
MQSeries® Adapter Kernel for Multiplatforms

Problem Determination Guide

Version 1 Release 1

GC34-5897-01

IBM

MQSeries® Adapter Kernel for Multiplatforms

Problem Determination Guide

Version 1 Release 1

GC34-5897-01

IBM

Note: Before using this information and the product it supports, read the information in “Notices” on page 29.

Second Edition (April 2001)

This edition applies to version 1, release 1, modification level 1 of MQSeries Adapter Kernel for Multiplatforms
(product number 5648-D75) and to all subsequent releases and modifications until otherwise indicated in new
editions.

IBM welcomes your comments. You can make comments on this information via e-mail at idrcf@hursley.ibm.com.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

mailto:idrcf@hursley.ibm.com

Contents

Figures v

Tables vii

About this book ix
Who should read this book ix
Document organization ix
Related information ix
Conventions used in this book x
Summary of changes x

Chapter 1. Tracing 1
Introduction to tracing 1

Trace destinations 2
Configuration 2

Trace levels 3
Configuring tracing 4

Defining trace clients 4
Defining trace servers 11

Reading trace messages 18

Chapter 2. Common configuration
problems 21
Kernel configuration problems 21

File aqmsetup not found 21
File aqmconfig.xml not found 21
No response to messages. 21
Target adapter not found. 21
Error parsing body data 22
Exceptions from native adapters 22
Adapter daemon shuts down 22
Messages received but not sent to
applications 22
Messages not removed from incoming
queues 23
Trace errors involving socket handlers . . 23

Instantiation of trace client fails 23
Trace clients or servers loop. 23

Problems with MQSeries 23
Queue not found 23
Channel down 23
Queue depth exceeded 24
Logs exceed available space 24
MQSeries JAR files not found 24
Unable to load message catalog 24
Queue manager not available 24
Receive exception 25
ResourceException class not found . . . 25
MQSeries classes not found 25

Problems with MQSeries Integrator 25
Message not understood 25
Receiving messages from MQSI 26

Problems with JMS. 26
JNDI initialization fails 26
JMS communications mode fails 26
Errors locating QueueConnectionFactory or
Queue objects 26
Binding problem on HP-UX. 27
Code-page conversion problem on HP-UX 27
Use of JMS and LDAP results in
AdapterException 27

Miscellaneous problems 27
Display errors on UNIX 27
Core dump on Solaris 28
Segmentation violation on AIX 28
Java memory problem: OutOfMemoryError 28
XML parser problems 28
Using WebSphere 28

Notices 29
Trademarks 31

Index 33

© Copyright IBM Corp. 2000, 2001 iii

iv MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Figures

1. Setting trace-configuration values for an
application 4

2. The structure of the default TraceClient
definition 5

3. The default TraceClient definition:
message catalog 6

4. The default TraceClient definition:
message buffering 6

5. The default TraceClient definition:
handler registration 7

6. TraceClient definition: multiple handler
registrations 7

7. Configuring a console handler for a trace
client 8

8. Configuring a file handler for a trace
client 9

9. Configuring socket and ENA handlers
for a trace client 10

10. The complete default TraceClient
definition 11

11. The structure of the default TraceServer
definition 12

12. The default TraceServer definition:
message catalog 13

13. The default TraceServer definition:
message buffering 13

14. The default TraceServer definition:
handler registration. 14

15. Configuring a multifile handler in a
trace server 15

16. Configuring a console handler for a
trace server 16

17. Configuring trace workers for socket
handlers 17

18. Configuring trace workers for ENA
handlers 17

19. The complete default TraceServer
definition 18

20. Two trace messages. 19

© Copyright IBM Corp. 2000, 2001 v

vi MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Tables

1. Conventions used in this book x

© Copyright IBM Corp. 2000, 2001 vii

viii MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

About this book

This document describes tools for solving specific problems with the
MQSeries® Adapter Kernel. It contains a set of common symptoms of
problems and their possible solutions, and it describes the use of tracing to
identify less common problems.

Who should read this book

This document is written for developers, administrators, and users of the
MQSeries Adapter Kernel. It is assumed that readers are familiar with the
MQSeries Adapter Kernel and the MQSeries Adapter Builder tool.

Document organization

This document is organized as follows:
v “Chapter 1. Tracing” on page 1 describes how to configure and use tracing

for the MQSeries Adapter Kernel.
v “Chapter 2. Common configuration problems” on page 21 describes some

common configuration problems and offers possible solutions.

Related information

For further information on the topics discussed in this manual, see the
following document:
v Quick Beginnings

© Copyright IBM Corp. 2000, 2001 ix

Conventions used in this book

MQSeries Adapter Kernel documentation uses the following typographical
and keying conventions.

Table 1. Conventions used in this book

Convention Meaning

Bold Indicates command names. When referring to graphical user interfaces
(GUIs), indicates menus, menu items, labels, and buttons.

Monospace Indicates text you must enter at a command prompt and values you must
use literally, such as file names, paths, and elements of programming
languages such as functions, classes, and methods. Monospace also indicates
screen text and code examples.

Italics Indicates variable values you must provide (for example, you supply the
name of a file for fileName). Italics also indicates emphasis and the titles of
books.

% Represents the UNIX command-shell prompt for a command that does not
require root privileges.

Represents the UNIX command-shell prompt for a command that requires
root privileges.

C:\> Represents the command prompts on Windows
®

systems.

> When used to describe a menu, shows a series of menu selections. For
example, “Click File > New” means “From the File menu, click the New
command.”

Entering commands When instructed to “enter” or “issue” a command, type the command and
then press Return. For example, the instruction “Enter the ls command”
means type ls at a command prompt and then press Return.

[] Enclose optional items in syntax descriptions.

{ } Enclose lists from which you must choose an item in syntax descriptions.

| Separates items in a list of choices enclosed in braces ({ }) in syntax
descriptions.

... Ellipses in syntax descriptions indicate that you can repeat the preceding
item one or more times. Ellipses in examples indicate that information was
omitted from the example for the sake of brevity.

Summary of changes

The second edition (the current edition) includes the following change from
the first edition:
v Addition of several MQSeries problems and solutions to “Chapter 2.

Common configuration problems” on page 21. See “Problems with
MQSeries” on page 23.

x MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Chapter 1. Tracing

Tracing is the general process of collecting detailed information about how a
process runs. Trace information can be used to debug an application or to
diagnose problems within a product. In the case of MQSeries Adapter Kernel,
tracing can be used to collect information about application-specific adapters
or about the kernel itself. Tracing can assist both application developers and
system administrators, and it is often crucial when asking for product
support.

Modern software products like MQSeries Adapter Offering typically come
with a built-in capacity to collect trace information. Enabling and collecting
trace is simply a matter of setting run-time configuration parameters; these
parameters direct the product to capture trace information and put it
somewhere for collection and analysis.

Trace information is collected in the form of a set of trace messages. The
number of trace messages is determined by the trace level, which specifies the
kinds of information to capture. Collected messages are written to one or
more destinations. Examples of destinations include a console window and a
named file.

See “Configuring tracing” on page 4 for information on configuring tracing.

See “Reading trace messages” on page 18 for information on interpreting trace
messages.

Introduction to tracing

A trace message contains the state of message processing at a certain point
within the kernel. You can use trace messages to help diagnose problems with
the kernel or with your adapters.

MQSeries Adapter Offering uses the following components to handle tracing:
v A trace client.
v A trace server, which is a daemon that retrieves the trace messages by using

either a socket or native adapter and passes the trace messages to the trace
worker.

v A trace worker, which is a special trace client. A trace worker provides
additional methods for use by the trace server, and it operates under
defaults different from those used by the standard trace client.

© Copyright IBM Corp. 2000, 2001 1

v Output handlers, which determine how and where trace messages are
written. Each trace client is assigned a set of handlers.

Multiple instances of a trace client can exist for each processing thread.
However, within the kernel, only one instance of a trace client is used for each
combination of source or destination logical identifier and thread. All kernel
processes using a thread write to the trace client for that thread. Each trace
message contains an identifier for the thread, so you can follow all trace
messages from a specific thread. To trace a message flow from end to end,
you must manually examine and correlate trace messages from both sides of
the kernel.

Trace destinations
Each trace client can write its trace messages to one or more of the following:
v The console (default)
v One or more files
v A trace server, through a socket connection
v A trace server, by putting the message onto a queue

Each of these destinations is managed by a handler associated with the trace
client. Trace clients writing to windows, files, and remote servers over sockets
use console, file, and socket handlers, respectively. A trace client that puts its
messages onto a queue for delivery to a remote server uses a handler for the
native adapter supplied by the Adapter Kernel; this is called a native-adapter
(ENA) handler. Use of socket and ENA handlers also requires the use of trace
servers.

Configuration

Configuration for all aspects of an MQSeries Adapter Kernel application,
including tracing, is contained in an XML configuration file. When installed,
the kernel provides a directory called samples, which contains a default
configuration file, aqmconfig.xml, and a configuration script, aqmsetup. New
applications can copy and modify these files to suit their needs, or new ones
can be created. The Adapter Kernel looks at the environment variable
AQMSETUPFILE to determine the setup script to use; the setup script
indicates the directory containing the appropriate configuration file.

The file contains configuration information for each source logical identifier,
destination logical identifier, and adapter daemon. Each application receives
an application identifier when it starts. The application identifier acts as a
label for entries in the configuration file. Each application looks up its
configuration, including tracing, by looking for its application identifier in the
file.

2 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Each application has three trace-related settings:
v Whether tracing is enabled or disabled.
v The trace level (see “Trace levels”).
v The trace client’s application identifier.

These values are stored between pairs of XML tags. (For general information
on configuring applications, see Quick Beginnings.)

In addition to adapters, trace clients and servers have application identifiers in
the configuration file. For example, the configuration under a trace client’s
application identifier specifies the handlers to use. As a result of abstracting
this information into entries for trace clients and servers, many source and
destination logical identifiers and adapter daemons can use the same trace
configuration while maintaining the flexibility to turn their own tracing on or
off. Trace servers, which are used by socket and native-adapter handlers, are
also configured under application identifiers.

Trace levels
MQSeries Adapter Offering defines the following trace levels:

0 No trace messages

1 Information only

2 Warning only

3 Information and warning

4 Error only

7 Information, warning, and error

128 Method entry

256 Method exit

384 Method entry and exit

512 Exceptions

903 Information, warning, error, exceptions, entry, and exit

-1 All possible messages

Several of the defined levels are combinations of other levels; for example, the
trace level to collect both method entry and exit events (384) is the sum of the
trace levels for method entry (128) and method exit (256). You can set any
combination by summing the corresponding trace levels. For example, to trace
warnings (2) and errors (4), specify trace level 6.

Chapter 1. Tracing 3

Configuring tracing

To configure tracing for an application, you add trace information to the
application’s entry in the XML configuration file. The trace-related information
includes:
v Whether or not to enable tracing.
v The level of tracing to use when trace is enabled.
v Optionally, an application identifer for the trace client. If you do not specify

this identifier, the default trace client identifier, TraceClient, is used.

Note: XML is case sensitive, so the names of the XML elements and attributes
used in tags must capitalize the correct letters. The names of some
elements and attributes differ only in use of capitalization.

To set trace values for an application, use the following XML elements within
the application’s definition element (the ePICApplication element):
v epictrace: Enables or disables tracing. Set to true or false.
v epictracelevel: Sets the trace level. See “Trace levels” on page 3 for the

predefined trace levels.
v epictraceclientid: Identifies the trace-client configuration to use. The

default value is TraceClient.

The example shows the setting of trace values for an application with
application identifier (epicappid) TEST1. Tracing is enabled, the trace level is
6, and the trace-client identifier is the default TraceClient.

You can also define your own trace clients, which can then be referenced by
epictraceclientid elements.

Defining trace clients
The default aqmconfig.xml file contains an entry for the default trace-client
identifier, TraceClient. This entry reflects the default values for TraceClient. It
can be used as a template for configuring new trace clients, or it can be

<Epic o="ePIC">
<ePICApplications o="ePICApplications">

<ePICApplication epicappid="TEST1">
<epictrace>true</epictrace>

<epictracelevel>6</epictracelevel>
<epictraceclientid>TraceClient</epictraceclientid>
...

</ePICApplication>
</ePICApplications>

</Epic>

Figure 1. Setting trace-configuration values for an application

4 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

modified, which effectively changes the behavior of TraceClient. If you modify
the definition of TraceClient, applications that specify no trace-client identifier
pick up the new values for TraceClient.

The default values for TraceClient are built into the adapter kernel. You can
use the definition in the configuration file to override the default behavior, but
you cannot eliminate the defaults by removing the TraceClient definition from
the configuration file. If you delete the TraceClient definition, applications that
specify no trace-client identifier use the built-in values.

Additional trace clients can be defined, and the TraceClient definition
provides a model. Figure 2 shows the structure of a configuration entry for a
trace client. Trace clients are defined in the configuration file as additional
applications by using the ePICApplication element. Trace clients are
distinguished by name, specified in the epicappid attribute. The configuration
details are specified inside the application’s ePICTraceExtensions element; the
element’s single attribute takes a fixed value, cn=″epicappextensions″.

Message file for trace clients
Internally, trace messages are handled as numeric codes, or message identifiers.
When the kernel writes trace messages, the internal function that generates
the message uses a message catalog file to retrieve the string corresponding to
the message identifier. This allows message catalogs to be translated into
multiple languages, so applications can choose a preferred language. Figure 20
on page 19 illustrates message codes and corresponding message strings.

The epictracemessagefile element names the message catalog to use if none
is explicitly passed to the message-generation function. The definition of
TraceClient explicitly names the default catalog,
com.ibm.epic.trace.client.TraceMessage. Other trace clients can omit the
epictracemessagefile element if the default file is acceptable. Figure 3 on
page 6 shows an example of the default TraceClient definition.

<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">

...
</ePICTraceExtensions>

</ePICApplication>

Figure 2. The structure of the default TraceClient definition

Chapter 1. Tracing 5

Message buffering for trace clients
When trace messages are written, they can be written synchronously or
asynchronously. The epictracesyncoperation element, which is passed to the
trace handler, controls this behavior. Use a value of true for synchronous
behavior or false—the default—for asynchronous behavior. As shown in
Figure 4, the definition of TraceClient explicitly requests asynchronous
behavior. Other trace clients can omit the epictracesyncoperation element if
asynchronous writing is acceptable.

Message handlers for trace clients
The message handlers registered for a trace client specify where the collected
trace messages are sent. There are four possible destinations:
v The console
v A file
v A trace server, through a socket connection
v A trace server, through a native adapter

A different handler manages each output destination. For trace clients, the
possible handlers are as follows:
v com.ibm.logging.ConsoleHandler

v com.ibm.logging.FileHandler (a single file)
v com.ibm.logging.MultiFileHandler (a backed-up circular file)
v com.ibm.logging.SocketHandler

<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">

<epictracemessagefile>
com.ibm.epic.trace.client.TraceMessage

</epictracemessagefile>
...

</ePICTraceExtensions>
</ePICApplication>

Figure 3. The default TraceClient definition: message catalog

<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">

...
<epictracesyncoperation>false</epictracesyncoperation>
...

</ePICTraceExtensions>
</ePICApplication>

Figure 4. The default TraceClient definition: message buffering

6 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

v com.ibm.epic.trace.client.ENAHandler

You register a handler by using the epictracehandler element. The
TraceClient definition sends trace messages to the console by default. As
shown in Figure 5, other trace clients must specify one or more handlers. Each
registered handler must also be configured; see “Configuring handlers” for
more information.

To specify multiple handlers, use Value elements within the epictracehandler
element. For example, Figure 6 illustrates how to register the file handler in
addition to the console handler for TraceClient.

Configuring handlers: Each of the five handlers has different requirements,
so each needs its own configuration. For example, each of the handlers needs
to know how to format its output. A file handler also needs to know to which
file it writes. The TraceClient entry in the aqmconfig.xml file illustrates the
configuration of each possible type of handler, but other trace clients need to
configure only the handlers they register.

The epictracehandler element is used to register the handlers to be used by
the trace client. The registered handlers must also be configured. The
ePICTraceHandler element is used to configure individual handlers. This
element uses the attribute epictracehandler to indicate the handler being
configured; this allows multiple handlers to be configured. If no configuration

<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">

...
<epictracehandler>com.ibm.logging.ConsoleHandler</epictracehandler>
...

</ePICTraceExtensions>
</ePICApplication>

Figure 5. The default TraceClient definition: handler registration

<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">

...
<epictracehandler>

<Value>com.ibm.logging.ConsoleHandler</Value>
<Value>com.ibm.logging.FileHandler</Value>

</epictracehandler>
...

</ePICTraceExtensions>
</ePICApplication>

Figure 6. TraceClient definition: multiple handler registrations

Chapter 1. Tracing 7

values are entered for a specific handler, the handler uses default values.
Handlers that are not currently registered can be configured; they simply are
not used until they are also registered.

Console handler: A trace client registering the console handler can also
indicate the formatter to be used by the handler. MQSeries Adapter Kernel
provides the class com.ibm.epic.trace.client.EpicTraceFormatter for use
with console and file handlers, and this formatter is the default. Console
handlers require no further configuration. If specified, the formatter is
indicated within an epictraceformatter element, as demonstrated in Figure 7.

File handler: A trace client registering the file handler can indicate the
formatter to be used by the handler and the file to hold the generated
messages. MQSeries Adapter Kernel provides the class
com.ibm.epic.trace.client.EpicTraceFormatter for use with console and file
handlers, and this formatter is the default. The file name can be anything; the
default file name for the TraceClient is trc.log. Note that TraceClient does not
write to a file unless the file handler is registered in the epictracehandler
element.

As shown in Figure 8 on page 9, the formatter can be explicitly specified
within an epictraceformatter element; the file is specified within an
epictracefilename element. This handler generates one file, which can grow
indefinitely in size.

<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">

...
<epictracehandler>com.ibm.logging.ConsoleHandler</epictracehandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.ConsoleHandler">

<epictraceformatter>
com.ibm.epic.trace.client.EpicTraceFormatter

</epictraceformatter>
</ePICTraceHandler>
....

</ePICTraceHandler>
</ePICTraceExtensions>

</ePICApplication>

Figure 7. Configuring a console handler for a trace client

8 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Multifile handler: See “Multifile handler” on page 14 for more information on
configuring a multifile handler.

Socket and ENA Handlers: A trace client registering either a socket or ENA
handler can indicate the formatter to be used by the handler and application
identifier of the destination trace server. MQSeries Adapter Kernel provides
the class com.ibm.epic.trace.client.EpicXMLFormatter for use with socket
and ENA handlers, and this formatter is the default. The formatter can be
explicitly specified within an epictraceformatter element, as with console
and file handlers.

Socket and ENA handlers forward trace messages to a trace server through a
socket connection or a built-in native adapter. These trace servers are also
configured under application identifiers. Both socket and ENA handlers must
indicate which trace server to use. The trace server is specified with the
epicdepappid (dependency application) element. This element is not nested
within ePICTraceHandler elements; it occurs immediately within the
ePICTraceExtensions element. MQSeries Adapter Kernel comes with a default
trace server, TraceServer. If no trace server is specified, the default TraceServer
name is used.

Note that TraceClient does not use a trace server unless a socket or ENA
handler is registered in the epictracehandler element.

Unless it is the default TraceServer, the trace server named in the
epicdepappid element must also be configured within the configuration file.
The trace-server application identifier (used in the epicdepappid element) is
used by a socket handler to obtain the host name and port number for
connecting to the trace server. If the defaults are not being used for the socket

<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">

...
<epictracehandler>com.ibm.logging.FileHandler</epictracehandler>
...
<ePICTraceHandler epictracehandler="com.ibm.logging.FileHandler">

<epictraceformatter>
com.ibm.epic.trace.client.EpicTraceFormatter

</epictraceformatter>
<epictracefilename>trc.log</epictracefilename>

</ePICTraceHandler>
...

</ePICTraceExtensions>
</ePICApplication>

Figure 8. Configuring a file handler for a trace client

Chapter 1. Tracing 9

handler, the entries for the socket handler also need to be configured when
the trace server is defined. See “Defining trace servers” on page 11 for more
information.

An ENA handler uses a native adapter for sending trace messages to the trace
server. The trace-server application identifier (used in the epicdepappid
element) is used by the ENA handler as the destination application identifier,
as shown in Figure 9. The configuration entry for the trace server must
include the appropriate communications information within the
AdapterRouting element for the native adapter. See “Defining trace servers” on
page 11 for more information.

The complete configuration entry for the TraceClient application is shown in
Figure 10 on page 11. This client registers only the console handler, but the
entry also illustrates the configuration of file, socket and ENA handlers. Those
handlers are not used unless they are registered instead of, or in addition to,
the console handler.

<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">

...
<epictracehandler>com.ibm.logging.ConsoleHandler</epictracehandler>
...
<epicdepappid>TraceServer</epicdepappid>
<ePICTraceHandler epictracehandler="com.ibm.epic.trace.client.ENAHandler">

<epictraceformatter>
com.ibm.epic.trace.client.EpicXMLFormatter

</epictraceformatter>
</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.SocketHandler">

<epictraceformatter>
com.ibm.epic.trace.client.EpicXMLFormatter

</epictraceformatter>
</ePICTraceHandler>

</ePICTraceExtensions>
</ePICApplication>

Figure 9. Configuring socket and ENA handlers for a trace client

10 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Defining trace servers
When a component of the kernel starts, it reads the configuration file to
determine any run-time settings. With respect to tracing, it uses the
application identifier it receives on startup to determine whether trace is
enabled.

If trace is enabled, a trace client is instantiated. Then, based on the application
identifier of its instantiating application, the trace client determines whether
trace is enabled, the trace level, and the trace client identifier. Based on the
trace client identifier, the trace client determines which handlers to use.

If a socket or ENA handler is registered, the trace server must be started with
the same application identifier as that used in the trace client’s epicdepappid
element. The trace server then instantiates a number of special trace clients,

<ePICApplication epicappid="TraceClient">
<ePICTraceExtensions cn="epicappextensions">

<epictracemessagefile>
com.ibm.epic.trace.client.TraceMessage

</epictracemessagefile>
<epictracesyncoperation>false</epictracesyncoperation>
<epictracehandler>com.ibm.logging.ConsoleHandler</epictracehandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.ConsoleHandler">

<epictraceformatter>
com.ibm.epic.trace.client.EpicTraceFormatter

</epictraceformatter>
</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.FileHandler">

<epictraceformatter>
com.ibm.epic.trace.client.EpicTraceFormatter

</epictraceformatter>
<epictracefilename>trc.log</epictracefilename>

</ePICTraceHandler>
<epicdepappid>TraceServer</epicdepappid>
<ePICTraceHandler epictracehandler="com.ibm.epic.trace.client.ENAHandler">

<epictraceformatter>
com.ibm.epic.trace.client.EpicXMLFormatter

</epictraceformatter>
</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.SocketHandler">

<epictraceformatter>
com.ibm.epic.trace.client.EpicXMLFormatter

</epictraceformatter>
</ePICTraceHandler>

</ePICTraceExtensions>
</ePICApplication>

Figure 10. The complete default TraceClient definition

Chapter 1. Tracing 11

called trace workers. The configuration for the trace workers is embedded in
that of the trace server; trace workers do not have configuration entries under
separate application identifiers.

The default aqmconfig.xml file contains an entry for the default trace-server
identifier, TraceServer. This entry reflects the default values for TraceServer. It
can be used as a template for configuring new trace servers, or it can be
modified, which effectively changes the behavior of TraceServer.

The default values for TraceServer are built into the adapter kernel. You can
use the definition in the configuration file to override the default behavior, but
you cannot eliminate the defaults by removing the TraceServer definition from
the configuration file. If you delete the TraceServer definition, applications
that specify no trace-server identifier use the built-in values.

Like trace clients, trace servers are configured within ePICApplication
elements, and the attribute epicappid specifies the application identifier. The
body of the configuration entry consists of two elements nested within the
ePICApplication element, an AdapterRouting element, and an
ePICTraceExtensions element, as shown in Figure 11. Trace servers have
AdapterRouting elements when they are using ENA handlers, because an ENA
handler uses a native adapter, which obtains its configuration values from the
AdapterRouting element. This discussion concentrates on the
ePICTraceExtensions element. For information on creating the AdapterRouting
element, see Quick Beginnings.

Message file for trace servers
Like trace clients, trace servers use the epictracemessagefile element to
provide a message catalog to the internal function that generates message
strings. (For more information, see “Message file for trace clients” on page 5.)
The definition of TraceServer explicitly names the default catalog,

<ePICApplication epicappid="TraceServer">
<AdapterRouting cn="epicadapterrouting">

<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<epicreceivemode>MQPP</epicreceivemode>
<epicreceivemqppqueue>TraceServerAIQ</epicreceivemqppqueue>

</ePICBodyType>
</ePICBodyCategory>

</AdapterRouting>
<ePICTraceExtensions cn="epicappextensions">

...
</ePICTraceExtensions>

</ePICApplication>

Figure 11. The structure of the default TraceServer definition

12 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

com.ibm.epic.trace.server.TraceServerMessage, as shown in Figure 12 .
Other trace servers can omit the epictracemessagefile element if the default
file is acceptable.

Message buffering for trace servers
Like trace clients, trace servers use the epictracesyncoperation element to
indicate whether messages are to be written synchronously or asynchronously.
The default value, false, specifies asynchronous behavior, as shown in
Figure 13. (For more information, see “Message buffering for trace clients” on
page 6.) The definition of TraceServer explicitly requests asynchronous
behavior. Other trace servers can omit the epictracesyncoperation element if
asynchronous writing is acceptable.

Message handlers for trace servers
The message handlers registered for a trace server specify where the collected
trace messages are sent. The three possible destinations are:
v The console
v A file
v A set of files

A different handler manages each output destination. For trace servers, the
possible handlers are:

<ePICApplication epicappid="TraceServer">
<AdapterRouting cn="epicadapterrouting">

...
</AdapterRouting>
<ePICTraceExtensions cn="epicappextensions">

<epictracemessagefile>
com.ibm.epic.trace.server.TraceServerMessage

</epictracemessagefile>
...

</ePICTraceExtensions>
</ePICApplication>

Figure 12. The default TraceServer definition: message catalog

<ePICApplication epicappid="TraceServer">
<AdapterRouting cn="epicadapterrouting">

...
</AdapterRouting>
<ePICTraceExtensions cn="epicappextensions">

...
<epictracesyncoperation>false</epictracesyncoperation>
...

</ePICTraceExtensions>
</ePICApplication>

Figure 13. The default TraceServer definition: message buffering

Chapter 1. Tracing 13

v com.ibm.logging.ConsoleHandler

v com.ibm.logging.FileHandler (a single file)
v com.ibm.logging.MultiFileHandler (a backed-up circular file)

Do not register a socket or ENA handler for a trace server; trace servers are
used to route messages from trace clients already using socket and ENA
handlers. The trace servers cannot also use them.

You register a handler by using the epictracehandler element, as shown in
Figure 14. The TraceServer definition sends trace messages to the multifile
handler. Other trace servers must specify one or more handlers; see Figure 6
on page 7 for information on registering more than one handler. Each
registered handler must also be configured; see “Configuring handlers” for
more information.

Configuring handlers: Each of the handlers has different requirements, so
each needs its own configuration. For example, each of the handlers needs to
know how to format its output. MQSeries Adapter Kernel provides the class
com.ibm.epic.trace.client.ReFormatter for use by trace servers with console
and file handlers. A file handler also needs to know to which files it writes.
The TraceServer entry in the aqmconfig.xml file illustrates the configuration of
both types of handler, but other trace servers need to configure only the
handlers they register.

The ePICTraceHandler element is used to configure individual handlers. The
element uses the attribute epictracehandler to indicate the handler being
configured; this allows multiple handlers to be configured. However, only
handlers registered with the epictracehandler element are used.

Multifile handler: A trace server registering the multifile handler can indicate
the formatter to be used by the handler, the base name for the files, the
number of files, and the size of the files. MQSeries Adapter Kernel provides
the class com.ibm.epic.trace.client.ReFormatter for use by trace servers
with console and file handlers; this is the default formatter. The file name can

<ePICApplication epicappid="TraceServer">
<AdapterRouting cn="epicadapterrouting">

...
</AdapterRouting>
<ePICTraceExtensions cn="epicappextensions">

...
<epictracehandler>com.ibm.logging.MultiFileHandler</epictracehandler>
...

</ePICTraceExtensions>
</ePICApplication>

Figure 14. The default TraceServer definition: handler registration

14 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

be anything; the default base file name for the TraceServer is trc.log. The
default number of files is 3, and the default size 1,000,000 bytes (1000 1–KB
blocks), as shown in Figure 15.

The formatter can be explicitly specified within an epictraceformatter
element; the file is specified within an epictracefilename element; the
number of files is specified within an epictracefilenumber element; and the
size (in 1–KB blocks) is specified within an epictracefilesize element.

The multifile handler begins by writing a file called trc1.log, until that file
reaches the specified size. It then copies trc1.log to the name trc2.log and
begins overwriting the file trc1.log. When the file next reaches the specified
size, the file trc2.log is copied to the name trc3.log, trc1.log is copied to
trc2.log, and the handler begins overwriting trc1.log again. After the
number of files reaches the specified value—in this case three, reached with
trc3.log—the handler stops saving the oldest file, the one with the highest
number. In this example, the file trc3.log is never copied to a new name. It is
constantly replaced when the trc2.log file is copied.

Console handler: A trace server registering the console handler can also
indicate the formatter to be used by the handler. MQSeries Adapter Kernel
provides the class com.ibm.epic.trace.client.ReFormatter for use by trace
servers with console and file handlers; this is the default. The formatter can be
explicitly specified within an epictraceformatter element, as shown in
Figure 16 on page 16. Console handlers require no further configuration. Note
that the trace server does not write to the console unless the console handler
is registered in the epictracehandler element.

<ePICApplication epicappid="TraceServer">
<AdapterRouting cn="epicadapterrouting">

...
</AdapterRouting>
<ePICTraceExtensions cn="epicappextensions">

...
<epictracehandler>com.ibm.logging.MultiFileHandler</epictracehandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.MultiFileHandler">

<epictraceformatter>
com.ibm.epic.trace.client.ReFormatter

</epictraceformatter>
<epictracefilename>trc.log</epictracefilename>
<epictracefilenumber>3</epictracefilenumber>
<epictracefilesize>1000</epictracefilesize>

</ePICTraceHandler>
...

</ePICTraceExtensions>
</ePICApplication>

Figure 15. Configuring a multifile handler in a trace server

Chapter 1. Tracing 15

Configuring trace workers
Trace servers are used only when trace clients register socket or ENA
handlers. The trace servers themselves make use of special trace clients called
workers. Unlike regular trace clients, workers are not configured under
separate application identifiers. The configuration of trace workers is
embedded in the configuration of the trace server.

Because a trace server is configured for trace clients that use socket or ENA
handlers, the trace server’s configuration contains an ePICTraceHandler
element for either a socket handler or an ENA handler. However, these
handlers cannot be registered by the trace server. Instead, the configuration
for socket handlers is used by trace workers in a trace server that receives
messages from a trace client with a socket handler registered. The ENA
handler is similarly used by trace workers when the trace server receives
messages from a trace client that uses an ENA handler.

The TraceServer entry in the aqmconfig.xml file illustrates the configuration of
both type of workers, but other trace servers need to configure only the
workers needed by trace clients.

Socket Handlers: Trace workers cannot be configured to use socket handlers,
but if a trace client uses a socket handler to connect to a trace server and the
default server host and port numbers are not being used, the trace server
needs an entry for the socket handler. Specify the handler in the
ePICTraceHandler element, and within that element, specify the host and port
it connects to, as shown in Figure 17 on page 17. The
epictracesocketserverhost element indicates the host; it defaults to

<ePICApplication epicappid="TraceServer">
<AdapterRouting cn="epicadapterrouting">

...
</AdapterRouting>
<ePICTraceExtensions cn="epicappextensions">

..
<epictracehandler>com.ibm.logging.ConsoleHandler</epictracehandler>
...
<ePICTraceHandler epictracehandler="com.ibm.logging.ConsoleHandler">

<epictraceformatter>
com.ibm.epic.trace.client.ReFormatter

</epictraceformatter>
</ePICTraceHandler>

</ePICTraceExtensions>
</ePICApplication>

Figure 16. Configuring a console handler for a trace server

16 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

″localhost.″ The epictraceportnumber element indicates the port; it defaults to
8181.

ENA Handlers: Trace workers cannot be configured to use ENA handlers,
but if the trace client uses an ENA handler to connect to a trace server, then
the trace-server configuration must include an AdapterRouting element. This
element is used by the client’s ENA handler and by the trace-server daemon,
as shown in Figure 18. See Quick Beginnings for more information on creating
AdapterRouting elements.

The complete configuration entry for the TraceServer application is shown in
Figure 19 on page 18. This server registers only the multifile handler, but the
entry also illustrates the configuration for the console handler. That handler is
not used unless it is registered instead of, or in addition to, the multifile
handler. The server also configures a socket handler. This handler cannot be
registered by the trace server; it is used by trace workers accepting messages
from a trace client that uses a socket handler.

<ePICApplication epicappid="TraceServer">
<AdapterRouting cn="epicadapterrouting">

...
</AdapterRouting>
<ePICTraceExtensions cn="epicappextensions">

...
<epictracehandler>com.ibm.logging.MultiFileHandler</epictracehandler>
...
<ePICTraceHandler epictracehandler="com.ibm.logging.SocketHandler">

<epictracesocketserverhost>localhost</epictracesocketserverhost>
<epictraceportnumber>8181</epictraceportnumber>

</ePICTraceHandler>
</ePICTraceExtensions>

</ePICApplication>

Figure 17. Configuring trace workers for socket handlers

<ePICApplication epicappid="TraceServer">
<AdapterRouting cn="epicadapterrouting">

<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<epicreceivemode>MQPP</epicreceivemode>
<epicreceivemqppqueue>TraceServerAIQ</epicreceivemqppqueue>

</ePICBodyType>
</ePICBodyCategory>

</AdapterRouting>
</ePICApplication>

Figure 18. Configuring trace workers for ENA handlers

Chapter 1. Tracing 17

Reading trace messages

When tracing is requested, the kernel generates the trace messages and sends
them to the desired destination. The contents of trace messages vary with the
application and with the level of tracing requested, but they commonly
include the following:
v Time stamp (date and time).
v Name of the class containing the traced method.
v Thread name (for example, main, Thread-1, Thread-2).
v Name and signature of the method traced.

<ePICApplication epicappid="TraceServer">
<AdapterRouting cn="epicadapterrouting">

<epicmqppqueuemgr>DEFAULT</epicmqppqueuemgr>
<ePICBodyCategory epicbodycategory="DEFAULT">

<ePICBodyType epicbodytype="DEFAULT">
<epicreceivemode>MQPP</epicreceivemode>
<epicreceivemqppqueue>TraceServerAIQ</epicreceivemqppqueue>

</ePICBodyType>
</ePICBodyCategory>

</AdapterRouting>
<ePICTraceExtensions cn="epicappextensions">

<epictracesyncoperation>false</epictracesyncoperation>
<epictracemessagefile>

com.ibm.epic.trace.server.TraceServerMessage
</epictracemessagefile>
<epictracehandler>com.ibm.logging.MultiFileHandler</epictracehandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.SocketHandler">

<epictracesocketserverhost>localhost</epictracesocketserverhost>
<epictraceportnumber>8181</epictraceportnumber>

</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.ConsoleHandler">

<epictraceformatter>
com.ibm.epic.trace.client.ReFormatter

</epictraceformatter>
</ePICTraceHandler>
<ePICTraceHandler epictracehandler="com.ibm.logging.MultiFileHandler">

<epictraceformatter>
com.ibm.epic.trace.client.ReFormatter

</epictraceformatter>
<epictracefilename>trc.log</epictracefilename>
<epictracefilenumber>3</epictracefilenumber>
<epictracefilesize>1000</epictracefilesize>

</ePICTraceHandler>
</ePICTraceExtensions>

</ePICApplication>

Figure 19. The complete default TraceServer definition

18 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

v Organization (always ″ePIC″).
v Application identifier.
v Source logical identifier, if available.
v Destination logical identifier, if available.
v Body category, if available.
v Body type, if available.
v Message identifier, if available.
v Transaction identifier, if available.
v Trace level, if available.
v Trace information describing the event. This includes a message code—the

string AQM followed by a four-digit number—and the corresponding
information string.

The following example shows two typical trace messages:

The first message comes from the getLMSInstanceForApplication method in
the EpicNativeAdapter class. The message was collected by the main thread
for the application TEST2. The trace information is the string
<CommunicationMode> has a value of <MQPP>.

The second message comes from the getReceiveQName method in the LMSMQ
class. The message was collected by Thread-2 for the application TEST2. The
trace information is the string beginning Results from Adapter Directory...

2000.05.18 08:57:48.742 com.ibm.epic.adapters.eak.nativeadapter.EpicNativeAdapter
Thread Name=main getLMSInstanceForApplication(String, String, String) ePIC TEST2
TYPE_INFO AQM5003: <CommunicationMode> has a value <MQPP>
2000.05.18 09:02:27.883 com.ibm.epic.adapters.eak.nativeadapter.LMSMQ
Thread Name=Thread-2 getReceiveQName(String, String, String) ePIC TEST2
TYPE_INFO AQM5010: Results from AdapterDirectory for body type <DEFAULT>,
body category <DEFAULT> application id <TEST2>
attribute filter <epicreceivemqppqueue> value <TEST2AIQ>

Figure 20. Two trace messages

Chapter 1. Tracing 19

20 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Chapter 2. Common configuration problems

This section describes some common configuration problems and potential
solutions. Most of this information applies directly to the MQSeries Adapter
Kernel, but it also addresses some MQSeries problems (see “Problems with
MQSeries” on page 23), MQSeries Integrator problems (see “Problems with
MQSeries Integrator” on page 25), and some miscellaneous problems (see
“Miscellaneous problems” on page 27).

Many configuration problems can be solved with a single step: check your
spelling. Misspelled queue names, class names, application identifiers, and so
on, can all cause errors that look much more severe than they are.

Kernel configuration problems

File aqmsetup not found
Problem: The aqmsetup file was not found.

Response: Make sure the AQMSETUPFILE environment variable is set to the
location of the aqmsetup file in the correct directory. Make sure the name of
the file is correct.

File aqmconfig.xml not found
Problem: The aqmconfig.xml file was not found.

Response: Make sure that the aqmconfig.xml file exists in the correct directory.

Response: Locate the corresponding aqmsetup file and make sure that the
AQMCONFIG= entry uses a fully qualified path to point to the correct directory.

No response to messages
Problem: Messages are successfully received by the target adapter but no
replies are received.

Response: Make sure that the acknowledgement flag is set in the header of
the original message.

Target adapter not found
Problem: The target adapter was not found and loaded.

Response: Make sure that the target adapter specified in the exception
message exists.

© Copyright IBM Corp. 2000, 2001 21

Response: Make sure that the CLASSPATH environment variable includes the
directory that contains the target adapter.

Error parsing body data
Problem: The target adapter cannot parse the body data of the message.

Response: If the body data is XML and refers to a DTD, the most likely cause
is that the target adapter cannot locate the XML DTD. Make sure that the
aqmsetup file defines the XML_DTD_DIRECTORY variable to point to the
location of the DTD file or files.

Exceptions from native adapters
Problem: A native adapter (sending or receiving) throws an exception.

Response: Make sure that the proper queue name is specified. If the native
adapter belongs to a trace client, make sure that the queue name is specified
for the trace server.

Response: Make sure a valid communications mode is specified.

Response: If the communications mode requires use of MQSeries, make sure
that the CLASSPATH environment variable includes the MQSeries JAR files.

Adapter daemon shuts down
Problem: The adapter daemon shuts down.

Response: Check for the existence of an EpicSystemExceptionFilesequence-
number.log file.

Response: Make sure sufficient memory is available. A Java™

OutOfMemoryError will cause an adapter worker to shut down. (See “Java
memory problem: OutOfMemoryError” on page 28 for more information.)

Response: Determine whether messages have been rerouted to an error
queue, causing it to fill up. If so, determine why messages are going to the
error queue.

Messages received but not sent to applications
Problem: Messages are successfully removed from the incoming queues but
are not forwarded to the receiving application.

Response: Make sure that the message is not being routed to an error queue.
Symptoms of this problem include:
v An inability to locate the target adapter command
v Errors returned by the target adapter command
v Generation of an EpicSystemExceptionFilesequence-number.log file

22 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Messages not removed from incoming queues
Problem: Messages are not successfully removed from the incoming queues.

Response: Make sure that the adapter daemon is running. (It can be started
with the aqmstrad command.)

Response: Check for the existence of an EpicSystemExceptionFilesequence-
number.log file.

Trace errors involving socket handlers
Problem: Attempts to use a socket handler to collect trace messages fail.

Response: Make sure the trace server is running. (It can be started with the
aqmstrtd command.)

Instantiation of trace client fails
Problem: Attempts to instantiate trace clients fail.

Response: The most likely cause is an error in the configuration of the
application or the trace client it tries to instantiate. Look for an
EpicSystemExceptionFilesequence-number.log file.

Trace clients or servers loop
Problem: A trace client or server is stuck in a loop.

Response: Make sure that the trace client or server itself is not configured to
have tracing on.

Response: Make sure that the trace server is not configured to use socket
handlers or native-adapter handlers.

Problems with MQSeries

Applications using adapters rely on an underlying transport to move
messages from one application to another. Problems with the transport affect
the applications above it. This section describes some typical problems that
arise with IBM MQSeries.

Queue not found
Problem: The named queue does not exist.

Response: Make sure that the name is spelled properly and does exist.

Response: Use MQSeries utilities to create the queue.

Channel down
Problem: The MQSeries channel is not available.

Chapter 2. Common configuration problems 23

Response: Use MQSeries utilities to ensure that all necessary components are
running.

Queue depth exceeded
Problem: The depth of the MQSeries queue is sexceeded.

Response: Set the value of the MQSeries environment variable
MAX_QUEUE_DEPTH appropriately.

Response: Use MQSeries or application-specific utilities to remove elements
from the queue.

Response: Determine whether another problem is causing the elements to
remain on the queue.

Logs exceed available space
Problem: MQSeries log files exceed the space available in the file system.

Response: Examine the logs and determine which to save. Move the
necessary logs to secondary storage and remove the rest from the file system.

MQSeries JAR files not found
Problem: The MQSeries JAR files are not found.

Response: Make sure the CLASSPATH environment variable includes the
directories containing the MQSeries JAR files.

Unable to load message catalog
Problem: MQSeries is unable to load the MQJI message catalogue.

Response: Make sure that the CLASSPATH environment variable includes the
directory containing the mqji*.properties files.

Queue manager not available
Problem: On AIX®, MQSeries returns an error with reason code 2059 (QMgr
not available). There are problems with a shared-memory area, including
messages of not valid from shmat and XC211017, xstConnectSegmentViaFile.

Response: This error is caused by a memory conflict in some versions of the
Java Development Kit (JDK) on AIX. See
www.ibm.com/software/ts/mqseries/support/summary/jvreadme.html for
details.

The workaround is as follows:
v If you are using MQSeries 5.1, set the LDR_CNTRL environment variable to

a value of 0x30000000 before starting the Java Virtual Machine (JVM).

24 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

http://www-4.ibm.com/software/ts/mqseries/support/summary/jvreadme.html

v If you are using MQSeries 5.2, set the IPCCBaseAddress parameter to a value
of 12 for each queue manager in the mqs.ini file, as follows:
QueueManager:

Name=MQJavaTest
Prefix=/var/mqm
IPCCBaseAddress=12

A value of 12 is recommended; however, values of 4, 5, 8, 9, 10, and 11 are
also allowable. See the MQSeries 5.2 documentation for more information.

Receive exception
Problem: A receive exception occurs with error message
java.lang.NoClassDefFoundError: class_name, where class_name is
com/ibm/mq/MQException or another MQSeries Java class.

Response: Ensure that the MQSeries JAR files are included in your class path.
If you are running MQSeries 5.2, ensure that you have installed SupportPac
MA88, which provides Java support.

ResourceException class not found
Problem: A java.lang.NoClassDefFoundError is received for the class
javax/resource/ResourceException.

Response: Obtain the Java JAR file named connector.jar from the Sun
Microsystems Java Web site. For details and a link, see
www.ibm.com/software/ts/mqseries/support/summary/jvreadme.html.
MQSeries SupportPac MA88 dated 28 February 2001 does not include this
JAR file, although later releases of this SupportPac do include the necessary
classes from the connector.jar file (the actual file is not included or required
in the SupportPac).

MQSeries classes not found
Problem: An exception similar to java.lang.NoClassDefFoundError: Message
information: com/ibm/mqbind/MQSESSION is received.

Response: Ensure that you do not have an older version of MQSeries Java
class files installed. Older files were possibly installed with the IBM
Connectors feature of IBM VisualAge™ for Java version 3.02. If older class files
are installed, remove them from your class path.

Problems with MQSeries Integrator

Message not understood
Problem: MQSeries Integrator does not understand the messages.

Response: Make sure that the correct communications mode (for example,
MQRFH2) is specified.

Chapter 2. Common configuration problems 25

http://www-4.ibm.com/software/ts/mqseries/support/summary/jvreadme.html

Receiving messages from MQSI
Problem: Applications get errors when receiving messages from MQSeries
Integrator.

Response: Make sure that the communications mode of the receiving
application matches that used by MQSI to send the message.

Problems with JMS

Applications using adapters rely on an underlying transport to move
messages from one application to another. Problems with the transport affect
the applications above it. This section describes some typical problems that
arise with applications using JMS.

Note: The IBM implementation of Java Message Service (JMS) is built over
MQSeries. If you are using this implementation, make sure that
MQSeries is behaving correctly. For more information on problems with
MQSeries, see “Problems with MQSeries” on page 23.

JNDI initialization fails
Problem: Initialization of the Java Naming and Directory Interface™ (JNDI)
fails.

Response: If you are using FSContext, ensure that the CLASSPATH
environment variable includes a path to the fscontext.jar file.

Response: If you are using FSContext, ensure that the PROVIDER_URL
environment variable points to an existing directory.

JMS communications mode fails
Problem: Attempts to use the JMS communications mode fail with
java.lang.NoClassDefFoundError exceptions.

Response: If you have not explicitly installed the JMS base package,
download it from the MQSeries SupportPac site. MQSeries Adapter Kernel
does not provide the JMS package.

Response: The IBM MQSeries implementation of JMS requires several JAR
files to be added to the CLASSPATH environment variable. (See that product’s
documentation for details.) Make sure that all the necessary JAR files are
specified in the CLASSPATH environment variable.

Errors locating QueueConnectionFactory or Queue objects
Problem: Applications report errors in locating QueueConnectionFactory or
Queue objects.

26 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Response: Make sure that the QueueConnectionFactory object has been created
and stored.

Response: If using FSContext, make sure that the aqmconfig.xml configuration
file includes a context element for the root directory.

Binding problem on HP-UX
Problem: Applications cannot resolve the libmqjbnd01.so library file, causing
bindings to fail.

Response: Make sure that the latest MQSeries Adapter Offering Corrective
Service Diskette (CSD) is installed. You potentially also need to install a JMS
SupportPac.

Code-page conversion problem on HP-UX
Problem: Applications experience problems converting the default code page.

Response: Temporarily change the HP-UX default code page, en_US.roman8
(1051), to en_US.iso88591 (819) and re-create the QManager object.

Use of JMS and LDAP results in AdapterException
Problem: When JMS and LDAP are used, the kernel throws an
AdapterException with an embedded NullPointerException.

Response: This problem can occur when the kernel tries to retrieve the JMS
QueueConnectionFactor from LDAP. If the IBM SecureWay Directory product
is running on the machine or has been run on the machine in the past, ensure
that the ibmjndi.jar and jndi.jar files provided by SecureWay Directory are
not in the class path. These JAR files do not include the functionality required
to retrieve objects from LDAP. Instead, use the ldap.jar and jndi.jar files
supplied with MQSeries SupportPac MA88.

Miscellaneous problems

Display errors on UNIX
Problem: Attempts to run the installation program on UNIX result in reports
that the display cannot be opened.

Response: Make sure that the DISPLAY environment variable is set
appropriately. The required value takes the name of the host machine
followed by the string :0.0. The value grizelda:0.0 is valid for a machine
named grizelda.

Chapter 2. Common configuration problems 27

Response: Use the X Window security program, xhost, to turn off access
control for the console, by running the command with the + (plus) argument:
xhost +. This command must be run from the console; it cannot be run
remotely.

Core dump on Solaris
Problem: Using JDK 1.2.2 and MQSeries to send or receive messages results in
*** panic: libthread loaded into green threads Abort (coredump).

Response: Set the value of the THREADS_FLAG environment variable to
native; for example, by entering the export THREADS_FLAG=native command.

Segmentation violation on AIX
Problem: Running C-language adapters on AIX results in a segmentation
violation (SIGSEGV) and a core dump.

Response: Set the value of the AIXTHREAD_SCOPE environment variable to
S; for example, by entering the export AIXTHREAD_SCOPE=S command.

Java memory problem: OutOfMemoryError
Problem: Applications generate OutOfMemoryErrors from Java, which can
signal that applications are processing very large messages or that the
adapters are using large amounts of memory.

Response: If the error originates from within a Java-initiated process, try
increasing the memory values for Java at startup.

Response: If the error originates from within a C-language-initiated process,
try increasing Java’s memory values by setting the parameters in the aqmsetup
file.

XML parser problems
Problem: Errors occur in parsing XML data.

Response: Make sure that the CLASSPATH environment variable points to the
correct version of the XML4J parser, version 2_0_15.

Using WebSphere
Problem: Environmental problems when also using WebSphere Application
Server.

Response: Environment variables such as CLASSPATH, PATH, and
AQMSETUPFILE must be set within WebSphere’s configuration tools.

28 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Notices

This information was developed for products and services offered in the
United States. IBM may not offer the products, services, or features discussed
in this information in other countries. Consult your local IBM representative
for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state
or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the information. IBM may make

© Copyright IBM Corp. 2000, 2001 29

improvements and/or changes in the product(s) and/or the program(s)
described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Programming License Agreement, or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

30 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX OS/400
AS/400 RISC System/6000
IBM RS/6000
MQSeries WebSphere

Lotus and LotusScript are trademarks of Lotus Development Corporation in
the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 31

32 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

Index

A
aqmsetup file

aqmconfig.xml reference 21
environment variable 21

AQMSETUPFILE
environment variable 21, 28

C
configuration

tracing 2, 4
configuration problems

acknowledgement 21
adapter daemon 22, 23
AIX 28
aqmconfig.xml file 21
aqmsetup file 21
finding target adapter 21
Java memory 28
message reception 22, 23
native adapters 22
parsing body data 22
receiving messages 22
sending messages 22
socket handler 23
Solaris 28
target adapter 21, 22
trace client 22, 23
tracing 22, 23
UNIX display 27
XML parser 28

Configuration problems
WebSphere 28

E
environment variables

AQMSETUPFILE 21, 28
CLASSPATH 21, 28
PATH 28

J
JMS problems

AdapterException with JMS and
LDAP 27

binding on HP-UX 27
code-page conversion on

HP-UX 27
communications mode fails 26
Finding Queue objects 26

JMS problems (continued)
Finding QueueConnectionFactory

objects 26
JNDI initialization fails 26

M
MQSeries Integrator problems

message not understood 25
message reception 26

MQSeries problems

channel down 23
JARs not found 24
logs exceed space 24
MQJI properties 24
MQSeries classes not found 25
queue depth exceeded 24
queue manager not available 24
queue not found 23
receive exception 25
ResourceException class 25
shared memory error 24
unable to load message

catalog 24

T
target adapter

configuration problems 21, 22

trace components

handlers 1
trace client 1
trace server 1
trace worker 1

tracing

application identifier 3
components 1
configuration 2, 4
console handler 2
correlating messages 2
ENA handler 2
file handler 2
handlers 2
native-adapter handler 2
output destinations 2
overview 1
socket handler 2
trace levels 3

© Copyright IBM Corp. 2000, 2001 33

34 MQSeries® Adapter Kernel for Multiplatforms: Problem Determination Guide

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC34-5897-01

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Document organization
	Related information
	Conventions used in this book
	Summary of changes

	Chapter 1. Tracing
	Introduction to tracing
	Trace destinations

	Configuration
	Trace levels

	Configuring tracing
	Defining trace clients
	Message file for trace clients
	Message buffering for trace clients
	Message handlers for trace clients

	Defining trace servers
	Message file for trace servers
	Message buffering for trace servers
	Message handlers for trace servers
	Configuring trace workers

	Reading trace messages

	Chapter 2. Common configuration problems
	Kernel configuration problems
	File aqmsetup not found
	File aqmconfig.xml not found
	No response to messages
	Target adapter not found
	Error parsing body data
	Exceptions from native adapters
	Adapter daemon shuts down
	Messages received but not sent to applications
	Messages not removed from incoming queues
	Trace errors involving socket handlers
	Instantiation of trace client fails
	Trace clients or servers loop

	Problems with MQSeries
	Queue not found
	Channel down
	Queue depth exceeded
	Logs exceed available space
	MQSeries JAR files not found
	Unable to load message catalog
	Queue manager not available
	Receive exception
	ResourceException class not found
	MQSeries classes not found

	Problems with MQSeries Integrator
	Message not understood
	Receiving messages from MQSI

	Problems with JMS
	JNDI initialization fails
	JMS communications mode fails
	Errors locating QueueConnectionFactory or Queue objects
	Binding problem on HP-UX
	Code-page conversion problem on HP-UX
	Use of JMS and LDAP results in AdapterException

	Miscellaneous problems
	Display errors on UNIX
	Core dump on Solaris
	Segmentation violation on AIX
	Java memory problem: OutOfMemoryError
	XML parser problems
	Using WebSphere

	Notices
	Trademarks

	Index

