
 

MQSeries IBM

 

Planning Guide

 
 
 
 GC33-1349-06



 



MQSeries IBM

Planning Guide

 
 
 
 GC33-1349-06



  
 

 Note! 

Before using this information and the product it supports, be sure to read the general information under Appendix, “Notices” on
page 259.

Seventh edition (February 1998)

This edition applies to the following products:

� MQSeries for AIX Version 5
| � MQSeries for AS/400 Version 4 Release 2

� MQSeries for AT&T GIS UNIX Version 2 Release 2
� MQSeries for Digital OpenVMS AXP Version 2 Release 2
� MQSeries for Digital OpenVMS VAX Version 2 Release 2
� MQSeries for HP-UX Version 5
� MQSeries for MVS/ESA Version 1 Release 2
� MQSeries for OS/2 Warp Version 5
� MQSeries for SCO UNIX Version 1 Release 4
� MQSeries for SINIX and DC/OSx Version 2 Release 2
� MQSeries for SunOS Version 2 Release 2
� MQSeries for Sun Solaris Version 5

| � MQSeries for Tandem NonStop Kernel Version 2 Release 2
� MQSeries Three Tier for OS/2 Version 1.0
� MQSeries Three Tier for AIX Version 1.0
� MQSeries for UnixWare Version 1 Release 4.1
� MQSeries for VSE/ESA Version 1 Release 4
� MQSeries for Windows NT Version 5
� MQSeries for Windows Version 2 Release 0
� MQSeries for Windows Version 2 Release 1
� MQSeries link for R/3 for AIX Version 1.0
� MQSeries link for R/3 for HP-UX Version 1.0
� MQSeries link for R/3 for Sun Solaris Version 1.0
� MQSeries link for R/3 for Windows NT Version 1.0

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.



  Contents
 

 Contents

About this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
Who this book is for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
What you need to know to understand this book . . . . . . . . . . . . . . . . . . .  xi
Terms used in this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
MQSeries publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

MQSeries cross-platform publications . . . . . . . . . . . . . . . . . . . . . .  xii
MQSeries platform-specific publications . . . . . . . . . . . . . . . . . . . . .  xiv
MQSeries Level 1 product publications . . . . . . . . . . . . . . . . . . . . . .  xv
Softcopy books  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

MQSeries information available on the Internet . . . . . . . . . . . . . . . . . .  xvii

Summary of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xix
| Changes for this edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xix

Changes for the sixth edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xix

Part 1. Introduction to MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1. Introduction to IBM MQSeries . . . . . . . . . . . . . . . . . . . . .  3
MQSeries and message queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
Messages and queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
MQSeries objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Clients and servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Chapter 2. Introduction to distributed queuing . . . . . . . . . . . . . . . .  15
How queue managers communicate . . . . . . . . . . . . . . . . . . . . . . . . .  15
Setting up distributed queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Application data conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
Assured delivery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Recovering from errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

Chapter 3. Introduction to MQSeries security . . . . . . . . . . . . . . . . .  21
MQSeries functional levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
Security support in MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Chapter 4. Introduction to MQSeries recovery concepts . . . . . . . . . .  27
How changes are made to data . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
How consistency is maintained . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
MQSeries as a transaction manager . . . . . . . . . . . . . . . . . . . . . . . . .  30
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

Chapter 5. Introduction to MQSeries administration . . . . . . . . . . . . .  33
Introducing commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Formats of command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34
Administration application programs . . . . . . . . . . . . . . . . . . . . . . . . .  35
Command summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

 Copyright IBM Corp. 1993, 1998  iii



 Contents  
 

Chapter 6. Introduction to MQSeries instrumentation events . . . . . . . .  43
Monitoring queue managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
What is an instrumentation event? . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Format of event messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

Chapter 7. Introduction to MQSeries clients and servers . . . . . . . . . .  47
What are MQSeries clients and servers? . . . . . . . . . . . . . . . . . . . . . .  47
Communication between clients and servers . . . . . . . . . . . . . . . . . . . .  48
Installing clients and servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Product support for MQSeries clients . . . . . . . . . . . . . . . . . . . . . . . .  50
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

Chapter 8. Introduction to the MQSeries Framework . . . . . . . . . . . . .  53
Why the MQSeries Framework? . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
Services and components provided . . . . . . . . . . . . . . . . . . . . . . . . .  54

Part 2. Planning for MQSeries for AS/400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 9. Introduction to MQSeries for AS/400 . . . . . . . . . . . . . . . .  63
Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63
Concurrent use-based pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Installing and setting up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

Chapter 10. Backup and recovery planning for MQSeries for AS/400 . . .  67
Journal control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 11. Security planning for MQSeries for AS/400 . . . . . . . . . . .  69
Naming differences between OS/400 and MQSeries for AS/400 . . . . . . . .  69
Security planning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 12. Administration of MQSeries for AS/400 . . . . . . . . . . . . .  71
Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Using the administration utility . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

Chapter 13. Storage planning for MQSeries for AS/400 . . . . . . . . . . .  75
Product storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Journal storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Storage for other data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76
Performance information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Part 3. Planning for MQSeries on Digital OpenVMS . . . . . . . . . . . . . . . . . . . . . 77

Chapter 14. Introduction to MQSeries on Digital OpenVMS . . . . . . . . .  79
Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79
Migration from MQSeries Version 1 . . . . . . . . . . . . . . . . . . . . . . . . .  82

Chapter 15. Backup and recovery planning for MQSeries for Digital
OpenVMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

iv MQSeries Planning Guide  



  Contents
 

Recovering from problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

Chapter 16. Security planning for MQSeries for Digital OpenVMS . . . . .  87
Controlling access to resources . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 17. Administration of MQSeries for Digital OpenVMS . . . . . . .  91
Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Chapter 18. Storage planning for MQSeries for Digital OpenVMS . . . . .  93
RAM considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Disk space considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
Sample configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Capacity planning figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

Part 4. Planning for MQSeries for MVS/ESA . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 19. Introduction to MQSeries for MVS/ESA . . . . . . . . . . . . .  99
Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
Installing and customizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102

Chapter 20. Data sets used by MQSeries for MVS/ESA . . . . . . . . . .  105
Page sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Log data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106
Bootstrap data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
What a log contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
Checkpoint records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 21. Backup and recovery planning for MQSeries for MVS/ESA  109
Planning your logging environment . . . . . . . . . . . . . . . . . . . . . . . .  109
Planning your archive storage . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
Other recovery considerations . . . . . . . . . . . . . . . . . . . . . . . . . . .  110
General tips for backup and recovery . . . . . . . . . . . . . . . . . . . . . . .  111

Chapter 22. Security planning for MQSeries for MVS/ESA . . . . . . . .  113
Security overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Things to consider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

Chapter 23. Administration of MQSeries for MVS/ESA . . . . . . . . . . .  117
Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Managing accounting information . . . . . . . . . . . . . . . . . . . . . . . . .  119
Using the utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

Chapter 24. Storage planning for MQSeries for MVS/ESA . . . . . . . . .  121
Address space storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
Logs and archive storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
Storage for page data sets and messages . . . . . . . . . . . . . . . . . . . .  122
Storage for bootstrap data sets (BSDS) . . . . . . . . . . . . . . . . . . . . . .  122
Planning your library storage . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
Further information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

  Contents v



 Contents  
 

Chapter 25. Performance of MQSeries for MVS/ESA . . . . . . . . . . . .  125
Impact of logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
Causes of I/O to log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
Buffer pools, page sets, storage classes, and queues . . . . . . . . . . . . .  129
Monitoring performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . .  130

Chapter 26. Measured usage license charges with MQSeries for
MVS/ESA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Part 5. Planning for MQSeries for OS/2 Warp and Windows . . . . . . . . . . . . . . 133

Chapter 27. Introduction to MQSeries for OS/2 Warp and Windows NT  135
Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135
Support for Lotus Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138
MQSeries and R/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138
Migration from MQSeries Version 2 . . . . . . . . . . . . . . . . . . . . . . . .  139

Chapter 28. Backup and recovery planning for MQSeries for OS/2 Warp
and Windows NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Resource management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Recovering from problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144

Chapter 29. Security planning for MQSeries for OS/2 Warp and
Windows NT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Setting user IDs with MQSeries for OS/2 Warp . . . . . . . . . . . . . . . . .  145
Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Chapter 30. Administration of MQSeries for OS/2 and Windows NT . .  147
Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapter 31. Storage planning for MQSeries for OS/2 Warp and
Windows NT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

RAM considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Disk space considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149
Capacity planning and performance figures . . . . . . . . . . . . . . . . . . . .  150

Chapter 32. Introduction to MQSeries for Windows . . . . . . . . . . . .  151
Where to use MQSeries for Windows . . . . . . . . . . . . . . . . . . . . . . .  152
The features of MQSeries for Windows . . . . . . . . . . . . . . . . . . . . . .  154
Comparing queue managers, clients, and servers . . . . . . . . . . . . . . . .  155
How MQSeries for Windows differs from the other MQSeries products . . . .  155

Part 6. Planning for MQSeries for Tandem NSK . . . . . . . . . . . . . . . . . . . . . . . 159

| Chapter 33. Introduction to MQSeries on Tandem NSK . . . . . . . . . .  161
| Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161
| Migration from MQSeries for Tandem NSK Version 1.5.1 . . . . . . . . . . .  164

vi MQSeries Planning Guide  



  Contents
 

| Chapter 34. Backup and recovery planning for MQSeries for Tandem
| NSK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
| Recovery facilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

| Chapter 35. Security planning for MQSeries for Tandem NSK . . . . . .  167
| Controlling access to resources . . . . . . . . . . . . . . . . . . . . . . . . . .  167
| Resources you can protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168
| Using the Object Authority Manager (OAM) commands . . . . . . . . . . . . .  169
| Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

| Chapter 36. Administration of MQSeries for Tandem NSK . . . . . . . .  171
| Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
| Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Part 7. Planning for MQSeries on UNIX systems . . . . . . . . . . . . . . . . . . . . . . 173

Chapter 37. Introduction to MQSeries on UNIX systems . . . . . . . . . .  175
Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176
Support for Lotus Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
Support for R/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
Migration from MQSeries Version 1 . . . . . . . . . . . . . . . . . . . . . . . .  180
Migration from MQSeries Version 2 . . . . . . . . . . . . . . . . . . . . . . . .  180

Chapter 38. Backup and recovery planning for MQSeries on UNIX
systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Resource management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Recovering from problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184
High availability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Chapter 39. Security planning for MQSeries on UNIX systems . . . . . .  185
Controlling access to resources . . . . . . . . . . . . . . . . . . . . . . . . . .  185
Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Chapter 40. Administration of MQSeries on UNIX systems . . . . . . . .  189
Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Chapter 41. Storage planning for MQSeries on UNIX systems . . . . . .  191
RAM considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Disk space considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191
Capacity planning and performance figures . . . . . . . . . . . . . . . . . . . .  192

Part 8. Planning for MQSeries Three Tier . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Chapter 42. Introduction to MQSeries Three Tier . . . . . . . . . . . . . .  195
Interacting with end users (presentation logic) . . . . . . . . . . . . . . . . . .  197
Manipulating data (business logic) . . . . . . . . . . . . . . . . . . . . . . . . .  197
Retrieving and updating data (data logic) . . . . . . . . . . . . . . . . . . . . .  198
3T application development tools . . . . . . . . . . . . . . . . . . . . . . . . .  198
3T is an enhancement of the MQI . . . . . . . . . . . . . . . . . . . . . . . . .  199
Further information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

  Contents vii



 Contents  
 

Chapter 43. MQSeries Three Tier planning . . . . . . . . . . . . . . . . . .  201
How the MQSeries base product fits in . . . . . . . . . . . . . . . . . . . . . .  202
MQSeries queuing requirements . . . . . . . . . . . . . . . . . . . . . . . . . .  202
The MQSeries Three Tier products . . . . . . . . . . . . . . . . . . . . . . . .  202
Managing 3T clients and servers . . . . . . . . . . . . . . . . . . . . . . . . . .  204

Part 9. The MQSeries family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Chapter 44. MQSeries product summaries . . . . . . . . . . . . . . . . . .  209
Lists of MQSeries products . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209
MQSeries interoperability summary . . . . . . . . . . . . . . . . . . . . . . . .  210
MQSeries product functional comparison . . . . . . . . . . . . . . . . . . . . .  212

Chapter 45. MQSeries at a glance . . . . . . . . . . . . . . . . . . . . . . .  215
MQSeries for AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216

| MQSeries for AS/400 V4R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
MQSeries for AT&T GIS UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . .  219
MQSeries for Digital OpenVMS . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
MQSeries client for DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221
MQSeries for HP-UX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222
MQSeries for MVS/ESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224
MQSeries for OS/2 Warp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
MQSeries for SCO UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231
MQSeries for SINIX and DC/OSx . . . . . . . . . . . . . . . . . . . . . . . . .  233
MQSeries for SunOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235
MQSeries for Sun Solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  237

| MQSeries for Tandem NSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239
MQSeries Three Tier for AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
MQSeries Three Tier for OS/2 . . . . . . . . . . . . . . . . . . . . . . . . . . .  242
MQSeries for UnixWare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244

| MQSeries client for VM/ESA . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246
MQSeries for VSE/ESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247
MQSeries for Windows Version 2.0 . . . . . . . . . . . . . . . . . . . . . . . .  248
MQSeries for Windows Version 2.1 . . . . . . . . . . . . . . . . . . . . . . . .  250
MQSeries for Windows NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
MQSeries client for Windows 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . .  254
MQSeries client for Windows 95 . . . . . . . . . . . . . . . . . . . . . . . . . .  255
MQSeries link for R/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  256

Part 10. Appendix  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Appendix. Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Part 11. Glossary and index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Glossary of terms and abbreviations . . . . . . . . . . . . . . . . . . . . . .  263

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

viii MQSeries Planning Guide  



  Figures
 

 Figures

1. Representation of a message . . . . . . . . . . . . . . . . . . . . . . . . . .  5
2. Example of messaging and queuing using MQSeries products . . . . . .  10
3. MQSeries and the Open Blueprint . . . . . . . . . . . . . . . . . . . . . . .  22
4. A unit of recovery within an application . . . . . . . . . . . . . . . . . . . .  27
5. Queue manager and database server configuration 1 . . . . . . . . . . .  30
6. Queue manager and database server configuration 2 . . . . . . . . . . .  30
7. Queue manager and database server configuration 3 . . . . . . . . . . .  31
8. The MQSeries Framework . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
9. Journaling and date messages . . . . . . . . . . . . . . . . . . . . . . . . .  68

10. Impact of logging on response time . . . . . . . . . . . . . . . . . . . . .  125
11. Impact of dual logging on response time . . . . . . . . . . . . . . . . . .  126
12. Impact of using 3990 fast write on response time . . . . . . . . . . . . .  127
13. A network of server queue managers and three leaf-node queue

managers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
14. The three tiers of a 3T application . . . . . . . . . . . . . . . . . . . . . .  195
15. 3T classes and the three-tier, client/server model . . . . . . . . . . . . .  196
16. Relationship between 3T and MQSeries in the 3-tier data model . . . .  201

  Contents ix



 Tables  
 

 Tables

1. MQI calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. MQSeries and cooperating products . . . . . . . . . . . . . . . . . . . . .  28
3. XA-compliant database managers supported by MQSeries . . . . . . . .  30
4. Commands for queue manager administration . . . . . . . . . . . . . . . .  37
5. Commands for queue administration . . . . . . . . . . . . . . . . . . . . .  38
6. Commands for process definition administration . . . . . . . . . . . . . . .  39
7. Commands for namelist administration (MVS/ESA only) . . . . . . . . . .  39
8. Commands for channel administration . . . . . . . . . . . . . . . . . . . .  39
9. Commands for security administration . . . . . . . . . . . . . . . . . . . .  40

10. Commands for system-dependent function . . . . . . . . . . . . . . . . . .  40
| 11. Other control commands in MQSeries for Tandem NonStop Kernel . . .  42

12. Event queue contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
13. MQSeries for Digital OpenVMS, capacity planning . . . . . . . . . . . . .  95
14. Comparison of supported features on MQSeries for Windows . . . . .  155
15. MQSeries on UNIX systems: system administration manuals . . . . . .  175
16. 3T clients and servers in different target environments . . . . . . . . . .  203
17. Components supplied with MQSeries Three Tier . . . . . . . . . . . . .  203
18. Communications protocols and 3T . . . . . . . . . . . . . . . . . . . . .  203
19. 3T disk space requirements . . . . . . . . . . . . . . . . . . . . . . . . .  204
20. MQSeries products, Level 1 . . . . . . . . . . . . . . . . . . . . . . . . .  209
21. MQSeries products, Level 2 . . . . . . . . . . . . . . . . . . . . . . . . .  209
22. Message channels, transmission protocols supported . . . . . . . . . .  210
23. MQI channels, transmission protocols supported by servers . . . . . . .  211
24. MQI channels, transmission protocols supported by clients . . . . . . .  211
25. MQSeries product functional comparison . . . . . . . . . . . . . . . . . .  212
26. MQSeries products at a glance . . . . . . . . . . . . . . . . . . . . . . .  215
27. Installation requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
28. Programming requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . 225
29. Additional requirements for distributed queuing . . . . . . . . . . . . . .  225
30. Compilers supported  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
31. Typical MQSeries Three Tier for OS/2 . . . . . . . . . . . . . . . . . . .  242
32. Suggested hardware configurations for MQSeries for Windows V2.0 . .  248
33. Suggested hardware configurations for MQSeries for Windows V2.1 . .  250

x MQSeries Planning Guide  



  About this book
 

About this book

The MQSeries family of products provides application programming services that:

� Enable you to code indirect program-to-program communication using message
queues.

� Are independent of the platform, for example, MVS/ESA or OS/400.

This book explains the planning necessary for the incorporation of MQSeries
products into your enterprise.

Who this book is for
This book is for:

� Planners of systems that will use MQSeries message-queuing techniques.
� System programmers who have to install and customize MQSeries products for

these systems.

What you need to know to understand this book
To understand this book, you should be familiar with the system facilities for the
platform on which you are installing the MQSeries product.

If you are unfamiliar with the concepts of messaging and queuing, you should read
MQSeries: An Introduction to Messaging and Queuing.

Terms used in this book
All new terms that this book introduces are defined in the “Glossary of terms and
abbreviations” on page 263. These terms are shown like this at their first use.
This book uses the following shortened names:

MQSeries General term for IBM MQSeries products.

| CICS General term for CICS and Transaction Server on all platforms.

UNIX systems General term referring to the following UNIX systems:

 � AIX
� AT&T** GIS UNIX1

 � HP-UX**
� SINIX** and DC/OSx**

 � SunOS**
 � Sun Solaris**

1 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1993, 1998  xi



 MQSeries publications  
 

 MQSeries publications
This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

� MQSeries for AIX V5.0
| � MQSeries for AS/400 V4R2

� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2
� MQSeries for HP-UX V5.0
� MQSeries for MVS/ESA V1.2
� MQSeries for OS/2 Warp V5.0
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for SunOS V2.2
� MQSeries for Sun Solaris V5.0

| � MQSeries for Tandem NonStop Kernel V2.2
� MQSeries Three Tier
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1
� MQSeries for Windows NT V5.0

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xv. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see Chapter 44, “MQSeries product summaries” on page 209.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

xii MQSeries Planning Guide  



  MQSeries publications
 

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, the
dead-letter queue handler, and the MQSeries links for Lotus Notes**. It also
includes the syntax of the MQSeries control commands.

This book applies to the following MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
programmable command formats (PCFs), and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

  About this book xiii



 MQSeries publications  
 

MQSeries Using C ++
MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by V5.0 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, and by MQSeries clients supplied with those
products and installed in the following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1
 � Windows 95

| MQSeries C++ is also supported by MQSeries for AS/400 V4R2.

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

MQSeries for AIX V5.0 Quick Beginnings, GC33-1867

| MQSeries for AS/400

| MQSeries for AS/400 Version 4 Release 2 Licensed Program Specifications,
| GC33-1958

| MQSeries for AS/400 Version 4 Release 2 Administration Guide, GC33-1956

| MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
| (RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2.2 System Management Guide,
GC33-1791

MQSeries for HP-UX

MQSeries for HP-UX V5.0 Quick Beginnings, GC33-1869

MQSeries for MVS/ESA

MQSeries for MVS/ESA Version 1 Release 2 Licensed Program Specifications,
GC33-1350

MQSeries for MVS/ESA Version 1 Release 2 Program Directory

MQSeries for MVS/ESA Version 1 Release 2 System Management Guide,
SC33-0806

MQSeries for MVS/ESA Version 1 Release 2 Messages and Codes,
GC33-0819

MQSeries for MVS/ESA Version 1 Release 2 Problem Determination Guide,
GC33-0808

xiv MQSeries Planning Guide  



  MQSeries publications
 

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp V5.0 Quick Beginnings, GC33-1868

MQSeries link for R/3

MQSeries link for R/3 Version 1.0 User’s Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide,
GC33-1768

MQSeries for SunOS

MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris

MQSeries for Sun Solaris V5.0 Quick Beginnings, GC33-1870

| MQSeries for Tandem NonStop Kernel

| MQSeries for Tandem NonStop Kernel Version 2.2 System Management
| Guide, GC33-1893

MQSeries Three Tier

MQSeries Three Tier Administration Guide, SC33-1451
MQSeries Three Tier Reference Summary, SX33-6098
MQSeries Three Tier Application Design, SC33-1636
MQSeries Three Tier Application Programming, SC33-1452

MQSeries for Windows

MQSeries for Windows Version 2.0 User’s Guide, GC33-1822

MQSeries for Windows Version 2.1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT V5.0 Quick Beginnings, GC33-1871

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for SCO UNIX Version 1.4 User’s Guide, SC33-1378

MQSeries for UnixWare Version 1.4.1 User’s Guide, SC33-1379

MQSeries for VSE/ESA Version 1 Release 4 Licensed Program Specifications,
GC33-1483

MQSeries for VSE/ESA Version 1 Release 4 User’s Guide, SC33-1142

  About this book xv



 MQSeries publications  
 

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager format
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

 PostScript format
The MQSeries library is provided in PostScript (.PS) format with many MQSeries
products, including all MQSeries V5.0 products. Books in PostScript format can be
printed on a PostScript printer or viewed with a suitable viewer.

 HTML format
The MQSeries documentation is provided in HTML format with these MQSeries
products:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

The MQSeries books are also available from the MQSeries product family Web
site:

|  http://www.software.ibm.com/ts/mqseries/

Information Presentation Facility (IPF) format
In the OS/2 environment, the MQSeries documentation is supplied in IBM IPF
format on the MQSeries product CD-ROM.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

xvi MQSeries Planning Guide  



  MQSeries on the Internet
 

MQSeries information available on the Internet
MQSeries web site

The MQSeries product family Web site is at:

|  http://www.software.ibm.com/ts/mqseries/

| By following links from this Web site you can:

| � Obtain latest information about the MQSeries product family.

| � Access the MQSeries books in HTML format.

| � Download MQSeries SupportPacs.

  About this book xvii



 MQSeries on the Internet  
 

xviii MQSeries Planning Guide  



  Summary of changes
 

Summary of changes

This section lists the changes that have been made to this book since previous
editions. Changes for this edition are marked with vertical bars in the left-hand
margin.

| Changes for this edition
| Changes for edition number GC33-1349-06 include:

| � The book has been updated to contain information about the following new
| functions of the MQSeries for AS/400 Version 4 Release 2 product:

|  – Distribution lists
|  – Message segmentation
| – Fast channels for nonpersistent messages
| – Auto-definition of server-connection and receiver channels
|  – Reference messages
|  – C++ programming

| � The book has been updated to contain revised information about MQSeries for
| Digital OpenVMS, Version 2 Release 2.

| � The book has been updated to contain information about MQSeries for Tandem
| NSK, Version 2 Release 2.

| � The book has been updated to contain information about the MQSeries client
| for VM/ESA, Version 2 Release 3.

Changes for the sixth edition
Changes for edition number GC33-1349-05 include:

� The book has been updated to contain information about the following new
releases of MQSeries products:

– MQSeries for AIX Version 5
– MQSeries for Digital VMS VAX Version 1.5
– MQSeries for HP-UX Version 5
– MQSeries for MVS/ESA Version 1.2
– MQSeries for OS/2 Warp Version 5
– MQSeries for OS/400 Version 3.7
– MQSeries for Sun Solaris Version 5
– MQSeries for Tandem NonStop Kernel Version 1.5.1
– MQSeries for Windows NT Version 5

� The following products have been added to the MQSeries family:

– MQSeries for Digital OpenVMS AXP V2.2
– MQSeries for Digital OpenVMS VAX V2.2
– MQSeries for Windows V2.0 and V2.1
– MQSeries link for R/3 for AIX V 1.0
– MQSeries link for R/3 for HP-UX V 1.0
– MQSeries link for R/3 for Sun Solaris V 1.0
– MQSeries link for R/3 for Windows NT V 1.0

 Copyright IBM Corp. 1993, 1998  xix



 Summary of changes  
 

� The following new functions have been added for some platforms:

– DCE naming component
– Exits relating to DCE security
– Default objects created when the queue manager is created

 – Distribution lists
– Fast channels for nonpersistent messages
– Interlink SNS/TCPaccess support
– Maximum message length has been increased

 – Message segmentation
 – MQBEGIN function

– MQSeries as a transaction manager
 – Reference messages
 – SPX support

� The “at a glance” sections have been updated to reflect the latest product
levels.

� Chapter 32 gives overview and planning information about the MQSeries for
Windows product.

xx MQSeries Planning Guide  



  Introduction
 

Part 1. Introduction to MQSeries

Chapter 1. Introduction to IBM MQSeries . . . . . . . . . . . . . . . . . . . . .  3
MQSeries and message queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

MQI – a common application programming interface . . . . . . . . . . . . . . .  3
Time-independent applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Message-driven processing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Data integrity and resource protection . . . . . . . . . . . . . . . . . . . . . . .  4

Messages and queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
What is a message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
What is a queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
Message attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Some queues used with MQSeries . . . . . . . . . . . . . . . . . . . . . . . . .  7

MQSeries objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Queue managers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Queues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Namelists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Distribution lists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Process definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Channels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Storage classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Clients and servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Chapter 2. Introduction to distributed queuing . . . . . . . . . . . . . . . .  15
How queue managers communicate . . . . . . . . . . . . . . . . . . . . . . . . .  15

Channel speed  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Setting up distributed queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
Application data conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
Assured delivery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Recovering from errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

Chapter 3. Introduction to MQSeries security . . . . . . . . . . . . . . . . .  21
MQSeries functional levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
Security support in MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

MQSeries level 1 function . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
MQSeries applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
MQSeries messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Point-to-point security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
End-to-end security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Chapter 4. Introduction to MQSeries recovery concepts . . . . . . . . . .  27
How changes are made to data . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Units of recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
How consistency is maintained . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
MQSeries as a transaction manager . . . . . . . . . . . . . . . . . . . . . . . . .  30
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

 Copyright IBM Corp. 1993, 1998  1



 Introduction  
 

Chapter 5. Introduction to MQSeries administration . . . . . . . . . . . . .  33
Introducing commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Formats of command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

MQSC commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Programmable Command Format commands . . . . . . . . . . . . . . . . . .  34
Command queues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Administration application programs . . . . . . . . . . . . . . . . . . . . . . . . .  35
MQSeries product administration facilities . . . . . . . . . . . . . . . . . . . .  36

Command summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

Chapter 6. Introduction to MQSeries instrumentation events . . . . . . . .  43
Monitoring queue managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
What is an instrumentation event? . . . . . . . . . . . . . . . . . . . . . . . . . .  43

What types of event are there? . . . . . . . . . . . . . . . . . . . . . . . . . .  44
Event notification through event queues . . . . . . . . . . . . . . . . . . . . .  44
Enabling and disabling events . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

Format of event messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

Chapter 7. Introduction to MQSeries clients and servers . . . . . . . . . .  47
What are MQSeries clients and servers? . . . . . . . . . . . . . . . . . . . . . .  47
Communication between clients and servers . . . . . . . . . . . . . . . . . . . .  48
Installing clients and servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49

MQSeries clients from IBM Transaction Processing SupportPacs . . . . . .  49
National language considerations for clients . . . . . . . . . . . . . . . . . . .  49
Data conversion considerations for clients . . . . . . . . . . . . . . . . . . . .  49

Product support for MQSeries clients . . . . . . . . . . . . . . . . . . . . . . . .  50
MQSeries clients on other platforms . . . . . . . . . . . . . . . . . . . . . . .  51

Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

Chapter 8. Introduction to the MQSeries Framework . . . . . . . . . . . . .  53
Why the MQSeries Framework? . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

Invoking MQSeries Framework components . . . . . . . . . . . . . . . . . . .  54
Services and components provided . . . . . . . . . . . . . . . . . . . . . . . . .  54

Trigger monitor interface (TMI) . . . . . . . . . . . . . . . . . . . . . . . . . .  54
Message channel interface (MCI) . . . . . . . . . . . . . . . . . . . . . . . . .  55
Name service interface (NSI) . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
Security enabling interface (SEI) . . . . . . . . . . . . . . . . . . . . . . . . .  56
Data conversion interface (DCI) . . . . . . . . . . . . . . . . . . . . . . . . . .  58

2 MQSeries Planning Guide  



  Introduction
 

Chapter 1. Introduction to IBM MQSeries

This chapter introduces IBM MQSeries and describes its relationship with other
products. It contains basic explanations of the following topics:

� “MQSeries and message queuing”
� “Messages and queues” on page 5
� “MQSeries objects” on page 9
� “Clients and servers” on page 14
� “Where to find more information” on page 14

For more detailed explanations of these topics, refer to the MQSeries Application
Programming Reference manual.

MQSeries and message queuing
MQSeries products enable applications to use message queuing to participate in
message-driven processing. With message-driven processing, applications can
communicate with each other on the same or different platforms, by using the
appropriate message queuing software products. For example, MVS/ESA and
OS/400 applications can communicate through MQSeries for MVS/ESA and
MQSeries for AS/400 respectively. With MQSeries products, all applications use
the same kind of messages; communications protocols are hidden from the
applications.

MQI – a common application programming interface
MQSeries products implement a common application programming interface, the
message queue interface (MQI), that is used on whatever platform the applications
run on. The calls made by the applications and the messages they exchange are
common. This makes it much easier to write and maintain applications than using
traditional methods. It also facilitates the migration of message queuing
applications from one platform to another.

The MQI calls are shown in the following table.

Table 1 (Page 1 of 2). MQI calls

Call name Description Platforms

MQBEGIN Begin a unit of work to be
coordinated by the queue
manager

AIX, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT

MQCONN Connect to a queue manager All platforms

MQCONNX Connect to a queue manager and
specify some options

AIX, HP-UX, OS/2 Warp, Sun
Solaris, and Windows NT

MQDISC Disconnect from a queue
manager

All platforms

MQOPEN Open an object All platforms

MQCLOSE Close an object All platforms

MQPUT Put a message (queue already
open)

All platforms

 Copyright IBM Corp. 1993, 1998  3



 Introduction  
 

Table 1 (Page 2 of 2). MQI calls

Call name Description Platforms

MQPUT1 Put one message All platforms

MQGET Get a message All platforms

MQCMIT Commit changes MVS/ESA, OS/2 Warp, Windows
NT, and UNIX systems

MQBACK Back out changes MVS/ESA, OS/2 Warp, Windows
NT, and UNIX systems.

MQINQ Inquire about object attributes All platforms

MQSET Set object attributes All platforms

 Time-independent applications
With message queuing, the exchange of messages between the sending and
receiving programs is time independent. This means that the sending and
receiving applications are decoupled so that the sender can continue processing
without having to wait for the receiver to acknowledge the receipt of the message.
The receiving application might be busy when the message is sent. Indeed, the
receiving application doesn’t even need to be running. MQSeries holds the
message in the queue until it can be processed.

 Message-driven processing
Message-driven processing is a style of application design.

With this style, the application is divided into a number of separate, discrete,
functional blocks, with each block having well-defined input and output parameters.
Each functional block is coded as an application program, with its input and output
parameters being interchanged between other application programs by placing their
values in messages, which are then put on queues.

By use of the appropriate MQSeries programming mechanisms, an application
program can start executing as a result of one or more messages arriving on a
queue. If required, the program can terminate when all the messages in a queue
have been processed.

This style of application design allows new applications to be built, or existing
applications to be modified, more quickly than with some other application design
styles.

Data integrity and resource protection
MQSeries applications can transfer data with an extremely high degree of
confidence. Message delivery can be implemented using a syncpoint
mechanism–and the MQSeries logs or journals–for the recovery of important data
in the event of system failure. See Chapter 4, “Introduction to MQSeries recovery
concepts” on page 27.

All resources, such as message queues, can be protected using the security
facilities available on the operating platform. For example, Resource Access
Control Facility (RACF) on MVS/ESA, or the security facilities provided by OS/400.

4 MQSeries Planning Guide  



  Introduction
 

Messages and queues
Messages and queues are basic to any queuing system.

What is a message
A message is a string of bytes that has meaning to the applications that use the
message.

In MQSeries, messages have two parts, a message descriptor and application data.
The content and structure of the application data are defined by the application
programs that use them. The message descriptor identifies the message and
contains other control information or attributes, such as the date and time the
message was created, the type of message, and the priority assigned to the
message by the sending application.

Figure 1 represents a message and shows how the message is logically divided
into message data and application data.

Message ID Control information . . . Name Account name

Message descriptor Application data
(MQMD)

Amount requested . . .

Figure 1. Representation of a message. The message descriptor and application data are
shown as separate parts. Information that is specific to the application, such as Account
name in this example, is in the application data part of the message.

What is a queue
In physical terms, a queue is a type of list that is used to store messages until they
are retrieved by an application.

Queues exist independently of the applications that use them. A queue can exist:

� In main storage if it is temporary

� On disk or similar auxiliary storage if it must be kept in case of recovery

� In both places if it is currently being used, and must also be kept for recovery

Each queue belongs to a queue manager, which is responsible for maintaining it.
The queue manager puts the messages it receives onto the appropriate queue.

Queues can exist either in your local system, in which case they are called local
queues, or at another queue manager, in which case they are called remote
queues.

In MQSeries, messages can be retrieved from a queue by suitably authorized
applications according to these retrieval algorithms:

 � First-in-first-out (FIFO).

� Message priority, as defined in the message descriptor. Messages having the
same priority are retrieved on a FIFO basis.

  Chapter 1. Introduction to IBM MQSeries 5



 Introduction  
 

� A program request for a specific message.

For more information about queues and their attributes, refer to the MQSeries
Application Programming Guide.

 Message attributes
For system administrators, messages have two important attributes that are defined
in the message descriptor: persistence and priority.

A message is termed persistent if it survives when MQSeries restarts. This implies
that the message must be logged, or saved, and can be reinstated as part of the
recovery procedure.

Each MQSeries message has a priority assigned to it by the sending application.
The priority, which is a number in the range 0 through 9, can affect the order in
which a message is retrieved from a queue, and also the way that trigger events
are generated.

Triggering is a facility in some MQSeries products. It allows an application to be
started automatically when predefined conditions on a queue are met. These
conditions include reception of any message or of messages over a particular
priority, the number of messages on a queue, and so on. For more information
about triggering, see the MQSeries Application Programming Guide.

 Message sizes
The maximum message size supported by MQSeries varies. Section “MQSeries
product functional comparison” on page 212 gives details of the size of message
supported by each of the MQSeries products.

In practice, the size of message that an application program can put on a queue is
limited by:

� The maximum message length defined for the receiving queue
� The maximum message length defined for the queue manager
� The maximum message length supported by the platform

If the size of the data that an application program requires to place on a queue
exceeds this limit, the program must split the data into a number of pieces, and put
each piece on the queue as a separate message.

Dealing with large messages
On some platforms, there are several methods available for dealing with very large
messages.

Maximum message length
On AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, you can use the
maximum message length attribute to set the maximum length allowed for
messages on a queue manager; this can be up to 100 MB. The maximum
message length used for communication between two queue managers is the
lower of the maximum length for each queue manager, so you can use 100
MB messages only if both queue managers support this.

Message segmentation
| On AIX, HP-UX, OS/2 Warp, OS/400, Sun Solaris, and Windows NT,

MQSeries allows you to divide large messages into several parts (that is, one

6 MQSeries Planning Guide  



  Introduction
 

logical message into several physical messages). Your application can define
the size of physical messages, to allow for the maximum message size
permitted at intermediate queue managers. MQSeries can start transmitting
or receiving the physical messages before the whole of the logical message
has arrived on the queue.

Reference messages
| On AIX, HP-UX, OS/2 Warp, OS/400, Sun Solaris, and Windows NT,

reference messages allow you to transfer a large data object from one queue
manager to another without storing the object on a queue at either the source
or destination node. A message exit program is used to add the data object
to the message when it is transmitted. At the receiving end, another message
exit program is used to create a data object from the data in the message.
The reference message, without the data, is then put on the destination
queue. Sample exit programs that do this are provided with MQSeries.

Some queues used with MQSeries
MQSeries uses the following types of queues.

 Message queues
A message queue is a queue that is used to receive messages from applications
as distinct from those queues that have a special purpose. Special purpose
queues are defined in the same way as message queues, although they can have
their attributes set in specific ways. The system administrator is the person
responsible for defining and maintaining all queues in your enterprise.

 Event queues
An event queue is a queue that is used to receive event messages, which indicate
that a particular type of instrumentation event has occurred during the execution of
an application program. Instrumentation events help you to monitor your system.
There are three system administration event queues, one for each of the three
categories of instrumentation event that can be generated:

� SYSTEM.ADMIN.QMGR.EVENT - for queue manager events
� SYSTEM.ADMIN.PERFM.EVENT - for performance events
� SYSTEM.ADMIN.CHANNEL.EVENT - for channel events

When an event is generated, it is put on one of these queues.

 Initiation queues
An initiation queue receives trigger messages, which indicate that a trigger event
has occurred. A trigger event is caused by a message that satisfies the specified
conditions being put onto a queue. Messages are read from the initiation queue by
a trigger monitor application which then starts the appropriate application to process
the message. If triggers are active, at least one initiation queue must be defined
for each queue manager.

 Transmission queues
A transmission queue temporarily stores messages that are destined for a remote
queue manager. You must define a transmission queue for each remote queue
manager to which the local queue manager is to send messages. It is possible to
associate several transmission queues with different characteristics with a remote
queue manager. This allows different classes of transmission service.

  Chapter 1. Introduction to IBM MQSeries 7



 Introduction  
 

 Reply-to queues
If a message is a request message and so requires a reply, the sender of the
message must specify the name of the queue to which the reply should be sent;
this is called the reply-to queue. It is also the queue to which report messages are
usually sent, if any are generated.

 Dead-letter queues
A dead-letter queue (also known as an undelivered-message queue) receives
messages that cannot be routed to their correct destinations. This occurs when, for
example:

� The destination queue is full
� The message cannot be put on the destination queue
� The sender is not authorized to use the destination queue
� The destination queue does not exist

If you do not have a dead-letter queue, undelivered messages will remain on the
transmission queue and the message channel will be stopped. You are therefore
recommended to define a dead-letter queue for each queue manager in your
system.

You also have to decide how to handle any message placed on a dead-letter
queue. Such handling might be by the system administrator examining the queue
and redirecting the message, or perhaps by an application which you create for the
purpose of monitoring and handling dead-letter queues.

A dead-letter queue handler is provided with some MQSeries products to assist the
system administrator with the task of dealing with messages placed on a
dead-letter queue.

 Command queues
A command queue is a queue owned by a queue manager to which suitably
authorized applications can send messages containing MQSeries administration
commands. The commands in these messages are processed by the command
server part of the queue manager.

You can find more information on command queues in Chapter 5, “Introduction to
MQSeries administration” on page 33.

System default queues
The system default queues are a set of queue definitions supplied with MQSeries.
They are used to set default values for any attributes that you do not specify when
defining your own queues. By modifying the supplied queue definitions you can
vary the default queue attributes used at your installation.

8 MQSeries Planning Guide  



  Introduction
 

 MQSeries objects
An MQSeries object is a recoverable resource managed by MQSeries. Many of the
tasks described in this book involve manipulating the following types of MQSeries
object:

 � Queue managers
 � Queues
 � Namelists
 � Distribution lists
 � Process definitions
 � Channels
 � Storage classes

These objects are common across different MQSeries platforms.

For system administrators, commands are available to manipulate objects. The
format of the commands is dependent on the platform. For example, the MQSeries
for MVS/ESA command DEFINE QLOCAL (with the appropriate attributes) defines
a local queue object for MQSeries for MVS/ESA. On MQSeries for AS/400, the
equivalent command is CRTMQMQ.

On AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, default objects are
created for you when you create a queue manager. Default objects are supplied
with the other MQSeries products, to help you define the objects that you need.

Each object has a name associated with it and can be referenced in MQSeries
commands and MQI calls by that name. Names must be unique within each of the
object types. For example, you can have a queue and a process definition with the
same name, but you cannot have two queues with the same name.

Note:  The characters within the names given to all MQSeries objects are case
sensitive. Therefore, be very careful when defining the names of objects, to select
the appropriate uppercase or lowercase characters.

 Queue managers
A queue manager is that part of an MQSeries product that provides the messaging
and queuing services to application programs, through the Message Queue
Interface (MQI) program calls.

In some environments, for example with MQSeries for AS/400, only one queue
manager can be in use in one machine at any one time; in other environments, for
example with MQSeries for MVS/ESA, more than one queue manager can be
executing in one machine at one time.

In the MVS/ESA environment, applications are connected to a queue manager
through adapters which are part of the MQSeries for MVS/ESA product. In the
example shown in Figure 2 on page 10, there are two applications on MVS/ESA,
one is a CICS transaction that is connected to the MQSeries queue manager by
the CICS adapter, and the other a batch application connected to the queue
manager by the batch adapter. Each application has access to local queues A1
and A2.

  Chapter 1. Introduction to IBM MQSeries 9



 Introduction  
 

Queue
manager

B

Queue
manager

C

Appl
3

Appl
4

MVS/ESA OS/400 HP - UX

CICS

Communication links

A1 A2
Queues

B1 B2
Queues

C1 C2
Queues

MQSeries
for OS/400

MQSeries
for HP - UX

MQSeries
for MVS/ESA

CICS
Appl

2

Batch
Appl

1

Adapter Adapter

Queue
manager

A

Figure 2. Example of messaging and queuing using MQSeries products

The applications issue the MQI calls that are implemented by the queue manager.
For incoming messages, the queue manager directs them onto their respective
destination queues; for outgoing messages, the queue manager sends the
message to the destination queue manager. The destination queue manager
ensures that the message is put onto the correct queue.

A queue is a local queue if it is managed by the same queue manager that is
connected to the application. If the queue is managed by a different queue
manager, it is called a remote queue.

In Figure 2, queues A1 and A2 are local queues to both batch application 1, CICS
application 2, and to any other application connected directly to queue manager A.
The figure also illustrates remote queues B1 and B2 controlled by queue manager
B, and C1 and C2 controlled by queue manager C. Application 3 can put
messages either to its local queues B1 and B2 controlled by MQSeries for AS/400,
or to remote queues A1, A2, C1, or C2, as it requires.

 Queues
A queue is an MQSeries object that can store messages. Each queue has queue
attributes that determine what happens when applications reference the queue in
MQI calls. The attributes indicate:

� Whether applications can retrieve messages from the queue (get enabled)

� Whether applications can put messages onto the queue (put enabled)

10 MQSeries Planning Guide  



  Introduction
 

� Whether access to the queue is exclusive to one application or shared between
applications

� The maximum number of messages that can be stored on the queue at the
same time (maximum queue depth)

� The maximum size of messages that can be put on the queue (maximum
message size)

Using queue objects
In MQSeries, there are several types of queue object. This does not mean that
there are several different types of queue; essentially there is only one type of
queue. Each type of queue object can be manipulated by MQSeries commands
and is associated with queues in different ways:

1. A local queue object defines a local queue belonging to the queue manager to
which the application is connected.

2. A remote queue object identifies a queue belonging to another queue manager.
The remote queue is usually given a local definition. The definition specifies
the name of the remote queue manager where the queue exists as well as the
name of the remote queue itself. The information you specify when you define
a remote queue object enables the queue manager to find the remote queue
manager, so that any messages destined for the remote queue go to the
correct queue manager.

3. An alias queue object enables applications to access queues by referring to
them indirectly in MQI calls. When an alias queue name is used in an MQI
call, the name is resolved to the name of a message queue at run time. This
enables you to change the queues that applications use without changing the
application in any way; you merely change the alias definition.

4. The model queue object defines a set of queue attributes that are used as a
template for a dynamic queue. Dynamic queues are created by the queue
manager when an application makes an open queue request specifying a
queue that is a model queue. The dynamic queue that is created in this way is

| a local queue whose attributes are those of the model queue. You can specify
| a name (in full) for the dynamic queue, or the stem of a name (for example,
| ABC) and let the queue manager add a unique part to this, or you can let the
| queue manager assign a complete unique name for you.

Dynamic queues can be of two types:

 � Temporary

This type of queue is deleted when the queue is closed, and does not
survive a restart of a queue manager. The queues can be used to store
nonpersistent messages only.

 � Permanent

This type of queue is not deleted when the queue is closed, unless the
application program specifically requests it to be deleted. The queue
survives a restart of a queue manager, and can be used to store persistent
and nonpersistent messages.

Note:  Some MQSeries products do not support all the different types of queue
object given above. Refer to “MQSeries product functional comparison” on
page 212 for a summary of the functions offered on the different platforms.

  Chapter 1. Introduction to IBM MQSeries 11



 Introduction  
 

Queue naming convention
If your applications operate within one local system, your application designers will
specify the names of each queue they want to use. These queues will be named
either to some local protocol or at the programmer’s whim. In the latter case, it is
immediately obvious that names chosen at random by individuals could be
duplicates, causing all sorts of problems.

When your applications start to deal with remote queues, the need to know and
understand a naming convention becomes essential. It is no good sending a
message to a remote queue manager if the name of the desired queue is not
known.

For all of the above reasons, it is recommended that you develop a naming
convention for your enterprise which is known to, and understood by, all your
application designers and developers. The end users of your applications probably
do not need to know the convention because they will usually have no need to
know the queue names.

 Namelists
A namelist is an MQSeries object that contains a list of other MQSeries objects.
Typically, namelists are used by applications such as trigger monitors, where they
are used to identify a group of queues. The advantage of using a namelist is that it
is maintained independently of applications; that is, it can be updated without
stopping any of the applications that use it. Also, if one application fails, the
namelist is not affected and other applications can continue using it.

Note:  Not all MQSeries products support namelists. Refer to “MQSeries product
functional comparison” on page 212 for a summary of the functions offered on the
different platforms.

 Distribution lists
A distribution list provides a way for an application to send a message to several
destinations with a single MQPUT call. The list of destinations is supplied by the
application. If more than one of these destinations uses the same transmission
queue, only one copy of the message data is kept on the transmission queue, and
sent down the channel.

Note:  Not all MQSeries products support distribution lists. Refer to “MQSeries
product functional comparison” on page 212 for a summary of the functions offered
on the different platforms.

 Process definitions
A process definition object defines an application to an MQSeries queue manager.
Typically, in MQSeries, an application puts or gets messages from one or more
queues and processes them. A process definition object is used for defining
applications to be started by a trigger monitor. The definition includes the
application ID, the application type, and application specific data.

12 MQSeries Planning Guide  



  Introduction
 

 Trigger monitors
A trigger monitor is an application that monitors an initiation queue (see “Initiation
queues” on page 7) associated with a queue manager. When a trigger message
arrives on the initiation queue, it is retrieved by the trigger monitor. Typically, the
trigger monitor then starts an application that is specified in the message on the
initiation queue.

Note:  Only those products listed in “Level 2 products” on page 209 support
process definition objects and triggering. For more information on triggering and
trigger monitors see the MQSeries Application Programming Guide.

 Channels
A channel provides a communication path. There are two types of channel,
message channels and MQI channels.

 Message channels
A message channel provides a communication path between two queue managers
on the same, or different, platforms. The message channel is used for the
transmission of messages from one queue manager to another, and shields the
application programs from the complexities of the underlying networking protocols.

A message channel can transmit messages in one direction only. If two-way
communication is required between two queue managers, two message channels
are required.

In order to set up a channel, you usually define one channel definition for each end
| of the channel. There are four types of message channel; Sender, Server,
| Receiver, and Requester. On some platforms, some types of message channel

can be defined automatically.

 MQI channels
An MQI channel connects an MQSeries client to a queue manager on a server
machine. It is for the transfer of MQI calls and responses only and is bidirectional.

| A channel definition exists for each end of the link. There are two types of MQI
| channel; Server-connection and Client-connection. On some platforms, some types

of MQI channel can be defined automatically.

 Storage classes
A storage class is used on MVS/ESA to map one or more queues to a page set.
See the MQSeries for MVS/ESA System Management Guide for more information
about storage classes.

  Chapter 1. Introduction to IBM MQSeries 13



 Introduction  
 

Clients and servers
An MQSeries client is a part of an MQSeries product that can be installed on a
machine without installing the full queue manager. It accepts Message Queue
Interface (MQI) calls from application programs, and passes MQI requests to an
MQSeries server that is usually executing on another processor.

The MQSeries server is a full queue manager, which can accept MQI calls directly
from application programs that are running on the server processor; in addition, it
can accept MQI requests from MQSeries clients.

This allows you to have an application that uses the MQI running on one machine,
the client machine, and the queue manager itself running on a different machine.

For further information, see Chapter 7, “Introduction to MQSeries clients and
servers” on page 47.

Where to find more information
For an introduction to MQSeries on your platform, see the following chapters:

� Chapter 9, “Introduction to MQSeries for AS/400” on page 63

� Chapter 14, “Introduction to MQSeries on Digital OpenVMS” on page 79

� Chapter 19, “Introduction to MQSeries for MVS/ESA” on page 99

� Chapter 27, “Introduction to MQSeries for OS/2 Warp and Windows NT” on
page 135

� Chapter 32, “Introduction to MQSeries for Windows” on page 151

| � Chapter 33, “Introduction to MQSeries on Tandem NSK” on page 161

� Chapter 37, “Introduction to MQSeries on UNIX systems” on page 175

14 MQSeries Planning Guide  



  Distributed queuing
 

Chapter 2. Introduction to distributed queuing

The MQSeries distributed queuing facility moves messages between queue
managers. To allow MQSeries to do this, you must ensure that you define and
install the platform-dependent connections that provide the physical links between
the local queue manager and any remote queue managers that you want to
exchange messages with.

This chapter describes how to plan for communication between local and remote
queue managers. It contains basic information about:

� “How queue managers communicate”
� “Setting up distributed queuing” on page 16
� “Application data conversion” on page 18
� “Assured delivery” on page 18
� “Recovering from errors” on page 19
� “Where to find more information” on page 19

How queue managers communicate
There are two ways in which a queue manager can be connected to other queue
managers. These queue managers might be on the same or different platforms.
The connections can allow:

 � Simple transfer
 � Staged transfer

Simple transfer is used between two queue managers that are connected by an
MQSeries message channel.

Staged transfer is used to interconnect queue managers that are located in nodes
that are not adjacent to the sending node, and can only be reached by staging
through an adjacent queue manager. A remote queue manager might find that
some messages received are not for its local queues but, instead, are to be passed
on to another queue manager that performs the same process of delivering the
messages or, passing them on again.

In each of the models introduced above, you need to define transmission queues
and links to the adjacent nodes. The adjacent, or neighboring, nodes on your
network must also have queue managers available that can handle your messages.
Such handling places the message on one of the receiving node’s local queues
when that node recognizes the queue name as one of its own queues, or forwards
the message to another queue manager when a queue manager name other than
its own is received.

You must ensure that neighboring nodes with which your system communicates
either have links to the intended destination or, at least, links to the next step
toward the intended destination.

The communication between two queue managers is by means of a message
channel; this consists of:

� A transmission queue
� A message channel agent for each queue manager

 Copyright IBM Corp. 1993, 1998  15



 Distributed queuing  
 

� A communications link

A message channel agent is a program controlling communications and is part of
the queue manager.

For a detailed description of how these components allow messages to be
exchanged between systems, and how to define them, refer to the MQSeries
Intercommunication manual.

 Channel speed
For a normal channel, all messages travel through the message channel at the
same speed. Persistent and nonpersistent messages on the same transmission
queue maintain their order relative to each other. None of the messages are lost if
there is a channel failure.

| On AIX, HP-UX, MVS/ESA, OS/2 Warp, OS/400, Sun Solaris, and Windows NT,
you can define ‘fast’ channels. If a channel is defined to be fast, nonpersistent
messages travel through the channel outside syncpoint. This improves the
throughput of the channel, but means that nonpersistent messages are lost if there
is a channel failure. (Persistent messages are never lost if a channel failure
occurs.)

For a fast channel, it is possible for nonpersistent messages to jump ahead of
persistent messages waiting on the same transmission queue, that is, the order of
nonpersistent messages is not maintained relative to persistent messages.
However the order of nonpersistent messages relative to each other is maintained.
Similarly, the order of persistent messages relative to each other is maintained.

Setting up distributed queuing
To understand what you need to plan for, it is first necessary to review the queuing
process.

When an application attempts to put a message to a queue, it must specify the
destination queue. This is done by addressing the message to:

� An alias name
� A queue name, plus a queue manager name

If an alias name is used, the queue manager resolves that name to one of two
destinations, either a local queue name, or the name of a remote queue. In the
first case, the message is placed on the named local queue; in the second, the
message is placed on the appropriate transmission queue.

In the case where the queue name, and the queue manager name are supplied,
the queue manager name can be either that of the local queue manager, which is
the default condition, or a remote queue manager name.

When a message is created by the queue manager as a result of an MQPUT call,
the destination queue name, and queue manager name, are placed in the message
descriptor part of the message.

When the queue manager sees that the queue manager name in a message is not
its own name, it places the message on a special local queue called a transmission

16 MQSeries Planning Guide  



  Distributed queuing
 

queue. From the transmission queue, the message is transferred to the next node
in the network by the the queue manager, using the message channel associated
with that transmission queue. At the next node, the queue manager finds that the
message is addressed to one of its local queues and accordingly places it on the
destination queue, which can be another transmission queue giving further
transmission to another node. You should note that there can be more than one
transmission queue for each remote queue manager that you have defined. Refer
to the MQSeries Intercommunication manual for more information about
transmission queues.

A special case exists where a queue manager is called to handle a message that,
though sent to, or defaulting to, this queue manager, does not have a known queue
name. In this case the message is placed on the dead-letter queue. Special
actions are required to recover or dispose of messages placed on the dead-letter
queue. See “Dead-letter queues” on page 8 for more information.

To enable remote queuing, you might need to define remote queues. (This step is
not essential; there are cases where the application can place the message directly
to a queue manager and queue name combination.) The queue manager, when
handling a request to place a message on a queue with either an alias name or a
remote queue manager and queue name combination, uses the information to
determine that the name refers to a remote queue manager. If so, the message is
placed on a transmission queue associated with the remote queue manager.
MQSeries then moves the message from the transmission queue to the remote
queue manager.

You need to plan alias names for remote queues that you communicate with. You
should consider the naming conventions that you wish to apply to these names,
and also how you will ensure that your total network complies with your naming
convention.

You must also plan the message channels that you will create for message
transmission to remote queue managers. You might choose to define multiple
channels to these remote queue managers to allow for high message traffic,
different message priorities, or for different message types.

  Chapter 2. Introduction to distributed queuing 17



 Distributed queuing  
 

Application data conversion
The representation of character and numeric data is different on the various
platforms for which MQSeries products are available. Because of this, you might
need to plan for the conversion of the data within your messages, from one
representation to another, when writing applications that span multiple platforms.

The message descriptor in all messages contains the coded character set identifier
(CCSID) and encoding information; this identifies the representation used for the
character and numeric data that is in the data portion of the message.

Some MQSeries products convert the data within messages from one
representation to another, provided the format of the data conforms to one of the
MQI built-in formats. This conversion can be performed at the following times:

� By a queue manager during the processing of an MQGET call, if the data
conversion option is included in the call.

� By a message channel as it transmits a message to a remote queue manager,
if the data conversion option is included in the channel definition. The channel
converts the message data to the representation used by the platform at the
receiving end of the channel.

For application defined formats that do not conform to the built-in formats, the
conversion can be performed by user exit programs.

For further information about data conversion, refer to the MQSeries Application
Programming Guide.

 Assured delivery
MQSeries products are designed for assured message delivery. Processing is
such that when messages are being transmitted to remote queue managers, the
messages are moved in discrete transaction units, or batches, where confirmation
of receipt is always obtained before a particular message is deleted at the
transmitting queue manager. To achieve this, the sending and receiving ends of
the link commit batches of messages in unison.

18 MQSeries Planning Guide  



  Distributed queuing
 

Recovering from errors
If a remote queuing error or session error occurs, error messages are sent to the
local system operator or console, the local system being that where the queue
manager detecting the error is running.

If any error occurs while sending or receiving a message, the transaction is
terminated, and error messages are sent to both the local and remote system
consoles. When you restart remote queuing, the queue manager checks for, and
resolves, any in-doubt messages caused by the previous termination. An in-doubt
message is one where the point of consistency prior to the message is known, but
it is not known with certainty whether the new point of consistency that the
message creates has been reached, or that a backout to a previous point of
consistency has been completed. The application must decide what action to take
to resolve the in-doubt situation.

If a message cannot be put on the queue on the remote queue manager, the
message is written to the dead-letter queue on that queue manager and a report is
sent back to the message sender (if so requested in the message).

Remember that it is important to ensure that there is a dead-letter queue defined
for each queue manager, and that this queue is not allowed to fill completely.
Otherwise, when an error is detected by the channel, the channel will stop
transmission. See “Dead-letter queues” on page 8 for more information.

Where to find more information
You can find more information about distributed queuing, in the MQSeries
Intercommunication manual.

Also, you might find it useful to read the following “Red Books” published by the
IBM International Technical Support Organization:

� Examples of Using MQSeries on S/390, RISC System/6000, AS/400, and PS/2,
GG24-4326

� Multiplatform APPC Configuration Guide, GG24-4485

Request these books through your IBM representative.

  Chapter 2. Introduction to distributed queuing 19



 Distributed queuing  
 

20 MQSeries Planning Guide  



  Security overview
 

Chapter 3. Introduction to MQSeries security

This chapter gives an overview of the security facilities that are provided by
MQSeries products. The ways of using these facilities as part of the MQSeries
framework are described under “Security enabling interface (SEI)” on page 56.

This chapter contains basic information about:

� “MQSeries functional levels”
� “Security support in MQSeries” on page 22
� “Where to find more information” on page 26

MQSeries functional levels
MQSeries is provided at two functional levels:

� Level 1 function is provided by the following MQSeries products:

– MQSeries for SCO UNIX Version 1.4
– MQSeries for UnixWare Version 1.4.1
– MQSeries for VSE/ESA Version 1.4

� Level 2 function is provided by the following products:

| – MQSeries for AS/400 Version 4.2
– MQSeries for Digital OpenVMS Version 2.2
– MQSeries for MVS/ESA Version 1
– MQSeries for OS/2 Warp Version 5

| – MQSeries for Tandem NSK Version 2.2
– MQSeries products on UNIX systems:

- MQSeries for AIX Version 5
- MQSeries for AT&T GIS UNIX Version 2.2
- MQSeries for HP-UX Version 5
- MQSeries for SINIX and DC/OSx Version 2.2
- MQSeries for SunOS Version 2.2
- MQSeries for Sun Solaris Version 5

– MQSeries for Windows NT Version 5
– MQSeries Three Tier for AIX
– MQSeries Three Tier for OS/2

The differences in function are fully documented in “MQSeries product functional
comparison” on page 212.

 Copyright IBM Corp. 1993, 1998  21



 Security overview  
 

Security support in MQSeries
To understand the security functions provided by MQSeries, you need to
understand the logical positioning of MQSeries relative to other components within
a system and to understand the security services that are under discussion. The
relative positioning of MQSeries is illustrated in Figure 3, which is an extract from
the Open Blueprint, where MQSeries is represented by the Messaging and Queuing
component.

Figure 3 shows that security services are separated from other components such
as application services, resource managers, and communications. This separation
means that security services need only be provided by one component in the node
and other components simply call the appropriate services when needed.

Applications and Development Tools

Application Services

Communication Services
Distribution Services

Data Access
Services

Transaction
Monitor

Workflow
Manager

Mail

File

Database

Directory

Security

Conversation RPC
Messaging

and
Queuing

Figure 3. MQSeries and the Open Blueprint

The security services that can be provided by the (separate) security component
are:

� Identification and authentication (I&A)

This service forms the basis of many of the other services and involves the
provision of a user identifier (user ID or principal) and the verification that the
identifier is valid (that is, it represents the actual user and is not some intruder
impersonating a valid user).

 � Authorization

This is access control and relies upon the availability of some user identifier to
compare against access control lists (ACLs).

Note that the authorization service is only useful if it is used; an intruder might
attempt to bypass (and neutralize) the authorization service.

� Data confidentiality, or encryption

22 MQSeries Planning Guide  



  Security overview
 

 � Data integrity

Even though data might be visible (that is, not encrypted), the data integrity
service ensures that data is not altered.

 � Non-repudiation

This is the provision of some form of token (such as a digital signature) which
guarantees that a particular piece of data originated from a particular user.

Note that although the Security component is positioned as one of the distribution
services, it also provides services within the node (particularly authorization but all
of the other services as well).

The way in which these security services are used by the various aspects of
MQSeries is explained in the following sections.

MQSeries level 1 function
The Level 1 products do not provide any support for security. There is no attempt
to recognize the user identifier associated with an application and no attempt to
provide an authorization service or pass security information to other queue
managers. This means that any security services that are required must be
provided at the application level.

The following sections refer only to MQSeries Level 2 products.

 MQSeries applications
Before an application connects to a queue manager, it will have undergone some
form of I&A procedure. This might be the provision of a user ID and password or
might be some more elaborate process (such as smart card identification).
Alternatively, it might be that there is no requirement for the I&A procedure and,
thus, no user identifier associated with the application (for example, the building
that houses the system might be physically secure and user identifiers might not be
considered necessary).

The consequence of this is that each application that issues MQI calls has an
associated user identifier (which might be null) that is used to authorize the use of
certain MQI functions (primarily MQCONN and MQOPEN) and options (such as
PUT and GET) against particular objects (usually queues). This means that any
application user identifier trying to access MQSeries resources must be suitably
authorized.

Because the I&A procedure takes place before the application connects to the
queue manager, it is the responsibility of components other than MQSeries to
provide the I&A service. MQSeries is responsible only for capturing the user
identifier for use in providing other security services, such as authorization. (The
user identifier is captured when the application connects to the queue manager.)

Exceptions to this scope of responsibility are the OS/2 Warp and Windows NT
platforms, where MQSeries provides a service to provide a user identifier for
applications when they connect to the queue manager. This is called the user
identifier service and is documented in the MQSeries Programmable System
Management book. The user identifier service is part of the MQSeries framework;
see “Security enabling interface (SEI)” on page 56 for further details. This service
is provided because there are no security functions on these platforms.

  Chapter 3. Introduction to MQSeries security 23



 Security overview  
 

Similarly, it is generally the responsibility of some other component to provide the
authorization service, with MQSeries having responsibility for calling that service.
This works satisfactorily for systems such as MVS and OS/400 where there is a
standardized interface to the authorization service (for example, SAF on MVS). For
the OS/2 Warp, Windows NT, and UNIX platforms, however, there is no standard
authorization service or interface provided and so MQSeries provides its own
interface. This is called the authorization service and is documented in the
MQSeries Programmable System Management book. The authorization service is
part of the MQSeries framework; see “Security enabling interface (SEI)” on
page 56 for further details.

| For MQSeries for Digital OpenVMS, MQSeries for Tandem NSK, and MQSeries on
UNIX systems, there is an additional component written to this interface that
provides authorization service. This is called the object authority manager (OAM)
and it restricts access to MQSeries objects based upon the ACLs that it manages.

| The OAM is documented in the MQSeries for Digital OpenVMS System
| Management Guide, the MQSeries for Tandem NonStop Kernel System
| Management Guide, and the MQSeries System Administration manual. The object

authority manager is part of the MQSeries framework; see “Security enabling
interface (SEI)” on page 56 for further details.

 MQSeries messages
The basic function of MQSeries is to pass messages between applications. The
message header (the message descriptor, MQMD) contains a field (named
UserIdentifier) where a user identifier can be placed, allowing the application that
gets the message to know from which user the message originated. The user
identifier can be placed in the MQMD in one of three ways:

� The user identifier from a previous message (that is, one for which an MQGET
has been performed) can be passed to a subsequent message. This is known
as passing the security context.

� A suitably authorized (that is, trusted) application can place any user identifier
in the field.

� If neither of the above is used, MQSeries automatically places in this field the
user identifier of the application that did the MQPUT.

Therefore, this aspect of MQSeries operation provides an identification service
(associating a user identifier with the message); it does not provide an
authentication service. It is currently the responsibility of MQSeries applications
both to provide any required authentication token (on the MQPUT side) and to
verify that token (on the MQGET side).

Note also that, when an application does an MQGET for a message, there is no
attempt to reset the application’s user identifier to that contained in the message
header. This function is called context management and is not supported by
MQSeries.

24 MQSeries Planning Guide  



  Security overview
 

 Point-to-point security
In addition to providing services as a local resource manager, a queue manager
also provides distributed queuing, enabling messages to be distributed around a
network of queue managers. This distributed messaging function is provided by
means of MQSeries channels. Each channel is composed of a pair of message
channel agent programs (MCAs), which provide the protocol for assured, once-only
message delivery using an underlying transport mechanism to exchange messages.

When the two MCAs establish communication, it might be necessary for each to
verify the identity of the other. This would be the case if one queue manager did
not trust the connection or the identity of the partner queue manager (for example,
if they were owned by separate enterprises). This verification can be accomplished
in one of the following ways:

1. Some transport mechanisms (in particular APPC) provide security features such
as session authentication. Note that this provides verification of the partner
system (the partner logical unit), rather than the partner application (the MCA)
but this might satisfy the security requirements of the queue manager.

2. The MCAs each provide a security exit point which can be used to call
user-written security exits for the exchange of user identifiers and associated
authentication tokens (password, ticket, and so on). This allows each MCA to
verify the identity of its partner.

Using the MCA security exit allows the channel to be independent of the
underlying transport mechanism and to provide a consistent service across
many transports. This is especially important when providing a service (like
security) that is available only on a limited set of transports.

This aspect of MQSeries operation provides support for the I&A service. If
required, the security exit can use the central security services to provide
authentication tokens but this is not a requirement. See “Security enabling
interface (SEI)” on page 56 for more information about MCA exits.

3. On AIX, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, and Windows 95,
MQSeries provides exits relating to DCE security. Source code is also
provided to help you understand the program, and to assist you in creating your
own.

Note that it is possible to use any or all of the above mechanisms for point-to-point
security, enabling an MCA to be assured that it is exchanging messages with the
correct queue manager.

  Chapter 3. Introduction to MQSeries security 25



 Security overview  
 

 End-to-end security
End-to-end security refers to security services that can be provided when a
message is PUT by an application and to the corresponding services that are
available when the target application performs a GET. The relevant services are
identification and authentication (possibly across the network), data confidentiality,
data integrity, and non-repudiation.

MQSeries is not responsible for the provision of these services but it is responsible
for providing appropriate interfaces to call these services.

Today, the only aspect of end-to-end security that is (directly) supported by
MQSeries is Identification, where a user identifier can be placed in a message
header. MQSeries does not provide (direct) support for any of the other services.
However, these services can be implemented in either MQSeries application
programs or the MCA message exit, which is a customer exit invoked each time a
message is passed between two queue managers.

Where to find more information
For information about MQSeries security on your platform, see the following
chapters:

� Chapter 11, “Security planning for MQSeries for AS/400” on page 69

� Chapter 16, “Security planning for MQSeries for Digital OpenVMS” on page 87

� Chapter 22, “Security planning for MQSeries for MVS/ESA” on page 113

� Chapter 29, “Security planning for MQSeries for OS/2 Warp and Windows NT”
on page 145

| � Chapter 35, “Security planning for MQSeries for Tandem NSK” on page 167

� Chapter 39, “Security planning for MQSeries on UNIX systems” on page 185

For information about the security enabling interface, see Chapter 8, “Introduction
to the MQSeries Framework” on page 53.

26 MQSeries Planning Guide  



  Recovery concepts
 

Chapter 4. Introduction to MQSeries recovery concepts

MQSeries products provide facilities for applications to be able to keep related sets
of data consistent when changes are made to them. This chapter describes the
background concepts of recovery and restart that you will need to understand
before going on to the later chapters in this book.

This chapter gives basic information about:

� “How changes are made to data”
� “How consistency is maintained” on page 29
� “MQSeries as a transaction manager” on page 30
� “Where to find more information” on page 31

How changes are made to data
You need to understand how MQSeries queue managers interact with other
programs to keep all the data consistent. This section discusses units of recovery.

Units of recovery
In a single queue manager, a unit of recovery is a piece of work that changes data
from one point of consistency to another. A point of consistency (also called a
syncpoint or commit point) is a moment at which all the recoverable data that an
application program accesses is consistent. This means that a unit of recovery
begins with an attempt to change data and ends at a point of consistency. An
example of a unit of recovery within an application program is shown in Figure 4.

Time line

MQI call 1 MQI call 2

Unit of recovery

Application process

Application
Process
ends

COMMIT
(Point of
consistency)

MQPUT
begins

MQPUT
ends

MQGET
ends

Application
Process

begins

MQGET
begins

Figure 4. A unit of recovery within an application

In this example, the application process makes changes to queues at MQI call 1
and MQI call 2. The application process can include a number of units of recovery
or just one, but any complete unit of recovery ends with a commit point.

For example, a bank transaction might transfer funds from account A to account B.
First, a debit program subtracts the amount from account A. Next, account B must

 Copyright IBM Corp. 1993, 1998  27



 Recovery concepts  
 

be credited with the amount. After subtracting the amount from account A, the two
accounts are inconsistent and the queue manager cannot commit. The next step in
the process is for the debit program to put a message on a queue to the credit
program, giving information about the amount of money and the account to be
credited. When the credit program gets the message from the queue, it performs
the credit to account B and informs the debit program that it has completed the
task. The data is now consistent. The application can announce a point of
consistency and make the changes visible to other applications.

A point of consistency should be created by an application before it terminates. It
can do this by issuing a commit call. Normal termination of an application on some
platforms automatically causes a point of consistency, but you should verify that
this will occur on your platform.

If an error occurs within a unit of recovery, you can use the queue manager to
remove changes to data, returning the data to its state at the start of the unit of
recovery; that is, the queue manager undoes the work.

Some systems have syncpoint facilities. In these cases it is the system function
that causes a syncpoint to be created for both that system’s data, and the data that
is being managed by MQSeries queue managers, simultaneously.

MQSeries products can operate with a number of others, to provide coordination
between MQSeries and non-MQSeries resources. The MQSeries products where
this is possible include:

Table 2. MQSeries and cooperating products

MQSeries product Cooperating products

MQSeries for AIX CICS for AIX, Transaction Server for AIX,
ENCINA, TUXEDO

MQSeries for AS/400 CICS for OS/400

MQSeries for AT&T GIS UNIX TUXEDO

MQSeries for HP-UX CICS for HP 9000, ENCINA, TUXEDO

MQSeries for MVS/ESA CICS for MVS/ESA, CICS/MVS, IMS/ESA

MQSeries for OS/2 Warp CICS for OS/2, Transaction Server for
OS/2

MQSeries for SINIX and DC/OSx TUXEDO

MQSeries for SunOS TUXEDO

MQSeries for Sun Solaris CICS for Solaris, ENCINA, TUXEDO

MQSeries for Windows NT CICS for Windows NT, Transaction
Server for Windows NT, TUXEDO,
ENCINA

28 MQSeries Planning Guide  



  Recovery concepts
 

How consistency is maintained
If the data being managed by a queue manager is to be consistent with the data in
other subsystems, any data changed in one must be matched by a change in the
others. Before one system commits the changed data, it must know that the other
system, or systems, can make the corresponding changes. So, the systems must
communicate.

During a two-phase commit one subsystem coordinates the process. That
subsystem is called the coordinator; the others are the participants. On AIX,
HP-UX, OS/2 Warp, Sun Solaris, and Windows NT, MQSeries can be either the
coordinator or a participant. On other platforms, CICS or IMS is always the
coordinator in interactions with MQSeries, and MQSeries is always a participant.
The coordinator first checks that all participants are ready to perform the commit;
that is phase one. When the coordinator receives positive replies from the
participants that they are ready to commit, it issues the commit request, this being
phase 2. Together with the coordinator, all participants now commit the changed
data. All data is once again consistent.

During a one-phase commit there is no coordinator as such in the interactions.
When the commit call is issued, the response to the call is that:

� The commit was successful
� The call was partially complete
� The call failed

It is up to the application issuing the call to decide what further action, if any, needs
to be taken.

When the queue manager is restarted after an abnormal termination, it must
determine whether to commit or to back out units of recovery that were active at
the time of the error. For certain units of recovery, the queue manager has enough
information to make the decision. For others, it does not, and must get information
from the coordinator when the connection is reestablished.

Syncpointing cannot occur directly across remote links. Instead, use is made of the
assured message delivery feature of the MQSeries products. A commit request is
sent in a message to a remote system by an application with the assurance that
the message will be delivered. The application designers must ensure that they
create, and respond to, commit requests. They must also allow for situations
where the commit cannot be accepted, and respond accordingly to the commit
requester.

An example of the problems of remote commits is when the remote system is not
available. The messages to it will remain on the transmission queues until they can
be delivered. When delivery eventually occurs, any desired commitments can then
be made. In this situation, we are dealing with time independent applications. It is
for the application designers to consider how, and when, they require the data
shared between their remote systems to be consistent.

  Chapter 4. Introduction to MQSeries recovery concepts 29



 Recovery concepts  
 

MQSeries as a transaction manager
On some platforms, MQSeries can act as a transaction manager and will
coordinate updates made by external resource managers within MQSeries units of
work. These external resource managers must comply to the X/Open XA interface.

Table 3 shows the MQSeries platforms that can act as a transaction manager, and
the XA-compliant database managers they support. Figure 5 through Figure 7 on
page 31 show how you must configure your queue manager and database servers
to enable this.

The following figures describe the possible configurations for your queue manager
and database. The configuration shown in Figure 5 is allowed:

Table 3. XA-compliant database managers supported by MQSeries

Platform DB2 Oracle

AIX √ √

HP-UX √ √

OS/2 Warp √

Sun Solaris √ √

Windows NT √ √

Queue
Manager
Server

Database
Server

Machine 1

Figure 5. Queue manager and database server configuration 1. Queue manager server
and database server on the same machine

The configuration shown in Figure 6 is also allowed provided that you use
appropriate database connection features (for example, CAE/DDCS for DB/2):

Queue
Manager
Server

Database
Client

Machine 1

Database
Server

Machine 2

Figure 6. Queue manager and database server configuration 2. Queue manager server
and database client on the same machine

30 MQSeries Planning Guide  



  Recovery concepts
 

The configuration shown in Figure 7 on page 31 is not allowed because
coordination can be provided only by the MQSeries server, not the client:

Queue
Manager
Client

Database
Client

Machine 2

Database
Server

Machine 3

Queue
Manager
Server

Machine 1

Figure 7. Queue manager and database server configuration 3. Queue manager server
and database server on different machine

Where to find more information
For information about MQSeries recovery on your platform, see the following
chapters:

� Chapter 10, “Backup and recovery planning for MQSeries for AS/400” on
page 67

� Chapter 15, “Backup and recovery planning for MQSeries for Digital OpenVMS”
on page 83

� Chapter 21, “Backup and recovery planning for MQSeries for MVS/ESA” on
page 109

� Chapter 28, “Backup and recovery planning for MQSeries for OS/2 Warp and
Windows NT” on page 141

| � Chapter 34, “Backup and recovery planning for MQSeries for Tandem NSK” on
| page 165

� Chapter 38, “Backup and recovery planning for MQSeries on UNIX systems”
on page 181

  Chapter 4. Introduction to MQSeries recovery concepts 31



 Recovery concepts  
 

32 MQSeries Planning Guide  



  Administration overview
 

Chapter 5. Introduction to MQSeries administration

This chapter gives a summary of the administration facilities that are provided by
the MQSeries products.

Administration of an application that uses MQSeries products is performed by a
system administrator, system programmer, or computer operator who has the
appropriate authority. It is the administrator’s responsibility to monitor the
MQSeries products, and the resources that they are using, and make any changes
that might be necessary to keep the applications running without problems.

This chapter has the following sections:

 � “Introducing commands”
� “Formats of command” on page 34
� “Administration application programs” on page 35
� “Command summary” on page 37
� “Where to find more information” on page 42

Some of the facilities described in this chapter are not supported by all MQSeries
products.

 Introducing commands
MQSeries products provide a set of commands, command interfaces, and utilities
that provide messaging and queuing administration functions, including, for
example:

These functions are provided by commands in MQSeries, which are processed, by
the queue manager, in the following ways:

� Entered by the system administrator .

A command is entered by a system administrator and processed immediately
by the queue manager. A response is given to the administrator.

The method used to enter the commands is platform dependent, and is the
normal method that is used for entering commands on the platform. This could
be a command console, a command line, a display panel utility, or some other
technique.

� Stored as a list of commands .

The commands are stored as a list in a file. Later, the administrator can cause
the queue manager to read the commands in the file, process them, and
generate responses.

� Stored as messages in a queue .

An application program generates a command, and puts it to a queue manager
command queue, using the MQPUT call. The queue manager gets the

Queue administration Creating and deleting queues

Channel administration Stopping or starting channels

Security administration Changing the access authority to queues

 Copyright IBM Corp. 1993, 1998  33



 Administration overview  
 

message off the queue, processes the command that is contained in the
message, and generates a response.

Formats of command
The MQSeries products provide the following types of command:

� MQSeries commands (MQSC)  - human-readable
� Programmable Command Format (PCF) commands  - machine-readable

Both sets of commands perform similar functions, but are intended for use in
different situations.

In addition to the MQSC and PCF commands, the MQSeries products provide
control commands. These are the commands used by the system administrator to
pass control information to the queue manager, and are designed to be compatible
with the other administrative commands used on a particular platform. Because of
the differences in the way that administrative commands are processed by the
various operating systems in which the MQSeries products operate, the technique
used to enter control commands varies with the particular MQSeries product.

 MQSC commands
MQSeries commands (MQSC) provide a uniform method of issuing commands in a
human-readable form across MQSeries platforms. They are intended for use in
those situations where people have to be able to read the commands, for example,
whenever commands are entered through a command line. The responses to
these commands are also human-readable, however the content and format
depends on the platform in which they are used.

The commands can be issued from the following sources:

� Entered through the command line
� Stored in a file, and processed by the queue manager
� Stored within messages on a command queue

The commands are described in the MQSeries Command Reference manual.

Programmable Command Format commands
MQSeries Programmable Command Format (PCF) commands are intended for use
by application programs that provide facilities for the administration of queue
managers and the resources that they are using (for example, queues and
channels), from a single point within the network. The format of these commands,
and their responses, is independent of the environment in which they are used.

PCFs define commands and reply messages that can be exchanged between a
program and any queue manager in a network.

You can use PCF commands in a systems-management application program for
administration of MQSeries objects: queue managers, process definitions, queues,
and channels. The application can operate from a single point in the network to
communicate command and reply information with any queue manager, local or
remote, via the local queue manager.

34 MQSeries Planning Guide  



  Administration overview
 

It is possible, by using the PCF escape  command, to include the MQSC command
as character strings within a PCF command.

PCF commands are described in the MQSeries Programmable System
Management manual.

 Command queues
Some MQSeries products have a command queue that accepts administration
messages containing commands, called command messages. The queue manager
has a command server that processes the command messages from the command
queue.

Command messages can be placed on the queue by any local or remote
application program. The command messages are processed by the command
server, and a response is returned to the application program using the name of
the reply-to queue that is contained within the original command message. PCF
commands and reply messages are sent and received using the MQPUT and
MQGET calls defined in the Message Queue Interface (MQI).

There are two types of command queue, each with system-defined queue names.

 1. SYSTEM.ADMIN.COMMAND.QUEUE

This queue accepts PCF commands only, including the escape  command.
This type of queue is supported by the following:

� MQSeries for AS/400
� MQSeries for Digital OpenVMS
� MQSeries for OS/2 Warp

| � MQSeries for Tandem NSK
� MQSeries on UNIX systems
� MQSeries for Windows NT
� MQSeries for Windows (Version 2.1)

 2. SYSTEM.COMMAND.INPUT

This queue accepts MQSC commands only. This type of queue is supported
by MQSeries for MVS/ESA only.

The MQSeries products that are not mentioned above do not have command
queues.

Administration application programs
MQSeries products provide application programs, called administration utilities, that
allow the system administrator on one processor to control the MQSeries product
that is running on that processor. Some of these utilities also allow the
administrator to control MQSeries products that are running on other processors,
so-called remote administration.

In those situations where no administration utility is available, you can write your
own application program to provide those functions. This application can manage
any queue manager (local or remote) that has a command queue, by putting
command messages to that queue using the MQPUT call. When a command is
processed, a response message is returned to the reply-to queue that your
application program specified in the original command message.

  Chapter 5. Introduction to MQSeries administration 35



 Administration overview  
 

MQSeries product administration facilities
Details of the control commands and administration facilities provided by some of
the MQSeries products are given in later sections of this manual, as follows:

� MQSeries for AS/400  – see Chapter 12, “Administration of MQSeries for
AS/400” on page 71, and the MQSeries for AS/400 Administration Guide for
more detail.

� MQSeries for Digital OpenVMS  – see Chapter 17, “Administration of
MQSeries for Digital OpenVMS” on page 91, and the MQSeries for Digital
OpenVMS System Management Guide for more detail.

� MQSeries for MVS/ESA  – see Chapter 23, “Administration of MQSeries for
MVS/ESA” on page 117, and the MQSeries for MVS/ESA System Management
Guide for more detail. MQSeries for MVS/ESA does not support PCF
commands.

� MQSeries for OS/2 Warp  and MQSeries for Windows NT  – see Chapter 30,
“Administration of MQSeries for OS/2 and Windows NT” on page 147, and the
MQSeries System Administration manual for more detail.

| � MQSeries for Tandem NonStop Kernel  – see Chapter 36, “Administration of
| MQSeries for Tandem NSK” on page 171, and the MQSeries for Tandem
| NonStop Kernel System Management Guide for more detail.

� MQSeries on UNIX systems  – see Chapter 40, “Administration of MQSeries
on UNIX systems” on page 189, and the MQSeries System Administration
manual for more detail.

� MQSeries for Windows  – see Chapter 32, “Introduction to MQSeries for
Windows” on page 151, and the MQSeries for Windows User’s Guide for more
detail.

A tabular summary of the commands supported by these products is given in the
“Command summary” on page 37 section.

Administration for other MQSeries products
The MQSeries products that are not mentioned above have utility programs that
use display panels to provide a user-friendly interface for the administration of the
product. Details of these programs, and the administration facilities that they
provide, can be found in the User Guide that is available for each of the products.

None of these products has an administration queue to which commands (MQSC
or PCF) can be sent. Therefore administration of these products by local or remote
application programs is not possible.

36 MQSeries Planning Guide  



  Administration overview
 

 Command summary
The following tables show how the various command formats in MQSeries relate to
each other. The command formats available are:

� Programmable command format (PCF) commands

� MQSeries (MQSC) commands

� MQSeries for OS/400 CL commands

| � Control commands for MQSeries products on distributed platforms, that is,
| MQSeries on UNIX systems, MQSeries for Digital OpenVMS, MQSeries for
| Tandem NonStop Kernel, MQSeries for OS/2 Warp, and MQSeries for
| Windows NT

Notes:

1. The PCF commands are not supported on MVS/ESA.

2. Unless otherwise specified, the MQSC commands are supported on all
platforms.

3. An empty cell indicates that there is no equivalent command in the specified
format.

| 4. In MQSeries for Tandem NonStop Kernel control commands are entered in
| lowercase.

Table 4 (Page 1 of 2). Commands for queue manager administration

Operation PCF MQSC OS/400 CL Commands for
distributed
platforms

Change Queue Manager
attributes

Change Queue
Manager

ALTER QMGR
DEFINE MAXSMSGS
(See note 1)

CHGMQM  

Display Queue Manager
attributes

Inquire Queue
Manager

DISPLAY QMGR
DISPLAY MAXSMSGS
(See note 1)

DSPMQM  

Connect a Queue Manager   CCTMQM  

Create a Queue Manager   CRTMQM CRTMQM

Delete a Queue Manager   DLTMQM DLTMQM

Disconnect a Queue
Manager

  DSCMQM  

Stop a Queue Manager  STOP QMGR (See note 1) ENDMQM ENDMQM

Ping a Queue Manager Ping Queue
Manager

PING QMGR (See note 2)   

Start a Queue Manager  START QMGR (See note 1) STRMQM STRMQM

Add a Queue Manager to
Windows NT Service Control
Manager

   SCMMQM
(See note 3)

Start an MQSeries trial
period

   SETMQTRY
(See note 4)

  Chapter 5. Introduction to MQSeries administration 37



 Administration overview  
 

Table 4 (Page 2 of 2). Commands for queue manager administration

Operation PCF MQSC OS/400 CL Commands for
distributed
platforms

Enroll an MQSeries
production licence

   SETMQPRD
(See note 4)

Notes: 

1. Applies on MVS/ESA only
2. Does not apply on MVS/ESA
3. Applies on Windows NT only
4. Applies on V5.0 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT

Table 5 (Page 1 of 2). Commands for queue administration

Operation PCF MQSC OS/400 CL Commands for
distributed
platforms

Change queue attributes Change Queue ALTER QALIAS
ALTER QLOCAL
ALTER QMODEL
ALTER QREMOTE

CHGMQMQ  

Clear a queue Clear Queue CLEAR QLOCAL (See note 1)
 
The following sequence:
DELETE QLOCAL(x),
DEFINE QLOCAL(x)
 
or the following sequence:
DEFINE QLOCAL(y) LIKE(x),
DELETE QLOCAL(x),
DEFINE QLOCAL(x) LIKE(y),
DELETE QLOCAL(y)

CLRMQMQ  

Copy a queue definition Copy Queue DEFINE QALIAS(x) LIKE(y)
DEFINE QLOCAL(x) LIKE(y)
DEFINE QMODEL(x) LIKE(y)
DEFINE QREMOTE(x) LIKE(y)

CPYMQMQ  

Create a queue Create Queue DEFINE QALIAS
DEFINE QLOCAL
DEFINE QMODEL
DEFINE QREMOTE

CRTMQMQ  

Delete a queue Delete Queue DELETE QALIAS
DELETE QLOCAL
DELETE QMODEL
DELETE QREMOTE

DLTMQMQ  

Display queue attributes Inquire Queue DISPLAY QUEUE
DISPLAY QALIAS (See note 2)
DISPLAY QLOCAL (See note 2)
DISPLAY QMODEL (See note 2)
DISPLAY QREMOTE
(See note 2)

DSPMQMQ  

Display queue names Inquire Queue
Names

DISPLAY QUEUE WRKMQMQ  

Work with a queue   WRKMQMQ  

Work with messages   WRKMQMMSG  

38 MQSeries Planning Guide  



  Administration overview
 

Table 5 (Page 2 of 2). Commands for queue administration

Operation PCF MQSC OS/400 CL Commands for
distributed
platforms

Reset queue statistics| Reset Queue
| Statistics
| (See note 3)

   

Notes: 

1. Does not apply on MVS/ESA
2. Applies on AIX, HP-UX, MVS/ESA, OS/2, Sun Solaris, and Windows NT only

| 3. Does not apply on Tandem NSK

Table 6. Commands for process definition administration

Operation PCF MQSC OS/400 CL Commands for
distributed
platforms

Change process attributes Change Process ALTER PROCESS CHGMQMPRC  

Copy a process Copy Process DEFINE PROCESS(x) LIKE(y) CPYMQMPRC  

Create a process Create Process DEFINE PROCESS CRTMQMPRC  

Delete a process Delete Process DELETE PROCESS DLTMQMPRC  

Display process attributes Inquire Process DISPLAY PROCESS DSPMQMPRC  

Display process names Inquire Process
Names

DISPLAY PROCESS WRKMQMPRC  

Work with a process   WRKMQMPRC  

Table 7. Commands for namelist administration (MVS/ESA only)

Operation PCF MQSC OS/400 CL Commands for
distributed
platforms

Alter a namelist  ALTER NAMELIST   

Copy a namelist  DEFINE NAMELIST(x) LIKE(y)   

Define a namelist  DEFINE NAMELIST   

Delete a namelist  DELETE NAMELIST   

Display a namelist  DISPLAY NAMELIST   

Table 8 (Page 1 of 2). Commands for channel administration

Operation PCF MQSC (See note 1) OS/400 CL Commands for
distributed
platforms

Change channel attributes Change Channel ALTER CHANNEL CHGMQMCHL  

Copy channel attributes Copy Channel DEFINE CHANNEL (x) LIKE (y) CPYMQMCHL  

Create a channel Create Channel DEFINE CHANNEL CRTMQMCHL  

Delete a channel Delete Channel DELETE CHANNEL DLTMQMCHL

Display a channel Inquire Channel DISPLAY CHANNEL DSPMQMCHL  

Display channel names Inquire Channel
Names

DISPLAY CHANNEL WRKMQMCHL  

  Chapter 5. Introduction to MQSeries administration 39



 Administration overview  
 

Table 8 (Page 2 of 2). Commands for channel administration

Operation PCF MQSC (See note 1) OS/400 CL Commands for
distributed
platforms

Display channel status Inquire Channel
Status

DISPLAY CHSTATUS WRKMQMCHST  

Display distributed queuing  DISPLAY DQM (See note 2)   

Ping a channel Ping Channel PING CHANNEL PNGMQMCHL  

Reset a channel Reset Channel RESET CHANNEL RSTMQMCHL  

Resolve a channel Resolve Channel RESOLVE CHANNEL RSVMQMCHL  

Start a channel Start Channel START CHANNEL STRMQMCHL RUNMQCHL

Start a channel initiator Start Channel
Initiator

START CHINIT (See note 2) STRMQMCHLI RUNMQCHI

Start a channel listener Start Channel
Listener

START LISTENER (See note 3) STRMQMLSR RUNMQLSR
(See note 4)

Stop a channel Stop Channel STOP CHANNEL ENDMQMCHL  

Stop a channel initiator  STOP CHINIT (See note 2)   

Stop a channel listener  STOP LISTENER (See note 2)  | ENDMQLSR
| (See note 5)

Work with channels   WRKMQMCHL  

Work with channel status   WRKMQMCHST  

Notes: 

1. Does not apply on MVS/ESA if you are using CICS for distributed queuing
2. Applies on MVS/ESA only

| 3. Does not apply on UNIX systems, Digital OpenVMS, or Tandem NSK
| 4. Applies on OS/2, Windows NT, Digital OVMS, and Tandem NSK only
| 5. Applies on OS/2 and Windows NT only

| In MQSeries for Tandem NonStop Kernel, use TS/MP or the control command runmqlsr  to start TCP/IP channel listeners.

Table 9. Commands for security administration

Operation PCF MQSC (See note 1) OS/400 CL Commands for
distributed
platforms

Display object authority   DSPMQMAUT DSPMQAUT

Grant object authority   GRTMQMAUT SETMQAUT

Revoke object authority   RVKMQMAUT SETMQAUT

Alter security options  ALTER SECURITY   

Display security settings  DISPLAY SECURITY  DSPMQAUT

Refresh security  REFRESH SECURITY   

Set a reverification flag  RVERIFY SECURITY   

Note: 

1. Applies on MVS/ESA only

Table 10 (Page 1 of 2). Commands for system-dependent function

Operation PCF MQSC (see note 1) OS/400 CL Commands for
distributed
platforms

Alter trace parameters  ALTER TRACE   

40 MQSeries Planning Guide  



  Administration overview
 

Table 10 (Page 2 of 2). Commands for system-dependent function

Operation PCF MQSC (see note 1) OS/400 CL Commands for
distributed
platforms

Display trace activity  DISPLAY TRACE   

Start a trace  START TRACE TRCMQM STRMQTRC
(See note 2)

Stop a trace  STOP TRACE TRCMQM ENDMQTRC
(See note 2)

Archive a log  ARCHIVE LOG   

Define a buffer pool  DEFINE BUFFPOOL   

Define a page set  DEFINE PSID   

Display page set
information

 DISPLAY USAGE   

Alter a storage class  ALTER STGCLASS   

Define a storage class  DEFINE STGCLASS   

Delete a storage class  DELETE STGCLASS   

Display storage class
information

 DISPLAY STGCLASS   

Display a thread  DISPLAY THREAD   

Recover a bootstrap data
set

 RECOVER BSDS   

Resolve in-doubt threads  RESOLVE INDOUBT   

Display the command server  DISPLAY CMDSERV DSPMQMCSVR DSPMQCSV

Start the command server  START CMDSERV STRMQMCSVR STRMQCSV

Stop the command server  STOP CMDSERV ENDMQMCSVR ENDMQCSV

Reset an IMS transaction
pipe

 RESET TPIPE   

Display an object name   DSPMQMOBJN  

Start a service job   STRMQMSRV  

End a service job   ENDMQMSRV  

Start the administrator   STRMQMADM  

Record an object image   RCDMQMIMG| RCDMQIMG
| (See note 3)

Recreate an object   RCRMQMOBJ| RCRMQOBJ
| (See note 3)

Display MQSeries formatted
trace output

   DSPMQTRC
(See note 4)

Dump contents of MQSeries
log

   DMPMQLOG
(See note 5)

Notes: 

1. Applies on MVS/ESA only
2. Does not apply on AIX

| 3. Does not apply on Tandem NSK
| 4. Applies on AT&T, HP-UX, SINIX and DC/OSx, SunOS, Sun Solaris, and Tandem NSK

5. Applies on V5.0 of MQSeries for AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT

| In MQSeries for Tandem NonStop Kernel, as an alternative to the control commands dspmqcsv, strmqcsv, and endmqcsv, you
| may use PATHCOM commands.

  Chapter 5. Introduction to MQSeries administration 41



 Administration overview  
 

| Table 11. Other control commands in MQSeries for Tandem NonStop Kernel

| Operation| Commands

| Alter queue volume| altmqfls

| Perform housekeeping on a queue manager| cleanqm

| Convert V1.5.1 queues and channels to V2.2| cnv1520

| Convert V1.5.1 messages to V2.2| cnvmsgs

| Convert client channel definition table| cnvclchl

| Install MQSeries for Tandem NonStop Kernel| instmqm

| Run dead-letter queue handler| runmqdlq

| Note:  As an alternative to the control command runmqtrm , you may use PATHCOM commands. There are no MQSC or PCF
| equivalents of commands in this group.

Where to find more information
For information about MQSeries administration on your platform, see the following
chapters:

� Chapter 12, “Administration of MQSeries for AS/400” on page 71

� Chapter 17, “Administration of MQSeries for Digital OpenVMS” on page 91

� Chapter 23, “Administration of MQSeries for MVS/ESA” on page 117

� Chapter 30, “Administration of MQSeries for OS/2 and Windows NT” on
page 147

� Chapter 32, “Introduction to MQSeries for Windows” on page 151

| � Chapter 36, “Administration of MQSeries for Tandem NSK” on page 171

� Chapter 40, “Administration of MQSeries on UNIX systems” on page 189

42 MQSeries Planning Guide  



  Instrumentation events
 

Chapter 6. Introduction to MQSeries instrumentation events

You can use the MQSeries instrumentation events to monitor the operation of
queue managers. This chapter tells you what these events are, and describes how
they can be used for system measurement and system management purposes.

The chapter contains these sections:

� “Monitoring queue managers”
� “What is an instrumentation event?”
� “Format of event messages” on page 46
� “Where to find more information” on page 46

Instrumentation events are supported by the following:

� MQSeries for AS/400
� MQSeries for Digital OpenVMS
� MQSeries for MVS/ESA
� MQSeries for OS/2 Warp

| � MQSeries for Tandem NSK
� MQSeries on UNIX systems
� MQSeries for Windows NT
� MQSeries for Windows Version 2.1

Monitoring queue managers
An instrumentation event causes a special message, called an event message, to
be generated by a queue manager whenever a set of predefined conditions occurs
within the execution of your application.

You can write a system-monitoring application that collects event messages from
many queue managers on different platforms, analyses them, and presents them to
an administrator in summary form. This would allow you to monitor all the
MQSeries products in your system from a single node.

Instrumentation events also enable applications acting as agents for other
administration networks, for example NetView, to monitor events and create the
appropriate alerts.

What is an instrumentation event?
In MQSeries an instrumentation event is a logical combination of conditions that is
detected by a queue manager. The result of such an event is that the queue
manager puts a special message, called an event message, on an event queue.

For example, the conditions giving rise to a queue full event are:

� Queue full events are enabled for a specified queue, and

� An application issues an MQPUT call to put a message on that queue, but the
call fails because the queue is full

Other conditions can also give rise to instrumentation events. For example:

� A threshold for the number of messages on a queue is reached

 Copyright IBM Corp. 1993, 1998  43



 Instrumentation events  
 

� A channel instance is started or stopped

� An application attempts to open a queue specifying a user ID that is not
authorized

Some instrumentation events must be enabled before they can be generated; this
is described in “Enabling and disabling events” on page 45.

What types of event are there?
MQSeries events can be categorized as follows:

Queue manager events
These events are related to the definitions of resources within queue managers.
For example, when an application attempts to put a message to a queue that
does not exist.

Performance events
These events are notifications that a threshold has been reached by a resource.
For example, when a queue depth threshold has been reached or, following a
get, when the queue was not serviced within a predefined time limit.

Channel events
These events are reported by channels as a result of conditions detected during
their operation. For example, when a channel instance is stopped.

Event notification through event queues
When an event occurs, the queue manager puts an event message on the
appropriate event queue. The event message contains information about the event
that you can retrieve by writing a suitable MQSeries application program that:

� Gets the message from the queue
� Processes the message to extract the event data

Each category of event has its own event queue. All events in that category result
in an event message being put onto the same queue.

You can define event queues as either local or remote queues. If you define all
your event queues as remote queues on the same queue manager, you can
centralize your monitoring activities.

You must not define event queues as transmission queues, or initiation queues,
because event messages have formats that are incompatible with the formats of
messages required for those queues.

Table 12. Event queue contents

This event queue... Contains messages from...

SYSTEM.ADMIN.QMGR.EVENT Queue manager events

SYSTEM.ADMIN.PERFM.EVENT Performance events

SYSTEM.ADMIN.CHANNEL.EVENT Channel events

44 MQSeries Planning Guide  



  Instrumentation events
 

Using triggered event queues
You can set up the event queues with triggers, so that when an event is generated,
the event message being put onto the event queue starts a (user-written)
monitoring application. This application can process the event messages and take
appropriate action. For example, certain events might require that an operator be
informed, while other events might start off an application that performs some
administration tasks automatically.

When an event queue is unavailable
If an event occurs when the event queue is not available, the event message is
lost. For example, if you do not define an event queue for a category of event, all
event messages for that category will be lost. The event messages are not, for
example, saved on the dead-letter queue. An event queue might be unavailable for
many different reasons, for example:

� The queue has not been defined
� The queue has been deleted
� The queue is full
� The queue has been put-inhibited

The absence of an event queue does not prevent the event from occurring. For
example, after a performance event, the queue manager changes the queue
attributes and might, depending on the event, reset the queue statistics. This
happens whether or not the event message is put on the performance event queue.

Enabling and disabling events
You can enable and disable events by specifying the appropriate values for queue
manager or queue attributes, or both, depending on the type of event. Commands
are provided with the appropriate MQSeries products to allow you to set these
attributes.

Note:  Attributes related to events for both queues and queue managers can be
set and inquired upon by command only. They are not supported by the MQI
functions MQSET and MQINQ.

How you enable and disable events depends on the category of the event:

� Queue manager events are enabled by setting attributes on the queue
manager.

� Performance events as a whole must be enabled on the queue manager,
otherwise no performance events can occur. Then, you enable the specific
performance events by setting the appropriate queue attribute. You also have
to specify the conditions that give rise to the event.

� Channel events do not require enabling, they occur automatically. Similarly,
channel events cannot be disabled.

  Chapter 6. Introduction to MQSeries instrumentation events 45



 Instrumentation events  
 

Format of event messages
Event messages contain information about the event and its origin. Typically, these
messages are processed by a system-management application program that is
tailored to meet the requirements of the site at which it runs.

As with all MQSeries messages, an event message has two parts: a message
descriptor, and the message data.

Message descriptor
The descriptor of an event message is a standard descriptor, as defined in the
MQSeries Application Programming Reference. Some of the values in the
descriptor might be of particular interest to a system-monitoring application, for
example, the date and time when the event message was put on the event
queue.

Event message data
The message data specifies:

� That the message is an event message.

� The category of the event, that is, whether the event is a queue manager,
performance, or channel event.

� A reason code specifying the cause of the event.

� Event data specific to the event. This includes the name of the queue
manager and, where appropriate, the name of the queue.

Where to find more information
More information on how to use events and details on the various types of event
message, can be found in the MQSeries Programmable System Management
manual.

Information about enabling events can be found in the MQSeries Command
Reference manual.

46 MQSeries Planning Guide  



  Clients and servers
 

Chapter 7. Introduction to MQSeries clients and servers

This chapter introduces the concept of MQSeries clients and servers and describes
how they can be of benefit in your MQSeries installation. It gives you information
about some of the items that you need to consider when you are planning your
applications.

The chapter has the following sections:

� “What are MQSeries clients and servers?”
� “Communication between clients and servers” on page 48
� “Installing clients and servers” on page 49
� “National language considerations for clients” on page 49
� “Data conversion considerations for clients” on page 49
� “Product support for MQSeries clients” on page 50
� “Where to find more information” on page 51

What are MQSeries clients and servers?
An MQSeries client is a part of an MQSeries product that can be installed on a
machine without installing the full queue manager. It accepts Message Queue
Interface (MQI) calls from application programs, and passes MQI requests to an
MQSeries server that is executing on another processor.

The MQSeries server is a full queue manager, which can accept MQI calls directly
from application programs that are running on the server processor; in addition, it
can accept MQI requests from MQSeries clients.

This allows you to have an application that uses the MQI running on one machine,
the client machine, and the queue manager itself running on a different machine.

Clients and servers can be useful in a number of situations:

� Where there is no full MQSeries implementation for the machine (for example,
because it is a DOS platform)

� Where the client machine is too small, or of insufficient processing power, to
run a full queue manager with good performance

� Where you want to allow the application program on the client processor to
connect to multiple queue managers on different server processors

� Where you might want to reduce systems administration effort

You can run an MQSeries application in both a full MQSeries environment and in a
MQSeries client environment without changing your code. However, the libraries
you use at link-edit time determine the environment your application must run in.

When an application program in the client issues an MQI call, the client formats the
parameter values of the call into an MQI request, and sends the request to the
server. The server receives the request, performs the action specified in the
request, and sends a response back to the client. The response is used by the
client to generate information that is returned to the application program using the
normal MQI return mechanism.

 Copyright IBM Corp. 1993, 1998  47



 Clients and servers  
 

An additional function supported by MQSeries clients, is the ability of an application
program to be connected to more than one queue manager at a time, with the
queue managers being on different processors or on the same processor.

Communication between clients and servers
An MQSeries client communicates with an MQSeries server, using an MQI channel,
which is used to transfer MQI call requests from the client to the server, and
responses from the server back to the client.

MQI channels differ from message channels (that are used to connect queue
managers) in two ways:

� An MQI channel is bidirectional. One MQI channel can be used to send
requests in one direction, and responses in the opposite direction.

With message channels, data can be passed in one direction only. If two-way
communication is required between two queue managers (for example, in the
situation where reply messages are to be sent to the same queue manager that
handled an initial request message), then two message channels are required,
one to handle messages travelling in one direction, and another for messages
travelling in the other direction.

� Communication on an MQI channel is synchronous. When an MQI request
is transmitted from a client to a server, the MQSeries client product must wait
for a response from the server before it can send the next MQI request.

With message channels, the message traffic on the channel is
time-independent. Multiple messages can be sent from one queue manager to
the other, without the sending queue manager having to wait for any replies
from the receiving queue manager.

The transmission protocol that is to be used on an MQI channel is specified as part
of the channel definition. The MQSeries application program is unaware of the
particular protocol that is being used on the channel. Furthermore, in the situation
where an application program is connected to more than one MQSeries server, the
MQI channels that are used for these connections could use different protocols.
For example, an application program could connect to one queue manager using
TCP/IP on one channel, and to another queue manager using NetBIOS on a
different channel.

With both MQI and message channels, a channel definition is required at each end
of the channel, and each of these definitions must include a channel type and a
channel name. You can choose to use different channel types according to the
application you are designing, but the same channel name must be used at both
ends of the channel.

48 MQSeries Planning Guide  



  Clients and servers
 

Installing clients and servers
For those products that support both clients and servers, the product, as delivered,
contains the files for the MQSeries server, together with the client files for the
server platform and several other platforms.

For example, if you order MQSeries for AIX V5, in addition to the base product you
will receive files for the AIX, DOS, HP-UX, OS/2, Sun Solaris, and Windows clients.

The client software can be loaded to memory in the client processor either from the
disk on the client or server machine, or from a disk on a LAN file server.

You can install the client and the server either by installing from the media on
which the products are supplied, to the client or server disk, or by installing to a
LAN file server, and loading the client or server from there.

| The MQSeries for AS/400, MQSeries for MVS/ESA, and MQSeries for Tandem
| NSK products cannot be used as MQSeries clients and do not include any client

files. However, they do include the MQSeries server code needed to support any
clients that you might choose to install, either from another MQSeries product or
from the Internet.

MQSeries clients from IBM Transaction Processing SupportPacs
You can install the MQSeries client files from an IBM Transaction Processing
SupportPac.

The IBM Transaction Processing SupportPacs library consists of material that
complements the family of CICS and MQSeries products marketed by IBM. The
Transaction Processing SupportPacs library is available on the Internet at:

 http://www.software.ibm.com/ts/mqseries/txppacs/txpsumm.html

MQSeries client software is available at no charge but is subject to the IPLA and
License Information terms defined when requesting the MQSeries clients on the
Internet. You have the right to make as many copies of the MQSeries client as
necessary.

| The VM/ESA client is shipped with the VM/ESA product; it is not available as a
| SupportPac.

National language considerations for clients
The client part of an MQSeries product includes a file that contains all the program
and operator messages that are used by the product. This file has been translated
to the national languages of the server product, so that no further translation of
these messages is required.

Data conversion considerations for clients
The data conversion facilities provided for MQSeries application programs are the
same as those that are available for application programs that are executing with
MQSeries servers:

� For certain built-in formats, conversion can be performed during the processing
of an MQGET call, if the data conversion option is included in the call.

  Chapter 7. Introduction to MQSeries clients and servers 49



 Support for MQSeries clients  
 

� For application defined formats, the conversion can be performed by a user-exit
program, called during the processing of an MQGET call.

For further information about data conversion with MQSeries clients and servers,
refer to the MQSeries Application Programming Guide and the MQSeries Clients
book.

Product support for MQSeries clients
The platform support for MQSeries clients and servers is as follows. Any of the
MQSeries products listed is installed as a Base product and Server (Base product
and Distributed Queuing without CICS feature, and Client Attachment feature on
MQSeries for MVS/ESA). These MQSeries products can accept connections from
the MQSeries clients on the platforms listed, subject to differences in coded
character set identifier (CCSID) and communications protocol.

Note:  If you are using previous versions of MQSeries products, make sure that
code conversion from the CCSID of your client is supported by the server. See the
Language support tables in the MQSeries Application Programming Reference.

The following MQSeries products:

� MQSeries for AIX Version 5
| � MQSeries for AS/400 Version 4 Release 2

� MQSeries for AT&T GIS UNIX Version 2.2
� MQSeries for Digital OpenVMS Version 2.2
� MQSeries for HP-UX Version 5
� MQSeries for MVS/ESA Version 1 Release 2
� MQSeries for OS/2 Warp Version 5
� MQSeries for SINIX and DC/OSx Version 2.2
� MQSeries for SunOS Version 2.2
� MQSeries for Sun Solaris Version 5

| � MQSeries for Tandem NSK Version 2.2
� MQSeries for Windows NT Version 5

can accept connections from MQSeries clients on:

 � AIX
� AT&T GIS UNIX (this platform has become NCR UNIX)

 � Digital OpenVMS
 � DOS
 � HP-UX
 � OS/2
� SINIX and DC/OSx

 � SunOS
 � Sun Solaris

|  � VM/ESA
 � Windows 3.1
 � Windows 95
 � Windows NT

50 MQSeries Planning Guide  



  
 

MQSeries clients on other platforms
The MQSeries clients included in this book are the ones supplied with the
MQSeries products listed above (“Product support for MQSeries clients” on
page 50). Each MQSeries product (except MQSeries for MVS/ESA, MQSeries for

| AS/400, and MQSeries for Tandem NSK) supplies files for clients on the same
platform as the server and for a number of other platforms.

| Further MQSeries clients that can connect to the MQSeries products listed above
are available through the Internet. For details of the platform and support status,
see:

 http://www.software.ibm.com/ts/mqseries/txppacs/txpsumm.html

Where to find more information
More information about MQSeries clients can be found in the MQSeries Clients
book.

  Chapter 7. Introduction to MQSeries clients and servers 51



  
 

52 MQSeries Planning Guide  



  MQSeries framework
 

Chapter 8. Introduction to the MQSeries Framework

This chapter describes the MQSeries Framework. It contains the following
sections:

� “Why the MQSeries Framework?”
� “Services and components provided” on page 54

Why the MQSeries Framework?
The MQSeries Framework offers users and independent software vendors the
opportunity to extend or replace queue manager functionality, using defined
interfaces.

These interfaces are provided in various forms. Some, for example the MQSeries
name service interface, are provided by user-supplied modules that interface to the
queue manager through an application programming interface. The trigger monitor
interface, on the other hand, is provided by means of trigger messages that are
written to a special queue.

In some cases components are shipped ready for you to use. You can choose
whether to make use of them, and you can also decide to use your own versions
instead of, or as well as, the supplied versions.

Not all MQSeries products provide all of the interfaces defined by the MQSeries
framework. When an interface has been provided by an MQSeries product on a
particular platform, it will be retained for future releases on that platform.

The major reasons for allowing modifications of the functions are:

� To provide the flexibility of choosing whether to use components provided by
MQSeries products, or to replace or augment them with others

� To allow independent software vendors to participate, by providing components
that might be using new technologies, without requiring internal changes to
MQSeries products

� To allow MQSeries to exploit new technologies faster, and so provide products
sooner

The components of the MQSeries Framework are:

� Trigger monitor interface (TMI)
� Message channel interface (MCI)
� Name service interface (NSI)
� Security enabling interface (SEI)
� Data conversion interface (DCI)

These are shown in Figure 8, and are outlined in the following text. A detailed
definition of each interface can be found in the book or books indicated.

 Copyright IBM Corp. 1993, 1998  53



 MQSeries framework  
 

Application

MQI

SEI

NSI

TMI

MCI

TCP/IP

SNA

Other

Other MQ Systems

Messaging
and

Queuing
Kernel

DCI

Name
Service

Interface

Data
Conversion

Interface

Security
Enabling
Interface

DCE
Directory

Trigger
Monitor
Interface

DCE
Security Message

Channel
Interface

Figure 8. The MQSeries Framework

Invoking MQSeries Framework components
Where components are supported, they can be installed as necessary to provide
some, or all, of the available function.

The queue manager refers to an initialization file to determine the particular
components installed, and to get the information that it requires to invoke these
components.

Services and components provided
This section gives information on the MQSeries Framework components and on the
particular components that are provided by the MQSeries products.

Trigger monitor interface (TMI)
When messages arrive on a queue, the queue manager can generate trigger
messages on a special kind of queue called an initiation queue. The generation of
these messages is controlled by setting attributes of the queue.

The structure of the data in a trigger message is defined by the TMI. Trigger
messages can be read by a long-running transaction called a trigger monitor, which
starts applications to process the messages that have arrived on the queue.

MQSeries provides trigger monitors for use in various environments. When they
start applications, they pass a defined structure as a parameter to the application.
You can also provide your own trigger monitors, making use of the defined format
of the trigger message. Your trigger monitors can pass the same structure as the
supplied ones, or you can choose to do something different.

See the information on the trigger monitor interface (TMI) in the MQSeries
Application Programming Guide for more information.

54 MQSeries Planning Guide  



  MQSeries framework
 

Message channel interface (MCI)
If a message is destined to go to a remote queue manager, the queue manager
places it on a special kind of queue called a transmission queue. The message
data has a header that includes the names of the destination queue manager and
queue.

Triggering (see “Trigger monitor interface (TMI)” on page 54) can be used to start a
process that reads the messages from a transmission queue, and sends them to
their destination. Alternatively, this process can be started by an administrator.

MQSeries provides message channel agent (MCA) programs that transmit
messages to MCAs on other queue managers. Commands are also provided to
carry out channel administration.

You can provide alternative processes to take messages from transmission queues,
and:

� Transmit the messages to similar processes you have provided on other queue
managers, or

� Insert the messages into some other messaging system.

For details of how to implement the MCI, refer to the information on the
transmission queue header structure (MQXQH) in the MQSeries Application
Programming Reference manual to see how to write a message channel agent
(MCA) program.

You can take advantage of triggering to initiate your process. You might need to
provide administrative functions, similar to those available for MQSeries channels,
for defining and monitoring the activity of your processes.

Note that the MCAs you write cannot communicate with MQSeries-supplied MCAs.

Name service interface (NSI)
Queue managers provide functions that allow administrators to define and
manipulate queue definitions. Each queue manager maintains a directory of the
queues that have been defined to it.

When an application opens a queue, the local queue manager looks up the queue
in its directory if the application does not provide the name of a remote queue
manager to which the queue belongs. If the queue is not found in that directory,
the open normally fails.

However, you can install a naming service, which will be invoked if the queue
manager is unable to resolve a queue name. Your service is passed the name of
the queue that cannot be resolved. If your service recognizes the name, it returns
the name of the queue manager to which the queue belongs.

The service provides the following functions:

� Lookup queue - given a queue name, finds the directory entry that contains that
name, and returns the queue manager name

� Insert queue - inserts a new entry into the directory

� Delete queue - deletes an entry from the directory

  Chapter 8. Introduction to the MQSeries Framework 55



 MQSeries framework  
 

The interface to the naming service is a programming interface, called the NSI. It
is described in the MQSeries Programmable System Management book.

The NSI is available on MQSeries for OS/2 Warp, MQSeries for Windows NT, and
MQSeries on UNIX systems.

DCE naming component
The DCE naming installable component provides naming services for queues within
one DCE cell.

Details of this component can be found in the MQSeries Programmable System
Management book.

The component is provided with MQSeries for AIX, Digital OpenVMS, HP-UX, OS/2
| Warp, Sun Solaris, and Windows NT, but is not invoked unless it is included in the

queue manager initialization file. The component requires that DCE support is
available.

Security enabling interface (SEI)
There are three parts to the SEI:

 � Authorization service
� User identifier service
� Message channel agent exits

See also Chapter 3, “Introduction to MQSeries security” on page 21 for further
information.

 Authorization service
This service provides access control facilities to the queue manager when an
application issues an MQI call (for example, MQOPEN) or a command (for
example, DELETE QLOCAL) that requires an authorization check to be carried out.

This enables the queue manager to check that users, or programs, have the
appropriate authority for the actions they are trying to perform on queue manager
objects.

The authorization service provides the following functions:

� Check object authority
� Set object authority
� Set initial authority
� Delete object authority
� Get object authority
� Copy all object authority

You can install your own version of this service, which can either be self-contained,
or might in turn interface to some other authorization service that is available on the
platform. Your service is invoked through a programming interface, which is part of
the SEI. It maintains (either itself or by using another underlying service) lists of
authorizations, and upon request returns information to the queue manager about
whether a particular principal has authority to perform a certain action on a
specified object.

56 MQSeries Planning Guide  



  MQSeries framework
 

This service is provided on MQSeries for UNIX systems, MQSeries for OS/2 Warp,
and MQSeries for Windows NT.

Object authority manager:  The object authority manager (OAM) is an installable
component that provides authorization services.

The component is provided as part of the MQSeries on UNIX systems products.

MQSeries for OS/2 Warp does not provide an authorization component, but is
designed to accept any components (that provide authorization service functions)
you might want to supply or obtain from independent software vendors.

User identifier service
On OS/2 Warp, it is not necessary for a user to log into the system, and therefore
the queue manager cannot normally find a specific user identifier to associate with
an application running on OS/2 Warp.

The user identifier service defines a programming interface, part of the SEI, which
allows you to install your own service to supply a user identifier to the queue
manager.

This service is provided only on MQSeries for OS/2 Warp.

This service is used by the queue manager to obtain a user ID. By default, the
queue manager places the user ID in the message descriptor of messages when it
puts them on queues, so that the application program that gets the messages can
verify that they originated from authorized users or programs.

The queue manager can also make use of this user identifier for authorization
checking.

The user identifier service provides just one function:

� Find user ID - obtain the predefined user ID

The user identifier service is not provided for client applications, for which another
technique is available. See the MQSeries Clients manual.

Environment user ID:  The environment user ID installable component provides
the user identifier service, by obtaining a user ID value from an environment
variable. The value of this variable is set when the component is installed.

Message channel agent exits
A mechanism for transmitting messages from one queue manager to another is
referred to as a message channel. At each end of a channel a program called a
message channel agent (MCA) controls the transmission of messages along that
channel.

Exit points are defined at various points in the operation of an MCA. You can
define functions that will be invoked at these points. Exit points are of particular
relevance to security, and are therefore part of the SEI. They are:

 � Security exits

At each end, a security exit is invoked after communication has been
established with the partner, but before message transfer starts. Each security

  Chapter 8. Introduction to the MQSeries Framework 57



 MQSeries framework  
 

exit has the opportunity to exchange security messages with the security exit at
the partner, in order to satisfy itself of the partner’s authenticity. If either is not
satisfied, it can prevent any message transfer.

 � Message exits

A message exit is invoked at the sending end just before a message is
transferred, and at the receiving end just before it is stored. It has the
opportunity to change any information in the message, including information in
the message header such as the user identifier. This facility can be used to
translate user identifiers on entering a new security domain or, for example, to
set a blanket user identifier that has low authorization when receiving
messages along a channel from an untrusted node. Message exits can also
reject or reroute messages.

| On AIX, HP-UX, OS/2 Warp, OS/400, Sun Solaris, and Windows NT, you can
call more than one message exit.

� Send and receive exits

These are invoked just before any transmission is sent, and just after one is
received. You can make use of this to provide encryption of sensitive data sent
across open networks.

| On AIX, HP-UX, OS/2 Warp, OS/400, Sun Solaris, and Windows NT, you can
call more than one send or receive exit.

You can define different exit modules for different channels.

See the MQSeries Intercommunication manual for further information about channel
exits.

Data conversion interface (DCI)
Messages sent between platforms that normally use different encodings (for
example, where integer fields are byte-swapped) and coded character set identifiers
(CCSIDs) require conversion. An application getting a message from a queue can
request that the queue manager converts the message data into the encoding and
CCSID of its choice, which will normally be the standard ones in use on the
platform on which it is running.

The message header contains information about the encoding and CCSID of the
message data. It also contains a format name, which identifies the shape of the
data. You can install exits, which have the same names as format names, to
perform data conversions on the corresponding messages. These exits interface to
the queue manager through a programming interface, called the DCI.

To help you provide these exits, MQSeries provides a utility that accepts a C
language structure definition and generates C source code that can be built to
provide an exit.

Built-in conversion is provided for MQSeries-defined standard formats.

The DCI is implemented only on MQSeries for MVS/ESA, MQSeries for OS/2
Warp, MQSeries for Windows NT, MQSeries on UNIX systems, and MQSeries for
AS/400. When transmitting messages from a platform that does support it to one
that does not, you can ask for this function to be carried out on all messages sent

58 MQSeries Planning Guide  



  MQSeries framework
 

along a particular channel. This means that when the messages arrive at their
destination, they are already in the standard encoding and CCSID for that platform.

See the MQSeries Application Programming Guide for information about
data-conversion exit programs.

  Chapter 8. Introduction to the MQSeries Framework 59



 MQSeries framework  
 

60 MQSeries Planning Guide  



  MQSeries for AS/400
 

Part 2. Planning for MQSeries for AS/400

Chapter 9. Introduction to MQSeries for AS/400 . . . . . . . . . . . . . . . .  63
Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

Preparing your applications . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64
Planning to use MQSeries in a network . . . . . . . . . . . . . . . . . . . . .  64
Planning recovery services . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Planning data security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Concurrent use-based pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65
Installing and setting up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

Installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Setting up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 10. Backup and recovery planning for MQSeries for AS/400 . . .  67
Journal control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 11. Security planning for MQSeries for AS/400 . . . . . . . . . . .  69
Naming differences between OS/400 and MQSeries for AS/400 . . . . . . . .  69
Security planning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 12. Administration of MQSeries for AS/400 . . . . . . . . . . . . .  71
Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Managing communications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Managing remote systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
Managing MQSeries from remote systems . . . . . . . . . . . . . . . . . . .  73

Using the administration utility . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73

Chapter 13. Storage planning for MQSeries for AS/400 . . . . . . . . . . .  75
Product storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Journal storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Storage for other data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

Message queues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Performance information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

 Copyright IBM Corp. 1993, 1998  61



 MQSeries for AS/400  
 

62 MQSeries Planning Guide  



  MQSeries for AS/400
 

Chapter 9. Introduction to MQSeries for AS/400

MQSeries for AS/400 runs on an AS/400 capable of running OS/400 to provide
messaging and queuing applications support.

This chapter includes basic information on:

� “Planning for MQSeries”
� “Concurrent use-based pricing” on page 65
� “Installing and setting up” on page 66

For more information on the hardware and software environment needed by the
MQSeries for AS/400 product, see “MQSeries for AS/400 V4R2” on page 218.

Planning for MQSeries
This chapter helps you to plan for the introduction of MQSeries for AS/400 into your
enterprise and introduces the items you must consider when doing this planning.

This chapter does not provide detailed information to enable you to perform the
installation of MQSeries for AS/400. That information is provided in the MQSeries
for AS/400 Administration Guide.

There are several stages in planning for the use of MQSeries for AS/400 that you
must go through. They are:

1. Preparing your applications for the use of MQSeries for AS/400
2. Planning to include MQSeries for AS/400 in a network
3. Preparing to install MQSeries for AS/400
4. Planning to set up MQSeries for AS/400

A prime requirement for a message delivery system is that it must be reliable.
Many functions are built into MQSeries for AS/400 to ensure that:

� Messages are not lost despite system failures

� Messages are not delivered more than once

� Messages are not accessed or delivered to unauthorized persons or
applications

MQSeries for AS/400 uses OS/400 journaling and other facilities to support these
functions.

You must also plan for the operation and administration of MQSeries for AS/400 in
your enterprise and consider the implementation of the MQSeries for AS/400
security facilities in addition to those of OS/400. Brief outlines of these planning
operations are included in this chapter.

 Copyright IBM Corp. 1993, 1998  63



 MQSeries for AS/400  
 

Preparing your applications
MQSeries for AS/400 brings the Message Queue Interface (MQI) to your
applications. This interface allows you to modify existing applications and to write
new applications. The MQI removes much of the need to understand the network
and communication systems that you use. Thus you can expect to generate
applications more speedily than before. However, you must plan to take advantage
of the MQI by planning its use in your applications and by understanding the ways
in which it assists you.

You can find more information on how to use the MQI in your applications by
referring to the MQSeries Application Programming Guide.

Interfacing with CICS
With the MQSeries for AS/400 products you can create application programs for the
CICS for AS/400 transaction environment. These applications can use the MQI to
communicate with CICS or non-CICS programs in any of the environments
supported by the MQSeries products.

|  Using C ++
| You can use the OS/2 environment to write C++ programs for AS/400, using Client
| Access/400 to provide links to an AS/400 host, and VisualAge C++ for AS/400,
| which is a cross-compiler add-on for VisualAge C++ for OS/2. (Client Access/400 is
| an OS/2 program; it is not related to the MQSeries concept of clients.)

| An OS/2 programmer can use Client Access/400 to mount an OS/400 file system.
| MQSeries for AS/400 includes an image for such a file system (IFS), containing a
| number of items specifically for OS/2 cross-compiler usage.

| An OS/2 installation program is provided with MQSeries for AS/400 V4R2 on the
| IFS. This installs an OS/2 toolkit for users of VisualAge C++ for AS/400, including
| C and C++ header files, C++ sample program source, and C++ documentation. See
| the MQSeries Using C++ manual for more information.

Planning to use MQSeries in a network
MQSeries for AS/400 uses the distributed queuing facility to exchange messages
between MQSeries platforms using the SNA LU 6.2 and TCP/IP transmission
protocols.

You must consider how you will attach MQSeries for AS/400 to a network, and how
you will define the channels that are used to exchange messages.

According to the way that you have set your systems up, security checks can be
performed at various times. MQSeries for AS/400 does not provide
communications link authorization or data encryption on these links. Instead,
various exits are provided that can be used by your applications to provide these
facilities.

“MQSeries interoperability summary” on page 210 shows some of the links that are
possible to other MQSeries products, and the transmission protocols that are used
on these links. For further information about distributed queuing, refer to the
MQSeries Intercommunication manual.

64 MQSeries Planning Guide  



  MQSeries for AS/400
 

Planning recovery services
MQSeries for AS/400 makes use of the OS/400 journaling service to allow backup
and recovery of the messaging system. Chapter 10, “Backup and recovery
planning for MQSeries for AS/400” on page 67 introduces you to the recovery
facilities and to the items you must consider in order to include MQSeries for
AS/400 in your backup and recovery plans.

Planning data security
MQSeries for AS/400 makes use of the existing OS/400 security management
facilities. This book indicates the particular way that MQSeries for AS/400 uses the
standard OS/400 security.

 Administration
A summary of the administration facilities provided by the MQSeries for AS/400
products is given in Chapter 12, “Administration of MQSeries for AS/400” on
page 71. Full details of these facilities can be found in the MQSeries for AS/400
Administration Guide.

Concurrent use-based pricing
MQSeries for AS/400 counts concurrent users. A user is defined as a concurrent
MQSeries connect. An MQSeries connect is established within an OS/400 job by
an application program or command (including the Systems Administration
Application and IBM-supplied commands) instigating an MQCONN call. It is

| terminated when an MQDISC call is instigated. (These calls can be issued
| explicitly or alternatively they can be implied by the use of the MQOPEN and
| MQCLOSE calls.) MQSeries does not charge for connections performed by the

product itself, for example, the Command Server.

Each OS/400 job simultaneously connected to the active queue manager (server) is
counted as one concurrent user. Only one connect can be established per job at
any given time.

The number of users licensed for concurrent use is normally determined by the
maximum who will be active at any one time. OS/400 provides monitoring and
reporting for use-based programs. Customers will be advised when they approach
the authorized user limit (90%). One use is included in the base MQSeries charge.

You can use the license information command (WRKLICINF) to manage the use of
the MQSeries product.

Clients are not charged for per se, but their use implies a concurrent use at the
server.

  Chapter 9. Introduction to MQSeries for AS/400 65



 MQSeries for AS/400  
 

Installing and setting up
MQSeries for AS/400 is installed by using the OS/400 GO LICPGM command,

| issued from the command line. When you issue this command, you are presented
| with a menu from which you can choose to install MQSeries for AS/400.

To prepare for the actual installation, you need to plan how much DASD you
require in your OS/400 system to accommodate MQSeries for AS/400.

Assistance is given in Chapter 13, “Storage planning for MQSeries for AS/400” on
page 75 to help you plan the amount of DASD required by MQSeries for AS/400.

 Installation
For MQSeries for AS/400, you must follow the instructions in the MQSeries for
AS/400 Administration Guide.

The installation verification procedure is performed by creating and starting a queue
manager, and creating the undelivered-message (dead-letter) queue.

 Setting up
MQSeries for AS/400 requires some setting up after installation in order to meet the
individual and special requirements of your system, and to use your system
resources in the most effective way. Below are the items you must consider:

 � Define queues
– Consider your naming conventions for queues

� Define trigger processes
� Define remote links

– Define associated transmission queues
– Consider your naming conventions for remote queues
– Consider your naming conventions for channels

The setup procedures are described in the MQSeries for AS/400 Administration
Guide.

66 MQSeries Planning Guide  



  MQSeries for AS/400
 

Chapter 10. Backup and recovery planning for MQSeries for
AS/400

MQSeries for AS/400 uses the journaling and recovery facilities provided by
OS/400. You should be familiar with these facilities and refer to the AS/400
Backup and Recovery manual.

| MQSeries for AS/400 has two unique journals that are created when MQSeries is
| created. MQSeries data events are recorded in these journals under the normal
| AS/400 controls. The events that are recorded are those that are required to

recover MQSeries in case of failure. For message queues, all persistent messages
are recorded in the journals; nonpersistent messages are not. This means that, in
the event of a problem causing loss of messages that exist on a queue, the
persistent contents can be recovered by use of the journals. The methods for
recovery of such data or messages are discussed in the MQSeries for AS/400
Administration Guide.

You need to consider how the message data routed through MQSeries is to be
journaled, and how you will extend your existing recovery plans to include
MQSeries related data.

 Journal control
When data in a journal receiver reaches a threshold value, a new one is
automatically created, attached, and brought into use by MQSeries. The old journal
receiver is not deleted by MQSeries; this is a task that must be completed by the
system administrator. MQSeries will issue a message to the administrator
containing some key dates that are associated with the journal receiver that has
been replaced by the new one. It is up to your system administrator to decide what
action must be taken to dispose of the old journal receiver using the dates supplied
in the message. The action might be to move the old journal receiver to long term
storage, or simply to delete it. However, deletion of journal receivers must be
carefully considered as the records might still be needed for restart. The receivers
might contain information regarding long-lived persistent messages. The choice is
dependent on your strategy for data security and recovery.

Figure 9 on page 68 illustrates the concepts of journaling with MQSeries for
AS/400 and shows how the message sent to the administrator contains date
information pointers to indicate the journal receivers that should be saved to off-line
media, those saved journal receivers that can be deleted, and those online journal
receivers that can be freed. System backups have not been considered in the
above description of journaling for MQSeries. You should continue to take system
backups as required by your standard system operating procedures.

For more information on creating a system backup plan, refer to the AS/400
Backup and Recovery manual.

 Copyright IBM Corp. 1993, 1998  67



 MQSeries for AS/400  
 

MQSeries for AS/400
Journal

RCVA 9

RCVA 8

RCVA 7

RCVA 6

RCVA 4 RCVA 3

Currently-attached Journal Receiver

Previous Journal Receiver

On-line

Off-line
Long term storage

Date info

Date info

Figure 9. Journaling and date messages

68 MQSeries Planning Guide  



  MQSeries for AS/400
 

Chapter 11. Security planning for MQSeries for AS/400

MQSeries for AS/400 uses OS/400 system security when accessing system
objects. However, as an MQSeries product, the security accesses and controls are
slightly different from other OS/400 operations.

You should be familiar with the security information contained in the AS/400
Security - Reference manual.

This chapter includes basic information about:

� “Naming differences between OS/400 and MQSeries for AS/400”
 � “Security planning”
� “Security exits” on page 70

Naming differences between OS/400 and MQSeries for AS/400
MQSeries for AS/400 objects have 48-character names; OS/400 objects have
10-character names. MQSeries for AS/400 creates, owns, and maintains, a
mapping between the 48-character MQSeries for AS/400 names and the
10-character names of the OS/400 objects that represent the MQSeries for AS/400
objects. If the MQSeries for AS/400 name is a valid OS/400 name, the same name
is used in the mapping.

 Security planning
The MQSeries for AS/400 objects that you must plan security authorities for are the
queue manager object itself, the catalog object, and the administration object. You
must also consider the security of your queues and processes.

The queue manager object contains the queue manager attributes, the catalog
object contains the mapping information, and the administration object is used to
hold the authorities to pass on or set message context.

MQSeries for AS/400 provides commands to grant, revoke, and query the object
authority for MQSeries objects. This is because the MQSeries 48-character name
is used, not the name of an OS/400 object. The authorities to MQSeries objects
are those of the OS/400 application accessing the objects.

The mapping from MQSeries object authority to the system access authority occurs
when an application is checked for the proper authority. For example, the authority
on a queue is checked when an application issues an MQOPEN command through
the MQI; it is not checked on each GET or PUT.

You need to plan how your users will be granted authority to the queue manager
objects. You also need to plan authorizations to the programs and commands
supplied with MQSeries. Authorities can be granted either individually, as a group,
or by authorization lists. Granting authority follows normal OS/400 practice and you
should refer to the AS/400 Security - Reference manual.

Note:  The authorizations set by the MQSeries commands can be displayed using
the DSPMQMAUT MQSeries command. You can also use the normal OS/400
commands, although it will not be obvious which MQSeries objects they apply to.

 Copyright IBM Corp. 1993, 1998  69



 MQSeries for AS/400  
 

The authorizations can be copied from one user to another using the
GRTMQMAUT MQSeries command, or by using the OS/400 grant object authority
command.

For further details of MQSeries security handling, see the MQSeries for AS/400
Administration Guide.

 Security exits
The message channels that are used for distributed queuing have exit facilities that
can be used to invoke programs supplied by you. Examples of the types of
function for which these exit facilities are intended include:

� Verification that the two partners at the ends of the channel are genuine, and
have the appropriate security authorizations to take part in the exchange

� Encryption and decryption of messages

You need to consider whether you should provide exit programs to support your
security plan.

For more information about security exits, refer to the MQSeries
Intercommunication manual.

70 MQSeries Planning Guide  



  MQSeries for AS/400
 

Chapter 12. Administration of MQSeries for AS/400

This chapter is a summary of the administration facilities provided by the MQSeries
for AS/400 products. The chapter has the following sections:

 � “Managing objects”
� “Remote administration” on page 72
� “Using the administration utility” on page 73

Details of the commands, command interfaces, and utilities that are provided by
MQSeries for AS/400 are given in the MQSeries for AS/400 Administration Guide.

 Managing objects
It is the administrator’s job to monitor MQSeries for AS/400 and make any changes
that might be necessary. To do this, the administrator needs to know where each
MQSeries object resides, what its characteristics are, and who has access to it.

The administrator can manage and monitor the resources either by use of
command line entries, or by using the administration utility supplied with the
product. Alternatively, if you have sets of commands that you issue regularly, you
can write a CL program. Details of how to write these administration programs are
contained in the MQSeries for AS/400 Administration Guide.

MQSeries for AS/400 can access security checks to ensure that the user is
authorized to issue particular commands for particular resources.

 Commands
MQSeries for AS/400 supports the following administration facilities:

 � CL Commands

MQSeries for AS/400 provides Control Language commands (CL commands).
These can be issued either at the command line, or by writing a CL program.

Examples of CL tasks include:

– Authorize systems administrators
– Start and stop a queue manager
– Define, change, and display a queue
– Define, change, and display a process
– Define, test, and delete a channel

CL commands are designed exclusively for OS/400, and CL responses are
designed to be human-readable. The commands perform similar functions to
PCF commands, but the format is designed to match the standard OS/400
format, whereas PCF commands are platform independent, with both the
command and response formats being intended for program use.

� MQSeries commands (MQSC)

With MQSeries for AS/400, you can build commands by entering the MQSC
commands into a member of a specified library and running the
STRMQMMQSC command. For information about how to do this, see the
MQSeries Command Reference manual.

 Copyright IBM Corp. 1993, 1998  71



 MQSeries for AS/400  
 

 � PCF commands

Any local or remote application program can generate PCF commands in
messages and put them to the command queue,
SYSTEM.ADMIN.COMMAND.QUEUE, to be processed by the MQSeries for
AS/400 command server.

More information on how to use all these facilities is given in the MQSeries for
AS/400 Administration Guide.

MQSeries for AS/400 can verify that the user is authorized to issue particular
commands for particular resources.

Changes made to the resource definitions of a queue manager using the
commands (directly or indirectly) are preserved across restarts of the MQSeries for
AS/400 system.

 Managing communications
Part of the administrator’s role is to ensure that the required communications links
are activated, and to monitor the status of these links as required by your
enterprise. You can find information describing these tasks in the MQSeries
Intercommunication manual.

 Remote administration
There are two aspects to the MQSeries remote administration facilities:

� MQSeries for AS/400 can be used to manage remote systems
� Other remote products can be used to manage MQSeries for AS/400

Managing remote systems
Facilities are provided by MQSeries for AS/400 to allow an administrator to manage
the following systems remotely:

� MQSeries for AS/400
� MQSeries for Digital OpenVMS
� MQSeries for OS/2 Warp

| � MQSeries for Tandem NSK
� MQSeries on UNIX systems
� MQSeries for Windows NT

Because of the differences in the MQSeries products, it is not always possible to
manage remotely the same set of MQSeries objects or attributes that you can
manage locally.

If you wish to manage any other MQSeries product (for example, MQSeries for
MVS/ESA) you can write an application program to send the appropriate
commands to the command queue at the remote queue manager. However, some
products do not have a command queue, so they cannot be administered from a
local or remote application program.

72 MQSeries Planning Guide  



  MQSeries for AS/400
 

Managing MQSeries from remote systems
MQSeries for AS/400 can be managed from a remote MQSeries system, by an
administrator using the facilities provided by the following products:

� MQSeries for AS/400
� MQSeries for Digital OpenVMS
� MQSeries for OS/2 Warp

| � MQSeries for Tandem NSK
� MQSeries on UNIX systems
� MQSeries for Windows NT

Note:  You can manage MQSeries for AS/400 from MQSeries for MVS/ESA by
writing an application program to send the appropriate PCF commands to the
command queue.

Using the administration utility
Much of the functionality of the CL commands is available in a user-friendly way
from the MQSeries for AS/400 administration utility, described in the MQSeries for
AS/400 Administration Guide.

The utility can be used for the administration of local MQSeries for AS/400
products, and for remote administration of a number of other MQSeries products,
as listed in “Remote administration” on page 72.

The MQSeries administration utility, when started, supplies a set of panels to help
you perform various administrative tasks. These panels help you to:

� Start and stop the local queue manager

� Create, copy, and delete local and remote queue manager objects

� Display and change the attributes of a queue manager (local or remote), and its
objects

� Grant and revoke security access to local queue manager objects

� View the contents of a queue and individual messages on a local queue
manager

You can find information about the administration utility in the MQSeries for AS/400
Administration Guide.

  Chapter 12. Administration of MQSeries for AS/400 73



 MQSeries for AS/400  
 

74 MQSeries Planning Guide  



  MQSeries for AS/400
 

Chapter 13. Storage planning for MQSeries for AS/400

This chapter tells you how to plan the type and amount of storage you require
when you include MQSeries for AS/400 in your system. It contains information
about:

 � “Product storage”
 � “Journal storage”
� “Storage for other data sets” on page 76
� “Performance information” on page 76

 Product storage
MQSeries for AS/400 requires approximately 60 MB of main storage in the QMQM
library.

This size includes the product programs, message files, panels and prompts,
commands, and ancillaries. The size varies slightly according to any options that
you select.

See the appropriate MQSeries for AS/400 Administration Guide for details on the
options that you can select.

 Journal storage
Significant events and data changes are journaled by OS/400. Such data is sent

| by MQSeries for AS/400 to unique journals. These journals direct the data to a
series of predefined journal receivers. The threshold values of these receivers are
set up by MQSeries for AS/400 to a default size of 16 MB.

When data in a journal receiver reaches its threshold value, a new one is
automatically created, attached, and brought into use by MQSeries for AS/400. A
message is sent to the system administrator containing key dates associated with
the journal receivers. Action must be taken by the administrator to dispose of the
old journal receiver according to the dates supplied in the message. See
Chapter 10, “Backup and recovery planning for MQSeries for AS/400” on page 67
for more information about journaling.

You need to plan for some permanent storage to which journal receivers can be
offloaded when they are no longer required to be maintained in main storage. The
journals can be offloaded to diskettes, DASD, tape, or other media supported in
your enterprise.

 Copyright IBM Corp. 1993, 1998  75



 MQSeries for AS/400  
 

Storage for other data sets
The total amount of storage you should reserve for MQSeries for AS/400 depends
mainly on the amount needed to store messages; in the majority of cases, the
amount needed to store the other MQSeries objects that are required, such as
process objects, and the queue manager object, is small compared to that required
for messages.

Therefore, you can get an approximate figure for the amount of storage required in
the data sets, by calculating the amount required for both persistent and
nonpersistent messages, using the algorithms described in the next section, and
adding the two amounts together.

 Message queues
All messages are stored in the QMQMDATA library, with nonpersistent and
persistent messages being stored within different storage spaces. The amount of
storage you should reserve is dependent on the number of messages you expect
your applications to be handling at any one time, and the expected size of these
messages.

Each message consist of two portions: a message descriptor, and message data.

| The actual size of a message descriptor is 456 bytes. If you are using distribution
| lists, or grouped or segmented messages, the size of the header will increase for
| the transmission queue. However, because data storage is obtained by the queue

manager in 1024 byte (1 KB) blocks, it is necessary to allow for one block of
storage for the descriptor when calculating the amount of storage for messages.

The amount of storage required for the data portion of a message is the size of
your message data, rounded up to the next 1 KB block boundary.

So, the amount of storage, in 1 KB blocks, that you should reserve for persistent
messages is:

 Number of 1 KB blocks required = n \ (1 + D)

where n = number of messages

and D = message data size / 1ð24
(D is rounded up to the next higher

 integer)

The amount of storage for nonpersistent messages is computed using the same
algorithm.

 Performance information
Information about MQSeries performance is available on the Internet at:

http://www.software.ibm.com/ts/mqseries/txppacs/txpm1.html

76 MQSeries Planning Guide  



  MQSeries on Digital OpenVMS
 

Part 3. Planning for MQSeries on Digital OpenVMS

Chapter 14. Introduction to MQSeries on Digital OpenVMS . . . . . . . . .  79
Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79

Preparing your applications . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80
Planning to use MQSeries in a network . . . . . . . . . . . . . . . . . . . . .  80
Installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Setting up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Planning recovery services . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
Planning data security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81
Administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Migration from MQSeries Version 1 . . . . . . . . . . . . . . . . . . . . . . . . .  82

Chapter 15. Backup and recovery planning for MQSeries for Digital
OpenVMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Types of logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84
Selecting a logging method . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

Recovering from problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85

Chapter 16. Security planning for MQSeries for Digital OpenVMS . . . . .  87
Controlling access to resources . . . . . . . . . . . . . . . . . . . . . . . . . . .  87

Managing access through user groups . . . . . . . . . . . . . . . . . . . . . .  87
Resources you can protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88
Using the security commands . . . . . . . . . . . . . . . . . . . . . . . . . . .  88

Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 17. Administration of MQSeries for Digital OpenVMS . . . . . . .  91
Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Managing communications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Managing remote systems from MQSeries for Digital OpenVMS . . . . . . .  92
Managing MQSeries from remote systems . . . . . . . . . . . . . . . . . . .  92

Chapter 18. Storage planning for MQSeries for Digital OpenVMS . . . . .  93
RAM considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Disk space considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

Product modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Paging space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Message queues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Log files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Sample configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Capacity planning figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

 Copyright IBM Corp. 1993, 1998  77



 MQSeries on Digital OpenVMS  
 

78 MQSeries Planning Guide  



  MQSeries on Digital OpenVMS
 

Chapter 14. Introduction to MQSeries on Digital OpenVMS

There are two MQSeries products for Digital OpenVMS; one for AXP and one for
VAX. The products comprise two parts, the server and the clients. The server
runs on a machine that is capable of running an MQSeries queue manager; the
clients provided with the product are for Digital OpenVMS, DOS, OS/2 Warp, and
Windows 3.1. (The Windows 3.1 client can operate under Windows 3.1, Windows
95 or within the WIN-OS/2 environment under OS/2 Warp.)

MQSeries provides the MQI programming interface for use by application programs
that are running on the server or the client processor. More detail on MQSeries
clients and servers is given in Chapter 7, “Introduction to MQSeries clients and
servers” on page 47.

For information on the hardware and software environments, see “MQSeries for
Digital OpenVMS” on page 220.

Planning for MQSeries
This chapter helps you to plan for the introduction of MQSeries for Digital
OpenVMS into your enterprise, and introduces the items that you need to consider
when doing this planning.

There are several stages in planning for the use of MQSeries for Digital OpenVMS
that you must go through. They are:

1. Preparing your applications for the use of MQSeries for Digital OpenVMS
2. Planning to include MQSeries for Digital OpenVMS in a network
3. Preparing to install MQSeries for Digital OpenVMS
4. Planning to set up MQSeries for Digital OpenVMS

A prime requirement for a message delivery system is that it must be reliable.
Many functions are built into MQSeries for Digital OpenVMS to ensure that:

� Messages are not lost despite system failures

� Messages are not delivered more than once

� Messages are not accessed by, or delivered to, unauthorized persons or
applications

MQSeries for Digital OpenVMS uses logging and other facilities to support these
functions.

You must also plan for the operation and administration of MQSeries for Digital
OpenVMS in your enterprise, and consider the implementation of an appropriate set
of security facilities. Brief outlines of these planning operations are included in this
chapter.

 Copyright IBM Corp. 1993, 1998  79



 MQSeries on Digital OpenVMS  
 

Preparing your applications
MQSeries for Digital OpenVMS brings the Message Queue Interface (MQI) to your
applications. This interface allows you to modify existing applications and to write
new applications. The MQI removes much of the need to understand the network
and communication systems that you use. Thus you can expect to generate
applications more speedily than before. However, you must prepare to take
advantage of the MQI by planning its use in your applications and by understanding
the ways in which it assists you.

You can find more information on how to use the MQI in your applications by
referring to the MQSeries Application Programming Guide.

Planning to use MQSeries in a network
MQSeries for Digital OpenVMS uses the distributed queue management (DQM)
facility to exchange messages between MQSeries platforms, using either the
DECnet, SNA LU 6.2, or TCP/IP transmission protocols.

You must consider how you will attach MQSeries for Digital OpenVMS to a
network, and how you will define the message channels that will be used to
exchange messages.

According to the way that you have set your systems up, security checks can be
performed at various times. Various exits are provided that can be used by your
applications to provide these facilities.

“MQSeries interoperability summary” on page 210 shows the links that are possible
to other MQSeries products, and the transmission protocols that can be used.

For further information about distributed queue management, refer to the MQSeries
Intercommunication manual.

 Installation
MQSeries for Digital OpenVMS is installed with the OpenVMS VMSINSTALL utility.
For information about installing MQSeries, see the MQSeries for Digital OpenVMS
System Management Guide.

To prepare for the actual installation, you need to plan how much disk space will be
required in your Digital OpenVMS system to accommodate MQSeries. Assistance
is given in Chapter 18, “Storage planning for MQSeries for Digital OpenVMS” on
page 93 to help you plan the amount of space required.

 Setting up
After installation, MQSeries for Digital OpenVMS needs to be set up, and
customized for your own use. This ensures that the appropriate Digital OpenVMS
facilities are made available to MQSeries, and that your MQSeries system is
correctly initialized and ready to work with your applications.

MQSeries for Digital OpenVMS uses configuration files to hold the product
configuration information used for logging, communications protocols and installable
components. After installing the product, you can edit these files to tailor the
operation of the product to meet the requirements of your installation.

80 MQSeries Planning Guide  



  MQSeries on Digital OpenVMS
 

In addition, you need to do the following:

 � Define queues

– Consider your naming conventions for queues

� Define trigger processes
� Define remote links

– Define associated transmission queues
– Consider your naming conventions for remote queues
– Consider your naming conventions for channels

Note:  The characters within the names given to all MQSeries objects are case
sensitive. Therefore, be very careful when defining the names of objects, to select
the appropriate uppercase or lowercase characters.

You can find more information on the setting up and customizing processes for
MQSeries for Digital OpenVMS in the MQSeries for Digital OpenVMS System
Management Guide.

Planning recovery services
MQSeries for Digital OpenVMS provides logging services to allow backup and
recovery of the messaging system. Chapter 15, “Backup and recovery planning for
MQSeries for Digital OpenVMS” on page 83 introduces you to these facilities, and
to the items that you need to consider in order to include MQSeries for Digital
OpenVMS in your backup and recovery plans.

You can find more information on the backup and recovery facilities provided by
MQSeries for Digital OpenVMS in the MQSeries for Digital OpenVMS System
Management Guide.

Planning data security
MQSeries for Digital OpenVMS uses the facilities of the MQSeries object authority
manager (OAM) installable component to control access to the various different
types of queue manager resource (queues, process definitions, channels, and
queue managers).

You can find more general information on authorization installable components in
Chapter 8, “Introduction to the MQSeries Framework” on page 53.

Chapter 16, “Security planning for MQSeries for Digital OpenVMS” on page 87
introduces you to the security facilities provided by MQSeries for Digital OpenVMS
and to some of the items you need to consider when planning for security.

You can find more information on the security facilities provided by MQSeries for
Digital OpenVMS in the MQSeries for Digital OpenVMS System Management
Guide.

 Administration
A summary of the administration facilities provided is given in Chapter 17,
“Administration of MQSeries for Digital OpenVMS” on page 91. Full details of
these facilities can be found in the MQSeries for Digital OpenVMS System
Management Guide.

See also “MQSeries product administration facilities” on page 36.

  Chapter 14. Introduction to MQSeries on Digital OpenVMS 81



 MQSeries on Digital OpenVMS  
 

Migration from MQSeries Version 1
To use MQSeries application programs that were written for MQSeries V1 with
MQSeries for Digital OpenVMS, you need to do the following:

1. Redefine all message queues.

2. Redefine all message channels.

3. Recompile the application programs, using the MQSeries Version 2 header
files.

This might be a suitable time to consider whether you need to re-design any parts
of your application, to take advantage of the additional function provided by
MQSeries for Digital OpenVMS.

One difference between MQSeries for Digital OpenVMS V2.2 or later, and the
earlier products is that MQSeries for Digital OpenVMS does its own queue storage
management. It is not necessary to run a utility program to recover the space that
was occupied by messages that have been removed from queues by MQGET calls;
this is done automatically by MQSeries.

82 MQSeries Planning Guide  



  MQSeries on Digital OpenVMS
 

Chapter 15. Backup and recovery planning for MQSeries for
Digital OpenVMS

This chapter describes the background concepts of recovery and restart. It
contains the following sections:

 � “Logging”
� “Recovering from problems” on page 85

More details of the logging and recovery facilities of MQSeries for Digital OpenVMS
are given in the MQSeries for Digital OpenVMS System Management Guide.

 Logging
The basic premise of a messaging system is that messages entered into the
system are assured of delivery to the destination. One of the ways of ensuring that
messages are not lost is to maintain a record of the activities of the queue manager
that handles the receipt, transmission, and delivery of messages.

MQSeries for Digital OpenVMS does this by recording all the significant changes to
the data controlled or managed by the queue manager in a log. This process is
called logging. The data changes that are logged include the puts and gets of
persistent messages to and from queues, changes to queue attributes, and channel
activity.

The purpose of logging is to create and maintain a log that:

� Keeps records of queue manager changes

� Keeps records of queue updates for use by the restart process

� Is a source for restoration of data should there be a hardware or software
failure

Each MQSeries log consists of a log control file, together with one or more log files
for the storage of data.

The log control file is, as its name implies, used to control and monitor the use of
the log files. It contains information relating to the size, location, next available file,
and other data related particularly to the log files themselves. All the log files within
one log are the same size; there is a default value for this size, but you can
override this value when you set up the log.

 Copyright IBM Corp. 1993, 1998  83



 MQSeries on Digital OpenVMS  
 

Types of logging
MQSeries for Digital OpenVMS has two approaches to maintaining records of
queue manager activities:

 � Circular logging
 � Linear logging

Each type of logging stores the recorded data in a set of files. The differences
between the two types of logging are the contents, and the way that the files are
linked together.

With circular logging, the set of log files are effectively linked together so as to form
a ring. When data is collected, it is written sequentially into the files, in such a way
as to reuse the log files in the ring. You can use circular logging for:

� Crash recovery - that is, after a system failure of some kind has stopped the
queue manager unexpectedly

� Restart recovery - after a planned closedown of the system

With linear logging, the log is maintained as a continuous sequence of files. When
data is collected, it is written sequentially into the log files; the space in the files is
not reused, so that you can always retrieve any record from the time that the queue
manager was created.

Because disk space is finite, you might have to plan for some form of archiving.
Also, if you are handling a high volume of persistent messages, all your log files will
eventually be filled. This will result in operator messages being written to an error
log file; some action will need to be taken by the system administrator to make
more log space available, or to reuse the existing space. You can use linear
logging for:

 � Crash recovery

 � Restart recovery

� Media recovery - to recreate lost or damaged data after a media failure by
replaying the contents of the log

Selecting a logging method
You must base your selection of log type on your requirements for recovery.

Both types of logging can cope with unexpected power outages in the absence of
hardware failure. If you accept that only crash or restart recovery is required,
circular logging might be adequate. If media recovery is important to you, select
linear logging.

With each type of logging, you need to decide on the number of files to use in the
log, and their size. The total amount of space needed depends on the amount of
data to be recorded, which depends on various parameters, including:

� The size of messages
� The number of puts and gets from queues
� The number of messages being transmitted by the message channel agents

84 MQSeries Planning Guide  



  MQSeries on Digital OpenVMS
 

Recovering from problems
MQSeries can recover from communications failures and power loss incidents. In
addition, it is sometimes possible to recover from other types of problem with the
MQSeries data, such as inadvertent deletion of a file.

In the case of a communications failure, messages remain on the queues until they
are removed by a receiving application. If the message is being transmitted, it
remains on the transmission queue until it can be successfully transmitted. To
recover from a communications failure, it is normally sufficient simply to restart the
channels using the link that failed.

On a restart after your system has lost power, the queue manager restores all the
persistent messages that were on the queues to the state that existed just before
the power failure, so that no persistent messages are lost; nonpersistent messages
are discarded.

There are ways in which an MQSeries object can become unusable, for example
due to inadvertent damage. In such situations, you will have to take steps to
recover either your complete system or some part of it. The action required
depends on when the damage is detected, whether the log method selected
supports media recovery, and which object or objects are damaged.

  Chapter 15. Backup and recovery planning for MQSeries for Digital OpenVMS 85



 MQSeries on Digital OpenVMS  
 

86 MQSeries Planning Guide  



  MQSeries on Digital OpenVMS
 

Chapter 16. Security planning for MQSeries for Digital
OpenVMS

This chapter describes the access control security features in MQSeries for Digital
OpenVMS. It contains these sections:

� “Controlling access to resources”
� “Resources you can protect” on page 88
� “Using the security commands” on page 88
� “Security exits” on page 89

Full details of MQSeries for Digital OpenVMS security handling are given in the
MQSeries for Digital OpenVMS System Management Guide.

Controlling access to resources
With MQSeries for Digital OpenVMS, access to queue manager resources is
controlled through the object authority manager (OAM), which is the default
authorization installable component. Because the OAM is an installable
component, you can implement your own security controls in place of, or in addition
to, those supplied by the OAM. (For more information on installable services and
installable components, see Chapter 8, “Introduction to the MQSeries Framework”
on page 53.)

Users can access queue manager objects (queues, process definitions, channels,
and queue managers) only if they have the required authority. The OAM manages
a user’s authorization to manipulate MQSeries objects, and provides a command
interface through which you can grant or revoke access authority to an object for a
specific group of users.

Managing access through user groups
In discussing security in a Digital OpenVMS environment, we use the term principal
rather than user ID. The reason for this is that authorities granted to a user ID can
also be granted to other entities, for example, an application program that issues
MQI calls, or an administration program that issues PCF commands. In these
cases, the principal associated with a program is not necessarily the user ID that
was used when the program was started.

Managing access permissions to MQSeries resources is based on Digital
OpenVMS rights identifiers, that is, identifiers held by principals. A principal can
hold one or more OpenVMS rights identifier. A group is defined as the set of all
principals that have been granted a specific rights identifier.

The OAM does not maintain authorizations at the level of individual principals. The
mapping of principals to identifier names is carried out within the OAM, and
operations are carried out at the rights identifier level.

The authorizations that a principal has are the union of the authorizations of all the
rights identifiers that it holds, that is, its process rights. Whenever a principal
requests access to a resource, the OAM computes this union, and then checks the
authorization against it.

 Copyright IBM Corp. 1993, 1998  87



 MQSeries on Digital OpenVMS  
 

Resources you can protect
Through MQSeries for Digital OpenVMS you can control:

� Access to MQSeries objects through the MQI. When an application program
attempts to access an object, the OAM checks if the user ID making the
request has the authorization (through the identifier held) for the operation
requested.

In particular, this means that queues, and the messages on queues, can be
protected from unauthorized access.

� Permission to use MQSC commands. Only principals that hold rights identifier
mqm  can execute queue manager administration commands, for example, to
create a queue.

� Permission to use control commands. Only principals that hold rights identifier
mqm  can execute control commands, for example, creating a queue manager,
starting a command server, or using runmqsc.

� Permission to use PCF commands.

Different users can be granted different kinds of access authority to the same
object. For example, for a specific queue, users holding one identifier might be
allowed to perform both put and get operations; users with another identifier might
only be allowed to browse the queue (MQGET with browse option). Similarly,
users with identifiers might have get and put authority to a queue, but might not be
allowed to alter or delete the queue.

Using rights identifiers for authorizations
Using identifiers for authorization, rather than individual principals, reduces the
amount of administration required. Typically, a particular kind of access is required
by more than one principal. For example, you might define a group consisting of
end users who want to run a particular application. New users can be given
access simply by granting the appropriate identifier to their OpenVMS user ID.

Try to keep the number of groups as small as possible. Dividing principals into one
group for application users, and one for administrators, is a good place to start.

Using the security commands
The OAM provides a command interface for granting and revoking authority.
Before you can use these commands, you must be suitably authorized - your user
ID must hold the OpenVMS rights identifier mqm . This identifier should have been
set up when you installed the product.

If your user ID holds identifier mqm , you have a ‘super user’ authority to the queue
manager. This means that you are authorized to issue any MQI request or
command from your user ID.

The OAM provides two commands that you can invoke from your OpenVMS DCL
to manage the authorizations of users. These are:

� setmqaut (Set or reset authority)
� dspmqaut (Display authority)

Details of these commands can be found in the MQSeries for Digital OpenVMS
System Management Guide.

88 MQSeries Planning Guide  



  MQSeries on Digital OpenVMS
 

 Security exits
The message channels that are used for distributed queuing, and the MQI channels
that are used between clients and servers, both have security exit facilities that can
invoke programs that you have supplied.

For more information on these security exit programs, see the MQSeries
Intercommunication manual.

  Chapter 16. Security planning for MQSeries for Digital OpenVMS 89



 MQSeries on Digital OpenVMS  
 

90 MQSeries Planning Guide  



  MQSeries on Digital OpenVMS
 

Chapter 17. Administration of MQSeries for Digital OpenVMS

This chapter is a summary of the administration facilities provided by MQSeries for
Digital OpenVMS. It has the following sections:

 � “Managing objects”
� “Remote administration” on page 92

Details of the commands, command interfaces, and utilities that are provided by
MQSeries for Digital OpenVMS are given in the MQSeries for Digital OpenVMS
System Management Guide. You need to arrange for users who need to be able
to use these administration facilities to have the necessary authorizations, using the
procedures given in the System Management Guide.

 Managing objects
It is the administrator’s job to monitor MQSeries for Digital OpenVMS and make
any changes that might be necessary. To do this, the administrator needs to know
where each MQSeries object resides, what its characteristics are, and who has
access to it.

The administrator can manage and monitor the resources using MQSeries
commands (MQSC), or, if there are sets of commands that are issued regularly, by
writing an application program that places them on the command queue.

MQSeries can use the security features provided by the OAM, or by a security
component that you have installed, to ensure that the user is authorized to issue
particular commands for particular resources.

 Commands
MQSeries for Digital OpenVMS supports the following administration commands
and facilities:

� You can enter control commands on the command line

� You can use the runmqsc  control command to cause MQSC commands from
standard input to be executed

� Any local or remote MQSeries application program can generate PCF
commands in messages and put them to the command queue
SYSTEM.ADMIN.COMMAND.QUEUE, to be processed by the MQSeries for
Digital OpenVMS command server

More information on how to use all these facilities is given in the MQSeries for
Digital OpenVMS System Management Guide.

Changes made to the resource definitions of a queue manager using the
commands (directly or indirectly) are preserved across restarts of MQSeries for
Digital OpenVMS.

 Copyright IBM Corp. 1993, 1998  91



 MQSeries on Digital OpenVMS  
 

 Managing communications
Part of the administrator’s role is to ensure that the required communications links
are activated, and to monitor the status of these links as required by your
enterprise. You can find information describing these tasks in the MQSeries
Intercommunication manual.

 Remote administration
There are two aspects to the MQSeries remote administration facilities:

� MQSeries for Digital OpenVMS can be used to manage remote systems
� Other remote products can be used to manage MQSeries for Digital OpenVMS

Managing remote systems from MQSeries for Digital OpenVMS
Facilities are provided by MQSeries for Digital OpenVMS to allow an administrator
to manage the following remote systems:

� MQSeries for AS/400
� MQSeries for Digital OpenVMS
� MQSeries for MVS/ESA
� MQSeries for OS/2 Warp

| � MQSeries for Tandem NSK
� MQSeries on UNIX systems
� MQSeries for Windows NT

Because of the differences in the MQSeries products, it is not always possible to
manage remotely the same set of MQSeries objects or attributes that you can
manage locally.

If you want to manage any other MQSeries product, you can write an application
program to send the appropriate commands to the command queue for that
product. However, some MQSeries products do not have a command queue, so
they cannot accept commands from local or remote application programs.

Managing MQSeries from remote systems
MQSeries for Digital OpenVMS can be managed from a remote MQSeries system,
by an administrator using the facilities provided by the following products:

� MQSeries for AS/400
� MQSeries for Digital OpenVMS
� MQSeries for MVS/ESA
� MQSeries for OS/2 Warp

| � MQSeries for Tandem NSK
� MQSeries on UNIX systems
� MQSeries for Windows NT

Note:  You can manage MQSeries for Digital OpenVMS from MQSeries for
MVS/ESA by writing an application program to send the appropriate PCF
commands to the command queue.

92 MQSeries Planning Guide  



  MQSeries on Digital OpenVMS
 

Chapter 18. Storage planning for MQSeries for Digital
OpenVMS

This chapter tells you how to plan the type and amount of storage you require
when you include MQSeries for Digital OpenVMS in your network. It has the
following sections:

 � “RAM considerations”
� “Disk space considerations”
� “Sample configuration” on page 95
� “Capacity planning figures” on page 95

 RAM considerations
The processor memory (RAM) is used by MQSeries for Digital OpenVMS in the
execution of the product modules, and as a paging area for the messages that are
being processed. Parts of the paging area are written to, and read from, disk as
necessary.

The minimum amount of RAM required to run the MQSeries for Digital OpenVMS
server is 16 MB on VAX and 32 MB on AXP, if more RAM is available, the
performance of the message processing improves.

The amount of RAM required on each client system for an MQSeries client is small
compared to that required for the operating system on each of the platforms.

Disk space considerations
Disk space is used by MQSeries for Digital OpenVMS for the following:

� Product modules - client and server executable modules and the toolkit
� Paging space - server only
� Message queues - server only
� Logs - server only

 Product modules
The disk space that you require for the product modules depends on the options
that you decide to install: the options are described in the MQSeries for Digital
OpenVMS System Management Guide.

Space might be required for client and server executable program modules and the
toolkit. If all options are selected, 16 MB are required on VAX and 18 MB on AXP.

 Paging space
The messages that the server is processing are stored in memory, and are paged
to disk.

The algorithm used to calculate the size of the paging space required to support a
particular application is complex, and is not given in this manual. Instead, you
should refer to “Sample configuration” on page 95, which gives the paging space
used on the typical minimum configuration.

 Copyright IBM Corp. 1993, 1998  93



 MQSeries on Digital OpenVMS  
 

 Message queues
In order to estimate the total amount of storage that you will need for queues, you
need to know:

� The number of queues that you have.

� The maximum number of messages there will be on each of the queues at any
one time.

� The average size of message on each of the queues. The amount of storage
required for one message varies. It is based on the size of the message data
plus the size of the message header (456 bytes), rounded up the nearest
512-byte block. If you are using distribution lists, or grouped or segmented
messages, the size of the header will increase for the transmission queue.

Given these values, you can calculate the total amount of space required for
queues. However, this value is likely to be an approximate value only, and it is
advisable to add a contingency value, to avoid the situation where there is no
space left for messages on the queues when your application is running.

 Log files
Significant events and data changes can be logged in circular or sequential logs.
In particular, the logs are used for recording persistent messages.

All the log files in a log are of the same size. By default, this size is 4 MB, but this
value can be changed by the system administrator when the log is defined.

For a circular log, the system administrator needs to specify how many files should
be included in the log. For a sequential log, the number of files will increase over
time, until the system administrator archives some of the files, and disposes of
them. You need to plan for the permanent storage (diskettes, tape, or other media
supported in your enterprise) that is to be used for these archived files.

94 MQSeries Planning Guide  



  MQSeries on Digital OpenVMS
 

 Sample configuration
This section gives the amounts of storage required for a sample configuration
consisting of a single server on the Digital OpenVMS processor with:

� The disk on the server holding the server and client product modules and the
toolkit

� System default objects

� 20 local queues, each with 50 messages of 1 KB total length; half of the
messages are persistent messages

� A single client

� No message channels for distributed queuing

The storage requirements for the server in this configuration are:

� RAM: 16 MB for VAX, 32 MB for AXP

� Disk space for MQSeries for Digital OpenVMS:

– Product modules: 16 MB for VAX, 18 MB for AXP
– Paging space: 64 MB
– Message queues: 1.5 MB
– Logs: 12 MB (circular log)

The storage requirements for the clients in this configuration are small compared to
the storage required for the operating system on the platforms.

Capacity planning figures
The following table shows the notional limits of the number of operations that can
be performed on each MQSeries-connected workstation. It is recommended that,
for adequate performance, you do not exceed these limits.

The numbers quoted were measured on an Alpha Server 1000 4/266 server that
had 128 MB of installed memory.

Table 13. MQSeries for Digital OpenVMS, capacity planning

Resource Maximum number

Queue managers (heavily used)  4

Connections (including channels)  112

Open queues 1024

Active channels  112

Clients  112

Note:  The number of connections, active channels, and clients can be doubled if you
use the MQSeries fastpath bindings.

  Chapter 18. Storage planning for MQSeries for Digital OpenVMS 95



 MQSeries on Digital OpenVMS  
 

96 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Part 4. Planning for MQSeries for MVS/ESA

Chapter 19. Introduction to MQSeries for MVS/ESA . . . . . . . . . . . . .  99
Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

Preparing your applications . . . . . . . . . . . . . . . . . . . . . . . . . . .  100
Planning to use MQSeries in a network . . . . . . . . . . . . . . . . . . . .  101
Planning recovery services . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
Planning data security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
Administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Installing and customizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102
Installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Customization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Verifying your installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
Migrating from previous versions . . . . . . . . . . . . . . . . . . . . . . . .  103

Chapter 20. Data sets used by MQSeries for MVS/ESA . . . . . . . . . .  105
Page sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Buffer pools and buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
Storage classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Log data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106
Bootstrap data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

Archive log data sets and BSDS copies . . . . . . . . . . . . . . . . . . . .  107
What a log contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
Checkpoint records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 21. Backup and recovery planning for MQSeries for MVS/ESA  109
Planning your logging environment . . . . . . . . . . . . . . . . . . . . . . . .  109
Planning your archive storage . . . . . . . . . . . . . . . . . . . . . . . . . . .  109
Other recovery considerations . . . . . . . . . . . . . . . . . . . . . . . . . . .  110

CICS recovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
IMS recovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Backup and recovery with DFHSM . . . . . . . . . . . . . . . . . . . . . . .  110
Using Extended Recovery Facility (XRF) . . . . . . . . . . . . . . . . . . .  110
Preparing for disaster recovery . . . . . . . . . . . . . . . . . . . . . . . . .  111

General tips for backup and recovery . . . . . . . . . . . . . . . . . . . . . . .  111
Periodically taking backup copies . . . . . . . . . . . . . . . . . . . . . . . .  111
Using dual logging for your log data sets . . . . . . . . . . . . . . . . . . .  112
Keeping archive logs you might need . . . . . . . . . . . . . . . . . . . . .  112
Retaining the DD name or page set association . . . . . . . . . . . . . . .  112

Chapter 22. Security planning for MQSeries for MVS/ESA . . . . . . . .  113
Security overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Subsystem security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Security classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Things to consider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

 Copyright IBM Corp. 1993, 1998  97



 MQSeries for MVS/ESA  
 

Chapter 23. Administration of MQSeries for MVS/ESA . . . . . . . . . . .  117
Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Commands on MQSeries for MVS/ESA . . . . . . . . . . . . . . . . . . . .  117
Managing communications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Managing remote systems . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118
Managing MQSeries from remote systems . . . . . . . . . . . . . . . . . .  118

Managing accounting information . . . . . . . . . . . . . . . . . . . . . . . . .  119
Using the utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

The CSQUTIL utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
The data conversion exit utility . . . . . . . . . . . . . . . . . . . . . . . . .  120
The change log inventory utility . . . . . . . . . . . . . . . . . . . . . . . . .  120
The print log map utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
The log print utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120

Chapter 24. Storage planning for MQSeries for MVS/ESA . . . . . . . . .  121
Address space storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
Logs and archive storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122
Storage for page data sets and messages . . . . . . . . . . . . . . . . . . . .  122
Storage for bootstrap data sets (BSDS) . . . . . . . . . . . . . . . . . . . . . .  122
Planning your library storage . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
Further information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 25. Performance of MQSeries for MVS/ESA . . . . . . . . . . . .  125
Impact of logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

Impact of dual logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126
Fast write for logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127

Causes of I/O to log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
Checkpointing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
MQSeries page set I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

Buffer pools, page sets, storage classes, and queues . . . . . . . . . . . . .  129
Monitoring performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Where to find more information . . . . . . . . . . . . . . . . . . . . . . . . . . .  130

Chapter 26. Measured usage license charges with MQSeries for
MVS/ESA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

98 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Chapter 19. Introduction to MQSeries for MVS/ESA

MQSeries for MVS/ESA runs on a System/370 or System/390 that is capable of
running MVS/ESA, to provide messaging and queuing support for the following
types of application:

� CICS for MVS/ESA and CICS/MVS
 � IMS/ESA
� TSO and batch

This chapter provides basic information about:

� “Planning for MQSeries”
� “Installing and customizing” on page 102

Chapter 24, “Storage planning for MQSeries for MVS/ESA” on page 121 gives
information on the storage requirements for MQSeries for MVS/ESA. For more
information on the hardware and software requirements for MQSeries for
MVS/ESA, see “MQSeries for MVS/ESA” on page 224.

Planning for MQSeries
This chapter helps you to plan for the introduction of MQSeries for MVS/ESA into
your enterprise. Chapter 1, “Introduction to IBM MQSeries” on page 3 introduces
you to the concepts you must consider.

This chapter does not provide you with detailed information to enable you to
perform the installation of MQSeries for MVS/ESA. That information is provided in
the MQSeries for MVS/ESA Program Directory. Equally, you are directed to other
publications for detailed information on particular topics.

There are several stages in planning for the use of MQSeries for MVS/ESA that
you must go through. They are:

1. Preparing your applications for the use of MQSeries for MVS/ESA
2. Planning to include MQSeries for MVS/ESA in a network
3. Preparing to install MQSeries for MVS/ESA
4. Planning to customize MQSeries for MVS/ESA

A prime requirement for a message delivery system is that it must be reliable.
Many functions are built into MQSeries for MVS/ESA to ensure that:

� Messages are not lost despite system failures

� Messages are not delivered more than once

� Messages are not accessed by, or delivered to, unauthorized persons or
applications

 Copyright IBM Corp. 1993, 1998  99



 MQSeries for MVS/ESA  
 

The features provided by MQSeries for MVS/ESA to support this, and which you
must plan for, include:

� Logging (including options for dual logging and archiving)

� Automatic recovery from transaction, system, and storage media failures (for
which suitable backups are needed)

� Restart from backup files

� Access to security management facilities

You must also plan for the administration of MQSeries for MVS/ESA in your
operation, make decisions regarding the performance aspects of the product, and
consider, if necessary, possible migration of both your system and applications from
other products. Brief outlines of these planning operations are included in this
chapter.

Preparing your applications
MQSeries for MVS/ESA brings the Message Queue Interface (MQI) to your
applications. This interface allows you to modify existing applications and to write
new applications. The MQI removes much of the need to understand any network
or communication systems that you use. Thus you can expect to complete
applications more speedily than before. However, you must plan to take advantage
of the MQI by planning its use in your applications and by understanding the ways
in which it assists you.

You can find more information on how to use MQSeries for MVS/ESA in your
applications by referring to the MQSeries Application Programming Guide.

Interfacing with CICS, IMS, or Batch
With MQSeries for MVS/ESA you can create applications in these environments:

� A CICS transaction environment
� An IMS transaction environment
� An MVS Batch and Time Sharing Option (TSO) environment

Applications (or transactions) connect to MQSeries by means of an adapter. There
are three adapters, one for each of these environments, included in MQSeries for
MVS/ESA.

The MQSeries-IMS bridge
The MQSeries-IMS bridge is a component of MQSeries for MVS/ESA that allows
direct access from MQSeries applications to applications on your IMS system. It
enables implicit MQSeries API support. This means that you can re-engineer
legacy applications that were controlled by 3270-connected terminals to be
controlled by MQSeries messages, without having to rewrite, recompile, or relink
them.

The bridge is an IMS Open Transaction Manager Access (OTMA) client.

100 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Planning to use MQSeries in a network
MQSeries for MVS/ESA uses the distributed queue management (DQM) facility to
exchange messages between MQSeries platforms.

With MQSeries for MVS/ESA, access to remote queues can be with:

� SNA LU 6.2
 � TCP/IP
 � Interlink SNS/TCPaccess
� CICS for MVS/ESA (using ISC)

Which of these alternative methods of connection is best for your installation
depends on a number of factors, including:

� Whether you require CICS for MVS/ESA for use by your applications

� What other MQSeries products you wish to connect to, and the methods of
connection that they support

� If there are alternatives possible, whether you require the best possible
performance

You need to decide which of these protocols you are going to use before you install
MQSeries for MVS/ESA. “MQSeries interoperability summary” on page 210 shows
the connections that are possible with networks containing MQSeries products.

Having decided on which form of connection to use, you need to define the channel
definitions that are to be used in the exchange of messages.

For further information about distributed queuing, refer to the MQSeries
Intercommunication manual. Refer to the CICS for MVS/ESA Intercommunication
Guide for details on managing remote CICS for MVS/ESA links.

Planning recovery services
Chapter 21, “Backup and recovery planning for MQSeries for MVS/ESA” on
page 109 introduces the concepts of recovery management in MQSeries for
MVS/ESA subsystems. This chapter leads you into the planning you must do to
ensure that your data can be recovered in cases of network or system failures.

Planning data security
MQSeries for MVS/ESA does not provide any security facilities of its own, but uses
those provided by existing security management facilities. This book explores the
possible options you must select from to protect your data and users from
unauthorized access.

 Administration
A summary of the administration facilities provided by the MQSeries for MVS/ESA
products is given in Chapter 23, “Administration of MQSeries for MVS/ESA” on
page 117. Full details of these facilities can be found in the MQSeries Command
Reference, and in the MQSeries for MVS/ESA System Management Guide.

  Chapter 19. Introduction to MQSeries for MVS/ESA 101



 MQSeries for MVS/ESA  
 

Installing and customizing
MQSeries for MVS/ESA uses the standard MVS/ESA installation procedure. This
section reminds you of that procedure and also introduces some of the work that
must be planned in order to customize MQSeries for MVS/ESA to your enterprise’s
particular needs.

Before you install MQSeries for MVS/ESA, you must decide the following:

� Which communications protocol you are going to use

� Whether you are going to install one of the following optional national language
features:

 – Japanese
 – Simplified Chinese

– US English (upper case)

� Whether you are going to install the optional client attachment feature

You also need to plan how much storage you require in your MVS/ESA system to
accommodate MQSeries for MVS/ESA. Assistance is given in Chapter 24,
“Storage planning for MQSeries for MVS/ESA” on page 121 to help you plan the
amount of storage required for MQSeries for MVS/ESA. The chapter also gives an
indication of the amount of storage you should plan to use, for example, for logs,
page data sets, and objects.

 Installation
MQSeries for MVS/ESA is supplied with a Program Directory that contains specific
instructions for installing the program on an MVS/ESA system. You must follow the
instructions in the MQSeries for MVS/ESA Program Directory. They include not
only details of the installation process but also information about the necessary
prerequisite products and their service or maintenance levels.

SMP/E, used for installation on the MVS/ESA platform, validates the service levels,
prerequisite and corequisite products, and maintains the SMP/E history records to
record the installation of MQSeries for MVS/ESA. It loads the MQSeries for
MVS/ESA libraries and checks that the loads have been successful. You then
have to customize the product to your own requirements.

 Customization
MQSeries requires some customization after installation in order to meet the
individual and special requirements of your system, and to use your system
resources in the most effective way. Customization is described in detail in the
MQSeries for MVS/ESA System Management Guide. However, below are the
items you must consider when planning to customize your system.

You need to:

� Define the MQSeries for MVS/ESA subsystem to MVS
� Authorize the MQSeries for MVS/ESA load libraries
� Include the MQSeries for MVS/ESA load library in the link list
� Include the MQSeries for MVS/ESA dump formatting member
� Update the MVS/ESA Program Properties Table (PPT)
� Create procedures for the MQSeries for MVS/ESA subsystem
� Tailor your security procedures

102 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

� Customize the initialization files
� Create the bootstrap and log data sets
� Define your page sets
� Tailor your logging environment
� Install required CICS and IMS adapters

 � Define queues
� Set up distributed queuing

Verifying your installation
After the installation and customization has been completed, you can use an
installation verification program (IVP) supplied with the product to verify that the
installation has been completed successfully. The IVP supplied is an assembler
language program and should be run after MQSeries for MVS/ESA has been
customized to suit your enterprise’s needs. Details of the IVP and customization
are given in the MQSeries for MVS/ESA System Management Guide.

Migrating from previous versions
If you are migrating from a previous version of MQSeries for MVS/ESA you do not
have to perform most of the customization tasks listed in “Customization” on
page 102. Information about what you need to do when migrating from a previous
version is given in the MQSeries for MVS/ESA System Management Guide.

  Chapter 19. Introduction to MQSeries for MVS/ESA 103



 MQSeries for MVS/ESA  
 

104 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Chapter 20. Data sets used by MQSeries for MVS/ESA

This chapter provides a general introduction to the specialized data sets used by
MQSeries for MVS/ESA. MQSeries for MVS/ESA uses data sets called page sets
for storing messages. It maintains logs of data changes and significant events as
they occur to provide backup and recovery facilities. The logs contain information
about queues and messages. The bootstrap data set (BSDS) stores information
about the data sets that contain the logs.

This chapter contains basic information about:

 � “Page sets”
� “Log data sets” on page 106
� “Bootstrap data set” on page 107
� “What a log contains” on page 107
� “Checkpoint records” on page 108

 Page sets
A page set is a linear VSAM data set that has been formatted for use by MQSeries
for MVS/ESA. Page sets are used primarily to store messages and object
definitions. Each page set is identified by a page set ID (PSID), an integer in the
range 00 through 99. In particular, MQSeries for MVS/ESA uses page set 00 to
store queue definitions and other important information relevant to the queue
manager.

Management of page sets is done through the use of buffer pools and storage
classes.

Buffer pools and buffers
For efficiency, MQSeries for MVS/ESA implements a form of caching whereby
messages are stored temporarily in buffers before being stored in page sets in
DASD.

The buffers are organized into buffer pools. You can define up to four buffer pools
for each MQSeries subsystem. Each buffer is 4 KB long. The maximum number
of buffers is determined by the amount of storage available in the MQSeries
address space. You are recommended to use four buffer pools.

 Storage classes
A storage class maps one or more queues to a page set. When you define a
queue you can also specify its storage class. More than one queue can use the
same storage class, and you can define as many storage classes as you wish.

 Copyright IBM Corp. 1993, 1998  105



 MQSeries for MVS/ESA  
 

Log data sets
MQSeries for MVS/ESA records all persistent messages in the active log as they
are put onto queues by applications. The active log resides on DASD. Entries to it
are placed into a log buffer in main storage. The log buffer is written to main
storage when a persistent message is placed in it or when it reaches a threshold
value set at customization time. The log contains the information needed to
recover messages, queues, and the queue manager; it does not contain information
on statistics, tracing, or performance evaluation. (The MQSeries for MVS/ESA
System Management Guide shows how to specify destinations for trace, statistic,
and performance data.) The active log contains information from all the queues
being used with MQSeries for MVS/ESA.

When the active log is full, MQSeries for MVS/ESA switches to the next available
log data set and, if archiving has been switched on during customization, copies the
contents of this log to an archive log. The archive log can be a data set on a direct
access storage device (DASD) or on magnetic tape. If there is a problem,
MQSeries for MVS/ESA uses these log entries to restore the message queues.

The archive log consists of up to 1000 sequential data sets. Each data set can be
cataloged using the Integrated Catalog Facility (ICF).

MQSeries for MVS/ESA allows you to have either single logging or dual logging.
Dual logging is used to minimize the likelihood of problems during restart. When
dual logging is in use, MQSeries for MVS/ESA records the same information into
two data sets.

Single logging gives you between 2 and 53 active log data sets. Dual logging gives
you between 4 and 106 active log data sets. If possible, when using dual logging,
the log data sets should be on separate volumes. This reduces the risk of them
both being lost if the volume is corrupted or destroyed. Each active log data set is
a single-volume, single-extent VSAM entry-sequenced data set (ESDS).

There is no relationship between the number of queues and the number of log data
sets that you have. Instead, the number of data sets required is dependent on the
amount of message traffic that you plan for. An algorithm is given in “Logs and
archive storage” on page 122 to help you to calculate the amount of storage you
should reserve for your logs.

For a complete description of logs, their contents, customization, and archiving, see
the MQSeries for MVS/ESA System Management Guide.

106 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Bootstrap data set
The bootstrap data set (BSDS) is a VSAM key-sequenced data set (KSDS) that
holds information needed by MQSeries for MVS/ESA. It contains:

� An inventory of all active and archived log data sets known to MQSeries for
MVS/ESA. This inventory is used by MQSeries for MVS/ESA to:

– Track the active and archived log data sets

– Locate log records so that it can satisfy log read requests during normal
processing

– Locate log records so that it can handle restart processing

MQSeries for MVS/ESA stores information in the inventory each time an
archive log data set is defined or an active log data set is reused. For active
logs, the inventory shows which are full and which are available for reuse. The
inventory holds the relative byte address (RBA) of each log data set. There
can be more than one RBA if the log data set spans more than one volume.

� A wrap-around inventory of all recent MQSeries for MVS/ESA activity. This is
needed if MQSeries for MVS/ESA has to be restarted.

The active logs are first registered in the BSDS when MQSeries for MVS/ESA is
initiated. They cannot be replaced, nor can new ones be added, without
terminating and restarting MQSeries. The BSDS is required if the subsystem has
an error and has to be restarted. To minimize the likelihood of problems during a
restart, MQSeries can be configured with dual BSDSs, each recording the same
information. This is known as running in “dual mode”. As for dual active log data
sets, copies should, if possible, be on separate volumes. This reduces the risk of
them both being lost if the volume is corrupted or destroyed.

Archive log data sets and BSDS copies
A copy of the BSDS is placed in each new archive data set. If the archive log is on
tape, the BSDS copy is the first file on the first output volume. If the archive log is
on DASD, the BSDS copy is a separate file on the same volume.

What a log contains
An active log can contain up to 248 bytes. Each byte in the active log can be
addressed by its offset from the beginning of the log, and that offset is known as its
relative byte address (RBA).

The log is made up of log records, each of which is a set of log data treated as a
single unit. A log record is identified by the RBA of the first byte of its header; that
RBA is called the relative byte address of the record. The RBA is like a time stamp
because it uniquely identifies a record that starts at a particular point in the log.

Each log record has a header that gives its type, the MQSeries component that
caused the record to be made, and, for unit of recovery records, the unit of
recovery identifier.

Most of the log records describe changes to MQSeries queues. All such changes
are made within units of recovery.

  Chapter 20. Data sets used by MQSeries for MVS/ESA 107



 MQSeries for MVS/ESA  
 

 Checkpoint records
To reduce restart time, MQSeries for MVS/ESA takes periodic checkpoints during
normal operation:

� When a predefined, customized number of log records has been written
� At the end of a successful restart
� At normal termination

At a checkpoint, MQSeries logs its current status and registers the RBA of the
checkpoint in the bootstrap data set (BSDS). At restart, MQSeries uses the
information in the checkpoint records to reconstruct the state it was in when it
terminated.

Many log records can be written for a single checkpoint.

108 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Chapter 21. Backup and recovery planning for MQSeries for
MVS/ESA

Developing backup and recovery procedures at your site is vital to avoid costly and
time-consuming losses of data. MQSeries for MVS/ESA provides the means for
recovering both queues and messages to their current state after a system failure.
You should develop procedures for backing up page sets and creating a point of
consistency.

This chapter describes what you should consider to minimize problems following
any system failure. It contains information about:

� “Planning your logging environment”
� “Planning your archive storage”
� “Other recovery considerations” on page 110
� “General tips for backup and recovery” on page 111

Planning your logging environment
The MQSeries for MVS/ESA logging environment is established during
customization to specify options, such as whether to have single or dual active
logs, what media to use for the archive log volumes, and how many log buffers to
have.

In a production subsystem, it is important to establish dual archiving and dual
logging to minimize the risk of losing your data (for example, because of DASD
failures).

Planning your archive storage
This section describes the different ways of maintaining your archive log data sets.

Archive log data sets can be placed on standard-label tapes, or DASD, and can be
managed by Data Facility Hierarchical Storage Manager (DFHSM).

Archive log data sets are dynamically allocated, with names chosen by MQSeries
for MVS/ESA. The data set name prefix, block size, unit name, and DASD sizes
needed for such allocations are specified when MQSeries for MVS/ESA is
customized. You can also choose, at customization time, to have MQSeries for
MVS/ESA add a date and time to the archive log data set name. You can change
this information by customizing MQSeries for MVS/ESA again.

If you specify dual archive logs at installation time, each log control interval (CI)
retrieved from the active log is written to two archive log data sets. The log records
that are contained on the pair of archive log data sets are identical, but the
end-of-volume points are not synchronized for multivolume data sets.

 Copyright IBM Corp. 1993, 1998  109



 MQSeries for MVS/ESA  
 

Other recovery considerations
In addition to the logging and archiving facilities provided by MQSeries for
MVS/ESA, you should also consider other space management and recovery
facilities that are provided in your enterprise. The following sections provide a
reminder of some of these facilities.

 CICS recovery
CICS recognizes MQSeries for MVS/ESA as a non-CICS resource (or external
resource manager), and includes MQSeries for MVS/ESA as an agent in any
syncpoint coordination requests using the CICS resource manager interface (RMI).
For more information about CICS recovery, see the CICS for MVS/ESA Recovery
and Restart Guide. For information about the CICS resource manager interface,
see the CICS for MVS/ESA Customization Guide.

 IMS recovery
IMS/ESA recognizes MQSeries for MVS/ESA as an external subsystem and as a
participant in syncpoint coordination. IMS recovery for external subsystem
resources is described in the IMS/ESA Version 4 Customization Guide: System.

Backup and recovery with DFHSM
The data facility hierarchical storage manager (DFHSM) does automatic space and
data availability management among storage devices in your system. If you use it,
you need to know that it moves data to and from MQSeries for MVS/ESA storage
automatically.

DFHSM manages your DASD space efficiently by moving data sets that have not
been used recently to less expensive storage. It also makes your data available for
recovery by automatically copying new or changed data sets to tape, or DASD,
backup volumes. It can delete data sets, or move them to another device. Its
operations occur daily, at a specified time, and allow for keeping a data set for a
predetermined period before deleting or moving it.

All DFHSM operations can also be performed manually. The Data Facility
Hierarchical Storage Manager User’s Guide explains how to use the DFHSM
commands.

If you use DFHSM with MQSeries for MVS/ESA, be aware that DFHSM:

� Uses cataloged data sets
� Operates on page sets and logs

Using Extended Recovery Facility (XRF)
MQSeries for MVS/ESA can be used in an Extended Recovery Facility (XRF)
environment. All MQSeries for MVS/ESA-owned data sets (executable code,
BSDSs, logs, and page sets) must be on DASD shared between the active and
alternate XRF processors. If you use XRF for recovery, you must stop MQSeries
for MVS/ESA on the active processor and start it on the alternate. For CICS, this
can be done using the command list table (CLT) provided by CICS, or manually by
the system operator. For IMS, this is a manual operation and must be done after
the coordinating IMS system has completed the processor switch. MQSeries for
MVS/ESA utilities must be completed or terminated before MQSeries for MVS/ESA

110 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

can be switched to the alternate processor. Consider the effect of this potential
interruption carefully when planning your XRF recovery plans.

Take care to prevent MQSeries for MVS/ESA starting on the alternate processor
before the MQSeries for MVS/ESA system on the active processor terminates. A
premature start can cause severe integrity problems in data, the catalog, and the
log. Using global resource serialization (GRS) helps avoid the integrity problems by
preventing simultaneous use of MQSeries for MVS/ESA on the two systems. The
BSDS must be included as a protected resource, and the active and alternate XRF
processors must be included in the GRS ring.

Preparing for disaster recovery
In the case of a total loss of an MQSeries for MVS/ESA computing center, you can
recover on another MQSeries for MVS/ESA system at a recovery site. To be able
do this, you must regularly back up the data sets and logs and provide the means
to transfer them to the recovery site if necessary.

General tips for backup and recovery
The MQSeries for MVS/ESA restart process recovers your data to a consistent
state by applying log information to the page sets. If your page sets are damaged
or unavailable, you can resolve the problem using your backup copies of your page
sets (provided that all the logs are available). If your log data sets are damaged or
unavailable, it might not be possible to recover completely. It is recommended that
you do the following:

� Periodically take backup copies
� Use dual logging for your active log, archive log, and bootstrap data sets
� Keep archive logs you might need
� Retain the DD name or page set association

These are described in more detail below.

Periodically taking backup copies
A point of consistency is the term used to describe a set of backup copies of
MQSeries for MVS/ESA page sets and the corresponding log data sets required to
recover these page sets. These backup copies provide a potential restart point in
the event of page set loss (for example, page set I/O error). If MQSeries for
MVS/ESA were to be restarted using these backup copies, the data in MQSeries
for MVS/ESA would be consistent up to the point that these copies were taken.
Providing that all logs are available from this point, MQSeries for MVS/ESA can be
recovered to the point of failure. See the MQSeries for MVS/ESA System
Management Guide for more information about points of consistency.

The more recent your backup copies the quicker MQSeries for MVS/ESA can
recover the data in the page sets. The recovery of the page sets is dependent on
all the necessary log data sets being available.

In planning for recovery, you need to determine how often to take backup copies
and how many complete backup cycles to keep. These values tell you how long
you must keep your log data sets and backup copies of page sets for MQSeries for
MVS/ESA recovery.

  Chapter 21. Backup and recovery planning for MQSeries for MVS/ESA 111



 MQSeries for MVS/ESA  
 

In deciding how often to take backup copies, consider the time needed to recover a
page set. It is determined by:

� The amount of log to traverse
� The time it takes an operator to mount and remove archive tape volumes
� The time it takes to read the part of the log needed for recovery
� The time needed to reprocess changed pages

In general, the more often you make backup copies, the less time recovery takes;
but, of course, the more time is spent making copies.

You should keep at least two copies of each cycle of page set backup. This
reduces the risk involved if one backup copy is lost or damaged.

Using dual logging for your log data sets
This increases the chances of recovering from all problems. However, it also
increases the processing overhead and will affect the performance of your system.
You need to consider the gains and losses caused by dual logging.

If you use dual logging, keep the dual logs separate.

Keeping archive logs you might need
MQSeries for MVS/ESA can use archive logs during restart. You must keep
sufficient archive logs so that the system can be fully restored. MQSeries for
MVS/ESA might need to use an archive log to recover a page set from a restored
backup copy. If you have discarded that archive log, MQSeries for MVS/ESA will
not be able to restore the page set to its current state and you will have to resolve
the problem manually. See the MQSeries for MVS/ESA System Management
Guide guide for details of how recovery is effected using the archive log.

Retaining the DD name or page set association
MQSeries for MVS/ESA associates page set number 00 with DD name CSQP0000,
page set number 01 with DD name CSQP0001, and so on up to CSQP0099.
MQSeries for MVS/ESA writes recovery log records for a page set based on the
DD name the page set is associated with. For this reason, you must not move or
rename page sets that have already been associated with a page data set ID
(PSID) DD name; otherwise, MQSeries for MVS/ESA tries to recover the page sets
with the wrong log data.

112 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Chapter 22. Security planning for MQSeries for MVS/ESA

Because MQSeries for MVS/ESA handles information passing between
subsystems, it needs the safeguard of a security system to ensure that the
resources it owns and manages are protected and secure from unauthorized
access. It needs to ensure that the following are not accessed or changed by any
unauthorized person or process:

� Connections to the MQSeries for MVS/ESA subsystem
� Resources such as queues, processes, and namelists
� MQSeries links to remote queue managers
� MQSeries system control commands

 � MQSeries messages
� Context information in messages

To provide the necessary security, MQSeries for MVS/ESA uses the MVS System
Authorization Facility (SAF) to route authorization requests to an external security
manager (ESM), such as the Resource Access Control Facility (RACF). MQSeries
does no verification of its own.

This book assumes that you are using RACF. If you are using a different ESM,
you might need to modify the techniques mentioned in this book.

The decision to allow access to an object is made by the ESM. MQSeries follows
the decision made by the ESM. If the ESM cannot make a decision, MQSeries
does not allow access to the object.

If you are planning a distributed system, you must agree on the levels of security
checking that are provided and used by the various administrative domains that
exist across these distributed systems. Such agreement must also cover network
security aspects and access by clients.

This chapter includes basic information about:

� “Security overview” on page 114
� “Security exits” on page 115
� “Things to consider” on page 115

For further information about security facilities in MQSeries for MVS/ESA, refer to
the MQSeries for MVS/ESA System Management Guide.

 Copyright IBM Corp. 1993, 1998  113



 MQSeries for MVS/ESA  
 

 Security overview
MQSeries for MVS/ESA provides you with a range of choices when specifying your
security requirements. The choice ranges from no security checking to full
checking.

 Subsystem security
Subsystem security allows you to control whether any security checking is done on
the whole subsystem. You can set security checking according to how secure you
decide your users are in a particular subsystem. For example, you might apply full
security checking on your production system, but have no checking on your test
system.

If you decide you want subsystem security, you also need to consider the following:

 � Connection security

Do you want to control who and what connects to your MQSeries for MVS/ESA
subsystem?

� API resource security

Resources can be security checked when a user issues MQOPEN or MQPUT1
calls to the API. The security checking of the API resources is subdivided into
the following:

 – Queue security

Queue security allows you to control who is allowed to open a queue and
how they are allowed to access it.

 – Process security

Process security allows you to control who is allowed to open a process.

 – Namelist security

Namelist security allows you to control who is allowed to open a namelist.

 – Context security

Context information consists of two parts, an identity section and an origin
section. The identity section specifies who the message came from; the
origin section specifies where the message came from and when it was put
to the queue.

Context security allows you to control who is allowed to use the
context-related options.

– Alternate user security

Alternate user security is used to control whether a particular user can use
another user ID’s authority to open an object on that user ID’s behalf.

 � Reslevel security

Reslevel security is not a type of security but an option that allows you to
control the number of user IDs checked for MQSeries for MVS/ESA API
resource security checking (where applicable).

 � Command security

Command security allows you to control who is allowed to issue an MQSeries
for MVS/ESA command.

114 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

� Command resource security

Command resource security allows to you to control the resources a command
can access. Command resource security is independent of API security. For
example, user A might be allowed to define a local queue but might not be
allowed to get messages from that queue.

 Security classes
MQSeries for MVS/ESA uses its own special RACF classes to hold its security
information. These special classes are described in the MQSeries for MVS/ESA
System Management Guide.

 Security exits
The message channels that are used for distributed queuing and the MQI channels
that are used between clients and servers, have security exit facilities that can
invoke programs supplied by you. Examples of the types of function for which
these exit facilities are intended include:

� Verification that the partners at the ends of the channel are genuine, and have
the appropriate security authorizations to take part in the exchange

� Encryption and decryption of messages

For more information about security exits, refer to the MQSeries
Intercommunication manual.

Things to consider
In order to help you set up your security you need to consider the following:

� Decide what levels of security you require (from above list).

� Decide what types of resources are going to be used and, preferably, set up a
naming convention for them (for example, queues and their names).

� Decide who will be using the system and the resources you have. Consider
which users and user IDs will use which resources and so on.

� Decide how they are going to be using the system and what access levels
each user requires for each resource they use.

� Decide any grouping of users and resources that might be required.

� Decide which users will be accessing or connecting to MQSeries for MVS/ESA
and how they will be doing so; for example, batch, CICS, IMS, and so on.

� Decide on how to manage network security, for example to ensure that all
incoming messages are from authorized applications or users and that all
outgoing messages are from authentic users and are secure.

For details on how the steps can be carried out to satisfy your security
requirements, refer to the MQSeries for MVS/ESA System Management Guide.

  Chapter 22. Security planning for MQSeries for MVS/ESA 115



 MQSeries for MVS/ESA  
 

116 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Chapter 23. Administration of MQSeries for MVS/ESA

This chapter is a summary of the administration facilities provided by MQSeries for
MVS/ESA. It has the following sections:

 � “Managing objects”
� “Remote administration” on page 118
� “Managing accounting information” on page 119
� “Using the utilities” on page 119

Details of the administration facilities provided by MQSeries for MVS/ESA are given
in the MQSeries Command Reference, and in the MQSeries for MVS/ESA System
Management Guide.

 Managing objects
It is the administrator’s job to monitor MQSeries for MVS/ESA and make any
changes that might be necessary. To do this, the administrator needs to know
where each MQSeries object resides, what its characteristics are, and who has
access to it. The administrator can manage and monitor the resources by use of
the commands, the operations and control panels, or the utility programs supplied
with MQSeries for MVS/ESA.

If there are sets of commands that are issued regularly on your system, you can
run a supplied utility program, or write a program that constructs commands and
places them on the command queue. Details of how to write these administration
programs are contained in the MQSeries for MVS/ESA System Management Guide.

Commands on MQSeries for MVS/ESA
MQSeries for MVS/ESA supports MQSC commands, which can be issued from the
following sources:

� The MVS console.

� The initialization input data set, CSQINP1, to be processed before the restart
phase of MQSeries for MVS/ESA initialization.

� The initialization input data set, CSQINP2, to be processed after the restart
phase of MQSeries for MVS/ESA initialization.

� The initialization input data set, CSQINPX, to be processed whenever the
channel initiator is started.

� The supplied batch utility, CSQUTIL, processing a list of commands in a
sequential data set.

� A suitably authorized application, by sending a command as a message to the
command queue. This can be either:

– A batch region program
– A CICS application
– An IMS application
– A TSO application
– An application program or utility on another MQSeries system

 Copyright IBM Corp. 1993, 1998  117



 MQSeries for MVS/ESA  
 

Much of the functionality of these commands is available in a user-friendly way
from the MQSeries for MVS/ESA operations and controls panels.

Information on using commands, and on using the operations and controls panels
is given in the MQSeries for MVS/ESA System Management Guide.

MQSeries for MVS/ESA can access security checks to ensure that the user is
authorized to issue particular commands for particular resources.

Changes made to the resource definitions of a queue manager using the
commands (directly or indirectly) are preserved across restarts of the MQSeries
subsystem.

MQSeries for MVS/ESA does not support the PCF commands.

 Managing communications
Part of the administrator’s role is to ensure that the required communications links
are activated, and to monitor the status of these links as required by your
enterprise. You can find information describing these tasks in the MQSeries
Intercommunication manual.

 Remote administration
There are two aspects to the MQSeries remote administration facilities:

� MQSeries for MVS/ESA can be used to manage remote systems

� Other remote products can be used to manage an MQSeries for MVS/ESA
system

Managing remote systems
Your administrator can manage remote MQSeries for MVS/ESA systems using
facilities provided by MQSeries for MVS/ESA.

Because of the differences between the MQSeries products, it is not always
possible to manage remotely the same set of objects or attributes that you can
manage locally.

If you wish to manage any other MQSeries product, you can write an application
program to send the appropriate commands to the queue manager command
queue. However, some MQSeries products do not have a command queue, and
they cannot accept commands from local or remote application programs.

Managing MQSeries from remote systems
MQSeries for MVS/ESA can be managed from a remote MQSeries system, by an
administrator using the facilities provided by the following products:

� MQSeries for Digital OpenVMS
� MQSeries for MVS/ESA
� MQSeries for OS/2 Warp

| � MQSeries for Tandem NSK
� MQSeries on UNIX systems
� MQSeries for Windows NT

118 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Managing accounting information
MQSeries for MVS/ESA provides an accounting trace to enable you to collect
information that you can use to charge your customers for their use of your
MQSeries for MVS/ESA subsystem. This facility is described in the MQSeries for
MVS/ESA System Management Guide.

Using the utilities
MQSeries for MVS/ESA supplies a set of utility programs to help you perform
various administrative tasks. These utilities:

� Perform backup, restoration, and reorganization tasks
� Issue commands and process object definitions
� Generate data-conversion exits
� Modify the bootstrap data set
� List information about the logs
� Print the logs

For more information about all these utilities, see the MQSeries for MVS/ESA
System Management Guide.

The CSQUTIL utility
The CSQUTIL utility program is provided with MQSeries for MVS/ESA to help you
perform backup, restoration, and reorganization tasks, and to issue commands and
process object definitions. Through this utility program, you can invoke the
following functions:

COMMAND To issue any of the MQSC commands described in the MQSeries
Command Reference manual, to record object definitions, and to
make client-channel definition files.

COPY To read the contents of a named MQSeries for MVS/ESA message
queue or the contents of all the queues of a named page set, and
put them into a sequential file and retain the original queue.

COPYPAGE To copy whole page sets to larger page data sets.

EMPTY To delete the contents of a named MQSeries for MVS/ESA
message queue or the contents of all the queues of a named page
set, retaining the definitions of the queues.

FORMAT To format MQSeries for MVS/ESA page sets.

LOAD To restore the contents of a named MQSeries for MVS/ESA
message queue or the contents of all the queues of a named page
set from a sequential file created by the COPY function.

RESETPAGE To copy whole page sets to other page set data sets and reset the
log information in the copy.

SCOPY To copy the contents of a queue to a data set while the queue
manager is offline.

SDEFS To produce a set of define commands for objects while the queue
manager is offline.

  Chapter 23. Administration of MQSeries for MVS/ESA 119



 MQSeries for MVS/ESA  
 

The data conversion exit utility
The MQSeries for MVS/ESA data conversion exit utility (CSQUCVX) runs as a
stand-alone utility to create data conversion exit routines.

The change log inventory utility
The MQSeries for MVS/ESA change log inventory utility program (CSQJU003) runs
as a stand-alone utility to change the bootstrap data set (BSDS). The utility can be
used to:

� Add or delete active or archive log data sets
� Supply passwords for archive logs

The print log map utility
The MQSeries for MVS/ESA print log map utility program (CSQJU004) runs as a
stand-alone utility to list the following information:

� Log data set name and log RBA association for both copies of all active and
archive log data sets

Note:  If dual logging is not active, then there is only one copy of the data
sets.

� Active log data sets available for new log data

� Contents of the queue of checkpoint records in the bootstrap data set (BSDS)

� Contents of the archive log command history record

� System and utility time stamps

The log print utility
The log print utility program (CSQ1LOGP) is run as a stand-alone utility. You can
run the utility specifying:

� A bootstrap data set (BSDS)
� Active logs (with no BSDS)
� Archive logs (with no BSDS)

120 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Chapter 24. Storage planning for MQSeries for MVS/ESA

This chapter tells you how to plan the type and amount of storage you require
when you include MQSeries for MVS/ESA in your system. It contains information
about:

� “Address space storage”
� “Logs and archive storage” on page 122
� “Storage for page data sets and messages” on page 122
� “Storage for bootstrap data sets (BSDS)” on page 122
� “Planning your library storage” on page 123
� “Further information” on page 123

MQSeries for MVS/ESA is an MVS/ESA subsystem running in its own address
space. The virtual storage usage therefore falls into two categories: the storage
used by the subsystem address space itself and the additional storage used by
applications requesting MQSeries for MVS/ESA services.

Address space storage
Each MQSeries for MVS/ESA subsystem has the following storage requirements:

CSA 48 KB
ECSA 1.3 MB

In addition, each concurrent MQSeries task requires about 1500 bytes of ECSA.
When a task ends, this storage can be reused by other MQSeries tasks. MQSeries
does not release the storage until the queue manager is shut down, so the
maximum amount of ECSA required can be calculated by multiplying the maximum
number of concurrent tasks by 1500 bytes.

Concurrent tasks consist of the following:

� The number of Batch, TSO or IMS regions that have connected to MQSeries,
but not disconnected

� The number of CICS transactions that have issued an MQSeries request, but
have not terminated

The trace table also resides in the ECSA; you should use the TRACTBL parameter
of the CSQ6SYSP macro to determine the size of the resident trace table. This
macro is described in the MQSeries for MVS/ESA System Management Guide.

Every channel uses approximately 140 KB of extended user region in the channel
initiator (CHINIT) address space, plus a further 1 KB below the 16 MB line (12 KB if
LE/370 APAR PQ03507 has not been applied). Storage is increased if messages
larger than 32 KB are being transmitted.

 Copyright IBM Corp. 1993, 1998  121



 MQSeries for MVS/ESA  
 

Logs and archive storage
Active log data sets record significant events and data changes. They are
periodically off-loaded to the archive log. Consequently, the space requirements for
your active log data sets depend on the volume of messages that your MQSeries
for MVS/ESA handles and how often the active logs are off-loaded to your archive
data sets. MQSeries for MVS/ESA provides optional support for dual logging; if
you use this your log storage requirement will be doubled.

If you decide to place the archive data sets on direct access storage devices
(DASD), you need to reserve enough space on the devices. Space should also be
reserved for the bootstrap data sets (BSDS). The functions of these data sets are
described in Chapter 20, “Data sets used by MQSeries for MVS/ESA” on
page 105. The above are all separate data sets and should, preferably, be
allocated space on different volumes and strings to minimize DASD contention and
problems caused by any defects on the physical devices.

As each change to the system is logged, the size of storage required can be
estimated from the size and expected throughput of messages. You must add to
this a small overhead for the header information in the data sets.

To arrive at the size of the log extents, an algorithm can be developed which
depends on various factors including the message rate, the message size in bytes,
and how often you want to switch the log.

Below is shown an approximate calculation for the number of records to specify in
the cluster for the log data set.

Number of records = (a \ log switch interval required in seconds) / 4ð96

 where a = (Number of puts/sec \ Average message size)+44ð
+ (Number of gets/sec \ 72)
+ (Number of units of recovery started \ 1ðð)
+ (Number of syncpoints per second \ 196)

Storage for page data sets and messages
The amount of storage needed for page data sets depends on the sizes of the
messages that your applications will exchange, on the numbers of these messages,
and on the rate at which they are created or exchanged. You can calculate the
amount of storage needed for page data sets using the algorithm given in the
MQSeries for MVS/ESA System Management Guide.

Storage for bootstrap data sets (BSDS)
Each BSDS requires 500 KB. You must have one BSDS but, optionally, can
choose to have dual BSDSs. Further information about choosing single or dual
BSDSs is given in Chapter 20, “Data sets used by MQSeries for MVS/ESA” on
page 105.

122 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Planning your library storage
You need to allocate storage for the product libraries. The exact figures depend on
your configuration, but an estimate of the space required by the distribution libraries
is 35 MB. The target libraries also require about 35 MB. Additionally, you require
space for the SMP/E libraries.

You should refer to the program directory supplied with MQSeries for MVS/ESA for
information about the required libraries and their sizes.

 Further information
This chapter has shown some of the main considerations when planning the
storage required for MQSeries for MVS/ESA. For more information about the
library sizes, refer to the MQSeries for MVS/ESA Program Directory. For more
information about storage variables to be defined during customization, refer to the
MQSeries for MVS/ESA System Management Guide.

  Chapter 24. Storage planning for MQSeries for MVS/ESA 123



 MQSeries for MVS/ESA  
 

124 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Chapter 25. Performance of MQSeries for MVS/ESA

This chapter introduces the performance considerations that you must review when
planning to include MQSeries for MVS/ESA in your system. These items include:

� “Impact of logging”
� “Causes of I/O to log” on page 128
� “Buffer pools, page sets, storage classes, and queues” on page 129
� “Monitoring performance” on page 130
� “Where to find more information” on page 130

Impact of logging
The performance of MQSeries for MVS/ESA is sensitive to logging activities.
MQSeries for MVS/ESA provides and maintains data integrity by the use of logs to
record messaging events. If no logging were to take place, the performance of the
system would depend primarily on processor availability.

Significant logging takes place mainly when using persistent messages. Hence,
performance is affected by the number, and size, of persistent messages in the
system, and also by the frequency of syncpointing and DASD performance for the
log data sets.

Figure 10 shows the response overhead added by logging for various message
sizes in a typical CICS for MVS/ESA 3.3 region. You will see that the response
time increases by about 15%.

Response vs Message Size
35 transactions per second

Persistent

Non-persistent

500 1,000 2,000 4,000 8,000
Message size (bytes)

160

140

120

100

80

60

40

20

0

R
e

sp
o

n
se

tim
e

(m
ill

is
e

co
n

d
s)

Figure 10. Impact of logging on response time

To achieve the best performance:

� Put active logs on the fastest DASD (for example, use DASD fast write).

� Ensure that when an active log is in use it is the only data set on that volume.

 Copyright IBM Corp. 1993, 1998  125



 MQSeries for MVS/ESA  
 

Impact of dual logging
MQSeries for MVS/ESA offers the capability of having dual logs. These logs
should be placed on separate volumes. This, as well as giving more protection
against unexpected corruption of data on a volume, ensures the log writes are not
competing for disk accesses on the same volume and are therefore faster.
Figure 11 shows the overhead in terms of transaction response times in a CICS
region with and without dual logging.

Each transaction in Figure 11 consists, on average, of five put or get messages,
and covers a range of about 300 to 500 log events per second.

Note:  The fast write facility is turned on in this example. For an explanation see
“Fast write for logging” on page 127.

Response vs External Transaction Rate
Dual logging

Dual logging

Single logging

60 70 80 90 100 110 120 130 140 150 160 170
Transactions per second

160

140

120

100

80

60

40

20

0

R
e

sp
o

n
se

tim
e

(m
ill

is
e

co
n

d
s)

Figure 11. Impact of dual logging on response time

126 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Fast write for logging
Fast write is a facility provided on some DASD controllers. It is a cache that is
used to buffer write operations to DASD. Data can be written into the cache at
channel speeds and is not held up by seek, rotational, and other delays in the
DASD hardware.

Throughput gains can be made by directing the logs to a fast write facility if it is
available. The facility significantly reduces I/O response times, as shown in
Figure 12. The figure shows that if fast write is in use, a high throughput can be
sustained beyond the point where, without fast write caching, the I/O time to
complete would cause degradation in the transaction response time.

Response vs External Transaction Rate
3990 fast write

Fast write off

Fast write on

60 70 80 90 100 110 120 130 140 150 160 170
Transactions per second

R
e

sp
o

n
se

tim
e

(m
ill

is
e

co
n

d
s)

1,400

1,200

1,000

800

600

400

200

0

Figure 12. Impact of using 3990 fast write on response time

  Chapter 25. Performance of MQSeries for MVS/ESA 127



 MQSeries for MVS/ESA  
 

Causes of I/O to log
The active log buffer is written to DASD when a syncpoint is taken or when the
threshold value set for flushing the buffer to DASD is reached. The log buffer is
also written to DASD when a persistent message is placed on a queue and that
message is not operating within a syncpoint.

 Checkpointing
The number of messages written to the log buffer before a checkpoint is taken is
defined when MQSeries for MVS/ESA is customized. Every two checkpoints, all
pages that have not been written to the page data set since the last checkpoint are
written to the page data set. In this way, no page can be older than two
checkpoints. Two consequences of this are that the greater the number of
messages held in the log buffer, the less paging is done, but the further back the
checkpoint will be in the log. The further back in the log that the checkpoint is, the
more of the log will have to be scanned during a recovery. In other words, the
higher the number of messages held in the log buffer, the longer any recovery will
take.

MQSeries page set I/O
Page set I/O is another activity that impacts performance. Hence, the more it can
be avoided, the better the performance. You should specify enough buffers to
contain the expected workload, so reducing excessive I/O. If the number you
specify is insufficient, the I/O rate of the MVS/ESA system will increase.

At initialization you need to define the number of data buffers that are to be made
available for use by queues. You can define between one and four buffer pools.
Each buffer pool can hold between 100 and 125 000 buffers. You must define how
many buffers you will need. Each buffer pool is also defined to a particular page
data set ID (PSID).

You must also decide where the page data sets will be placed. When you have
defined more than one PSID, it is best to locate the data sets on different physical
volumes.

You will find more information about paging and how to define the parameters
introduced above, in the MQSeries for MVS/ESA System Management Guide and
in the MQSeries Command Reference.

128 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Buffer pools, page sets, storage classes, and queues
� Buffer pools are areas of MQSeries for MVS/ESA virtual storage reserved to

satisfy the buffering requirements for one or more queues.

� Page sets are VSAM linear datasets and are each associated with a buffer
pool.

� Storage classes are used to provide a mapping between queues and page
sets.

� A queue is associated with a page set, which is a VSAM data set that is used
when MQSeries for MVS/ESA moves data (for example, queues and
messages) from buffers in main storage to permanent backing storage (DASD).

This gives a hierarchy which provides the following mappings:

� A queue (via its storage class) is associated with a single page set

– Many queues can map to the same page set

� A page set is associated with a single buffer pool

– Many page sets can map to the same buffer pool

In general, it is best to allocate as much storage as possible for the buffer pools.
The larger the pool, the more likely that a message put to a queue will stay in
storage long enough for it to be retrieved, thus saving I/O operations to the backing
page set.

You should try to separate short-lived messages from messages that exist for a
long time (for example half an hour). This means using different queues for the
different messages, allocating the queues to different page sets, and allocating the
different page sets to different buffer pools.

For short-lived messages you should allocate a large buffer pool. Long lived
messages are written to the page set when the buffer pool fills up, or the messages
have existed over two checkpoints. They are written to disk to reduce the startup
time if the queue manager ends abnormally. Having a large buffer pool causes a
lot of activity at a checkpoint, when the queue manager writes out the ‘old’
messages. Having a small buffer pool causes the data to be written to the page
set at a steady rate, and reduces the impact at a checkpoint.

Refer to the MQSeries for MVS/ESA System Management Guide for more
information about tuning your system.

  Chapter 25. Performance of MQSeries for MVS/ESA 129



 MQSeries for MVS/ESA  
 

 Monitoring performance
A number of tools to monitor the performance of an MQSeries for MVS/ESA
subsystem are provided. These include:

 � Trace
 � Display commands
� CICS adapter statistics

Further tools are provided by MVS/ESA:

� System Management Facility (SMF)
� Generalized Trace Facility (GTF)

You can also use other IBM licensed programs:

� Service Level Reporter (SLR)
� Resource Management Facility (RMF)
� CICS Monitoring facility

The use of these tools to monitor MQSeries for MVS/ESA performance is described
in the MQSeries for MVS/ESA System Management Guide.

In addition to using these tools, with MQSeries for MVS/ESA you can write your
own application programs, to use the event messages generated by the
instrumentation events facility to produce performance reports.

More information on using instrumentation events is given in the MQSeries
Programmable System Management manual.

Where to find more information
Information about MQSeries performance is available on the Internet at:

http://www.software.ibm.com/mqseries/txppacs/txpm1.html

130 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Chapter 26. Measured usage license charges with MQSeries
for MVS/ESA

Measured Usage License Charges (MULC) is a particular way of charging you for
an IBM product that runs on an MVS/ESA system, based on how much use you
make of the product. To determine the product usage, the MVS/ESA system
records the amount of processor time that is used by the product when it executes.

MVS/ESA can measure how much processing time is spent in doing work on behalf
of the MQSeries queue manager which is handling MQI calls, executing MQSeries
commands, or performing some other action to support the messaging and queuing
functions used by your application programs. The amount of processing time is
recorded in a file at hourly intervals, and the hourly records are totalled at the end
of a month. In this way, the total amount of time that has been used by the
MQSeries for MVS/ESA product on your behalf is computed, and used to determine
how much you should pay for your use of the MQSeries for MVS/ESA product that
month.

MULC is implemented as follows:

� When MQSeries for MVS/ESA is installed, it identifies itself to MVS/ESA, and
requests that the System Management Facilities (SMF) mechanism within
MVS/ESA is to automatically measure how much processor time is used by the
MQSeries for MVS/ESA product.

� When enabled, the MVS usage measurement facility collects usage figures for
each hour of the day, and generates usage records that are added to a report
file on disk.

� At the end of one full month, these usage records are collected by a program,
which generates a report of product usage for the month. This report is used
to determine the charge for the MQSeries for MVS/ESA product.

More details on MULC can be found in MVS/ESA Support for Measured License
Charges, GC28-1098.

 Copyright IBM Corp. 1993, 1998  131



 MQSeries for MVS/ESA  
 

132 MQSeries Planning Guide  



  MQSeries for OS/2 Warp and Windows
 

Part 5. Planning for MQSeries for OS/2 Warp and Windows

Chapter 27. Introduction to MQSeries for OS/2 Warp and Windows NT  135
Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135

Preparing your applications for the use of MQSeries . . . . . . . . . . . . .  136
Planning to use MQSeries in a network . . . . . . . . . . . . . . . . . . . .  136
Installing MQSeries for OS/2 Warp . . . . . . . . . . . . . . . . . . . . . . .  136
Installing MQSeries for Windows NT . . . . . . . . . . . . . . . . . . . . . .  137
Setting up MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
Planning recovery services . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
Planning data security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138
Administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Support for Lotus Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138
MQSeries and R/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  138
Migration from MQSeries Version 2 . . . . . . . . . . . . . . . . . . . . . . . .  139

Chapter 28. Backup and recovery planning for MQSeries for OS/2 Warp
and Windows NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141

Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Types of logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
Selecting a logging method . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

Resource management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
MQSeries as a resource manager . . . . . . . . . . . . . . . . . . . . . . .  143
MQSeries as a transaction manager . . . . . . . . . . . . . . . . . . . . . .  143

Recovering from problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144

Chapter 29. Security planning for MQSeries for OS/2 Warp and
Windows NT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Setting user IDs with MQSeries for OS/2 Warp . . . . . . . . . . . . . . . . .  145
Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Chapter 30. Administration of MQSeries for OS/2 and Windows NT . .  147
Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Managing communications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Managing remote systems . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148
Managing MQSeries from remote systems . . . . . . . . . . . . . . . . . .  148

Chapter 31. Storage planning for MQSeries for OS/2 Warp and
Windows NT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

RAM considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Disk space considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149

Product modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Message queues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Log files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Capacity planning and performance figures . . . . . . . . . . . . . . . . . . . .  150

 Copyright IBM Corp. 1993, 1998  133



 MQSeries for OS/2 Warp and Windows  
 

Chapter 32. Introduction to MQSeries for Windows . . . . . . . . . . . .  151
Where to use MQSeries for Windows . . . . . . . . . . . . . . . . . . . . . . .  152
The features of MQSeries for Windows . . . . . . . . . . . . . . . . . . . . . .  154
Comparing queue managers, clients, and servers . . . . . . . . . . . . . . . .  155
How MQSeries for Windows differs from the other MQSeries products . . . .  155

134 MQSeries Planning Guide  



  MQSeries for OS/2 Warp and Windows NT
 

Chapter 27. Introduction to MQSeries for OS/2 Warp and
Windows NT

The MQSeries for OS/2 Warp and MQSeries for Windows NT products are in two
parts, the server and the clients. The server runs on a machine that is capable of
running OS/2 Warp or Windows NT; the clients provided with the product are for
AIX, DOS, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, Windows 3.1, and
Windows 95.

Do not confuse MQSeries for Windows NT Version 5.0 with MQSeries for Windows.
(Version 2.1 of the MQSeries for Windows product also runs on Windows NT.)
This ‘lightweight’ messaging and queuing product is described in Chapter 32,
“Introduction to MQSeries for Windows” on page 151.

MQSeries provides the MQI programming interface for use by application programs
that are running on the server or the client processor. More detail on clients and
servers is given in Chapter 7, “Introduction to MQSeries clients and servers” on
page 47.

This chapter includes basic information about:

� “Planning for MQSeries”
� “Support for Lotus Notes” on page 138
� “MQSeries and R/3” on page 138
� “Migration from MQSeries Version 2” on page 139

For more information on the hardware and software environments needed by
MQSeries, see “MQSeries for OS/2 Warp” on page 228 and “MQSeries for
Windows NT” on page 252.

Planning for MQSeries
This chapter helps you to plan for the introduction of MQSeries into your enterprise,
and introduces the items that you need to consider when doing this planning.

There are several stages in planning for the use of MQSeries that you must go
through. They are:

1. Preparing your applications for the use of MQSeries
2. Planning to include MQSeries in a network
3. Preparing to install MQSeries
4. Planning to set up MQSeries

A prime requirement for a message delivery system is that it must be reliable.
Many functions are built into MQSeries to ensure that messages are not lost
despite system failures, and are not delivered more than once. MQSeries uses
logging and other facilities to support these functions.

You must also plan for the operation and administration of MQSeries in your
enterprise and consider the implementation of an appropriate set of security
facilities. Brief outlines of these planning operations are included in this chapter.

 Copyright IBM Corp. 1993, 1998  135



 MQSeries for OS/2 Warp and Windows NT  
 

Preparing your applications for the use of MQSeries
MQSeries brings the Message Queue Interface (MQI) to your applications. This
interface allows you to modify existing applications and to write new applications.
The MQI removes much of the need to understand the network and communication
systems that you use. Thus you can expect to generate applications more speedily
than before. However, you must plan to take advantage of the MQI by planning its
use in your applications and by understanding the ways in which it assists you.

You can find more information on how to use the MQI in your applications by
referring to the MQSeries Application Programming Guide.

Interfacing with CICS
With MQSeries you can create application programs for the CICS for OS/2 or CICS
for Windows NT transaction environment. These applications can use the MQI to
communicate with CICS or non-CICS programs in any of the environments
supported by the MQSeries products.

Planning to use MQSeries in a network
MQSeries uses the distributed queuing facility to exchange messages between
MQSeries platforms, using either the SNA LU 6.2, TCP/IP, SPX, or NetBIOS
transmission protocols.

You must consider how you will attach MQSeries to a network, and how you will
define the channels that will be used to exchange messages.

According to the way that you have set your systems up, security checks can be
performed at various times. You can provide your own security services, using the
exit facilities provided by MQSeries. MQSeries also provides exits relating to DCE
security.

“MQSeries interoperability summary” on page 210 shows the links that are possible
to other MQSeries products, and the transmission protocols that can be used.

For further information about distributed queuing, refer to the MQSeries
Intercommunication manual.

Installing MQSeries for OS/2 Warp
MQSeries for OS/2 Warp is installed by using Software Installer/2 (SI/2), an IBM
product. Although this is a separate licensed program, an SI/2 module is provided
with your copy of MQSeries for OS/2 Warp that requires no additional license to be
purchased. The supplied version of SI/2 is restricted in such a way that it can only
be used for the installation of MQSeries for OS/2 Warp.

To prepare for the actual installation, you need to plan how much disk space you
require in your OS/2 Warp system to accommodate MQSeries for OS/2 Warp.
Assistance is given in Chapter 31, “Storage planning for MQSeries for OS/2 Warp
and Windows NT” on page 149 to help you plan the amount of space required.

You can find more information to help you with the installation of MQSeries for
OS/2 Warp in the MQSeries for OS/2 Warp V5.0 Quick Beginnings booklet.

136 MQSeries Planning Guide  



  MQSeries for OS/2 Warp and Windows NT
 

When you have installed MQSeries, you can run the supplied installation
verification test. This is described in the MQSeries for OS/2 Warp V5.0 Quick
Beginnings booklet.

Installing MQSeries for Windows NT
Information on installing MQSeries for Windows NT is given in the MQSeries for
Windows NT V5.0 Quick Beginnings booklet.

When you have installed MQSeries, you can run the supplied installation
verification test. This is described in the MQSeries for Windows NT V5.0 Quick
Beginnings booklet.

Setting up MQSeries
After installation, MQSeries needs to be set up, and customized for your own use.
This ensures that the appropriate operating system facilities are made available to
MQSeries, and that your MQSeries system is correctly initialized and ready to work
with your applications.

MQSeries uses configuration files to hold the product configuration information used
for logging, communications protocols and installable components. After installing
the product, you can edit these files to tailor the operation of the product to meet
the requirements of your installation.

In addition, you need to do the following:

 � Define queues
– Consider your naming conventions for queues

� Define trigger processes
� Define remote links

– Define associated transmission queues
– Consider your naming conventions for remote queues
– Consider your naming conventions for channels

Note:  The characters within the names given to all MQSeries objects are case
sensitive. Therefore, be very careful when defining the names of objects, to select
the appropriate uppercase or lowercase characters.

You can find more information on the setting up and customizing processes for
MQSeries in the MQSeries System Administration manual.

Planning recovery services
MQSeries provides logging services to allow backup and recovery of the messaging
system. Chapter 28, “Backup and recovery planning for MQSeries for OS/2 Warp
and Windows NT” on page 141 introduces you to these facilities, and to the items
that you need to consider in order to include MQSeries in your backup and
recovery plans.

You can find more information on the backup and recovery facilities provided by
MQSeries in the MQSeries System Administration manual.

  Chapter 27. Introduction to MQSeries for OS/2 Warp and Windows NT 137



 MQSeries for OS/2 Warp and Windows NT  
 

Planning data security
MQSeries provides a number of security facilities for use by your applications. An
introduction to these facilities is given in Chapter 29, “Security planning for
MQSeries for OS/2 Warp and Windows NT” on page 145.

You can find more information on the security facilities provided by MQSeries in the
MQSeries System Administration manual.

 Administration
A summary of the administration facilities provided by MQSeries are given in the
MQSeries System Administration manual.

Support for Lotus Notes
MQSeries provides a Lotus Notes server add-in task that gives Lotus Notes
applications access to MQSeries messaging. This allows Lotus Notes users to
communicate with other systems connected by MQSeries.

Lotus Notes is a networked application that users can use to share information.
Lotus Notes has two main components, the server and the client. The Lotus Notes
server provides services to Lotus Notes clients and to other servers. The services
provided include storage and replication of shared databases and mail routing.
Lotus Notes clients connect to a Lotus Notes server to use shared databases, and
also to read and send mail. The Lotus Notes server add-in task runs in either an
MQSeries server or an MQSeries client on that Lotus Notes server.

The basic units of information in a Lotus Notes system are databases and the
documents that they contain. A database can be used by one person, or shared
among users who have common data requirements. Most databases in Lotus
Notes reside on a Lotus Notes server.

MQSeries provides a Lotus Notes server add-in task that recognizes and interprets:

� Data from documents that Lotus Notes wants to send to MQSeries

� Messages from MQSeries sent in reply and used to update a Lotus Notes
document

The mobile or remote Notes user can access MQSeries applications and data.

MQSeries and R/3
The MQSeries link for R/3 for Windows NT product provides an interface that
enables you to integrate your R/3 application with applications running in other
environments (including those on R/3 and R/2 environments).

The R/3 link works with the Application Link Enabling (ALE) layer of the R/3 system
to transmit Intermediate Documents (IDocs) into and out of your R/3 system, using
MQSeries messages and queues to carry the information. It extends the scope of
your business by allowing you to link your R/3 applications to any other application
that you can access through MQSeries, even when those applications require
different data formats.

For more information, see the MQSeries link for R/3 User’s Guide.

138 MQSeries Planning Guide  



  MQSeries for OS/2 Warp and Windows NT
 

Migration from MQSeries Version 2
When you have migrated from MQSeries Version 2 to MQSeries Version 5 you will
be unable to revert to Version 2. You should back up your system before installing
the new version. This will enable you to back off the upgrade if necessary. If you
do this however, you will not be able to recover the work performed by MQSeries
Version 5.

With MQSeries Version 5, the system default objects are created automatically
when you use the crtmqm command to create a queue manager. The sample
MQSC definition file, AMQSCOMA.TST, is no longer provided. If you have used
AMQSCOMA.TST to customize your settings for MQSeries Version 2, and you
want to use the same settings with Version 5, save your version of the file before
you install MQSeries Version 5. You can then use this file to create the Version 2
default objects. Alternatively, you can generate a new MQSC definition file if
required.

A list of the system default objects for MQSeries Version 5 is provided in the
MQSeries System Administration manual.

  Chapter 27. Introduction to MQSeries for OS/2 Warp and Windows NT 139



 MQSeries for OS/2 Warp and Windows NT  
 

140 MQSeries Planning Guide  



  MQSeries for OS/2 Warp and Windows NT
 

Chapter 28. Backup and recovery planning for MQSeries for
OS/2 Warp and Windows NT

This chapter describes the background concepts of recovery and restart. It
contains the following sections:

 � “Logging”
� “Resource management” on page 143
� “Recovering from problems” on page 144

More details of the logging and recovery facilities are given in the MQSeries
System Administration manual.

 Logging
The basic premise of a messaging system is that messages entered into the
system are assured of delivery to the destination. One of the ways of ensuring that
messages are not lost, is to maintain a record of the activities of the queue
manager that handles the receipt, transmission, and delivery of messages.

MQSeries does this by recording all the significant changes to the data controlled
or managed by the queue manager in a log. This process is called logging. The
data changes that are logged include the puts and gets of persistent messages to
and from queues, changes to queue attributes, and channel activities.

The purpose of logging is to create and maintain a log that:

� Keeps records of queue manager changes

� Keeps records of queue updates for use by the restart process

� Is a source for restoration of data should there be a hardware or software
failure

Each MQSeries log consists of a log control file, together with one or more log files
for the storage of data.

The log control file is, as its name implies, used to control and monitor the use of
the log files. It contains information relating to the size, location, next available file,
and other data related particularly to the log files themselves. All the log files within
one log are the same size; there is a default value for this size, but you can
override this value when you set up the log.

MQSeries provides a log dump facility (DMPMQLOG). This enables you to format
and display the contents of the log when doing problem determination.

 Copyright IBM Corp. 1993, 1998  141



 MQSeries for OS/2 Warp and Windows NT  
 

Types of logging
In MQSeries, there are two approaches to maintaining records of queue manager
activities:

 � Circular logging
 � Linear logging

Each type of logging stores the recorded data in a set of files. The differences
between the two types of logging are the contents, and the way that the files are
linked together.

With circular logging, the set of log files are effectively linked together so as to form
a ring. When data is collected, it is written sequentially into the files in such a way
as to reuse the log files in the ring. You can use circular logging for:

� Crash recovery - that is, after a system failure of some kind has stopped the
queue manager unexpectedly

� Restart recovery - after a planned close down of the system

With linear logging, the log is maintained as a continuous sequence of files. When
data is collected, it is written sequentially into the log files; the space in the files is
not reused, so that you can always retrieve any record from the time that the queue
manager was created.

Because disk space is finite, you might have to plan for some form of archiving.
Also, if you are handling a high volume of persistent messages, all your log files will
eventually be filled. This will result in operator messages being written to an error
log file, and some action will need to be taken by the system administrator to make
more log space available, or to reuse the existing space. You can use linear
logging for:

 � Crash recovery

 � Restart recovery

� Media recovery - to recreate lost or damaged data after a media failure by
replaying the contents of the log

Selecting a logging method
You must base your selection of log type on your requirements for recovery.

Both types of logging can cope with unexpected power outages in the absence of
hardware failure. If you accept that only crash or restart recovery is required,
circular logging might be adequate. If media recovery is important to you, select
linear logging.

With each type of logging, you will need to decide on the number of files to use in
the log, and their size. The total amount of space needed will depend on the
amount of data to be recorded, which depends on various parameters, including:

� The size of messages
� The number of gets and puts to queues
� The number of messages being transmitted by the message channel agents

142 MQSeries Planning Guide  



  MQSeries for OS/2 Warp and Windows NT
 

 Resource management
MQSeries supports the coordination of transactions by an external transaction
manager that uses the X/Open XA interface. MQSeries can also act as a
transaction manager, coordinating updates made by external resource managers.

MQSeries as a resource manager
MQSeries supports the coordination of transactions by an external transaction
manager that uses the X/Open XA interface.

In an XA configuration, the MQSeries queue manager acts as an XA resource
manager, managing message queues. The XA transaction manager coordinates
the operations of the queue manager, and any other resource managers, to
synchronize the commit or backout of transactions. This ensures that updates to
MQSeries message queues are coordinated with the updates to all the other types
of resource being managed.

CICS for Windows NT operates as an XA transaction manager, so the XA resource
management capabilities of MQSeries for Windows NT can be used. MQSeries for
Windows NT can also use ENCINA or TUXEDO as a transaction manager.

CICS for OS/2 Warp does not operate as an XA transaction manager, so the XA
resource management capabilities of MQSeries for OS/2 Warp and cannot be used.
However, CICS does provide a single-phase commit process (as opposed to the
two-phase XA coordination), which MQSeries takes part in.

This support is available only on the MQSeries server, and is not available to client
applications. See the information on CICS transactions in the MQSeries System
Administration manual for more details.

MQSeries as a transaction manager
MQSeries can act as a transaction manager and coordinate updates made by
external resource managers within MQSeries units of work. These external
resource managers must comply to the X/Open XA interface. MQSeries can act as
a transaction manager for DB2.

  Chapter 28. Backup and recovery planning for MQSeries for OS/2 Warp and Windows NT 143



 MQSeries for OS/2 Warp and Windows NT  
 

Recovering from problems
MQSeries will recover from both communications failures and power loss incidents.
In addition, it is sometimes possible to recover from other types of problem with the
MQSeries data, such as inadvertent deletion of a file.

In the case of a communications failure, messages simply remain on queues until
they are removed from the queues by a receiving application. If the message is
being transmitted, it remains on the transmission queue until it can be successfully
transmitted. To recover from a communications failure, it will normally be sufficient
simply to restart the channels using the link that failed.

On a restart after your system has lost power, the queue manager will restore all
the persistent messages on the queues to the state that existed just before the
power failure, so that no persistent messages are lost; nonpersistent messages are
discarded.

There are ways in which an MQSeries object can become unusable, for example
due to inadvertent damage. In such situations, you will have to take steps to
recover either your complete system or some part of it. The action required
depends on when the damage is detected, whether the log method selected
supports media recovery, and which object or objects are damaged.

144 MQSeries Planning Guide  



  MQSeries for OS/2 Warp and Windows NT
 

Chapter 29. Security planning for MQSeries for OS/2 Warp
and Windows NT

In general, each MQSeries product provides security facilities by building on those
provided by the platform for which the product was designed.

This chapter describes the security facilities provided by MQSeries. The chapter
contains these sections:

� “Setting user IDs with MQSeries for OS/2 Warp”
 � “Security exits”

Setting user IDs with MQSeries for OS/2 Warp
Note:  This is not applicable to MQSeries for Windows NT.

MQSeries for OS/2 Warp provides the User ID installable component. This can be
used to generate a user ID value, which the queue manager places in the message
context portion of the message descriptor of all messages that are generated by
application programs running on the MQSeries for OS/2 Warp client or server.

This user ID can be used by the programs that receive the messages, to verify that
the messages have come from an authorized user.

Details of the User ID installable component can be found in the MQSeries
Programmable System Management book.

 Security exits
The message channels that are used for distributed queuing, and the MQI channels
that are used between clients and servers, both have security exit facilities that can
invoke programs you have supplied.

For more information on these security exit programs, see the MQSeries
Intercommunication manual.

 Copyright IBM Corp. 1993, 1998  145



 MQSeries for OS/2 Warp and Windows NT  
 

146 MQSeries Planning Guide  



  MQSeries for OS/2 Warp and Windows NT
 

Chapter 30. Administration of MQSeries for OS/2 and
Windows NT

This chapter is a summary of the administration facilities provided by MQSeries. It
has the following sections:

 � “Managing objects”
� “Remote administration” on page 148

Details of the commands, command interfaces, and utilities that are provided by
MQSeries are given in the MQSeries System Administration manual.

 Managing objects
It is the administrator’s job to monitor MQSeries and make any changes that might
be necessary. To do this, the administrator needs to know where each MQSeries
object resides, what its characteristics are, and who has access to it.

The administrator can manage and monitor the resources using MQSeries
commands (MQSC), or, if there are sets of commands that are issued regularly, by
writing an application program that places them on the command queue.

 Commands
MQSeries supports the following administration commands and facilities:

� MQSeries provides control commands that you can enter through the OS/2
Warp or Windows NT command line

� You can use the runmqsc  control command to cause MQSC commands from
standard input to be executed

� Any local or remote MQSeries application program can generate PCF
commands in messages, and put them to the command queue,
SYSTEM.ADMIN.COMMAND.QUEUE, to be processed by the MQSeries
command server

More information on how to use all these facilities is given in the MQSeries System
Administration manual.

Changes made to the resource definitions of a queue manager using the
commands (directly or indirectly) are preserved across restarts of the MQSeries
system.

 Managing communications
Part of the administrator’s role is to ensure that the required communications links
are activated, and to monitor the status of these links as required by your
enterprise. You can find information describing these tasks in the MQSeries
Intercommunication manual.

 Copyright IBM Corp. 1993, 1998  147



 MQSeries for OS/2 Warp and Windows NT  
 

 Remote administration
There are two aspects to the MQSeries remote administration facilities:

� MQSeries for OS/2 Warp and MQSeries for Windows NT can be used to
manage remote systems

� Other remote products can be used to manage an MQSeries for OS/2 Warp or
MQSeries for Windows NT system

Managing remote systems
Facilities are provided by MQSeries to allow an administrator to manage the
following remote systems:

� MQSeries for AS/400
� MQSeries for Digital OpenVMS
� MQSeries for MVS/ESA
� MQSeries for OS/2 Warp

| � MQSeries for Tandem NSK
� MQSeries on UNIX systems
� MQSeries for Windows NT

Because of the differences between the MQSeries products, it is not always
possible to manage remotely the same set of MQSeries objects or attributes that
you can manage locally.

If you wish to manage any other MQSeries product, you can write an application
program to send the appropriate commands to the command queue for that
product. However, some MQSeries products do not have a command queue, so
they cannot accept commands from local or remote application programs.

Managing MQSeries from remote systems
MQSeries for OS/2 Warp and MQSeries for Windows NT can be managed from a
remote MQSeries system, by an administrator using the facilities provided by the
following products:

� MQSeries for AS/400
� MQSeries for Digital OpenVMS
� MQSeries for MVS/ESA
� MQSeries for OS/2 Warp

| � MQSeries for Tandem NSK
� MQSeries on UNIX systems
� MQSeries for Windows NT

Note:  You can manage MQSeries for OS/2 Warp and MQSeries for Windows NT
from MQSeries for MVS/ESA by writing an application program to send the
appropriate PCF commands to the command queue.

148 MQSeries Planning Guide  



  MQSeries for OS/2 Warp and Windows NT
 

Chapter 31. Storage planning for MQSeries for OS/2 Warp
and Windows NT

This chapter tells you how to plan the type and amount of storage you require
when you include MQSeries in your system. It has the following sections:

 � “RAM considerations”
� “Disk space considerations”
� “Capacity planning and performance figures” on page 150

 RAM considerations
The processor memory (RAM) is used by MQSeries in the execution of the product
modules, and as a paging area for the messages that are being processed. Parts
of the paging area are written to, and read from, disk as necessary.

The minimum amount of RAM required to run the MQSeries server on OS/2 or
Windows NT is 24 MB; if more RAM is available, the performance of the message
processing improves. Allow 0.5 MB for each MQSeries client connected.

The amount of RAM required on each client system for an MQSeries client is small
compared to that required for the operating system on each of the platforms.

Disk space considerations
Disk space is used by MQSeries for the following:

� Product modules - client and server executable modules, the toolkit, and the
online documentation

� Paging space - server only

� Message queues - server only

� Logs - server only

 Product modules
The disk space that you require for the product modules depends on the options
that you decide to install: the options are described in the MQSeries System
Administration manual.

Space might be required for client and server executable program modules, the
toolkit, and the online documentation. If all options are selected, 66.5 MB is
required.

The product modules can be stored on a LAN server, as an alternative to them
being stored on a disk attached to the MQSeries client or server. MQSeries loads
the modules from the LAN server when required.

 Copyright IBM Corp. 1993, 1998  149



 MQSeries for OS/2 Warp and Windows NT  
 

 Message queues
In order to estimate the total amount of storage that you will need for queues, you
need to know:

� The number of queues that you have.

� The maximum number of messages there will be on each of the queues at any
one time.

� The average size of message on each of the queues. The amount of storage
required for one message varies. It is based on the size of the message data
plus the size of the message header (456 bytes), rounded up the nearest
512-byte block. If you are using distribution lists, or grouped or segmented
messages, the size of the header increases for the transmission queue.

Given these values, you can calculate the total amount of space required for
queues. However, this value is likely to be an approximate value only, and it is
advisable to add a contingency value, to avoid the situation where there is no
space left for messages on the queues when your application is running.

 Log files
Significant events and data changes can be logged in circular or sequential logs.
In particular, the logs are used for recording persistent messages.

All the log files in a log are of the same size. By default, this size is 4 MB, but this
value can be changed by the system administrator when the log is defined.

For a circular log, the system administrator needs to specify how many files should
be included in the log. For a sequential log, the number of files will increase over
time, until the system administrator archives some of the files, and disposes of
them. You need to plan for the permanent storage (diskettes, tape, or other media
supported in your enterprise) that is to be used for these archived files.

Capacity planning and performance figures
Information about MQSeries performance and capacity planning is available on the
Internet at:

http://www.software.ibm.com/ts/mqseries/txppacs/txpm1.html

150 MQSeries Planning Guide  



  MQSeries for Windows
 

Chapter 32. Introduction to MQSeries for Windows

MQSeries for Windows is a lightweight messaging and queuing product that
provides MQSeries functions on workstations that run on the Microsoft Windows
platform. It uses significantly fewer resources than other MQSeries products, so it
is a good choice to use as a single-user queue manager running on a small or
medium-sized personal computer.

� MQSeries for Windows Version 2.0 is a 16-bit product that runs on Microsoft
Windows 3.1 and Windows 95.

� MQSeries for Windows Version 2.1 is a 32-bit product that runs on Windows 95
and Windows NT Version 4.0.

For information about these products, see:

� MQSeries for Windows Version 2.0 User’s Guide
� MQSeries for Windows Version 2.1 User’s Guide

Do not confuse MQSeries for Windows with MQSeries for Windows NT Version 5.
This product is described in Chapter 27, “Introduction to MQSeries for OS/2 Warp
and Windows NT” on page 135.

MQSeries for Windows is particularly well suited to users of messaging applications
who want to use a standard configuration. It uses definition files that automatically
create and start the messaging components the users need, and it can
automatically start components when the users start their workstations. These
features reduce the need for users of applications to be aware of the messaging
product and allow them to concentrate on the applications they want to use.

This chapter contains the following sections:

“Where to use MQSeries for Windows” on page 152
This explains the intended use of MQSeries for Windows.

“The features of MQSeries for Windows” on page 154
This introduces the features provided by MQSeries for Windows.

“Comparing queue managers, clients, and servers” on page 155
This gives a comparison of supported features on MQSeries for
Windows.

“How MQSeries for Windows differs from the other MQSeries products” on
page 155
This summarizes the differences between MQSeries for Windows and
the other workstation products in the MQSeries family.

 Copyright IBM Corp. 1993, 1998  151



 MQSeries for Windows  
 

Where to use MQSeries for Windows
MQSeries for Windows is designed for use as a leaf node in a network of queue
managers; that is, it is intended for use by a single user on a workstation that is
connected to only one other computer in an MQSeries network of computers (see
Figure 13 on page 153).

There are important differences between a leaf-node queue manager, an MQSeries
client, and a server-node queue manager:

� A leaf-node queue manager is a lightweight product that connects to a network
of one or more larger servers. It manages its own queues, so an application
that runs on a leaf-node queue manager can continue to work, even if there is
a failure in the messaging network or if the user decides to work in standalone
(disconnected) mode (for example, away from their own office or in a branch
office that does not currently have a connection to a server).

A leaf-node queue manager is not  intended for use as an intermediate queue
manager that passes messages from one queue manager to another or one
that serves many users. For this reason it does not support MQSeries clients.
It is  intended for a single user working on their own workstation.

� An MQSeries client provides no queue manager functions and it has no
queues. It is dependent on an MQSeries server (of the type that supports
MQSeries clients). The server owns the queues that the client uses, so if the
communication link between the client and the server is broken, the client
cannot use those queues.

� A server-node queue manager is a product (such as MQSeries for Windows
NT) that manages the queues and communication channels required to support
the transfer of messages between queue managers. The computer on which
the server-node queue manager runs is large enough to manage the volume of
messages such a server might be required to process, and it might also
support MQSeries clients. Such a queue manager is likely to be used by a
network administrator.

MQSeries for Windows typically runs on workstations that are not powerful enough
to act as a server. Like a server though, MQSeries for Windows manages its own
queues and the channels to communicate with other queue managers. However,
because it is intended to be a leaf node, MQSeries for Windows does not provide
all the server functions available on other MQSeries queue managers; these
include media recovery, two-phase commit, instrumentation events, and MQSeries
client support. For a full list of the MQSeries features that MQSeries for Windows
does not support, see “How MQSeries for Windows differs from the other MQSeries
products” on page 155.

MQSeries for Windows is designed to run in the Windows environment, so it
provides Windows programs that help to make the queue manager easier to use.
These programs are not provided by other MQSeries products.

152 MQSeries Planning Guide  



  MQSeries for Windows
 

Leaf-node
queue

managers

Server queue managers

Figure 13. A network of server queue managers and three leaf-node queue managers. The
leaf node queue managers run on Windows; they each connect to only one server. The
server queue managers run on any other MQSeries platform; they can each have many
connections.

  Chapter 32. Introduction to MQSeries for Windows 153



 MQSeries for Windows  
 

The features of MQSeries for Windows
MQSeries for Windows provides existing MQSeries features, but on the Windows
operating system:

� A small footprint queue manager that runs on Windows

� The MQSeries Message Queue Interface (MQI) for application development on
Windows

� Application development support for the C and Visual Basic programming
languages

� Communication between queue managers using TCP/IP

� Standard MQSeries message types and formats

� Persistent messages (which survive restarts of the workstation) and
nonpersistent messages

� Standard MQSC commands to create, alter, or delete MQSeries objects (but
MQSeries for Windows does not support all the commands)

� Enablement for automatic installation.

� Report generation, including confirm on arrival (COA), confirm on delivery
(COD), and message expiry

� Remote administration using PCF commands and MQ events (Version 2.1 only)

In addition, MQSeries for Windows provides these features:

� To help users of applications to get started quickly and easily the first time they
use the product, MQSeries for Windows uses definition files that automatically
create and start the messaging components the users need.

� To help users of applications to get started when they start their workstations,
MQSeries for Windows can automatically start its components.

� To help you to set up and work with your MQ components:

– Version 2.0 of MQSeries for Windows provides utilities you can access
from the MQSeries for Windows program group in the Windows Program
Manager.

– Version 2.1 of MQSeries for Windows provides an MQSeries Properties
dialog box. You can open this from the Windows taskbar and Control
Panel.

These facilities are supported by extensive online help.

� To make it easier to work with the message channels that you must use to
send messages between queue managers, MQSeries for Windows provides
channel groups. A channel group is a collection of channels that you start and
stop at the same time.

� To make it easier to work with dial-up devices (such as modems) when you
connect two queue managers:

– Version 2.0 of MQSeries for Windows provides transport links which can
help you to control the duration (and hence the cost) of such a connection.

– Version 2.1 of MQSeries for Windows uses the dial-up networking
connections provided by the operating system.

154 MQSeries Planning Guide  



  MQSeries for Windows
 

Comparing queue managers, clients, and servers
If you already use MQSeries clients, see Table 14 for a summary of the differences
between an MQSeries for Windows queue manager, an MQSeries client, and an
MQSeries server.

Table 14. Comparison of supported features on MQSeries for Windows

Feature MQSeries for
Windows

MQSeries client
on Windows

MQSeries for
OS/2 Warp

Independent
operation

Yes No Yes

Queue manager Yes No Yes

Queues Yes No Yes

Message channels Yes No Yes

Run MQSC
commands

Utility (V2.0),
interactive (V2.1),
or command file

No Command line or
command file

Persistence of
MQSeries objects

Yes All objects are on
the server

Yes

Logging and media
recovery

No All objects are on
the server

Yes

Automatic
installation

Yes Yes Yes

Automatic start up Yes No No

Supports
MQSeries clients

No Not applicable Yes

How MQSeries for Windows differs from the other MQSeries products
MQSeries for Windows is a leaf-node queue manager for the Microsoft Windows
platform. It is designed to minimize system requirements so that workstations with
relatively modest specifications can use commercial messaging. This section
summarizes the differences between MQSeries for Windows and the other
workstation products in the MQSeries family. The features are listed in alphabetic
order.

Attributes of queues and queue managers
MQSeries for Windows does not support all the attributes of queues and
queue managers (for example, it does not support those related to
triggering). If you use an unsupported attribute in a command or an
MQI call, MQSeries for Windows returns a value to show that the
attribute is not supported.

Authority checking on the MQOPEN call
MQSeries for Windows does not support the SETMQAUT and
DSPMQAUT commands.

Command Server
Version 2.0 of MQSeries for Windows does not support the MQSeries
Command Server, so it does not support any MQSeries feature that

  Chapter 32. Introduction to MQSeries for Windows 155



 MQSeries for Windows  
 

uses the command server (for example, PCF commands and remote
administration).

Version 2.1 provides a command server.

Context passing
MQSeries for Windows does not copy context information from
messages it receives from other queue managers. This is because
MQSeries for Windows is intended to be a leaf node; it is not intended
to be an intermediate node in a network of queue managers, where
messages received from one queue manager are passed on to another.

Control commands
In other MQSeries products, you can issue control commands from the
command line. MQSeries for Windows provides a user interface to
enable you to perform the functions of some of these commands (for
example, starting and stopping a queue manager). For a comparison
with the MQSeries control commands, see the MQSeries for Windows
User’s Guide.

Data conversion
When an MQSeries for Windows queue manager receives data from a
queue manager running on a different platform, it cannot convert the
machine encoding, integer representation, or coded character set of the
application data. Also, it cannot run data conversion exits. This means
that any data conversion that is required must be performed by the other
queue manager.

Dead-letter queues
MQSeries for Windows does not support dead-letter queues. A
dead-letter queue is a queue to which a queue manager or application
sends messages it cannot deliver to their correct destination. It is also
known as an undelivered-message queue.

An MQSeries for Windows queue manager does not need a dead-letter
queue because, being a leaf node, it is always on the edge of a network
of queue managers. This means that it does not have to store
messages for onward transmission to other queue managers.

Distributed Computing Environment (DCE) directories
MQSeries for Windows does not support DCE directories.

Distributed Computing Environment (DCE) security
MQSeries for Windows does not support exits relating to DCE security.

Events See instrumentation events.

Installable services
MQSeries for Windows does not support MQSeries installable services.
These are additional functions provided in other MQSeries products as
several independent components.

Instrumentation events
Instrumentation events are facilities you can use to monitor the
operation of queue managers and channels in a network of MQSeries
systems. Version 2.1 of MQSeries for Windows generates most of the
MQSeries instrumentation events. Version 2.0 does not generate
instrumentation events.

156 MQSeries Planning Guide  



  MQSeries for Windows
 

Media recovery and logging
MQSeries for Windows does not support the creation of a sequence of
log records that contain an image of an object. Other MQSeries
products allow you to create such records and re-create objects from
this image.

Message Queue Interface (MQI)
MQSeries for Windows supports a subset of the MQI.

To understand those features of the MQI that MQSeries for Windows
does not support, see the MQSeries for Windows User’s Guide.

Message retry exit
MQSeries for Windows does not support a message retry exit.

An MQSeries for Windows queue manager does not need a message
retry exit because, being a leaf node, it is always on the edge of a
network of queue managers. This means that it does not have to store
messages for onward transmission to other queue managers.

MQI channels
MQSeries for Windows does not support MQI channels. These are
client connection and server connection channels. These are used with
MQSeries clients only, so MQSeries for Windows does not support
them.

MQSC commands
MQSeries for Windows supports a subset of the MQSC commands. To
see which commands it supports, see the MQSeries for Windows User’s
Guide.

However, MQSeries for Windows provides facilities that allow you to
type MQSC commands in a window (and test and reissue them) and run
MQSC command files. This is described in the MQSeries for Windows
User’s Guide.

MQSeries client and server support
You cannot use an MQSeries for Windows queue manager as an
MQSeries client, nor can you use it to support its own MQSeries clients.

Network support
MQSeries for Windows supports TCP/IP only.

Object Authority Manager (OAM)
MQSeries for Windows does not provide a security manager. It does
not support the SETMQAUT and DSPMQAUT commands.

Process definitions
Other MQSeries products use process definitions for setting up the
automatic triggering of applications. MQSeries for Windows does not
support triggering or process definitions.

Programmable Command Formats (PCFs)
Version 2.0 of MQSeries for Windows does not support PCFs.

Version 2.1 supports many of the PCF commands. To see which
commands, see the MQSeries for Windows User’s Guide.

Queue manager
MQSeries for Windows supports multiple queue manager definitions, but
it allows only one queue manager to run at any time.

  Chapter 32. Introduction to MQSeries for Windows 157



 MQSeries for Windows  
 

Queue manager quiescing
MQSeries for Windows does not support the quiescing of a queue
manager. This is the ability to allow applications to finish processing
before the queue manager is stopped, and to prevent any further
applications starting.

Sample programs
MQSeries for Windows provides Windows versions of some of the
MQSeries sample programs. The MQSeries for Windows samples are
described in the MQSeries for Windows User’s Guide.

Security manager
See object authority manager.

Signaling
Version 2.0 of MQSeries for Windows does not support signaling.

Version 2.1 supports signalling, so you can use the
MQGMO_SET_SIGNAL option with the MQGET call on Windows
applications.

Triggering
MQSeries for Windows does not support triggering, so it does not allow
a queue manager to start an application automatically when
predetermined conditions on a queue are satisfied. The following
features of triggering are also not supported:

 � Initiation queues
 � Process definitions
 � Trigger monitors

Two-phase commit
MQSeries for Windows does not support two-phase commit. This is a
protocol for the coordination of changes to recoverable resources when
more than one resource manager is used by a single transaction.

However, MQSeries for Windows does allow the queue manager to
commit or back out units of work.

158 MQSeries Planning Guide  



  MQSeries for Tandem NSK
 

Part 6. Planning for MQSeries for Tandem NSK

| Chapter 33. Introduction to MQSeries on Tandem NSK . . . . . . . . . .  161
| Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161
| Preparing your applications for use with MQSeries . . . . . . . . . . . . . .  161
| Planning to use MQSeries in a network . . . . . . . . . . . . . . . . . . . .  162
| Installing MQSeries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
| Setting up MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162
| Planning recovery services . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
| Planning data security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163
| Administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
| Migration from MQSeries for Tandem NSK Version 1.5.1 . . . . . . . . . . .  164
| Migrating applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

| Chapter 34. Backup and recovery planning for MQSeries for Tandem
| NSK  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
| Recovery facilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
| Recovering from problems . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165
| Backing up and restoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165

| Chapter 35. Security planning for MQSeries for Tandem NSK . . . . . .  167
| Controlling access to resources . . . . . . . . . . . . . . . . . . . . . . . . . .  167
| Managing access through user groups . . . . . . . . . . . . . . . . . . . . .  168
| Resources you can protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168
| Using the Object Authority Manager (OAM) commands . . . . . . . . . . . . .  169
| Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

| Chapter 36. Administration of MQSeries for Tandem NSK . . . . . . . .  171
| Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
| Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
| Managing communications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
| Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
| Managing remote systems . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172
| Managing MQSeries from remote systems . . . . . . . . . . . . . . . . . .  172

 Copyright IBM Corp. 1993, 1998  159



 MQSeries for Tandem NSK  
 

160 MQSeries Planning Guide  



  MQSeries for Tandem NSK
 

| Chapter 33. Introduction to MQSeries on Tandem NSK

| MQSeries for Tandem NSK runs on a machine that is capable of running the
| Tandem NSK operating system.

| MQSeries provides the MQI programming interface for use by application programs
| that are running on Tandem NSK.

| For information on the hardware and software environments, see “MQSeries for
| Tandem NSK” on page 239.

| Planning for MQSeries
| This chapter helps you to plan for the introduction of MQSeries for Tandem NSK
| into your enterprise, and introduces the items that you need to consider when doing
| this planning.

| There are several stages in planning for the use of MQSeries for Tandem NSK that
| you must go through. They are:

| 1. Preparing your applications for the use of MQSeries for Tandem NSK
| 2. Planning to include MQSeries for Tandem NSK in a network
| 3. Preparing to install MQSeries for Tandem NSK
| 4. Planning to set up MQSeries for Tandem NSK

| A prime requirement for a message delivery system is that it must be reliable.
| Functions are built into MQSeries for Tandem NSK to ensure that:

| � Messages are not lost despite system failures

| � Messages are not delivered more than once

| � Messages are not accessed by, or delivered to, unauthorized persons or
| applications

| MQSeries uses Tandem NSK facilities to support these functions.

| You must also plan for the operation and administration of MQSeries for Tandem
| NSK in your enterprise, and consider the implementation of an appropriate set of
| security facilities. Brief outlines of these planning operations are included in this
| chapter.

| Preparing your applications for use with MQSeries
| MQSeries for Tandem NSK brings the Message Queue Interface (MQI) to your
| applications. This interface allows you to modify existing applications and to write
| new applications. The MQI removes much of the need to understand the network
| and communication systems that you use. Thus you can expect to generate
| applications more speedily than before. However, you must prepare to take
| advantage of the MQI by planning its use in your applications and by understanding
| the ways in which it assists you.

| You can find more information on how to use the MQI in your applications by
| referring to the MQSeries Application Programming Guide.

 Copyright IBM Corp. 1993, 1998  161



 MQSeries for Tandem NSK  
 

| Planning to use MQSeries in a network
| MQSeries for Tandem NSK uses distributed queuing to exchange messages
| between MQSeries platforms, using either the SNA LU 6.2, or TCP/IP transmission
| protocols.

| You must consider how you will attach MQSeries for Tandem NSK to a network,
| and how you will define the message channels that will be used to exchange
| messages.

| According to the way that you have set your systems up, security checks can be
| performed at various times. Various exits are provided that can be used by your
| applications to provide these facilities.

| “MQSeries interoperability summary” on page 210 shows the links that are possible
| to other MQSeries products, and the transmission protocols that can be used.

| For further information about distributed queuing, refer to the MQSeries
| Intercommunication manual.

|  Installing MQSeries
| MQSeries for Tandem NSK is installed with the instmqm  control command. For
| information about installing MQSeries, see the MQSeries for Tandem NonStop
| Kernel System Management Guide.

| Setting up MQSeries
| After installation, MQSeries for Tandem NSK needs to be set up, and customized
| for your own use. This ensures that the appropriate Tandem NSK facilities are
| made available to MQSeries, and that your MQSeries system is correctly initialized
| and ready to work with your applications.

| You need to do the following:

|  � Define queues

| – Consider your naming conventions for queues

| � Define trigger processes

| � Define remote links

| – Define associated transmission queues
| – Consider your naming conventions for remote queues
| – Consider your naming conventions for channels

| Note:  The characters within the names given to all MQSeries objects are case
| sensitive. Therefore, be very careful when defining the names of objects, to select
| the appropriate uppercase or lowercase characters.

| You can find more information on the setting up and customizing processes for
| MQSeries for Tandem NSK in the MQSeries for Tandem NonStop Kernel System
| Management Guide.

162 MQSeries Planning Guide  



  MQSeries for Tandem NSK
 

| Planning recovery services
| MQSeries for Tandem NSK provides facilities to allow backup and recovery of the
| messaging system. Chapter 34, “Backup and recovery planning for MQSeries for
| Tandem NSK” on page 165 introduces you to these facilities, and to the items that
| you need to consider in order to include MQSeries for Tandem NSK in your backup
| and recovery plans.

| You can find more information on the backup and recovery facilities provided by
| MQSeries for Tandem NSK in the MQSeries for Tandem NonStop Kernel System
| Management Guide.

| Planning data security
| MQSeries for Tandem NSK uses the facilities of the MQSeries object authority
| manager (OAM) installable component to control access to the various different
| types of queue manager resource (queues, process definitions, channels, and
| queue managers).

| You can find more general information on authorization installable components in
| Chapter 8, “Introduction to the MQSeries Framework” on page 53.

| Chapter 35, “Security planning for MQSeries for Tandem NSK” on page 167
| introduces you to the security facilities provided by MQSeries for Tandem NSK and
| to some of the items you need to consider when planning for security.

| You can find more information on the security facilities provided by MQSeries for
| Tandem NSK in the MQSeries for Tandem NonStop Kernel System Management
| Guide.

|  Administration
| Information about administering MQSeries is given in “MQSeries product
| administration facilities” on page 36.

| A summary of the administration facilities provided for Tandem NSK is given in
| Chapter 36, “Administration of MQSeries for Tandem NSK” on page 171. Full
| details of these facilities can be found in the MQSeries for Tandem NonStop Kernel
| System Management Guide.

  Chapter 33. Introduction to MQSeries on Tandem NSK 163



 MQSeries for Tandem NSK  
 

| Migration from MQSeries for Tandem NSK Version 1.5.1
| If you are a user of MQSeries for Tandem NSK V1.5.1, you can convert your
| existing MQSeries configuration files and messages to work with MQSeries for
| Tandem NSK V2.2 using the following two conversion utilities:

| CNV1520 Converts MQSeries for Tandem NSK Version 1.5.1 queue and
| channel definitions into MQSC scripts.

| CNVMSGS Transfers messages from MQSeries for Tandem NSK Version
| 1.5.1 message queues to Version 2.2 message queues after the
| queue definitions have been established using CNV1520.

| Both utilities reside in the ZMQSEXE subvolume.

|  Migrating applications
| To migrate your MQSeries for Tandem NSK V1.5.1 applications you must
| recompile and rebind them with V2.2 header files and libraries. Stubs have been
| provided for MQI calls that are not present or required in MQSeries for Tandem
| NSK V2.2, so code changes relating to MQSeries (other than including the correct
| header files) are not required. However, MQSeries for Tandem NSK V2.2 requires
| that you compile C programs with the WIDE model. MQSeries for Tandem NSK
| V1.5.1 required LARGE; if your programs contain code that relies on LARGE data
| representations, the code might have to be changed before it functions correctly
| under the WIDE model.

164 MQSeries Planning Guide  



  MQSeries for Tandem NSK
 

| Chapter 34. Backup and recovery planning for MQSeries for
| Tandem NSK

| This chapter describes the background concepts of recovery and restart. More
| information about the recovery facilities of MQSeries for Tandem NSK is given in
| the MQSeries for Tandem NonStop Kernel System Management Guide.

|  Recovery facilities
| MQSeries for Tandem NSK ensures that messages are not lost by using the
| Tandem NonStop Transaction Manager (TM/MP). TM/MP provides transaction
| protection, queue-file consistency, and queue-file recovery.

| The TM/MP subsystem manages the complex operations for current transactions
| and database consistency, both user operations and MQSeries operations, making
| these operations transparent to both users and application programs.

| A recovery restores the queue manager to the state it was in when the queue
| manager stopped. Any transactions that are in process are rolled back, removing
| from the queues any messages that were not committed at the time the queue
| manager stopped. Recovery restores all persistent messages; nonpersistent
| messages are lost during the process.

| Recovering from problems
| If you properly configure MQSeries and your NSK system software and hardware,
| the failure of any single hardware of software component does not result in the loss
| of any data or system functions. MQSeries can recover from a single point of
| failure while maintaining data integrity.

| For more information about recovery from failures, see the MQSeries for Tandem
| NonStop Kernel System Management Guide.

| Backing up and restoring
| Periodically, you might want to make a backup of your queue manager data to
| provide protection against possible corruption due to hardware failures. See the
| MQSeries for Tandem NonStop Kernel System Management Guide for information
| about backing up and restoring MQSeries for Tandem NSK.

 Copyright IBM Corp. 1993, 1998  165



 MQSeries for Tandem NSK  
 

166 MQSeries Planning Guide  



  MQSeries for Tandem NSK
 

| Chapter 35. Security planning for MQSeries for Tandem NSK

| Because MQSeries queue managers handle the transfer of information that is
| potentially valuable, you need the safeguard of an authority system. This step
| ensures that the resources that a queue manager owns and manages are protected
| from unauthorized access, which could lead to the loss or disclosure of the
| information. In a secure system, it is essential that none of the following are
| accessed or changed by any unauthorized user or application:

| � Connections to a queue manager

| � Access to MQSeries objects such as queues, channels, and processes

| � Commands for queue manager administration, including MQSC and PCF
| commands

| � Access to MQSeries messages

| � Context information associated with messages

| You should develop your own policy with respect to which users have access to
| which resources.

| This chapter describes the access control security features in MQSeries for
| Tandem NSK. It contains these sections:

| � “Controlling access to resources”
| � “Resources you can protect” on page 168
| � “Using the Object Authority Manager (OAM) commands” on page 169
| � “Security exits” on page 169

| Full details of MQSeries for Tandem NSK security handling are given in the
| MQSeries for Tandem NonStop Kernel System Management Guide.

| Controlling access to resources
| By default, access to queue manager resources is controlled through an
| authorization service installable component. The authorization service component
| supplied with MQSeries for Tandem NSK is called the OAM and is automatically
| installed and enabled for each queue manager you create, unless you specify
| otherwise.

| The OAM is an installable component of the authorization service. Because the
| OAM is an installable component, you can implement your own security controls in
| place of, or in addition to, those supplied by the OAM. (For more information on
| installable services and installable components, see Chapter 8, “Introduction to the
| MQSeries Framework” on page 53.)

| The OAM manages users’ authorizations to manipulate MQSeries objects, including
| queues, process definitions, and channels. It also provides a command interface
| through which you can grant or revoke access authority to an object for a specific
| group of users. The decision to allow access to a resource is made by the OAM,
| and the queue manager follows that decision. If the OAM cannot make a decision,
| the queue manager prevents access to that resource.

 Copyright IBM Corp. 1993, 1998  167



 MQSeries for Tandem NSK  
 

| The OAM uses the user and group IDs and security features of the Tandem NSK
| operating system. Users can access queue manager objects only if they have the
| required authority.

| Managing access through user groups
| Managing access permissions to MQSeries resources is based on NSK groups.
| The OAM maintains authorizations at the group level.

| Using groups, rather than individual users, for authorization reduces the amount of
| administration required. Typically, a particular kind of access is required by more
| than one user. For example, you might define a group consisting of end users who
| want to run a particular application. New users can be given access by adding the
| appropriate group to their NSK user ID. Unless MQSeries is installed on a system
| using SAFEGUARD to create data sharing groups, each user ID can be associated
| with a single, primary group only.

| You should keep the number of groups as small as possible. For example, you
| can divide users into one group for application users and one for administrators.

| Resources you can protect
| Through OAM you can control:

| � Access to MQSeries objects through the MQI. When an application program
| attempts to access an object, the OAM checks if the user ID making the
| request has the authorization (through its user group) for the operation
| requested.

| In particular, this means that queues, and the messages on queues, can be
| protected from unauthorized access.

| � Permission to use MQSC commands; only members of user group MQM, or
| those authorized via setmqaut , can execute queue manager administration
| commands, for example, to create a queue.

| � Permission to use control commands; only members of user group MQM can
| execute control commands, for example, creating a queue manager or starting
| a command server.

| � Permission to use PCF commands.

| Different groups of users can be granted different kinds of access authority to the
| same object. For example, for a specific queue, one group might be allowed to
| perform both put and get operations; another group can only be allowed to browse
| the queue (MQGET with browse option). Similarly, some groups might have get
| and put authority to a queue, but are not allowed to alter or delete the queue.

168 MQSeries Planning Guide  



  MQSeries for Tandem NSK
 

| Using the Object Authority Manager (OAM) commands
| The OAM provides a command interface for granting and revoking authority.
| Before you can use these commands, you must be authorized – your user ID must
| belong to the NSK MQM group. This group should have been set up before you
| installed the product.

| If your user ID is a member of group MQM, you have a ‘super user’ authority to the
| queue manager. You are now authorized to issue any MQI request or control
| command from your user ID.

| The OAM provides two commands that you can invoke from TACL to manage the
| authorizations of users. These are:

| � setmqaut  (Set or reset authority)
| � dspmqaut  (Display authority)

| Details of these commands can be found in the MQSeries for Tandem NonStop
| Kernel System Management Guide.

|  Security exits
| The message channels that are used for distributed queuing, and the MQI channels
| that are used between clients and servers, both have security exit facilities that can
| invoke programs that you have supplied.

| For more information on these security exit programs, see the MQSeries
| Intercommunication manual.

  Chapter 35. Security planning for MQSeries for Tandem NSK 169



 MQSeries for Tandem NSK  
 

170 MQSeries Planning Guide  



  MQSeries for Tandem NSK
 

| Chapter 36. Administration of MQSeries for Tandem NSK

| This chapter is a summary of the administration facilities provided by MQSeries for
| Tandem NSK. It has the following sections:

|  � “Managing objects”
| � “Remote administration” on page 172

| Details of the commands, command interfaces, and utilities that are provided by
| MQSeries for Tandem NSK are given in the MQSeries for Tandem NonStop Kernel
| System Management Guide. You need to arrange for users who need to be able
| to use these administration facilities to have the necessary authorizations, using the
| procedures given in the System Management Guide.

|  Managing objects
| It is the administrator’s job to monitor MQSeries for Tandem NSK and make any
| changes that might be necessary. To do this, the administrator needs to know
| where each MQSeries object resides, what its characteristics are, and who has
| access to it.

| The administrator can manage and monitor the resources using MQSeries
| commands (MQSC), or, if there are sets of commands that are issued regularly, by
| writing an application program that places them on the command queue.

| MQSeries can use the security features provided by the OAM, or by a security
| component that you have installed, to ensure that the user is authorized to issue
| particular commands for particular resources.

|  Commands
| MQSeries for Tandem NSK supports the following administration commands and
| facilities:

| � You can enter control commands on the command line.

| � You can use the runmqsc  control command to cause MQSC commands from
| standard input to be executed.

| � Any local or remote MQSeries application program can generate PCF
| commands in messages and put them to the command queue
| SYSTEM.ADMIN.COMMAND.QUEUE, to be processed by the MQSeries for
| Tandem NSK command server.

| In addition:

| � Some TS/MP (Pathway) commands are used for administration purposes.

| � The MQM (Message Queue Management) facility supports some administration
| tasks.

| More information on how to use all these facilities is given in the MQSeries for
| Tandem NonStop Kernel System Management Guide.

| Changes made to the resource definitions of a queue manager using the
| commands (directly or indirectly) are preserved across restarts of MQSeries for
| Tandem NSK.

 Copyright IBM Corp. 1993, 1998  171



 MQSeries for Tandem NSK  
 

|  Managing communications
| Part of the administrator’s role is to ensure that the required communications links
| are activated, and to monitor the status of these links as required by your
| enterprise. You can find information describing these tasks in the MQSeries
| Intercommunication manual.

|  Remote administration
| There are two aspects to the MQSeries remote administration facilities:

| � MQSeries for Tandem NSK can be used to manage remote systems
| � Other remote products can be used to manage MQSeries for Tandem NSK

| Managing remote systems
| Facilities are provided by MQSeries for Tandem NSK to allow an administrator to
| manage the following remote systems:

| � MQSeries for AS/400
| � MQSeries for Digital OpenVMS
| � MQSeries for MVS/ESA
| � MQSeries for OS/2 Warp
| � MQSeries for Tandem NSK
| � MQSeries on UNIX systems
| � MQSeries for Windows NT

| Because of the differences in the MQSeries products, it is not always possible to
| manage remotely the same set of MQSeries objects or attributes that you can
| manage locally.

| If you want to manage any other MQSeries product, you can write an application
| program to send the appropriate commands to the command queue for that
| product. However, some MQSeries products do not have a command queue, so
| they cannot accept commands from local or remote application programs.

| Managing MQSeries from remote systems
| MQSeries for Tandem NSK can be managed from a remote MQSeries system, by
| an administrator using the facilities provided by the following products:

| � MQSeries for AS/400
| � MQSeries for Digital OpenVMS
| � MQSeries for MVS/ESA
| � MQSeries for OS/2 Warp
| � MQSeries for Tandem NSK
| � MQSeries on UNIX systems
| � MQSeries for Windows NT

| Note:  You can manage MQSeries for Tandem NSK from MQSeries for MVS/ESA
| by writing an application program to send the appropriate PCF commands to the
| command queue.

172 MQSeries Planning Guide  



  MQSeries on UNIX systems
 

Part 7. Planning for MQSeries on UNIX systems

Chapter 37. Introduction to MQSeries on UNIX systems . . . . . . . . . .  175
Planning for MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176

Preparing your applications . . . . . . . . . . . . . . . . . . . . . . . . . . .  176
Planning to use MQSeries in a network . . . . . . . . . . . . . . . . . . . .  177
Installing MQSeries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Setting up MQSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177
Planning recovery services . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178
Planning data security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178
Administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Support for Lotus Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
Support for R/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179
Migration from MQSeries Version 1 . . . . . . . . . . . . . . . . . . . . . . . .  180
Migration from MQSeries Version 2 . . . . . . . . . . . . . . . . . . . . . . . .  180

Chapter 38. Backup and recovery planning for MQSeries on UNIX
systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Types of logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182
Selecting a logging method . . . . . . . . . . . . . . . . . . . . . . . . . . .  182

Resource management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
MQSeries as a resource manager . . . . . . . . . . . . . . . . . . . . . . .  183
MQSeries as a transaction manager . . . . . . . . . . . . . . . . . . . . . .  183

Recovering from problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184
High availability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Chapter 39. Security planning for MQSeries on UNIX systems . . . . . .  185
Controlling access to resources . . . . . . . . . . . . . . . . . . . . . . . . . .  185

Managing access through user groups . . . . . . . . . . . . . . . . . . . . .  185
Resources you can protect . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186
Using the security commands . . . . . . . . . . . . . . . . . . . . . . . . . .  186

Security exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Chapter 40. Administration of MQSeries on UNIX systems . . . . . . . .  189
Managing objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Managing communications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Remote administration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Managing remote systems . . . . . . . . . . . . . . . . . . . . . . . . . . . .  190
Managing MQSeries from remote systems . . . . . . . . . . . . . . . . . .  190

Chapter 41. Storage planning for MQSeries on UNIX systems . . . . . .  191
RAM considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Disk space considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191

Product modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Message queues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Log files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Capacity planning and performance figures . . . . . . . . . . . . . . . . . . . .  192

 Copyright IBM Corp. 1993, 1998  173



 MQSeries on UNIX systems  
 

174 MQSeries Planning Guide  



  MQSeries on UNIX systems
 

Chapter 37. Introduction to MQSeries on UNIX systems

MQSeries on UNIX systems

Don’t forget: MQSeries on UNIX systems is the general term used in this book
for UNIX operating systems that support MQSeries Level 2 products (for
example: AIX, Sun Solaris, and HP-UX).

MQSeries products that run on UNIX operating systems comprise two parts, the
server and the clients. The server runs on a machine that is capable of running an
MQSeries queue manager on a UNIX system; the clients provided with the product
are for OS/2 Warp, Windows 3.1, DOS, Windows 95, and your UNIX platform. On
AIX, HP-UX, and Sun Solaris, clients are also provided for AIX, HP-UX, Sun
Solaris, and Windows NT.

A variety of terminals (such as X-stations, non-programmable terminals, and
portables) can access the server code. There is no MQSeries code on such
terminals.

For more information on the hardware and software environments, see:

� “MQSeries for AIX” on page 216.
� “MQSeries for AT&T GIS UNIX” on page 219.
� “MQSeries for HP-UX” on page 222.
� “MQSeries for SINIX and DC/OSx” on page 233.
� “MQSeries for SunOS” on page 235.
� “MQSeries for Sun Solaris” on page 237.

In this section, you are often referred to other books for more information; the
appropriate books are:

Table 15. MQSeries on UNIX systems: system administration manuals

UNIX platform See these manuals

AIX MQSeries for AIX V5.0 Quick Beginnings, MQSeries System
Administration

AT&T GIS UNIX MQSeries for AT&T GIS UNIX System Management Guide

HP-UX MQSeries for HP-UX V5.0 Quick Beginnings, MQSeries
System Administration

SINIX and DC/OSx MQSeries for SINIX and DC/OSx System Management Guide

SunOS MQSeries for SunOS System Management Guide

Sun Solaris MQSeries for Sun Solaris V5.0 Quick Beginnings, MQSeries
System Administration

 Copyright IBM Corp. 1993, 1998  175



 MQSeries on UNIX systems  
 

Planning for MQSeries
This chapter helps you to plan for the introduction of MQSeries on UNIX systems
into your enterprise, and introduces the items that you need to consider when doing
this planning.

There are several stages in planning for the use of MQSeries on UNIX systems
that you must go through. They are:

1. Preparing your applications for the use of MQSeries on UNIX systems
2. Planning to include MQSeries on UNIX systems in a network
3. Preparing to install MQSeries on UNIX systems
4. Planning to set up MQSeries on UNIX systems

A prime requirement for a message delivery system is that it must be reliable.
Many functions are built into MQSeries on UNIX systems to ensure that:

� Messages are not lost despite system failures

� Messages are not delivered more than once

� Messages are not accessed by, or delivered to, unauthorized persons or
applications

MQSeries on UNIX systems uses logging and other facilities to support these
functions.

You must also plan for the operation and administration of MQSeries on UNIX
systems in your enterprise, and consider the implementation of an appropriate set
of security facilities. Brief outlines of these planning operations are included in this
chapter.

Preparing your applications
MQSeries on UNIX systems brings the Message Queue Interface (MQI) to your
applications. This interface allows you to modify existing applications and to write
new applications. The MQI removes much of the need to understand the network
and communication systems that you use. Thus you can expect to generate
applications more speedily than before. However, you must prepare to take
advantage of the MQI by planning its use in your applications and by understanding
the ways in which it assists you.

You can find more information on how to use the MQI in your applications by
referring to the MQSeries Application Programming Guide.

MQSeries on SunOS, DC/OSx and AT&T GIS UNIX does not support threads.
MQSeries on SINIX, AIX, Sun Solaris, and HP-UX supports multithreaded
applications, but there are limitations that are documented in the MQSeries
Application Programming Guide. If the platform that you intend to use is not
specifically mentioned, check with your IBM support center whether multithreaded
applications are supported.

176 MQSeries Planning Guide  



  MQSeries on UNIX systems
 

Interfacing with CICS
With MQSeries products on UNIX systems, you can create application programs for
the appropriate CICS transaction environment. These applications can use the
MQI to communicate with CICS or non-CICS programs in any of the environments
supported by the MQSeries products.

Planning to use MQSeries in a network
MQSeries on UNIX systems uses the distributed queue management (DQM) facility
to exchange messages between MQSeries platforms, using either the SNA LU 6.2
or TCP/IP transmission protocols.

You must consider how you will attach MQSeries on UNIX systems to a network,
and how you will define the message channels that will be used to exchange
messages.

According to the way that you have set your systems up, security checks can be
performed at various times. MQSeries products on UNIX systems do not provide
communications link authorization or data encryption on these links. Instead,
various exits are provided that can be used by your applications to provide these
facilities. On AIX, HP-UX, and Sun Solaris, MQSeries also provides exits relating
to DCE security.

“MQSeries interoperability summary” on page 210 shows the links that are possible
to other MQSeries products, and the transmission protocols that can be used.

For further information about distributed queue management, refer to the MQSeries
Intercommunication manual.

 Installing MQSeries
Before you can install one of the MQSeries products on a UNIX system, you must
create both a group and user with the name mqm , which will own the directories
and files that contain the various resources associated with the product.

To prepare for the actual installation, you need to plan how much disk space will be
required in your UNIX system to accommodate MQSeries. Assistance is given in
Chapter 41, “Storage planning for MQSeries on UNIX systems” on page 191 to
help you plan the amount of space required.

You can find more information to help you with the installation of MQSeries on a
UNIX system in the appropriate manual (see Table 15 on page 175).

When you have installed MQSeries on AIX, HP-UX, or Sun Solaris, you can run the
supplied installation verification test. This is described in the appropriate MQSeries
Quick Beginnings manual.

Setting up MQSeries
After installation, MQSeries needs to be set up, and customized for your own use.
This ensures that the appropriate UNIX system facilities are made available to
MQSeries, and that your MQSeries system is correctly initialized and ready to work
with your applications.

MQSeries uses configuration files to hold the product configuration information used
for logging, communications protocols and installable components. After installing

  Chapter 37. Introduction to MQSeries on UNIX systems 177



 MQSeries on UNIX systems  
 

the product, you can edit these files to tailor the operation of the product to meet
the requirements of your installation.

In addition, you need to do the following:

 � Define queues

– Consider your naming conventions for queues

� Define trigger processes

� Define remote links

– Define associated transmission queues
– Consider your naming conventions for remote queues
– Consider your naming conventions for channels

Note:  The characters within the names given to all MQSeries objects are case
sensitive. Therefore, be very careful when defining the names of objects, to select
the appropriate uppercase or lowercase characters.

You can find more information about the setting up and customizing processes for
MQSeries on UNIX systems in the appropriate manual (see Table 15 on
page 175).

Planning recovery services
MQSeries provides logging services to allow backup and recovery of the messaging
system. Chapter 38, “Backup and recovery planning for MQSeries on UNIX
systems” on page 181 introduces you to these facilities, and to the items that you
need to consider in order to include MQSeries on UNIX systems in your backup
and recovery plans.

You can find more information on the backup and recovery facilities provided by
MQSeries in the appropriate manual (see Table 15 on page 175).

Planning data security
MQSeries uses the facilities of the MQSeries object authority manager (OAM)
installable component to control access to the various different types of queue
manager resource (queues, process definitions, channels, and queue managers).

You can find more general information on authorization installable components in
Chapter 8, “Introduction to the MQSeries Framework” on page 53.

Chapter 39, “Security planning for MQSeries on UNIX systems” on page 185
introduces you to the security facilities provided by MQSeries and to some of the
items you need to consider when planning for security.

You can find more information on the security facilities provided by MQSeries on
UNIX systems in the appropriate manual (see Table 15 on page 175).

 Administration
A summary of the administration facilities provided is given in Chapter 40,
“Administration of MQSeries on UNIX systems” on page 189. Full details of these
facilities can be found in the appropriate manual (see Table 15 on page 175).

178 MQSeries Planning Guide  



  MQSeries on UNIX systems
 

Support for Lotus Notes
MQSeries for AIX, MQSeries for HP-UX, and MQSeries for Sun Solaris provide a
Lotus Notes server add-in task that gives Lotus Notes applications access to
MQSeries messaging. This allows Lotus Notes users to communicate with other
systems connected by MQSeries.

Note:  This MQSeries application is not available on other MQSeries UNIX
platforms. However, some support packs to link to Lotus Notes for other UNIX
platforms might be available. Refer to the MQSeries home page for details, see
“MQSeries information available on the Internet” on page xvii.

Lotus Notes is a networked application that users can use to share information.
Lotus Notes has two main components, the server and the client. The Lotus Notes
server provides services to Lotus Notes clients and to other servers. The services
provided include storage and replication of shared databases and mail routing.
Lotus Notes clients connect to a Lotus Notes server to use shared databases, and
also to read and send mail. The Lotus Notes server add-in task runs in either an
MQSeries server or an MQSeries client on that Lotus Notes server.

The basic units of information in a Lotus Notes system are databases and the
documents that they contain. A database can be used by one person, or shared
among users who have common data requirements. Most databases in Lotus
Notes reside on a Lotus Notes server.

MQSeries provides a Lotus Notes server add-in task that recognizes and interprets:

� Data from documents that Lotus Notes wants to send to MQSeries

� Messages from MQSeries sent in reply and used to update a Lotus Notes
document

The mobile or remote Notes user can access MQSeries applications and data.

Support for R/3
The following products:

� MQSeries link for R/3 for AIX
� MQSeries link for R/3 for HP-UX, and
� MQSeries link for R/3 for Sun Solaris

provide an interface that enables you to integrate your R/3 application with
applications running in other environments (including those on R/3 and R/2
environments).

The R/3 link works with the Application Link Enabling (ALE) layer of the R/3 system
to transmit Intermediate Documents (IDocs) into and out of your R/3 system, using
MQSeries messages and queues to carry the information. It extends the scope of
your business by allowing you to link your R/3 applications to any other application
that you can access through MQSeries, even when those applications require
different data formats.

For more information, see the MQSeries link for R/3 User’s Guide.

  Chapter 37. Introduction to MQSeries on UNIX systems 179



 MQSeries on UNIX systems  
 

Migration from MQSeries Version 1
To use MQSeries application programs that were written for version 1 of MQSeries
with version 2 of MQSeries, you need to do the following:

1. Redefine all message queues.

2. Redefine all message channels.

3. Recompile the application programs, using the MQSeries version 2 header files.

This might be a suitable time to consider whether you need to re-design any parts
of your application, to take advantage of the additional function provided by version
2 of MQSeries.

One difference between version 2 of MQSeries on UNIX systems and the earlier
products is that version 2 does its own queue storage management. It is not
necessary to run a utility program to recover the space that was occupied by
messages that have been removed from queues by MQGET calls; this is done
automatically by MQSeries.

Migration from MQSeries Version 2
When you have migrated from MQSeries Version 2 to MQSeries Version 5 you will
be unable to revert to Version 2. You should back up your system before installing
the new version. This will enable you to back off the upgrade if necessary. If you
do this however, you will not be able to recover the work performed by MQSeries
Version 5.

With MQSeries Version 5, the system default objects are created automatically
when you use the crtmqm command to create a queue manager. The sample
MQSC definition file, AMQSCOMA.TST, is no longer provided. If you have used
AMQSCOMA.TST to customize your settings for MQSeries Version 2, and you
want to use the same settings with Version 5, save your version of the file before
you install MQSeries Version 5. You can then use this file to create the Version 2
default objects. Alternatively, you can generate a new MQSC definition file if
required.

A list of the system default objects for MQSeries Version 5 is provided in the
MQSeries System Administration manual.

180 MQSeries Planning Guide  



  MQSeries on UNIX systems
 

Chapter 38. Backup and recovery planning for MQSeries on
UNIX systems

This chapter describes the background concepts of recovery and restart. It
contains the following sections:

 � “Logging”
� “Resource management” on page 183
� “Recovering from problems” on page 184
� “High availability” on page 184

More details of the logging and recovery facilities of MQSeries on UNIX systems
are given in the appropriate manual (see Table 15 on page 175).

 Logging
The basic premise of a messaging system is that messages entered into the
system are assured of delivery to the destination. One of the ways of ensuring that
messages are not lost is to maintain a record of the activities of the queue manager
that handles the receipt, transmission, and delivery of messages.

MQSeries on UNIX systems does this by recording all the significant changes to
the data controlled or managed by the queue manager in a log. This process is
called logging. The data changes that are logged include the puts and gets of
persistent messages to and from queues, changes to queue attributes, and channel
activity.

The purpose of logging is to create and maintain a log that:

� Keeps records of queue manager changes

� Keeps records of queue updates for use by the restart process

� Is a source for restoration of data should there be a hardware or software
failure

Each MQSeries log consists of a log control file, together with one or more log files
for the storage of data.

The log control file is, as its name implies, used to control and monitor the use of
the log files. It contains information relating to the size, location, next available file,
and other data related particularly to the log files themselves. All the log files within
one log are the same size; there is a default value for this size, but you can
override this value when you set up the log.

On some UNIX platforms, MQSeries provides a log dump facility (DMPMQLOG).
This enables you to format and display the contents of the log when doing problem
determination.

 Copyright IBM Corp. 1993, 1998  181



 MQSeries on UNIX systems  
 

Types of logging
MQSeries on UNIX systems has two approaches to maintaining records of queue
manager activities:

 � Circular logging
 � Linear logging

Each type of logging stores the recorded data in a set of files. The differences
between the two types of logging are the contents, and the way that the files are
linked together.

With circular logging, the set of log files are effectively linked together so as to form
a ring. When data is collected, it is written sequentially into the files, in such a way
as to reuse the log files in the ring. You can use circular logging for:

� Crash recovery - that is, after a system failure of some kind has stopped the
queue manager unexpectedly

� Restart recovery - after a planned closedown of the system

With linear logging, the log is maintained as a continuous sequence of files. When
data is collected, it is written sequentially into the log files; the space in the files is
not reused, so that you can always retrieve any record from the time that the queue
manager was created.

Because disk space is finite, you might have to plan for some form of archiving.
Also, if you are handling a high volume of persistent messages, all your log files will
eventually be filled. This will result in operator messages being written to an error
log file; some action will need to be taken by the system administrator to make
more log space available, or to reuse the existing space. You can use linear
logging for:

 � Crash recovery

 � Restart recovery

� Media recovery - to recreate lost or damaged data after a media failure by
replaying the contents of the log

Selecting a logging method
You must base your selection of log type on your requirements for recovery.

Both types of logging can cope with unexpected power outages in the absence of
hardware failure. If you accept that only crash or restart recovery is required,
circular logging might be adequate. If media recovery is important to you, select
linear logging.

With each type of logging, you need to decide on the number of files to use in the
log, and their size. The total amount of space needed depends on the amount of
data to be recorded, which depends on various parameters, including:

� The size of messages
� The number of puts and gets from queues
� The number of messages being transmitted by the message channel agents

182 MQSeries Planning Guide  



  MQSeries on UNIX systems
 

 Resource management
MQSeries on UNIX systems supports the coordination of transactions by an
external transaction manager that uses the X/Open XA interface. On some UNIX
platforms, MQSeries can also act as a syncpoint coordinator, coordinating updates
made by external resource managers.

MQSeries as a resource manager
In an XA configuration, the MQSeries queue manager acts as an XA resource
manager, managing message queues. The XA transaction manager coordinates
the operations of the queue manager, and any other XA-compliant resource
managers, to synchronize the commit or backout of transactions. This ensures that
updates to MQSeries message queues are coordinated with the updates to all the
other types of resource being managed.

With MQSeries on UNIX systems, the XA transaction manager can be as follows:

CICS AIX, HP-UX, SINIX, and Sun Solaris

ENCINA AIX, HP-UX, Sun Solaris, and SINIX and DC/OSx

TUXEDO AIX, AT&T GIS UNIX2, HP-UX, SINIX and DC/OSx, SunOS, and
Sun Solaris

The MQSeries resources will be committed or backed out as directed by CICS,
ENCINA, or TUXEDO. This support is available only on the MQSeries on UNIX
systems server, and is not available to client applications.

MQSeries as a transaction manager
On some UNIX platforms, MQSeries can act as a transaction manager and
coordinate updates made by external resource managers within MQSeries units of
work. These external resource managers must comply to the X/Open XA interface.

MQSeries for AIX, MQSeries for HP-UX, and MQSeries for Sun Solaris can act as
transaction managers for the following XA-compliant database managers:

 � DB2
 � Oracle

2 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

  Chapter 38. Backup and recovery planning for MQSeries on UNIX systems 183



 MQSeries on UNIX systems  
 

Recovering from problems
MQSeries can recover from communications failures and power loss incidents. In
addition, it is sometimes possible to recover from other types of problem with the
MQSeries data, such as inadvertent deletion of a file.

In the case of a communications failure, messages remain on the queues until they
are removed by a receiving application. If the message is being transmitted, it
remains on the transmission queue until it can be successfully transmitted. To
recover from a communications failure, it is normally sufficient simply to restart the
channels using the link that failed.

On a restart after your system has lost power, the queue manager restores all the
persistent messages that were on the queues to the state that existed just before
the power failure, so that no persistent messages are lost; nonpersistent messages
are discarded.

There are ways in which an MQSeries object can become unusable, for example
due to inadvertent damage. In such situations, you will have to take steps to
recover either your complete system or some part of it. The action required
depends on when the damage is detected, whether the log method selected
supports media recovery, and which object or objects are damaged.

 High availability
For those situations where high availability is a requirement, you might wish to
consider using MQSeries for AIX with the AIX High Availability Cluster
Multi-Processing/6000 (HACMP/6000) product.

HACMP/6000 offers an efficient way to recover from failures at the AIX server that
is running your application programs. The product allows for servers to be
configured to provide, for example, automatic transfer to a standby processor if the
primary one fails.

Also on AIX, you can use disk mirroring to improve the availability of your
application data on disk.

184 MQSeries Planning Guide  



  MQSeries on UNIX systems
 

Chapter 39. Security planning for MQSeries on UNIX systems

This chapter describes the access control security features in MQSeries on UNIX
systems. It contains these sections:

� “Controlling access to resources”
� “Resources you can protect” on page 186
� “Using the security commands” on page 186
� “Security exits” on page 187

Full details of MQSeries on UNIX systems security handling are given in the
MQSeries System Administration manual.

Controlling access to resources
With MQSeries on UNIX systems, access to queue manager resources is controlled
through the object authority manager (OAM), which is the default authorization
installable component. Because the OAM is an installable component, you can
implement your own security controls in place of, or in addition to, those supplied
by the OAM. For more information on installable services and installable
components, see Chapter 8, “Introduction to the MQSeries Framework” on
page 53.

Users can access queue manager objects (queues, process definitions, channels,
and queue managers) only if they have the required authority. The OAM manages
a user’s authorization to manipulate MQSeries objects, and provides a command
interface through which you can grant or revoke access authority to an object for a
specific group of users.

Managing access through user groups
In discussing security in a UNIX environment, we use the term principal rather than
user ID. The reason for this is that authorities granted to a user ID can also be
granted to other entities, for example, an application program that issues MQI calls,
or an administration program that issues PCF commands. In these cases, the
principal associated with a program is not necessarily the user ID that was used
when the program was started.

Managing access permissions to MQSeries resources is based on user groups, that
is, groups of principals. The OAM does not maintain authorizations at the level of
individual principals. The mapping of principals to group names is carried out
within the OAM, and operations are carried out at the group level.

The authorizations that a principal has are the union of the authorizations of all the
groups of which it is a member, that is, its group set. Whenever a principal
requests access to a resource, the OAM computes this union, and then checks the
authorization against it.

 Copyright IBM Corp. 1993, 1998  185



 MQSeries on UNIX systems  
 

Resources you can protect
Through MQSeries on UNIX systems you can control:

� Access to queue manager objects through the MQI

When an application program attempts to access an object, the OAM checks to
see if the principal making the request has the authorization (through its user
group) for the operation requested. In this way, the queues, and the messages
on queues, can be protected from unauthorized access.

� Permission to use MQSeries commands

Only members of authorized user groups can execute queue manager
administration commands.

When a member of a user group attempts to execute a command, the OAM
checks to see if the principal making the request has the authorization (through
its user group) to use the command. These access control checks are
performed irrespective of whether the commands are issued through the
runmqsc  (run MQSC commands) command, or through an application that
uses PCFs.

Different groups of users can be granted different kinds of access authority to the
same object. For example, one group might be allowed to read (MQGET)
messages from a queue, but not to write (MQPUT) messages to that queue. Other
groups might be given authority to put messages to and get messages from the
same queue. Similarly, some groups might have get and put authority but not be
allowed to create or delete queues.

Using groups for authorizations
Using groups for authorization, rather than individual principals, reduces the amount
of administration required. Normally, a particular kind of access is required by
more than one principal. For example, you might define a group consisting of end
users who want to run a particular application. New users can be given access
simply by adding their user ID to the appropriate group.

Try to keep the number of groups as small as possible. Dividing principals into one
group for application users, and one for administrators, is a good place to start.

Using the security commands
The OAM provides two commands that you can use to manage the authorizations
of users. These are:

� setmqaut  - set or reset authority
� dspmqaut  - view authority

When you start a queue manager, it uses a group ID of mqm , and a user ID of
mqm . These must be defined before you can start a queue manager. After this,
any principal belonging to the group mqm  can issue setmqaut  commands to
change authorizations to resources.

Details of these commands can be found in the MQSeries System Administration
manual.

186 MQSeries Planning Guide  



  MQSeries on UNIX systems
 

 Security exits
The message channels that are used for distributed queuing, and the MQI channels
that are used between clients and servers, both have security exit facilities that can
invoke programs that you have supplied.

For more information on these security exit programs, see the MQSeries
Intercommunication manual.

  Chapter 39. Security planning for MQSeries on UNIX systems 187



 MQSeries on UNIX systems  
 

188 MQSeries Planning Guide  



  MQSeries on UNIX systems
 

Chapter 40. Administration of MQSeries on UNIX systems

This chapter is a summary of the administration facilities provided by MQSeries on
UNIX systems. It has the following sections:

 � “Managing objects”
� “Remote administration” on page 190

Details of the commands, command interfaces, and utilities that are provided by
MQSeries on UNIX systems are given in the appropriate manual (see Table 15 on
page 175).

You need to arrange for users who need to be able to use these administration
facilities to have the necessary authorizations, using the procedures given in the
appropriate manual (see Table 15 on page 175).

 Managing objects
It is the administrator’s job to monitor MQSeries on UNIX systems and make any
changes that might be necessary. To do this, the administrator needs to know
where each MQSeries object resides, what its characteristics are, and who has
access to it.

The administrator can manage and monitor the resources using MQSeries
commands (MQSC), or, if there are sets of commands that are issued regularly, by
writing an application program that places them on the command queue.

MQSeries can use the security features provided by the OAM, or by a security
component that you have installed, to ensure that the user is authorized to issue
particular commands for particular resources.

 Commands
MQSeries supports the following administration commands and facilities:

� You can enter control commands on the command line

� You can use the runmqsc  control command to cause MQSC commands from
standard input to be executed

� Any local or remote MQSeries application program can generate PCF
commands in messages and put them to the command queue
SYSTEM.ADMIN.COMMAND.QUEUE, to be processed by the MQSeries on
UNIX systems command server

More information on how to use all these facilities is given in the appropriate
manual (see Table 15 on page 175).

Changes made to the resource definitions of a queue manager using the
commands (directly or indirectly) are preserved across restarts of MQSeries.

 Copyright IBM Corp. 1993, 1998  189



 MQSeries on UNIX systems  
 

 Managing communications
Part of the administrator’s role is to ensure that the required communications links
are activated, and to monitor the status of these links as required by your
enterprise. You can find information describing these tasks in the MQSeries
Intercommunication manual.

 Remote administration
There are two aspects to the MQSeries remote administration facilities:

� The local MQSeries system can be used to manage remote systems
� Other remote products can be used to manage the local MQSeries system

Managing remote systems
Facilities are provided by MQSeries to allow an administrator to manage the
following remote systems:

� MQSeries for AS/400
� MQSeries for Digital OpenVMS
� MQSeries for MVS/ESA
� MQSeries for OS/2 Warp

| � MQSeries for Tandem NSK
� MQSeries on UNIX systems
� MQSeries for Windows NT

Because of the differences in the MQSeries products, it is not always possible to
manage remotely the same set of MQSeries objects or attributes that you can
manage locally.

If you want to manage any other MQSeries product, you can write an application
program to send the appropriate commands to the command queue for that
product. However, some MQSeries products do not have a command queue, so
they cannot accept commands from local or remote application programs.

Managing MQSeries from remote systems
The local MQSeries system can be managed from a remote MQSeries system, by
an administrator using the facilities provided by the following products:

� MQSeries for AS/400
� MQSeries for Digital OpenVMS
� MQSeries for MVS/ESA
� MQSeries for OS/2 Warp

| � MQSeries for Tandem NSK
� MQSeries on UNIX systems
� MQSeries for Windows NT

Note:  You can manage MQSeries on UNIX systems from MQSeries for MVS/ESA
by writing an application program to send the appropriate PCF commands to the
command queue.

190 MQSeries Planning Guide  



  MQSeries on UNIX systems
 

Chapter 41. Storage planning for MQSeries on UNIX systems

This chapter tells you how to plan the type and amount of storage you require
when you include MQSeries on UNIX systems in your network. It has the following
sections:

 � “RAM considerations”
� “Disk space considerations”
� “Capacity planning and performance figures” on page 192

 RAM considerations
The processor memory (RAM) is used by MQSeries on UNIX systems in the
execution of the product modules, and as a paging area for the messages that are
being processed. Parts of the paging area are written to, and read from, disk as
necessary.

The minimum amount of RAM required to run the MQSeries on UNIX systems
server is 24 MB; if more RAM is available, the performance of the message
processing improves.

The amount of RAM required on each client system for an MQSeries client is small
compared to that required for the operating system on each of the platforms.

Disk space considerations
Disk space is used by MQSeries on UNIX systems for the following:

� Product modules - client and server executable modules, the toolkit, and the
online documentation

� Paging space - server only

� Message queues - server only

� Logs - server only

 Product modules
The disk space that you require for the product modules depends on the options
that you decide to install: the options are described in the appropriate manual (see
Table 15 on page 175).

Space might be required for client and server executable program modules and the
toolkit. If all options are selected, 20 MB is required. You will need approximately
15 MB more than this if you install the online documentation.

The product modules can be stored on a LAN server, as an alternative to them
being stored on a disk attached to the client or server. MQSeries loads the
modules from the LAN server when required.

 Copyright IBM Corp. 1993, 1998  191



 MQSeries on UNIX systems  
 

 Message queues
In order to estimate the total amount of storage that you will need for queues, you
need to know:

� The number of queues that you have.

� The maximum number of messages there will be on each of the queues at any
one time.

� The average size of message on each of the queues. The amount of storage
required for one message varies. It is based on the size of the message data
plus the size of the message header (456 bytes), rounded up the nearest
512-byte block. If you are using distribution lists, or grouped or segmented
messages, the size of the header will increase for the transmission queue.

Given these values, you can calculate the total amount of space required for
queues. However, this value is likely to be an approximate value only, and it is
advisable to add a contingency value, to avoid the situation where there is no
space left for messages on the queues when your application is running.

 Log files
Significant events and data changes can be logged in circular or sequential logs.
In particular, the logs are used for recording persistent messages.

All the log files in a log are of the same size. By default, this size is 4 MB, but this
value can be changed by the system administrator when the log is defined.

For a circular log, the system administrator needs to specify how many files should
be included in the log. For a sequential log, the number of files will increase over
time, until the system administrator archives some of the files, and disposes of
them. You need to plan for the permanent storage (diskettes, tape, or other media
supported in your enterprise) that is to be used for these archived files.

Capacity planning and performance figures
Information about MQSeries performance and capacity planning is available on the
Internet at:

http://www.software.ibm.com/mqseries/txppacs/txpm1.html

For AT&T GIS UNIX, SINIX and DC/OSx, and SunOS, use the information about
MQSeries for AIX as a starting point.

192 MQSeries Planning Guide  



  MQSeries Three Tier
 

Part 8. Planning for MQSeries Three Tier

Chapter 42. Introduction to MQSeries Three Tier . . . . . . . . . . . . . .  195
Interacting with end users (presentation logic) . . . . . . . . . . . . . . . . . .  197

Presentation logic manager . . . . . . . . . . . . . . . . . . . . . . . . . . .  197
Manipulating data (business logic) . . . . . . . . . . . . . . . . . . . . . . . . .  197

Business logic manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  198
Retrieving and updating data (data logic) . . . . . . . . . . . . . . . . . . . . .  198
3T application development tools . . . . . . . . . . . . . . . . . . . . . . . . .  198
3T is an enhancement of the MQI . . . . . . . . . . . . . . . . . . . . . . . . .  199
Further information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Chapter 43. MQSeries Three Tier planning . . . . . . . . . . . . . . . . . .  201
How the MQSeries base product fits in . . . . . . . . . . . . . . . . . . . . . .  202
MQSeries queuing requirements . . . . . . . . . . . . . . . . . . . . . . . . . .  202
The MQSeries Three Tier products . . . . . . . . . . . . . . . . . . . . . . . .  202

Networking considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Disk space requirements for 3T . . . . . . . . . . . . . . . . . . . . . . . . .  204

Managing 3T clients and servers . . . . . . . . . . . . . . . . . . . . . . . . . .  204
3T recovery and restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205

 Copyright IBM Corp. 1993, 1998  193



 MQSeries Three Tier  
 

194 MQSeries Planning Guide  



  MQSeries Three Tier
 

Chapter 42. Introduction to MQSeries Three Tier

MQSeries Three Tier for OS/2 and MQSeries Three Tier for AIX (both referred to in
this book as 3T) provide application design, application development, and
application testing services to help you to create message queuing applications that
run in a client/server environment. Such applications have the following
characteristics:

� They need to access data held in departmental, corporate, or third-party
databases

� They use windowing, event-driven user interfaces

� They can comprise modular, reusable components

Client/server applications usually perform three types of work:

� They interact with end users, presenting information and collecting it through a
user interface. In 3T, this part of the application is known as the presentation
logic (PL). It runs on a user’s workstation.

� They manipulate the data they pull from a database or gather from the user. In
3T, this part of the application is known as the business logic (BL). It runs on a
server.

� They retrieve and update data from one or more databases. In 3T, this part of
the application is known as the data logic (DL). It runs on a server or a
mainframe computer.

This is the three-tier model of client/server computing. 3T helps you to design and
create these three types of logic, and make them communicate with each other.
Figure 14 shows the relationship between the three tiers.

Workstation Server Mainframe
or server

PL BL DL

Figure 14. The three tiers of a 3T application

 Copyright IBM Corp. 1993, 1998  195



 MQSeries Three Tier  
 

In a 3T application, each of the three tiers is further divided into classes, each
corresponding to a business object that the application processes; for example, a
customer or an account. So the application comprises a network of named classes
that communicate with each other (see Figure 15). These classes can each run on
separate computers; for this reason, such applications are often known as
“distributed” applications.

Presentation
logic

Business
logic

Data
logic

A 3T class

Possible message flow

KEY:

Figure 15. 3T classes and the three-tier, client/server model

3T uses MQSeries messages for communication between classes. This gives the
following advantages:

� Applications can be asynchronous in their operation, that is, one class can
communicate with a second class without the second one being ready to
receive that communication

� Programs can communicate across many platforms without you having to write
any communication code

� The MQSeries products ensure that messages are delivered

Each class consists of one or more methods that perform the work of the class; for
example, one method could get the name of a customer, another could get the
customer’s account number.

The following sections describe each of the three tiers. Note that although it is
usually convenient to run each tier on a separate computer, 3T does not require
this.

196 MQSeries Planning Guide  



  MQSeries Three Tier
 

Interacting with end users (presentation logic)
The presentation logic (PL) provides the client function of the application. It is the
part of the application that runs on a user’s workstation; this is the part with which
the end user interacts. Its classes use programs that prompt the user to enter data
(such as a name and address) and that present the results of the application (such
as the balance of a bank account) to the user.

The PL programs are self-contained and are suitable for reuse by other
applications. The users of the applications can be more productive because you
can give them similar interfaces for all the applications they use.

The methods that constitute a PL class are packaged together into a single
executable program. A PL program is a collection of PL methods, all supporting
the same class. You can write the methods in C, COBOL, or PL/I, or build them
using a GUI-building tool such as VisualAge. They can run under Windows and
OS/2 on workstations.

The PL classes interact with the rest of the application by sending and receiving
messages. They can send messages directly to a DL class; they do not have to go
through a BL class, although most applications will use BL classes.

Presentation logic manager
A 3T Presentation Logic Manager (PLM) runs on every user’s workstation. One
copy of the PLM supports many 3T classes. It transmits messages between the PL
classes it supports and other BL and DL classes.

Manipulating data (business logic)
The business logic (BL) provides the server function of an application. It comprises
the classes that manipulate the data entered by the end user and any extra data
retrieved from a database. These are the classes that perform the bulk of the work
of your application, and they are specific to your business. They perform tasks
such as compiling a quotation for a set of goods, linking customer information from
two databases (for example, linking a name and an address with a policy number),
or calculating share dividends.

You can benefit by creating small, reusable programs (the methods) for this part of
your application. 3T provides features that allow your application to select the
methods it runs depending on the type of data it receives. You can also define a
work area in which the BL class can store data while it is working.

You can write BL methods in C, COBOL, or PL/I. They can run on OS/2 and AIX
servers. You can package them separately or as a single code library.

A BL class interacts with the remainder of the application by sending and receiving
messages.

  Chapter 42. Introduction to MQSeries Three Tier 197



 MQSeries Three Tier  
 

Business logic manager
A 3T application needs one copy of the 3T Business Logic Manager (BLM) for each
BL class. The BLM runs on a server. It transmits messages between the BL class
it supports and other classes.

Retrieving and updating data (data logic)
Your application will probably need to query one or more databases to retrieve the
information it needs to satisfy the requests of the end user. It will probably also
need to update the information held in these databases. These databases can be
on a mainframe computer or on a local server. The part of a 3T application that
performs these tasks is the data logic (DL).

In some applications, you might want to combine the data logic with the business
logic, especially if the database you need to query is on a local server.

You need at least one DL class for each database system (for example, CICS or
IMS) you need to access. However, it is advisable to create a DL class for each
logical group of data to avoid having to change the application if the data is moved
to another system.

A DL class consists of transactions that read information from, and write information
to, a database. Usually the transactions are responsible for maintaining the
integrity of the information held in that database.

In many cases, you will already have programs to access your databases, and
there is no need to rewrite them to take advantage of the features of 3T. Just use
the application design features of 3T to identify these programs as DL classes; at
run time, 3T sends messages to them. This means you can preserve the
investment your organization has already made in creating its databases.

If you need to write new DL classes to retrieve data from a database, you need to
do so only once. For each new application that needs to query a particular
database, you can reuse the classes you have already written.

A DL class does not run under the control of 3T, but it uses the MQSeries Message
Queue Interface (MQI) to receive (and to respond to) requests for queries and
changes to a database. A DL class can run on any server or mainframe computer
that can be accessed by an MQSeries product. You can write DL classes in any of
the languages that are available in the environment of the database.

3T application development tools
3T provides the following tools to help you to design and develop applications:

An Application Simulator
To simulate message flows and help you to assess the performance of your
application before you write any code

A Class Compiler
To compile the class definitions you write in your class source files

A 3T Part for use with VisualAge
To help you to create PL programs visually

198 MQSeries Planning Guide  



  MQSeries Three Tier
 

Sample applications
To help you to understand the structure of 3T applications and the features
provided by 3T

3T is an enhancement of the MQI
Programmers of applications that use the MQI must write programs that deal with
the arrival of messages at any time. The program that processes messages must
decide what to do with each message. It must answer questions such as:

� Did I expect this message?
� Is this one of a series of messages I am expecting?
� If the message arrives later than I expected, can I still use it?

In a client/server environment, these questions are more important because of the
complex nature of the applications. In a typical client/server application:

� A PL class sends requests and waits for replies.

� A BL class receives requests from PL classes. It sends one or more requests
to other BL and DL classes, and waits for replies.

So there are many messages involved.

3T helps the programmer by:

� Routing messages to the appropriate piece of code (the method) depending on
the circumstances under which the message arrived

� Routing many reply messages to the same method

� Routing to a method all the replies that arrive before a timer expires

� Routing late replies to a separate method

� Detecting duplicate and out-of-sequence messages

� Providing an integrated design, development, and test environment in which to
create client/server applications

In addition to processing messages, a client/server application might have to save
“work-in-progress data”; that is, save data while it is waiting for other messages to
arrive or for more user input. 3T provides a work area for this purpose for each
instance of a BL class. This work area is retained at the end of a method, so a
method can use the work area to pass data to another method. You can choose to
make 3T preserve the work area on a queue so that the instance can recover in
the event of the server having to be restarted.

By managing this complexity for a client/server application, 3T helps programmers
to be productive and allows them to concentrate on writing code that is directly
related to the business of their organization.

  Chapter 42. Introduction to MQSeries Three Tier 199



 MQSeries Three Tier  
 

 Further information
Further information on writing 3T applications is given in:

� MQSeries Three Tier Application Design
� MQSeries Three Tier Application Reference

Information about the management of 3T is given in:

� MQSeries Three Tier Administration Guide

A reference summary is also provided:

� MQSeries Three Tier Reference Summary

200 MQSeries Planning Guide  



  MQSeries Three Tier
 

Chapter 43. MQSeries Three Tier planning

3T installations are based on a three-tier data model. Figure 16 shows
schematically how the three tiers are related to the MQSeries base product. In a
typical production installation, there would be many, perhaps hundreds, of
Presentation Logic Managers (one per workstation); many servers, each supporting
multiple Business Logic Managers; and as many DL servers as required.

Presentation
Logic Manager

(PLM)

Business
Logic Manager

(BLM)

Data Logic

(Typically a
database server)

3T client 3T server DL server

MQSeries
client

MQSeries
queue manager

MQSeries
queue manager

OS/2 or
Windows 3.1

OS/2 or AIX
Any platform
that supports
MQSeries,
including
MVS/ESA, AIX,
OS/2, OS/400,
. . .

3T messages

MQI channels

MQSeries
messages

Message
channels

3T component

MQSeries

Operating
System

Tier Presentation
Logic

Business
Logic

Data
Logic

Figure 16. Relationship between 3T and MQSeries in the 3-tier data model. The three tiers are presentation logic,
business logic, and data logic. The DL server does not contain any 3T code.

In this model, the server part of 3T contains the Business Logic Manager and its
associated classes and methods. The server is a central resource that can be
used by many clients. Typically, servers require more powerful machines than
clients in terms of the processor type, speed (clock frequency), RAM, and disk
space. You can run a server on an AIX (RS/6000) machine or on an OS/2
machine.

The client contains the Presentation Logic Manager with its classes and methods.
A client component is dedicated to an individual user performing specific
presentation functions; for example, functions related to a sales representative or
an order clerk. A 3T client must reside on each user workstation, and can run on
OS/2 or Microsoft Windows 3.1.

 Copyright IBM Corp. 1993, 1998  201



 MQSeries Three Tier  
 

How the MQSeries base product fits in
3T uses MQSeries base product resources including queue managers, queues, and
channels. You must configure the MQSeries base product for each tier in this
model. Figure 16 on page 201 summarizes the relationship between MQSeries
and each tier. On each workstation, you create an MQSeries base installation that
supports the required 3T installation. Typically, 3T clients are installed with
MQSeries clients on the same workstation; 3T servers are installed on the same
machine as MQSeries servers. You must configure MQSeries channels between:

� A 3T server and each of its 3T clients
� A 3T server and any other 3T servers, as required
� A 3T server and a DL server

MQSeries queuing requirements
Each 3T server must have an MQSeries queue manager installed. Each user
workstation requires a 3T client and an MQSeries client to be installed. Optionally,
3T clients can run under an MQSeries queue manager, but this is recommended
only where data recovery from user workstations is a business requirement.

The following MQSeries queues are required for the exclusive use of 3T:

� One MQSeries queue for each client. Typically, this queue is located on the
server machine.

� Two queues for each server machine, plus one queue for each Business Logic
Manager supported on the machine.

The MQSeries Three Tier products
MQSeries Three Tier is supplied as two separate products, based on the target
server:

� MQSeries Three Tier for OS/2
� MQSeries Three Tier for AIX

These products have different product numbers and can be ordered separately.

Choose the product for the type of server you will use. When developing an
application, you can use either product.

Note:  You can use the Application Simulator and the Part for VisualAge with
MQSeries Three Tier for OS/2 only.

Table 16 on page 203 summarizes the combinations of servers and clients that are
available for each product. Table 17 on page 203 lists the components for each
product.

202 MQSeries Planning Guide  



  MQSeries Three Tier
 

Table 16. 3T clients and servers in different target environments

Product
Target environment

Client Server

MQSeries Three Tier for AIX
Windows 3.1 AIX

OS/2 AIX

MQSeries Three Tier for OS/2
Windows 3.1 OS/2

OS/2 OS/2

Table 17. Components supplied with MQSeries Three Tier

Component

Supplied with MQSeries

Three Tier
for AIX

Three Tier
for OS/2

Development tools for OS/2 clients (runs on OS/2) Yes Yes

Development tools for Windows 3.1 clients (runs on
Windows 3.1)

Yes Yes

Run-time client for OS/2 Yes Yes

Run-time client for Windows 3.1 Yes Yes

Run-time server for AIX Yes No

Run-time server for OS/2 No Yes

Application Simulator No Yes

Class Compiler Yes Yes

Part for VisualAge No Yes

Sample applications for AIX servers (in C) Yes No

Sample applications for OS/2 servers (in C, COBOL, and
PL/I)

No Yes

Development tools for AIX servers Yes No

Development tools for OS/2 servers No Yes

 Networking considerations
Depending on the configuration, you can use 3T with the network protocols as
defined in Table 18.

Table 18. Communications protocols and 3T

AIX OS/2 Windows 3.1

LU 6.2 Yes Yes -

NetBIOS - Yes Yes

TCP/IP Yes Yes Yes

  Chapter 43. MQSeries Three Tier planning 203



 MQSeries Three Tier  
 

Disk space requirements for 3T
To install 3T successfully, you must allocate enough disk storage for the product.
This depends on whether the machine is for run-time or development and whether
it is a client or a server. The disk storage required includes space for the product
code, for the applications you develop, working storage, online documentation, and
so on. Table 19 shows the disk space requirements on different operating
systems.

Table 19. 3T disk space requirements. (1 MB is 1 048 576 bytes)

Configuration and operating System Disk space
in MB

3T server (BL) development for AIX 10-12

3T server (BL) development for OS/2 12-14

3T run-time server for AIX 6.0

3T run-time server for OS/2 6.0

3T client (PL) development for OS/2 6.0

3T client (PL) development for Windows 3.1 6.0

3T run-time client for OS/2 5.0

3T run-time client for Windows 3.1 3.0

Managing 3T clients and servers
3T provides its own tools to help you run a network of servers and clients and to
enable data recovery in case of a failure.

3T provides user commands to start and stop BLMs (on 3T servers) and PLMs (on
3T clients). The operation of a PLM (or BLM) is determined by a profile, which is
invoked when the PLM (or BLM) is started. For a BLM, the profile includes
specifications for:

� Whether error logging is switched on, and if so, what aspects of the server’s
operation are to be logged

� How operating system threads are to be used

� The names of the MQSeries queues that are to be used

� Timeouts for rules

By changing the profile, you can change the way in which the BLM works.

3T also provides a set of server commands that you can build into an
administration application to monitor or change the operation of a server
dynamically. To do this, you specify the attributes you want to change or read in
an MQSeries Programmable Command Format (PCF) message, which you send to
the queue manager on the target server.

204 MQSeries Planning Guide  



  MQSeries Three Tier
 

3T recovery and restart
For BL servers, 3T allows a server to be restarted after a failure, without loss of
data.

You do this by specifying a server as hard. In 3T, a hard server can recover its
state and any uncommitted messages after a system failure. All the processing for
a method is carried out under queue manager syncpoint control. 3T stores its
current state in a persistent MQSeries message, which it puts on an MQSeries
message queue. When the state changes, the new state is stored on the queue;
the old state is overwritten. Only 3T servers (with BL classes) can be hardened; 3T
clients cannot.

  Chapter 43. MQSeries Three Tier planning 205



 MQSeries Three Tier  
 

206 MQSeries Planning Guide  



  The MQSeries family
 

Part 9. The MQSeries family

Chapter 44. MQSeries product summaries . . . . . . . . . . . . . . . . . .  209
Lists of MQSeries products . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209
MQSeries interoperability summary . . . . . . . . . . . . . . . . . . . . . . . .  210
MQSeries product functional comparison . . . . . . . . . . . . . . . . . . . . .  212

Chapter 45. MQSeries at a glance . . . . . . . . . . . . . . . . . . . . . . .  215
MQSeries for AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216

| MQSeries for AS/400 V4R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218
MQSeries for AT&T GIS UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . .  219
MQSeries for Digital OpenVMS . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
MQSeries client for DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221
MQSeries for HP-UX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222
MQSeries for MVS/ESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224
MQSeries for OS/2 Warp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
MQSeries for SCO UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231
MQSeries for SINIX and DC/OSx . . . . . . . . . . . . . . . . . . . . . . . . .  233
MQSeries for SunOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235
MQSeries for Sun Solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  237

| MQSeries for Tandem NSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239
MQSeries Three Tier for AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
MQSeries Three Tier for OS/2 . . . . . . . . . . . . . . . . . . . . . . . . . . .  242
MQSeries for UnixWare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244

| MQSeries client for VM/ESA . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246
MQSeries for VSE/ESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247
MQSeries for Windows Version 2.0 . . . . . . . . . . . . . . . . . . . . . . . .  248
MQSeries for Windows Version 2.1 . . . . . . . . . . . . . . . . . . . . . . . .  250
MQSeries for Windows NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
MQSeries client for Windows 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . .  254
MQSeries client for Windows 95 . . . . . . . . . . . . . . . . . . . . . . . . . .  255
MQSeries link for R/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  256

 Copyright IBM Corp. 1993, 1998  207



 The MQSeries family  
 

208 MQSeries Planning Guide  



  MQSeries product summaries � Lists of MQSeries products
 

Chapter 44. MQSeries product summaries

This chapter gives summary information for all the products in the MQSeries family.
It has the following sections:

� “Lists of MQSeries products”
� “MQSeries interoperability summary” on page 210
� “MQSeries product functional comparison” on page 212

Lists of MQSeries products
At the time of publication of this manual, MQSeries products were announced or
available for the hardware and software platforms in the lists below.

The products are arranged in two groups, Level 1 and Level 2, for convenience
when referring to products within this manual.

Some of the products were renamed in November 1994; for those products, the
name by which the product used to be known is given, as well as the current
product name.

Level 1 products

Table 20. MQSeries products, Level 1

Product name Previous name

MQSeries for SCO UNIX V1.4 ezBRIDGE Transact on SCO UNIX for MQSeries Release 3.0

MQSeries for UnixWare V1.4.1 ezBRIDGE Transact on UnixWare for MQSeries Release 3.0

MQSeries for VSE/ESA V1.4 ezBRIDGE Transact on VSE/ESA for MQSeries Release 3.0

Level 2 products

Table 21 (Page 1 of 2). MQSeries products, Level 2

Product name Previous name

MQSeries for AIX V5.0 (clients and servers) None (new version)

MQSeries for AT&T GIS UNIX V2.2 (clients and
servers)

None (new release)

MQSeries for Digital OpenVMS V2.2 (clients and
servers)

| None (new release)

MQSeries for HP-UX V5.0 (clients and servers) None (new version)

MQSeries for MVS/ESA V1.2 None (new level)

MQSeries for OS/2 Warp V5.0 (clients and servers) None (new version)

| MQSeries for AS/400 V4R2| None (new release)

MQSeries for SINIX and DC/OSx V2.2 (clients and
servers)

None (new product)

MQSeries for SunOS V2.2 (clients and servers) None (new product)

MQSeries for Sun Solaris V5.0 (clients and servers) None (new version)

 Copyright IBM Corp. 1993, 1998  209



 MQSeries interoperability summary  
 

Table 21 (Page 2 of 2). MQSeries products, Level 2

Product name Previous name

| MQSeries for Tandem NonStop Kernel V2.2| None (new release)

MQSeries Three Tier for AIX None (new product)

MQSeries Three Tier for OS/2 None (new product)

MQSeries for Windows V2.0 None (new product)

MQSeries for Windows V2.1 None (new release)

MQSeries for Windows NT V5.0 (clients and servers) None (new version)

MQSeries interoperability summary
The tables in this section show the transmission protocols that are supported by the
channels in each of the MQSeries products. Tables are provided for the two types
of channel that are supported by the MQSeries products:

� Message channels  - used to link MQSeries queue managers
� MQI channels  - used to link MQSeries clients and servers

The tables can be used to determine the alternative protocols that can be used to
link any two products together, as follows:

1. Find the row in the table that contains the first MQSeries product of interest.
2. Find the row that contains the second MQSeries product of interest.
3. Look at each column position in each of these rows. Where there is a column

that has a check symbol √ in both rows, then the transmission protocol
associated with that column can be used to link the two products.

The “at a glance” sections in Chapter 45, “MQSeries at a glance” on page 215 
give details of the prerequisite hardware and software necessary at the two ends of
a link for a particular transmission protocol.

Message channels - transmission protocols supported
Table 22 (Page 1 of 2). Message channels, transmission protocols supported

MQSeries product SNA LU 6.2 TCP/IP NetBIOS DECnet SPX

MQSeries for AIX √ √ — — —

MQSeries for AT&T GIS UNIX √ √ — — —

MQSeries for Digital OpenVMS √ √ — √ —

MQSeries for HP-UX √ √ — — —

MQSeries for MVS/ESA √ √ — — —

MQSeries for OS/2 Warp √ √ √ — √

MQSeries for AS/400 √ √ — — —

MQSeries for SCO UNIX √ √ — — —

MQSeries for SINIX and DC/OSx √ √ — — —

MQSeries for SunOS √ √ — — —

MQSeries for Sun Solaris √ √ — — —

| MQSeries for Tandem NSK| √| √| —| —| —

MQSeries for UnixWare √ √ — — —

210 MQSeries Planning Guide  



  MQSeries interoperability summary
 

MQI channels - transmission protocols supported

Table 22 (Page 2 of 2). Message channels, transmission protocols supported

MQSeries product SNA LU 6.2 TCP/IP NetBIOS DECnet SPX

MQSeries for VSE/ESA √ — — — —

MQSeries for Windows — √ — — —

MQSeries for Windows NT √ √ √ — √

Table 23. MQI channels, transmission protocols supported by servers

MQSeries servers SNA LU 6.2 TCP/IP NetBIOS DECnet SPX

Digital OpenVMS — √ — √ —

| MVS/ESA, Tandem NSK √ √ — — —

OS/2 Warp, Windows NT √ √ √ — √

OS/400 √ √ — — —

UNIX systems √ √ — — —

Table 24. MQI channels, transmission protocols supported by clients

MQSeries clients SNA LU 6.2 TCP/IP NetBIOS DECnet SPX

OS/2 Warp, Windows NT √ √ √ — √

| UNIX systems, VM/ESA √ √ — — —

DOS, Windows 3.1, Windows 95 — √ √ — √

Digital OpenVMS √(1) √ — √ —

Note:  (1) On Digital OpenVMS, SNA LU 6.2 supports only PU 2.0. Therefore communication can be to PU 5.0 only on an
MVS/ESA server. If you want to communicate with a server on a platform other than MVS/ESA, you must use another protocol.
See the MQSeries Clients manual for more information.

  Chapter 44. MQSeries product summaries 211



 MQSeries product functional comparison  
 

MQSeries product functional comparison
Table 25 is a summary of the MQI functions that are provided by the MQSeries
products. Those functions that are marked with the symbol √ are supported by all
products identified by the column heading, except where indicated by the notes
following the table.

Table 25 (Page 1 of 2). MQSeries product functional comparison

Function Digital
OpenVMS

MVS/ESA OS/400 Tandem
NSK

UNIX
systems,

OS/2 Warp,
Windows NT

(1)

Windows
V2.0 &
V2.1

Level 1
products

(1)

MQCONN/MQDISC √ √ √ √ √ √ √

Queue manager groups √ (2) — —| √ (2) √ (2) — —

MQOPEN/MQCLOSE √ √ √ √ √ √ √

Queue-manager aliases √ √ √ √ √ √ √

Reply-to queue aliases √ √ √ √ √ √ √

Default input open option √ √ √ √ √ √ —

Model/dynamic queues √ √ √ √ √ √ —

Namelists — √ — — — — —

Default transmission queue √ √ √ √ √ √ —

Distribution lists — —| √ — √ (3) — —

MQPUT √ √ √ √ √ √ √

Max message length 4 MB 4 MB 4 MB 4 MB 100 MB(4) 4 MB (5)

Dead-letter queue √ √ √ √ √ — √

Nonpersistent messages √ √ √ √ √ √ —

Triggering (first and every) √ √ √ √ √ — — (6)

Full triggering (depth,
priority)

√ √ √ √ √ — —

Message priority √ √ √ √ √ √ —

Application-specified
syncpoint

√ √ √ √ √ √ — (7)

Context √ √ √ √ √ √ (8) — (9)

Exception reports √ √ √ √ √ √ —

Exception reports with data √ √ √ √ √ √ —

COA, COD reports √ √ √ √ √ √ —

Message expiry √ √ √ √ √ √ —

Report options for up-level √ √ — √ √ √ —

MQGET √ √ √ √ √ √ √

Browse √ √ √ √ √ √ √ (10)

Browse with lock √ — √ √ √ — √ (11)

Browse under cursor √ — √ √ √ √ —

Shared input √ √ √ √ √ √ √

Get with signal — √ —| √ — √ (12)| —

Get by MsgId/CorrelId √ √ √ √ √ √ —

Message backout count √ √ √ √ √ √ —

Mark skip backout — √ — — — — —

Message data conversion √| √ (13) √ √ √ — —

MQINQ √ √ √ √ √ √ √ (14)

Queue retention interval √ √ √ √ √ — —

MQSET √ √ √ √ √ √ —

MQCMIT/MQBACK √ √ — √ √ √ —

MQBEGIN — — — — √ (3) — —

212 MQSeries Planning Guide  



  MQSeries product functional comparison
 

Table 25 (Page 2 of 2). MQSeries product functional comparison

Function Digital
OpenVMS

MVS/ESA OS/400 Tandem
NSK

UNIX
systems,

OS/2 Warp,
Windows NT

(1)

Windows
V2.0 &
V2.1

Level 1
products

(1)

API crossing exit — √ (15) — — — — —

Message channel exits √ √ √ √ √ √ —

Events √ √ √ √ √ — —

Segmented messages — —| √ — √ (3) — —

Reference messages — —| √ — √ (3) — —

Fast channels — √| √ — √ (3) √ (12) —

Message retry exit √ — √ √ √ — —

| Channel heartbeats| —| √ (16)| √| —| √ (3)| —| —

| Channel auto-definition| —| —| √| —| √ (3)| —| —

Notes:

1. Functions similar on clients and server.

2. From client applications only.

3. AIX, HP-UX, OS/2 Warp, Sun Solaris, and Windows NT only.

4. In the DOS environment, limitations might be imposed by memory availability.
On MQSeries for AT&T GIS UNIX, SINIX and DC/OSx, and SunOS, the
maximum message length is 4 MB.

5. 64 000 on SCO UNIX and UnixWare, 30 000 on VSE/ESA; all sizes exclude
descriptors.

6. Triggering is supported on VSE only, but without a real initiation queue.

7. Always coordinated on VSE; never coordinated on SCO UNIX, or UnixWare.

8. Context passing is not supported.

9. Context fields are conveyed without any checks.

10. Browse next on VSE only.

11. Must do Browse First and Lock (except on VSE).

12. Version 2.1 only.

| 13. Not supported by the CICS/MVS adapter. It is only supported by the
| CICS/ESA adapter.

14. For queues only.

15. CICS only.

16. Not for MQI channels.

  Chapter 44. MQSeries product summaries 213



 MQSeries product functional comparison  
 

214 MQSeries Planning Guide  



  MQSeries at a glance
 

Chapter 45. MQSeries at a glance

This chapter gives information about the requirements for each MQSeries platform.

Table 26. MQSeries products at a glance

For information about... See page...

AIX 216

| AS/400| 218

AT&T GIS UNIX (1) 219

Digital OpenVMS 220

DOS client 221

HP-UX 222

MVS/ESA 224

OS/2 Warp 228

SCO UNIX 231

SINIX and DC/OSx 233

SunOS 235

Sun Solaris 237

Tandem NonStop Kernel 239

Three Tier for AIX 241

Three Tier for OS/2 242

UnixWare 244

| VM/ESA client| 246

VSE/ESA 247

Windows (16-bit) 248

Windows (32-bit) 250

Windows NT 252

Windows 3.1 client 254

Windows 95 client 255

MQSeries link for R/3 256

Note:  (1) This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1993, 1998  215



 MQSeries for AIX  
 

MQSeries for AIX
MQSeries for AIX, Version 5

 Machine requirements
MQSeries for AIX runs on any IBM RS/6000 that is capable of running the required
level of AIX, and that has sufficient storage to meet the combined requirements of
the programming prerequisites, MQSeries for AIX, the access methods, and the
application programs:

� IBM RS/6000 POWERserver
� IBM RS/6000 POWERstation
� IBM Scalable POWERparallel systems
� Any other trademarked AIX systems, whether from IBM or other vendors, for

example:
– Bull** DPX/20 (RISC)
– Bull** Escala (SMP)

 – Motorola**
 – Zenith**

An MQSeries client can run on any personal computer that is capable of running
the client code and that has sufficient storage to meet the combined requirements
of the programming prerequisites, the client code, access methods, and the
application programs.

 Software requirements
Software requirements are identical for server and client AIX environments unless
otherwise stated.

Minimum supported levels are shown. Later levels, if any, are supported unless
otherwise stated.

| � AIX Version 4.1.4 or AIX Version 4.2 or later Version 4.x.

| Note:  For Version 4.1.4, PTF U449790 is required if user data conversion of
| Greek, Cyrillic, Eastern European, Turkish, Japanese, or Korean
| language text longer than 2000 bytes is required. For Version 4.2, use
| level 4.2.1 for these languages.

 Clients
Client code for AIX, DOS, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, Windows
3.1, and Windows 95 workstations is distributed with the server code. The
Windows 3.1 client can operate under Windows 3.1, Windows 95, or within the
WIN-OS/2 environment under OS/2 Warp.

Client software provides a remote interface to an MQSeries server. Client support
does not result in distributed coordination of units of work.

| The MQSeries client for Java is also distributed with the server code; see the
| MQSeries Clients manual for more information.

216 MQSeries Planning Guide  



  MQSeries for AIX
 

 Connectivity
� IBM Communications Server for AIX, Version 4.0
� TCP/IP (as part of the base operating system)

 Options
� Transaction processing managers (server only)

– Transaction Server for AIX, Version 4.0
– BEA Tuxedo, Version 5.1 or 6.1

� Databases (server only)

– Oracle7, Release 7.3.2.1
– DB2 for AIX, Version 2.1.1

| � IBM Software Servers

| – Communications Server for AIX, Version 4.0
| – Database Server for AIX, Version 4.0
| – Directory Security Server for AIX, Version 4
| – Internet Connection Server for AIX, Version 4.1.1
| – Internet Connection Secure Server for AIX, Version 4.1
| – Transaction Server for AIX, Version 4.0

 � DCE

– IBM Directory and Security Server for AIX, Version 4 and later compatible
versions. This must be the U.S. Domestic version with DES encryption if
running the MQSeries-supplied DCE send, receive, or message exits.

– MQSeries DCE names and security modules are provided as part of
MQSeries for AIX.

Languages and compilers
� C using IBM C for AIX, Version 3.1.4
� C and C++ using IBM C Set++ for AIX, Version 3.1
� COBOL using Micro Focus** COBOL for UNIX, Version 4.0
� COBOL using IBM COBOL Set for AIX, Version 1

| � IBM PL/I set for AIX V1.1

 Delivery
| MQSeries for AIX is supplied on CD-ROM. Two CD-ROMs are supplied; one
| containing the MQSeries for AIX server and client, and the other containing the
| other MQSeries clients shipped with MQSeries for AIX.

 Installation
MQSeries for AIX is installed using either Installation assistant , smit  or installp .

The installation can be performed in approximately 5 minutes. Customization of the
product is then required, the duration of this process being dependent on the
individual requirements of the enterprise.

The MQSeries for AIX V5.0 Quick Beginnings booklet contains specific instructions
for installing MQSeries for AIX.

  Chapter 45. MQSeries at a glance 217



 MQSeries for AS/400 V4R2  
 

| MQSeries for AS/400 V4R2
| IBM MQSeries for AS/400 Version 4 Release 2

|  Machine requirements
| MQSeries for AS/400 V4R2 runs on any AS/400 processor capable of running the
| required level of OS/400 and which has enough processor storage to meet the
| combined requirements of the programming prerequisites, the access methods, and
| the application programs.

|  Software requirements
| Minimum supported levels are shown. Later levels, if any, are supported unless
| otherwise stated.

| � OS/400 Version 4 Release 2

| MQSeries for AS/400 clients
| MQSeries for AS/400 supports but does not ship or configure MQSeries clients.

|  Connectivity
| Connectivity can be through SNA LU 6.2 or TCP/IP.

|  Options
| � External Transaction Processing Monitors

| – CICS for AS/400 V4R2

| To use the MQI in application programs that operate under CICS you also
| require the program libraries for the programming language that you are
| using

| Languages and compilers
| � ILE C for AS/400, Version 4.2 (5769-CX2)
| � ILE COBOL for AS/400, Version 4.2 (5769-CB1)
| � ILE RPG for AS/400, Version 4.2 (5769-RG1)
| � IBM VisualAge for C++ for AS/400, Version 4.2 (5769-CX4)

| ILE run-time is part of OS/400.

|  Delivery
| MQSeries for AS/400 V4R2 is supplied on all tape and diskette media.

|  Installation
| MQSeries for AS/400 is installed using the AS/400 GO LICPGM command. For
| installation instructions, refer to the MQSeries for AS/400 Administration Guide.

218 MQSeries Planning Guide  



  MQSeries for AT&T GIS UNIX
 

MQSeries for AT&T GIS UNIX
IBM MQSeries for AT&T GIS UNIX Version 2 Release 2

 Machine requirements
MQSeries for AT&T GIS UNIX runs on any AT&T GIS 34xx, 35xx or 36xx system.
A minimum of 20 MB of disk space is required.

 Software requirements
Minimum supported levels are shown. Later levels, if any, are supported unless
otherwise stated.

� AT&T GIS UNIX SVR4 MP-RAS3 Version 2.0.3.01 or later Version 2

MQSeries for AT&T GIS UNIX clients
Client code for AT&T GIS UNIX3, OS/2 Warp, DOS, and Windows 3.1 workstations
is distributed with the server code.

 Connectivity
The network protocols supported are SNA LU 6.2 and TCP/IP.

� AT&T GIS SNA Services Version 2.06 or later Version 2 to match hardware
system

� TCP/IP as part of base operating system

 Options
� Transaction Processing monitors (coordination via X/Open XA interface)

– Novell Tuxedo Version 4.2.2

Languages and compilers
� AT&T GIS High Performance C Version 1.0b
� AT&T C++ language system for AT&T GIS UNIX

 Delivery
MQSeries for AT&T GIS UNIX V2.2 is supplied on CD-ROM or QIC tape.

 Installation
MQSeries for AT&T GIS UNIX is installed using the pkgadd  command.

The installation can be performed in approximately 5 minutes. Customization of the
product is then required, the duration of this process being dependent on the
individual requirements of the enterprise.

The MQSeries for AT&T GIS UNIX System Management Guide contains specific
instructions for installing this product.

3 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

  Chapter 45. MQSeries at a glance 219



 MQSeries for Digital OpenVMS  
 

MQSeries for Digital OpenVMS
� MQSeries for Digital OpenVMS AXP Version 2 Release 2
� MQSeries for Digital OpenVMS VAX Version 2 Release 2

 Machine requirements
Any Digital VAX machine with minimum system disk space of 16 MB for VAX or

| 18 MB for AXP and minimum memory of 16 MB for VAX or 32 MB for AXP.

 Software requirements
Software requirements are identical for server and client Digital OpenVMS
environments unless otherwise stated. Minimum supported levels are shown.
Later levels, if any, are supported unless otherwise stated.

� Digital OpenVMS VAX Version 6.2 or later

 Clients
Client code for Digital OpenVMS, OS/2 Warp, DOS and Windows 3.1 workstations
is distributed with the server code. The Windows 3.1 client can operate under
Windows 3.1, Windows 95 or within the WIN-OS/2 environment under OS/2 Warp.

 Connectivity
Network protocols supported are DECnet, SNA LU 6.2, and TCP/IP.

| � DECnet Phase IV
| � DECnet OSI, Version 6.3
| � Digital SNA APPC LU6.2 Programming Interface, Version 2.2
| � Digital DECnet SNA Gateway, Version 1.2A
| � Cisco Multinet for OpenVMS, Version 3.5
| � DEC TCP/IP Services for OpenVMS, Version 4.0
| � Attachmate PathWay for OpenVMS, Version 2.5.1
| � Process Software's TCPware for OpenVMS, Version 5.2-3

|  Options
| Distributed Computing Environment for OpenVMS, Version 1.3B

Languages and compilers
| � DEC C, Version 5.0
| � DEC C++, Version 5.0 (VAX) or 5.2 (AXP)
| � DEC COBOL, Version 5.0 (VAX) or 2.2 (AXP)

 Delivery
MQSeries for Digital OpenVMS is supplied on CD-ROM for AXP and on CD-ROM
and TK50 tape cartridge for VAX.

 Installation
MQSeries for Digital OpenVMS is installed with the OpenVMS VMSINSTAL utility,
and takes approximately 10 minutes to install from CD-ROM. Customization of the
product is then required, the duration of this process being dependent on the
individual requirements of the enterprise.

220 MQSeries Planning Guide  



  DOS client
 

MQSeries client for DOS
This section summarizes the machine and software requirements for the MQSeries
DOS client.

 Machine requirements
An MQSeries client can run under DOS on any personal computer that is capable
of running the client code and which has sufficient storage to meet the combined
requirements of the programming prerequisites, the client code, access methods,
and the application programs.

 Software requirements
The following are prerequisites for MQSeries applications running on a DOS client.

Minimum supported software levels are shown. Later levels, if any, are supported
unless otherwise stated.

 Workstation clients
Client code for DOS workstations is distributed with the server code for all servers
except OS/400 and MVS/ESA.

 � DOS 5.0

 Options
� TCP/IP for OS/2 V2.0. The base kit is necessary. The DOS access kit allows

clients access to TCP/IP via programs that run in a DOS box.

� TCP/IP V2.1.1 for DOS.

� IBM NetBIOS V2.1.1 for DOS/Windows.

� Novell IPX, using Novell NetBIOS emulation.

Languages and compilers
The following compilers are supported:

� C using Microsoft C/C++ Version 7.0
� C using Microsoft Visual C++ for Windows Version 4.0
� COBOL using Micro Focus COBOL Version 3.3

  Chapter 45. MQSeries at a glance 221



 MQSeries for HP-UX  
 

MQSeries for HP-UX
IBM MQSeries for HP-UX, Version 5

 Machine requirements
The MQSeries for HP-UX servers can run on any HP 9000 Family 700 or Family

| 800 or Stratus Continuum/400 machine. A minimum of 20 MB of disk space is
required.

 Software requirements
Minimum supported levels are shown.

| � HP-UX Version, 10.10 or later Version 10.x. Version 10.20 or later is required
| if you want to use the MQSeries client for Java.

 Clients
Client code for AIX, DOS, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, Windows
3.1, and Windows 95 workstations is distributed with the server code. The
Windows 3.1 client can operate under Windows 3.1, Windows 95, or within the
WIN-OS/2 environment under OS/2 Warp.

Client software provides a remote interface to an MQSeries server. Client support
does not result in distributed coordination of units of work.

| The MQSeries client for Java is also distributed with the server code; see the
| MQSeries Clients manual for more information.

 Connectivity
The network protocols supported are SNA LU 6.2 and TCP/IP.

 � HP SNAplus2

� TCP/IP as part of base operating system

 Options
� Transaction processing monitors (server only)

– CICS for HP9000, Version 2.1.1
– BEA Tuxedo, Version 5.1 or 6.1
– HP Encina/9000, Version 1.2
– Transarc Encina, Version 2.5

� Databases (server only)

– Oracle, Release 7.3.2.3 (with patches 437448 and 441647)
– DB2 for HP-UX, Version 2.1.1

| � IBM Software Servers

| – Internet Connection Server for HP-UX, Version 4.2.1
| – Internet Connection Secure Server for HP-UX, Version 4.2.1

222 MQSeries Planning Guide  



  MQSeries for HP-UX
 

 � DCE

– The HP DCE/9000 version appropriate for the level of the HP-UX operating
system in use, providing that this is compatible with DCE Version 1.4.1.
This must be the U.S. Domestic version with DES encryption if running the
MQSeries supplied DCE send, receive, or message exits.

Note:  You must apply the required HP-UX service in order to use DCE.
Contact your local HP support center to obtain a current list of the
required patches.

– MQSeries DCE names and security modules are provided as part of
MQSeries for HP-UX.

Languages and compilers
� C using the bundled compiler or HP-UX ANSI C compiler
� C, using C Softbench, Version 5.0
� C and C++, using HP C++, Version 3.1

| � COBOL, using the Micro Focus** COBOL compiler for UNIX, Version 4
� COBOL, using COBOL Softbench, Version 4.0
� HP DCE/9000 application development tools (with applicable patches)

 Delivery
| MQSeries for HP-UX is supplied on CD-ROM. Two CD-ROMs are supplied; one
| containing the MQSeries for HP-UX server and client, and the other containing the
| other MQSeries clients shipped with MQSeries for HP-UX.

 Installation
MQSeries for HP-UX V5.0 is installed using the update  command.

The installation can be performed in approximately 5 minutes. Customization of the
product is then required, the duration of this process being dependent on the
individual requirements of the enterprise.

The MQSeries for HP-UX V5.0 Quick Beginnings book contains specific instructions
for installing this product.

  Chapter 45. MQSeries at a glance 223



 MQSeries for MVS/ESA  
 

MQSeries for MVS/ESA
IBM MQSeries for MVS/ESA Version 1 Release 2

 Machine requirements
MQSeries for MVS/ESA runs on any IBM System/370 or System/390 processor that
is capable of running the required level of MVS/ESA, and which has enough
storage to meet the combined requirements of the programming prerequisites,
MQSeries for MVS/ESA, the access methods, and the application programs.

 Software requirements
The following tables list the program products that you need before you can install
and use MQSeries for MVS/ESA. The tables show which versions of these
products you can use, and list any APARs that you need to apply to your system
before you install MQSeries. See the MQSeries for MVS/ESA Program Directory
for the latest version of this information.

To install MQSeries for MVS/ESA, the prerequisite products listed in Table 27 are
required.

Table 27. Installation requirements

Function MVS Runtime libraries Other

Without optional
communications features

4.3 SMP/E 1.8.0 with APAR IR29060

With optional IBM
TCP/IP feature

4.3 LE/370 1.5 with the following
APARs:

 � PN78163
 � PN80015
 � PN80739
 � PN82174
 � PN82557
 � PN86618
 � PQ03507

� SMP/E 1.8.0 with APAR
IR29060

� TCP/IP 3.1 or 3.2 only

With optional Interlink
SNS/TCPaccess feature

4.3 LE/370 1.5 with the following
APARs:

 � PN78163
 � PN80015
 � PN80739
 � PN82174
 � PN82557
 � PN86618
 � PQ03507

� SMP/E 1.8.0 with APAR
IR29060

� Interlink SNS/TCPaccess** 3.1
or later.

Notes: 

1. Unless otherwise noted, any later level is acceptable.
2. The APARs listed might not apply to all versions of the prerequisite products.
3. If you are using the DFSMS/MVS binder utility, ensure that APAR OW05347 has been applied.

To use MQSeries for MVS/ESA, the prerequisite products listed in Table 28 on
page 225 are required.

224 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

Table 28. Programming requirements

Function MVS Other

General 4.3 with the
following
APARs:

 � OW07179
 � OY64365
 � OY67606

� JES2 or JES3 3.1.0
 � DFP 3.1
 � ESA machine

Security 4.3 RACF 2.1

Measured usage license charges 4.3 MVS APAR OW02855

Batch applications 4.3 C/370, COBOL, LE/370, or PL/I runtime libraries

IMS applications 4.3  � IMS 3.1.0
� C/370, COBOL, LE/370, or PL/I runtime libraries

CICS V2 applications 4.3 � CICS 2.1.2 only
� C/370, COBOL, LE/370, or PL/I runtime libraries

CICS V3 applications 4.3  � CICS 3.3.0
� C/370, COBOL, LE/370, or PL/I runtime libraries

Operations and controls panels 4.3  � ISPF/PDF 3.2.0
 � TSO/E 2.0.0

MQSeries-IMS bridge 5.1 IMS 5.1 with the following APARs:

 � PN87811

Distributed queuing 4.3 See Table 29 on page 225 

Distributed queuing (using CICS) 4.3 � CICS 3.2.1 (for local administration)
� CICS 3.3.0 (for remote administration)
� VTAM as needed by MVS

Notes: 

1. Unless otherwise noted, any later level is acceptable.
2. The APARs listed might not apply to all versions of the prerequisite products.

Table 29. Additional requirements for distributed queuing

Runtime libraries Other

LE/370 1.5 with the following APARs:

 � PN78163
 � PN80015
 � PN80739
 � PN82174
 � PN82557
 � PN86618
 � PQ03507

LU 6.2 communications

� VTAM as needed by MVS

TCP/IP communications

Either:

| � TCP/IP 3.1 or 3.2 only with APAR PN85260

� Interlink SNS/TCPaccess 3.1 or later

  Chapter 45. MQSeries at a glance 225



 MQSeries for MVS/ESA  
 

 Program numbers
� MQSeries for MVS/ESA (5695-137)
� MVS/ESA 4.3 or later (5695-047 (JES2), 5695-048 (JES3))
� MVS/ESA 5.1 or later (5655-068 (JES2), 5655-069 (JES3))
� SMP/E 1.8 (5668-949)
� DFSMS/MVS binder utility (5695-DF1)
� DFP 3.1 or later (5665-XA3)
� RACF 2.1 (5695-039)
� ISPF/PDF or later (5685-054)
� TSO/E 2.0 or later (5685-025)
� CICS/MVS 2.1.2 (5665-403)
� CICS/ESA 3.2.1 or later (5685-083)
� CICS/ESA 3.3 or later (5685-083)
� IMS/ESA 3.1 or later (5665-409)
� IMS/ESA 5.1 or later (5695-176)
� SAA AD/Cycle LE/370 (5688-198)
� ACF/VTAM 3.4.1 (5685-085)
� IBM TCP/IP 3.1 and 3.2 (5655-HAL)

Table 30. Compilers supported

Language Compilers Program number

Assembler  � Assembler H
� IBM High level assembler MVS

 � 5668-962
 � 5696-234

COBOL � VS COBOL II
� IBM SAA AD/Cycle COBOL/370

 � 5668-958
 � 5688-197

C � C/370 Release 2.1.0 (with APAR UN37741)
� IBM SAA AD/Cycle C/370

 � 5688-187
 � 5688-216

PL/I � OS PL/I Optimizing Compiler
� SAA AD/Cycle PL/I Compiler

 � 5668-910
 � 5688-235

 Clients
For MQSeries for MVS/ESA to support clients you need to install distributed
queuing without CICS, using either SNA LU 6.2, SNS/TCPaccess, or TCP/IP, as
described above. You also need the client/server support code that is provided by
the Client Attachment Feature of MQSeries for MVS/ESA. However, you can
administer clients without this feature.

 Delivery
MQSeries for MVS/ESA is supplied on either 6250 tape or 3480 cartridge. (It is
also available on 4-mm DAT tape for PC/390.) One tape or cartridge contains the
product code together with four language features – US English (mixed case), US
English (upper case), Japanese, and Simplified Chinese – and the distributed
queuing facility. The second tape or cartridge contains the optional Client
Attachment Feature.

226 MQSeries Planning Guide  



  MQSeries for MVS/ESA
 

 Installation
MQSeries for MVS/ESA is installed with SMP/E using the receive-apply-accept
approach. JCL is provided on the tape to assist with this process.

The installation can be performed in approximately two hours. Customization of the
product is then required, the duration of this process being dependent on the
individual requirements of the enterprise.

The MQSeries for MVS/ESA Program Directory contains specific instructions for
installing MQSeries for MVS/ESA.

  Chapter 45. MQSeries at a glance 227



 MQSeries for OS/2 Warp  
 

MQSeries for OS/2 Warp
MQSeries for OS/2 Warp, Version 5

 Machine requirements
MQSeries for OS/2 Warp runs on any personal computer that is capable of running
the required level of OS/2 Warp, and which has sufficient RAM and disk storage to
meet the combined requirements of the programming prerequisites, MQSeries for
OS/2 Warp, the access methods, and the application programs. The system unit
must have a CD-ROM device.

An MQSeries client can run on any personal computer that is capable of running
the client code and which has sufficient storage to meet the combined requirements
of the programming prerequisites, the client code, access methods, and the
application programs.

 Software requirements
Software requirements are identical for server and client OS/2 Warp environments
unless otherwise stated.

Minimum supported software levels are shown. Later levels, if any, are supported
unless otherwise stated.

� OS/2 WARP, Version 4 or later Version 4.x
| � OS/2 Warp Server, Version 4.0
| � OS/2 Warp Server Advanced SMP feature, V4.0

 Clients
Client code for AIX, DOS, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, Windows
3.1, and Windows 95 workstations is distributed with the server code. The
Windows 3.1 client can operate under Windows 3.1, Windows 95, or within the
WIN-OS/2 environment under OS/2 Warp.

Client software provides a remote interface to an MQSeries server. Client support
does not result in distributed coordination of units of work.

| The MQSeries client for Java is also distributed with the server code; see the
| MQSeries Clients manual for more information.

 Connectivity
� Communications Manager/2 for OS/2, Version 1.11 (this includes LU 6.2 and

NetBIOS)

� IBM Communications Server, Version 4.0

� Novell NetWare Client for OS/2, Version 1.20 (for direct IPX/SPX support)

| � TCP/IP for OS/2 Version 2.0 base kit plus NetBIOS kit

228 MQSeries Planning Guide  



  MQSeries for OS/2 Warp
 

 Options
� Transaction processing monitors (server only)

– Transaction Server for OS/2, Version 4

� Databases (server only)

– DB2 for OS/2, Version 2.1.1

| � IBM Software Servers

| – Communications Server for OS/2 Warp, Version 4.0
| – Database Server for OS/2 Warp, Version 4.0
| – Directory Security Server for OS/2 Warp (DES version), Version 4.0
| – Directory Security Server for OS/2 Warp (CDMF version), Version 4.0
| – Internet Connection Server for OS/2 Warp, Version 4.2.1
| – Internet Connection Secure Server for OS/2 Warp, Version 4.2.1
| – Transaction Server for OS/2, Version 4.0

 � DCE

– IBM Directory and Security Server for OS/2 Warp, Version 4 or later
compatible versions. This must be the U.S. Domestic version with DES
encryption if running the MQSeries-supplied DCE send, receive, or
message exits.

| If used as a DCE server, the following minimum system is recommended:

| - A Pentium processor running 90 MHz or faster
| - 64 MB or more of memory
| - OS/2 Warp Server V4.0 or later

– MQSeries DCE names and security modules are provided as part of
MQSeries for OS/2 Warp

Languages and compilers
� C using IBM C Set++ for OS/2, Version 2.1 (C bindings)
� C using Borland C++ Compiler, Version 2.0 (C bindings)
� C and C++ using IBM VisualAge for C++ for OS/2, Version 3.0
� COBOL using Micro Focus** COBOL, Version 4
� COBOL using IBM VisualAge for COBOL for OS/2, Version 1.1

| � PL/I using IBM PL/I for OS/2 Version 1.2
| � PL/I using IBM VisualAge for PL/I for OS/2

 Delivery
| MQSeries for OS/2 Warp is supplied on CD-ROM. Two CD-ROMs are supplied;
| one containing the MQSeries for OS/2 Warp server and client, and the other
| containing the other MQSeries clients shipped with MQSeries for OS/2 Warp.

  Chapter 45. MQSeries at a glance 229



 MQSeries for OS/2 Warp  
 

 Installation
MQSeries for OS/2 Warp is installed using Software Installer/2. The installation can
be performed in approximately 15 minutes. Customization of the product is then
required, the duration of this process being dependent on the individual
requirements of the enterprise.

The MQSeries for OS/2 Warp V5.0 Quick Beginnings booklet contains specific
instructions for installing MQSeries for OS/2 Warp. It also gives information about
using Configuration, Installation, and Distribution (CID), and NetView Distribution
Manager/2 (DM/2) to install MQSeries for OS/2 Warp.

230 MQSeries Planning Guide  



  MQSeries for SCO UNIX
 

MQSeries for SCO UNIX
IBM MQSeries for SCO UNIX Version 1 Release 4

 Machine requirements
For the following configurations: combined file/communications server,
communications server only, file server only, or client only:

� Any 386 DX PC or better

– Minimum system memory: 16 MB

– Minimum disk space:

- Combined file/comms server: 2 MB + size of queues
- File server: size of queues
- Communications server: 2 MB
- Client: normal disk space supplied with machine

� Any LAN adapter

For SNA connectivity (communications server):

� Any 486 PC or better (including an ISA bus)

– Minimum system memory: 16 MB
– Minimum disk space: 50 MB + size of queues (where appropriate)

� Apertus Technologies Inc ELC Adapter (ISA) with:

– Express 2.1.1 (for SCO OpenServer Desktop 5.0.0b or SCO OpenServer
Enterprise 5.0.0b or later 5.x)

– Express 2.04b (for SCO Open Desktop 3.0 or later 3.x or SCO Open
Server 3.0 or later 3.x)

or

� Emulex Adapter (ISA) with:

– Express 2.1.1 (for SCO OpenServer Desktop 5.0.0b or SCO OpenServer
Enterprise 5.0.0b or later 5.x)

– Express 2.04b (for SCO Open Desktop 3.0 or later 3.x or SCO Open
Server 3.0 or later 3.x)

or

� Madge Token Ring Adapter (ISA) with:

– Madge Smart 16/4 AT PLUS card with Express 2.1.1 (for SCO OpenServer
Desktop 5.0.0b or SCO OpenServer Enterprise 5.0.0b or later 5.x)

– One of the following for SCO Open Desktop 3.0 or later 3.x or SCO Open
Server 3.0 or later 3.x:

Madge card Express Version

Madge Smart 16/4 AT card 2.04b or 2.1.1

Madge Smart 16/4 AT PLUS card 2.1.1

  Chapter 45. MQSeries at a glance 231



 MQSeries for SCO UNIX  
 

 Software requirements
Minimum supported levels are shown. Later levels, if any, are supported unless
otherwise stated.

For the following configurations: combined file/communications server,
communications server only, file server only, or client only:

� SCO Open Desktop Version 3.0 or later Version 3.x, including:

– SCO Support Level Supplement UOD385A
 – TCP/IP

or

� SCO Open Server Version 3.0 or later Version 3.x, including:

– SCO Support Level Supplement UOD385A
 – TCP/IP

� SCO OpenServer Desktop 5.0.0b or later 5.x or SCO OpenServer Enterprise
5.0.0b or later 5.x, including:

 – TCP/IP

� For the file server and client configurations, appropriate LAN software, for
example, NFS to match TCP/IP. (If you plan to use NFS, please contact your
services representative to obtain any patches that you might need.)

Languages and compilers
Supported language for application development:

� A C compiler conformant with:

ANSI programming language C, X3.159-1989
  ISO/IEC 9899:1990
  ISO/IEC 0045-1:1990

such as SCO C.

 Delivery
MQSeries for SCO UNIX is supplied on 3.5-inch diskettes.

 Installation
MQSeries for SCO UNIX is installed using the custom utility.

The installation can be performed in approximately 15 minutes.

The MQSeries for SCO UNIX User’s Guide contains specific instructions for
installing this product.

232 MQSeries Planning Guide  



  MQSeries for SINIX and DC/OSx
 

MQSeries for SINIX and DC/OSx
IBM MQSeries for SINIX and DC/OSx V2.2

 Machine requirements
SINIX: RM200, RM300, RM400, RM600 systems with minimum disk space of 30
MB. If DynaText books are installed, a minimum of 50 MB of system disk space is
needed.

DC/OSx: MIServer, Nile systems with minimum disk space of 30 MB.

 Software requirements
Software requirements are identical for server and client environments unless
otherwise stated.

Minimum supported levels are shown. Later levels, if any, are supported unless
otherwise stated.

� SINIX operating system, for RM200, RM300, or RM400 – SINIX-N Version
5.42C10 or later

� SINIX operating system, for RM600 – SINIX-Y Version 5.42A40 or later

� DC/OSx operating system Version 1.1-cd079

MQSeries for SINIX and DC/OSx clients
Client code for SINIX and DC/OSx, OS/2 Warp, DOS, and Windows 3.1
workstations is distributed with the server code.

The Windows 3.1 client can operate under Windows 3.1, Windows 95 or within the
WIN-OS/2 environment under OS/2 Warp.

Client software provides a remote interface to a LAN server. It can reside at the
server or at a file server and be copied dynamically to the client for use, or it can
reside on the client’s disk space.

Client support does not result in distributed coordination of units of work.

 Connectivity
The network protocols supported are SNA LU 6.2 and TCP/IP.

 � SINIX: SNA

TRANSIT-SERVER 3.4 (SNA Communication Server Version)
TRANSIT-CLIENT 3.4 (SNA Comm. Client / Local Functions)
TRANSIT-CPIC 3.4 (SNA LU 6.2 Communication and CPI-C)

� SINIX: OpenNet TCP/IP (shipped with base SINIX operating system)

� DC/OSx: TCP/IP Version 1.0

  Chapter 45. MQSeries at a glance 233



 MQSeries for SINIX and DC/OSx  
 

� DC/OSx: SNA requires LU 6.2 SW Version 1.3

– To support the ISC-2 (Intelligent Synchronous Controller) serial line

- Comm Services V 1.2 and ISC with SNA engine V 3.1

– To support the ILC-T (Intelligent LAN Controller, Token ring) interface

- Comm Services V 1.2 and Token Ring Mac interface V 1.3

– To support the SNA on the ESCON IBM Channel link

XVI/ESCON Driver 1.0

 Options
� Transaction Processing monitors (coordination via X/Open XA interface)

– SINIX: Encina (version 1.1A00)
– SINIX: CICS for Siemens Nixdorf SINIX (version 2.1)
– SINIX: Novell Tuxedo (Version 5.0)
– DC/OSx: Novell Tuxedo (Version 5.0)

 � DCE

– SINIX: Version DCE-MI V1.03B00

Note:  DCE cannot be invoked from installable services or from user exits on
the SINIX platform. However, stand-alone DCE programs can invoke the MQI.

Languages and compilers
� SINIX: C compiler (C-DS, MIPS) version 1.1
� DC/OSx: C4.0 compiler version 4.0.1
� SINIX: Micro Focus COBOL version 3.2
� DC/OSx: Micro Focus COBOL version 3.2

 Delivery
� For SINIX, MQSeries is supplied on CD-ROM.

� For DC/OSx, MQSeries is supplied on QIC-320 cartridge tape.

 Documentation browsing
On SINIX, to view the online documentation, DynaText is required. Either use
SINIX/Windows version 2 or later, which provides a DynaText viewer, or use the
SINIX online documentation package (separate product), which also provides a
DynaText viewer.

 Installation
MQSeries for SINIX is installed using the sysadm  command.

MQSeries for DC/OSx is installed using the pkgadd  command.

The base directory for installation is /opt/mqm.

234 MQSeries Planning Guide  



  MQSeries for SunOS
 

MQSeries for SunOS
IBM MQSeries for SunOS Version 2.2

 Machine requirements
Only the Sun SPARC hardware is supported. A minimum of 25 MB of system disk
space is required.

 Software requirements
Software requirements are identical for server and client on SunOS environments
unless otherwise stated.

Minimum supported levels are shown. Later levels are supported unless otherwise
stated.

� Sun SunOS UNIX Version 4.1.3

MQSeries for SunOS clients
Client code for SunOS, OS/2 Warp, DOS, and Windows 3.1 workstations is
distributed with the server code.

The Windows 3.1 client can operate under Windows 3.1, Windows 95 or within the
WIN-OS/2 environment under OS/2 Warp.

Client software provides a remote interface to a LAN server. It can reside at the
server or at a file server and be copied dynamically to the client for use, or it can
reside on the client’s disk space.

Client support does not result in distributed coordination of units of work.

 Connectivity
The network protocols supported are SNA LU 6.2 and TCP/IP.

� SunLink SNA Peer-to-Peer Version 7.0 or later
� TCP/IP as part of the base operating system

 Options
� Transaction Processing monitors (coordination via X/Open XA interface)

– For example, Novell Tuxedo V5.0

Languages and compilers
� SPARCompiler C 3.0.1
� Micro Focus COBOL Version 3.0

 Delivery
MQSeries for SunOS is supplied on CD-ROM.

  Chapter 45. MQSeries at a glance 235



 MQSeries for SunOS  
 

 Installation
MQSeries for SunOS V2.2 is installed using the shell script amqinst.sh, which is
provided in the root directory of the CD-ROM. The base directory for installation is
/usr/mqm.

The MQSeries for SunOS System Management Guide contains specific instructions
for installing this product. Before installing the product refer to the README to see
the latest information about prerequisites.

236 MQSeries Planning Guide  



  MQSeries for Sun Solaris
 

MQSeries for Sun Solaris
IBM MQSeries for Sun Solaris, Version 5

 Machine requirements
Only the Sun SPARC and Sun UltraSPARC hardware is supported. A minimum of
25 MB of system disk space is required.

 Software requirements
Software requirements are identical for server and client on Solaris environments
unless otherwise stated.

Minimum supported levels are shown. Later levels are supported unless otherwise
stated.

| � Sun Solaris, Version 2.5.1 or later 2.x. You need to apply the following patches
| to Version 2.5.1 if you want to use the MQSeries client for Java:
|  – 103566-08
|  – 103600-13
|  – 103640-08

 Clients
Client code for AIX, DOS, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, Windows
3.1, and Windows 95 workstations is distributed with the server code. The
Windows 3.1 client can operate under Windows 3.1, Windows 95, or within the
WIN-OS/2 environment under OS/2 Warp.

Client software provides a remote interface to an MQSeries server. Client support
does not result in distributed coordination of units of work.

| The MQSeries client for Java is also distributed with the server code; see the
| MQSeries Clients manual for more information.

 Connectivity
The network protocols supported are SNA LU 6.2 and TCP/IP.

� SunLink SNA Peer-to-Peer, Version 9.0 or later 9.x (with patches 102713,
102690, 102312, 102874).

� If a token ring is to be used, SunLink Token Ring Interface /SBus, Version
3.0.2 (with patch 102463).

� TCP/IP as part of the base operating system.

 Options
� Transaction Processing monitors (server only)

– IBM CICS for Solaris, Version 2.1.1
– Transarc Encina, Version 2.5
– BEA Tuxedo, Version 5.1 or Version 6.1

� Databases (server only)

– Oracle 7, Release 7.3.2.3
– DB2 for Solaris, Version 2.1.1

  Chapter 45. MQSeries at a glance 237



 MQSeries for Sun Solaris  
 

| � IBM Software Servers

| – Internet Connection Server for Sun Solaris, Version 4.1
| – Internet Connection Secure Server for Sun Solaris, Version 4.1

 � DCE

– Transarc DCE, Version 1.1 and later compatible releases. This must be
the U.S. Domestic version with DES encryption if running the MQSeries
supplied DCE send, receive, or message exits.

– MQSeries DCE names and security modules are provided as part of
MQSeries for Sun Solaris.

Languages and compilers
� C using Sun SPARCompiler C, Version 4.0 and 4.2
� C++ using Sun SPARCompiler C++, Version 4.1 and 4.2
� COBOL using Micro Focus COBOL for UNIX, Version 4.0

 Delivery
| MQSeries for Sun Solaris is supplied on CD-ROM. Two CD-ROMs are supplied;
| one containing the MQSeries for Sun Solaris server and client, and the other
| containing the other MQSeries clients shipped with MQSeries for Sun Solaris.

 Installation
MQSeries for Sun Solaris is installed using the pkgadd  command or the sysadm
command. The MQSeries for Sun Solaris V5.0 Quick Beginnings contains specific
instructions for installing this product.

238 MQSeries Planning Guide  



  MQSeries for Tandem NSK
 

| MQSeries for Tandem NSK
| IBM MQSeries for Tandem NSK Version 2 Release 2

|  Machine requirements
| Minimum hardware requirements are:

| � Any of the Tandem NSK range of machines supported by Tandem NSK D3x,
| D4x, or G02

| � Specific hardware in support of user-selected network transport protocols

| You are also recommended to have one or more mirrored data disks with specified
| space requirements for TMF audit space and the MQSeries database.

|  Software requirements
| Minimum software requirements are:

| � Tandem NSK D3x, D4x, or G02 operating systems, including TM/MP (TMF),
| ENSCRIBE, and EMS

| � TS/MP (PATHWAY) to match the operating system

| � SCF for configuration, command, and control of TCP and SNA network
| transports

| Transaction logging is maintained with the Tandem TM/MP (TMF) product.

|  Connectivity
| For SNA connectivity, either:

| � SNAX/APC and SNAX/XF or SNAX/APN to match the operating system
| � Insession ICE to match the operating system

| For TCP/IP connectivity:

| � TCP/IP to match the operating system

|  Clients
| MQSeries for Tandem NSK supports but does not ship or configure MQSeries
| clients.

| Languages and compilers
| Supported languages for application development:

|  � TAL
|  � C
|  � COBOL-85

|  Delivery
| MQSeries for Tandem NSK is supplied on a 3480 cartridge.

  Chapter 45. MQSeries at a glance 239



 MQSeries for Tandem NSK  
 

|  Installation
| The MQSeries for Tandem NonStop Kernel System Management Guide contains
| specific instructions for installing this product.

240 MQSeries Planning Guide  



  MQSeries Three Tier for AIX
 

MQSeries Three Tier for AIX
IBM MQSeries Three Tier for AIX Version 1.0

MQSeries Three Tier for AIX allows you to:

� Run application servers on AIX
� Build applications on AIX

You must run your application clients on Windows 3.1 (or later) or OS/2.

 Machine requirements
MQSeries Three Tier for AIX runs on any machine that can run the required
software. The exact machine specifications depend on the level of performance
you can accept.

 Software requirements
The software you require depends on the tasks you want to perform using
MQSeries Three Tier for AIX:

 � Server

– IBM AIX Version 3.2.5
– IBM MQSeries for AIX Version 2.0 with PTF U438737, or Version 2.2
– IBM SNA Services for AIX

 � Application development

– IBM AIX Version 3.2.5
– IBM MQSeries for AIX Version 2.0 or later

 – A compiler

Languages and compilers
IBM C Set++ for AIX/6000, Version 2.1 (program number 5765-186)

 Delivery
MQSeries Three Tier for AIX is supplied on CD-ROM or 8mm tape.

 Installation
MQSeries Three Tier for AIX provides an installation utility. Installation takes
approximately 15 minutes.

For descriptions of the components you can choose to install, and for instructions
on installing, see the MQSeries Three Tier Administration Guide, SC33-1451.

  Chapter 45. MQSeries at a glance 241



 MQSeries Three Tier for OS/2  
 

MQSeries Three Tier for OS/2
IBM MQSeries Three Tier for OS/2 Version 1.0

MQSeries Three Tier for OS/2 allows you to:

� Run application clients on Windows 3.1 (or later) and OS/2
� Run application servers on OS/2
� Build applications on Windows 3.1 (or later) and OS/2

 Machine requirements
MQSeries Three Tier for OS/2 runs on any machine that can run the required
software. The exact machine specifications depend on the level of performance
you can accept. Table 31 indicates some typical machine configurations for
MQSeries Three Tier for OS/2 server, client, and developer’s workstations. These
are not intended to be minimum configurations.

Table 31. Typical MQSeries Three Tier for OS/2

Configuration Processor RAM Video Hard disk

Three Tier
client (OS/2 or
Windows 3.1)

486 25MHz
CPU or better

16 MB 14x monitor 120 MB

Three Tier
server (OS/2)

486DX4
100MHz CPU
or better

32 MB 14x monitor 540 MB

Programming Pentium
66MHz CPU
or better

32-64 MB 17x monitor, 2
MB video
RAM

760-1520 MB

Note:  The recommended minimum configuration for developing applications with
VisualAge is 24 MB RAM with 30 MB available for the swapper file.

 Software requirements
The software you require depends on the tasks you want to perform using
MQSeries Three Tier for OS/2:

 � OS/2 client

– IBM OS/2 Version 2.1 or later

– IBM MQSeries for OS/2 Version 2.0 with PTF U200051, or later

– MQSeries communication support:

- IBM Communication Manager/2 Version 1.1 for OS/2 (this includes
LU 6.2 and NetBIOS)

- TCP/IP for OS/2 Version 2.0

� Windows 3.1 client

– DOS Version 5 or later

– Microsoft Windows 3.1

– IBM MQSeries for OS/2 Version 2.0 with PTF U200051 (Windows client), or
later

242 MQSeries Planning Guide  



  MQSeries Three Tier for OS/2
 

– For communication, one of the following:

- TCP/IP for OS/2 Version 2.0
 - LU 6.2
 - NetBIOS

 � OS/2 server

– IBM OS/2 Version 2.1 or later
– IBM MQSeries for OS/2 Version 2.0 with PTF U200051, or later
– MQSeries communication support:

- IBM Communication Manager/2 Version 1.1 for OS/2 (this includes
LU 6.2 and NetBIOS)

- TCP/IP for OS/2 Version 2.0

� Application development on OS/2

– IBM OS/2 Version 2.1 or later
– IBM MQSeries for OS/2 Version 2.0 with PTF U200051, or later
– IBM VisualAge Version 2.0 for OS/2 Team Version (optional)

 – A compiler

� Application development on Windows 3.1

– DOS Version 5.0 or later
– Microsoft Windows 3.1
– IBM OS/2 Version 2.1 or later
– IBM MQSeries for OS/2 Version 2.0 with PTF U200051, or later

Languages and compilers
C language For OS/2, IBM C Set++ for OS/2, Version 2.0

For Windows 3.1, the Microsoft Visual C++ Development System,
Version 1.5

COBOL IBM COBOL VisualSet for OS/2

Micro Focus** 32-bit COBOL Software Development Kit for OS/2

PL/I The IBM PL/I Package/2 V1 R2

 Delivery
MQSeries Three Tier for OS/2 is supplied on CD-ROM and 3.5-inch diskettes.

 Installation
MQSeries Three Tier for OS/2 provides an installation utility. Installation takes
approximately 15 minutes.

You can install MQSeries Three Tier for OS/2 from a LAN.

For descriptions of the components you can choose to install, and for instructions
on installing, see the MQSeries Three Tier Administration Guide, SC33-1451.

  Chapter 45. MQSeries at a glance 243



 MQSeries for UnixWare  
 

MQSeries for UnixWare
IBM MQSeries for UnixWare Version 1 Release 4.1

 Machine requirements
For the following configurations: combined file/communications server,
communications server only, file server only, or client only:

� Any 386 DX PC or better

– Minimum system memory: 16 MB

– Minimum disk space:

- Combined file/comms server: 2 MB + size of queues
- File server: size of queues
- Communications server: 2 MB
- Client: normal disk space supplied with machine

� Any LAN adapter

For SNA connectivity (communications server):

� Any 486 PC or better (including an ISA bus)

– Minimum system memory: 16 MB
– Minimum disk space: 28.5 MB + size of queues (where appropriate)

� Apertus Technologies Inc ELC Adapter (ISA) with:

– Express 2.04b or 2.1.1 (for UnixWare Application Server SDK 1.1 or later
1.x)

– Express 2.1.2 (for UnixWare Personal Edition 2.01 or later 2.x or
Application Server 2.01 or 2.1)

or

� Emulex Adapter (ISA) with:

– Express 2.04b or 2.1.1 (for UnixWare Application Server SDK 1.1 or later
1.x)

– Express 2.1.2 (for UnixWare Personal Edition 2.01 or later 2.x or
Application Server 2.01 or 2.1)

or

� Madge Token Ring Adapter (ISA) with:

– Madge Smart 16/4 AT PLUS card with Express 2.1.2 (for UnixWare
Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1)

– One of the following for UnixWare Application Server SDK 1.1 or later 1.x:

Madge card Express Version

Madge Smart 16/4 AT card 2.04b or 2.1.1

Madge Smart 16/4 AT PLUS card 2.1.2

244 MQSeries Planning Guide  



  MQSeries for UnixWare
 

 Software requirements
Minimum supported levels are shown. Later levels, if any, are supported unless
otherwise stated.

For the following configurations: combined file/communications server,
communications server only, file server only, or client only:

� UnixWare Application Server SDK Version 1.1 or later Version 1, including
TCP/IP. (For bridge support across TCP/IP, contact your Novell service
representative.)

� UnixWare Personal Edition 2.01 or later 2.x or Application Server 2.01 or 2.1
including TCP/IP.

� Appropriate LAN software (file server or client): for example, NFS to match
TCP/IP. Customers who plan to use NFS should contact their service
representative to obtain all available patches.

Languages and compilers
Supported language for application development:

 � C

 Delivery
MQSeries for UnixWare is supplied on 3.5-inch diskettes.

 Installation
MQSeries for UnixWare is installed using the pkgadd  command.

The installation can be performed in approximately 10 minutes.

The MQSeries for UnixWare User’s Guide contains specific instructions for
installing this product.

  Chapter 45. MQSeries at a glance 245



 VM/ESA client  
 

| MQSeries client for VM/ESA
| This section summarizes the machine and software requirements for the MQSeries
| client for VM/ESA.

|  Machine requirements
| An MQSeries client can run under VM/ESA on any of the following machines:

| � S/390 Parallel Enterprise Server - Generation 3
| � S/390 Multiprise 2000
|  � ES/9000 Processors

|  Software requirements
| The following are prerequisites for MQSeries applications running on a VM/ESA
| client.

| Minimum supported software levels are shown. Later levels, if any, are supported
| unless otherwise stated.

| � VM/ESA Version 2.3
| � LE/370 Release 1.6
| � TCP/IP Release 2.0 or VTAM LU 6.2

| Languages and compilers
| The following compilers are supported:

| � IBM C for VM Release 3.1
| � IBM VS COBOL II
| � IBM OS/PL/I Release 2.3
| � IBM VM/ESA REXX/VM
|  � IBM Assembler

|  Delivery
| The MQSeries client for VM/ESA is shipped with the VM/ESA product. It is
| preloaded with the installation of CMS, and can be accessed on the MAINT 193
| disk.

246 MQSeries Planning Guide  



  MQSeries for VSE/ESA
 

MQSeries for VSE/ESA
IBM MQSeries for VSE/ESA Version 1 Release 4

 Machine requirements
� Any ESA/390 system capable supporting the required level of VSE/ESA

– Minimum system memory = normal memory as supplied with machine
– Minimum system DASD = 2 cylinders (3390) + size of queues

� Any communications hardware supporting SNA LU 6.2.

 Software requirements
Minimum supported levels are shown. Later levels, if any, are supported unless
otherwise stated.

Either:

� VSE/ESA V1.4 in ESA mode, with ACF/VTAM for VSE/ESA V3.4

or

� VSE/ESA V2.1 with ACF/VTAM for VSE/ESA V4.2

With

� CICS/VSE V 2.3

� IBM Language environment (LE) for VSE runtime library with IBM COBOL for
VSE

Languages and compilers
Supported language for application development:

� IBM COBOL for VSE (IBM COBOL for VSE is fully upward compatible with VS
COBOL II).

 Delivery
MQSeries for VSE/ESA is supplied on 4mm tape and 3480 tape cartridge.

 Installation
MQSeries for VSE/ESA is installed using the VSE Maintenance System History
Program (MSHP).

The MQSeries for VSE/ESA User’s Guide contains specific instructions for installing
this product.

  Chapter 45. MQSeries at a glance 247



 MQSeries for Windows V2.0  
 

MQSeries for Windows Version 2.0
IBM MQSeries for Windows Version 2.0

 Machine requirements
MQSeries for Windows version 2.0 is a 16-bit product, so it runs on computers that
run Windows 3.1, and it runs in 16-bit compatibility mode on Windows 95.
Table 32 suggests two configurations: one for running applications and the other
for developing applications.

Note:  These recommendations are for guidance only. They do not take into
account the effects of any other software that might be running on the system at
the same time.

Table 32. Suggested hardware configurations for MQSeries for Windows V2.0

Configuration Processor RAM Hard disk

For running
applications

386 16 MHz 4–8 MB 3.9 MB available

For developing
applications

486 66 MHz or
better

8–16 MB 5 MB available

Note:  The specification for developing applications does not include hardware
requirements for other development tools (for example, compilers).

 Software requirements
This section describes the software you require before you can use MQSeries for
Windows version 2.0. This depends on whether you want to run MQSeries
applications on MQSeries for Windows, or develop your own applications for it.

For running MQSeries applications
For running applications on MQSeries for Windows V2.0, you need the following
software (or later versions):

� MS-DOS or PC DOS Version 3.3

� Microsoft Windows 3.1,
or Windows 95,
or Windows for Workgroups 3.11,
or Win-OS/2 on OS/2 Version 3.0 (Warp)

MQSeries for Windows V2.0 runs in 16-bit compatibility mode on Windows 95.

 Connectivity
� TCP/IP for the operating system you are using:

– For Microsoft Windows 3.1, you need IBM TCP/IP for DOS V2.1.1 with
CSD 2.1.1.4.

– For Microsoft Windows 95, use the version of TCP/IP supplied with
Windows 95.

– For Microsoft Windows for Workgroups 3.11, you need IBM TCP/IP for
DOS V2.1.1 with CSD 2.1.1.4.

– For Win-OS/2, you need IBM TCP/IP for OS/2 Version 2.

248 MQSeries Planning Guide  



  MQSeries for Windows V2.0
 

Languages and compilers
To develop and test MQSeries applications that run on Windows, in addition to
the software listed in “For running MQSeries applications” on page 248 , you
need only the compiler for the programming language you will use:

For 16-bit C
Microsoft Visual C++ Version 1.5

For 32-bit C
Microsoft Visual C++ Version 2.0

For 16-bit BASIC
Microsoft Visual Basic Version 3.0
or Microsoft Visual Basic Version 4.0

For 32-bit BASIC
Microsoft Visual Basic Version 4.0

MQSeries for Windows V2.0 runs in 16-bit compatibility mode on Windows 95, but
you can write 32-bit MQSeries for Windows applications.

 Delivery
MQSeries for Windows Version 2.0 is supplied on diskettes. It is enabled for
Configuration, Installation, and Distribution (CID) so you can put the installation files
on a LAN server for easier access.

 Installation
The MQSeries for Windows User’s Guide contains specific instructions for installing
this product.

  Chapter 45. MQSeries at a glance 249



 MQSeries for Windows V2.1  
 

MQSeries for Windows Version 2.1
IBM MQSeries for Windows Version 2.1

 Machine requirements
MQSeries for Windows version 2.1 is a 32-bit product, so it runs on computers that
run Windows 95 or Windows NT Version 4.0. Table 33 suggests two
configurations: one for running applications and the other for developing
applications.

Note:  These recommendations are for guidance only. They do not take into
account the effects of any other software that might be running on the system at
the same time.

Table 33. Suggested hardware configurations for MQSeries for Windows V2.1

Configuration Processor RAM Hard disk

For running
applications

386DX or better At least 4 MB At least 3.5 MB
available

For developing
applications

486 66 MHz or
better

At least 8 MB At least 5 MB
available

Note:  The specification for developing applications does not include hardware
requirements for other development tools (for example, compilers).

 Software requirements
This section describes the software you require before you can use MQSeries for
Windows version 2.1. This depends on whether you want to run MQSeries
applications on MQSeries for Windows, or develop your own applications for it.

For running MQSeries applications
For running applications on MQSeries for Windows V2.1, you need the following
software (or later versions):

� Microsoft Windows 95 or Windows NT Version 4.0

 Connectivity
� TCP/IP for the operating system you are using.

Languages and compilers
To develop and test MQSeries applications that run on Windows, in addition to
the software listed in “For running MQSeries applications” , you need only the
compiler for the programming language you will use:

� Microsoft Visual C++ Version 4.0
 � Borland C
� Microsoft Visual Basic Version 4.0

250 MQSeries Planning Guide  



  MQSeries for Windows V2.1
 

 Delivery
MQSeries for Windows Version 2.1 is supplied on CD-ROM or diskettes. It is
enabled for remote (or silent) installation so you can put the installation files on a
LAN server for easier access.

 Installation
The MQSeries for Windows User’s Guide contains specific instructions for installing
this product.

  Chapter 45. MQSeries at a glance 251



 MQSeries for Windows NT  
 

MQSeries for Windows NT
IBM MQSeries for Windows NT, Version 5

 Machine requirements
MQSeries for Windows NT can run on any Intel 486 (or above) processor-based
IBM PC machine or compatible.

 Software requirements
Minimum supported levels are shown. Later levels, if any, are supported unless
otherwise stated.

| � Microsoft Windows NT, Version 3.5.1, with Service Pack 5 installed to include
| TCP/IP, NetBIOS, and SPX

| � Microsoft Windows NT, Version 4.0 or later Version 4.x

 Clients
Client code for AIX, DOS, HP-UX, OS/2 Warp, Sun Solaris, Windows NT, Windows
3.1, and Windows 95 workstations is distributed with the server code. The
Windows 3.1 client can operate under Windows 3.1, Windows 95, or within the
WIN-OS/2 environment under OS/2 Warp.

Client software provides a remote interface to an MQSeries server. Client support
does not result in distributed coordination of units of work.

| The MQSeries client for Java is also distributed with the server code; see the
| MQSeries Clients manual for more information.

 Connectivity
The network protocols supported are SNA LU 6.2, TCP/IP, NetBIOS, and SPX.

� SNA LU 6.2

– Attachmate EXTRA! Personal Client, Version 6.1 and 6.2
– IBM Communications Server for Windows NT, Version 5.0

| – IBM Personal Communications for Windows NT, Version 4.0
– Microsoft SNA Server, Version 2.11 and Version 3

� For TCP/IP use the TCP/IP facilities within Windows NT

� For NetBIOS use the NetBIOS facilities within Windows NT

� For SPX use the SPX facilities within Windows NT

| � For clients only:

| – OnNet SDK for Windows
|  – FTP Software
|  – Inc

252 MQSeries Planning Guide  



  MQSeries for Windows NT
 

 Options
� Transaction Processing monitors (server only)

– Transaction Server for Windows NT, Version 4.0
– BEA TUXEDO, Version 5.1 or Version 6.1

 � Databases

| – DB2 for Windows NT and Windows 95, Version 2.1.1

| � IBM Software Servers

| – Communications Server for Windows NT, Version 5.0
| – Database Server for Windows NT, Version 4.0
| – Directory Security Server for Windows NT, Version 5.0
| – Internet Connection Server for Windows NT, Version 4.2.1
| – Internet Connection Secure Server for Windows NT, Version 4.2.1
| – Transaction Server for Windows NT, Version 4.0

 � DCE

– IBM Directory and Security Server for Windows NT, Version 5. This must
be the U.S. Domestic version with DES encryption if running the
MQSeries-supplied DCE send, receive, or message exits.

– MQSeries DCE security modules are provided as part of MQSeries for
Windows NT.

Languages and compilers
� C and C++ using Microsoft Visual C++ for Windows 95 and NT, Version 4.0
� C and C++ using IBM VisualAge for C++ for Windows, Version 3.5
� COBOL using Micro Focus** COBOL for Windows NT, Version 3.3 or Version 4
� IBM VisualAge COBOL for Windows NT, Version 2.1
� IBM PL/I for Windows, Version 1.2

| � IBM VisualAge for PL/I for Windows

 Delivery
| MQSeries for Windows NT is supplied on CD-ROM. Two CD-ROMs are supplied;
| one containing the MQSeries for Windows NT server and client, and the other
| containing the other MQSeries clients shipped with MQSeries for Windows NT.

 Installation
MQSeries for Windows NT is installed using the setup  utility.

The installation can be performed in approximately 15 minutes. The actual time
taken depends on several factors, including the following:

� The speed of the machine
� Which functions you are installing
� Where you are installing from

Customization of the product is then required, the duration of this process being
dependent on the individual requirements of the enterprise.

The MQSeries for Windows NT V5.0 Quick Beginnings manual contains specific
instructions for installing this product.

  Chapter 45. MQSeries at a glance 253



 Windows 3.1 client  
 

MQSeries client for Windows 3.1
This section summarizes the machine and software requirements for the Windows
3.1 client.

 Machine requirements
An MQSeries client can run under Windows 3.1 on any personal computer that is
capable of running the client code and which has sufficient storage to meet the
combined requirements of the programming prerequisites, the client code, access
methods, and the application programs.

 Software requirements
The following are prerequisites for MQSeries applications running on a Windows
3.1 client.

Minimum supported software levels are shown. Later levels, if any, are supported
unless otherwise stated.

Workstation clients:  Client code for Windows 3.1 workstations is distributed with
the server code for all servers except OS/400 and MVS/ESA.

 � Windows 3.1

 Options

� TCP/IP for OS/2 V2.0. The base kit is necessary. The DOS access kit allows
clients access to TCP/IP via programs that run from WIN-OS2.

� TCP/IP V2.1.1 for DOS.

� IBM NetBIOS V2.1.1 for DOS/Windows.

� Novell IPX, using Novell NetBIOS emulation.

Languages and compilers
The following compilers are supported:

� C using Microsoft C/C++ Version 7.0
� C using Microsoft Visual C++ for Windows Version 2.0
� C++ using Microsoft Visual C++ Version 1.5
� COBOL using Micro Focus Visual COBOL for Windows Version 3.3

254 MQSeries Planning Guide  



  Windows 95 client
 

MQSeries client for Windows 95
This section summarizes the machine and software requirements for the Windows
95 client.

 Machine requirements
An MQSeries client can run under Windows 95 on any personal computer that is
capable of running the client code and which has sufficient storage to meet the
combined requirements of the programming prerequisites, the client code, access
methods, and the application programs.

 Software requirements
The following are prerequisites for MQSeries applications running on a Windows 95
client.

Minimum supported software levels are shown. Later levels, if any, are supported
unless otherwise stated.

 Workstation clients
Client code for Windows 95 workstations is distributed with the server code for all
servers except OS/400 and MVS/ESA.

 � Windows 95

 Connectivity
TCP/IP, SPX, and NetBIOS are all provided in the operating system.

Languages and compilers:  The following compilers are supported:

� C using Microsoft Visual C++ for Windows 95/NT Version 2.0
� C++ using Microsoft Visual C++ Version 2.0
� C++ using IBM VisualAge C++ Version 3.5
� COBOL using Micro Focus COBOL Workbench Version 4.0

  Chapter 45. MQSeries at a glance 255



 MQSeries link for R/3  
 

MQSeries link for R/3
This section tells you about the hardware and software you need to run MQSeries
link for R/3.

 Hardware requirements
To install and run this product, you need about 5 MB of available hard disk space.
There are no additional hardware requirements except for those listed for MQSeries
and R/3 on the platform you are using. Please consult the installation and planning
sections in the appropriate books for these products.

 Software requirements
To run the R/3 link, you must have installed the following:

� At least one R/3 system, version 3.0E or later. You can use version 3.0D, if
you apply upgrade BINK090538. This fix will be supplied by SAP AG; details
of how to get the fix are supplied with your R/3 system.

Note:  The fix adds MQSeries Options to the Destination Menu if you specify
SAP administration function sm59.

� At least one instance of MQSeries Version 2.2.1 or later for the chosen
platform (Version 2.0 for Windows NT).

� The relevant MQSeries link for R/3 product for the chosen platform.

 Restrictions
The maximum size of MQSeries messages (4 MB) limits the amount of R/3 IDoc
data that can be sent in a single message. Because the R/3 link header fields are
part of the space that is assigned to MQSeries messages, the actual maximum
amount of space available for R/3 transaction data is less than the full 4 MB. R/3
transaction data can consist of one IDoc or batch IDocs.

SAP AG recommends a maximum of 2 MB for each IDoc.

 Supported platforms
MQSeries link for R/3 is available for the following release levels of these platforms:

 � AIX 4.1
 � HP-UX 10.01
� Sun Solaris 2.5
� Windows NT 3.5.1

 MQSeries platforms
Using R/3 link, you can connect your R/3 system to other platforms that run
MQSeries.

256 MQSeries Planning Guide  



  Appendix
 

 Part 10. Appendix

 Copyright IBM Corp. 1993, 1998  257



 Appendix  
 

258 MQSeries Planning Guide  



  Notices
 

 Appendix. Notices

The following paragraph does not apply to any country where such
provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM’s valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact Laboratory Counsel, MP151, IBM
United Kingdom Laboratories, Hursley Park, Winchester, Hampshire, England SO21
2JN. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594,
U.S.A.

 Copyright IBM Corp. 1993, 1998  259



 Notices  
 

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks
of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

ACF/VTAM AD/Cycle AIX
AIX/6000 AIXwindows AS/400
AT BookManager C/370
C/400 CICS CICS/MVS
CICS/VSE CICS/400 COBOL/370
COBOL/400 CT DB2
HACMP/6000 IBM ILE
IMS IMS/ESA MQ
MQSeries MQSeries Three Tier MVS/ESA
NetView Open Blueprint Operating System/400
OS/2 Warp OS/400 POWERparallel
POWERserver POWERstation Presentation Manager
PS/2 RACF RPG/400
RMF RS/6000 SAA
S/390 System/370 System/390
VisualAge VM/ESA VSE/ESA
VTAM WIN-OS/2

260 MQSeries Planning Guide  



  
 

Part 11. Glossary and index

 Copyright IBM Corp. 1993, 1998  261



  
 

262 MQSeries Planning Guide  



  active log � buffer pool
 

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
active log .  See recovery log.

adapter .  An interface between MQSeries for MVS/ESA
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

add-in task .  A function provided by MQSeries on
UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT that coordinates the passing
of data between a Lotus Notes application and an
MQSeries application.

address space .  The area of virtual storage available
for a particular job.

administrator commands .  MQSeries commands used
to manage MQSeries objects, such as queues,
processes, and namelists.

alias queue object .  An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is
resolved and the requested operation is performed on
the associated base queue.

alternate user security .  A security feature in which
the authority of one user ID can be used by another
user ID; for example, to open an MQSeries object.

APAR .  Authorized program analysis report.

application environment .  The software facilities that
are accessible by an application program. On the MVS
platform, CICS and IMS are examples of application
environments.

archive log .  See recovery log.

asynchronous messaging .  A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute .  One of a set of properties that defines the
characteristics of an MQSeries object.

authorization service .  In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of
commands and MQI calls for the user identifier
associated with the command or call.

authorized program analysis report (APAR) .  A
report of a problem caused by a suspected defect in a
current, unaltered release of a program.

B
backout .  An operation that reverses all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with commit.

bootstrap data set (BSDS) .  A VSAM data set that
contains:

� An inventory of all active and archived log data sets
known to MQSeries for MVS/ESA

� A wrap-around inventory of all recent MQSeries for
MVS/ESA activity

The BSDS is required if the MQSeries for MVS/ESA
subsystem has to be restarted.

browse .  In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor .  In message queuing, an indicator
used when browsing a queue to identify the message
that is next in sequence.

BSDS.  Bootstrap data set.

buffer pool .  An area of main storage used for
MQSeries for MVS/ESA queues, messages, and object
definitions. See also page set.

 Copyright IBM Corp. 1993, 1998  263



 CCSID � DCE  
 

C
CCSID.  Coded character set identifier.

CDF.  Channel definition file.

channel .  See message channel.

channel definition file (CDF) .  In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event .  An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint .  (1) A time when significant information is
written on the log. Contrast with syncpoint. (2) In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CI.  Control interval.

circular logging .  In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

CL.  Control Language.

client .  A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application .  An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

coded character set identifier (CCSID) .  The name of
a coded set of characters and their code point
assignments.

command .  In MQSeries, an instruction that can be
carried out by the queue manager.

command server .  The MQSeries component that
reads commands from the system-command input

queue, verifies them, and passes valid commands to
the command processor.

commit .  An operation that applies all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with backout.

| Common Run-Time Environment (CRE) .  A set of
| services that enable system and application
| programmers to write mixed-language programs. These
| shared, run-time services can be used by C, COBOL85,
| FORTRAN, Pascal, and TAL programs.

connect .  To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

context .  Information about the origin of a message.

context security .  In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command .  In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

control interval (CI) .  A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

Control Language (CL) .  In MQSeries for AS/400, a
language that can be used to issue commands, either
at the command line or by writing a CL program.

| CRE.  Common Run-Time Environment.

Cross Systems Coupling Facility (XCF) .  Provides
the MVS coupling services that allow authorized
programs in a multisystem environment to communicate
with programs on the same or different MVS systems.

D
data conversion interface (DCI) .  The MQSeries
interface to which customer- or vendor-written programs
that convert application data between different machine
encodings and CCSIDs must conform. A part of the
MQSeries Framework.

DCE.  Distributed Computing Environment.

264 MQSeries Planning Guide  



  DCI � initialization input data sets
 

DCI.  Data conversion interface.

dead-letter queue (DLQ) .  A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler .  An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with
a user-written rules table.

distributed application .  In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE) .
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM) .  In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ.  Dead-letter queue.

DQM.  Distributed queue management.

dual logging .  A method of recording MQSeries for
MVS/ESA activity, where each change is recorded on
two data sets, so that if a restart is necessary and one
data set is unreadable, the other can be used. Contrast
with single logging.

dual mode .  See dual logging.

dynamic queue .  A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic
queue.

E
environment .  See application environment.

ESM.  External security manager.

event .  See channel event, instrumentation event,
performance event, and queue manager event.

event data .  In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event message .  Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics)

relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue .  The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

external security manager (ESM) .  A security product
that is invoked by the MVS System Authorization
Facility. RACF is an example of an ESM.

F
FIFO. First-in-first-out.

first-in-first-out (FIFO) .  A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

Framework .  In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

� MQSeries data conversion interface (DCI)
� MQSeries message channel interface (MCI)
� MQSeries name service interface (NSI)
� MQSeries security enabling interface (SEI)
� MQSeries trigger monitor interface (TMI)

G
Generalized Trace Facility (GTF) .  An MVS service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get .  In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

GTF.  Generalized Trace Facility.

I
| ICE.  Intersystem Communications Environment is a
| family of Tandem-based software products that enables
| you to access a variety of applications on Tandem
| computers.

in-doubt unit of recovery .  In MQSeries for MVS/ESA,
the status of a unit of recovery for which a syncpoint
has been requested but not yet performed.

initialization input data sets .  Data sets used by
MQSeries for MVS/ESA when it starts up.

  Glossary of terms and abbreviations 265



 initiation queue � message priority  
 

initiation queue .  A local queue on which the queue
manager puts trigger messages.

installable services .  In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name
service, and user identifier service.

instrumentation event .  A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be
used by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive System Productivity Facility (ISPF) .  An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user.

ISPF.  Interactive System Productivity Facility.

L
linear logging .  In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence
of files. New files are added to the sequence as
necessary. The space in which the data is written is
not reused until the queue manager is restarted.
Contrast with circular logging.

listener .  In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition .  An MQSeries object belonging to a
local queue manager.

local definition of a remote queue .  An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

local queue .  A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager .  The queue manager to which a
program is connected and that provides message

queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log .  In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages.

log control file .  In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file .  In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW) .  See unit of work.

M
MCA.  Message channel agent.

MCI.  Message channel interface.

message .  (1) In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. (2) In
system programming, information intended for the
terminal operator or system administrator.

message channel .  In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises
two message channel agents (a sender and a receiver)
and a communication link. Contrast with MQI channel.

message channel agent (MCA) .  A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue.

message channel interface (MCI) .  The MQSeries
interface to which customer- or vendor-written programs
that transmit messages between an MQSeries queue
manager and another messaging system must conform.
A part of the MQSeries Framework.

message descriptor .  Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority .  In MQSeries, an attribute of a
message that can affect the order in which messages

266 MQSeries Planning Guide  



  message queue � platform
 

on a queue are retrieved, and whether a trigger event is
generated.

message queue .  Synonym for queue.

message queue interface (MQI) .  The programming
interface provided by the MQSeries queue managers.
This programming interface allows application programs
to access message queuing services.

message queuing .  A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

messaging .  See synchronous messaging and
asynchronous messaging.

model queue object .  A set of queue attributes that
act as a template when a program creates a dynamic
queue.

MQI.  Message queue interface.

MQI channel .  Connects an MQSeries client to a
queue manager on a server system, and transfers only
MQI calls and responses in a bidirectional manner.
Contrast with message channel.

MQSC.  MQSeries commands.

MQSeries .  A family of IBM licensed programs that
provides message queuing services.

MQSeries client .  Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI
calls from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC) .  Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

N
namelist .  An MQSeries for MVS/ESA object that
contains a list of queue names.

name service .  In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI) .  The MQSeries
interface to which customer- or vendor-written programs
that resolve queue-name ownership must conform. A
part of the MQSeries Framework.

nonpersistent message .  A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI.  Name service interface.

O
OAM.  Object authority manager.

object .  In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist
(MVS/ESA only), or a storage class (MVS/ESA only).

object authority manager (OAM) .  In MQSeries on
UNIX systems and MQSeries for Windows NT, the
default authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

Open Transaction Manager Access (OTMA) .  A
transaction-based, connectionless client/server protocol.
It functions as an interface for host-based
communications servers accessing IMS TM applications
through the MVS Cross Systems Coupling Facility
(XCF). OTMA is implemented in an MVS sysplex
environment. Therefore, the domain of OTMA is
restricted to the domain of XCF.

OTMA.  Open Transaction Manager Access.

output log-buffer .  In MQSeries for MVS/ESA, a buffer
that holds recovery log records before they are written
to the archive log.

P
page set .  A VSAM data set used when MQSeries for
MVS/ESA moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

PCF.  Programmable command format.

PCF command .  See programmable command format.

performance event .  A category of event indicating
that a limit condition has occurred.

persistent message .  A message that survives a
restart of the queue manager. Contrast with
nonpersistent message.

ping .  In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel or a TCP/IP connection is functioning.

platform .  In MQSeries, the operating system under
which a queue manager is running.

  Glossary of terms and abbreviations 267



 point of recovery � resource manager  
 

point of recovery .  In MQSeries for MVS/ESA, the
term used to describe a set of backup copies of
MQSeries for MVS/ESA page sets and the
corresponding log data sets required to recover these
page sets. These backup copies provide a potential
restart point in the event of page set loss (for example,
page set I/O error).

principal .  In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

process definition object .  An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF) .  A type of
MQSeries message used by:

� User administration applications, to put PCF
commands onto the system command input queue
of a specified queue manager

� User administration applications, to get the results
of a PCF command from a specified queue
manager

� A queue manager, as a notification that an event
has occurred

Contrast with MQSC.

program temporary fix (PTF) .  A solution or by-pass
of a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF.  Program temporary fix.

Q
queue .  An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager .  (1) A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and
remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

queuing .  See message queuing.

R
RBA .  Relative byte address.

reason code .  A return code that describes the reason
for the failure or partial success of an MQI call.

recovery log .  In MQSeries for MVS/ESA, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
MVS/ESA writes each record to a data set called the
active log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

relative byte address (RBA) .  The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

remote queue .  A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager .  To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object .  See local definition of a remote
queue.

remote queuing .  In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message .  A type of message used for replies to
request messages.

reply-to queue .  The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

request message .  A type of message used to request
a reply from another program.

RESLEVEL .  In MQSeries for MVS/ESA, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for MVS/ESA.

resource .  Any facility of the computing system or
operating system required by a job or task. In
MQSeries for MVS/ESA, examples of resources are
buffer pools, page sets, log data sets, queues, and
messages.

resource manager .  An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

268 MQSeries Planning Guide  



  return codes � trigger monitor
 

return codes .  The collective name for completion
codes and reason codes.

rollback .  Synonym for back out.

S
SAF.  System Authorization Facility.

security enabling interface (SEI) .  The MQSeries
interface to which customer- or vendor-written programs
that check authorization, supply a user identifier, or
perform authentication must conform. A part of the
MQSeries Framework.

SEI.  Security enabling interface.

server .  (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

signaling .  In MQSeries for MVS/ESA and MQSeries
for Windows 2.1, a feature that allows the operating
system to notify a program when an expected message
arrives on a queue.

single logging .  A method of recording MQSeries for
MVS/ESA activity where each change is recorded on
one data set only. Contrast with dual logging.

single-phase backout .  A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit .  A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

storage class .  In MQSeries for MVS/ESA, a storage
class defines the page set that is to hold the messages
for a particular queue. The storage class is specified
when the queue is defined.

subsystem .  In MVS, a group of modules that provides
function that is dependent on MVS. For example,
MQSeries for MVS/ESA is an MVS subsystem.

synchronous messaging .  A method of
communication between programs in which programs
place messages on message queues. With
synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

syncpoint .  An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

System Authorization Facility (SAF) .  An MVS facility
through which MQSeries for MVS/ESA communicates
with an external security manager such as RACF.

system.command.input queue .  A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands .  Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

T
| TACL .  Tandem Advanced Command Language.

thread .  In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging .  See asynchronous
messaging.

| TMF.  Transaction Management Facility.

TMI.  Trigger monitor interface.

| TM/MP.  NonStop Transaction Manager/MP.

trace .  In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See
also global trace and performance trace.

transmission program .  See message channel agent.

transmission queue .  A local queue on which
prepared messages destined for a remote queue
manager are temporarily stored.

trigger event .  An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering .  In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message .  A message containing information
about the program that a trigger monitor is to start.

trigger monitor .  A continuously-running application
serving one or more initiation queues. When a trigger

  Glossary of terms and abbreviations 269



 trigger monitor interface (TMI) � XCF  
 

message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI) .  The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit .  A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
UIS.  User identifier service.

undelivered-message queue .  See dead-letter queue.

unit of recovery .  A recoverable sequence of
operations within a single resource manager. Contrast
with unit of work.

unit of work .  A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends
either at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user identifier service (UIS) .  In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility .  In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

X
XCF.  Cross Systems Coupling Facility.

270 MQSeries Planning Guide  



  Index
 

 Index

Numerics
1-phase commit 29
2-phase commit 29
3990 channel adaptor (MVS/ESA) 127
3990 fast write (MVS/ESA) 127
3T

See MQSeries Three Tier

A
access permissions (Digital OpenVMS) 87
access permissions (Tandem NSK) 168
access permissions (UNIX) 185
accounting data (MVS/ESA) 119
active log (MVS/ESA) 106, 122
add log data sets (MVS/ESA) 120
administration

application programs 35
facilities 36
MQSeries for AS/400 71
MQSeries for Digital OpenVMS 81, 91
MQSeries for MVS/ESA 117
MQSeries for OS/2 Warp 138, 147
MQSeries for Tandem NSK 163, 171
MQSeries for Windows NT 138, 147
MQSeries on UNIX systems 178, 189
MQSeries Three Tier 204
of MQSeries V1 products 36

administration utility (OS/400) 73
alias 16
alias queue 11, 17
alternate user security (MVS/ESA) 114
API crossing exit, platform support 213
appendix 257
application data 5
application data conversion 18
application development tools (3T) 198
application-specified syncpoint, platform support 212
applications

administration programs 35
data conversion 18
preparing for use with MQSeries for AS/400 64
preparing for use with MQSeries for Digital

OpenVMS 80
preparing for use with MQSeries for MVS/ESA 100
preparing for use with MQSeries for OS/2

Warp 136
preparing for use with MQSeries for Tandem

NSK 161
preparing for use with MQSeries for Windows

NT 136

applications (continued)
preparing for use with MQSeries on UNIX

systems 176
time-independent 4

archive log (MVS/ESA) 122
archive log data sets (MVS/ESA) 107, 109
archive storage (MVS/ESA) 122
assured delivery 18
AT&T GIS UNIX 219
attributes of messages 6
authorization

commands (Digital OpenVMS) 88
commands (Tandem NSK) 169
commands (UNIX) 186
groups (UNIX) 186
object authority manager 57
rights identifiers (Digital OpenVMS) 88
service 56

availability (MVS/ESA) 109

B
back out 27, 28
backing up logs, frequency (MVS/ESA) 111
backup (MVS/ESA) 109
backup, restore, and reorganize utility (MVS/ESA) 119
bibliography xii
BookManager xvi
bootstrap data set (BSDS) (MVS/ESA)

copies 107
dual mode 107
introduction 107
storage 122

browse under cursor, platform support 212
browse with lock, platform support 212
browse, platform support 212
buffer pools and buffers (MVS/ESA) 105
business logic (3T) 197
Business Logic Manager (3T) 198

C
capacity planning

Digital OpenVMS 95
MVS/ESA 121
OS/2 Warp 150
OS/400 75
UNIX systems 192
Windows NT 150

CCSID (coded character set identifier) 18
change log inventory utility (MVS/ESA) 120

 Copyright IBM Corp. 1993, 1998  271



 Index  
 

channel auto-definition, platform support 213
channel events 44
channel heartbeats, platform support 213
checkpoint records 108
CICS (MVS/ESA)

recovery 110
CICS interface

MQSeries for AS/400 64
MQSeries for OS/2 Warp 136
MQSeries for Windows NT 136
MQSeries on UNIX systems 177

circular logging
MQSeries for Digital OpenVMS 84
MQSeries for OS/2 Warp 142
MQSeries for Windows NT 142
MQSeries on UNIX systems 182

CL commands (OS/400) 71
client 152

MQSeries for Windows 152
clients

attachment feature (MVS/ESA) 226
channels 13
communication with servers 48
data conversion 49
description 47
installation 49
national language considerations 49
platform support 50

clients and servers 14
MQSeries Three Tier 204

COA & COD reports, platform support 212
coded character set identifier (CCSID) 18
command

formats 34
introduction 33
messages 35
MQSC 34
PCF 34
resource security (MVS/ESA) 115
security (Digital OpenVMS) 88
security (Tandem NSK) 169
security (UNIX) 186
server 35

command queue 8, 35
command summary 37
commands

MQSeries Three Tier 204
commit

1-phase 29
2-phase 29
single phase 29

commit point 27
communication

between clients and servers 48
managing (Digital OpenVMS) 92
managing (OS/2 Warp) 147

communication (continued)
managing (Tandem NSK) 172
managing (UNIX) 190
managing (Windows NT) 147

communications link 15
communications protocols

function comparison table 212
MQSeries products 210
supported on MQSeries Three Tier 203

compilers supported
MQSeries for AIX 217
MQSeries for AS/400 218
MQSeries for AT&T GIS UNIX 219
MQSeries for HP-UX 223
MQSeries for MVS/ESA 224
MQSeries for OS/2 Warp 229
MQSeries for SCO UNIX 232
MQSeries for SINIX and DC/OSx 234
MQSeries for Sun Solaris 238
MQSeries for SunOS 235
MQSeries for Tandem NSK 239
MQSeries for UnixWare 245
MQSeries for VSE/ESA 247
MQSeries for Windows NT 253
MQSeries for Windows V2.0 249
MQSeries for Windows V2.1 250
MQSeries on DOS clients 221
MQSeries on VM/ESA clients 246
MQSeries on Windows 3.1 Clients 254
MQSeries on Windows 95 Clients 255
MQSeries Three Tier for AIX 241
MQSeries Three Tier for OS/2 243

components (3T) 203
concurrent use-based pricing 65
configurations for MQSeries Three Tier 201
connection security (MVS/ESA) 114
connectivity

MQSeries for Digital OpenVMS 220
consistency 29
consistent data 27
context security (MVS/ESA) 114
context, platform support 212
continuous operation (MVS/ESA)

recovery planning 109
Control Language (OS/400) 71
converting data from other MQSeries platforms 18
CSA storage requirement 121
CSQ1LOGP log print utility (MVS/ESA) 120
CSQJU003 change log inventory (MVS/ESA) 120
CSQJU004 print log map utility (MVS/ESA) 120
CSQUTIL (MVS/ESA) 119
customization of MQSeries for MVS/ESA 102

272 MQSeries Planning Guide  



  Index
 

D
data

consistency 27
making changes 27

data conversion 18
clients 49
exit utility (MVS/ESA) 120
interface (DCI) 58

Data Facility Hierarchical Storage Manager (DFHSM)
(MVS/ESA) 110

data logic (3T) 198
data management (MVS/ESA) 110
data recovery (MVS/ESA) 110
data security planning

MQSeries for Digital OpenVMS 81
MQSeries for OS/2 Warp 138
MQSeries for Tandem NSK 163
MQSeries for Windows NT 138
MQSeries on UNIX systems 178

data sets (MVS/ESA)
archive data set types 109
archive log, description 109

DC/OSx 233
DCE naming component 56
DCI (MQSeries data conversion interface) 58
dead-letter queue 8
dead-letter queue, platform support 212
DECnet (Digital OpenVMS)
default input open option, platform support 212
default transmission queue, platform support 212
delete log data sets (MVS/ESA) 120
deleting journal receivers (OS/400) 67
delivery

MQSeries on VM/ESA clients 246
Digital OpenVMS

administration 91
backup and recovery 83
introduction 79
security 87
storage 93

disabling events 45
disaster recovery (MVS/ESA) 111
disk mirroring 184
disk space requirements

MQSeries for Digital OpenVMS 93
MQSeries for OS/2 Warp 149
MQSeries for Windows NT 149
MQSeries on UNIX systems 191
MQSeries Three Tier 204

distributed queuing 15
error recovery 19
introduction 15
MQSeries for AS/400 64
MQSeries for Digital OpenVMS 80
MQSeries for MVS/ESA 101

distributed queuing (continued)
MQSeries for OS/2 Warp 136
MQSeries for Tandem NSK 162
MQSeries for Windows NT 136
MQSeries on UNIX systems 177

distribution library storage (MVS/ESA) 123
distribution lists, platform support 212
DOS client 221
DQM

See distributed queuing
dspmqaut command

MQSeries for Digital OpenVMS 88
MQSeries for Tandem NSK 169
MQSeries on UNIX systems 186

dual BSDS (MVS/ESA) 107, 122
dual logging (MVS/ESA)

archive log data sets 109
establishing 109
introduction 106
performance 126

dual mode (MVS/ESA) 107
dynamic queue 11
dynamic queues, platform support 212

E
ECSA storage requirement 121
enabling events 45
ENCINA 28, 183
end-to-end security 26
environment user ID 57
error messages 19
error recovery in distributed queuing 19
event message format 46
event message lost 45
event notification 44
event queue 7

event notification 44
triggered 45
unavailable 45

events
enabling and disabling 45
types of 44

events, platform support 213
exception reports with data, platform support 212
exception reports, platform support 212
exits, security

MQSeries for Digital OpenVMS 89
MQSeries for OS/2 Warp 145
MQSeries for Tandem NSK 169
MQSeries on UNIX systems 187

extended recovery facility (MVS/ESA) 110
external transaction managers

MQSeries for OS/2 Warp 143
MQSeries for Windows NT 143
MQSeries on UNIX systems 183

  Index 273



 Index  
 

F
family differences

MQSeries for Windows 155
fast channels, platform support 213
fast write (MVS/ESA) 127
features of MQSeries for Windows 154
format of event messages 46
framework 53
frequency of backing up logs (MVS/ESA) 111
function comparison table 212

G
get by MsgId & CorrelId, platform support 212
get with signal, platform support 212
glossary 263
GO LICPGM (OS/400) 66

H
HACMP/6000 184
header information (MVS/ESA) 122
High Availability Cluster Multi-Processing/6000 184
HP-UX 222
HTML (Hypertext Markup Language) xvi
Hypertext Markup Language (HTML) xvi

I
I/O response times (MVS/ESA) 127
ICF

See integrated catalog facility (MVS/ESA)
IMS (MVS/ESA)

recovery 110
IMS bridge 100
in-doubt messages 19
Information Presentation Facility (IPF) xvi
initiation queue 7
installation verification program (MVS/ESA) 103
installing

clients 49
MQSeries for AS/400

GO LICPGM 66
RSTLICPGM 66

MQSeries for Digital OpenVMS 80
MQSeries for MVS/ESA 102
MQSeries for OS/2 Warp 136
MQSeries for Tandem NSK 162
MQSeries for Windows NT 136
MQSeries on UNIX systems 177

instrumentation event
description 43
introduction 43
product support for 43

integrated catalog facility (MVS/ESA) 106

interacting with 3T end users 197
interface with CICS

MQSeries for AS/400 64
MQSeries for OS/2 Warp 136
MQSeries for Windows NT 136
MQSeries on UNIX systems 177

interfacing with CICS, IMS, or Batch (MQSeries for
MVS/ESA) 100

Interlink SNS/TCPaccess (MVS/ESA) 101
Internet 51
Internet, installing clients from 49
interoperability summary 210
introduction to MQSeries 3
invoking Framework components 54
IPF (Information Presentation Facility) xvi
IVP (MVS/ESA) 103

J
journal receiver (OS/400) 67, 75
journal storage (OS/400) 75
journaling (OS/400) 65, 67

L
languages

See programming languages
large messages 6
leaf node 152

MQSeries for Windows 152
library storage (MVS/ESA) 123
linear logging

MQSeries for Digital OpenVMS 84
MQSeries for OS/2 Warp 142
MQSeries for Windows NT 142
MQSeries on UNIX systems 182

local queue manager 15
local queue object 11
log (MVS/ESA) 122

archive log 106
data sets 106, 120
dual logging 106, 126
dual, establishing 109
establishing logging 109
extents 122
introduction 106
logging environment 109
map print utility 120
performance 125
print log map utility 120
print log utility 120
single logging 106, 125
storage 122

log file storage
MQSeries for OS/2 Warp 150
MQSeries for Windows NT 150

274 MQSeries Planning Guide  



  Index
 

log file storage (continued)
required for MQSeries for Digital OpenVMS 94
required for MQSeries on UNIX systems 192

log print utility (MVS/ESA) 120
log records utility (MVS/ESA)

extract log records 120
print log records 120

logging
MQSeries for Digital OpenVMS 81, 83
MQSeries for OS/2 Warp 137, 141
MQSeries for Windows 155
MQSeries for Windows NT 137, 141
MQSeries on UNIX systems 178, 181

Lotus Notes and MQSeries 138, 179
LU 6.2

MQSeries for AS/400 64
MQSeries for Digital OpenVMS 80
MQSeries for MVS/ESA 101
MQSeries for OS/2 Warp 136
MQSeries for Tandem NSK 162
MQSeries for Windows NT 136
MQSeries on UNIX systems 177

M
machine requirements

client on DOS 221
client on VM/ESA 246
client on Windows 3.1 254
client on Windows 95 255
MQSeries for Digital OpenVMS 220
MQSeries link for R/3 256

maintaining consistency after errors 29
managing 3T clients and servers 204
managing remote links

MQSeries for AS/400 64
MQSeries for Digital OpenVMS 80
MQSeries for MVS/ESA 101
MQSeries for OS/2 Warp 136
MQSeries for Tandem NSK 162
MQSeries for Windows NT 136
MQSeries on UNIX systems 177

manipulating 3T data 197
mark skip backout, platform support 212
maximum message length, platform support 212
maximum message size 6
MCI (message channel interface) 55
measured usage license charges (MULC) 131
media recovery and logging, MQSeries for

Windows 155
message backout count, platform support 212
message channel 13

interface (MCI) 55
message channel agent 15

exits 57

message channel exits, platform support 213
message data conversion, platform support 212
message descriptor 5
message expiry, platform support 212
message priority, platform support 212
message queue 7
message queue interface (MQI) 3
message queuing 3
message retry exit, platform support 213
message storage (MVS/ESA) 122
message-driven processing 4
messages

attributes 6
channels 13
description 5
event, format of 46
large 6
maximum number (MVS/ESA) 122
persistent 6
priority 6
sizes of 6

migration
from MQSeries Version 1

Digital OpenVMS 82
Tandem NSK 164
UNIX systems 180

from MQSeries Version 2
OS/2 Warp 139
UNIX systems 180
Windows NT 139

MVS/ESA 103
model queue object 11
model queues, platform support 212
monitoring performance (MVS/ESA) 130
monitoring queue managers 43
MQBACK, platform support 212
MQBEGIN, platform support 212
MQCLOSE, platform support 212
MQCMIT, platform support 212
MQCONN, platform support 212
MQDISC, platform support 212
MQGET, platform support 212
MQI (message queue interface) 3
MQI calls, list of 3
MQI channel 13, 48
MQINQ, platform support 212
MQOPEN, platform support 212
MQPUT, platform support 212
MQSC commands 34

MQSeries for AS/400 71
MQSeries for Digital OpenVMS 91
MQSeries for MVS/ESA 117
MQSeries for OS/2 Warp 147
MQSeries for Tandem NSK 171
MQSeries for Windows 155
MQSeries for Windows NT 147

  Index 275



 Index  
 

MQSC commands (continued)
MQSeries on UNIX systems 189

MQSeries and Lotus Notes 138, 179
MQSeries and R/3 138, 179
MQSeries client 152

MQSeries for Windows 152
platform support 50, 51

MQSeries clients 47, 157
MQSeries commands 34

Digital OpenVMS 91
introduction 33
MQSC 34
MVS/ESA 117
OS/2 Warp 147
OS/400 71
PCF 34
summary of 37
Tandem NSK 171
UNIX systems 189
Windows NT 147

MQSeries data conversion interface (DCI) 58
MQSeries for AIX

See also MQSeries on UNIX systems
compilers supported 217
distribution 217
installation 217
machine requirements 216
software requirements 216

MQSeries for AS/400
administration 71
backup and recovery 67
compilers supported 218
concurrent use-based pricing 65
distribution 218
installation 218
introduction 63
machine requirements 218
security 69
software requirements 218
storage 75
Using C++ 64
Version 4 release 2 218

MQSeries for AT&T GIS UNIX
See also MQSeries on UNIX systems
compilers supported 219
distribution 219
installation 219
machine requirements 219
software requirements 219

MQSeries for Digital OpenVMS
administration 91
backup and recovery 83
connectivity 220
delivery 220
installation 220
introduction 79

MQSeries for Digital OpenVMS (continued)
machine requirements 220
security 87
software requirements 220
storage 93

MQSeries for HP-UX
See also MQSeries on UNIX systems
compilers supported 223
distribution 223
installation 223
machine requirements 222
software requirements 222

MQSeries for MVS/ESA
administration 117
backup and recovery 109
compilers supported 224
customization 102
data sets 105
distribution 226
installation 227
introduction 99
machine requirements 224
migrating from previous versions 103
performance 125
preparing for use of 100
security 113
software requirements 224
storage 121
usage charges 131
verifying installation 103

MQSeries for OS/2 Warp
administration 147
backup and recovery 141
compilers supported 229
distribution 229
installation 230
introduction 135
machine requirements 228
security 145
software requirements 228
storage 149

MQSeries for SCO UNIX
compilers supported 232
distribution 232
installation 232
machine requirements 231
software requirements 231

MQSeries for SINIX and DC/OSx 233
See also MQSeries on UNIX systems
compilers supported 234
distribution 234
installation 234
machine requirements 233
software requirements 233

MQSeries for Sun Solaris
See also MQSeries on UNIX systems

276 MQSeries Planning Guide  



  Index
 

MQSeries for Sun Solaris (continued)
compilers supported 238
distribution 238
installation 238
machine requirements 237
software requirements 237

MQSeries for SunOS
See also MQSeries on UNIX systems
compilers supported 235
distribution 235
installation 236
machine requirements 235
software requirements 235

MQSeries for Tandem NSK
administration 171
backup and recovery 165
compilers supported 239
distribution 239
installation 240
introduction 161
machine requirements 239
security 167
software requirements 239

MQSeries for UnixWare
compilers supported 245
distribution 245
installation 245
machine requirements 244
software requirements 244

MQSeries for VSE/ESA
compilers supported 247
distribution 247
installation 247
machine requirements 247
software requirements 247

MQSeries for Windows
comparing queue managers, clients, and

servers 155
family differences 155
features 154
introduction 151
media recovery and logging 155
MQSC commands 155

MQSeries for Windows NT
administration 147
backup and recovery 141
compilers supported 253
distribution 253
installation 253
introduction 135
machine requirements 252
security 145
software requirements 252
storage 149

MQSeries for Windows V2.0
compilers supported 249

MQSeries for Windows V2.0 (continued)
delivery 249
installation 249
machine requirements 248
software requirements 248

MQSeries for Windows V2.1
compilers supported 250
delivery 251
installation 251
machine requirements 250
software requirements 250

MQSeries framework 53
MQSeries link for R/3

machine requirements 256
platforms 256
software requirements 256

MQSeries name service interface (NSI) 55
MQSeries objects 9
MQSeries on DOS clients

compilers supported 221
MQSeries on UNIX systems

administration 189
backup and recovery 181
introduction 175
security 185
storage 191

MQSeries on VM/ESA clients
compilers supported 246
delivery 246

MQSeries on Windows 3.1 clients
compilers supported 254

MQSeries on Windows 95 clients
compilers supported 255

MQSeries product lists
Level 1 209
Level 2 209

MQSeries product summaries 209
MQSeries publications xii
MQSeries security enabling interface (SEI) 56
MQSeries server

platform support 50
MQSeries Three Tier

administration 204
and MQSeries queue managers 202
application development tools 198
business logic 197
Business Logic Manager 198
classes 196
commands 204
components 203
configurations 201
data logic 198
disk space requirements 204
introduction 195
managing clients and servers 204
manipulating data 197

  Index 277



 Index  
 

MQSeries Three Tier (continued)
methods 196
planning 201
presentation logic 197
presentation logic manager 197
products 202
queues 202
recovery and restart 205
transport protocols supported 203
updating and retrieving data 198

MQSeries Three Tier for AIX
compilers supported 241
distribution 241
installation 241
machine requirements 241
software requirements 241

MQSeries Three Tier for OS/2
compilers supported 243
distribution 243
installation 243
machine requirements 242
software requirements 242

MQSeries-IMS bridge 100
MQSET, platform support 212
MULC (measured usage license charges) 131
multi-threaded applications

support on UNIX systems 176
MVS/ESA

administration 117
backup and recovery 109
data sets 105
introduction 99
MQSeries performance information 130
performance 125
security 113
storage 121
usage charges 131

N
name service interface (NSI) 55
namelist 12
namelist security (MVS/ESA) 114
namelists, platform support 212
NCR UNIX SVR4 MP-RAS, R3.0 219
network 15

protocols supported 210
security (MVS/ESA) 113

nonpersistent messages, platform support 212
NSI (MQSeries name service interface) 55

O
OAM (object authority manager) 57
object authority manager (OAM) 57

objects
managing (Digital OpenVMS) 91
managing (OS/2 Warp) 147
managing (Tandem NSK) 171
managing (UNIX) 189
managing (Windows NT) 147
namelist 12
process definition 12
queue manager 9

one-phase commit 29
Open Blueprint 22
operations and control panels (MVS/ESA) 118
OS/2 Warp

administration 147
backup and recovery 141
introduction 135
MQSeries performance information 150
security 145
storage 149

OS/400
administration 71
backup and recovery 67
introduction 63
MQSeries performance information 76
security 69
storage 75
Using C++ 64
Version 4 release 2 218

OS/400 administration utility 73
OS/400 Control Language 71
other platforms 51
overview of MQSeries security 21

P
page data set storage (MVS/ESA) 122
page set I/O (MVS/ESA) 128
page sets (MVS/ESA) 105

backup and recovery 111
paging (MVS/ESA) 128
PCF commands

MQSeries for AS/400 72
PCFs 34
performance (MVS/ESA)

3990 127
checkpointing 125
dual logging 125, 126
fast write 127
monitoring 130
single logging 125
syncpointing 125

performance events 44
performance information

MVS/ESA 130
OS/2 Warp 150
OS/400 76

278 MQSeries Planning Guide  



  Index
 

performance information (continued)
UNIX systems 192
Windows NT 150

persistent messages 6
active log (MVS/ESA) 106
introduction 6
journaling (OS/400) 67
performance (MVS/ESA) 125

platform support
clients 50
MQSeries link for R/3 256
server 50

point of consistency 27
point-to-point security 25
PostScript format xvi
presentation logic (3T) 197
presentation logic manager (3T) 197
principal

MQSeries for Digital OpenVMS 87
MQSeries on UNIX systems 185

print log map utility (MVS/ESA) 120
priority, messages 6
process definition object 12
process security (MVS/ESA) 114
product prerequisites 261
product summaries 209
programmable command formats (PCFs) 34
programming languages

MQSeries for AIX 217
MQSeries for AS/400 218
MQSeries for AT&T GIS UNIX 219
MQSeries for HP-UX 223
MQSeries for MVS/ESA 224
MQSeries for OS/2 Warp 229
MQSeries for SCO UNIX 232
MQSeries for SINIX and DC/OSx 234
MQSeries for Sun Solaris 238
MQSeries for SunOS 235
MQSeries for Tandem NSK 239
MQSeries for UnixWare 245
MQSeries for VSE/ESA 247
MQSeries for Windows NT 253
MQSeries for Windows V2.0 249
MQSeries for Windows V2.1 250
MQSeries on DOS clients 221
MQSeries on VM/ESA clients 246
MQSeries on Windows 3.1 clients 254
MQSeries on Windows 95 clients 255
MQSeries Three Tier for AIX 241
MQSeries Three Tier for OS/2 243

programs for administration 35
protecting resources

MQSeries for Digital OpenVMS 88
MQSeries for Tandem NSK 168
MQSeries on UNIX systems 186

publications
MQSeries xii

Q
queue manager 5

access control 56
communication 15
description 9
events 44
monitoring 43
objects 9

queue manager groups, platform support 212
queue naming conventions 12
queue retention interval, platform support 212
queue security (MVS/ESA) 114
queue-manager aliases, platform support 212
queues 5

alias 11
assured delivery 18
attributes 10
command 35
command input 8
dead-letter 8
defining 10

further information 19
description 5
distributed

setting up 16
event 7

event notification 44
triggered 45
unavailable 45

initiation 7
local 11
message 7
naming conventions 12
remote 11
reply-to 8
system default 8
template for dynamic queues 11
transmission 7
undelivered message 8

queuing requirements (3T) 202

R
R/3 and MQSeries 138, 179
RBA (relative byte address) (MVS/ESA) 107
recovering from errors 19
recovery

concepts 27
data integrity and resource protection 4
OS/2 Warp 137
OS/400 67
planning

Digital OpenVMS 81, 83

  Index 279



 Index  
 

recovery (continued)
planning (continued)

MVS/ESA 109
OS/2 Warp 141
Tandem NSK 163, 165
UNIX systems 178, 181
Windows NT 141

units of 27
Windows NT 137

recovery and restart
MQSeries Three Tier 205

red books 19
reference messages, platform support 213
relative byte address (RBA) (MVS/ESA) 107
remote administration

Digital OpenVMS 92
MVS/ESA 118
OS/2 Warp 148
OS/400 72
Tandem NSK 172
UNIX systems 190
Windows NT 148

remote link security
MQSeries for AS/400 64
MQSeries for Digital OpenVMS 80
MQSeries for OS/2 Warp 136
MQSeries for Tandem NSK 162
MQSeries for Windows NT 136
MQSeries on UNIX systems 177

remote queue manager 15
remote queue object 11
remote queuing, setting up 16
reply-to queue aliases, platform support 212
reply-to queues 8
Report options for up-level, platform support 212
required software

MQSeries for AIX 216
MQSeries for AS/400 218
MQSeries for AT&T GIS UNIX 219
MQSeries for HP-UX 222
MQSeries for MVS/ESA 224
MQSeries for OS/2 Warp 228
MQSeries for SCO UNIX 232
MQSeries for Sun Solaris 237
MQSeries for SunOS 235
MQSeries for Tandem NSK 239
MQSeries for UnixWare 245
MQSeries for VSE/ESA 247
MQSeries for Windows NT 252
MQSeries Three Tier for AIX 241
MQSeries Three Tier for OS/2 242

reslevel security (MVS/ESA) 114
resource access, controlling

MQSeries for Digital OpenVMS 87
MQSeries for Tandem NSK 167
MQSeries on UNIX systems 185

resource management
with MQSeries for OS/2 Warp 143
with MQSeries on UNIX systems 183
with Windows NT 143

resource protection
MQSeries for Digital OpenVMS 88
MQSeries for Tandem NSK 168
MQSeries on UNIX systems 186

restart 27
MQSeries for AS/400 67
MQSeries for Digital OpenVMS 83
MQSeries for OS/2 Warp 141
MQSeries for Tandem NSK 165
MQSeries for Windows NT 141
MQSeries on UNIX systems 181

retrieving and updating 3T data 198
rights identifiers (Digital OpenVMS) 87
RSTLICPGM (OS/400) 66

S
SAF 106
sample configuration

MQSeries for Digital OpenVMS 95
SCO UNIX 231
security

facilities 21
MQSeries for AS/400 69
MQSeries for Digital OpenVMS 87
MQSeries for MVS/ESA 113
MQSeries for OS/2 Warp 145
MQSeries for Tandem NSK 167
MQSeries for Windows NT 145
MQSeries on UNIX systems 185
overview 21

security authorization facility (MVS/ESA) 106
security enabling interface (SEI) 56
security exits

MQSeries for AS/400 70
MQSeries for Digital OpenVMS 89
MQSeries for MVS/ESA 115
MQSeries for OS/2 Warp 145
MQSeries for Tandem NSK 169
MQSeries on UNIX systems 187

security for remote links
MQSeries for AS/400 64
MQSeries for Digital OpenVMS 80
MQSeries for OS/2 Warp 136
MQSeries for Tandem NSK 162
MQSeries for Windows NT 136
MQSeries on UNIX systems 177

segmented messages, platform support 213
SEI (MQSeries security enabling interface) 56
server

communication with clients 48
platform support 50

280 MQSeries Planning Guide  



  Index
 

services
naming 55
user identifier 57

setmqaut command
MQSeries for Digital OpenVMS 88
MQSeries for Tandem NSK 169
MQSeries on UNIX systems 186

setting up 16
alias name 16
intermediate links 19
MQSeries for AS/400 66
MQSeries for Digital OpenVMS 80
MQSeries for OS/2 Warp 137
MQSeries for Tandem NSK 162
MQSeries for Windows NT 137
MQSeries on UNIX systems 177
remote queuing 16

shared input, platform support 212
simple transfer 15
single-phase commit 29
SINIX 233
sm59 256
SMP/E for MVS/ESA installation 102
SMP/E library storage (MVS/ESA) 123
SNA

MQSeries for AS/400 64
MQSeries for Digital OpenVMS 80
MQSeries for MVS/ESA 101
MQSeries for OS/2 Warp 136
MQSeries for Tandem NSK 162
MQSeries for Windows NT 136
MQSeries on UNIX systems 177

SNS/TCPaccess (MVS/ESA) 101
softcopy books xvi
Software Installer/2 136
software required

client on DOS 221
client on VM/ESA 246
client on Windows 3.1 254
client on Windows 95 255
MQSeries for AIX 216
MQSeries for AS/400 218
MQSeries for AT&T GIS UNIX 219
MQSeries for Digital OpenVMS 220
MQSeries for HP-UX, Version 2 222
MQSeries for MVS/ESA 224
MQSeries for OS/2 Warp 228
MQSeries for SCO UNIX 232
MQSeries for Sun Solaris 237
MQSeries for SunOS 235
MQSeries for Tandem NSK 239
MQSeries for UnixWare 245
MQSeries for VSE/ESA 247
MQSeries for Windows NT 252
MQSeries link for R/3 256
MQSeries Three Tier for AIX 241

software required (continued)
MQSeries Three Tier for OS/2 242

space management (MVS/ESA) 110
SPX

MQSeries for OS/2 Warp 136
MQSeries for Windows NT 136

staged transfer 15
storage (MVS/ESA)

archive 122
bootstrap data set 122
BSDS 122
class 105
CSA requirement 121
distribution libraries 123
dual BSDS 122
library 123
log 122
messages 122
page data sets 122
planning 121
SMP/E libraries 123
target libraries 123

storage planning
MQSeries for AS/400 75
MQSeries for Digital OpenVMS 93
MQSeries for MVS/ESA 121
MQSeries for OS/2 Warp 149
MQSeries for Windows NT 149
MQSeries on UNIX systems 191

subsystem security (MVS/ESA) 114
summary of commands 37
Sun Solaris 237
SunOS 235
SupportPacs 49
syncpoint 27

See also point of consistency
syncpoint coordinator

MQSeries as on OS/2 Warp 143
MQSeries as on UNIX systems 183
MQSeries as on Windows NT 143

system default queue 8

T
Tandem NSK 239

administration 171
backup and recovery 165
introduction 161
security 167

target library storage (MVS/ESA) 123
TCP/IP

MQSeries for AS/400 64
MQSeries for Digital OpenVMS 80
MQSeries for MVS/ESA 101
MQSeries for OS/2 Warp 136
MQSeries for Tandem NSK 162

  Index 281



 Index  
 

TCP/IP (continued)
MQSeries for Windows NT 136
MQSeries on UNIX systems 177

template for dynamic queues 11
terminology used in this book 263
threads

support on UNIX systems 176
Three Tier for AIX 241
Three Tier for OS/2 242
three-tier model, client/server computing 195
time-independent applications 4
TMI (trigger monitor interface) 54
transaction manager 30

MQSeries as on OS/2 Warp 143
MQSeries as on UNIX systems 183
MQSeries as on Windows NT 143

Transaction Processing SupportPacs 49
transmission protocols 210
transmission queue 7, 15
trigger event 7
trigger message 7
trigger monitor 7, 13
trigger monitor interface (TMI) 54
triggered event queues 45
triggering 6
triggering (depth, priority), platform support 212
triggering (first and every), platform support 212
TUXEDO 28, 183
two-phase commit 29
types of logging

with MQSeries for Digital OpenVMS 84
with MQSeries for OS/2 Warp 142
with MQSeries for Windows NT 142
with MQSeries on UNIX systems 182

U
undelivered message queue 8
unit of recovery 27
unit of work 27
UNIX systems

administration 189
backup and recovery 181
introduction 175
MQSeries performance information 192
multi-threaded applications 176
security 185
storage 191

UnixWare 244
updating and retrieving 3T data 198
URL on Internet 51
usage charges (MVS/ESA) 131
user groups (Digital OpenVMS) 87
user groups (Tandem NSK) 168
user groups (UNIX) 185

user identifier service 57
utilities (MVS/ESA)

backup 119
change log utility 120
CSQ1LOGP 120
CSQJU004 120
CSQUTIL 119
data conversion exit 120
log print 120
print log map 120
process object definitions 119
reorganize 119
restore 119

V
VM/ESA client 246
VSE/ESA 247

W
Windows 248, 250

administration 151
comparing queue managers, clients, and

servers 155
features 154

Windows 3.1 client at a glance 254
Windows 95 client at a glance 255
Windows Help xvi
Windows NT 252

administration 147
backup and recovery 141
introduction 135
MQSeries performance information 150
security 145
storage 149

X
X/Open XA interface 143, 183
XRF (extended recovery facility) (MVS/ESA) 110

282 MQSeries Planning Guide  



Sending your comments to IBM
MQSeries

Planning Guide

GC33-1349-06

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: WINVMD(IDRCF)
 – Internet: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.





Readers’ Comments
MQSeries

Planning Guide

GC33-1349-06
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email



MQSeries
 
MQSeries Planning Guide GC33-1349-06

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone



IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

 

GC33-1349-ð6



S
pine inform

ation:

I
B

M
M

Q
Series

P
lanning G

uide

 


