header
Type MQXQH
 StrucId As String\4 'Structure identifier'
Version As Long 'Structure version number'
RemoteQName As String\48 'Name of destination queue'
RemoteQMgrName As String\48 'Name of destination queue manager'
MsgDesc As MQMD 'Original message descriptor'

End Type

174 MQSeries for Windows** User’s Guide

MQI calls

Chapter 16. How the MQI differs on MQSeries for Windows

The Message Queue Interface (MQI) is the MQSeries application programming
interface. MQSeries for Windows supports nearly all the features of the MQI; this
chapter describes that support. It uses the following sections:

� “Restrictions in the MQI calls”
� “Using signaling with the MQGET call” on page 176
� “Restrictions in the MQI structures” on page 178
� “MQI attributes on Windows” on page 180

For a description of the full MQI, see the MQSeries Application Programming
Reference.

Restrictions in the MQI calls
For each MQI call, this section describes the differences in processing in MQSeries for
Windows.

 Pointers
MQSeries for Windows cannot always verify that parameter pointers are valid. So if, for
example, the address you pass as the Buffer parameter on an MQGET call cannot be
accessed for the entire length given by the BufferLength parameter, an exception or
unpredictable result can occur. To avoid this problem, always ensure that any
parameters you pass on an MQI call are valid.

The MQBEGIN call
MQSeries for Windows does not support the MQBEGIN call. Do not use it in an
application you want to run on MQSeries for Windows.

The MQCONN (Connect queue manager) call
If your application specifies a blank name in the Name parameter of the MQCONN call,
the request is serviced by the running queue manager. MQSeries for Windows allows
only one queue manager to run at a time, so the concept of a default queue manager
does not apply.

MQSeries for Windows does not support queue manager groups, so you cannot use an
asterisk (*) in the Name parameter of the MQCONN call.

The MQCONNX call
MQSeries for Windows does not support the MQCONNX call. Do not use it in an
application you want to run on MQSeries for Windows.

 Copyright IBM Corp. 1994, 1997 175

Signaling

The MQOPEN (Open object) call
MQSeries for Windows supports the following options on the MQOPEN call:

 � MQOO_INPUT_AS_Q_DEF
 � MQOO_INPUT_SHARED
 � MQOO_INPUT_EXCLUSIVE
 � MQOO_BROWSE
 � MQOO_OUTPUT
 � MQOO_INQUIRE
 � MQOO_SET
 � MQOO_SET_ALL_CONTEXT
 � MQOO_SET_IDENTITY_CONTEXT

If you have an existing MQSeries application that uses the following options, you do not
have to change the MQOPEN call because MQSeries for Windows ignores these
options:

 � MQOO_ALTERNATE_USER_AUTHORITY
 � MQOO_FAIL_IF_QUIESCING

The MQGET (Get message) call
Version 2.1 of MQSeries for Windows includes support for signaling (Version 2.0 does
not). For information on how to use this feature, see “Using signaling with the MQGET
call.”

For a list of the options that MQSeries for Windows supports for the MQGET call, see
“Get-message options structure (MQGMO)” on page 179.

The MQPUT and MQPUT1 (Put message) calls
For a list of the options that MQSeries for Windows supports for the MQPUT and
MQPUT1 calls, see “Put-message options structure (MQPMO)” on page 180.

The MQSET and MQINQ (Set and inquire attribute) calls
For a list of the attributes that MQSeries for Windows supports, see “MQI attributes on
Windows” on page 180.

Using signaling with the MQGET call
Signaling is an option on the MQGET call to allow the operating system to notify (or
signal) a program when an expected message arrives on a queue. This is similar to
the “get with wait” function because it allows your program to continue with other work
while waiting for the signal. However, if you use signaling, you can free the thread and
rely on the operating system to notify the program when a message arrives.

Signaling on Version 2.1 of MQSeries for Windows works in a similar way to signaling
on MQSeries for MVS/ESA. The difference is that on Windows, MQ signals by sending
a Windows message to a window that you specify.

176 MQSeries for Windows** User’s Guide

Signaling

To request a signal, do the following in the MQGMO structure you use on your MQGET
call:

1. Set the MQGMO_SET_SIGNAL option.

2. Set in the WaitInterval field the time (in milliseconds) for which you want MQ to
monitor the queue. This sets the maximum life of the signal. You can use the
MQWI_UNLIMITED value to specify an unlimited life.

3. In the Signal1 field, specify the handle of the window to which you want the signal
sent.

4. In the Signal2 field, specify an identifier for the signal message. Use a
RegisterWindowMessage to find a suitable identifier.

For information on what MQ can return to your application when it makes an MQGET
call using signaling, see “Reason codes when signaling.”

When a suitable message arrives, MQ sends a Windows message to the window you
specified in your Signal1 field. MQ puts a completion code in the WPARAM field of the
Windows message (see “Completion codes when signaling” on page 178). Your
application must then make another MQGET call to get the message. However, if there
is already a suitable message on the queue, MQ retrieves the message immediately
without setting a signal. If you close the queue while the signal is set, MQ cancels the
signal without sending a Windows message.

For more information on how to set a signal, see the MQSeries Application
Programming Guide and the description of the MQGMO structure in the MQSeries
Application Programming Reference.

Reason codes when signaling
When you set a signal using an MQGET call, you might see any of the following reason
codes in addition to those the MQGET call usually returns.

MQRC_SIGNAL_OUTSTANDING
(2069, X'815')

This means there is already a signal or wait instruction set using the queue
handle you specified in the MQGET call. You cannot set more than one
signal or wait instruction for a particular queue (but you can set one on
each of many queues). If you want to set a signal on this queue, you must
wait for the first one you set to be delivered.

MQRC_SIGNAL_REQUEST_ACCEPTED
(2070, X'816')

This means MQ has set the signal you requested and is monitoring the
queue to watch for the message you specified. MQ will deliver the signal
when the message arrives; your application should wait for this signal.

 Chapter 16. How the MQI differs on MQSeries for Windows 177

MQI structures

MQRC_SIGNAL1_ERROR
(2099, X'833')

This means the window handle you specified in the Signal1 field is not
valid. Reissue the MQGET call using a valid window handle.

Completion codes when signaling
The Windows message that MQ sends to your application to deliver the signal contains
one of the following completion codes in the WPARAM field:

MQEC_MSG_ARRIVED
This means the message you set the signal for has arrived on the queue.
To get the message, you must issue another MQGET call. But note that
another application could get the message in the time between you
receiving the signal and you issuing another MQGET call.

MQEC_WAIT_INTERVAL_EXPIRED
This means the wait interval you set has expired and the message you set
the signal for did not arrive on the queue. MQ has canceled the signal.

MQEC_WAIT_CANCELED
This means the signal has been canceled. This happens, for example, if
the queue manager stops or the attribute of the queue is changed so that
MQGET calls are no longer allowed.

Restrictions in the MQI structures
MQSeries for Windows does not support the following MQI structures:

 � MQBO
 � MQCNO
 � MQDH
 � MQDLH
 � MQIIH
 � MQMDE
 � MQOR
 � MQPMR
 � MQRMH
 � MQRR
 � MQTM
 � MQTMC2

The remainder of this section describes how MQSeries for Windows uses the other
MQI structures in ways that are different from other MQSeries products.

178 MQSeries for Windows** User’s Guide

MQI structures

Get-message options structure (MQGMO)
In the Options field of the MQGMO structure:

� Version 2.0 of MQSeries for Windows supports the following values:

 – MQGMO_WAIT
 – MQGMO_NO_WAIT
 – MQGMO_SYNCPOINT
 – MQGMO_NO_SYNCPOINT
 – MQGMO_BROWSE_FIRST
 – MQGMO_BROWSE_NEXT
 – MQGMO_BROWSE_MSG_UNDER_CURSOR
 – MQGMO_MSG_UNDER_CURSOR
 – MQGMO_ACCEPT_TRUNCATED_MSG
 – MQGMO_NONE

� Version 2.1 of MQSeries for Windows supports the following values:

– The values that Version 2.0 supports
 – MQGMO_SET_SIGNAL
 – MQGMO_SYNCPOINT_IF_PERSISTENT

� MQSeries for Windows ignores the MQGMO_FAIL_IF_QUIESCING value.

MQSeries for Windows supports all the other fields of Version 1 of the MQGMO
structure.

Message descriptor structure (MQMD)
MQSeries for Windows Version 2.1 supports all the fields of Version 1 of the MQMD
structure. It uses the following default values:

� PutApplType = MQAT_WINDOWS_NT
� UserIdentifier = the Windows user ID of the logged-on user

Object descriptor structure (MQOD)
MQSeries for Windows supports all the fields of Version 1 of the MQOD structure, but it
ignores the contents of the AlternateUserId field.

 Chapter 16. How the MQI differs on MQSeries for Windows 179

MQI attributes

Put-message options structure (MQPMO)
In the Options field of the MQPMO structure:

� MQSeries for Windows supports the following values:

 – MQPMO_SYNCPOINT
 – MQPMO_NO_SYNCPOINT
 – MQPMO_NO_CONTEXT
 – MQPMO_DEFAULT_CONTEXT
 – MQPMO_SET_IDENTITY_CONTEXT
 – MQPMO_SET_ALL_CONTEXT
 – MQPMO_NONE

� If you have an existing MQSeries application that uses the following options, you
do not have to change the MQPUT call because MQSeries for Windows ignores
these values:

 – MQPMO_ALTERNATE_USER_AUTHORITY
 – MQPMO_FAIL_IF_QUIESCING

MQSeries for Windows supports all the other fields of Version 1 of the MQPMO
structure.

MQI attributes on Windows
Queue managers, queues, and channels have properties called attributes. MQSeries
for Windows does not support all the attributes provided by other MQSeries products.
This section describes the attributes that MQSeries for Windows supports; to see which
ones you can change, see the online help.

� The queue manager attributes are listed in Table 20 on page 181.
� The queue attributes are listed in Table 21 on page 182.
� The channel attributes are listed in Table 22 on page 183.

MQSeries for Windows does not support process definitions.

For information about the attributes you can use with the MQSC commands, see the
online MQSeries for Windows Command Reference.

180 MQSeries for Windows** User’s Guide

MQI attributes

Table 20. Attributes of queue managers on Windows

Attribute Default value

AuthorityEvent MQEVR_DISABLED (1)

CodedCharSetId

CommandInputQName SYSTEM.ADMIN.COMMAND.QUEUE

CommandLevel MQCMDL_LEVEL_110 (= 110)

DefXmitQName blanks

InhibitEvent MQEVR_DISABLED

LocalEvent MQEVR_DISABLED

MaxHandles 256

MaxMsgLength 4 194 304 bytes

MaxPriority 9

MaxUncommittedMsgs 10000

PerformanceEvent MQEVR_DISABLED

Platform MQPL_WINDOWS_NT (= 11)

QMgrDesc

QMgrName

RemoteEvent MQEVR_DISABLED

StartStopEvent MQEVR_DISABLED

SyncPoint MQSP_AVAILABLE

Note: (1) You can set this attribute to the default value only.

 Chapter 16. How the MQI differs on MQSeries for Windows 181

MQI attributes

Table 21. Attributes of queues on Windows

Attribute Default value

BackoutRequeueQName blank

BackoutThreshold 0

BaseQName blank

CreationDate

CreationTime

CurrentQDepth

DefinitionType

DefInputOpenOption MQOO_INPUT_SHARED

DefPersistence MQPER_NOT_PERSISTENT

DefPriority 0

HardenGetBackout MQQA_BACKOUT_NOT_HARDENED

InhibitGet MQQA_GET_ALLOWED

InhibitPut MQQA_PUT_ALLOWED

MaxMsgLength 4 194 304

MaxQDepth 5000

MsgDeliverySequence MQMDS_PRIORITY

OpenInputCount

OpenOutputCount

QDepthHighEvent MQEVR_DISABLED

QDepthHighLimit 80

QDepthLowEvent MQEVR_DISABLED

QDepthLowLimit 20

QDepthMaxEvent MQEVR_DISABLED

QDesc blank

QName

QServiceInterval 999 999 999

QServiceIntervalEvent MQQSIE_NONE

QType

RemoteQMgrName blank

RemoteQName blank

RetentionInterval 999 999 999

Shareability MQQA_SHAREABLE

Usage MQUS_NORMAL

XmitQName blank

182 MQSeries for Windows** User’s Guide

MQI attributes

Table 22. Attributes of channels on Windows

Attribute Default value

BatchSize 50

ChannelName

ChannelType

ConnectionName

Desc

DiscInterval 6000

FastMessages MQNPMS_FAST

LongRetryCount 999 999 999

LongRetryInterval 1200

MaxMsgLength 4 194 304

MCAUserIdentifier

MsgExit

MsgUserData

ReceiveExit

ReceiveUserExit

SecurityExit

SecurityUserData

SendExit

SendUserData

SeqNumberWrap 999 999 999

ShortRetryCount 10

ShortRetryInterval 60

TransportType MQXPT_TCP

XmitQName

 Chapter 16. How the MQI differs on MQSeries for Windows 183

MQI attributes

184 MQSeries for Windows** User’s Guide

Design of samples

Chapter 17. Understanding the sample programs

This chapter describes the design of the MQSeries for Windows sample programs. The
aim of the samples is to demonstrate the use of MQI calls inside Windows programs.
The sections in this chapter are:

� “General design” on page 186
� “The design of the Putting Messages sample program” on page 187
� “The design of the Browsing Messages sample program” on page 187
� “The design of the Getting Messages sample program” on page 188
� “Building the executable files” on page 189

For information on how to run the sample programs, see:

� Chapter 12, “Running the sample programs on one workstation” on page 127
� Chapter 13, “Running the sample programs on two workstations” on page 133

The sample programs are available in two programming languages:

C MQSeries for Windows provides the source code and executable files.

Visual Basic MQSeries for Windows provides only the source code. You must
build executable files before you can run these versions of the
samples; see “Building the Visual Basic samples” on page 191.

The sample programs are based on the MQSeries family samples:

The Putting Messages sample
The Putting Messages sample puts a message on a specified queue.
The supplied executable file is named AMQSPUTW.EXE.

The Browsing Messages sample
The Browsing Messages sample browses (that is, copies and
displays) a message and its header. By specifying the same queue
that you used with the Putting Messages sample, you can browse the
messages you put on that queue. The supplied executable file is
named AMQSBCGW.EXE.

The Getting Messages sample
The Getting Messages sample gets a message from a specified
queue. By specifying the same queue that you used with the Putting
Messages sample, you can retrieve the messages you put on that
queue. The supplied executable file is named AMQSGETW.EXE.

 Copyright IBM Corp. 1994, 1997 185

Design of samples

 General design
Each sample program uses a single window, and the design of this window is similar in
each program (the window is shown in Figure 21 on page 128):

� The top part of the window is for working with queues.

� The middle part of the window is specific to the function of the sample (that is,
putting, getting, or browsing messages).

� The bottom part of the window is for displaying the completion codes and reason
codes for each of the MQI calls issued by the sample. This allows you to see a
log of all the MQI calls issued by the sample. The most recently issued completion
and reason codes are displayed at the top of the list.

Table 23 shows which MQI calls each sample program demonstrates.

Notes:

1. The sample programs do not contain much code to check Windows errors. This is
to make it easier to understand the MQSeries code. But this means you should
take care if you want to use these samples as a basis for your own application
development.

2. The MQSeries logic (including the MQI calls) is contained within conditional
compile directives:

Table 23. MQI calls used in the MQSeries for Windows sample programs

MQI call Putting
Messages

Browsing
Messages

Getting
Messages

MQCONN Yes Yes Yes

MQOPEN for output Yes No No

MQOPEN for input No No Yes

MQOPEN for browsing No Yes No

MQPUT Yes No No

MQGET No No Yes

MQGET for browsing No Yes No

MQCLOSE Yes Yes Yes

MQDISC Yes Yes Yes

 #ifdef MQSERIES_CALLS

 #endif

This is to enable you to identify the relevant sections of code more easily.
MQSERIES_CALLS itself is defined in the make (.MAK) files.

186 MQSeries for Windows** User’s Guide

Browsing Messages sample

On MQSeries for Windows, there can be only one active queue manager, so there is
no need for the user of the sample to specify the name of a queue manager. The
connection to the active queue manager is done during the processing of the
WM_INITDIALOG message using the MQCONN call. The disconnection is done using
the MQDISC call during the processing of the WM_CLOSE message. This means that
the queue manager must be running before the sample starts; otherwise the connect
fails.

The design of the Putting Messages sample program
The Putting Messages sample program demonstrates putting short messages (a
maximum of 256 bytes) on a queue you specify when you start the program.

When the window is displayed, you must first decide which queue to open to put the
messages on. Type the name of the chosen queue and select the Open push button.
The sample then tries to open the queue for output using the MQOPEN call. The
completion and reason codes are displayed at the bottom of the window in the API
Return Code field. If successful, the Open push button is disabled, and the Close and
Put push buttons are enabled.

When the queue has been opened successfully, you can put a message on the queue
(using the MQPUT call) by typing the message in the Data field and selecting the Put
push button. The completion and reason codes are displayed in the API Return Code
field. If successful, the message data is also displayed in the Log list box. This is
useful for correlating messages you have put with those you have retrieved or browsed
using the other two samples. You can continue putting as many messages as you
want on the same queue.

If you want to put messages on another queue, select the Close push button. This
closes the queue using the MQCLOSE call. The completion and reason codes are
displayed in the API Return Code field. The Close and Put push buttons are now
disabled and the Open push button is enabled. Type in the name of the new queue to
be opened and select the Open push button. Put messages on this new queue using
the same method as before. When you want to end the sample program, first close
any open queue, then select the Exit menu item from the File menu.

The design of the Browsing Messages sample program
The Browsing Messages sample program demonstrates browsing (that is, viewing)
messages on a queue you specify when you start the sample. You can browse only
the first 256 bytes of each message. The messages are not removed from the queue.

When the window is displayed, you must first decide which queue to open to browse
the messages from. Type the name of the chosen queue and select the Open push
button. The sample then tries to open the queue for browsing using the MQOPEN call.
The completion and reason codes are displayed at the bottom of the window in the API
Return Code field. If successful, the Open push button is disabled and the Close and
Browse push buttons are enabled.

 Chapter 17. Understanding the sample programs 187

Getting Messages sample

If you have successfully opened the queue, you can browse a message from that
queue (using the MQGET call) by selecting the Browse push button. The completion
and reason codes are displayed in the API Return Code field. If successful, the
message header is displayed in the Header list box, the message data is displayed in
the Data field, and the message length is displayed in the Length field. The Data field
is useful for correlating messages browsed with messages put using the Putting
Messages sample. You can continue browsing as many messages as there are on the
opened queue.

If you want to browse messages from another queue, first select the Close push
button. This closes the queue using the MQCLOSE call. The completion and reason
codes are displayed in the API Return Code field. The Close and Browse push
buttons are now disabled and the Open push button is enabled. Type the name of the
new queue to be opened and select the Open push button. Browse messages on this
new queue using the same method. When you want to close the sample, first close
any open queue, then select Exit from the File menu.

The design of the Getting Messages sample program
The Getting Messages sample program demonstrates getting short messages from a
queue you specify when you start the program. The messages are removed from the
queue. If they are longer than 256 bytes, the messages are truncated and the
remainder discarded.

When the window is displayed, you must first decide which queue to open to get the
messages from. Type the name of the chosen queue and select the Open push
button. The sample then tries to open the queue for input using the MQOPEN call.
The completion and reason codes are displayed at the bottom of the window in the API
Return Code field. If successful, the Open push button is disabled, and the Close and
Get push buttons are enabled.

When you have successfully opened the queue, you can get a message from it (using
the MQGET call) by selecting the Get push button. The completion and reason codes
are displayed in the API Return Code field. If successful, the message data is
displayed in the Data list box and the message length is displayed in the Length field.
This is useful for correlating messages retrieved with messages put or browsed using
the other two samples. You can continue getting as many messages as there are on
the open queue.

If you want to get messages from another queue, select the Close push button. This
closes the queue using the MQCLOSE call. The completion and reason codes are
displayed in the API Return Code field. The Close and Get push buttons are now
disabled and the Open push button is enabled. Type in the name of the new queue to
be opened and select the Open push button. Get messages from this new queue
using the same method. When you want to close the sample, first close any open
queue, then select the Exit menu item from the File menu.

188 MQSeries for Windows** User’s Guide

Building the samples

Building the executable files
This section lists the files used by the sample programs and describes how to build the
samples. Before you can run the Visual Basic samples, you need to build them
because MQ does not provide executable files. You also need to build your own
executable files if you change any of the sample source code.

The names of the sample files are of the form AMQSxxxW, where xxx represents the
sample function (for example, GET). When you install MQSeries for Windows using the
default options, the files for the samples are put in the \Program Files\MQSeries for
Windows\Samples directory. The files for the C and Visual Basic versions of the
samples are in separate subdirectories.

The following tables list the files that each sample program uses.

Table 24. Files for the C-language version of the Putting Messages sample

File name Purpose

AMQSPUTW.C Source file

AMQSPUTW.DEF Module definition file

AMQSPUTW.H Header file

AMQSPUTW.MAK Make file

AMQSPUTW.RC Resource file

AMQSPUTW.EXE Executable file

Table 25. Files for the Visual Basic version of the Putting Messages sample

File name Purpose

AMQSPUTB.FRM Form file

AMQSPUTB.FRX Graphics file

AMQSPUTB.VBP Project file

Table 26. Files for the C-language version of the Browsing Messages sample

File name Purpose

AMQSBCGW.C Source file

AMQSBCGW.DEF Module definition file

AMQSBCGW.H Header file

AMQSBCGW.MAK Make file

AMQSBCGW.RC Resource file

AMQSBCGW.EXE Executable file

 Chapter 17. Understanding the sample programs 189

Building the samples

Table 27. Files for the Visual Basic version of the Browsing Messages sample

File name Purpose

AMQSBCGB.FRM Form file

AMQSBCGB.FRX Graphics file

AMQSBCGB.VBP Project file

Table 28. Files for the C-language version of the Getting Messages sample

File name Purpose

AMQSGETW.C Source file

AMQSGETW.DEF Module definition file

AMQSGETW.H Header file

AMQSGETW.MAK Make file

AMQSGETW.RC Resource file

AMQSGETW.EXE Executable file

Table 29. Files for the Visual Basic version of the Getting Messages sample

File name Purpose

AMQSGETB.FRM Form file

AMQSGETB.FRX Graphics file

AMQSGETB.VBP Project file

Building the C samples
If you want to make changes to one of the C-language samples, first make a copy of
the original. When you have made the changes, use the following procedure to rebuild
the sample executable file. If you rename a source file, you must edit the make file to
refer to the new name. You must use the 32-bit Microsoft Visual C++ Compiler,
Version 4.0.

To build an executable file:

1. Open a command-prompt window.

2. If you have not already done so, run VCVARS32.BAT (which is supplied with
Microsoft Visual C++) to ensure that the build environment is set up.

3. Run MQVARS.BAT (which is supplied in the \Program Files\MQSeries for
Windows\Samples directory) to set the path for the sample files.

4. At the command prompt, type the appropriate NMAKE command.

For example, to build the Putting Messages sample, type:

NMAKE /A AMQSPUTW.MAK

This creates the executable file named AMQSPUTW.EXE.

190 MQSeries for Windows** User’s Guide

Building the samples

Building the Visual Basic samples
To build an executable file for one of the Visual Basic samples, use the following
procedure. If you want to make changes to a source file, first make a copy of the
original. If you rename a source file, you must edit the project file to refer to the new
name. You must use the 32-bit Microsoft Visual Basic Compiler, Version 4.0.

To build an executable file, start your Visual Basic compiler and use it to:

1. Open the project file (.VBP)
2. Make an executable file

 Chapter 17. Understanding the sample programs 191

Building the samples

192 MQSeries for Windows** User’s Guide

 Part 4. Appendixes

Appendix A. Differences from the other members of the MQSeries family . 195

Appendix B. MQSeries control commands 201

Appendix C. Predefined queues and channels 203

Appendix D. Return codes . 207

Appendix E. Error messages . 213

Appendix F. Notices . 225

 Copyright IBM Corp. 1994, 1997 193

194 MQSeries for Windows** User’s Guide

Family differences

Appendix A. Differences from the other members of the MQSeries
family

MQSeries for Windows is a leaf-node queue manager that runs on Microsoft Windows
95 and Windows NT. It is designed to minimize system requirements so that
workstations with relatively modest specifications can use commercial messaging. This
appendix summarizes the differences between MQSeries for Windows and the other
workstation products in the MQSeries family. The features are listed in alphabetic
order.

Attributes of queues and queue managers
MQSeries for Windows does not support all the attributes of queues and
queue managers (for example, it does not support those related to
triggering). If you use an unsupported attribute in a command or an MQI
call, MQSeries for Windows returns a value to show that the attribute is not
supported.

Authority checking on the MQOPEN call
MQSeries for Windows does not support the SETMQAUT and DSPMQAUT
commands.

Channels MQSeries for Windows does not support:

 � Channel autodefinition
 � Channel heartbeats
� Multiple instances of the same channel

Version 2.1 of MQSeries for Windows allows you to define channels that
carry nonpersistent messages at either normal or fast speed. The default
speed is fast. However, note that fast messages do not wait for a
syncpoint, so they may be lost if there is a transmission failure or if the
channel stops when it is carrying the messages.

Channel exits
On MQSeries for Windows, you can write channel exits using the C
programming language only.

Command server
Version 2.1 or MQSeries for Windows provides a command server so you
can administer an MQSeries for Windows queue manager from a remote
computer using a PCF application. For information on the PCF commands
that Version 2.1 supports, see Chapter 11, “Making changes for a user” on
page 119.

Configuration files
MQSeries for Windows does not support the configuration files (also called
.ini files) that other MQSeries queue managers use to configure, for
example, logs, communications, or installable services.

 Copyright IBM Corp. 1994, 1997 195

Family differences

Context passing
MQSeries for Windows does not copy context information from messages it
receives from other queue managers. This is because an MQSeries for
Windows queue manager is intended to be a leaf node only; it is not
intended to be a server or an intermediate node in a network of queue
managers (in which messages received from one queue manager are
passed on to another).

Control commands
In other MQSeries products, you can issue control commands from the
command line. MQSeries for Windows provides a user interface to perform
the functions of some of these commands; for example, to start and stop a
queue manager. For a comparison with the MQSeries control commands,
see Table 30 on page 201.

Data conversion
When an MQSeries for Windows queue manager receives data from a
queue manager running on a different platform, it cannot convert the
machine encoding, integer representation, or coded character set of the
application data (but it does convert the message header). Also, it cannot
run data conversion exits.

For the applications running on these two queue managers to understand
each other’s data, the nonWindows queue manager must perform the data
conversion.

Dead-letter queues
MQSeries for Windows does not support dead-letter queues. A dead-letter
queue is a queue to which a queue manager or application sends
messages it cannot deliver to their correct destination. It is also known as
an undelivered-message queue.

An MQSeries for Windows queue manager does not need a dead-letter
queue because, being a leaf node, it is always on the edge of a network of
queue managers. This means it does not have to store messages for
onward transmission to other queue managers.

Distributed Computing Environment (DCE) directories
MQSeries for Windows does not support DCE directories.

Distribution lists
MQSeries for Windows does not support distribution lists.

Events See instrumentation events.

Installable services
MQSeries for Windows does not support MQSeries installable services.
These are additional functions provided in other MQSeries products as
several independent components.

196 MQSeries for Windows** User’s Guide

Family differences

Instrumentation events
Instrumentation events are facilities you can use to monitor the operation of
queue managers and channels in a network of MQSeries systems.
Version 2.1 of MQSeries for Windows generates most of the MQSeries
instrumentation events. To see which events it generates, see “MQSeries
events generated by MQSeries for Windows” on page 152. If you want
MQ to generate channel events, you must create the channel event queue
yourself (see “Monitoring MQSeries events” on page 151).

Version 2.0 of MQSeries for Windows does not generate instrumentation
events.

Media recovery and logging
MQSeries for Windows does not support the creation of a sequence of log
records that contain an image of an object. Other MQSeries products
allow you to create such records and re-create objects from this image.

Message channel agent (MCA)
On MQSeries for Windows, you cannot replace the supplied MCA program
with another program.

Message Queue Interface (MQI)
MQSeries for Windows supports a subset of the MQI.

To understand those features of the MQI that MQSeries for Windows does
not support, see Chapter 16, “How the MQI differs on MQSeries for
Windows” on page 175.

Message retry
MQSeries for Windows does not support message retry.

MQI channels
MQSeries for Windows does not support MQI channels. These are client
connection and server connection channels. These are used with
MQSeries clients only, so MQSeries for Windows does not support them.

MQSC commands
MQSeries for Windows supports a subset of the MQSC commands. To
see which commands it supports, see “MQSC commands supported by
MQSeries for Windows” on page 116.

Using MQSeries for Windows, you can type MQSC commands in a window
(and test and reissue them). You can also run MQSC command files.
This is described in Chapter 10, “Using MQSC commands” on page 107.

You cannot issue MQSC commands on an MQSeries for Windows queue
manager to run on another queue manager (known as indirect mode).
Also, you cannot issue MQSC commands on another queue manager
(using the runmqsc /w command) to run on an MQSeries for Windows
queue manager.

MQSeries client and server support
You cannot use an MQSeries for Windows queue manager as an
MQSeries client, nor can you use it to support its own MQSeries clients.

 Appendix A. Differences from the other members of the MQSeries family 197

Family differences

Network support
MQSeries for Windows supports TCP/IP only.

Object Authority Manager (OAM)
MQSeries for Windows does not provide a security manager. It does not
support the SETMQAUT and DSPMQAUT commands.

Process definitions
Other MQSeries products use process definitions for setting up the
automatic triggering of applications. MQSeries for Windows does not
support triggering or process definitions.

Programmable Command Format (PCF) command messages
Version 2.1 supports many of the MQSeries PCF commands. To see
which commands, see “PCF commands supported by MQSeries for
Windows” on page 121. You can write PCF applications using the C
programming language only.

Queue manager
MQSeries for Windows supports multiple queue manager definitions, but it
allows only one queue manager to run at any time.

Queue manager quiescing
MQSeries for Windows does not support the quiescing of a queue
manager. This is the ability to allow applications to finish processing
before the queue manager is stopped, and to prevent any further
applications starting.

Sample programs
MQSeries for Windows provides Windows versions of some of the
MQSeries sample programs. They are described in Chapter 17,
“Understanding the sample programs” on page 185.

Security manager
See object authority manager.

Signaling Version 2.1 of MQSeries for Windows supports signaling, so you can use
the MQGMO_SET_SIGNAL option with the MQGET call in Windows
applications. For more information, see “Using signaling with the MQGET
call” on page 176.

Version 2.0 does not support signaling.

Triggering MQSeries for Windows does not support triggering, so it does not allow a
queue manager to start an application automatically when predetermined
conditions on a queue are satisfied. The following features of triggering
are also not supported:

 � Initiation queues
 � Process definitions
 � Trigger monitors

198 MQSeries for Windows** User’s Guide

Family differences

Two-phase commit
MQSeries for Windows does not support two-phase commit. This is a
protocol for the coordination of changes to recoverable resources when
more than one resource manager is used by a single transaction.

However, MQSeries for Windows does allow the single-phase commitment
of MQ resources (that is, the queue manager can commit or back out units
of work).

 Appendix A. Differences from the other members of the MQSeries family 199

Family differences

200 MQSeries for Windows** User’s Guide

Control commands

Appendix B. MQSeries control commands

In other MQSeries products, you type control commands at a command prompt. In MQSeries for
Windows, you use the user interface to perform the functions of some of these control commands.
Table 30 shows the control commands and how MQSeries for Windows provides the functions.

Table 30 (Page 1 of 2). Control commands and MQSeries for Windows

MQSeries
command

Description Support on MQSeries for Windows V2.1

CRTMQCVX Create data conversion exit Function not supported.

CRTMQM Create queue manager This function is provided by the MQSeries
Properties dialog box of the Complete
version and by the MQD file.

DLTMQM Delete queue manager This function is provided by the MQSeries
Properties dialog box of the Complete
version and by the MQD file.

DSPMQAUT Display authority Function not supported.

DSPMQCSV Display command server This function is provided by the MQSeries
Properties dialog box.

DSPMQFLS Display MQSeries files Function not supported.

DSPMQTRN Display MQSeries transactions Function not supported.

ENDMQCSV End the command server This function is provided by the MQSeries
Properties dialog box.

ENDMQM Stop queue manager This function is provided by the MQSeries
Properties dialog box.

ENDMQTRC End MQSeries trace This function is provided by the Service
Trace utility. Also, you can clear the Start
Service Trace option in the MQSeries
Properties dialog box.

RCDMQIMG Record media image Function not supported.

RCRMQOBJ Recreate object Function not supported.

RSVMQTRN Resolve MQSeries transactions Function not supported.

RUNMQCHI Run channel initiator Function not supported.

RUNMQCHL Run channel This function is provided by the MQSeries
Properties dialog box.

RUNMQDLQ Run dead-letter queue handler Function not supported.

 Copyright IBM Corp. 1994, 1997 201

Control commands

Table 30 (Page 2 of 2). Control commands and MQSeries for Windows

MQSeries
command

Description Support on MQSeries for Windows V2.1

RUNMQLSR Run listener This function is provided by the MQSeries
Properties dialog box.

You must use either the MQSeries
Properties dialog box or the MQD file to
create a channel group that contains the
listener. You can add the listener to an
existing channel group using the
MQSeries Properties dialog box.

RUNMQSC Run MQSeries commands This function is provided by the MQSeries
Properties dialog box.

You can also run an MQSC command file
when you create a queue manager using
the MQSeries Properties dialog box or the
MQD file.

RUNMQTMC Start client trigger monitor Function not supported.

RUNMQTRM Start trigger monitor Function not supported.

SCMMQM Add or delete the queue manager to the
Windows NT Service Control Manager

Function not supported.

SETMQAUT Set authority Function not supported.

STRMQCSV Start command server This function is provided by the MQSeries
Properties dialog box.

STRMQM Start queue manager This function is provided by the MQSeries
Properties dialog box.

STRMQTRC Start MQSeries trace This function is provided by the MQSeries
Properties dialog box.

202 MQSeries for Windows** User’s Guide

Default queues and channels

Appendix C. Predefined queues and channels

This appendix lists the queues and channels that the supplied MQSC command files
define.

Default and system objects
The sample MQSC command file AMQSCOMW.TST defines the MQSeries for
Windows default and system objects. Each object definition contains a complete set of
attributes for that object. Each time you create a new object, that object inherits its
attributes from the default object of the same type, except for the attributes you
explicitly specify.

For example, SYSTEM.DEFAULT.LOCAL.QUEUE contains the default definitions for a
local queue. Consider what happens if you create a local queue using this MQSC
command:

DEFINE QLOCAL ('PINK.QUEUE') PUT(DISABLED)

The queue named PINK.QUEUE takes the attributes of the
SYSTEM.DEFAULT.LOCAL.QUEUE, except that the PUT attribute has a value of
DISABLED, whereas the default value is PUT(ENABLED).

Note: You can change the default attributes of MQ objects by editing the definitions of
the objects in the file AMQSCOMW.TST. If you do this, remember to keep a copy of
the original file.

The system objects are required for the operation of a queue manager or channel.
Table 31 on page 204 lists the objects defined in the supplied AMQSCOMW.TST file.
In a default installation, the file is supplied in the \Program Files\MQSeries for
Windows\QMgrs directory.

MQ automatically creates the objects specified in AMQSCOMW.TST whenever you
create a queue manager.

 Copyright IBM Corp. 1994, 1997 203

Default queues and channels

Table 31. Objects defined in AMQSCOMW.TST

Object name Description

SYSTEM.DEFAULT.ALIAS.QUEUE Default alias queue

SYSTEM.DEFAULT.LOCAL.QUEUE Default local queue

SYSTEM.DEFAULT.MODEL.QUEUE Default model queue

SYSTEM.DEFAULT.REMOTE.QUEUE Default remote queue

SYSTEM.DEF.SENDER Default sender channel

SYSTEM.DEF.SERVER Default server channel

SYSTEM.DEF.RECEIVER Default receiver channel

SYSTEM.DEF.REQUESTER Default requester channel

SYSTEM.CHANNEL.SYNCQ Channel synchronization queue

SYSTEM.ADMIN.COMMAND.QUEUE Administration command queue

SYSTEM.ADMIN.QMGR.EVENT Queue manager event queue

SYSTEM.ADMIN.PERFM.EVENT Performance event queue

SYSTEM.ADMIN.CHANNEL.EVENT Channel event queue (see note)

Note: The definition of the channel event queue is commented out in this file. If you want
MQ to generate channel events, you must create the channel event queue yourself using the
definitions shown in this file. For more information, see “Monitoring MQSeries events” on
page 151.

Objects for running the sample programs on one workstation
The sample MQSC command file AMQSCOSW.TST defines a local queue you can use
with the supplied sample programs. The queue is named SYSTEM.SAMPLE.LOCAL.
MQ runs this file if you select the Load MQSC file for the sample programs option
when you create a queue manager.

Table 32 shows the object defined in the supplied AMQSCOSW.TST file. In a default
installation, the file is supplied in the directory \Program Files\MQSeries for
Windows\Samples.

Table 32. Object defined in AMQSCOSW.TST

Object name Description

SYSTEM.SAMPLE.LOCAL Sample local queue

204 MQSeries for Windows** User’s Guide

Default queues and channels

Objects for running the sample programs on two workstations
If you want to use the sample programs to send messages from one workstation to
another (as described in Chapter 13, “Running the sample programs on two
workstations” on page 133), you need to define extra objects. The files VENUS.TST
and MARS.TST define these objects.

MQ runs these files if you specify them as user or application command files when you
create a queue manager.

Table 33 lists the objects defined in the file VENUS.TST. Table 34 lists the objects
defined in the file MARS.TST. In a default installation, both files are supplied in the
\Program Files\MQSeries for Windows\Samples directory.

Table 33. Objects defined in VENUS.TST

Object name Description

SAMPLE.VENUS.XMIT Transmission queue

SAMPLE.VENUS.REMOTE Remote queue

SAMPLE.VENUS.LOCAL Local queue

VENUS.TO.MARS Server channel

MARS.TO.VENUS Receiver channel

Table 34. Objects defined in MARS.TST

Object name Description

SAMPLE.MARS.XMIT Transmission queue

SAMPLE.MARS.REMOTE Remote queue

SAMPLE.MARS.LOCAL Local queue

MARS.TO.VENUS Sender channel

VENUS.TO.MARS Requester channel

 Appendix C. Predefined queues and channels 205

Default queues and channels

206 MQSeries for Windows** User’s Guide

Reason codes

 Appendix D. Return codes

MQI calls return two types of code:

� A completion code to show whether the call completed successfully, completed partially, or failed.
Table 35 shows these codes.

� A numeric reason code to explain a warning or failure. MQSC commands also return reason codes.
Table 36 shows these codes.

If you want more information about reason codes:

� For those with a value of the form 2nnn (and a name that starts with the characters MQRC_), see the
MQSeries Application Programming Reference.

� For those with a value of the form 3nnn or 4nnn (and a name that starts with the characters
MQRCCF_), see the MQSeries Programmable System Management manual.

Table 35. Completion codes returned by MQI calls Table 36 (Page 1 of 5). Reason codes returned
by MQI calls and MQSC commandsNumeric Literal
Numeric Literal0 MQCC_OK
2019 MQRC_HOBJ_ERROR1 MQCC_WARNING
2020 MQRC_INHIBIT_VALUE_ERROR2 MQCC_FAILED
2021 MQRC_INT_ATTR_COUNT_ERROR

2022 MQRC_INT_ATTR_COUNT_TOO_SMALL
Table 36 (Page 1 of 5). Reason codes returned
by MQI calls and MQSC commands 2023 MQRC_INT_ATTRS_ARRAY_ERROR

2024 MQRC_SYNCPOINT_LIMIT_REACHEDNumeric Literal
2025 MQRC_MAX_CONNS_LIMIT_REACHED2001 MQRC_ALIAS_BASE_Q_TYPE_ERROR
2026 MQRC_MD_ERROR2002 MQRC_ALREADY_CONNECTED
2027 MQRC_MISSING_REPLY_TO_Q2003 MQRC_BACKED_OUT
2029 MQRC_MSG_TYPE_ERROR2004 MQRC_BUFFER_ERROR
2030 MQRC_MSG_TOO_BIG_FOR_Q2005 MQRC_BUFFER_LENGTH_ERROR
2031 MQRC_MSG_TOO_BIG_FOR_Q_MGR2006 MQRC_CHAR_ATTR_LENGTH_ERROR
2033 MQRC_NO_MSG_AVAILABLE2007 MQRC_CHAR_ATTRS_ERROR
2034 MQRC_NO_MSG_UNDER_CURSOR2008 MQRC_CHAR_ATTRS_TOO_SHORT
2035 MQRC_NOT_AUTHORIZED2009 MQRC_CONNECTION_BROKEN
2036 MQRC_NOT_OPEN_FOR_BROWSE2010 MQRC_DATA_LENGTH_ERROR
2037 MQRC_NOT_OPEN_FOR_INPUT2011 MQRC_DYNAMIC_Q_NAME_ERROR
2038 MQRC_NOT_OPEN_FOR_INQUIRE2012 MQRC_ENVIRONMENT_ERROR
2039 MQRC_NOT_OPEN_FOR_OUTPUT2013 MQRC_EXPIRY_ERROR
2040 MQRC_NOT_OPEN_FOR_SET2014 MQRC_FEEDBACK_ERROR
2041 MQRC_OBJECT_CHANGED2016 MQRC_GET_INHIBITED
2042 MQRC_OBJECT_IN_USE2017 MQRC_HANDLE_NOT_AVAILABLE
2043 MQRC_OBJECT_TYPE_ERROR2018 MQRC_HCONN_ERROR

 Copyright IBM Corp. 1994, 1997 207

Reason codes

Table 36 (Page 2 of 5). Reason codes returned
by MQI calls and MQSC commands

Table 36 (Page 2 of 5). Reason codes returned
by MQI calls and MQSC commands

Numeric Literal Numeric Literal

2044 MQRC_OD_ERROR 2093 MQRC_NOT_OPEN_FOR_PASS_ALL

2045 MQRC_OPTION_NOT_VALID_FOR_TYPE 2094 MQRC_NOT_OPEN_FOR_PASS_IDENT

2046 MQRC_OPTIONS_ERROR 2095 MQRC_NOT_OPEN_FOR_SET_ALL

2047 MQRC_PERSISTENCE_ERROR 2096 MQRC_NOT_OPEN_FOR_SET_IDENT

2048 MQRC_PERSISTENT_NOT_ALLOWED 2097 MQRC_CONTEXT_HANDLE_ERROR

2049 MQRC_PRIORITY_EXCEEDS_MAXIMUM 2098 MQRC_CONTEXT_NOT_AVAILABLE

2050 MQRC_PRIORITY_ERROR 2099 MQRC_SIGNAL1_ERROR

2051 MQRC_PUT_INHIBITED 2100 MQRC_OBJECT_ALREADY_EXISTS

2052 MQRC_Q_DELETED 2101 MQRC_OBJECT_DAMAGED

2053 MQRC_Q_FULL 2102 MQRC_RESOURCE_PROBLEM

2055 MQRC_Q_NOT_EMPTY 2103 MQRC_ANOTHER_Q_MGR_CONNECTED

2056 MQRC_Q_SPACE_NOT_AVAILABLE 2104 MQRC_UNKNOWN_REPORT_OPTION

2057 MQRC_Q_TYPE_ERROR 2109 MQRC_SUPPRESSED_BY_EXIT

2058 MQRC_Q_MGR_NAME_ERROR 2110 MQRC_FORMAT_ERROR

2059 MQRC_Q_MGR_NOT_AVAILABLE 2111 MQRC_SOURCE_CCSID_ERROR

2061 MQRC_REPORT_OPTIONS_ERROR 2112 MQRC_SOURCE_INTEGER_ENC_ERROR

2062 MQRC_SECOND_MARK_NOT_ALLOWED 2113 MQRC_SOURCE_DECIMAL_ENC_ERROR

2063 MQRC_SECURITY_ERROR 2114 MQRC_SOURCE_FLOAT_ENC_ERROR

2065 MQRC_SELECTOR_COUNT_ERROR 2115 MQRC_TARGET_CCSID_ERROR

2066 MQRC_SELECTOR_LIMIT_EXCEEDED 2116 MQRC_TARGET_INTEGER_ENC_ERROR

2067 MQRC_SELECTOR_ERROR 2117 MQRC_TARGET_DECIMAL_ENC_ERROR

2068 MQRC_SELECTOR_NOT_FOR_TYPE 2118 MQRC_TARGET_FLOAT_ENC_ERROR

2069 MQRC_SIGNAL_OUTSTANDING 2119 MQRC_NOT_CONVERTED

2070 MQRC_SIGNAL_REQUEST_ACCEPTED 2120 MQRC_CONVERTED_MSG_TOO_BIG

2071 MQRC_STORAGE_NOT_AVAILABLE 2127 MQRC_ADAPTER_STORAGE_SHORTAGE

2072 MQRC_SYNCPOINT_NOT_AVAILABLE 2129 MQRC_ADAPTER_CONN_LOAD_ERROR

2075 MQRC_TRIGGER_CONTROL_ERROR 2130 MQRC_ADAPTER_SERV_LOAD_ERROR

2076 MQRC_TRIGGER_DEPTH_ERROR 2131 MQRC_ADAPTER_DEFS_ERROR

2077 MQRC_TRIGGER_MSG_PRIORITY_ERR 2132 MQRC_ADAPTER_DEFS_LOAD_ERROR

2078 MQRC_TRIGGER_TYPE_ERROR 2138 MQRC_ADAPTER_DISC_LOAD_ERROR

2079 MQRC_TRUNCATED_MSG_ACCEPTED 2140 MQRC_CICS_WAIT_FAILED

2080 MQRC_TRUNCATED_MSG_FAILED 2143 MQRC_SOURCE_LENGTH_ERROR

2082 MQRC_UNKNOWN_ALIAS_BASE_Q 2144 MQRC_TARGET_LENGTH_ERROR

2085 MQRC_UNKNOWN_OBJECT_NAME 2145 MQRC_SOURCE_BUFFER_ERROR

2086 MQRC_UNKNOWN_OBJECT_Q_MGR 2146 MQRC_TARGET_BUFFER_ERROR

2087 MQRC_UNKNOWN_REMOTE_Q_MGR 2150 MQRC_DBCS_ERROR

2090 MQRC_WAIT_INTERVAL_ERROR 2151 MQRC_TRUNCATED

2091 MQRC_XMIT_Q_TYPE_ERROR 2157 MQRC_ASID_MISMATCH

2092 MQRC_XMIT_Q_USAGE_ERROR 2160 MQRC_CONN_ID_IN_USE

208 MQSeries for Windows** User’s Guide

Reason codes

Table 36 (Page 3 of 5). Reason codes returned
by MQI calls and MQSC commands

Table 36 (Page 3 of 5). Reason codes returned
by MQI calls and MQSC commands

Numeric Literal Numeric Literal

2161 MQRC_Q_MGR_QUIESCING 2286 MQRC_INITIALIZATION_FAILED

2162 MQRC_Q_MGR_STOPPING 2287 MQRC_TERMINATION_FAILED

2163 MQRC_DUPLICATE_RECOV_COORD 2288 MQRC_UNKNOWN_Q_NAME

2173 MQRC_PMO_ERROR 2289 MQRC_SERVICE_ERROR

2182 MQRC_API_EXIT_NOT_FOUND 2290 MQRC_Q_ALREADY_EXISTS

2183 MQRC_API_EXIT_LOAD_ERROR 2291 MQRC_USER_ID_NOT_AVAILABLE

2184 MQRC_REMOTE_Q_NAME_ERROR 2292 MQRC_UNKNOWN_ENTITY

2186 MQRC_GMO_ERROR 2293 MQRC_UNKNOWN_AUTH_ENTITY

2192 MQRC_PAGESET_FULL 2294 MQRC_UNKNOWN_REF_OBJECT

2193 MQRC_PAGESET_ERROR 3001 MQRCCF_CFH_TYPE_ERROR

2194 MQRC_NAME_NOT_VALID_FOR_TYPE 3002 MQRCCF_CFH_LENGTH_ERROR

2195 MQRC_UNEXPECTED_ERROR 3003 MQRCCF_CFH_VERSION_ERROR

2196 MQRC_UNKNOWN_XMIT_Q 3004 MQRCCF_CFH_MSG_SEQ_NUMBER_ERR

2197 MQRC_UNKNOWN_DEF_XMIT_Q 3005 MQRCCF_CFH_CONTROL_ERROR

2198 MQRC_DEF_XMIT_Q_TYPE_ERROR 3006 MQRCCF_CFH_PARM_COUNT_ERROR

2199 MQRC_DEF_XMIT_Q_USAGE_ERROR 3007 MQRCCF_CFH_COMMAND_ERROR

2201 MQRC_NAME_IN_USE 3008 MQRCCF_COMMAND_FAILED

2202 MQRC_CONNECTION_QUIESCING 3009 MQRCCF_CFIN_LENGTH_ERROR

2203 MQRC_CONNECTION_STOPPING 3010 MQRCCF_CFST_LENGTH_ERROR

2204 MQRC_ADAPTER_NOT_AVAILABLE 3011 MQRCCF_CFST_STRING_LENGTH_ERR

2206 MQRC_MSG_ID_ERROR 3012 MQRCCF_FORCE_VALUE_ERROR

2207 MQRC_CORREL_ID_ERROR 3013 MQRCCF_STRUCTURE_TYPE_ERROR

2208 MQRC_FILE_SYSTEM_ERROR 3014 MQRCCF_CFIN_PARM_ID_ERROR

2209 MQRC_NO_MSG_LOCKED 3015 MQRCCF_CFST_PARM_ID_ERROR

2217 MQRC_CONNECTION_NOT_AUTHORIZED 3016 MQRCCF_MSG_LENGTH_ERROR

2218 MQRC_MSG_TOO_BIG_FOR_CHANNEL 3017 MQRCCF_CFIN_DUPLICATE_PARM

2219 MQRC_CALL_IN_PROGRESS 3018 MQRCCF_CFST_DUPLICATE_PARM

2222 MQRC_Q_MGR_ACTIVE 3019 MQRCCF_PARM_COUNT_TOO_SMALL

2223 MQRC_Q_MGR_NOT_ACTIVE 3020 MQRCCF_PARM_COUNT_TOO_BIG

2224 MQRC_Q_DEPTH_HIGH 3021 MQRCCF_Q_ALREADY_IN_CELL

2225 MQRC_Q_DEPTH_LOW 3022 MQRCCF_Q_TYPE_ERROR

2226 MQRC_Q_SERVICE_INTERVAL_HIGH 3023 MQRCCF_MD_FORMAT_ERROR

2227 MQRC_Q_SERVICE_INTERVAL_OK 3025 MQRCCF_REPLACE_VALUE_ERROR

2280 MQRC_HCONFIG_ERROR 3026 MQRCCF_CFIL_DUPLICATE_VALUE

2281 MQRC_FUNCTION_ERROR 3027 MQRCCF_CFIL_COUNT_ERROR

2282 MQRC_CHANNEL_STARTED 3028 MQRCCF_CFIL_LENGTH_ERROR

2283 MQRC_CHANNEL_STOPPED 3029 MQRCCF_QUIESCE_VALUE_ERROR

2284 MQRC_CHANNEL_CONV_ERROR 3030 MQRCCF_MSG_SEQ_NUMBER_ERROR

2285 MQRC_SERVICE_NOT_AVAILABLE 3031 MQRCCF_PING_DATA_COUNT_ERROR

 Appendix D. Return codes 209

Reason codes

Table 36 (Page 4 of 5). Reason codes returned
by MQI calls and MQSC commands

Table 36 (Page 4 of 5). Reason codes returned
by MQI calls and MQSC commands

Numeric Literal Numeric Literal

3032 MQRCCF_PING_DATA_COMPARE_ERROR 4015 MQRCCF_RECEIVED_DATA_ERROR

3034 MQRCCF_CHANNEL_TYPE_ERROR 4016 MQRCCF_RECEIVE_FAILED

3035 MQRCCF_PARM_SEQUENCE_ERROR 4017 MQRCCF_CONNECTION_CLOSED

3036 MQRCCF_XMIT_PROTOCOL_TYPE_ERR 4018 MQRCCF_NO_STORAGE

3037 MQRCCF_BATCH_SIZE_ERROR 4019 MQRCCF_NO_COMMS_MANAGER

3038 MQRCCF_DISC_INT_ERROR 4020 MQRCCF_LISTENER_NOT_STARTED

3039 MQRCCF_SHORT_RETRY_ERROR 4024 MQRCCF_BIND_FAILED

3040 MQRCCF_SHORT_TIMER_ERROR 4025 MQRCCF_CHANNEL_INDOUBT

3041 MQRCCF_LONG_RETRY_ERROR 4026 MQRCCF_MQCONN_FAILED

3042 MQRCCF_LONG_TIMER_ERROR 4027 MQRCCF_MQOPEN_FAILED

3043 MQRCCF_SEQ_NUMBER_WRAP_ERROR 4028 MQRCCF_MQGET_FAILED

3044 MQRCCF_MAX_MSG_LENGTH_ERROR 4029 MQRCCF_MQPUT_FAILED

3045 MQRCCF_PUT_AUTH_ERROR 4030 MQRCCF_PING_ERROR

3046 MQRCCF_PURGE_VALUE_ERROR 4031 MQRCCF_CHANNEL_IN_USE

3047 MQRCCF_CFIL_PARM_ID_ERROR 4032 MQRCCF_CHANNEL_NOT_FOUND

3048 MQRCCF_MSG_TRUNCATED 4033 MQRCCF_UNKNOWN_REMOTE_CHANNEL

3049 MQRCCF_CCSID_ERROR 4034 MQRCCF_REMOTE_QM_UNAVAILABLE

3050 MQRCCF_ENCODING_ERROR 4035 MQRCCF_REMOTE_QM_TERMINATING

3052 MQRCCF_DATA_CONV_VALUE_ERROR 4036 MQRCCF_MQINQ_FAILED

3053 MQRCCF_INDOUBT_VALUE_ERROR 4037 MQRCCF_NOT_XMIT_Q

3054 MQRCCF_ESCAPE_TYPE_ERROR 4038 MQRCCF_CHANNEL_DISABLED

3062 MQRCCF_CHANNEL_TABLE_ERROR 4039 MQRCCF_USER_EXIT_NOT_AVAILABLE

3063 MQRCCF_MCA_TYPE_ERROR 4040 MQRCCF_COMMIT_FAILED

3064 MQRCCF_CHL_INST_TYPE_ERROR 4042 MQRCCF_CHANNEL_ALREADY_EXISTS

3065 MQRCCF_CHL_STATUS_NOT_FOUND 4043 MQRCCF_DATA_TOO_LARGE

4001 MQRCCF_OBJECT_ALREADY_EXISTS 4044 MQRCCF_CHANNEL_NAME_ERROR

4002 MQRCCF_OBJECT_WRONG_TYPE 4045 MQRCCF_XMIT_Q_NAME_ERROR

4003 MQRCCF_LIKE_OBJECT_WRONG_TYPE 4047 MQRCCF_MCA_NAME_ERROR

4004 MQRCCF_OBJECT_OPEN 4048 MQRCCF_SEND_EXIT_NAME_ERROR

4005 MQRCCF_ATTR_VALUE_ERROR 4049 MQRCCF_SEC_EXIT_NAME_ERROR

4006 MQRCCF_UNKNOWN_Q_MGR 4050 MQRCCF_MSG_EXIT_NAME_ERROR

4007 MQRCCF_Q_WRONG_TYPE 4051 MQRCCF_RCV_EXIT_NAME_ERROR

4008 MQRCCF_OBJECT_NAME_ERROR 4052 MQRCCF_XMIT_Q_NAME_WRONG_TYPE

4009 MQRCCF_ALLOCATE_FAILED 4053 MQRCCF_MCA_NAME_WRONG_TYPE

4010 MQRCCF_HOST_NOT_AVAILABLE 4054 MQRCCF_DISC_INT_WRONG_TYPE

4011 MQRCCF_CONFIGURATION_ERROR 4055 MQRCCF_SHORT_RETRY_WRONG_TYPE

4012 MQRCCF_CONNECTION_REFUSED 4056 MQRCCF_SHORT_TIMER_WRONG_TYPE

4013 MQRCCF_ENTRY_ERROR 4057 MQRCCF_LONG_RETRY_WRONG_TYPE

4014 MQRCCF_SEND_FAILED 4058 MQRCCF_LONG_TIMER_WRONG_TYPE

210 MQSeries for Windows** User’s Guide

Reason codes

Table 36 (Page 5 of 5). Reason codes returned
by MQI calls and MQSC commands

Numeric Literal

4059 MQRCCF_PUT_AUTH_WRONG_TYPE

4061 MQRCCF_MISSING_CONN_NAME

4062 MQRCCF_CONN_NAME_ERROR

4063 MQRCCF_MQSET_FAILED

4064 MQRCCF_CHANNEL_NOT_ACTIVE

4065 MQRCCF_TERMINATED_BY_SEC_EXIT

4067 MQRCCF_DYNAMIC_Q_SCOPE_ERROR

4068 MQRCCF_CELL_DIR_NOT_AVAILABLE

 Appendix D. Return codes 211

Reason codes

212 MQSeries for Windows** User’s Guide

AMQ3500 �AMQ3505

 Appendix E. Error messages

MQSeries for Windows can issue the error messages shown in this appendix. When
you run an MQSC command file, the error messages also appear in the file
MQSC.LOG.

In some messages, the text includes strings or numbers that vary depending on the
circumstances that cause the message. In this appendix, these message variables are
shown in the text of the message like this.

For explanations of the syntax of the MQSC commands, see the online MQSeries for
Windows Command Reference.

AMQ3500 primary-keyword secondary-keyword name was successful.

Explanation: The operation was successful.

Action: None required.

AMQ3501 character - string expected.

Explanation: The first quotation mark of a quoted string was expected, but the character
character was found.

Action: Enclose the string in quotation marks and retry the command.

AMQ3502 integer - value out of range.

Explanation: The specified integer value for an attribute is outside the allowed range.

Action: Change the integer to a value that is within the allowed range and retry the command.

AMQ3503 primary-keyword secondary-keyword name failed. Return code = code.

Explanation: The MQSC command is syntactically correct, but the queue manager could not
perform the command.

Action: Look up the return code in Appendix D, “Return codes” on page 207, correct the
problem, then retry the command.

AMQ3504 string - attribute keyword expected.

Explanation: An attribute keyword was expected, but string was found.

Action: Ensure the attribute keyword is valid and spelled correctly, then retry the command.

AMQ3505 string - left parenthesis expected.

Explanation: A left parenthesis was expected, but string was found.

Action: Correct the command, adding a left parenthesis, then retry the command.

 Copyright IBM Corp. 1994, 1997 213

AMQ3506 �AMQ3514

AMQ3506 string - number expected.

Explanation: An attribute requires an integer value, but string was found.

Action: Correct the attribute value, then retry the command.

AMQ3507 string - right parenthesis expected.

Explanation: A right parenthesis was expected, but string was found.

Action: Correct the command by adding a right parenthesis. If you have used a name that
contains special characters, ensure that the name is enclosed in single quotation marks. Then
retry the command.

AMQ3508 string - string expected.

Explanation: A quoted string value was expected, but string found.

Action: Correct the string value, then retry the command.

AMQ3509 keyword not valid for this command.

Explanation: The keyword or attribute is not valid for this command.

Action: Correct the keyword or attribute, then retry the command.

AMQ3510 ACTION keyword required.

Explanation: A RESOLVE CHANNEL command was issued without the ACTION keyword.

Action: Specify the ACTION keyword and an appropriate parameter, then retry the command.

AMQ3511 CHLTYPE must be specified immediately after the channel name.

Explanation: On the DEFINE CHANNEL and ALTER CHANNEL commands, you must specify
the channel type immediately after the channel name. The validity of many of the following
parameters are determined by the channel type.

Action: Specify the CHLTYPE immediately after the channel name, then retry the command.

AMQ3512 CONNAME keyword required.

Explanation: The channel being defined has a channel type of SDR or RQSTR. With these
channel types, you must specify a connection name on the DEFINE CHANNEL command.

Action: Specify the CONNAME keyword, then retry the command.

AMQ3513 Channel already exists - specify REPLACE.

Explanation: The channel being defined already exists and the replace option has not been
specified.

Action: If you want to replace the existing channel, specify the REPLACE keyword; otherwise
choose a different channel name.

AMQ3514 Channel not found.

Explanation: The channel specified in the ALTER CHANNEL command does not exist.

Action: Correct the channel name, then retry the command.

214 MQSeries for Windows** User’s Guide

AMQ3515 �AMQ3523

AMQ3515 LIKE channel not found.

Explanation: The LIKE channel name specified on the DEFINE CHANNEL command does not
exist.

Action: Correct the LIKE channel name, then retry the command.

AMQ3516 Primary keyword string not valid.

Explanation: A primary keyword was expected, but string was found.

Action: Correct the primary keyword, then retry the command.

AMQ3517 Error opening channel definition file.

Explanation: The operating system could not open the channel definition file.

Action: Try the command again. If the error persists, reinstall MQSeries for Windows, then try
the command again. If this does not solve the problem, contact your MQSeries administrator.

AMQ3518 Error reading channel definition file.

Explanation: The operating system could not read the channel definition file.

Action: Try the command again. If the error persists, reinstall MQSeries for Windows, then try
the command again. If this does not solve the problem, contact your MQSeries administrator.

AMQ3519 Secondary keyword string not valid.

Explanation: A secondary keyword was expected, but string was found.

Action: Correct the secondary keyword, then retry the command.

AMQ3520 TRPTYPE keyword required.

Explanation: When you define a channel of this type, you must specify the transport type.

Action: Specify the TRPTYPE keyword on the DEFINE CHANNEL command, then retry the
command.

AMQ3521 Cannot read continuation line.

Explanation: The operating system cannot read the line following the plus (+) character.

Action: A plus character means that the command continues on the following line. Ensure the
continuation character is required, correct the continuation line, then retry the command. If the
error persists, reinstall MQSeries for Windows, then try the command again. If this does not solve
the problem, contact your MQSeries administrator.

AMQ3522 Unexpected comma.

Explanation: A keyword was expected, but a comma (,) was found.

Action: Correct the keyword, then retry the command.

AMQ3523 Unexpected left parenthesis.

Explanation: A keyword was expected, but a left parenthesis was found.

Action: Correct the keyword, then retry the command.

 Appendix E. Error messages 215

AMQ3524 �AMQ3531

AMQ3524 Unexpected number number.

Explanation: A keyword was expected, but number was found.

Action: Correct the keyword, then retry the command.

AMQ3525 Unexpected right parenthesis.

Explanation: A keyword was expected, but a right parenthesis was found.

Action: Correct the keyword, then retry the command.

AMQ3526 Value type type not supported.

Explanation: There may be a fault in the MQSC command processor.

Action: Restart the MQ connection. If the error persists, reinstall MQSeries for Windows, then
restart the MQ connection. If this does not solve the problem, contact your MQSeries
administrator.

AMQ3527 Keyword keyword is not valid for given channel type.

Explanation: The keyword keyword is not valid for use with the channel type specified by the
CHLTYPE keyword.

Action: Correct the keyword, then retry the command.

AMQ3528 Wrong CHLTYPE for LIKE channel.

Explanation: The channel type for the channel defined by the LIKE keyword is different from that
specified by the CHLTYPE keyword. In the DEFINE CHANNEL command, the channel types must
match.

Action: Either correct the LIKE keyword to specify a channel of the required type, or correct the
CHLTYPE keyword to match the channel type of the LIKE channel. Then retry the command.

AMQ3529 Wrong CHLTYPE for given definition.

Explanation: The channel type of the named channel is different from the CHLTYPE specified.
In the ALTER CHANNEL command, the channel types must match.

Action: Correct the CHLTYPE keyword to match the channel type of the named channel, then
retry the command.

AMQ3530 XMITQ keyword required.

Explanation: The channel being defined has a channel type of SDR or SVR. With these channel
types, you must specify a transmission queue name on the DEFINE CHANNEL command.

Action: Specify the XMITQ keyword, then retry the command.

AMQ3531 Character attribute buffer exceeded.

Explanation: A character attribute is greater than 2000 characters in length.

Action: Correct the attribute, then retry the command. If the error persists, reinstall MQSeries for
Windows, then try the command again. If this does not solve the problem, contact your MQSeries
administrator.

216 MQSeries for Windows** User’s Guide

AMQ3532 �AMQ3540

AMQ3532 File ended unexpectedly.

Explanation: The file ended unexpectedly while reading a continuation line.

Action: Ensure that the command correctly uses the continuation character, then retry the
command.

AMQ3533 Character character not valid.

Explanation: While parsing the keywords and attributes, character was found. It is not valid in
this context.

Action: Correct the character. If you have used a name that contains special characters, ensure
that the name is enclosed in single quotation marks. Then retry the command.

AMQ3534 Keyword keyword not valid.

Explanation: You cannot use this keyword in this situation.

Action: Correct the syntax of the command, then retry it.

AMQ3535 LIKE channel name too long.

Explanation: The length of the channel name specified with the LIKE keyword is too long.
Channel names can be a maximum of 20 characters.

Action: Correct the channel name, then retry the command.

AMQ3536 Terminator of number number not valid.

Explanation: The characters following the number number are not valid.

Action: Correct the number, then retry the command.

AMQ3537 Keyword beginning keyword too long.

Explanation: The length of the keyword keyword is more than 10 characters.

Action: Correct the keyword, then retry the command.

AMQ3538 Name type is not a string.

Explanation: There may be a fault in the MQSC command processor.

Action: Restart the MQ connection. If the error persists, reinstall MQSeries for Windows, then
restart the MQ connection. If this does not solve the problem, contact your MQSeries
administrator.

AMQ3539 Number beginning number is too long.

Explanation: The number beginning with number is longer than the maximum of 9 digits.

Action: Correct the number, then retry the command.

AMQ3540 Keyword DEADQ (string) must be blank.

Explanation: MQSeries for Windows does not support dead-letter queues. You can set this
keyword to blanks only.

Action: Remove the DEADQ keyword, then retry the command.

 Appendix E. Error messages 217

AMQ3541 �AMQ3548

AMQ3541 String string ended unexpectedly.

Explanation: The string string ended with a new-line character instead of a quotation mark.

Action: Correct the string, then retry the command.

AMQ3542 String beginning string is too long.

Explanation: The string string is too long for its associated keyword.

Action: Correct the string, then retry the command.

AMQ3543 Too many attributes, ignoring this one.

Explanation: You can specify a maximum of 256 attributes on one command; any more are
ignored.

Action: Correct the number of attributes associated with the command, then retry it. If the error
persists, reinstall MQSeries for Windows, then try the command again. If this does not solve the
problem, contact your MQSeries administrator.

AMQ3544 Keyword MCANAME (name) must be blank.

Explanation: MQSeries for Windows does not support the MCANAME keyword. You can set it
to blanks only.

Action: Remove the MCANAME keyword, then retry the command.

AMQ3545 Internal error number = return code

Explanation: There may be a fault in the MQSC command processor.

Action: Restart the MQ connection. If the error persists, reinstall MQSeries for Windows, then
restart the MQ connection. If this does not solve the problem, contact your MQSeries
administrator.

AMQ3546 Secondary keyword not specified.

Explanation: The command must have a secondary keyword, but none has been specified.

Action: Specify the secondary keyword, then retry the command.

AMQ3547 String length of string string is not valid.

Explanation: Each string associated with a keyword can be of a certain length only. The length
of string string is not valid for its associated keyword.

Action: Correct the string, then retry the command.

AMQ3548 Line too long - MQSC file error

Explanation: The MQSC file did not end with the expected new-line character.

Action: Edit the file and ensure that the final command ends correctly. If necessary, add a blank
line to the end of the file. Then run the MQSC command file again.

218 MQSeries for Windows** User’s Guide

AMQ3549 �AMQ3554

AMQ3549 MQSC file filename ran successfully.

Explanation: The MQSC command file ran successfully.

Action: None required.

AMQ3550 MQSC file filename did not run successfully. See MQSC.LOG for more details.

Explanation: Some of the commands in the MQSC command file filename contained errors.

Action: Correct the commands in the file, then run the file again.

AMQ3551 string contains characters not valid for MQSeries objects.

Explanation: The name string contains characters that are not valid for MQSeries objects. When
you name MQSeries objects, you can use only the following characters:

 � Uppercase A-Z
 � Lowercase a-z
 � Integers 0-9
 � Period (.)
� Forward slash (/)

 � Underscore (_)
 � Percent sign(%)

Action: Replace the nonvalid characters in the string, then retry the command.

AMQ3552 Internal error in the DISPLAY command. Return code = code.

Explanation: The MQSC command is syntactically correct, but the queue manager could not
perform the command.

Action: Look up the return code in Appendix D, “Return codes” on page 207 and try to correct
the problem. Then stop and restart the MQ connection. If the error persists, contact your
MQSeries administrator.

AMQ3553 Insufficient memory for the DISPLAY command.

Explanation: MQ cannot allocate sufficient memory to display all the information generated by
the DISPLAY command.

Action: If you used an asterisk (*) to specify a generic name, retry the command using a more
restrictive name so MQ has to display fewer objects. If you cannot do this, free some memory by
stopping some applications you are no longer using, then retry the command.

AMQ3554 The TYPE value specified is not supported for this DISPLAY command.

Explanation: Either:

� You have specified a queue type on the DISPLAY CHANNEL command.
� You have specified a channel type on the DISPLAY QUEUE command.

Action: Retry the command using the correct syntax. For explanations of the syntax of the
MQSC commands, see the online MQSeries for Windows Command Reference.

 Appendix E. Error messages 219

AMQ3555 �AMQ3704

AMQ3555 MQSeries object name not found.

Explanation: Either:

� There are no objects matching the name you specified in the command

� If you specified an object type in the command, there are no objects of that type matching the
name you specified

Action: If you expected MQ to return information, retry the command, ensuring you type the
correct object name.

AMQ3601 MQSeries for Windows has failed to verify correctly. Please see the MQSeries
for Windows User’s Guide for more information. Reason: reason.

Explanation: The reason describes the task that the Verify program was attempting when it
found an error.

Action: For information on the possible causes of this message, see “Running the Verify
function” on page 20. If you cannot rectify the problem, uninstall the product, reinstall it, then retry
the Verify program. If the error persists, contact your MQ administrator.

AMQ3700 Command server started for queue manager name.

Explanation: The operation was successful.

Action: None required.

AMQ3701 Command server stopped.

Explanation: The operation was successful.

Action: None required.

AMQ3702 Cannot stop command server. Return code = code.

Explanation: There is an internal error in the command server.

Action: Look up the reason code in Appendix D, “Return codes” on page 207 and try to correct
the problem. Then restart the command server. If the error persists, stop the connection, then
restart it and the command server. If this does not solve the problem, contact your MQSeries
administrator.

AMQ3703 Cannot create the command queue. Return code = code.

Explanation: The command queue (SYSTEM.ADMIN.COMMAND.QUEUE) does not exist and
MQ cannot create it.

Action: Look up the reason code in Appendix D, “Return codes” on page 207 and try to correct
the problem. If the error persists, contact your MQSeries administrator.

AMQ3704 Cannot open the command queue. Return code = code.

Explanation: MQ cannot open the command queue (SYSTEM.ADMIN.COMMAND.QUEUE).

Action: Look up the reason code in Appendix D, “Return codes” on page 207 and try to correct
the problem. If the error persists, contact your MQSeries administrator.

220 MQSeries for Windows** User’s Guide

AMQ3705 �AMQ3711

AMQ3705 Cannot allocate memory to service the command queue.

Explanation: The command server must allocate sufficient memory to service the longest
message on the command queue. This memory is not available.

Action: Free some memory by stopping any applications you no longer need to run, then restart
the command server.

AMQ3706 Cannot query the attributes of the command queue. Return code = code.

Explanation: The command server uses the MQINQ call to find the length of the longest
message on the command queue. This call has failed.

Action: Look up the reason code in Appendix D, “Return codes” on page 207 and try to correct
the problem. If the error persists, contact your MQSeries administrator.

AMQ3707 Internal error in the command server. Return code = code.

Explanation: There is an internal error in the command server.

Action: Look up the reason code in Appendix D, “Return codes” on page 207 and try to correct
the problem. Then restart the command server. If the error persists, stop the connection, then
restart it and the command server. If this does not solve the problem, contact your MQSeries
administrator.

AMQ3708 The reply-to queue does not exist.

Explanation: The reply-to queue specified in the PCF command does not exist. The command
server cannot process the command.

Action: Before you retry the command, ensure that all the queues required by the PCF
application exist on the queue manager.

AMQ3709 Cannot open or put a message on the reply-to queue. Return code = code.

Explanation: MQ cannot open the reply-to queue or it cannot put a message on the queue.

Action: Look up the reason code in Appendix D, “Return codes” on page 207 and try to correct
the problem. If the error persists, contact your MQSeries administrator.

AMQ3710 Cannot close the reply-to queue. Return code = code.

Explanation: MQ cannot close the reply-to queue.

Action: Look up the reason code in Appendix D, “Return codes” on page 207 and try to correct
the problem. If the error persists, contact your MQSeries administrator.

AMQ3711 Internal error in the command server. Return code = code.

Explanation: There is an internal error in the command server.

Action: Look up the reason code in Appendix D, “Return codes” on page 207 and try to correct
the problem. Then restart the command server. If the error persists, stop the connection, then
restart it and the command server. If this does not solve the problem, contact your MQSeries
administrator.

 Appendix E. Error messages 221

AMQ3712 �AMQ3801

AMQ3712 Cannot get a message from the administration command queue. Return code =
code.

Explanation: MQ cannot get a message from the administration command queue
(SYSTEM.ADMIN.COMMAND.QUEUE). The command server has stopped.

Action: Look up the reason code in Appendix D, “Return codes” on page 207 and try to correct
the problem. Then restart the command server. If the error persists, contact your MQSeries
administrator.

AMQ3713 Internal error in the command server. Return code = code.

Explanation: There is an internal error in the command server.

Action: Look up the reason code in Appendix D, “Return codes” on page 207 and try to correct
the problem. Then restart the command server. If the error persists, stop the connection, then
restart it and the command server. If this does not solve the problem, contact your MQSeries
administrator.

AMQ3714 Cannot get messages from the administration command queue because it is
inhibited.

Explanation: The InhibitGet attribute of the administration command queue
(SYSTEM.ADMIN.COMMAND.QUEUE) is set so that MQGET calls are not allowed. This means
the command server cannot get messages from the queue.

Action: If you do not want to prevent MQGET calls, change the InhibitGet attribute of the queue
to allow MQGET calls. To do this on the Complete version of the product, use the Components
page of the MQSeries Properties dialog box. To do this on the Compact version of the product,
use an MQSC command.

AMQ3715 The administration command queue is no longer inhibited.

Explanation: The InhibitGet attribute of the administration command queue
(SYSTEM.ADMIN.COMMAND.QUEUE) has been changed so that MQGET calls are now allowed.
This means the command server can get messages from the queue.

Action: None required.

AMQ3716 Cannot stop command server. Return code = code.

Explanation: MQ cannot stop the command server. If you were trying to stop a connection that
uses the command server, that connection has stopped, but the command server is still running.

Action: Use the Command Server page of the MQSeries Properties dialog box to start the
command server, then stop it again.

If the error persists, look up the reason code in Appendix D, “Return codes” on page 207 and try
to correct the problem. If you cannot correct the problem, contact your MQSeries administrator.

AMQ3801 Connection broken; there is a problem with the queue manager.

Explanation: The connection is stopped because there is a problem with its queue manager.

Action: For more information, use the MQSeries Properties dialog to view the status of the
queue manager. Then restart the connection.

222 MQSeries for Windows** User’s Guide

AMQ3802 �AMQ3805

AMQ3802 Connection broken; there is a problem with the channel group.

Explanation: The connection is stopped because there is a problem with its channel group.

Action: For more information, use the MQSeries Properties dialog to view the status of the
channel group. Then restart the connection.

AMQ3803 Connection broken; there is a problem with the phonebook entry.

Explanation: The connection is stopped because there is a problem with its phonebook entry.

Action: For more information, use the MQSeries Properties dialog to view the status of the
phonebook entry. Then restart the connection.

AMQ3804 Channel group broken; there is a problem with the listener.

Explanation: The connection is stopped because there is a problem with the listener in its
channel group.

Action: For more information, use the MQSeries Properties dialog to view the status of the
listener. Then restart the connection.

AMQ3805 Channel group broken; there is a problem with one or more channels.

Explanation: The connection is stopped because there is a problem with one or more of the
channels in its channel group.

Action: For more information, use the MQSeries Properties dialog to view the status of the
channels. Then restart the connection.

 Appendix E. Error messages 223

224 MQSeries for Windows** User’s Guide

Notices

 Appendix F. Notices

The following paragraph does not apply to any country where such provisions
are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the responsibility of the user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact Laboratory Counsel, MP151, IBM United Kingdom
Laboratories, Hursley Park, Winchester, Hampshire, England SO21 2JN. Such
information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594, U.S.A.

 Copyright IBM Corp. 1994, 1997 225

Trademarks

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

AIX MQ OS/2
BookManager MQSeries OS/400
CICS MQSeries Three Tier VSE/ESA
FFST MVS WIN-OS2
IBM MVS/ESA

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, and the Windows 95 Logo are trademarks or registered
trademarks of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

226 MQSeries for Windows** User’s Guide

Part 5. Glossary and index

 Copyright IBM Corp. 1994, 1997 227

228 MQSeries for Windows** User’s Guide

Glossary

Glossary of terms and abbreviations

This glossary describes terms used in this book and
words used with other than their everyday meaning. In
some cases, a definition may not be the only one
applicable to a term, but it gives the particular sense in
which the word is used in this book.

If you do not find the term you are looking for, see the
Index or the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

A
alias queue . An MQSeries object that enables MQI
applications to specify aliases for queue names. At run
time, the alias is resolved and the requested operation is
performed on the queue with the resolved name.

APAR . Authorized program analysis report.

application queue . A local queue used by an
application, as opposed to special-purpose queues (for
example, transmission queues).

attribute . One of a set of properties that defines the
characteristics of an MQSeries queue manager, queue,
or channel.

authorized program analysis report (APAR) . A report
of a problem caused by a suspected defect in a current,
unaltered, release of a product.

B
back out . To reverse all the changes made during the
current unit of recovery or unit of work.

browse . In message queuing, to copy a message
without removing it from the queue. See also get.

browse cursor . An identifier that specifies the next
message on a queue to be browsed when an application
issues a ‘get with browse’ call.

C
call back . In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

caller . The message channel agent (MCA) that starts
the channel. It does this by sending a connection
request message which the channel listener is listening
for.

CCSID. Coded character-set identifier.

channel . See message channel.

channel event . An event that indicates a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel. On MQSeries for Windows,
channel event messages are generated only if you
create a channel event queue to hold them.

channel group . In MQSeries for Windows, a named
collection of channels, owned by one queue manager,
that MQ starts and stops as a group.

channel initiator . In MQSeries, a program that starts
one end of a message channel. The other end of the
channel must be listening for incoming connection
requests. MQSeries for Windows does not use the
MQSeries channel initiator program.

channel listener . A program that monitors connection
requests from queue managers on other workstations.

COA. Confirm on arrival. See report message.

COD. Confirm on delivery. See report message.

coded character-set identifier (CCSID) . The name of
a coded set of characters and their code-point
assignments.

command processor . The part of the queue manager
that processes commands.

command server . The part of MQSeries that reads
commands from the administration command queue,
verifies them, and passes on the valid ones for
processing by the command processor.

 Copyright IBM Corp. 1994, 1997 229

Glossary

commercial messaging . A messaging strategy that
allows distributed applications, particularly commercial
applications, to communicate using messages.
MQSeries for Windows is an example of a commercial
messaging product.

commit . See single-phase commit and two-phase
commit.

completion code . A return code indicating whether an
MQI call was successful. If the call failed, or partially
succeeded, a reason code provides more information
about the cause. See also reason code.

component . In MQSeries for Windows, a component is
an MQ connection, a queue manager, or a channel
group. See also object.

connection . In MQSeries for Windows, a connection
contains all the MQ objects an application user needs to
run an MQ application. It comprises a queue manager
and the objects MQ needs to communicate from that
queue manager to another. These objects might be a
channel group and a phonebook entry. A typical user
chooses from a list of connections when MQ starts.

connection handle . The identifier, or token, by which a
program accesses the queue manager to which it is
connected.

context . In MQSeries, context information is included in
the message header to show the origin of the message.
MQSeries for Windows does not copy context
information from messages it receives from other queue
managers.

D
dead-letter queue . A queue to which a queue manager
or application sends messages it cannot deliver to their
correct destination. MQSeries for Windows does not
allow dead-letter queues.

default object . A definition of an object (for example, a
queue) with all its attributes defined. If you define an
object, but do not specify all the possible attributes that
object could have, the queue manager uses these
default attributes for the missing ones.

definition file . See MQD file.

dial-up connection . An MQ connection that comprises
a queue manager, a channel group, and a phonebook
entry for communicating with another queue manager.
Application users use a dial-up connection when they
want to transmit data to a computer that is connected to
theirs through a dial-up telephone link.

dial-up networking connection . See phonebook entry.

distributed queue management . In message queuing,
the setup and control of message channels to queue
managers on other systems.

dynamic queue . A local queue that is created when a
program opens a model queue object.

E
event . See channel event, performance event, and
queue manager event.

event message . A message that contains information
(such as the category of the event, the name of the
application that caused the event, and queue manager
statistics) relating to the origin of an event in a network
of MQSeries systems.

event queue . The queue on to which the queue
manager puts an event message after it detects an
event. Each category of event (channel, performance,
or queue manager) has its own event queue.

F
FFST. First Failure Support Technology. A program
used by MQSeries to indicate possible software
problems.

FIFO. First in, first out.

first in, first out (FIFO) . A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time.

G
get . In message queuing, to retrieve a message by
removing the message from a queue or by browsing the
message. See also browse.

230 MQSeries for Windows** User’s Guide

Glossary

H
handle . The identifier, or token, by which a program
accesses an MQSeries object. See connection handle
and object handle.

I
initiator . See channel initiator.

input parameter . A parameter of an MQI call in which
you supply information when you make the call.

input/output parameter . A parameter of an MQI call in
which you supply information when you make the call,
and in which the queue manager changes the
information when the call completes or fails.

L
LAN connection . An MQ connection that comprises a
queue manager and a channel group for communicating
with another queue manager. Application users use a
LAN connection when they want to transmit data to a
computer that is connected to theirs through a local area
network.

leaf node . In a network of nodes, a leaf node is
connected to only one other node, so it is on the outer
edge of the network. A leaf-node queue manager is
intended for use by a single user, and not as an
intermediate queue manager that passes messages
between other queue managers and serves many users.
MQSeries for Windows queue managers are leaf-node
queue managers.

listener . See channel listener.

local definition . An MQSeries object that belongs to a
local queue manager.

local definition of a remote queue . An MQSeries
object that belongs to the local queue manager. This
object defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . To a program, the queue
manager to which the program is connected. This is the
queue manager that provides message queuing services
to that program. Queue managers to which a program
is not connected are called remote queue managers,
even if they are running on the same system as the
program.

logical unit of work (LUW) . See unit of work.

M
MCA. Message channel agent.

message . In message queuing applications, a
communication sent from a program to another program.

message channel . A named unidirectional network
transport mechanism along which MQSeries messages
are sent between two queue managers.

message channel agent (MCA) . In MQSeries, a
program that either transmits prepared messages from a
transmission queue to a network, or takes messages
from the network and puts them on a destination queue.

message descriptor . Control information that is carried
as part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority . In MQSeries, an attribute of a
message that can affect the order in which messages
are retrieved from a queue.

message queue . Synonym for queue.

Message Queue Interface (MQI) . The application
programming interface provided by the MQSeries queue
managers. This interface allows application programs to
access message queuing services.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering . A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them on a queue in the
original order, and to discard duplicate messages.

messaging . A method for communication between
programs. Messaging can be synchronous or
independent of time.

 Glossary of terms and abbreviations 231

Glossary

model queue . An MQSeries object that contains a set
of queue attributes that act as a template when a
program creates a dynamic queue.

MQD file . In MQSeries for Windows, a file that defines
the properties of an MQ component. MQ runs the MQD
file at the end of the installation process. If the file has
changed, MQ also runs the file each time it starts.

MQI. Message queue interface.

MQI channel . A special channel that connects an
MQSeries client to an MQSeries server (queue
manager) and transfers only MQI calls and responses.
MQSeries for Windows does not support MQI channels.

MQSC commands . Human readable commands in a
specific format that change the attributes of MQSeries
objects.

Contrast with programmable command format.

MQSeries client . A runtime component of MQSeries
for OS/2, AIX, and UNIX systems. MQSeries for
Windows does not support MQSeries clients.

N
name transformation . In MQSeries, a process that
creates file names for MQSeries objects so that they are
unique and valid for the system being used.

O
object . In MQSeries, an object is a queue manager, a
queue, or a channel. See also component.

object descriptor . A data structure that identifies a
particular MQSeries object. It includes the object name
and its type.

object handle . The identifier, or token, by which a
program accesses the MQSeries object with which it is
working.

output parameter . A parameter of an MQI call in which
the queue manager returns information when the call
completes or fails.

P
PCF. See programmable command format.

performance event . An event that indicates a limit
condition has occurred.

permanent queue . A queue that is not erased when
the queue manager stops. Contrast with temporary
queue.

persistent message . A message that survives a restart
of the queue manager.

phonebook entry . Known in the Windows operating
system as a dial-up networking connection. It relates a
name to a telephone number.

You must install the dial-up networking component of
Windows before you can define a phonebook entry.

ping . In distributed queue management, a diagnostic
aid that uses the exchange of a test message to confirm
that a message channel is functioning.

platform . In MQSeries, the operating system on which
a queue manager is running.

programmable command format . A type of MQSeries
message used by:

� User administration applications that put PCF
commands on the administration command queue of
a specified queue manager

� User administration applications to get the results of
a PCF command from a specified queue manager

� A queue manager as a notification that an event has
occurred

Contrast with MQSC commands.

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Queues can be of type local, alias,
model, or remote. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages; they point to other
queues.

232 MQSeries for Windows** User’s Guide

Glossary

queue manager . A program that provides messaging
services to applications. It provides an application
programming interface so that programs can access
messages on the queues that the queue manager owns.

queue manager event . An event that indicates:

� An error condition has occurred in relation to the
resources used by the queue manager. For
example, an error condition caused by a queue
being unavailable.

� A significant change has occurred in the queue
manager. For example, a queue manager has
started or stopped.

queuing . See message queuing.

R
reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on the specified local
queue.

remote queue . A queue that belongs to a remote
queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager . To an MQI application, a
queue manager is remote if it is not the queue manager
to which the program is connected.

remote queue object . See local definition of a remote
queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues that belong to other queue managers.

reply message . A type of message used for replies to
request messages.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message . A message that provides information
about the delivery (or nondelivery) of an MQSeries
message that was put on a queue by an application
issuing an MQPUT call. A report message can indicate
the original message:

� Has arrived on the target queue; this is a Confirm
on Arrival (COA) report.

� Was retrieved by an application and deleted from
the queue; this is a Confirm on Delivery (COD)
report.

� Could not be delivered because, for example, a
channel is not available; this is an Exception report.

� Has been deleted from the queue because its expiry
date has elapsed; this is an Expiry report.

requester channel . In MQSeries, a channel that may
be started remotely by a sender channel. The requester
channel accepts messages from the sender channel
over a communication link and puts the messages on
the local queue designated in the message.

request message . A type of message used for
requesting a reply from another program.

responder . The message channel agent (MCA) that
the channel listener program starts when it receives a
connection request message from a caller MCA.

return codes . The collective name for completion
codes and reason codes.

rollback . Synonym for back out.

S
sender channel . In MQSeries, a channel that initiates
transfers of messages, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery . In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
when messages must be delivered only once, and in the
correct order.

sequential number wrap value . In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

 Glossary of terms and abbreviations 233

Glossary

server . The program that responds to requests for
information in the particular two-program information-flow
model of client/server.

server channel . In MQSeries, a channel that responds
to a requester channel, removes messages from a
transmission queue, and moves them over the network
to the requester channel.

Service Trace . In MQSeries for Windows, a utility that
traces the operation of a queue manager. Use it to help
you debug an MQSeries application.

signaling . A feature that allows the operating system to
notify a program when an expected message arrives on
a queue. Signaling is available only on MQSeries for
MVS/ESA and MQSeries for Windows Version 2.1.

single-phase backout . A method in which an action
that is in progress must not be allowed to finish, and all
changes that are part of that action must be undone.

single-phase commit . A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.

standalone connection . An MQ connection that
comprises no components for communicating with other
queue managers. Application users use a standalone
connection when they want to work on a computer that
does not have an external communication facility such
as a LAN cable or a modem.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

T
temporary queue . A queue that is deleted when the
queue manager is stopped. It can contain only
nonpersistent messages.

thread . In MQSeries, the lowest level of parallel
execution available on an operating system.

time-independent messaging . A method for
communication between programs in which the
requesting program proceeds with its own processing
without waiting for a reply to its request.

trace . A facility for recording MQSeries activity.

transmission program . See message channel agent.

transmission queue . A local queue on which prepared
messages destined for a remote queue manager are
stored temporarily.

two-phase commit . A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
MQSeries for Windows does not support two-phase
commit.

U
unit of recovery . A recoverable sequence of
operations within a single resource manager. Compare
with unit of work.

unit of work . A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or at a user-requested syncpoint. It ends either at
a user-requested syncpoint or at the end of a
transaction. Compare with unit of recovery.

234 MQSeries for Windows** User’s Guide

Index

 Index

A
administering MQ 35
administration command queue 65, 204
administration features 31
Administration page 31
AllUserChannels keyword 70
AMQ3601 message 21
AMQLEVLW.LOG 149
AMQRSYNA.DAT 146
AMQSBCGB.EXE 130
AMQSBCGW.EXE 130, 189
AMQSCOMW.TST 203
AMQSCOSW.TST 204
AMQSGETB.EXE 131
AMQSGETW.EXE 131, 190
AMQSPUTB.EXE 128
AMQSPUTW.EXE 128, 189
AMQTRACW.LOG 150
AMQXTRCW command 150, 151
applying maintenance updates 19
attributes

changing 31
changing channel 101
changing channel group 100
changing connection 100
changing queue 101
changing queue manager 101
changing using MQD file 68
channel 183
displaying 31
queue 182
queue manager 181
viewing 31
viewing channel 98
viewing channel group 98
viewing connection 98
viewing queue 98
viewing queue manager 98

authority checking 195
automatic installation 51

changing the destination drive and directory 52
changing the location of the log file 55
changing the name of the MIF file 55
changing the product 55
changing the program folder 53

automatic installation (continued)
customizing 53
from a file server 54
preparing 51
removing the product 55
required software 54
response file 52
using a software distribution package 54

automatic start of a connection 75, 94
automatic start of command server 65, 75, 94
AutoStart keyword 75

B
base components 18

data files 18
bibliography xii
BookManager xvi
browsing messages 130
Browsing Messages sample

design 187
running on one workstation 130
running on two workstations 140
supplied files for C language 189
supplied files for Visual Basic 190

building executable files for the samples 189

C
C programming language 157

binary strings 159
character strings 159
data types 159
dynamic structures 160
initial values, structures 160
MQI calls 158
notational conventions 161
parameters 158
undefined data type 158

call back 43
caller 42
CD-ROM installation 15
changing

associating the listener 100
attributes 31
attributes using MQD file 68

 Copyright IBM Corp. 1994, 1997 235

Index

changing (continued)
automatic installation 55
channel attributes 101
channel group attributes 100
channel group using MQD file 68, 70
channel using MQD file 68, 83
connection attributes 100
connection using MQD file 68, 76
destination directory for automatic installation 52
destination directory for installation 16
installation 19
log file for automatic installation 55
password 125
program folder for automatic installation 53
program folder for installation 16
queue attributes 101
queue manager attributes 101
queue manager using MQD file 68, 84
queue using MQD file 68, 83
response file 52

channel 38
adding to a channel group 100
attributes 183
autodefinition 195
changing attributes 101
changing using MQD file 68, 83
creating 95
creating using MQD file 65, 83
definition 42
deleting 97
deleting from a channel group 100
deleting using MQD file 68, 83
events 152
exits 195
fast messages 195
heartbeats 195
introduction 38
listener 42, 70
logging 81, 149
maximum number in a channel group 91
MCA 40
message channel agent 40
monitoring status 27
naming 96
predefined 203
receiver 42
replacing 96
requester 42
running 44
sender 42

channel (continued)
server 42
starting 44
starting listener 70
status 27, 101
stopping 44
types of 42
viewing attributes 98
viewing status 101

channel group 44
adding channels 100
changing attributes 100
changing using MQD file 68, 70
creating 90
creating using MQD file 66, 69
deleting 97
deleting channels 100
deleting using MQD file 68, 71
examples 45
maximum number in a queue manager 90
maximum number of channels 91
monitoring status 27
naming 96
replacing 91
replacing using MQD file 68, 70
running 44
starting channels 44
status 27, 101
stopping channels 44
viewing attributes 98
viewing status 101

Channel_ keyword 70
CHANNEL.LOG 149
ChannelGroup component 69
ChannelGroupName keyword 74
ChannelLogSize keyword 81, 149
client

MQSeries 6, 197
support 7, 197

CMQB.BAS 168
CMQC.H 158
CMQCFC.H 123, 158
CMQXB.BAS 168
CMQXC.H 158
COA

See confirm on arrival
COD

See confirm on delivery
command queue 65, 204

236 MQSeries for Windows** User’s Guide

Index

command server 195
administration command queue 65, 204
error messages 213
starting 32, 94
starting using the MQD file 65, 75
stopping 32

commercial messaging 37
communications protocol 198
Compact version

installing 16
introduction 4
using 23

COMPACT.ISS 52
COMPACT.PDF 54
compilers supported 12
Complete version

installing 16
introduction 4
using 35

COMPLETE.ISS 52
COMPLETE.PDF 54
completion codes 207
component types, definition file 60
components

automatically refresh status 29
creating 88
deleting 97
viewing status 26

Components page 88
computer name 134
configuration file 195
confirm on arrival 8
confirm on delivery 8
ConfirmDelete keyword 71, 76, 84
connect queue manager call 175
connection component 3, 46, 73

automatic start 75, 94
changing attributes 100
changing using MQD file 68, 76
choosing 24
creating 92
creating using MQD file 63, 73
deleting 97
deleting using MQD file 68, 76
description 93
dial-up 46, 93
for sample programs 127
LAN 46, 93
monitoring status 27
name of 93

connection component (continued)
naming 96
prompt in MQD file 79
replacing 94
replacing using MQD file 68, 76
selecting 24
standalone 46, 93
starting 23
starting automatically 75, 94
status 27, 101
stopping 23
type 93
viewing attributes 98
viewing status 101

connection handle 37
Connections page 23
context passing 196
control commands 196
Controls section 78
conversion of data 142, 196
CONVERT keyword 142
CREATEMQ.LOG 62
CREATEMQ.MQD 30, 58, 60
creating

channel 95
channel group 90
channel group using MQD file 66, 69
channel using MQD file 65, 83
components 88
components using MQD file 57
connection 92
connection using MQD file 63, 73
MQD file 63
MQSeries objects 88
MQSeries objects using MQD file 57
queue 94
queue manager 88
queue manager using MQD file 65, 82
queue using MQD file 65, 83

CRTMQCVX command 201
CRTMQM command 201

D
data conversion 142, 196
data conversion exits 196, 201
data types

See elementary data types, structure data types
DBCS characters 112

 Index 237

Index

DCE directories 196
dead-letter queue 196
default objects 203
default queue and channels 90
defining message channels 42
definition file 35

AllUserChannels keyword 70
AutoStart keyword 75
changing object attributes 68
changing password 125
Channel_ keyword 70
ChannelGroup component 60, 69
ChannelGroup examples 71
ChannelGroupName keyword 74
ChannelLogSize keyword 81, 149
comments in 58
component 58
component types 60
ConfirmDelete keyword 71, 76, 84
Connection component 60, 73
Connection component examples 76
Controls component 78
Controls section 78
CREATEMQ.MQD 30, 58, 60
creating 63
date in 79
defining a channel 65
defining a channel group 66
defining a connection 63, 73
defining a queue 65
defining a queue manager 65, 82
defining process options 66
Delete keyword 71, 76, 84
deleting objects 68
Description keyword 69, 73, 83
directory 58
EnableLANVerify keyword 81
enabling LAN verification 67
error log, CREATEMQ.LOG 62
example 59, 60
for automatic installation 53
format 58
HasChannelGroup keyword 74
HasPhonebookEntry keyword 74
installing a new one 30
keywords 60
LoadSamplesMQSC keyword 83
LoadUserMQSC keyword 83
MARS.MQD 61, 135
MQ status icon 79

definition file (continued)
Name keyword 69, 73, 82
name of 58
NameInformationText keyword 83
NamePrompt keyword 83
Password keyword 80
path to 58
PhonebookEntryName keyword 75
Process examples 81
Process section 79
processing 62
PromptForConnection keyword 79
QueueManager component 60, 82
QueueManager component examples 85
QueueManagerName keyword 70, 74
RefreshRate keyword 80
Replace keyword 70, 76, 84
replacing objects 68
RunCommandServer keyword 75
SAMPLE.MQD 63
section 58
ShowIcon keyword 79
specifying password 67
specifying run time 66
starting the command server 65
StartListener keyword 70
supplied 58, 60
testing 68
UseAfterDate keyword 79
UseAfterTime keyword 79
UseSmallIcons keyword 80
VENUS.MQD 135

Delete keyword 71, 76, 84
deleting

channel 97
channel group 97
channel group using MQD file 68, 71
channel using MQD file 68, 83
components 97
components using MQD file 68
connection 97
connection using MQD file 68, 76
installed product 19
MQSeries objects 97
MQSeries objects using MQD file 68
queue 97
queue manager 97
queue manager using MQD file 68, 84
queue using MQD file 68, 83

238 MQSeries for Windows** User’s Guide

Index

Description keyword 69, 73, 83
development configuration 11
diagnosing problems 143
dial-up connection 46, 93
differences from other MQ products 195
directories

changing the destination in automatic installation 52
changing the destination in installation 16
moving MQ 19
structure of MQ 18

disk space requirements 11
diskette installation 15
display authority 201
display command server 201
display MQSeries files 201
display MQSeries transactions 201
distribution lists 196
DLQ 196
DLTMQM command 201
domain name service 134
dotted-decimal format 134
DSPMQAUT command 195, 198, 201
DSPMQCSV command 201
DSPMQFLS command 201
DSPMQTRN command 201

E
elementary data types

MQBYTE
BASIC syntax 172
C syntax 165

MQBYTE16
C syntax 165

MQBYTE24
BASIC syntax 172
C syntax 165

MQBYTE32
BASIC syntax 172
C syntax 165

MQBYTE64
C syntax 165

MQCHAR
BASIC syntax 172
C syntax 165

MQCHAR12
BASIC syntax 172
C syntax 165

MQCHAR128
BASIC syntax 172
C syntax 165

elementary data types (continued)
MQCHAR16 165

C syntax 165
MQCHAR256

BASIC syntax 172
C syntax 165

MQCHAR28
BASIC syntax 172
C syntax 165

MQCHAR32
BASIC syntax 172
C syntax 165

MQCHAR4
BASIC syntax 172
C syntax 165

MQCHAR48
BASIC syntax 172
C syntax 165

MQCHAR64
BASIC syntax 172
C syntax 165

MQCHAR8
BASIC syntax 172
C syntax 165

MQHCONN
BASIC syntax 172
C syntax 165

MQHOBJ
BASIC syntax 172

MQLONG
BASIC syntax 172
C syntax 165

PMQLONG 165
C syntax 165

Visual Basic 172
EnableLANVerify keyword 81
end-user configuration 11
ENDMQCSV command 201
ENDMQM command 201
ENDMQTRC command 201
environment variable

MQW_LANVFYPATH 102
MQW_MQDPATH 30, 58

error logs
automatic installation 55
MQD 62
MQSC 112

error messages 213
events

channel event queue 204

 Index 239

Index

events (continued)
enabling channel events 152
list of generated events 152
monitoring 151
performance event queue 204
queue manager event queue 204
support for 197

examples
channel groups 45
ChannelGroup component 71
Connection components 76
MQD files 60
MQSC command files 113
Process sections 81
QueueManager components 85

exit
channel 195
data conversion 196
message retry 197

F
family differences 195
fast messages 123, 195
fault finding 143
features of MQSeries for Windows 7, 8
files

AMQSCOMW.TST 90, 203
AMQSCOSW.TST 89, 204
AMQTRACW.LOG 150
CREATEMQ.LOG 62
CREATEMQ.MQD 58
data 18
definition 57
form (.BAS) 168
header 168
header (C) 158
include (.H) 158
log 18
MARS.TST 205
MQSC command file 89
MQSC error log 112
MQSC log 90
MQSC.LOG 213
product 19
READ.ME xi
response

See response file
sample 18
system initialization (WIN.INI) 19

files (continued)
VENUS.TST 205

folder
changing in automatic installation 53
changing in installation 16

fonts in this book xi
form files (.BAS) 168
format of MQSC command file 112

G
get message call 176
get message options (MQGMO)

See structure data types
getting messages 38, 131
Getting Messages sample

design 188
running on one workstation 131
running on two workstations 141
supplied files for C language 190
supplied files for Visual Basic 190

glossary 229

H
hard disk storage 11
hardware requirements 11
HasChannelGroup keyword 74
HasPhonebookEntry keyword 74
header files

C 158
Visual Basic 168

heartbeats (on channels) 195
help information 10
host name 134
HTML (Hypertext Markup Language) xvii
Hypertext Markup Language (HTML) xvii

I
icon size

setting in MQD file 80
setting the option 29

in-doubt messages 146
include files (.H) 158
Information Presentation Facility (IPF) xvii
INI file 195
Inquire attribute call 176
installable services 196

240 MQSeries for Windows** User’s Guide

Index

installation 15
automatic 51
changing 19
changing the destination in installation 16
changing the product automatically 55
directory structure 18
moving 19
over a LAN 51
registering 17
removing the product 19
required disk space 11
samples 16
using response files

See response file
verifying 20

instrumentation events
See events

internet protocol address 134
IP address 134
IPF (Information Presentation Facility) xvii

K
keywords

definition file 60
MQD file 60

L
LAN

installation over 51
testing 133
verifying MQ using 102

LAN connection 46, 93
leaf node 5
libraries 18, 158, 168
listener 42, 100

starting 70
LoadSamplesMQSC keyword 83
LoadUserMQSC keyword 83
local definition of remote queue 39
local queue 38
local queue manager 38, 174

message descriptor (MQMD) 174
log files

automatic installation 55
channel 81, 149
MQD 62
MQSC 112
service information 149

log files (continued)
Service Trace 150

M
machine name 134
maintenance updates 19
Management Information File 55
MARS.MQD 61, 135
MARS.TST 114, 136, 205
MCA

See message channel agent (MCA)
media recovery and logging 197
message 37

Browsing Messages sample 185, 187
confirm on arrival 8
confirm on delivery 8
data 38
expiry 8
fast 123, 195
Getting Messages sample 185, 188
in-doubt 146
message descriptor 38
nonpersistent message 8
persistent message 8
Putting Messages sample 185, 187
report 8
sequence number 146
speed of nonpersistent 195

message channel
See channel

message channel agent (MCA) 40, 197
message descriptor (MQMD)

See structure data types
Message Queue Interface (MQI) 157, 175, 197

attributes 180
calls in C 157
calls in Visual Basic 168
for sample programs 186
initial values, structures (C) 160
initial values, structures (Visual Basic) 168
invoking calls (C) 161—164
invoking calls (Visual Basic) 169—172
MQI channels 197
structures 168, 178
structures (C) 166—167
structures (Visual Basic) 173—174

message retry 197
message sequence number 146

 Index 241

Index

messaging 37
MIF file 55
moving the product 19
MQBACK

See MQI calls
MQBEGIN 175
MQBO 178
MQBYTE

See elementary data types
MQBYTE16

See elementary data types
MQBYTE24

See elementary data types
MQBYTE32

See elementary data types
MQCHAR

See elementary data types
MQCHAR12

See elementary data types
MQCHAR128

See elementary data types
MQCHAR256

See elementary data types
MQCHAR28

See elementary data types
MQCHAR32

See elementary data types
MQCHAR4

See elementary data types
MQCHAR48

See elementary data types
MQCHAR64

See elementary data types
MQCHAR8

See elementary data types
MQCLOSE

See MQI calls
MQCMIT

See MQI calls
MQCNO 178
MQCONN

See MQI calls
MQCONN call

See MQI calls
MQCONNX 175
MQD files

See definition file
MQDH 178
MQDISC

See MQI calls

MQDISC call
See MQI calls

MQDLH 178
MQGET

See MQI calls
MQGET with signal 176
MQGMO

See structure data types
MQHCONN

See elementary data types
MQHOBJ

See elementary data types
MQI

See Message Queue Interface (MQI)
MQI calls 37, 161—164, 169—172, 175

completion codes 207
MQBACK

BASIC syntax 169
C syntax 161

MQBEGIN 175
MQCLOSE

BASIC syntax 169
C syntax 161

MQCMIT
BASIC syntax 169
C syntax 162

MQCONN
BASIC syntax 169
C syntax 162
restrictions 175

MQCONNX 175
MQDISC

BASIC syntax 170
C syntax 162

MQGET
BASIC syntax 170
C syntax 162
restrictions 176

MQINQ
BASIC syntax 170
C syntax 163
restrictions 176

MQOPEN
BASIC syntax 171
C syntax 163
restrictions 176

MQPUT
BASIC syntax 171
C syntax 163
restrictions 176

242 MQSeries for Windows** User’s Guide

Index

MQI calls (continued)
MQPUT1

BASIC syntax 171
C syntax 164
restrictions 176

MQSET
BASIC syntax 172
C syntax 164
restrictions 176

reason codes 207
MQI channels 197
MQIIH 178
MQINQ

See MQI calls
MQLONG

See elementary data types
MQM.LIB 158
MQMD

See structure data types
MQMDE 178
MQOD

See structure data types
MQOPEN

See MQI calls
MQOPEN call

See MQI calls
MQOR 178
MQPMO

See structure data types
MQPMR 178
MQPUT

See MQI calls
MQPUT1

See MQI calls
MQRMH 178
MQRR 178
MQSC command files 16, 203

AMQSCOMW.TST 203
AMQSCOSW.TST 204
error messages 213
errors in 112
format of 112
MARS.TST 136, 205
running 83, 111
sample 203, 204, 205
VENUS.TST 135, 205
writing 111

MQSC Commands 35, 197
AMQSCOMW.TST 90
AMQSCOSW.TST 89

MQSC Commands (continued)
DEFINE QLOCAL 111
examples 113
for applications 89
for sample programs 89
issuing 107
issuing commands 110
reason codes 207
RESET CHANNEL 146
RESOLVE CHANNEL 146
supported commands 116

MQSC error log 112, 213
MQSC page 108
MQSC.LOG 112
MQSeries client 6, 7, 197
MQSeries objects 38

administering local 107
changing 107
creating 88, 107
default 203
deleting 97, 107
for sample programs 204
in AMQSCOMW.TST 204
object handle 38
opening 38
specifying 107
system 203

MQSeries publications xii
MQSET

See MQI calls
MQTM 178

See also structure data types
MQTMC2 178
MQVARS.BAT 190
MQW_LANVFYPATH environment variable 102
MQW_MQDPATH environment variable 30, 58
MQXQH

See structure data types

N
Name keyword 69, 73, 82
NameInformationText keyword 83
NamePrompt keyword 83
naming MQ objects 96
network address 134
network protocols supported 198
nonpersistent message 8
nonpersistent messages 195

 Index 243

Index

notational conventions
C language 161
Visual Basic 168

O
OAM

See Object Authority Manager
Object Authority Manager 198
object descriptor (MQOD)

See structure data types
object handle 38
online information 10
open object call 176
opening a queue 38
Options page 29
options, data structures 178—180

P
package definition file 54
parameter pointers 175
password

changing 80
changing in MQD file 125
removing 80
specifying 80
specifying in MQD file 67
typing 31
using 31

Password keyword 80
PCF commands

example 120
for remote administration 35
restrictions 122
support for 198
supported commands 121
using 119

PDF (Portable Document Format) xvi
PDF file 54
performance events 152
persistent message 8
phonebook entry 46, 92, 93
PhonebookEntryName keyword 75
ping command 133
pointers 175
Portable Document Format (PDF) xvi
prerequisite software 12
problem diagnosis 143

process definitions 198
Process section 79
production configuration 11
program folder

changing in automatic installation 53
changing in installation 16

Programmable Command Format commands
See PCF commands

programming languages supported 157
programming restrictions 175
PromptForConnection keyword 79
Properties dialog box

Administration page 31
Components page 88
Connections page 23
MQSC page 108
Options page 29
Service page 31, 149
setting icon size in MQD file 80
setting icon size option 29
Status page 27
Verify page 20

protocols (network) supported 198
publications

MQSeries xii
put message calls 176
put message options (MQPMO)

See structure data types
putting messages 38, 128
Putting Messages sample

design 187
running on one workstation 128
running on two workstations 140
supplied files for C language 189
supplied files for Visual Basic language 189

Q
QM.INI file 195
queue 37

administration command queue 65, 204
attributes 182, 195
changing attributes 101
changing using MQD file 68, 83
channel event 152, 204
creating 94
creating using MQD file 65, 83
dead-letter 196
deleting 97
deleting using MQD file 68, 83

244 MQSeries for Windows** User’s Guide

Index

queue (continued)
local definition of remote queue 39
local queue 38
monitoring status 27
MQOPEN 38
naming 96
opening 38
performance event 152, 204
predefined 203
queue manager event 152, 204
remote queue 38
replacing 94
status 27, 101
transmission 39
viewing attributes 98
viewing status 101

queue manager
administering 35
attributes 181, 195
changing attributes 101
changing using MQD file 68, 84
creating 88
creating using MQD file 65, 82
deleting 97
deleting using MQD file 68, 84
description 37, 89
events 152
for sample programs 127
local 38
maximum number of channel groups 90
monitoring status 27
multiple queue managers 38
name of 82, 89
naming 96
quiescing 198
remote 38
replacing 89
replacing using MQD file 68, 84
setting up MARS 138
setting up VENUS 138
status 27, 101
subdirectory 18
viewing attributes 98
viewing status 101

QueueManager component 82
QueueManagerName keyword 70, 74
quiescing 198

R
RAM storage 11
RCDMQIMG command 201
RCRMQOBJ command 201
READ.ME file xi
reason codes 207
receiver channel 42
recommended software

application development 12
end-users 12

record media image 201
RefreshRate keyword 80
registering your installation 17
remote queue 38

See also queue
remote queue manager 38
Replace keyword 70, 76, 84
replacing

channel 96
channel group 91
channel group using MQD file 68, 70
connection 94
connection using MQD file 68, 76
MQSeries objects using MQD file 68
queue 94
queue manager 89
queue manager using MQD file 68, 84

report generation 8
report messages 8
requester channel 42
RESET CHANNEL command 146
RESOLVE CHANNEL command 146
resolving MQSeries transactions 201
responder 42
response file 52
return codes 207
RSVMQTRN command 201
RunCommandServer keyword 75
RUNMQCHI command 201
RUNMQCHL command 201
RUNMQDLQ command 201
RUNMQLSR command 202
RUNMQSC command 107, 202
RUNMQTMC command 202
RUNMQTRM command 202
running a command file 111

 Index 245

Index

S
sample programs

Browsing Messages 130, 140, 185
Browsing Messages files for C language 189
Browsing Messages files for Visual Basic 190
building the C samples 190
building the executable files 189
building the Visual Basic samples 191
creating test connection 127
design of Browsing Messages 187
design of Getting Messages 188
design of Putting Messages 187
general design 185
Getting Messages 131, 141, 185
Getting Messages files for C language 190
Getting Messages files for Visual Basic 190
objects for 204
Putting Messages 128, 140, 185
Putting Messages files for C language 189
Putting Messages files for Visual Basic

language 189
running on two workstations 133
starting 128

SAMPLE.MQD 63
SCMMQM command 202
security manager 198
sender channel 42
server

channel 42
MQSeries 6
node 5
support 7, 197

service information 31, 149
Service page 31
Service Trace 150

controlling 150
output 150
output to file 150
starting 29, 150
stopping 151

Set attribute call 176
SETMQAUT command 195, 198, 202
setting authority 202
ShowIcon keyword 79
signaling 176, 198
silent install

See automatic installation
SMS 54
SMS.BAT 52

softcopy books xvi
software requirements 12
specifying MQSeries objects 107
standalone connection 46, 93
starting

channel 44
channel group 44
command server 32, 94
command server using the MQD file 65, 75
connection 23
connection automatically 75, 94
listener 70
MQSC command file 83, 111
MQSeries 23
Service Trace 29, 150

StartListener keyword 70
status of components

automatic refresh 29
automatic refresh in MQD file 80
icon in MQD file 79
viewing 26

Status page 27
stopping

channel 44
channel group 44
command server 32
connection 23
MQSeries 23
Service Trace 151

storage requirements 11
STRMQCSV command 202
STRMQM command 202
STRMQTRC command 202
structure data types

dynamic 160
initial values (C) 160
MQBO 178
MQCNO 178
MQDH 178
MQDLH 178
MQGMO

BASIC syntax 173
C syntax 166
options 179

MQIIH 178
MQMD

BASIC syntax 173
C syntax 166
options 179

MQMDE 178

246 MQSeries for Windows** User’s Guide

Index

structure data types (continued)
MQOD

BASIC syntax 174
C syntax 167

MQOR 178
MQPMO

BASIC syntax 174
C syntax 167
options 180

MQPMR 178
MQRMH 178
MQRR 178
MQTM 178
MQTMC2 178
MQXQH

BASIC syntax 174
C syntax 167

options 178—180
supplied MQSC command file 89
synchronization file 146
syntax, data structures

See structure data types
system error, unrecoverable 146
system objects 203
system queue and channels 90
SYSTEM.ADMIN.CHANNEL.EVENT 204
SYSTEM.ADMIN.CHANNEL.EVENT queue 152
SYSTEM.ADMIN.COMMAND.QUEUE 65, 204
SYSTEM.ADMIN.PERFM.EVENT 204
SYSTEM.ADMIN.QMGR.EVENT 204
SYSTEM.LANVFY.ADMIN.QUEUE.MANAGER 102
Systems Management Server 54

T
taskbar icon 26
TCP/IP 133, 198

services entry 12
terminology used in this book xi
testing a LAN connection 133
trace file, AMQTRACW.LOG 150
tracing

See Service Trace
transmission queue 39
transmission queue header (MQXQH)

See structure data types
triggering 198
TST file 203, 204
two-phase commit 199

type styles in this book xi

U
undelivered message 196
unrecoverable system error 146
updates to the product 19
UseAfterDate keyword 68, 79
UseAfterTime keyword 68, 79
UseSmallIcons keyword 80
using MQSC commands 107
using multiple queue managers 38

V
VCVARS32.BAT 190
VENUS.MQD 134
VENUS.TST 115, 135, 205
Verify function 20
verifying

configuration using sample programs 127
configuring in the MQD file 81
configuring LAN mode 102
enabling LAN verification in the MQD file 67
installation 20
parameter pointers 175

viewing
channel attributes 98
channel group attributes 98
channel group status 101
channel status 101
connection attributes 98
connection status 101
queue attributes 98
queue manager attributes 98
queue manager status 101
queue status 101

Visual Basic programming language
declaring data types 168
declaring MQI parameters 168
elementary data types 172
form files 168
header files 168
invoking MQI calls 168
MQI calls 168
notational conventions 168
structure data types 173—174

 Index 247

Index

W
Windows Help xvii
Windows taskbar 26
writing applications 157

248 MQSeries for Windows** User’s Guide

Sending your comments to IBM
MQSeries for Windows**

User’s Guide

GC33-1965-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the
accuracy, organization, subject matter, or completeness of this book. Please limit your
comments to the information in this book and the way in which the information is
presented.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form (RCF)

 � By fax:

– From outside the U.K., after your international access code use
44 1962 870229

– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: WINVMD(IDRCF)
 – Internet: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name/address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries for Windows**

User’s Guide

GC33-1965-00

Use this form to tell us what you think about this manual. If you have found errors in it,
or if you want to express your opinion about it (such as organization, subject matter,
appearance) or make suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer. This form is provided for comments about the
information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries for Windows**
MQSeries for Windows** User’s Guide GC33-1965-00

IBM

NameFrom:

Fold along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

Fold along this line

C
ut along this line

IBM

Program Number: 5639-B69

Printed in U.S.A.

GC33-1965-ðð

S
pine inform

ation:

I
B

M
M

Q
S

eries for W
indow

s
U

ser’s G
uide

G
C

33-1965-00
V

ersion 2.1

