

MQSeries IBM

Programmable System Management

 SC33-1482-06

MQSeries IBM

Programmable System Management

 SC33-1482-06

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix D, “Notices”
on page 489.

Seventh edition (February 1998)

This edition applies to the following products:

� MQSeries for AIX Version 5
| � MQSeries for AS/400 Version 4 Release 2

� MQSeries for AT&T GIS UNIX Version 2 Release 2
� MQSeries for Digital OpenVMS Version 2 Release 2
� MQSeries for HP-UX Version 5
� MQSeries for MVS/ESA Version 1 Release 2
� MQSeries for OS/2 Warp Version 5
� MQSeries for SINIX and DC/OSx Version 2 Release 2
� MQSeries for SunOS Version 2 Release 2
� MQSeries for Sun Solaris Version 5

| � MQSeries for Tandem NonStop Kernel Version 2 Release 2
� MQSeries for Windows NT Version 5
� MQSeries for Windows Version 2 Release 1

and to any subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but the methods
described are not available to you, please address them to:

IBM United Kingdom Laboratories,
Information Development,
Mail Point 095,
Hursley Park,
Winchester,
Hampshire,
England,
SO21 2JN

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994,1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About this book . vii
Who this book is for . viii
What you need to know . viii
How to use this book . viii

Event monitoring . ix
Programmable Command Formats . ix
Installable services . ix
Appendixes . ix

MQSeries publications . x
MQSeries cross-platform publications . x
MQSeries platform-specific publications . xii
MQSeries Level 1 product publications . xiii
Softcopy books . xiv

MQSeries information available on the Internet xv

Summary of changes . xvii
| Changes to this edition, SC33-1482-06 . xvii

Changes to the Sixth Edition include: . xvii
Changes for the Fifth Edition include: . xvii

Part 1. Event monitoring . 1

Chapter 1. Using instrumentation events to monitor queue managers . . . 3

Chapter 2. Queue manager and channel events 11

Chapter 3. Understanding performance events 17

Chapter 4. Event message reference . 35

Chapter 5. Example of using instrumentation events 111

Part 2. Programmable Command Formats . 121

Chapter 6. Introduction to Programmable Command Formats 123

Chapter 7. Using Programmable Command Formats 127

Chapter 8. Definitions of the Programmable Command Formats 135

Chapter 9. Structures used for commands and responses 333

Chapter 10. Example of using PCFs . 353

Part 3. Installable services . 365

Chapter 11. Installable services and components 367

 Copyright IBM Corp. 1994,1998 iii

 Figures

Chapter 12. Authorization service . 375

Chapter 13. Name service . 383

Chapter 14. User identifier service . 389

Chapter 15. Installable services interface 395

Part 4. Appendixes . 453

Appendix A. Error codes . 455

Appendix B. Constants . 473

Appendix C. Header, COPY, and INCLUDE files 485

Appendix D. Notices . 489

Part 5. Glossary and Index . 491

Glossary of terms and abbreviations . 493

Index . 505

 Figures

1. Monitoring queue managers across different platforms, on a single node . 4
2. Understanding instrumentation events . 5
3. Understanding queue service interval events 19
4. Queue service interval events - example 1 22
5. Queue service interval events - example 2 24
6. Queue service interval events - example 3 26
7. Definition of MYQUEUE1 . 29
8. Queue depth events (1) . 30
9. Queue depth events(2) . 32

10. Understanding services, components, and entry points 369
| 11. Authorization service stanzas in qm.ini 376
| 12. Authorization service stanzas (Windows NT) 377
| 13. Authorization service stanzas in qm.ini (OS/2) 378
| 14. Authorization service stanzas (Digital OpenVMS) 379
| 15. Authorization service stanzas (Tandem NSK) 380
| 16. Name service stanzas in qm.ini (for Digital OpenVMS) 385

17. Name service stanzas in qm.ini (for OS/2) 385
| 18. Name service stanzas in qm.ini (for Windows NT) 386

19. Name service stanzas in qm.ini (for UNIX systems) 386

iv MQSeries Programmable System Management

 Tables

 Tables

| 1. MQSeries programmable system management vii
2. Enabling queue manager events using MQSeries commands 14
3. Enabling queue manager events using PCF commands 14
4. Performance event statistics . 18
5. Event statistics summary for example 1 23
6. Event statistics summary for example 2 25
7. Event statistics summary for example 3 26
8. Event statistics summary for queue depth events (example 1) 31
9. Summary showing which events are enabled 31

10. Event statistics summary for queue depth events (example 2) 33
11. Summary showing which events are enabled 33
12. Enabling performance events using MQSC 34
13. Enabling performance events using PCF commands 34
14. Event message structure for queue service interval events 36
15. Event message data summary . 39
16. MQSeries for AS/400 - object authorities 132
17. MQSeries for Windows NT, Digital OpenVMS, Tandem NSK, and UNIX

systems - object authorities . 133
18. Initial values of fields in MQCFH . 338
19. Initial values of fields in MQCFIN . 340
20. Initial values of fields in MQCFST . 344
21. Initial values of fields in MQCFIL . 346
22. Initial values of fields in MQCFSL . 350
23. Installable services and components summary 368
24. Example of entry-points for an installable service 374
25. Installable services functions . 395
26. C header files . 485
27. COBOL COPY files . 486
28. PL/I INCLUDE files . 486
29. System/390 Assembler COPY files . 487

 Tables v

 Tables

vi MQSeries Programmable System Management

 About this book

About this book

This book describes the facilities available on MQSeries products for:

� Monitoring instrumentation events in a network of connected systems that use
IBM MQSeries products in different operating system environments.

� Writing programs using the MQSeries Programmable Command Formats
(PCFs) to administer IBM MQSeries systems either locally or remotely.

� Installable services which extend the facilities available to a queue manager.

| This table shows which facilities are offered on different MQSeries platforms,
| together with the short name used in the book.

| Table 1. MQSeries programmable system management

| Platform
| MQSeries for
| Short name| Event monitoring| PCF commands| Installable
| services

| AS/400| OS/400| √| √| No

| Digital OpenVMS**
| V2.2
| OpenVMS| √| √| √

| MVS/ESA| MVS/ESA| √| No| No

| OS/2| OS/2| √| √| √

| Tandem NonStop
| Kernel V2.2
| Tandem NSK| √| √| √

| UNIX systems
| see Note below
| UNIX systems| √| √| √

| Windows NT| Windows NT| √| √| √

| Windows V2.0| 16-bit Windows| No| No| No

| Windows V2.1| 32-bit Windows| √| √| No

Note: In this book references to MQSeries for “UNIX systems” include:

IBM MQSeries for AIX Version 5
IBM MQSeries for AT&T** GIS UNIX Version 2 Release 21

IBM MQSeries for HP-UX** Version 5
IBM MQSeries for SINIX** and DC/OSx** Version 2.2
IBM MQSeries for SunOS** Version 2.2
IBM MQSeries for Sun Solaris** Version 5

The following table lists the MQSeries products available for Windows, and shows
the Windows platforms on which each runs.

1 This platform has become NCR UNIX SVR4 MP-RAS, R3.0

 Copyright IBM Corp. 1994,1998 vii

 About this book

MQSeries for Windows Version 2.1 support most of the features of the MQI
described in this book. For information on this product, see the MQSeries for
Windows User’s Guide.

MQSeries product Windows 3.1 Windows 95 Windows NT

MQSeries for Windows Client Yes Yes Yes

MQSeries for Windows NT No No Yes

MQSeries for Windows V2.0 Yes Yes No

MQSeries for Windows V2.1 No Yes Yes

Who this book is for
Primarily, this book is intended for system programmers who write programs to
monitor and administer MQSeries products. To do this they may need to use the
event messages, the Programmable Command Formats, and the installable
services that are described in this book.

What you need to know
You should have:

� Experience in writing systems management applications

� An understanding of the Message Queue Interface (MQI)

� Experience of MQSeries programs in general, or familiarity with the content of
the other books in the MQSeries Library

How to use this book
There are three parts to this book:

� Part 1 – Event monitoring

This part of the book describes how to monitor significant events in a network
of connected systems that use IBM MQSeries products, in different operating
system environments.

� Part 2 – Programmable Command Formats (PCFs)

This part of the book describes the MQSeries (PCFs). PCFs are the formats of
command and response messages that are sent between an MQSeries
systems management application, or other program, and an MQSeries queue
manager.

� Part 3 – Installable services

This part of the book describes the MQSeries installable services. It includes
full reference material for the interface to the installable services.

Go to the part that you are interested in; there is an introduction and discussion of
each topic before the reference material.

viii MQSeries Programmable System Management

 About this book

 Event monitoring
The first three chapters contain a description of the different types of event, and
provide guidance on their use.

Chapter 4, “Event message reference” on page 35 contains the reference material
for the event messages. Chapter 5, “Example of using instrumentation events” on
page 111 contains a fragment of a C program to illustrate the use of events.

Programmable Command Formats
The first two chapters (chapters 6 and 7) contain introduction and guidance
material. If you are using PCFs, you are advised to read all of this part.

Chapter 8, “Definitions of the Programmable Command Formats” on page 135 and
Chapter 9, “Structures used for commands and responses” on page 333 contain
the reference material. See Chapter 10, “Example of using PCFs” on page 353 for
an example of how PCFs could be used.

 Installable services
The first chapter (chapter 11) contains a description of the available installable
services. You must read this chapter if you are going to use any of the installable
services. Read the following chapters as necessary, according to the services that
you are going to install. Three services are described:

� Chapter 12, “Authorization service” on page 375.
� Chapter 13, “Name service” on page 383.
� Chapter 14, “User identifier service” on page 389.

Chapter 15, “Installable services interface” on page 395 describes the interface for
each service.

 Appendixes
The error codes that apply to PCF commands and responses are listed in
Appendix A, “Error codes” on page 455.

The values of constants for events, commands, responses and installable services
are given in Appendix B, “Constants” on page 473.

The various header, COPY, and INCLUDE files that are provided to assist
applications with the processing of event messages, PCF commands, and
installable services are given in Appendix C, “Header, COPY, and INCLUDE files”
on page 485.

 About this book ix

 MQSeries publications

 MQSeries publications
This section describes the documentation available for all current MQSeries
products.

MQSeries cross-platform publications
Most of these publications, which are sometimes referred to as the MQSeries
“family” books, apply to all MQSeries Level 2 products. The latest MQSeries Level
2 products are:

� MQSeries for AIX V5.0
| � MQSeries for AS/400 V4R2

� MQSeries for AT&T GIS UNIX V2.2
� MQSeries for Digital OpenVMS V2.2
� MQSeries for HP-UX V5.0
� MQSeries for MVS/ESA V1.2
� MQSeries for OS/2 Warp V5.0
� MQSeries for SINIX and DC/OSx V2.2
� MQSeries for SunOS V2.2
� MQSeries for Sun Solaris V5.0

| � MQSeries for Tandem NonStop Kernel V2.2
� MQSeries Three Tier
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1
� MQSeries for Windows NT V5.0

Any exceptions to this general rule are indicated. (Publications that support the
MQSeries Level 1 products are listed in “MQSeries Level 1 product publications” on
page xiii. For a functional comparison of the Level 1 and Level 2 MQSeries
products, see the MQSeries Planning Guide.)

MQSeries Brochure
The MQSeries Brochure, G511-1908, gives a brief introduction to the benefits of
MQSeries. It is intended to support the purchasing decision, and describes some
authentic customer use of MQSeries.

MQSeries: An Introduction to Messaging and Queuing
MQSeries: An Introduction to Messaging and Queuing, GC33-0805, describes
briefly what MQSeries is, how it works, and how it can solve some classic
interoperability problems. This book is intended for a more technical audience than
the MQSeries Brochure.

MQSeries Planning Guide
The MQSeries Planning Guide, GC33-1349, describes some key MQSeries
concepts, identifies items that need to be considered before MQSeries is installed,
including storage requirements, backup and recovery, security, and migration from
earlier releases, and specifies hardware and software requirements for every
MQSeries platform.

MQSeries Intercommunication
The MQSeries Intercommunication book, SC33-1872, defines the concepts of
distributed queuing and explains how to set up a distributed queuing network in a
variety of MQSeries environments. In particular, it demonstrates how to (1)
configure communications to and from a representative sample of MQSeries
products, (2) create required MQSeries objects, and (3) create and configure
MQSeries channels. The use of channel exits is also described.

x MQSeries Programmable System Management

 MQSeries publications

MQSeries Clients
The MQSeries Clients book, GC33-1632, describes how to install, configure, use,
and manage MQSeries client systems.

MQSeries System Administration
The MQSeries System Administration book, SC33-1873, supports day-to-day
management of local and remote MQSeries objects. It includes topics such as
security, recovery and restart, transactional support, problem determination, the
dead-letter queue handler, and the MQSeries links for Lotus Notes**. It also
includes the syntax of the MQSeries control commands.

This book applies to the following MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

MQSeries Command Reference
The MQSeries Command Reference, SC33-1369, contains the syntax of the MQSC
commands, which are used by MQSeries system operators and administrators to
manage MQSeries objects.

MQSeries Programmable System Management
The MQSeries Programmable System Management book, SC33-1482, provides
both reference and guidance information for users of MQSeries events,
programmable command formats (PCFs), and installable services.

MQSeries Messages
The MQSeries Messages book, GC33-1876, which describes “AMQ” messages
issued by MQSeries, applies to these MQSeries products only:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0
� MQSeries for Windows V2.0
� MQSeries for Windows V2.1

This book is available in softcopy only.

MQSeries Application Programming Guide
The MQSeries Application Programming Guide, SC33-0807, provides guidance
information for users of the message queue interface (MQI). It describes how to
design, write, and build an MQSeries application. It also includes full descriptions
of the sample programs supplied with MQSeries.

MQSeries Application Programming Reference
The MQSeries Application Programming Reference, SC33-1673, provides
comprehensive reference information for users of the MQI. It includes: data-type
descriptions; MQI call syntax; attributes of MQSeries objects; return codes;
constants; and code-page conversion tables.

MQSeries Application Programming Reference Summary
The MQSeries Application Programming Reference Summary, SX33-6095,
summarizes the information in the MQSeries Application Programming Reference
manual.

 About this book xi

 MQSeries publications

MQSeries Using C ++
MQSeries Using C++, SC33-1877, provides both guidance and reference
information for users of the MQSeries C++ programming-language binding to the
MQI. MQSeries C++ is supported by V5.0 of MQSeries for AIX, HP-UX, OS/2
Warp, Sun Solaris, and Windows NT, and by MQSeries clients supplied with those
products and installed in the following environments:

 � AIX
 � HP-UX
 � OS/2
 � Sun Solaris
 � Windows NT
 � Windows 3.1
 � Windows 95

| MQSeries C++ is also supported by MQSeries for AS/400 V4R2.

MQSeries platform-specific publications
Each MQSeries product is documented in at least one platform-specific publication,
in addition to the MQSeries family books.

MQSeries for AIX

MQSeries for AIX V5.0 Quick Beginnings, GC33-1867

| MQSeries for AS/400

| MQSeries for AS/400 Version 4 Release 2 Licensed Program Specifications,
| GC33-1958

| MQSeries for AS/400 Version 4 Release 2 Administration Guide, GC33-1956

| MQSeries for AS/400 Version 4 Release 2 Application Programming Reference
| (RPG), SC33-1957

MQSeries for AT&T GIS UNIX

MQSeries for AT&T GIS UNIX Version 2.2 System Management Guide,
SC33-1642

MQSeries for Digital OpenVMS

MQSeries for Digital OpenVMS Version 2.2 System Management Guide,
GC33-1791

MQSeries for HP-UX

MQSeries for HP-UX V5.0 Quick Beginnings, GC33-1869

MQSeries for MVS/ESA

MQSeries for MVS/ESA Version 1 Release 2 Licensed Program Specifications,
GC33-1350

MQSeries for MVS/ESA Version 1 Release 2 Program Directory

MQSeries for MVS/ESA Version 1 Release 2 System Management Guide,
SC33-0806

MQSeries for MVS/ESA Version 1 Release 2 Messages and Codes,
GC33-0819

MQSeries for MVS/ESA Version 1 Release 2 Problem Determination Guide,
GC33-0808

xii MQSeries Programmable System Management

 MQSeries publications

MQSeries for OS/2 Warp

MQSeries for OS/2 Warp V5.0 Quick Beginnings, GC33-1868

MQSeries link for R/3

MQSeries link for R/3 Version 1.0 User’s Guide, GC33-1934

MQSeries for SINIX and DC/OSx

MQSeries for SINIX and DC/OSx Version 2.2 System Management Guide,
GC33-1768

MQSeries for SunOS

MQSeries for SunOS Version 2.2 System Management Guide, GC33-1772

MQSeries for Sun Solaris

MQSeries for Sun Solaris V5.0 Quick Beginnings, GC33-1870

| MQSeries for Tandem NonStop Kernel

| MQSeries for Tandem NonStop Kernel Version 2.2 System Management
| Guide, GC33-1893

MQSeries Three Tier

MQSeries Three Tier Administration Guide, SC33-1451
MQSeries Three Tier Reference Summary, SX33-6098
MQSeries Three Tier Application Design, SC33-1636
MQSeries Three Tier Application Programming, SC33-1452

MQSeries for Windows

MQSeries for Windows Version 2.0 User’s Guide, GC33-1822

MQSeries for Windows Version 2.1 User’s Guide, GC33-1965

MQSeries for Windows NT

MQSeries for Windows NT V5.0 Quick Beginnings, GC33-1871

MQSeries Level 1 product publications
For information about the MQSeries Level 1 products, see the following
publications:

MQSeries: Concepts and Architecture, GC33-1141

MQSeries Version 1 Products for UNIX Operating Systems Messages and
Codes, SC33-1754

MQSeries for SCO UNIX Version 1.4 User’s Guide, SC33-1378

MQSeries for UnixWare Version 1.4.1 User’s Guide, SC33-1379

MQSeries for VSE/ESA Version 1 Release 4 Licensed Program Specifications,
GC33-1483

MQSeries for VSE/ESA Version 1 Release 4 User’s Guide, SC33-1142

 About this book xiii

 MQSeries publications

 Softcopy books
Most of the MQSeries books are supplied in both hardcopy and softcopy formats.

 BookManager format
The MQSeries library is supplied in IBM BookManager format on a variety of online
library collection kits, including the Transaction Processing and Data collection kit,
SK2T-0730. You can view the softcopy books in IBM BookManager format using
the following IBM licensed programs:

 BookManager READ/2
 BookManager READ/6000
 BookManager READ/DOS
 BookManager READ/MVS
 BookManager READ/VM

BookManager READ for Windows

 PostScript format
The MQSeries library is provided in PostScript (.PS) format with many MQSeries
products, including all MQSeries V5.0 products. Books in PostScript format can be
printed on a PostScript printer or viewed with a suitable viewer.

 HTML format
The MQSeries documentation is provided in HTML format with these MQSeries
products:

� MQSeries for AIX V5.0
� MQSeries for HP-UX V5.0
� MQSeries for OS/2 Warp V5.0
� MQSeries for Sun Solaris V5.0
� MQSeries for Windows NT V5.0

The MQSeries books are also available from the MQSeries product family Web
site:

| http://www.software.ibm.com/ts/mqseries/

Information Presentation Facility (IPF) format
In the OS/2 environment, the MQSeries documentation is supplied in IBM IPF
format on the MQSeries product CD-ROM.

Windows Help format
The MQSeries for Windows User’s Guide is provided in Windows Help format with
MQSeries for Windows Version 2.0 and MQSeries for Windows Version 2.1.

xiv MQSeries Programmable System Management

 MQSeries on the Internet

MQSeries information available on the Internet
MQSeries web site

The MQSeries product family Web site is at:

| http://www.software.ibm.com/ts/mqseries/

| By following links from this Web site you can:

| � Obtain latest information about the MQSeries product family.

| � Access the MQSeries books in HTML format.

| � Download MQSeries SupportPacs.

 About this book xv

 MQSeries on the Internet

xvi MQSeries Programmable System Management

 Changes

Summary of changes

This section lists the major revisions to this book for the current edition and the
preceding two editions.

| Changes to this edition, SC33-1482-06
| Changes to the book for this edition are marked by vertical bars in the left margin;
| these changes include:

| � New versions of the following products:

| – MQSeries for AS/400
| – MQSeries for Tandem NonStop Kernel

| � Minor technical and editorial improvements throughout the book

Changes to the Sixth Edition include:
� New versions of the following products:

– MQSeries for AIX

– MQSeries for HP-UX

– MQSeries for OS/2

– MQSeries for Sun Solaris

– MQSeries for Windows NT

� The changes to the products include additional support for:

 – Distribution lists
– Direct SPX support

 – Channel heartbeats
 – Fast messages

– Auto-definition of channels
– MCA exit chaining

Changes for the Fifth Edition include:
� MQSeries for OS/400 V3R2 is included, adding support for Event monitoring

and enhanced support for Programmable Command Formats (PCFs).

� MQSeries for MVS/ESA V1.1.4 is included (Event monitoring).

� Two new Events are added, applicable to MQSeries for MVS/ESA V1.1.4, for
the IMS Bridge:

 – Bridge Stopped
 – Bridge Started

The following new products are now included:

� MQSeries for SINIX and DC/OSx Version 2.2

� MQSeries for SunOS Version 2.2

� MQSeries for Sun Solaris Version 2.2

 Copyright IBM Corp. 1994,1998 xvii

 Changes

References to “UNIX systems” include AIX, HP-UX, AT&T GIS UNIX, SINIX
and DC/OSx, SunOS and Sun Solaris systems.

The following changes were included in the BookManager version of SC33-1482-03
available in March 1996 on the Transaction Processing and Data Collection Kit,
SK2T-0730:

� MQSeries for Windows NT V2.0 included.
� MQSeries for HP-UX Version 2.2.1 included.

xviii MQSeries Programmable System Management

 Part 1. Event monitoring

Chapter 1. Using instrumentation events to monitor queue managers . . . 3
Monitoring queue managers . 3
What instrumentation events are . 4
Format of event messages . 9
Monitoring events across different platforms . 9

Chapter 2. Queue manager and channel events 11
Queue manager events . 11
Enabling queue manager events summary . 14
Channel events . 14

Chapter 3. Understanding performance events 17
What performance events are . 17
Understanding queue service interval events . 18
Queue service-interval-events examples . 21
Understanding queue depth events . 27
Queue depth events examples . 29
Enabling performance events summary . 34

Chapter 4. Event message reference . 35
Event message formats . 35
MQMD (Message descriptor) . 37
MQCFH (PCF header) . 38
Event message data . 39
Alias Base Queue Type Error . 40
Bridge Started . 42
Bridge Stopped . 44
Channel Activated . 46
Channel Auto-definition Error . 48
Channel Auto-definition OK . 50
Channel Conversion Error . 52
Channel Not Activated . 55
Channel Started . 57
Channel Stopped . 59
Default Transmission Queue Type Error . 63
Default Transmission Queue Usage Error . 65
Get Inhibited . 67
Not Authorized (type 1) . 69
Not Authorized (type 2) . 71
Not Authorized (type 3) . 73
Not Authorized (type 4) . 75
Put Inhibited . 77
Queue Depth High . 79
Queue Depth Low . 81
Queue Full . 83
Queue Manager Active . 85
Queue Manager Not Active . 86
Queue Service Interval High . 88
Queue Service Interval OK . 90
Queue Type Error . 92

 Copyright IBM Corp. 1994,1998 1

Remote Queue Name Error . 94
Transmission Queue Type Error . 96
Transmission Queue Usage Error . 98
Unknown Alias Base Queue . 100
Unknown Default Transmission Queue . 102
Unknown Object Name . 104
Unknown Remote Queue Manager . 106
Unknown Transmission Queue . 109

Chapter 5. Example of using instrumentation events 111

2 MQSeries Programmable System Management

 Using events � Monitoring queue managers

Chapter 1. Using instrumentation events to monitor queue
managers

MQSeries instrumentation events provide information about errors, warnings, and
other significant occurrences in a queue manager. You can, therefore, use these
events to monitor the operation of queue managers (in conjunction with other
methods such as NetView). This chapter tells you what these events are, and how
you use them.

Instrumentation events are supported by:

MQSeries for AIX
MQSeries for AS/400
MQSeries for AT&T GIS UNIX
MQSeries for Digital OpenVMS
MQSeries for HP-UX
MQSeries for MVS/ESA
MQSeries for OS/2 Warp
MQSeries for SINIX and DC/OSx
MQSeries for SunOS
MQSeries for Sun Solaris
MQSeries for Tandem NonStop Kernel
MQSeries for Windows NT
MQSeries for Windows

Monitoring queue managers
| Instrumentation events can be generated for queue managers running on Digital
| OpenVMS, MVS/ESA, OS/2, OS/400, Tandem NonStopKernel, Windows 95,
| Windows NT, and UNIX platforms. By incorporating these events into your own

system management application, you can monitor the activities across many queue
managers, across many different nodes, for multiple MQSeries applications. In
particular, you can monitor all the nodes in your system from a single node (for
those nodes that support MQSeries events) as shown in Figure 1 on page 4.

Instrumentation events can be reported through a user-written reporting mechanism
to an administration application that supports the presentation of the events to an
operator.

 Copyright IBM Corp. 1994,1998 3

 Instrumentation events

Event monitoring
from a single node

Event
messages

MQSeries
for MVS/ESA

MQSeries
for AIX

MQSeries
for OS/2

Figure 1. Monitoring queue managers across different platforms, on a single node

Instrumentation events also enable applications acting as agents for other
administration networks, for example NetView, to monitor reports and create the
appropriate alerts.

What instrumentation events are
In MQSeries, an instrumentation event is a logical combination of conditions that is
detected by a queue manager or channel instance. The result of such an event is
that the queue manager or channel instance puts a special message, called an
event message, on an event queue. Event queues are described in “Event
notification through event queues” on page 6.

4 MQSeries Programmable System Management

 Instrumentation events

Queue Manager

For example:
Queue full

+ event enabled1. Event conditions

2. Event message
put on event queue

3. Event message
processed by a
user application

Event message

Event queue

User Application

Figure 2. Understanding instrumentation events

For example, the conditions giving rise to a Queue Full event are:

� Queue Full events are enabled for a specified queue
and

� An application issues an MQPUT request to put a message on that queue, but
the request fails because the queue is full.

Other conditions that can give rise to instrumentation events include:

� A threshold limit for the number of messages on a queue is reached.
� A channel instance is started or stopped.

| � On the MQSeries products for UNIX systems, MQSeries for Digital OpenVMS,
| MQSeries for Tandem NonStop Kernel, and on MQSeries for Windows NT, an
| application attempts to open a queue specifying a user ID that is not
| authorized.

 Chapter 1. Using instrumentation events to monitor queue managers 5

 Instrumentation events

For the full list of events see Table 15 on page 39.

With the exception of channel events, all instrumentation events must be enabled
before they can be generated.

Types of events
MQSeries instrumentation events may be categorized as follows:

Queue manager events
These events are related to the definitions of resources within queue managers.
For example, an application attempts to put a message to a queue that does not
exist.

Performance events
These events are notifications that a threshold condition has been reached by a
resource. For example, a queue depth limit has been reached.

Channel events
These events are reported by channels as a result of conditions detected during
their operation. For example, when a channel instance is stopped.

The event type is returned in the command identifier field in the message data.

 Trigger events

When we discuss triggering in other MQSeries books, we sometimes refer to a
trigger event. This occurs when a queue manager detects that the conditions
for a trigger event have been met. For example, for a queue for which triggers
are active, a message of the required priority has been put on a queue so that
the trigger depth is reached.

The result of a trigger event is that a trigger message is put onto an initiation
queue and an application program is started. No other event messages as
described in this book are involved (unless, for example, the initiation queue fills
up and generates an instrumentation event).

Event notification through event queues
When an event occurs the queue manager puts an event message on the
appropriate event queue, if defined. The event message contains information about
the event that you can retrieve by writing a suitable MQI application program that:

� Gets the message from the queue.

� Processes the message to extract the event data. For an overview of event
message formats, see “Format of event messages” on page 9. For detailed
descriptions about the format of each event message, see “Event message
formats” on page 35.

For each queue manager, each category of event has its own event queue. All
events in that category result in an event message being put onto the same queue.

This event queue: Contains messages from:
SYSTEM.ADMIN.QMGR.EVENT Queue manager events
SYSTEM.ADMIN.PERFM.EVENT Performance events
SYSTEM.ADMIN.CHANNEL.EVENT Channel events

6 MQSeries Programmable System Management

 Instrumentation events

You can define event queues either as local queues, alias queues, or as local
definitions of remote queues. If you define all your event queues as local
definitions of the same remote queue on one queue manager, you can centralize
your monitoring activities.

Using triggered event queues
You can set up the event queues with triggers so that when an event is generated,
the event message being put onto the event queue starts a (user-written)
monitoring application. This application can process the event messages and take
appropriate action. For example, certain events may require that an operator be
informed, other events may start off an application that performs some
administration tasks automatically.

When an event queue is unavailable
If an event occurs when the event queue is not available, the event message is
lost. For example, if you do not define an event queue for a category of event, all
event messages for that category will be lost. The event messages are not, for
example, saved on the dead-letter (undelivered-message) queue.

However, the event queue may be defined as a remote queue. Then, if there is a
problem on the remote system putting messages to the resolved queue, the event
message will appear on the remote system’s dead-letter queue.

An event queue may be unavailable for many different reasons including:

� The queue has not been defined.
� The queue has been deleted.
� The queue is full.
� The queue has been put-inhibited.

The absence of an event queue does not prevent the event from occurring. For
example, after a performance event, the queue manager changes the queue
attributes and resets the queue statistics. This happens whether or not the event
message is put on the performance event queue. For more information about
performance events changing queue attributes, see Chapter 3, “Understanding
performance events” on page 17.

Enabling and disabling events
You can enable and disable events by specifying the appropriate values for queue
manager or queue attributes (or both) depending on the type of event. You do this
using:

� MQSeries commands (MQSC). For more information, see the MQSeries
Command Reference.

| � PCF commands, for queue managers on OS/400, OS/2, Windows NT,
| OpenVMS, Tandem NSK, and UNIX systems. For more information, see

Chapter 6, “Introduction to Programmable Command Formats” on page 123.

� Control Language (CL) commands for queue managers on OS/400. For more
information, see the MQSeries for AS/400 Administration Guide

� The operations and controls panels for queue managers on MVS/ESA. For
more information, see the MQSeries for MVS/ESA System Management Guide.

Note: Attributes related to events for both queues and queue managers can be
set by command only. They are not supported by the MQI call MQSET.

 Chapter 1. Using instrumentation events to monitor queue managers 7

 Instrumentation events

Enabling and disabling an event depends on the category of the event:

� Queue Manager events are enabled by setting attributes on the queue
manager. See “Enabling and disabling queue manager events” on page 11 for
more information.

� Performance events as a whole must be enabled on the queue manager,
otherwise no performance events can occur. Then, you enable the specific
performance events by setting the appropriate queue attribute. You also have
to specify the conditions that give rise to the event. For more information, see
“Enabling queue service interval events” on page 20 and “Understanding
queue depth events” on page 27.

� Channel events do not require enabling, they occur automatically. Similarly,
channel events cannot be disabled. However, channel events can be
suppressed by not defining the channel events queue, or by making it
put-inhibited. Note that this could cause a queue to fill up if remote event
queues point to a put-inhibited channel events queue.

Hints and tips for using events
Some things to consider about event queues:

� You must not define event queues as transmission queues because event
messages have formats that are incompatible with the format of messages
required for transmission queues.

� Performance events are not generated for the event queues themselves.

� If a queue manager attempts to put a queue manager or a performance event
message on an event queue and an error is detected which would normally
create an event, another event is not created and no action is taken.

Notes:

1. If a channel event is put onto an event queue, an error condition causes
the queue manager to create an event as usual.

2. Putting a message on the dead-letter queue can cause an event to be
generated if the event conditions are met.

� Event queues may have trigger actions associated with them and may
therefore create trigger messages. However, If these trigger messages, in turn,
cause conditions that would normally generate an event, no event is in fact
generated. This ensures that looping does not occur.

� MQGET calls and MQPUT calls within a unit of work can cause performance
related events to occur regardless of whether the unit of work is committed or
backed out.

� The putting of the event message and any subsequent actions arising do not
affect the reason code to the MQI call that caused the event.

8 MQSeries Programmable System Management

 Event message format � Monitoring events

Format of event messages
Event messages contain information about the event and its origin. Typically, these
messages are processed by a system management application program tailored to
meet the requirements of the enterprise at which it runs. As with all MQSeries
messages, an event message has two parts: a message descriptor and the
message data. The message descriptor is based on the MQMD structure, which is
defined in the MQSeries Application Programming Reference. The message data
is also made up of two parts:

� An event header containing the reason code that identifies the event type
� The event data, which provides further information about the event

“Message descriptors in event messages” on page 35 describes the format of the
message descriptor when used with event messages.

Monitoring events across different platforms
If you write an application using events to monitor queue managers, you need to:

1. Set up channels between the queue managers in your network.

2. Implement the required data conversions. The normal rules of data conversion
apply. For example, if you are monitoring events on a UNIX system queue
manager from an MVS/ESA queue manager, you must ensure that you perform
the EBCDIC to ASCII conversions.

See the MQSeries Application Programming Guide for more information.

 Chapter 1. Using instrumentation events to monitor queue managers 9

 Monitoring events

10 MQSeries Programmable System Management

 Queue manager and channel events

Chapter 2. Queue manager and channel events

This chapter provides a brief overview of both queue manager events and channel
events.

Queue manager events
Queue manager events are related to the definitions of resources within queue
managers. The event messages for queue manager events are put on the
SYSTEM.ADMIN.QMGR.EVENT queue. The following queue manager event types
are supported:

| � Authority (on OS/400, Windows NT, OpenVMS, Tandem NSK, and UNIX
| systems only)

 � Inhibit
 � Local
 � Remote
� Start and Stop (for MVS/ESA: Start only)

For each event type in this list, there is a queue manager attribute that enables or
disables the event type. See the MQSeries Command Reference for more
information.

The conditions that give rise to the event (when enabled) include:

� An application issues an MQI call, which fails. The reason code from the call is
the same as the reason code in the event message.

Note that a similar condition may occur during the internal operation of a queue
manager, for example, when generating a report message. The reason code in
an event message may be one that does match an MQI reason code even
though it is not associated with any application. Therefore you should not
assume that, because an event message reason code looks like an MQI
reason code, the event was necessarily caused by an unsuccessful MQI call
from an application.

� A command is issued to a queue manager and the processing of this command
causes an event. For example:

– A queue manager is stopped or started.
– A command is issued where the associated user ID is not authorized for

that command.

Enabling and disabling queue manager events
You enable queue manager events by specifying the appropriate attribute on the
MQSeries command ALTER QMGR, or the appropriate parameters and values on
the equivalent PCF command, Change Queue Manager. For example, to enable
inhibit events on the default queue manager use this MQSeries command:

ALTER QMGR INHIBTEV (ENABLED)

 Copyright IBM Corp. 1994,1998 11

 Queue manager and channel events

To disable the event, set the INHIBTEV attribute to DISABLED using this MQSC:

ALTER QMGR INHIBTEV (DISABLED)

To enable the same event from a PCF command, use this combination of
parameters and values:

To disable these events, you issue the same command but specify a parameter
value of MQEVR_DISABLED.

Command Command parameter Parameter value

Change Queue Manager InhibitEvent MQEVR_ENABLED

 Authority events
| Note to users

| 1. All authority events are valid on Digital OpenVMS, OS/400, Windows NT,
| and UNIX systems only.

| 2. Tandem NSK supports only Not Authorized (type 1).

Authority events indicate that an authorization violation has been detected. For
example, an application attempts to open a queue for which it does not have the
required authority, or a command is issued from a user ID that does not have the
required authority.

You enable authority events using:

� The AUTHOREV attribute on the MQSeries command ALTER QMGR
� The AuthorityEvent parameter on the Change Queue Manager PCF command

For more information about the event data returned in authority event messages
see:

“Not Authorized (type 1)” on page 69
“Not Authorized (type 2)” on page 71
“Not Authorized (type 3)” on page 73
“Not Authorized (type 4)” on page 75

 Inhibit events
Inhibit events indicate that an MQPUT or MQGET operation has been attempted
against a queue, where the queue is inhibited for puts or gets respectively.

You enable inhibit events using:

� The INHIBTEV attribute on the MQSeries command ALTER QMGR
� The InhibitEvent parameter on the Change Queue Manager PCF command.

For more information about the event data returned in inhibit event messages, see:

“Get Inhibited” on page 67
“Put Inhibited” on page 77

12 MQSeries Programmable System Management

 Queue manager and channel events

 Local events
Local events indicate that an application (or the queue manager) has not been able
to access a local queue, or other local object. For example, when an application
attempts to access an object that has not been defined.

You enable local events using:

� The LOCALEV attribute on the MQSeries command ALTER QMGR
� The LocalEvent parameter on the Change Queue Manager PCF command

For more information about the event data returned in local event messages, see:

“Alias Base Queue Type Error” on page 40
“Queue Type Error” on page 92
“Unknown Alias Base Queue” on page 100
“Unknown Object Name” on page 104

 Remote events
Remote events indicate that an application (or the queue manager) cannot access
a (remote) queue on another queue manager. For example, when the transmission
queue to be used is not correctly defined.

You enable remote events using:

� The REMOTEEV attribute on the MQSeries command ALTER QMGR
� The RemoteEvent parameter on the Change Queue Manager PCF command

For more information about the event data returned in the remote event messages,
see:

“Default Transmission Queue Type Error” on page 63
“Default Transmission Queue Usage Error” on page 65
“Queue Type Error” on page 92
“Remote Queue Name Error” on page 94
“Transmission Queue Type Error” on page 96
“Transmission Queue Usage Error” on page 98
“Unknown Default Transmission Queue” on page 102
“Unknown Remote Queue Manager” on page 106
“Unknown Transmission Queue” on page 109

Start and stop events
Start and stop events (start only for MVS/ESA) indicate that a queue manager has
been started or has been requested to stop or quiesce.

You enable start and stop events using:

� The STRSTPEV attribute on the MQSeries command ALTER QMGR
� The StartStopEvent parameter on the Change Queue Manager PCF command

Stop events are not recorded unless the default message-persistence of the
SYSTEM.ADMIN.QMGR.EVENT queue is defined as persistent.

For more information about the event data returned in the start and stop event
messages, see:

“Queue Manager Active” on page 85

 Chapter 2. Queue manager and channel events 13

 Queue manager and channel events

“Queue Manager Not Active” on page 86

Enabling queue manager events summary
The following figures summarize how to enable queue manager events:

Table 2. Enabling queue manager events using MQSeries commands

Queue manager events

Event Queue manager attribute

Authority
Inhibit
Local
Remote
Start and Stop

AUTHOREV (ENABLED)
INHIBTEV (ENABLED)
LOCALEV (ENABLED)
REMOTEEV (ENABLED)
STRSTPEV (ENABLED)

Table 3. Enabling queue manager events using PCF commands

Attribute name Parameter identifier Value

AuthorityEvent
InhibitEvent
LocalEvent
RemoteEvent
StartStopEvent

MQIA_AUTHORITY_EVENT
MQIA_INHIBIT_EVENT
MQIA_LOCAL_EVENT
MQIA_REMOTE_EVENT
MQIA_Q_START_STOP_EVENT

MQEVR_ENABLED
MQEVR_ENABLED
MQEVR_ENABLED
MQEVR_ENABLED
MQEVR_ENABLED

 Channel events
Channel events are generated:

� By a command to start or stop a channel

� When a channel instance starts or stops

� When a channel receives a conversion error warning when getting a message

� When an attempt is made to create a channel automatically; the event is
generated whether the attempt succeeds or fails.

Note: Using MQSeries for MVS/ESA with CICS, no channel events are generated.

When a command is used to start a channel an event is generated, and then
another evant is generated when the channel instance starts. However, starting a
channel by a listener or by a queue manager trigger message does not generate
an event; in this case the only event generated is when the channel instance starts.

A successful start or stop channel command will generate at least two events. The
events are generated for both queue managers that are connected by the channel,
unless one of the queue managers does not support events, for example versions
of MQSeries for AS/400 previous to V3R2. Channel event messages are put onto
the SYSTEM.ADMIN.CHANNEL.EVENT queue, if it is available. Otherwise, they
are ignored.

For more information about the event data returned in the channel event messages,
see:

14 MQSeries Programmable System Management

 Queue manager and channel events

“Channel Activated” on page 46
“Channel Auto-definition Error” on page 48
“Channel Auto-definition OK” on page 50
“Channel Conversion Error” on page 52
“Channel Not Activated” on page 55
“Channel Started” on page 57
“Channel Stopped” on page 59

Enabling channel events
Most channel events are enabled automatically and cannot be enabled or disabled
by command. The exceptions are the two automatic channel definition events.
The generation of these events is controlled by the ChannelAutoDefEvent
queue-manager attribute.

Refer to the MQSeries Application Programming Reference manual for further
details of this attribute.

If a queue manager does not have a SYSTEM.ADMIN.CHANNEL.EVENT queue, or
if this queue is put inhibited, all channel event messages are discarded, unless they
are being put by an MCA across a link to a remote queue. In this case they are
put on the dead-letter queue.

 Chapter 2. Queue manager and channel events 15

 Queue manager and channel events

16 MQSeries Programmable System Management

 Performance events

Chapter 3. Understanding performance events

This chapter describes what performance events are, how they are generated, how
they can be enabled, and how they are used.

In this chapter, the examples assume that you set queue attributes by using the
appropriate MQSeries commands (MQSC). See the MQSeries Command
Reference for more information. You can also set them using:

| � The operations and controls panels, for queue managers, on MVS/ESA.

| � The corresponding PCF commands, for queue managers, on:

| – Digital OpenVMS
| – OS/2
| – OS/400
| – Tandem NSK
| – Windows NT
| – UNIX systems

See Chapter 6, “Introduction to Programmable Command Formats” on page 123
for more information.

What performance events are
Performance events are related to conditions that can affect the performance of
applications that use a specified queue.

There are two types of performance event:

� Queue depth events, related to the number of messages on a queue, that is
how full, or empty, the queue is.

� Queue service interval events, related to whether messages are processed
within a user-specified time interval.

The scope of performance events is the queue, so that MQPUT calls and MQGET
calls on one queue do not affect the generation of performance events on another
queue.

Note: A message must be either put on, or removed from, a queue for any
performance event to be generated.

Performance event data
When a performance event is generated, the queue manager puts the associated
event message on the SYSTEM.ADMIN.PERFM.EVENT queue.

The event data contains a reason code that identifies the cause of the event, a set
of performance event statistics, and other data. For more information about the
event data returned in performance event messages, see:

“Queue Depth High” on page 79
“Queue Depth Low” on page 81
“Queue Full” on page 83
“Queue Service Interval High” on page 88
“Queue Service Interval OK” on page 90

 Copyright IBM Corp. 1994,1998 17

 Queue-service-interval-events

Understanding performance event statistics
The event data in the event message contains information about the event for
system management programs. For all performance events, the event data
contains the names of the queue manager and the queue associated with the
event. Also, the event data contains statistics related to the event. You can use
these statistics to analyze the behavior of a specified queue. Table 4 summarizes
the event statistics. All the statistics refer to what has happened since the last time
the statistics were reset.

Performance event statistics are reset when:

� Any performance event occurs.

� The PCF command, Reset Queue Statistics, is issued from a user-written
administration program. There is no MQSC equivalent for this command.

Table 4. Performance event statistics

Parameter Description

TimeSinceReset The elapsed time since the statistics were last reset.

HighQDepth The maximum number of messages on the queue since
the statistics were last reset.

MsgEnqCount The number of messages enqueued (the number of
MQPUT calls to the queue), since the statistics were last
reset.

MsgDeqCount The number of messages dequeued (the number of
MQGET calls to the queue), since the statistics were last
reset.

Understanding queue service interval events
Queue service interval events indicate whether a queue was ‘serviced’ within a
user-defined time interval called the service interval. Depending on the
circumstances at your installation, you can use queue service interval events to
monitor whether messages are being taken off queues quickly enough.

What queue service interval events are
There are two types of queue service interval event:

� A Queue Service Interval OK event, which indicates that following an MQPUT
call or an MQGET call that leaves a non-empty queue, an MQPUT call or an
MQGET call was performed within a user-defined time period, known as the
service interval.

In this section, Queue Service Interval OK events are referred to as OK events.

� A Queue Service Interval High event, which indicates that following an
MQGET call or put that leaves a non-empty queue, an MQGET call was not
performed within the user-defined service interval.

This event message can be caused by an MQPUT call or an MQGET call.

In this section, Queue Service Interval High events are referred to as high
events.

18 MQSeries Programmable System Management

 Queue-service-interval-events

These events are mutually exclusive, that is, if one is enabled the other is disabled.
However, both events can be simultaneously disabled.

Figure 3 shows a graph of queue depth against time. At P1, an application issues
an MQPUT, to put a message on the queue. At G1, another application issues an
MQGET to remove the message from the queue.

P1

Q
ue

ue
de

pt
h

TimeG1

GETPUT

Figure 3. Understanding queue service interval events

In terms of queue service interval events, these are the possible outcomes:

� If the elapsed time between the put and get is less than or equal to the service
interval:

– If OK events are enabled, a Queue Service Interval OK event is generated
at G1.

– If high events are enabled, no event is generated at G1.
– If neither event is enabled, no queue service interval event is generated.

� If the elapsed time between the put and get is greater than the service interval:

– If high events are enabled, a Queue Service Interval High event is
generated at G1.

– If OK events are enabled, no event is generated at G1.
– If neither event is enabled, no queue service interval event is generated.

The actual algorithm for starting the service timer and generating events is
described in “Queue service-interval-events algorithm” on page 21.

Understanding the service timer
Queue service interval events use an internal timer, called the service timer, which
is controlled by the queue manager. The service timer is only used if one or other
of the queue service interval events are enabled.

What precisely does the service timer measure?
The service timer measures the elapsed time between an MQPUT call to an
empty queue or an MQGET call and the next put or get, provided the queue
depth is non-zero between these two operations.

When is the service timer active?
The service timer is always active, that is, running, if the queue has
messages on it (depth is non-zero) and a queue service interval event is

 Chapter 3. Understanding performance events 19

 Queue-service-interval-events

enabled. If the queue becomes empty (queue depth zero), the timer is put
into an OFF state, to be restarted on the next put.

When is the service timer reset?
The service timer is always reset after an MQGET call. It is also reset by an
MQPUT call to an empty queue. However, it is not necessarily reset on a
queue service interval event.

How is the service timer used?
Following an MQGET call or an MQPUT call, the queue manager compares
the elapsed time as measured by the service timer, with the user-defined
service interval. The result of this comparison is that:

� An OK event is generated if the operation is an MQGET call and the
elapsed time is less than or equal to the service interval, AND this event
is enabled.

� A high event is generated if the elapsed time is greater than the service
interval, AND this event is enabled.

Can applications read the service timer?
No, the service timer is an internal timer that is not available to applications.

What about the TimeSinceReset parameter?
The TimeSinceReset parameter is returned as part of the event statistics in
the event data. It specifies the time between successive queue service
interval events, unless the event statistics are reset. The reset can be
caused by a queue depth event or you can reset them yourself explicitly
using the PCF command Reset Queue Statistics.

Enabling queue service interval events
To configure a queue for queue service interval events you must:

1. Enable performance events on the queue manager, using the queue manager
attribute PerformanceEvent (PERFMEV in MQSC).

2. Set the control attribute, QServiceIntervalEvent, for a Queue Service Interval
High or OK event on the queue, as required (QSVCIEV in MQSC).

3. Specify the service interval time by setting the QServiceInterval attribute for
the queue to the appropriate length of time (QSVCINT in MQSC).

For example, to enable Queue Service Interval High events with a service interval
time of 10 seconds (10 000 milliseconds) use the following MQSC:

ALTER QMGR +
 PERFMEV(ENABLED)

ALTER QLOCAL('MYQUEUE') +
 QSVCINT(1ðððð) +
 QSVCIEV(HIGH)

Note: When enabled, a queue service interval event can only be generated on an
MQPUT call or an MQGET call. The event is not generated when the elapsed time
becomes equal to the service interval time.

20 MQSeries Programmable System Management

 Queue service-interval-events

Automatic enabling of queue service interval events
The high and OK events are mutually exclusive, that is, when one is enabled, the
other is automatically disabled.

When a high event is generated on a queue, the queue manager automatically
disables high events and enables OK events for that queue.

Similarly, when an OK event is generated on a queue, the queue manager
automatically disables OK events and enables high events for that queue.

Queue service-interval-events algorithm
This section gives the formal rules associated with the timer, and with the queue
service interval events.

 Service timer
The service timer is reset to zero and restarted:

� Following an MQPUT call to an empty queue.

� Following an MQGET call, if the queue is not empty after the MQGET call.

The resetting of the timer does not depend on whether an event has been
generated.

At queue manager startup the service timer is set to startup time if the queue depth
is greater than zero.

If the queue is empty following an MQGET call, the timer is put into an OFF state.

Queue Service Interval OK events
� The Queue Service Interval OK event must be enabled.

� If the service time (elapsed time) is less than or equal to the service interval, an
event is generated on the next MQGET call.

Queue Service Interval High events
� The high event must be enabled.

� If the service time is greater than the service interval, an event is generated on
the next MQPUT or MQGET call.

Queue service-interval-events examples
This section provides progressively more complex examples to illustrate the use of
queue service interval events.

The figures accompanying the examples have the same structure:

� The top section is a graph of queue depth against time, showing individual
MQGET calls and MQPUT calls.

� The middle section shows a comparison of the time constraints. There are
three time periods that you must consider:

– The user-defined service interval.
– The time measured by the service timer.

 Chapter 3. Understanding performance events 21

 Queue service-interval-events

– The time since event statistics were last reset (TimeSinceReset in the
event data).

� The bottom section of each figure shows which events are enabled at any
instant and what events are generated.

The following examples illustrate:

� How the queue depth varies over time.

� How the elapsed time as measured by the service timer compares with the
service interval.

� Which event is enabled.

� What events are generated.

Example 1 (queue service interval events)
This example shows a simple sequence of MQGET calls and MQPUT calls, where
the queue depth is always one or zero.

High
OK

High event OK event

TO P1 P2 G2

Q
ue

ue
de

pt
h

Time

Key:
Service interval

Service timer ON

Service timer OFF

Time since reset

G1

GET GETPUT PUT

Enabled events

Figure 4. Queue service interval events - example 1

22 MQSeries Programmable System Management

 Queue service-interval-events

 Commentary
1. At P1, an application puts a message onto an empty queue. This starts the

service timer.

Note that T0 may be queue manager startup time.

2. At G1, another application gets the message from the queue. Because the
elapsed time between P1 and G1 is greater than the service interval, a Queue
Service Interval High event is generated on the MQGET call at G1. When the
high event is generated, the queue manager resets the event control attribute
so that:

a. The OK event is automatically enabled.
b. The high event is disabled.

Because the queue is now empty, the service timer is switched to an OFF
state.

3. At P2, a second message is put onto the queue. This restarts the service
timer.

4. At G2, the message is removed from the queue. However, because the
elapsed time between P2 and G2 is less than the service interval, a Queue
Service Interval OK event is generated on the MQGET call at G2. When the
OK event is generated, the queue manager resets the control attribute so that:

a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is empty, the service timer is again switched to an OFF
state.

Event statistics summary for example 1
Table 5 summarizes the event statistics for this example.

The middle part of Figure 4 on page 22 shows the elapsed time as measured by
the service timer compared to the service interval for that queue. To see whether a
queue service interval event will occur, compare the length of the horizontal line
representing the service timer (with arrow) to that of the line representing the
service interval. If the service timer line is longer, and the Queue Service Interval
High event is enabled, a Queue Service Interval High event will occur on the next
get. If the timer line is shorter, and the Queue Service Interval OK event is
enabled, a Queue Service Interval OK event will occur on the next get.

Table 5. Event statistics summary for example 1

Event 1 Event 2

Time of event TG1 TG2

Type of event High OK

TimeSinceReset TG1 - T0 TG2 - TP2

HighQDepth 1 1

MsgEnqCount 1 1

MsgDeqCount 1 1

 Chapter 3. Understanding performance events 23

 Queue service-interval-events

Example 2 (queue service interval events)
This example illustrates a sequence of MQPUT calls and MQGET calls, where the
queue depth is not always one or zero. It also shows instances of the timer being
reset without events being generated, for example, at TP2.

High
OK

OK event

TO P1

Q
ue

ue
de

pt
h

Time

Key:
Service interval

Service timer ON

Service timer OFF

Time since reset

Enabled events

P2 G1 G2

Figure 5. Queue service interval events - example 2

 Commentary
In this example, OK events are enabled initially and queue statistics were reset at
T0.

1. At P1, the first put starts the service timer.

2. At P2, the second put does not generate an event because a put cannot cause
an OK event.

3. At G1, the service interval has now been exceeded and therefore an OK event
is not generated. However, the MQGET call causes the service timer to be
reset.

4. At G2, the second get occurs within the service interval and this time an OK
event is generated. The queue manager resets the event control attribute so
that:

24 MQSeries Programmable System Management

 Queue service-interval-events

a. The high event is automatically enabled.
b. The OK event is disabled.

Because the queue is now empty, the service timer is switched to an OFF
state.

Event statistics summary for example 2
Table 6 summarizes the event statistics for this example.

Table 6. Event statistics summary for example 2

Time of event TG2

Type of event OK

TimeSinceReset TG2 - T0

HighQDepth 2

MsgEnqCount 2

MsgDeqCount 2

Example 3 (queue service interval events)
This example shows a sequence of MQGET calls and MQPUT calls that is more
sporadic than the previous examples.

 Commentary
1. At time T0, the queue statistics are reset and Queue Service Interval High

events are enabled.

2. At P1, the first put starts the service timer.

3. At P2, the second put increases the queue depth to two. A high event is not
generated here because the service interval time has not been exceeded.

4. At P3, the third put causes a high event to be generated. (The timer has
exceeded the service interval.) The timer is not reset because the queue depth
was not zero before the put. However, OK events are enabled.

5. At G1, the MQGET call does not generate an event because the service
interval has been exceeded and OK events are enabled. The MQGET call
does, however, reset the service timer.

6. At G2, the MQGET call does not generate an event because the service
interval has been exceeded and OK events are enabled. Again, the MQGET
call resets the service timer.

7. At G3, the third get empties the queue and the service timer is equal to the
service interval. Therefore an OK event is generated. The service timer is
reset and high events are enabled. The MQGET call empties the queue, and
this puts the timer in the OFF state.

 Chapter 3. Understanding performance events 25

 Queue service-interval-events

High
OK

High event OK event

TO P1 P2 P3 G1 G2 G3

Q
ue

ue
de

pt
h

Time

Key:
Service interval

Service timer ON

Service timer OFF

Time since reset

Enabled events

Figure 6. Queue service interval events - example 3

Event statistics summary for example 3
The following table summarizes the statistics returned in the event message data,
for each event in this example.

Table 7. Event statistics summary for example 3

Event 1 Event 2

Time of event TP3 TG3

Type of event High OK

TimeSinceReset TP3 - T0 TG3 - TP3

HighQDepth 3 3

MsgEnqCount 3 0

MsgDeqCount 0 3

26 MQSeries Programmable System Management

 Queue depth events

What queue service interval events tell you
You must exercise some caution when you look at queue statistics. Figure 4 on
page 22 shows a simple case where the messages are intermittent and each
message is removed from the queue before the next one arrives. From the event
data, you know that the maximum number of messages on the queue was one.
You can, therefore, work out how long each message was on the queue.

However, in the general case, where there is more than one message on the
queue and the sequence of MQGET calls and MQPUT calls is not predictable, you
cannot use queue service interval events to calculate how long an individual
message remains on a queue. The TimeSinceReset parameter, which is returned
in the event data, can include a proportion of time when there are no messages on
the queue. Therefore any results you derive from these statistics are implicitly
averaged to include these times.

Understanding queue depth events
In MQSeries applications it is most important that queues do not become full. If
they do, applications can no longer put messages on the queue that they specify.
Although the message is not lost if this occurs, it can be a considerable
inconvenience. The number of messages can build up on a queue if the messages
are being put onto the queue faster than the applications that process them can
take them off.

The solution to this problem depends on the particular circumstances, but may
involve:

� Diverting some messages to another queue.
� Starting new applications to take more messages off the queue.
� Stopping non-essential message traffic.
� Increasing the queue depth to overcome a transient maximum.

Clearly, having advanced warning that problems may be on their way makes it
easier to take preventive action. For this purpose, queue depth events are
provided.

What queue depth events are
Queue depth events are related to the queue depth, that is, the number of
messages on the queue. The types of queue depth events are:

� Queue Depth High events , which indicate that the queue depth has increased
to a predefined threshold called the Queue Depth High limit.

� Queue Depth Low events , which indicate that the queue depth has decreased
to a predefined threshold called the Queue Depth Low limit.

� Queue Full events , which indicate that the queue has reached its maximum
depth, that is, the queue is full.

Queue Depth High events give advance warning that a queue is filling up. This
means that having received this event, the system administrator should take some
preventive action. If this action is successful and the queue depth drops to a ‘safe’
level, the queue manager can be configured to generate a Queue Depth Low event
indicating an ‘all clear’ state.

 Chapter 3. Understanding performance events 27

 Queue depth events

Figure 8 on page 30 shows a graph of queue depth against time in such a case.
The preventive action was (presumably) taken between T2 and T3 and continues to
have effect until T4 when the queue depth is well inside the ‘safe’ zone.

Enabling queue depth events
By default, all queue depth events are disabled. To configure a queue for any of
the queue depth events you must:

1. Enable performance events on the queue manager, using the queue manager
attribute PerformanceEvent (PERFMEV in MQSC).

2. Enable the event on the required queue by setting the following as required:

� QDepthHighEvent(QDPHIEV in MQSC)
� QDepthLowEvent(QDPLOEV in MQSC)
� QDepthMaxEvent(QDPMAXEV in MQSC)

3. Set the limits, if required, to the appropriate levels, expressed as a percentage
of the maximum queue depth, by setting either:

� QDepthHighLimit(QDEPTHHI in MQSC), and
� QDepthLowLimit(QDEPTHLO in MQSC).

Enabling Queue Depth High events
When enabled, a Queue Depth High event is generated when a message is put on
the queue causing the queue depth to be greater than or equal to the value
determined by the Queue Depth High limit.

To enable Queue Depth High events on the queue MYQUEUE with a limit set at
80%, use the following MQSC:

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL('MYQUEUE') QDEPTHHI(8ð) QDPHIEV(ENABLED)

Automatically enabling Queue Depth High events: A Queue Depth High event
is automatically enabled by a Queue Depth Low event on the same queue.

A Queue Depth High event automatically enables both a Queue Depth Low and a
Queue Full event on the same queue.

Enabling Queue Depth Low events
When enabled, a Queue Depth Low event is generated when a message is
removed from a queue by an MQGET call operation causing the queue depth to be
less than or equal to the value determined by the Queue Depth Low limit.

To enable Queue Depth Low events on the queue MYQUEUE with a limit set at
20%, use the following MQSC:

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL('MYQUEUE') QDEPTHLO(2ð) QDPLOEV(ENABLED)

28 MQSeries Programmable System Management

 Queue depth events

Automatically enabling Queue Depth Low events: A Queue Depth Low event is
automatically enabled by a Queue Depth High event or a Queue Full event on the
same queue.

A Queue Depth Low event automatically enables both a Queue Depth High and a
Queue Full event on the same queue.

Enabling Queue Full events
When enabled, a Queue Full event is generated when an application is unable to
put a message onto a queue because the queue is full.

To enable Queue Full events on the queue MYQUEUE, use the following MQSC:

ALTER QMGR PERFMEV(ENABLED)
ALTER QLOCAL('MYQUEUE') QDPMAXEV(ENABLED)

Automatically enabling Queue Full events: A Queue Full event is automatically
enabled by a Queue Depth High or a Queue Depth Low event on the same queue.

A Queue Full event automatically enables a Queue Depth Low event on the same
queue.

Queue depth events examples
This section contains some examples of queue depth events. The following
examples illustrate how queue depth varies over time.

Example 1 (queue depth events)
The queue, MYQUEUE1, has a maximum depth of 1000 messages, and the high
and low queue depth limits are 80% and 20% respectively. Initially, Queue Depth
High events are enabled, while the other queue depth events are disabled.

The MQSeries commands (MQSC) to configure this queue are:

ALTER QMGR PERFMEV(ENABLED)

DEFINE QLOCAL('MYQUEUE1') +
 MAXDEPTH(1ððð) +
 QDPMAXEV(DISABLED) +
 QDEPTHHI(8ð) +
 QDPHIEV(ENABLED) +
 QDEPTHLO(2ð) +
 QDPLOEV(DISABLED)

Figure 7. Definition of MYQUEUE1

 Chapter 3. Understanding performance events 29

 Queue depth events

High

Enabled events

100

80

20

0
T0 T1 T2 T3 T4

Depth high
limit

Depth low
limitQ

ue
ue

ca
pa

ci
ty

(%
)

Time

Queue Depth High Queue Depth Low

Low
Full

Figure 8. Queue depth events (1)

 Commentary
Figure 8 shows how the queue depth changes over time:

1. At T1, the queue depth is increasing (more MQPUT calls than MQGET calls)
and crosses the Queue Depth Low limit. No event is generated at this time.

2. The queue depth continues to increase until T2, when the depth high limit
(80%) is reached and a Queue Depth High event is generated.

This enables both Queue Full and Queue Depth Low events.

3. The (presumed) preventive actions instigated by the event prevent the queue
from becoming full. By time T3, the Queue Depth High limit has been reached
again, this time from above. No event is generated at this time.

4. The queue depth continues to fall until T4, when it reaches the depth low limit
(20%) and a Queue Depth Low event is generated.

This enables both Queue Full and Queue Depth High events.

Table 8 on page 31 summarizes the queue event statistics and Table 9 on
page 31 summarizes which events are enabled at different times for this example.

30 MQSeries Programmable System Management

 Queue depth events

Table 8. Event statistics summary for queue depth events (example 1)

Event 2 Event 4

Time of event T2 T4

Type of event Queue Depth
High

Queue Depth
Low

TimeSinceReset T2 - T0 T4 - T2

HighQDepth (Maximum queue depth since reset) 800 900

MsgEnqCount 1157 1220

MsgDeqCount 357 1820

Table 9. Summary showing which events are enabled

Time period Queue Depth
High event

Queue Depth Low
event

Queue Full event

Before T1 ENABLED - -

T1 to T2 ENABLED - -

T2 to T3 - ENABLED ENABLED

T3 to T4 - ENABLED ENABLED

After T4 ENABLED - ENABLED

Example 2 (queue depth events)
This is a more extensive example, however, the principles remain the same. This
example assumes the use of the same queue MYQUEUE1 as defined in Figure 7
on page 29.

Table 10 on page 33 summarizes the queue event statistics and Table 11 on
page 33 summarizes which events are enabled at different times for this example.

Figure 9 on page 32 shows the variation of queue depth over time.

 Chapter 3. Understanding performance events 31

 Queue depth events

100

80

20

0
T0 T1 T2 T3 T4 T5 T8 T9 T10 T11 T12T6 T7

Queue Depth High event
Queue Depth Low event
Queue Depth High event
Queue Full event
Queue Depth Low event

Low
Full

Time

Q
ue

ue
ca

pa
ci

ty
(%

)

High

Figure 9. Queue depth events(2)

 Commentary
Some points to note are:

1. No Queue Depth Low event is generated at:

T1 (Queue depth increasing, and not enabled)
T2 (Not enabled)
T3 (Queue depth increasing, and not enabled)

2. At T4 a Queue Depth High event occurs. This enables both Queue Full and
Queue Depth Low events.

3. At T9 a Queue Full event occurs after the first message that cannot be put on
the queue because the queue is full.

4. At T12 a Queue Depth Low event occurs.

32 MQSeries Programmable System Management

 Queue depth events

Event statistics summary (example 2)

Table 10. Event statistics summary for queue depth events (example 2)

Event 4 Event 6 Event 8 Event 9 Event 12

Time of event T4 T6 T8 T9 T12

Type of event Queue
Depth High

Queue
Depth Low

Queue
Depth High

Queue Full Queue
Depth Low

TimeSinceReset T4 - T0 T6 - T4 T8 - T6 T9 - T8 T12 - T9

HighQDepth 800 855 800 1000 1000

MsgEnqCount 1645 311 1377 324 221

MsgDeqCount 845 911 777 124 1021

Note: Events are out of syncpoint, therefore you could have an empty queue, then
fill it up causing an event, then roll back all of the messages under the control of a
syncpoint manager. However, event enabling has been automatically set, so that
the next time the queue fills up, no event is generated.

Table 11. Summary showing which events are enabled

Time period Queue Depth
High event

Queue Depth Low
event

Queue Full event

T0 to T4 ENABLED - -

T4 to T6 - ENABLED ENABLED

T6 to T8 ENABLED - ENABLED

T8 to T9 - ENABLED ENABLED

T9 to T12 - ENABLED -

After T12 ENABLED - ENABLED

 Chapter 3. Understanding performance events 33

 Summary

Enabling performance events summary

Table 12. Enabling performance events using MQSC

Queue depth event Queue attributes

Queue depth high

Queue depth low

Queue full

QDPHIEV (ENABLED)
QDEPTHHI (hh)

QDPLOEV (ENABLED)
QDEPTHLO (ll)

QDPMAXEV (ENABLED)

Queue service interval event Queue attributes

Queue Service Interval High
Queue Service Interval OK
No queue service interval events

QSVCIEV (HIGH)
QSVCIEV (OK)
QSVCIEV (NONE)

Service interval QSVCINT (tt)

Notes:

All performance events must be enabled using the queue manager attribute PERFMEV.

Numeric values

hh Queue depth high limit.
ll Queue depth low limit.

(Both values are expressed as a percentage of the maximum queue depth, which is specified by the queue
attribute MAXDEPTH.)

tt Service interval time in milliseconds.

Table 13. Enabling performance events using PCF commands

Attribute Parameter Value

QDepthHighEvent
QDepthHighLimit

QDepthLowEvent
QDepthLowLimit

QDepthMaxEvent

QServiceIntervalEvent

QServiceInterval

MQIA_Q_DEPTH_HIGH_EVENT
MQIA_Q_DEPTH_HIGH_LIMIT

MQIA_Q_DEPTH_LOW_EVENT
MQIA_Q_DEPTH_LOW_LIMIT

MQIA_Q_DEPTH_MAX_EVENT

MQIA_Q_SERVICE_INTERVAL_EVENT

MQIA_Q_SERVICE_INTERVAL

MQEVR_ENABLED
hh

MQEVR_ENABLED
ll

MQEVR_ENABLED

MQQSIE_HIGH
MQQSIE_OK
MQQSIE_NONE

tt

Notes:

All performance events must be enabled using the queue manager attribute PerformanceEvent.

Numeric values

hh Queue depth high limit.
ll Queue depth low limit.

(Both values are expressed as a percentage of the maximum queue depth, which is specified by the queue
attribute MaxQDepth)

tt Service interval time in milliseconds.

34 MQSeries Programmable System Management

 Event message formats

Chapter 4. Event message reference

This chapter describes the information returned in the event message for each
instrumentation event.

It provides an overview of the event message format and descriptions of the
parameters returned in the event messages for each event.

Event message formats
Event messages are standard MQSeries messages containing a message
descriptor and message data.

Table 14 on page 36 shows the basic structure of these messages, and the names
of the fields in an event message for queue service interval events.

In general, you need only a subset of this information for any system management
programs that you write. For example, your application might need the following
data:

� The name of the application causing the event
� The name of the queue manager on which the event occurred
� The queue on which the event was generated
� The event statistics

Message descriptors in event messages
The format of the message descriptor is defined by the MQSeries MQMD data
structure, which is found in all MQSeries messages and is described in the
MQSeries Application Programming Reference. The message descriptor contains
information that can be used by a user-written system monitoring application. For
example:

� The message type
� The format type
� The date and time that the message was put on the event queue

In particular, the information in the descriptor informs a system management
application that the message type is MQMT_DATAGRAM, and the message format
is MQFMT_EVENT.

In an event message, many of these fields contain fixed data, which is supplied by
the queue manager that generated the message. The fields that make up the
MQMD structure are described in “MQMD (Message descriptor)” on page 37, and
also “Message descriptor for a PCF command” on page 127. It also specifies the
name of the queue manager (truncated to 28 characters) that put the message, and
the date and time that the event message was put on the event queue.

 Copyright IBM Corp. 1994,1998 35

 Event message formats

Table 14. Event message structure for queue service interval events

Message descriptor Message data

MQMD structure 1 Event header
MQCFH structure 2

Event data 3

Structure identifier
Structure version
Report options
Message type
Expiration time
Feedback code
Encoding
Coded character set ID
Message format
Message priority
Persistence
Message identifier
Correlation identifier
Backout count
Reply-to queue
Reply-to queue manager
User identifier
Accounting token
Application identity data
Application type
Application name
Put date
Put time
Application origin data
Group identifier
Message sequence number
Offset
Message flags
Original length

Structure type
Structure length
Structure version
 number
Command identifier
 (event type)
Message sequence
 number
Control options
Completion code
Reason code (MQRC_*)
Parameter count

Queue manager name
Queue name
Time since last
 reset
Maximum number of

messages on the
 queue
Number of messages

put on the queue
Number of messages

taken off the
 queue

Notes:

1. MQMD is the standard structure for MQSeries message headers.
2. MQCFH is the standard structure for an event header. This is the same as the PCF header

structure.
3. The parameters shown are those returned for a queue service interval event. The actual event

data depends on the specific event.

Message data in event messages
The event message data is based on the programmable command format (PCF)
that is used in PCF command inquiries and responses. If you do not know about
PCF commands, see Chapter 6, “Introduction to Programmable Command
Formats” on page 123 for information.

The event message consists of two parts: the event header and the event
message data, seeTable 14 . In an event message is another data structure,
MQCFH, which is described in “MQCFH (PCF header)” on page 38 and “MQCFH –
PCF header” on page 334.

36 MQSeries Programmable System Management

 Message descriptor

 Event header
The information in MQCFH specifies that:

� The message is an event message.

� The category of event, that is, whether the event is a queue manager,
performance, or channel event.

� A reason code specifying the cause of the event. For events caused by MQI
calls, this reason code is the same as the reason code for the MQI call.

Reason codes have names that begin with the characters MQRC_. For example,
the reason code MQRC_PUT_INHIBITED is generated when an application
attempts to put a message on a queue that is not enabled for puts.

Event message data
The event message data contains information specific to the event. This includes
the name of the queue manager and, where appropriate, the name of the queue.

The data structures returned depend on which particular event was generated. In
addition, for some events, certain of the structures are optional, and are returned
only if they contain information that is relevant to the circumstances giving rise to
the event. The values in the data structures depend on the circumstances that
caused the event to be generated.

Note: The event structures in the event data are not returned in a defined order.
They must be identified from the parameter identifiers shown in the description.

MQMD (Message descriptor)
The MQMD structure describes the information that accompanies the message data
of an event message. In this list, the strings in parentheses next to the parameter
name are the data types of each parameter. These are described in the MQSeries
Application Programming Reference.

For an event, the MQMD structure contains these values:

Parameter Value
StrucId (MQCHAR4) MQMD_STRUC_ID
Version (MQLONG) MQMD_VERSION_1 or MQMD_VERSION_2
Report (MQLONG) MQRO_NONE
MsgType (MQLONG) MQMT_DATAGRAM
Expiry (MQLONG) MQEI_UNLIMITED
Feedback (MQLONG) MQFB_NONE
Encoding (MQLONG) Encoding of the queue manager generating the event.
CodedCharSetId (MQLONG) Coded character set ID (CCSID) of the queue manager generating the

event.
Format (MQCHAR8) MQFMT_EVENT
Priority (MQLONG) Default priority of the event queue, if it is a local queue, or its local

definition at the queue manager generating the event.
Persistence (MQLONG) Default persistence of the event queue, if it is a local queue, or its local

definition at the queue manager generating the event.
MsgId (MQBYTE24) The value is uniquely generated by the queue manager.
CorrelId (MQBYTE24) MQCI_NONE
BackoutCount (MQLONG) Always 0.
ReplyToQ (MQCHAR48) Always blank.
ReplyToQMgr (MQCHAR48) The queue manager name at the originating system.

 Chapter 4. Event message reference 37

 PCF header

UserIdentifier (MQCHAR12) Always blank.
AccountingToken (MQBYTE32) MQACT_NONE
ApplIdentityData (MQCHAR32) Always blank.
PutApplType (MQLONG) Type of application that put the message: MQAT_QMGR for a local event

queue.
PutApplName (MQCHAR28) Name of application that put the message.
PutDate (MQCHAR8) Date when message was put, generated by the queue manager.
PutTime (MQCHAR8) Time when message was put, generated by the queue manager.
ApplOriginData (MQCHAR4) Always blank.

If Version is MQMD_VERSION_2, the following additional fields are presen:

Parameter Value
GroupId (MQBYTE24) MQGI_NONE
MsgSeqNumber (MQLONG) Always 1.
Offset (MQLONG) Always 0.
MsgFlags (MQLONG) MQMF_NONE
OriginalLength (MQLONG) MQOL_UNDEFINED

MQCFH (PCF header)
The MQCFH structure is the event header, which has the same format as all PCF
headers. In this list, the strings in parentheses next to the parameter name are the
structure types of each parameter. These are described in the MQSeries
Application Programming Reference.

For an event, the MQCFH structure contains these values:

Parameter Value
Type (MQLONG) MQCFT_EVENT
StrucLength (MQLONG) MQCFH_STRUC_LENGTH

Length of command format header structure.
Version (MQLONG) MQCFH_VERSION_1
Command (MQLONG) Command identifier, identifies the category of event as one of:

MQCMD_Q_MGR_EVENT (Queue manager event)

MQCMD_PERFM_EVENT (Performance event)

MQCMD_CHANNEL_EVENT (Channel event)
MsgSeqNumber (MQLONG) Always 1.
Control (MQLONG) MQCFC_LAST

Last message in the group.
CompCode (MQLONG) Completion code, one of:

MQCC_OK (Event reporting OK condition)

MQCC_WARNING (Event reporting warning condition) all events have this
completion code, unless otherwise specified.

Reason (MQLONG) Reason code identifying event. Depends on the event being reported.

Note: Events with the same reason code are further identified by the
ReasonQualifier parameter in the event data.

ParameterCount (MQLONG) The number of parameter structures that follow the MQCFH structure.

38 MQSeries Programmable System Management

 Event message data

Event message data
| Notes to users

| 1. The events described in the reference section are available on all platforms,
| unless specific limitations are shown at the start of an event.

| 2. In the event message reference that follows, the strings in parentheses next
| to the parameter name are the structure types of each parameter. These
| are described in Chapter 9, “Structures used for commands and responses”
| on page 333.

| 3. Version 2.0 of MQSeries for Windows does not generate MQSeries events.

Use the following table to locate information about a particular event message:

Table 15. Event message data summary

Event type Event name page

Authority events Not Authorized (type 1)
Not Authorized (type 2)
Not Authorized (type 3)
Not Authorized (type 4)

69
71
73
75

Channel events Channel Activated
Channel Auto-Definition Error
Channel Auto-Definition OK
Channel Conversion Error
Channel Not Activated
Channel Started
Channel Stopped

46
48
50
52
55
57
59

IMS Bridge events Bridge Started
Bridge Stopped

42
44

Inhibit events Get Inhibited
Put Inhibited

67
77

Local events Alias Base Queue Type Error
Unknown Alias Base Queue
Unknown Object Name

40
100
104

Performance events Queue Depth High
Queue Depth Low
Queue Full
Queue Service Interval High
Queue Service Interval OK

79
81
83
88
90

Remote events Default Transmission Queue Type Error
Default Transmission Queue Usage Error
Queue Type Error
Remote Queue Name Error
Transmission Queue Type Error
Transmission Queue Usage Error
Unknown Default Transmission Queue
Unknown Remote Queue Manager
Unknown Transmission Queue

63
65
92
94
96
98

102
106
109

Start and stop events Queue Manager Active
Queue Manager Not Active

85
86

 Chapter 4. Event message reference 39

 Alias Base Queue Type Error

Alias Base Queue Type Error
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_ALIAS_BASE_Q_TYPE_ERROR

 � Event data

Event data summary
Always returned:

QMgrName, QName, BaseQName, QType, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Reason code identifying the event.

The value is:

MQRC_ALIAS_BASE_Q_TYPE_ERROR
(2001, X'7D1') Alias base queue not a valid type.

An MQOPEN or MQPUT1 call was issued specifying an
alias queue as the destination, but the BaseQName in the
alias queue definition resolves to a queue that is not a
local queue, or local definition of a remote queue.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

40 MQSeries Programmable System Management

 Alias Base Queue Type Error

QType (MQCFIN)
Type of queue to which the alias resolves (parameter identifier:
MQIA_Q_TYPE).

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_MODEL
Model queue definition.

ApplType (MQCFIN)
Type of the application making the call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

 Chapter 4. Event message reference 41

 Bridge Started

 Bridge Started

This event is produced only by MQSeries for MVS/ESA

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_BRIDGE_STARTED

 � Event data

Event data summary
Always returned:

QMgrName, BridgeType, BridgeName

Returned optionally:
None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_BRIDGE_STARTED
(2125, X'84D') Bridge started.

The IMS bridge has been started.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

BridgeType (MQCFIN)
Bridge type (parameter identifier: MQIACF_BRIDGE_TYPE).

The value is:

MQBT_OTMA
OTMA bridge.

42 MQSeries Programmable System Management

 Bridge Started

BridgeName (MQCFST)
Bridge name (parameter identifier: MQCACF_BRIDGE_NAME).

For bridges of type MQBT_OTMA, the name is of the form
XCFgroupXCFmember, where XCFgroup is the XCF group name to
which both IMS and MQSeries belong. XCFmember is the XCF
member name of the IMS system. The maximum length of the
string is MQ_BRIDGE_NAME_LENGTH.

 Chapter 4. Event message reference 43

 Bridge Stopped

 Bridge Stopped

This event is produced only by MQSeries for MVS/ESA

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_BRIDGE_STOPPED

 � Event data

Event data summary
Always returned:

QMgrName, ReasonQualifier, BridgeType, BridgeName

Returned optionally:
ErrorIdentifier,

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_BRIDGE_STOPPED
(2126, X'84E') Bridge stopped.

The IMS bridge has been stopped.

 Event data
QMgrName (MQCFST)

The name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier that qualifies the reason code (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value is one of the following:

MQRQ_BRIDGE_STOPPED_OK
Bridge has been stopped with either a zero return code
or a warning return code.

44 MQSeries Programmable System Management

 Bridge Stopped

For MQBT_OTMA bridges, one side or the other issued
a normal IXCLEAVE request.

MQRQ_BRIDGE_STOPPED_ERROR
Bridge has been stopped but there is an error reported.

BridgeType (MQCFIN)
Bridge type (parameter identifier: MQIACF_BRIDGE_TYPE).

The value is:

MQBT_OTMA
OTMA bridge.

BridgeName (MQCFST)
Bridge name (parameter identifier: MQCACF_BRIDGE_NAME).

For bridges of type MQBT_OTMA, the name is of the form
XCFgroupXCFmember, where XCFgroup is the XCF group name to
which both IMS and MQSeries belong. XCFmember is the XCF
member name of the IMS system. The maximum length of the
string is MQ_BRIDGE_NAME_LENGTH.

ErrorIdentifier (MQCFIN)
Identifier of the cause of the error (parameter identifier:
MQIACF_ERROR_IDENTIFIER).

When a bridge is stopped due to an error, this is the code that
identifies the error. If the event message is because of a bridge
stop failure, the following fields are set:

� The IMS sense code.

 Chapter 4. Event message reference 45

 Channel Activated

 Channel Activated

This event is not produced if you are using CICS for distributed queue
management in MQSeries for MVS/ESA.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_ACTIVATED

 � Event data

Event data summary
Always returned:

QMgrName, ChannelName,

Returned optionally:
XmitQName, ConnectionName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_CHANNEL_ACTIVATED
(2295, X'8F7') Channel activated.

This condition is detected when a channel, which has
been waiting to become active, and for which a
Channel Not Activated event has been generated, is
now able to become active, because an active slot has
been released by another channel.

This event is not generated for a channel which is able
to become active without waiting for an active slot to be
released.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

46 MQSeries Programmable System Management

 Channel Activated

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

This is not returned for commands containing a generic name; it is
not returned for a receiver or a server-connection channel type.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

For TCP/IP this is the internet address only if the channel has
successfully established a connection. Otherwise it is the contents
of the ConnectionName field in the channel definition.

This is not returned for commands containing a generic name.

 Chapter 4. Event message reference 47

 Channel Auto-definition Error

Channel Auto-definition Error

| This event is supported only if you are using MQSeries for AS/400 V4R2, or
| any MQSeries Version 5 product.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_AUTO_DEF_ERROR

 � Event data

Event data summary
Always returned:

QMgrName, ChannelName, ChannelType, ErrorIdentifier, ConnectionName

Returned optionally:
AuxErrorDataInt1

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_CHANNEL_AUTO_DEF_ERROR
(2234, X'8BA') Automatic channel definition failed.

This condition is detected when the automatic definition
of a channel fails; this may be because an error
occurred during the definition process, or because the
channel automatic-definition exit inhibited the definition.
Additional information is returned in the event message
indicating the reason for the failure.

 Event data
QMgrName (MQCFST)

The name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

48 MQSeries Programmable System Management

 Channel Auto-definition Error

Specifies the name of the channel for which the auto-definition has
failed.

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of the channel for which the auto-definition has
failed.

The value is one of the following:

MQCHT_RECEIVER
Receiver.

MQCHT_SVRCONN
Server-connection (for use by clients).

ErrorIdentifier (MQCFIN)
Identifier of the cause of the error (parameter identifier:
MQIACF_ERROR_IDENTIFIER).

This contains the reason code (MQRC_* or MQRCCF_*) resulting
from the channel definition attempt, or else the value
MQRCCF_SUPPRESSED_BY_EXIT) if the attempt to create the
definition was disallowed by the exit.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

Name of partner attempting to establish connection.

The maximum length of the string is MQ_CONN_NAME_LENGTH.

AuxErrorDataInt1 (MQCFIN)
Auxiliary error data (parameter identifier:
MQIACF_AUX_ERROR_DATA_INT_1).

This is present only if ErrorIdentifier contains
MQRCCF_SUPPRESSED_BY_EXIT. It contains the value
returned by the exit in the Feedback field of the MQCXP to indicate
why the auto definition has been disallowed.

 Chapter 4. Event message reference 49

 Channel Auto-definition OK

Channel Auto-definition OK

| This event is supported only if you are using MQSeries for AS/400 V4R2, or
| any MQSeries Version 5 product.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_AUTO_DEF_OK

 � Event data

Event data summary
Always returned:

QMgrName, ChannelName, ChannelType, ConnectionName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_CHANNEL_AUTO_DEF_OK
(2233, X'8B9') Automatic channel definition
succeeded.

This condition is detected when the automatic definition
of a channel is successful. The channel is defined by
the MCA.

 Event data
QMgrName (MQCFST)

The name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

Specifies the name of the channel being defined.

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

50 MQSeries Programmable System Management

 Channel Auto-definition OK

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of channel being defined.

The value is one of the following:

MQCHT_RECEIVER
Receiver.

MQCHT_SVRCONN
Server-connection (for use by clients).

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

Name of partner attempting to establish connection.

The maximum length of the string is MQ_CONN_NAME_LENGTH.

 Chapter 4. Event message reference 51

 Channel Conversion Error

Channel Conversion Error

This event is not produced if you are using CICS for distributed queue
management in MQSeries for MVS/ESA.

| Note to users

| MQSeries for Windows V2.1 does not define the channel event queue for you,
| so the default action is not to generate channel events . This is because,
| once you have defined a channel event queue, you cannot stop channel event
| messages being generated. If you want MQ to generate channel events, you
| must define the channel event queue yourself using the name
| SYSTEM.ADMIN.CHANNEL.EVENT.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_CONV_ERROR

 � Event data

Event data summary
Always returned:

QMgrName, ConversionReasonCode, ChannelName, Format,

Returned optionally:
XmitQName, ConnectionName

 Event header
Reason (MQLONG)

Name of the reason code generating the event.

The value is:

MQRC_CHANNEL_CONV_ERROR
(2284, X'8EC') Channel conversion error.

This condition is detected when a channel is unable to
do data conversion and the MQGET call to get a
message from the transmission queue resulted in a
data conversion error. The conversion reason code
identifies the reason for the failure.

52 MQSeries Programmable System Management

 Channel Conversion Error

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ConversionReasonCode (MQCFIN)
Identifier of the cause of the conversion error (parameter identifier:
MQIACF_CONV_REASON_CODE).

The value can be one of the following:

MQRC_CONVERTED_MSG_TOO_BIG
(2120, X'848') Converted message too big for
application buffer.

MQRC_FORMAT_ERROR
(2110, X'83E') Message format not valid.

MQRC_NOT_CONVERTED
(2119, X'847') Application message data not
converted.

MQRC_SOURCE_CCSID_ERROR
(2111, X'83F') Source coded character set identifier
not valid.

MQRC_SOURCE_DECIMAL_ENC_ERROR
(2113, X'841') Packed-decimal encoding in message
not recognized.

MQRC_SOURCE_FLOAT_ENC_ERROR
(2114, X'842') Floating-point encoding in message not
recognized.

MQRC_SOURCE_INTEGER_ENC_ERROR
(2112, X'840') Integer encoding in message not
recognized.

MQRC_TARGET_CCSID_ERROR
(2115, X'843') Target coded character set identifier not
valid.

MQRC_TARGET_DECIMAL_ENC_ERROR
(2117, X'845') Packed-decimal encoding specified by
receiver not recognized.

MQRC_TARGET_FLOAT_ENC_ERROR
(2118, X'846') Floating-point encoding specified by
receiver not recognized.

MQRC_TARGET_INTEGER_ENC_ERROR
(2116, X'844') Integer encoding specified by receiver
not recognized.

MQRC_TRUNCATED_MSG_ACCEPTED
(2079, X'81F') Truncated message returned
(processing completed).

 Chapter 4. Event message reference 53

 Channel Conversion Error

MQRC_TRUNCATED_MSG_FAILED
(2080, X'820') Truncated message returned
(processing not completed).

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

Format (MQCFST)
Name of format (parameter identifier:
MQCACH_FORMAT_NAME).

The maximum length of the string is MQ_FORMAT_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

For TCP/IP this is the internet address only if the channel has
successfully established a connection. Otherwise it is the contents
of the ConnectionName field in the channel definition.

54 MQSeries Programmable System Management

 Channel Not Activated

Channel Not Activated

This event is not produced if you are using CICS for distributed queue
management in MQSeries for MVS/ESA.

| Note to users

| MQSeries for Windows V2.1 does not define the channel event queue for you,
| so the default action is not to generate channel events . This is because,
| once you have defined a channel event queue, you cannot stop channel event
| messages being generated. If you want MQ to generate channel events, you
| must define the channel event queue yourself using the name
| SYSTEM.ADMIN.CHANNEL.EVENT.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_NOT_ACTIVATED.

 � Event data

Event data summary
Always returned:

QMgrName, ChannelName,

Returned optionally:
XmitQName, ConnectionName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_CHANNEL_NOT_ACTIVATED
(2296, X'8F8') Channel cannot be activated.

This condition is detected when a channel is required to
become active, either because it is starting, or because
it is about to make another attempt to establish
connection with its partner. However, it is unable to do
so because the limit on the number of active channels
has been reached (see the MaxActiveChannels
parameter in the qm.ini file, or, for MVS/ESA see the
ACTCHL parameter in CSQXPARM). The channel

 Chapter 4. Event message reference 55

 Channel Not Activated

waits until it is able to take over an active slot released
when another channel ceases to be active. At that time
a Channel Activated event is generated.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

This is not returned for commands containing a generic name; it is
not returned for a receiver or server-connection channel type.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

For TCP/IP this is the Internet address only if the channel has
successfully established a connection. Otherwise it is the contents
of the ConnectionName field in the channel definition.

This is not returned for commands containing a generic name.

56 MQSeries Programmable System Management

 Channel Started

 Channel Started

This event is not produced if you are using CICS for distributed queue
management in MQSeries for MVS/ESA.

| Note to users

| MQSeries for Windows V2.1 does not define the channel event queue for you,
| so the default action is not to generate channel events . This is because,
| once you have defined a channel event queue, you cannot stop channel event
| messages being generated. If you want MQ to generate channel events, you
| must define the channel event queue yourself using the name
| SYSTEM.ADMIN.CHANNEL.EVENT.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_STARTED

 � Event data

Event data summary
Always returned:

QMgrName, ChannelName,

Returned optionally:
XmitQName, ConnectionName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_CHANNEL_STARTED
(2282, X'8EA') Channel started.

Either

� An operator has issued a Start Channel command,
or

� An instance of a channel has been successfully
established.

This condition is detected when Initial Data
negotiation is complete and resynchronization has

 Chapter 4. Event message reference 57

 Channel Started

been performed where necessary such that
message transfer can proceed.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

This is not returned for commands containing a generic name; it is
not returned for a receiver or server-connection channel type.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

For TCP/IP this is the Internet address only if the channel has
successfully established a connection. Otherwise it is the contents
of the ConnectionName field in the channel definition.

This is not returned for commands containing a generic name.

58 MQSeries Programmable System Management

 Channel Stopped

 Channel Stopped

This event is not produced if you are using CICS for distributed queue
management in MQSeries for MVS/ESA.

| Note to users

| MQSeries for Windows V2.1 does not define the channel event queue for you,
| so the default action is not to generate channel events . This is because,
| once you have defined a channel event queue, you cannot stop channel event
| messages being generated. If you want MQ to generate channel events, you
| must define the channel event queue yourself using the name
| SYSTEM.ADMIN.CHANNEL.EVENT.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.CHANNEL.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_CHANNEL_STOPPED

 � Event data

Event data summary
Always returned:

QMgrName, ReasonQualifier, ChannelName, ErrorIdentifier,
AuxErrorDataInt1, AuxErrorDataInt2, AuxErrorDataStr1, AuxErrorDataStr2,
AuxErrorDataStr3

Returned optionally:
XmitQName, ConnectionName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_CHANNEL_STOPPED
(2283, X'8EB') Channel stopped.

This condition is detected when the channel has been
stopped. The reason qualifier identifies the reasons for
stopping.

 Chapter 4. Event message reference 59

 Channel Stopped

 Event data
QMgrName (MQCFST)

The name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier that qualifies the reason code (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value is one of the following:

MQRQ_CHANNEL_STOPPED_OK
Channel has been closed with either a zero return code
or a warning return code.

MQRQ_CHANNEL_STOPPED_ERROR
Channel has been closed but there is an error reported
and the channel is not in stopped or retry state.

MQRQ_CHANNEL_STOPPED_RETRY
Channel has been closed and it is in retry state.

MQRQ_CHANNEL_STOPPED_DISABLED
Channel has been closed and it is in a stopped state.

ChannelName (MQCFST)
Channel name (parameter identifier:
MQCACH_CHANNEL_NAME).

The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

ErrorIdentifier (MQCFIN)
Identifier of the cause of the error (parameter identifier:
MQIACF_ERROR_IDENTIFIER).

When a channel is stopped due to an error, this is the code that
identifies the error. If the event message is because of a channel
stop failure, the following fields are set:

1. ReasonQualifier, containing the value
MQRQ_CHANNEL_STOPPED_ERROR

2. ErrorIdentifier, containing the code number of an error
message that describes the error

3. AuxErrorDataInt1, containing error message integer insert 1
4. AuxErrorDataInt2, containing error message integer insert 2
5. AuxErrorDataStr1, containing error message string insert 1
6. AuxErrorDataStr2, containing error message string insert 2
7. AuxErrorDataStr3, containing error message string insert 3

The meanings of the error message inserts depend on the code
number of the error message. Details of error-message code
numbers and the inserts for specific platforms can be found as
follows:

60 MQSeries Programmable System Management

 Channel Stopped

� For MVS/ESA, see the section “Distributed queuing message
codes” in the MQSeries for MVS/ESA Messages and Codes
book.

� For other platforms, the last four digits of ErrorIdentifier
when displayed in hexadecimal notation indicate the decimal
code number of the error message.

For example, if ErrorIdentifier has the value X'xxxxyyyy',
the message code of the error message explaining the error is
AMQyyyy.

AuxErrorDataInt1 (MQCFIN)
First integer of auxiliary error data for channel errors (parameter
identifier: MQIACF_AUX_ERROR_DATA_INT_1).

When a channel is in a stopped condition due to an error, this is
| the first integer parameter that qualifies the error. This information
| is for use by IBM service personnel; include it in any problem
| report that you submit to IBM regarding this event message.

AuxErrorDataInt2 (MQCFIN)
Second integer of auxiliary error data for channel errors (parameter
identifier: MQIACF_AUX_ERROR_DATA_INT_2).

If the channel is stopped due to an error, this is the second integer
| parameter that qualifies the error. This information is for use by
| IBM service personnel; include it in any problem report that you
| submit to IBM regarding this event message.

AuxErrorDataStr1 (MQCFST)
First string of auxiliary error data for channel errors (parameter
identifier: MQCACF_AUX_ERROR_DATA_STR_1).

If the channel is stopped due to an error, this is the first string
| parameter that qualifies the error. This information is for use by
| IBM service personnel; include it in any problem report that you
| submit to IBM regarding this event message.

AuxErrorDataStr2 (MQCFST)
Second string of auxiliary error data for channel errors (parameter
identifier: MQCACF_AUX_ERROR_DATA_STR_2).

If the channel is stopped due to an error, this is the second string
| parameter that qualifies the error. This information is for use by
| IBM service personnel; include it in any problem report that you
| submit to IBM regarding this event message.

AuxErrorDataStr3 (MQCFST)
Third string of auxiliary error data for channel errors (parameter
identifier: MQCACF_AUX_ERROR_DATA_STR_3).

If the channel is stopped due to an error, this is the third string
| parameter that qualifies the error. This information is for use by
| IBM service personnel; include it in any problem report that you
| submit to IBM regarding this event message.

 Chapter 4. Event message reference 61

 Channel Stopped

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

This is not returned for commands containing a generic name. It
is not returned for a receiver or server-connection channel type.

ConnectionName (MQCFST)
Connection name (parameter identifier:
MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

For TCP/IP this is the internet address only if the channel has
successfully established a connection. Otherwise it is the contents
of the ConnectionName field in the channel definition.

This is not returned for commands containing a generic name.

62 MQSeries Programmable System Management

 Default Transmission Queue Type Error

Default Transmission Queue Type Error
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_DEF_XMIT_Q_TYPE_ERROR

 � Event data

Event data summary
Always returned:

QMgrName, QName, XmitQName, QType, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_DEF_XMIT_Q_TYPE_ERROR
(2198, X'896') Default transmission queue not local.

An MQOPEN or MQPUT1 call was issued specifying a
remote queue as the destination. Either a local
definition of the remote queue was specified, or a
queue-manager alias was being resolved, but in either
case the XmitQName attribute in the local definition is
blank.

No transmission queue is defined with the same name
as the destination queue manager, so the local queue
manager has attempted to use the default transmission
queue. However, although there is a queue defined by
the DefXmitQName queue-manager attribute, it is not a
local queue. See the MQSeries Application
Programming Guide for more information.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

 Chapter 4. Event message reference 63

 Default Transmission Queue Type Error

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

XmitQName (MQCFST)
Default transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

QType (MQCFIN)
Type of default transmission queue (parameter identifier:
MQIA_Q_TYPE).

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

64 MQSeries Programmable System Management

 Default Transmission Queue Usage Error

Default Transmission Queue Usage Error
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_DEF_XMIT_Q_USAGE_ERROR

 � Event data

Event data summary
Always returned:

QMgrName, QName, XmitQName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_DEF_XMIT_Q_USAGE_ERROR
(2199, X'897') Default transmission queue usage error.

An MQOPEN or MQPUT1 call was issued specifying a
remote queue as the destination. Either a local
definition of the remote queue was specified, or a
queue-manager alias was being resolved, but in either
case the XmitQName attribute in the local definition is
blank.

No transmission queue is defined with the same name
as the destination queue manager, so the local queue
manager has attempted to use the default transmission
queue. However, the queue defined by the
DefXmitQName queue-manager attribute does not have a
Usage attribute of MQUS_TRANSMISSION. See the
MQSeries Application Programming Guide for more
information.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

 Chapter 4. Event message reference 65

 Default Transmission Queue Usage Error

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

XmitQName (MQCFST)
Default transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

66 MQSeries Programmable System Management

 Get Inhibited

 Get Inhibited
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_GET_INHIBITED

 � Event data

Event data summary
Always returned:

QMgrName, QName, ApplType, ApplName,

Returned optionally:
None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_GET_INHIBITED
(2016, X'7E0') Gets inhibited for the queue.

MQGET calls are currently inhibited for the queue (see the
InhibitGet queue attribute in the description of attributes common to
all queues in the MQSeries Application Programming Reference) or
for the queue to which this queue resolves.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of the application that issued the get (parameter identifier:
MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application that issued the get (parameter identifier:
MQCACF_APPL_NAME).

 Chapter 4. Event message reference 67

 Get Inhibited

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, rather than the client.

68 MQSeries Programmable System Management

 Not Authorized (type 1)

Not Authorized (type 1)

| This event is not supported if you are using MQSeries for MVS/ESA, MQSeries
| for OS/2, or MQSeries for Windows Version 2.1.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_NOT_AUTHORIZED

 � Event data

Event data summary
Always returned:

QMgrName, ReasonQualifier, UserIdentifier, ApplType, ApplName

Returned optionally:
None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

On an MQCONN call, the user is not authorized to
connect to the queue manager.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier for type 1 authority events (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value must be:

MQRQ_CONN_NOT_AUTHORIZED
Connection not authorized.

 Chapter 4. Event message reference 69

 Not Authorized (type 1)

UserIdentifier (MQCFST)
User identifier that caused the authorization check (parameter
identifier: MQCACF_USER_IDENTIFIER).

The maximum length of the string is MQ_USER_ID_LENGTH.

ApplType (MQCFIN)
Type of application cauisng the event (parameter identifier:
MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application causing the event (parameter identifier:
MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

70 MQSeries Programmable System Management

 Not Authorized (type 2)

Not Authorized (type 2)

| This event is not supported if you are using MQSeries for MVS/ESA, MQSeries
| for OS/2, MQSeries for Tandem NSK Version 2.2, or MQSeries for Windows
| Version 2.1.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_NOT_AUTHORIZED

 � Event data

Event data summary
Always returned:

QMgrName, ReasonQualifier, Options, UserIdentifier, ApplType, ApplName

Returned optionally:
ObjectQMgrName, QName, ProcessName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

On an MQOPEN or MQPUT1 call, the user is not
authorized to open the object for the option(s) specified.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier for type 2 authority events (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value must be:

MQRQ_OPEN_NOT_AUTHORIZED
Open not authorized.

 Chapter 4. Event message reference 71

 Not Authorized (type 2)

Options (MQCFIN)
Options specified on the MQOPEN call (parameter identifier:
MQIACF_OPEN_OPTIONS).

UserIdentifier (MQCFST)
User identifier that caused the authorization check (parameter
identifier: MQCACF_USER_IDENTIFIER).

The maximum length of the string is MQ_USER_ID_LENGTH.

ApplType (MQCFIN)
Type of application causing the authorization check (parameter
identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application causing the authorization check
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
The name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ProcessName (MQCFST)
Name of the process whose attributes have changed (parameter
identifier: MQCA_PROCESS_NAME).

The maximum length of the string is
MQ_PROCESS_NAME_LENGTH.

72 MQSeries Programmable System Management

 Not Authorized (type 3)

Not Authorized (type 3)

| This event is not supported if you are using MQSeries for MVS/ESA, MQSeries
| for OS/2, MQSeries for Tandem NSK Version 2.2, or MQSeries for Windows
| Version 2.1.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_NOT_AUTHORIZED

 � Event data

Event data summary
Always returned:

QMgrName, ReasonQualifier, QName, UserIdentifier, ApplType, ApplName

Returned optionally:
None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

On an MQCLOSE call, the user is not authorized to
delete the object, which is a permanent dynamic queue,
and the Hobj parameter specified on the MQCLOSE
call is not the handle returned by the MQOPEN call
which created the queue.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier for type 3 authority events (parameter identifier:
MQIACF_REASON_QUALIFIER).

 Chapter 4. Event message reference 73

 Not Authorized (type 3)

The value is:

MQRQ_CLOSE_NOT_AUTHORIZED
Close not authorized.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

UserIdentifier (MQCFST)
User identifier that caused the authorization check (parameter
identifier: MQCACF_USER_IDENTIFIER).

The maximum length of the string is MQ_USER_ID_LENGTH.

ApplType (MQCFIN)
Type of application that caused the authorization check (parameter
identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application causing the authorization check
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

74 MQSeries Programmable System Management

 Not Authorized (type 4)

Not Authorized (type 4)

| This event is not supported if you are using MQSeries for MVS/ESA, MQSeries
| for OS/2, MQSeries for Tandem NSK Version 2.2, or MQSeries for Windows
| Version 2.1.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_NOT_AUTHORIZED

 � Event data

Event data summary
Always returned:

QMgrName, ReasonQualifier, Command, UserIdentifier

Returned optionally:
None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

Indicates that a command has been issued from a user
ID that is not authorized to access the object specified
in the command.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier for type 4 authority events (parameter identifier:
MQIACF_REASON_QUALIFIER).

The value must be:

 Chapter 4. Event message reference 75

 Not Authorized (type 4)

MQRQ_CMD_NOT_AUTHORIZED
Command not authorized.

Command (MQCFIN)
Identifier for the command (parameter identifier:
MQIACF_COMMAND).

See the PCF header (MQCFH) structure, described on page 334

UserIdentifier (MQCFST)
User identifier that caused the authorization check (parameter
identifier: MQCACF_USER_IDENTIFIER).

The maximum length of the string is MQ_USER_ID_LENGTH.

76 MQSeries Programmable System Management

 Put Inhibited

 Put Inhibited
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_PUT_INHIBITED

 � Event data

Event data summary
Always returned:

QMgrName, QName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code generating the event.

The value is:

MQRC_PUT_INHIBITED
(2051, X'803') Put calls inhibited for the queue.

MQPUT and MQPUT1 calls are currently inhibited for the queue (see
the InhibitPut queue attribute in the description of attributes
common to all queues in the MQSeries Application Programming
Reference) or for the queue to which this queue resolves.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of the application that issued the put (parameter identifier:
MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application that issued the put (parameter identifier:
MQCACF_APPL_NAME).

 Chapter 4. Event message reference 77

 Put Inhibited

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and ApplName
parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
Queue-manager name from object descriptor (MQOD) (parameter
identifier: MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned only if it has a value that is different from
QMgrName. This occurs when the ObjectQMgrName field in the object
descriptor provided by the application on the MQOPEN or MQPUT1 call is
neither blank nor the name of the application’s local queue manager.
However, it can also occur when ObjectQMgrName in the object descriptor is
blank, but a name service provides a queue-manager name which is not
the name of the application’s local queue manager.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

78 MQSeries Programmable System Management

 Queue Depth High

Queue Depth High
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.PERFM.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_Q_DEPTH_HIGH

 � Event data

Event data summary
Always returned:

QMgrName, QName, TimeSinceReset, HighQDepth, MsgEnqCount, MsgDeqCount

Returned optionally:
None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_Q_DEPTH_HIGH
(2224, X'8B0') Queue depth high limit reached or exceeded.

An MQPUT or MQPUT1 call has caused the queue depth to be
incremented to or above the limit specified in the QDepthHighLimit
attribute.

Corrective action: None. This reason code is only used to identify
the corresponding event message.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Name of the queue on which the limit has been reached (parameter
identifier: MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

TimeSinceReset (MQCFIN)
Time, in seconds, since the statistics were last reset (parameter identifier:
MQIA_TIME_SINCE_RESET).

The value recorded by this timer is also used as the interval time in queue
service interval events.

 Chapter 4. Event message reference 79

 Queue Depth High

HighQDepth (MQCFIN)
Maximum number of messages on the queue since the queue statistics
were last reset (parameter identifier: MQIA_HIGH_Q_DEPTH).

MsgEnqCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).

That is, the number of messages put on the queue since the queue
statistics were last reset.

MsgDeqCount (MQCFIN)
Number of messages removed from the queue (parameter identifier:
MQIA_MSG_DEQ_COUNT).

That is, the number of messages removed from the queue since the
queue statistics were last reset.

80 MQSeries Programmable System Management

 Queue Depth Low

Queue Depth Low
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.PERFM.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_Q_DEPTH_LOW

 � Event data

Event data summary
Always returned:

QMgrName, QName, TimeSinceReset, HighQDepth, MsgEnqCount, MsgDeqCount

Returned optionally:
None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_Q_DEPTH_LOW
(2225, X'8B1') Queue depth low limit reached or exceeded.

An MQGET call has caused the queue depth to be decremented to
or below the limit specified in the QDepthLowLimit attribute.

Corrective action: None. This reason code is only used to identify
the corresponding event message.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Name of the queue on which the limit has been reached (parameter
identifier: MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

TimeSinceReset (MQCFIN)
Time, in seconds, since the statistics were last reset (parameter identifier:
MQIA_TIME_SINCE_RESET).

The value recorded by this timer is also used as the interval time in queue
service interval events.

 Chapter 4. Event message reference 81

 Queue Depth Low

HighQDepth (MQCFIN)
Maximum number of messages on the queue since the queue statistics
were last reset (parameter identifier: MQIA_HIGH_Q_DEPTH).

MsgEnqCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).

That is, the number of messages put on the queue since the queue
statistics were last reset.

MsgDeqCount (MQCFIN)
Number of messages removed from the queue (parameter identifier:
MQIA_MSG_DEQ_COUNT).

That is, the number of messages removed from the queue since the
queue statistics were last reset.

82 MQSeries Programmable System Management

 Queue Full

 Queue Full
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.PERFM.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_Q_FULL

 � Event data

Event data summary
Always returned:

QMgrName, QName, TimeSinceReset, HighQDepth, MsgEnqCount, MsgDeqCount

Returned optionally:
None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_Q_FULL
(2053, X'805') Queue already contains maximum number of
messages.

On an MQPUT or MQPUT1 call, the call failed because the queue is
full, that is it already contains the maximum number of messages
possible (see the MaxQDepth local-queue attribute of local-queue
attributes in the MQSeries Application Programming Reference)

This reason code can also occur in the Feedback field in the
message descriptor of a report message; in this case it indicates that
the error was encountered by a message channel agent when it
attempted to put the message on a remote queue.

Corrective action: Retry the operation later. Consider increasing the
maximum depth for this queue, or arranging for more instances of
the application to service the queue.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
The name of the queue on which the put was rejected (parameter
identifier: MQCA_BASE_Q_NAME).

 Chapter 4. Event message reference 83

 Queue Full

The maximum length of the string is MQ_Q_NAME_LENGTH.

TimeSinceReset (MQCFIN)
Time, in seconds, since the statistics were last reset (parameter identifier:
MQIA_TIME_SINCE_RESET).

HighQDepth (MQCFIN)
The maximum number of messages on a queue (parameter identifier:
MQIA_HIGH_Q_DEPTH).

MsgEnqCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).

That is, the number of messages placed on the queue since queue
statistics were reset.

MsgDeqCount (MQCFIN)
The number of messages removed from the queue (parameter identifier:
MQIA_MSG_DEQ_COUNT).

That is, the number of messages removed from the queue since queue
statistics were reset.

84 MQSeries Programmable System Management

 Queue Manager Active

Queue Manager Active

This event is not produced for the first start of an MQSeries for MVS/ESA
queue manager, only on subsequent starts.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_Q_MGR_ACTIVE

 � Event data

Event data summary
Always returned:

QMgrName

Returned optionally:
None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_Q_MGR_ACTIVE
(2222, X'8AE') Queue manager created.

This condition is detected when a queue manager
becomes active.

On MVS/ESA, this event is not generated for the first
start of a queue manager, only on subsequent restarts.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

 Chapter 4. Event message reference 85

 Queue Manager Not Active

Queue Manager Not Active

This event is not produced by MQSeries for MVS/ESA.

Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

Note: This event is not generated on MVS.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_Q_MGR_NOT_ACTIVE

 � Event data

Event data summary
Always returned: QMgrName, ReasonQualifier,

Returned optionally: None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_Q_MGR_NOT_ACTIVE
(2223, X'8AE') Queue manager unavailable.

This condition is detected when a queue manager is
requested to stop or quiesce.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

ReasonQualifier (MQCFIN)
Identifier of cases of this reason code (parameter identifier:
MQIACF_REASON_QUALIFIER).

This specifies the type of stop that was requested. The value is
one of the following:

MQRQ_Q_MGR_STOPPING
Queue manager stopping.

86 MQSeries Programmable System Management

 Queue Manager Not Active

MQRQ_Q_MGR_QUIESCING
Queue manager quiescing.

 Chapter 4. Event message reference 87

 Queue Service Interval High

Queue Service Interval High
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.PERFM.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_Q_SERVICE_INTERVAL_HIGH

 � Event data

Event data summary
Always returned:

QMgrName, QName, TimeSinceReset, HighQDepth, MsgEnqCount, MsgDeqCount

Returned optionally:
None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_Q_SERVICE_INTERVAL_HIGH
(2226, X'8B2') Queue service interval high.

No successful gets or puts have been detected within an interval
which is greater than the limit specified in the QServiceInterval
attribute.

Corrective action: None. This reason code is only used to identify
the corresponding event message.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Name of the queue specified on the command which caused this queue
service interval event to be generated (parameter identifier:
MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

TimeSinceReset (MQCFIN)
Time, in seconds, since the statistics were reset (parameter identifier:
MQIA_TIME_SINCE_RESET).

For a service interval high event, this value is greater than the service
interval.

88 MQSeries Programmable System Management

 Queue Service Interval High

HighQDepth (MQCFIN)
Maximum number of messages on a queue, since queue statistics were
reset (parameter identifier: MQIA_HIGH_Q_DEPTH).

MsgEnqCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).

That is, the number of messages put on the queue since the queue
statistics were last reset.

MsgDeqCount (MQCFIN)
Number of messages removed from the queue (parameter identifier:
MQIA_MSG_DEQ_COUNT).

That is, the number of messages removed from the queue since the
queue statistics were last reset.

 Chapter 4. Event message reference 89

 Queue Service Interval OK

Queue Service Interval OK
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.PERFM.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_Q_SERVICE_INTERVAL_OK

 � Event data

Event data summary
Always returned:

QMgrName, QName, TimeSinceReset, HighQDepth, MsgEnqCount, MsgDeqCount

Returned optionally:
None

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_Q_SERVICE_INTERVAL_OK
(2227, X'8B3') Queue service interval ok.

A successful get has been detected within an interval which is less
than or equal to the limit specified in the QServiceInterval attribute.

Corrective action: None. This reason code is only used to identify
the corresponding event message.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name specified on the command that caused this queue service
interval event to be generated (parameter identifier:
MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

TimeSinceReset (MQCFIN)
Time, in seconds, since the statistics were reset (parameter identifier:
MQIA_TIME_SINCE_RESET).

90 MQSeries Programmable System Management

 Queue Service Interval OK

HighQDepth (MQCFIN)
The maximum number of messages on a queue since ststistics were reset
(parameter identifier: MQIA_HIGH_Q_DEPTH).

MsgEnqCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).

That is the number of messages put on the queue since the queue
ststistics were last reset.

MsgDeqCount (MQCFIN)
Number of messages removed from the queue (parameter identifier:
MQIA_MSG_DEQ_COUNT).

That is the number of messages removed from the queue since the queue
statistics were last reset.

 Chapter 4. Event message reference 91

 Queue Type Error

Queue Type Error
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_Q_TYPE_ERROR

 � Event data

Event data summary
Always returned:

QMgrName, QName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_Q_TYPE_ERROR
(2057, X'809') Queue type not valid.

One of the following occurred:

� On an MQOPEN call, the ObjectQMgrName field in
the object descriptor specifies the name of a local
definition of a remote queue (in order to specify a
queue-manager alias), and in that local definition
the RemoteQMgrName attribute is the name of the
local queue manager. However, the ObjectName
field specifies the name of a model queue on the
local queue manager; this is not allowed. See the
MQSeries Application Programming Guide for more
information.

� On an MQPUT1 call, the object descriptor MQOD
specifies the name of a model queue.

� On a previous MQPUT or MQPUT1 call, the
ReplyToQ field in the message descriptor specified
the name of a model queue, but a model queue
cannot be specified as the destination for reply or
report messages. Only the name of a predefined
queue, or the name of the dynamic queue created
from the model queue, can be specified as the
destination. In this situation the reason code
MQRC_Q_TYPE_ERROR is returned in the Reason

92 MQSeries Programmable System Management

 Queue Type Error

field of the MQDLH structure when the reply
message or report message is placed on the
dead-letter queue.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

 Chapter 4. Event message reference 93

 Remote Queue Name Error

Remote Queue Name Error
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_REMOTE_Q_NAME_ERROR

 � Event data

Event data summary
Always returned:

QMgrName, QName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_REMOTE_Q_NAME_ERROR
(2184, X'888') Remote queue name not valid.

On an MQOPEN or MQPUT1 call, one of the following
occurred:

� A local definition of a remote queue (or an alias to
one) was specified, but the RemoteQName attribute in
the remote queue definition is entirely blank. Note
that this error occurs even if the XmitQName in the
definition is not blank.

� The ObjectQMgrName field in the object descriptor
was not blank and not the name of the local queue
manager, but the ObjectName field is blank.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

94 MQSeries Programmable System Management

 Remote Queue Name Error

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that caused the
event (parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

 Chapter 4. Event message reference 95

 Transmission Queue Type Error

Transmission Queue Type Error
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_XMIT_Q_TYPE_ERROR

 � Event data

Event data summary
Always returned:

QMgrName, QName, XmitQName, QType, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_XMIT_Q_TYPE_ERROR
(2091, X'82B') Transmission queue not local.

On an MQOPEN or MQPUT1 call, a message is to be
sent to a remote queue manager. The ObjectName or
ObjectQMgrName field in the object descriptor specifies
the name of a local definition of a remote queue but
one of the following applies to the XmitQName attribute
of the definition:

� XmitQName is not blank, but specifies a queue that is
not a local queue

� XmitQName is blank, but RemoteQMgrName specifies a
queue that is not a local queue

This reason also occurs if the queue name is resolved
through a cell directory, and the remote queue manager
name obtained from the cell directory is the name of a
queue, but this is not a local queue.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

96 MQSeries Programmable System Management

 Transmission Queue Type Error

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

QType (MQCFIN)
Type of transmission queue (parameter identifier: MQIA_Q_TYPE).

The value can be:

MQQT_ALIAS
Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the current application Name of the application making
the MQI call that caused the event (parameter identifier:
MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

 Chapter 4. Event message reference 97

 Transmission Queue Usage Error

Transmission Queue Usage Error
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_XMIT_Q_USAGE_ERROR

 � Event data

Event data summary
Always returned:

QMgrName, QName, XmitQName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code generating the event.

The value is:

MQRC_XMIT_Q_USAGE_ERROR
(2092, X'82C') Transmission queue with wrong usage.

On an MQOPEN or MQPUT1 call, a message is to be
sent to a remote queue manager, but one of the
following occurred:

� ObjectQMgrName specifies the name of a local
queue, but it does not have a Usage attribute of
MQUS_TRANSMISSION.

� The ObjectName or ObjectQMgrName field in the
object descriptor specifies the name of a local
definition of a remote queue but one of the
following applies to the XmitQName attribute of the
definition:

– XmitQName is not blank, but specifies a queue
that does not have a Usage attribute of
MQUS_TRANSMISSION

– XmitQName is blank, but RemoteQMgrName
specifies a queue that does not have a Usage
attribute of MQUS_TRANSMISSION

� The queue name is resolved through a cell
directory, and the remote queue manager name
obtained from the cell directory is the name of a

98 MQSeries Programmable System Management

 Transmission Queue Usage Error

local queue, but it does not have a Usage attribute
of MQUS_TRANSMISSION.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application making the MQI call that caused the event
Type of current application (parameter identifier:
MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

 Chapter 4. Event message reference 99

 Unknown Alias Base Queue

Unknown Alias Base Queue
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_UNKNOWN_ALIAS_BASE_Q

 � Event data

Event data summary
Always returned:

QMgrName, QName, BaseQName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_UNKNOWN_ALIAS_BASE_Q
(2082, X'822') Unknown alias base queue.

An MQOPEN or MQPUT1 call was issued specifying an
alias queue as the target, but the BaseQName in the alias
queue attributes is not recognized as a queue name.

 Event data
QMgrName (MQCFST)

The name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

100 MQSeries Programmable System Management

 Unknown Alias Base Queue

ApplType (MQCFIN)
Type of the application making the MQI call that causes the event.
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application making the MQI call that causes the
event. (parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

 Chapter 4. Event message reference 101

 Unknown Default Transmission Queue

Unknown Default Transmission Queue
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the Event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_UNKNOWN_DEF_XMIT_Q

 � Event data

Event data summary
Always returned:

QMgrName, QName, XmitQName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_UNKNOWN_DEF_XMIT_Q
(2197, X'895') Unknown default transmission queue.

An MQOPEN or MQPUT1 call was issued specifying a
remote queue as the destination. If a local definition of
the remote queue was specified, or if a queue-manager
alias is being resolved, the XmitQName attribute in the
local definition is blank.

No queue is defined with the same name as the
destination queue manager. The queue manager has
therefore attempted to use the default transmission
queue. However, the name defined by the
DefXmitQName queue-manager attribute is not the name
of a locally-defined queue.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

102 MQSeries Programmable System Management

 Unknown Default Transmission Queue

XmitQName (MQCFST)
Default transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application attempting to open the remote queue
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application attempting to open the remote queue
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than a client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

 Chapter 4. Event message reference 103

 Unknown Object Name

Unknown Object Name
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_UNKNOWN_OBJECT_NAME

 � Event data

Event data summary
Always returned:

QMgrName, ApplType, ApplName

In addition, one of:
QName, ProcessName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

On an MQOPEN or MQPUT1 call, the ObjectQMgrName
field in the object descriptor MQOD is set to one of the
following:

 � Blank

� The name of the local queue manager

� The name of a local definition of a remote queue (a
queue-manager alias) in which the RemoteQMgrName
attribute is the name of the local queue manager

However, the ObjectName in the object descriptor is not
recognized for the specified object type.

See also MQRC_Q_DELETED.

 Event data
ApplType (MQCFIN)

Type of the application issuing the MQI call that caused the event
(parameter identifier: MQIA_APPL_TYPE).

104 MQSeries Programmable System Management

 Unknown Object Name

ApplName (MQCFST)
Name of the application issuing the MQI call that caused the event
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

QMgrName (MQCFST)
Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ProcessName (MQCFST)
Name of the process (application) issuing the MQI call that caused
the event (parameter identifier: MQCA_PROCESS_NAME).

The maximum length of the string is
MQ_PROCESS_NAME_LENGTH.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

 Chapter 4. Event message reference 105

 Unknown Remote Queue Manager

Unknown Remote Queue Manager
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_UNKNOWN_REMOTE_Q_MGR

 � Event data

Event data summary
Always returned:

QMgrName, QName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_UNKNOWN_REMOTE_Q_MGR
(2087, X'827') Unknown remote queue manager.

On an MQOPEN or MQPUT1 call, an error occurred
with the queue-name resolution, for one of the following
reasons:

� ObjectQMgrName is either blank or the name of the
local queue manager, and ObjectName is the name
of a local definition of a remote queue, which has a
blank XmitQName. However, there is no
(transmission) queue defined with the name of
RemoteQMgrName, and the DefXmitQName
queue-manager attribute is blank.

� ObjectQMgrName is the name of a queue-manager
alias definition (held as the local definition of a
remote queue), which has a blank XmitQName.
However, there is no (transmission) queue defined
with the name of RemoteQMgrName, and the
DefXmitQName queue-manager attribute is blank.

� ObjectQMgrName specified is not:

 – Blank
– The name of the local queue manager
– The name of a local queue

106 MQSeries Programmable System Management

 Unknown Remote Queue Manager

– The name of a queue-manager alias definition
(that is, a local definition of a remote queue
with a blank RemoteQName)

and the DefXmitQName queue-manager attribute is
blank.

� ObjectQMgrName is blank or is the name of the local
queue manager, and ObjectName is the name of a
local definition of a remote queue (or an alias to
one), for which RemoteQMgrName is either blank or is
the name of the local queue manager. Note that
this error occurs even if the XmitQName is not blank.

� ObjectQMgrName is the name of a local definition of
a remote queue. In this context, this should be a
queue-manager alias definition, but the
RemoteQName in the definition is not blank.

� ObjectQMgrName is the name of a model queue.

� The queue name is resolved through a cell
directory. However, there is no queue defined with
the same name as the remote queue manager
name obtained from the cell directory. Also, the
DefXmitQName queue-manager attribute is blank.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application attempting to open the remote queue
(parameter identifier: MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the application attempting to open the remote queue
(parameter identifier: MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

 Chapter 4. Event message reference 107

 Unknown Remote Queue Manager

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

108 MQSeries Programmable System Management

 Unknown Transmission Queue

Unknown Transmission Queue
Details of the condition generating the event are given, in the following text, in the
Reason parameter of the event header.

 Event message
When an event is generated, an event message is put on the
SYSTEM.ADMIN.QMGR.EVENT queue.

The event message consists of the:

� Event header, containing a reason code parameter with a value of
MQRC_UNKNOWN_XMIT_Q

 � Event data

Event data summary
Always returned:

QMgrName, QName, XmitQName, ApplType, ApplName

Returned optionally:
ObjectQMgrName

 Event header
Reason (MQLONG)

Name of the reason code.

The value is:

MQRC_UNKNOWN_XMIT_Q
(2196, X'894') Unknown transmission queue.

On an MQOPEN or MQPUT1 call, a message is to be
sent to a remote queue manager. The ObjectName or
the ObjectQMgrName in the object descriptor specifies
the name of a local definition of a remote queue (in the
latter case queue-manager aliasing is being used), but
the XmitQName attribute of the definition is not blank and
not the name of a locally-defined queue.

 Event data
QMgrName (MQCFST)

Name of the queue manager generating the event (parameter
identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

QName (MQCFST)
Queue name from object descriptor (MQOD) (parameter identifier:
MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCA_XMIT_Q_NAME).

 Chapter 4. Event message reference 109

 Unknown Transmission Queue

The maximum length of the string is MQ_Q_NAME_LENGTH.

ApplType (MQCFIN)
Type of application that made the MQI call (parameter identifier:
MQIA_APPL_TYPE).

ApplName (MQCFST)
Name of the current application (parameter identifier:
MQCACF_APPL_NAME).

The maximum length of the string is MQ_APPL_NAME_LENGTH.

Note: If the application is a server for clients, the ApplType and
ApplName parameters identify the server, rather than the client.

ObjectQMgrName (MQCFST)
Name of the object queue manager (parameter identifier:
MQCACF_OBJECT_Q_MGR_NAME).

This parameter is returned if the ObjectName in the object
descriptor (MQOD) (when the object was opened) is not the queue
manager currently connected.

The maximum length of the string is
MQ_Q_MGR_NAME_LENGTH.

110 MQSeries Programmable System Management

 Example using events

Chapter 5. Example of using instrumentation events

This example shows how you can write a program for instrumentation events. It is
written in C for queue managers on OS/2, Windows NT, or UNIX systems. It is not
part of any MQSeries product and is therefore supplied as source only. The
example is incomplete in that it does not enumerate all the possible outcomes of
specified actions. Bearing this in mind, you can use this sample as a basis for your
own programs that use events, in particular, the PCF formats used in event
messages. However, you will need to modify this program to get it to run on your
systems.

 /\\/
 /\ \/
 /\ Program name: EVMON \/
 /\ \/
 /\ Description: C program that acts as an event monitor \/
 /\ \/
 /\ \/
 /\\/
 /\ \/
 /\ Function: \/
 /\ \/
 /\ \/
 /\ EVMON is a C program that acts as an event monitor - reads an \/
 /\ event queue and tells you if anything appears on it \/
 /\ \/
 /\ Its first parameter is the queue manager name, the second is \/
 /\ the event queue name. If these are not supplied it uses the \/
 /\ defaults. \/
 /\ \/
 /\\/
 #include <time.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #ifndef min

#define min(a,b) (((a) < (b)) ? (a) : (b))
 #endif
 #ifdef OS2
 /\\/

/\ for beep \/
 /\\/
 #define INCL_DOSPROCESS
 #include <os2.h>
 #endif
 /\\/
 /\ includes for MQI \/
 /\\/
 #include <cmqc.h>
 #include <cmqcfc.h>
 void printfmqcfst(MQCFST\ pmqcfst);
 void printfmqcfin(MQCFIN\ pmqcfst);
 void printreas(MQLONG reason);

 #define PRINTREAS(param) \
 case param: \

 Copyright IBM Corp. 1994,1998 111

 Example using events

printf("Reason = %s\n",#param); \
 break;

 /\\/
 /\ global variable \/
 /\\/
 MQCFH \evtmsg; /\ evtmsg message buffer \/

 int main(int argc, char \\argv)
 {
 /\\/

/\ declare variables \/
 /\\/

int i; /\ auxiliary counter \/
 /\\/

/\ Declare MQI structures needed \/
 /\\/

MQOD od = {MQOD_DEFAULT}; /\ Object Descriptor \/
MQMD md = {MQMD_DEFAULT}; /\ Message Descriptor \/

 MQGMO gmo = {MQGMO_DEFAULT}; /\ get message options \/
 /\\/

/\ note, uses defaults where it can \/
 /\\/

MQHCONN Hcon; /\ connection handle \/
 MQHOBJ Hobj; /\ object handle \/
 MQLONG O_options; /\ MQOPEN options \/
 MQLONG C_options; /\ MQCLOSE options \/
 MQLONG CompCode; /\ completion code \/
 MQLONG OpenCode; /\ MQOPEN completion code \/
 MQLONG Reason; /\ reason code \/
 MQLONG CReason; /\ reason code for MQCONN \/
 MQLONG buflen; /\ buffer length \/
 MQLONG evtmsglen; /\ message length received \/
 MQCHAR command[11ðð]; /\ call command string ... \/
 MQCHAR p1[6ðð]; /\ ApplId insert \/
 MQCHAR p2[9ðð]; /\ evtmsg insert \/
 MQCHAR p3[6ðð]; /\ Environment insert \/
 MQLONG mytype; /\ saved application type \/

char QMName[5ð]; /\ queue manager name \/
MQCFST \paras; /\ the parameters \/
int counter; /\ loop counter \/

 time_t ltime;

 /\\/
/\ Connect to queue manager \/

 /\\/
QMName[ð] = ð; /\ default queue manager \/
if (argc > 1)

 strcpy(QMName, argv[1]);
MQCONN(QMName, /\ queue manager \/

&Hcon, /\ connection handle \/
&CompCode, /\ completion code \/
&CReason); /\ reason code \/

 /\\/
/\ Initialize object descriptor for subject queue \/

 /\\/
 strcpy(od.ObjectName, "SYSTEM.ADMIN.QMGR.EVENT");

112 MQSeries Programmable System Management

 Example using events

if (argc > 2)
 strcpy(od.ObjectName, argv[2]);

 /\\/
/\ Open the event queue for input; exclusive or shared. Use of \/
/\ the queue is controlled by the queue definition here \/

 /\\/
O_options = MQOO_INPUT_AS_Q_DEF /\ open queue for input \/

+ MQOO_FAIL_IF_QUIESCING /\ but not if qmgr stopping \/
 + MQOO_BROWSE;

MQOPEN(Hcon, /\ connection handle \/
&od, /\ object descriptor for queue\/
O_options, /\ open options \/
&Hobj, /\ object handle \/
&CompCode, /\ completion code \/
&Reason); /\ reason code \/

 /\\/
 /\ Get messages from the message queue \/
 /\\/

while (CompCode != MQCC_FAILED)
 {
 /\\/

/\ I don't know how big this message is so just get the \/
/\ descriptor first \/

 /\\/
gmo.Options = MQGMO_WAIT + MQGMO_LOCK

+ MQGMO_BROWSE_FIRST + MQGMO_ACCEPT_TRUNCATED_MSG;
/\ wait for new messages \/

gmo.WaitInterval = MQWI_UNLIMITED;/\ no time limit \/
buflen = ð; /\ amount of message to get \/

 /\\/
/\ clear selectors to get messages in sequence \/

 /\\/
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

 /\\/
/\ wait for event message \/

 /\\/
 printf("...>\n");

MQGET(Hcon, /\ connection handle \/
Hobj, /\ object handle \/
&md, /\ message descriptor \/
&gmo, /\ get message options \/
buflen, /\ buffer length \/
evtmsg, /\ evtmsg message buffer \/
&evtmsglen, /\ message length \/
&CompCode, /\ completion code \/
&Reason); /\ reason code \/

 /\\/
/\ report reason, if any \/

 /\\/
if (Reason != MQRC_NONE && Reason != MQRC_TRUNCATED_MSG_ACCEPTED)

 {
printf("MQGET ==> %ld\n", Reason);

 Chapter 5. Example of using instrumentation events 113

 Example using events

 }
 else
 {

gmo.Options = MQGMO_NO_WAIT + MQGMO_MSG_UNDER_CURSOR;
buflen = evtmsglen; /\ amount of message to get \/
evtmsg = malloc(buflen);
if (evtmsg != NULL)

 {
 /\\/

/\ clear selectors to get messages in sequence \/
 /\\/

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

 /\\/
/\ get the event message \/

 /\\/
 printf("...>\n");

MQGET(Hcon, /\ connection handle \/
Hobj, /\ object handle \/
&md, /\ message descriptor \/
&gmo, /\ get message options \/
buflen, /\ buffer length \/
evtmsg, /\ evtmsg message buffer \/
&evtmsglen, /\ message length \/
&CompCode, /\ completion code \/
&Reason); /\ reason code \/

 /\\/
/\ report reason, if any \/

 /\\/
if (Reason != MQRC_NONE)

 {
printf("MQGET ==> %ld\n", Reason);

 }
 }
 else
 {

CompCode = MQCC_FAILED;
 }
 }
 /\\/

/\ . . . process each message received \/
 /\\/

if (CompCode != MQCC_FAILED)
 {
 /\\/

/\ announce a message \/
 /\\/
 #ifdef OS2
 {

unsigned short tone;
for (tone = 1; tone < 8ððð; tone = tone \ 2)

 {
 DosBeep(tone,5ð);
 }
 }
 #else

114 MQSeries Programmable System Management

 Example using events

 printf("\a\a\a\a\a\a\a");
 #endif
 time(<ime);
 printf(ctime(<ime));

if (evtmsglen != buflen)
printf("DataLength = %ld?\n", evtmsglen);

 else
 {
 /\\/

/\ right let's look at the data \/
 /\\/

if (evtmsg->Type != MQCFT_EVENT)
 {

printf("Something's wrong this isn't an event message,"
" its type is %ld\n",evtmsg->Type);

 }
 else
 {

if (evtmsg->Command == MQCMD_Q_MGR_EVENT)
 {

printf("Queue Manager event: ");
 }
 else

if (evtmsg->Command == MQCMD_CHANNEL_EVENT)
 {

printf("Channel event: ");
 }
 else

...
 {

printf("Unknown Event message, %ld.",
 evtmsg->Command);
 }

if (evtmsg->CompCode == MQCC_OK)
 printf("CompCode(OK)\n");

else if (evtmsg->CompCode == MQCC_WARNING)
 printf("CompCode(WARNING)\n");

else if (evtmsg->CompCode == MQCC_FAILED)
 printf("CompCode(FAILED)\n");
 else

printf("\ CompCode wrong \ (%ld)\n",
 evtmsg->CompCode);

if (evtmsg->StrucLength != MQCFH_STRUC_LENGTH)
 {

printf("it's the wrong length, %ld\n",evtmsg->StrucLength);
 }

if (evtmsg->Version != MQCFH_VERSION_1)
 {

printf("it's the wrong version, %ld\n",evtmsg->Version);
 }

if (evtmsg->MsgSeqNumber != 1)
 {

 Chapter 5. Example of using instrumentation events 115

 Example using events

printf("it's the wrong sequence number, %ld\n",
 evtmsg->MsgSeqNumber);
 }

if (evtmsg->Control != MQCFC_LAST)
 {

printf("it's the wrong control option, %ld\n",
 evtmsg->Control);
 }

 printreas(evtmsg->Reason);
printf("parameter count is %ld\n", evtmsg->ParameterCount);

 /\\/
/\ get a pointer to the start of the parameters \/

 /\\/
paras = (MQCFST \)(evtmsg + 1);
counter = 1;
while (counter <= evtmsg->ParameterCount)

 {
 switch (paras->Type)
 {
 case MQCFT_STRING:
 printfmqcfst(paras);

paras = (MQCFST \)((char \)paras
 + paras->StrucLength);
 break;
 case MQCFT_INTEGER:
 printfmqcfin((MQCFIN\)paras);

paras = (MQCFST \)((char \)paras
 + paras->StrucLength);
 break;
 default:

printf("unknown parameter type, %ld\n",
 paras->Type);

counter = evtmsg->ParameterCount;
 break;
 }
 counter++;
 }
 }

} /\ end evtmsg action \/
 free(evtmsg);
 } /\ end process for successful GET \/

} /\ end message processing loop \/

 /\\/
/\ close the event queue - if it was opened \/

 /\\/
if (OpenCode != MQCC_FAILED)

 {
C_options = ð; /\ no close options \/
MQCLOSE(Hcon, /\ connection handle \/

&Hobj, /\ object handle \/
 C_options,

&CompCode, /\ completion code \/
 &Reason); /\ reason code \/
 /\\/

/\ Disconnect from queue manager (unless previously connected) \/

116 MQSeries Programmable System Management

 Example using events

 /\\/
if (CReason != MQRC_ALREADY_CONNECTED)

 {
MQDISC(&Hcon, /\ connection handle \/

&CompCode, /\ completion code \/
 &Reason); /\ reason code \/
 /\\/
 /\ \/
 /\ END OF EVMON \/
 /\ \/
 /\\/
 }

#define PRINTPARAM(param) \
 case param: \
 { \

char \p = #param; \
 strncpy(thestring,pmqcfst->String,min(sizeof(thestring), \
 pmqcfst->StringLength)); \
 printf("%s %s\n",p,thestring); \
 } \
 break;

#define PRINTAT(param) \
 case param: \

printf("MQIA_APPL_TYPE = %s\n",#param); \
 break;

void printfmqcfst(MQCFST\ pmqcfst)
{
 char thestring[1ðð];

 switch (pmqcfst->Parameter)
 {
 PRINTPARAM(MQCA_BASE_Q_NAME)
 PRINTPARAM(MQCA_PROCESS_NAME)
 PRINTPARAM(MQCA_Q_MGR_NAME)
 PRINTPARAM(MQCA_Q_NAME)
 PRINTPARAM(MQCA_XMIT_Q_NAME)
 PRINTPARAM(MQCACF_APPL_NAME)

...

 default:
printf("Invalid parameter, %ld\n",pmqcfst->Parameter);

 break;
 }
}

void printfmqcfin(MQCFIN\ pmqcfst)
{
 switch (pmqcfst->Parameter)
 {
 case MQIA_APPL_TYPE:
 switch (pmqcfst->Value)
 {
 PRINTAT(MQAT_UNKNOWN)

 Chapter 5. Example of using instrumentation events 117

 Example using events

 PRINTAT(MQAT_OS2)
 PRINTAT(MQAT_DOS)
 PRINTAT(MQAT_UNIX)
 PRINTAT(MQAT_QMGR)
 PRINTAT(MQAT_OS4ðð)
 PRINTAT(MQAT_WINDOWS)
 PRINTAT(MQAT_CICS_VSE)
 PRINTAT(MQAT_VMS)
 PRINTAT(MQAT_GUARDIAN)
 PRINTAT(MQAT_VOS)
 }
 break;
 case MQIA_Q_TYPE:

if (pmqcfst->Value == MQQT_ALIAS)
 {

printf("MQIA_Q_TYPE is MQQT_ALIAS\n");
 }
 else

...
 {

if (pmqcfst->Value == MQQT_REMOTE)
 {

printf("MQIA_Q_TYPE is MQQT_REMOTE\n");
if (evtmsg->Reason == MQRC_ALIAS_BASE_Q_TYPE_ERROR)

 {
printf("but remote is not valid here\n");

 }
 }
 else
 {

printf("MQIA_Q_TYPE is wrong, %ld\n",pmqcfst->Value);
 }
 }
 break;
 case MQIACF_REASON_QUALIFIER:
 printf("MQIACF_REASON_QUALIFIER %ld\n",pmqcfst->Value);
 break;

 case MQIACF_ERROR_IDENTIFIER:
printf("MQIACF_ERROR_INDENTIFIER %ld (X'%lX')\n",

 pmqcfst->Value,pmqcfst->Value);
 break;

 case MQIACF_AUX_ERROR_DATA_INT_1:
printf("MQIACF_AUX_ERROR_DATA_INT_1 %ld (X'%lX')\n",

 pmqcfst->Value,pmqcfst->Value);
 break;

 case MQIACF_AUX_ERROR_DATA_INT_2:
printf("MQIACF_AUX_ERROR_DATA_INT_2 %ld (X'%lX')\n",

 pmqcfst->Value,pmqcfst->Value);
 break;
...

 default :
printf("Invalid parameter, %ld\n",pmqcfst->Parameter);

 break;

118 MQSeries Programmable System Management

 Example using events

 }
}

void printreas(MQLONG reason)
{
 switch (reason)
 {
 PRINTREAS(MQRCCF_CFH_TYPE_ERROR)
 PRINTREAS(MQRCCF_CFH_LENGTH_ERROR)
 PRINTREAS(MQRCCF_CFH_VERSION_ERROR)
 PRINTREAS(MQRCCF_CFH_MSG_SEQ_NUMBER_ERR)

...
 PRINTREAS(MQRC_NO_MSG_LOCKED)
 PRINTREAS(MQRC_CONNECTION_NOT_AUTHORIZED)
 PRINTREAS(MQRC_MSG_TOO_BIG_FOR_CHANNEL)
 PRINTREAS(MQRC_CALL_IN_PROGRESS)
 default:

printf("It's an unknown reason, %ld\n",
 reason);
 break;
 }
}

 Chapter 5. Example of using instrumentation events 119

 Example using events

120 MQSeries Programmable System Management

Part 2. Programmable Command Formats

Chapter 6. Introduction to Programmable Command Formats 123
The problem PCF commands solve . 123
What PCFs are . 124
Other programmable administration . 124

Chapter 7. Using Programmable Command Formats 127
PCF command messages . 127
Responses . 129
Authority checking for PCF commands . 131

Chapter 8. Definitions of the Programmable Command Formats 135
How the definitions are shown . 135
PCF commands and responses in groups . 137
Change Channel . 139
Change Process . 156
Change Queue . 160
Change Queue Manager . 173
Clear Queue . 179
Copy Channel . 181
Copy Process . 198
Copy Queue . 202
Create Channel . 215
Create Process . 232
Create Queue . 236
Delete Channel . 249
Delete Process . 251
Delete Queue . 252
Escape . 254
Escape (Response) . 255
Inquire Channel . 256
Inquire Channel (Response) . 263
Inquire Channel Names . 268
Inquire Channel Names (Response) . 270
Inquire Channel Status . 271
Inquire Channel Status (Response) . 278
Inquire Process . 283
Inquire Process (Response) . 285
Inquire Process Names . 287
Inquire Process Names (Response) . 288
Inquire Queue . 289
Inquire Queue (Response) . 295
Inquire Queue Manager . 302
Inquire Queue Manager (Response) . 305
Inquire Queue Names . 311
Inquire Queue Names (Response) . 313
Ping Channel . 314
Ping Queue Manager . 317
Reset Channel . 318
Reset Queue Statistics . 320
Reset Queue Statistics (Response) . 322

 Copyright IBM Corp. 1994,1998 121

Resolve Channel . 323
Start Channel . 325
Start Channel Initiator . 327
Start Channel Listener . 329
Stop Channel . 330

Chapter 9. Structures used for commands and responses 333
How the structures are shown . 333
Usage notes . 334
MQCFH – PCF header . 334
MQCFIN – PCF integer parameter . 339
MQCFST – PCF string parameter . 341
MQCFIL – PCF integer list parameter . 345
MQCFSL – PCF string list parameter . 347

Chapter 10. Example of using PCFs . 353
Enquire local queue attributes . 353

122 MQSeries Programmable System Management

 Introducing PCFs

Chapter 6. Introduction to Programmable Command Formats

This chapter introduces MQSeries Programmable Command Formats (PCFs) and
their relationship to other parts of the MQSeries products.

The Programmable Command Formats described in this book are supported by:

| MQSeries for AIX Version 5
| MQSeries for AS/400 Version 4 Release 2
| MQSeries for AT&T GIS UNIX Version 2 Release 2
| MQSeries for Digital OpenVMS Version 2 Release 2
| MQSeries for HP-UX Version 5
| MQSeries for OS/2 Warp Version 5
| MQSeries for SINIX and DC/OSx Version 2 Release 2
| MQSeries for SunOS Version 2 Release 2
| MQSeries for Sun Solaris Version 5
| MQSeries for Tandem NonStop Kernel Version 2 Release 2
| MQSeries for Windows NT Version 5
| MQSeries for Windows Version 2 Release 1

Event messages also use the Programmable Command Formats. See Chapter 1,
“Using instrumentation events to monitor queue managers” on page 3.

The problem PCF commands solve
The administration of distributed networks can become very complex. The
problems of administration will continue to grow as networks increase in size and
complexity.

Examples of administration specific to messaging and queuing include:

 � Resource management.

For example, queue creation and deletion.

 � Performance monitoring.

For example, maximum queue depth or message rate.

 � Control.

For example, tuning queue parameters such as maximum queue depth,
maximum message length, and enabling and disabling queues.

 � Message routing.

Definition of alternative routes through a network.

MQSeries PCF commands can be used to simplify queue manager administration
and other network administration. PCF commands allow you to use a single
application to perform network administration from a single queue manager within
the network.

 Copyright IBM Corp. 1994,1998 123

 Introducing PCFs � Other administration

What PCFs are
PCFs define command and reply messages that can be exchanged between a
program and any queue manager (that supports PCFs) in a network. You can use
PCF commands in a systems management application program for administration
of MQSeries objects: queue managers, process definitions, queues, and channels.
The application can operate from a single point in the network to communicate
command and reply information with any queue manager, local or remote, via the
local queue manager.

Each queue manager has an administration queue with a standard queue name
and your application can send PCF command messages to that queue. Each
queue manager also has a command server to service the command messages
from the administration queue. PCF command messages can therefore be
processed by any queue manager in the network and the reply data can be
returned to your application, using your specified reply queue. PCF commands and
reply messages are sent and received using the normal Message Queue interface
(MQI).

Other programmable administration
Administration of MQSeries objects may be carried out in other ways.

MQSeries for AS/400
As well as PCFs, there are two other methods available:

OS/400 Control Language (CL)
This can be used to issue administration commands to MQSeries for AS/400 They
can be issued either at the command line or by writing a CL program. These
commands perform similar functions to PCF commands, but the format is
completely different. CL commands are designed exclusively for OS/400 and CL
responses are designed to be human-readable, whereas PCF commands are
platform independent and both command and response formats are intended for
program use.

MQSeries Commands (MQSC)
These provide a uniform method of issuing commands across MQSeries platforms.
The general format of the commands is shown in the MQSeries Command
Reference.

To issue the commands on OS/400 you create a list of commands in a Script file,
and then run the file using the STRMQMMQSC command.

MQSC responses are designed to be human readable, whereas PCF command
and response formats are intended for program use.

MQSeries for MVS/ESA
MQSeries for MVS/ESA supports the MQSeries commands (MQSC). With
MVS/ESA these commands can be entered from the MVS console, or sent to the
system command input queue. More information about issuing the commands is
given in the MQSeries Command Reference, and the MQSeries for MVS/ESA
System Management Guide.

124 MQSeries Programmable System Management

 Other administration

PCF commands are not supported by MQSeries for MVS/ESA.

MQSeries for Windows
MQSeries for Windows supports the MQSeries commands (MQSC). You can enter
these commands in a window provided by the MQSC utility, and also run MQSC
command files.

| MQSeries for Windows NT, OS/2, Digital OpenVMS and UNIX systems
As well as PCFs, there are two other methods available:

MQSeries commands (MQSC)
You can use the MQSC as single commands issued at the OS/2, Windows NT, or
UNIX system command line. To issue more complicated, or multiple commands,
the MQSC can be built into a file that you then run from the OS/2, Windows NT, or
UNIX system command line. MQSC can be sent to a remote queue manager. For
full details see the MQSeries Command Reference.

 Control commands
MQSeries for OS/2, Windows NT, and UNIX systems provides another type of
command for some of the functions. These are the control commands that you
issue at the OS/2, Windows NT, or UNIX system command line. Reference
material for these commands is contained in the MQSeries System Administration
book.

| MQSeries for Tandem NSK
| As well as PCFs, there are three other methods available:

| � MQSeries commands (MQSC)

| � Control commands

| � Message Queue Management (MQM) facility.

| MQSeries for Tandem NSK provides a panel interface for some of the
| functions. For full details see the MQSeries for Tandem NonStop Kernel
| System Management Guide.

 Chapter 6. Introduction to Programmable Command Formats 125

 Other administration

126 MQSeries Programmable System Management

 Using PCFs

Chapter 7. Using Programmable Command Formats

This chapter describes how to use the PCFs in a systems management application
program for MQSeries remote administration.

PCF command messages
Each command and its parameters are sent as a separate command message
containing a PCF header followed by a number of parameter structures (see
“MQCFH – PCF header” on page 334). The PCF header identifies the command
and the number of parameter structures that follow in the same message. Each
parameter structure provides a parameter to the command.

Replies to the commands, generated by the command server, have a similar
structure. There is a PCF header, followed by a number of parameter structures.
Replies can consist of more than one message but commands always consist of
one message only.

The queue to which the PCF commands are sent is always called the
SYSTEM.ADMIN.COMMAND.QUEUE. The command server servicing this queue
sends the replies to the queue defined by the ReplyToQ and ReplyToQMgr fields in
the message descriptor of the command message.

How to issue PCF command messages
Use the normal Message Queue Interface (MQI) calls, MQPUT, MQGET and so on,
to put and retrieve PCF command and response messages to and from their
respective queues.

| Note to users

| You must start the command server on the target queue manager for the PCF
| command to process on that queue manager.

For a list of supplied header files, see Appendix C, “Header, COPY, and INCLUDE
files” on page 485.

Message descriptor for a PCF command
The MQSeries message descriptor is fully documented in the MQSeries Application
Programming Reference.

A PCF command message contains the following fields in the message descriptor:

Report
Any valid value, as required.

MsgType
This must be MQMT_REQUEST to indicate a message requiring a response.

Expiry
Any valid value, as required.

 Copyright IBM Corp. 1994,1998 127

 Using PCFs

Feedback
Set to MQFB_NONE

Encoding
If you are sending to MQSeries for OS/400 V3R2 (or later), OS/2, Windows NT,
or UNIX systems set this field to the encoding used for the message data;
conversion will be performed if necessary.

CodedCharSetId
If you are sending to MQSeries for OS/400 V3R2 (or later), OS/2, Windows NT,
or UNIX systems set this field to the coded character-set identifer used for the
message data; conversion will be performed if necessary.

Format
Set to MQFMT_ADMIN.

Priority
Any valid value, as required.

Persistence
Any valid value, as required.

MsgId
The sending application may specify any value, or MQMI_NONE can be
specified to request the queue manager to generate a unique message
identifier.

CorrelId
The sending application may specify any value, or MQMI_NONE can be
specified to indicate no correlation identifier.

ReplyToQ
The name of the queue to receive the response.

ReplyToQMgr
The name of the queue manager for the response (or blank).

Message context fields
These can be set to any valid values, as required. Normally the Put message
option MQPMO_DEFAULT_CONTEXT is used to set the message context fields
to the default values.

If you are using a version-2 MQMD structure, you must set the following additional
fields:

GroupId
Set to MQGI_NONE

MsgSeqNumber
Set to 1

Offset
Set to 0

MsgFlags
Set to MQMF_NONE

OriginalLength
Set to MQOL_UNDEFINED

128 MQSeries Programmable System Management

 Using PCFs � Responses

Sending user data
The PCF structures can also be used to send user-defined message data. In this
case the message descriptor Format field should be set to MQFMT_PCF.

 Responses
In response to each command, the command server generates one or more
response messages. A response message has a similar format to a command
message; the PCF header has the same command identifier value as the command
to which it is a response (see “MQCFH – PCF header” on page 334 for details).
The message identifier and correlation identifier are set according to the report
options of the request.

If a single command specifies a generic object name, a separate response is
returned in its own message for each matching object. For the purpose of
response generation, a single command with a generic name is treated as multiple
individual commands (except for the control field MQCFC_LAST or
MQCFC_NOT_LAST). Otherwise, one command message generates one
response message.

Certain PCF responses may return a structure even when it is not requested. This
is shown in the definition of the response (Chapter 8) as always returned. The
reason for this is that, for these responses, it is necessary to name the objects in
the response so that one can know to which object the data applies.

There are three types of response, described below:

 � OK response
 � Error response
 � Data response

 OK response
This consists of a message starting with a command format header, with a
CompCode field of MQCC_OK or MQCC_WARNING.

For MQCC_OK, the Reason is MQRC_NONE.

For MQCC_WARNING, the Reason identifies the nature of the warning. In this
case the command format header may be followed by one or more warning
parameter structures appropriate to this reason code.

In either case, for an inquire command further parameter structures may follow as
described below.

 Error response
If the command has an error, one or more error response messages are sent (more
than one may be sent even for a command which would normally only have a
single response message). These error response messages have MQCFC_LAST
or MQCFC_NOT_LAST set as appropriate.

Each such message starts with a response format header, with a CompCode value of
MQCC_FAILED and a Reason field which identifies the particular error. In general
each message describes a different error. In addition, each message has either

 Chapter 7. Using PCFs 129

 Responses

zero or one (never more than one) error parameter structures following the header.
This parameter structure, if there is one, is an MQCFIN structure, with a Parameter
field containing one of the following:

 � MQIACF_PARAMETER_ID

The Value field in the structure is the parameter identifier of the parameter that
was in error (for example, MQCA_Q_NAME).

 � MQIACF_ERROR_ID

This is used with a Reason value (in the command format header) of
MQRC_UNEXPECTED_ERROR. The Value field in the MQCFIN structure is
the unexpected reason code received by the command server.

 � MQIACF_SELECTOR

This occurs if a list structure (MQCFIL) sent with the command contains an
invalid or duplicate selector. The Reason field in the command format header
identifies the error, and the Value field in the MQCFIN structure is the
parameter value in the MQCFIL structure of the command that was in error.

 � MQIACF_ERROR_OFFSET

This occurs when there is a data compare error on the Ping Channel
command. The Value field in the structure is the offset of the Ping Channel
compare error.

 � MQIA_CODED_CHAR_SET_ID

This occurs when the coded character-set identifier in the message descriptor
of the incoming PCF command message does not match that of the target
queue manager. The Value field in the structure is the coded character-set
identifier of the queue manager.

The last (or only) error response message is a summary response, with a CompCode
field of MQCC_FAILED, and a Reason field of MQRCCF_COMMAND_FAILED.
This message has no parameter structure following the header.

 Data Response
This consists of an OK response (as described above) to an inquire command.
The OK response is followed by additional structures containing the requested data
as described in Chapter 8, “Definitions of the Programmable Command Formats”
on page 135.

Applications should not depend upon these additional parameter structures being
returned in any particular order.

Message descriptor for a response
A response message (obtained using the Get-message option
MQGMO_CONVERT) has the following fields in the message descriptor, defined by
the putter of the message. The actual values in the fields are generated by the
queue manager:

MsgType
This is MQMT_REPLY.

MsgId
This is generated by the queue manager.

130 MQSeries Programmable System Management

 Authority checking

CorrelId
This is generated according to the report options of the command message.

Format
This is MQFMT_ADMIN.

Encoding
Set to MQENC_NATIVE.

CodedCharSetId
Set to MQCCSI_Q_MGR.

Persistence
The same as in the command message.

Priority
The same as in the command message.

The response is generated with MQPMO_PASS_IDENTITY_CONTEXT.

Authority checking for PCF commands
When a PCF command is processed, the UserIdentifier from the message
descriptor in the command message is used for the required MQSeries object
authority checks. The checks are performed on the system on which the command
is being processed, therefore this user ID must exist on the target system and have
the required authorities to process the command. If the message has come from a
remote system, one way of achieving this is to have a matching user ID on both the
local and remote systems.

Authority checking is implemented differently on each platform.

MQseries for AS/400
In order to process any PCF command, the user ID must have *READ authority for
the MQSeries object on the target system.

In addition, MQSeries object authority checks are performed for certain PCF
commands, as shown in Table 16 on page 132. In most cases these are the
same checks as those performed by the equivalent MQSeries CL commands
issued on a local system. See the MQSeries for AS/400 Administration Guide for
more information on the mapping from MQSeries authorities to OS/400 system
authorities, and the authority requirements for the MQSeries CL commands.
Details of security concerning exits are given in the MQSeries Intercommunication
book.

To process any of the following commands the user ID must have *ALLOBJ
authority, or the user ID must be QPGMR or QSYSOPR:

 � Ping Channel
 � Change Channel
 � Copy Channel
 � Create Channel
 � Delete Channel
 � Reset Channel
 � Resolve Channel

 Chapter 7. Using PCFs 131

 Authority checking

 � Start Channel
 � Stop Channel
� Start Channel Initiator
� Start Channel Listener

Table 16. MQSeries for AS/400 - object authorities

Command MQSeries object authority *CTLG authority

Change Queue *READ and *UPD n/a

Change Queue Manager *READ and *UPD n/a

Change Process *READ and *UPD n/a

Clear Queue *READ and *DLT n/a

Copy Process from: *READ *ADD

Copy Process (Replace) from: *READ
to: *OBJOPR and *UPD

n/a

Copy Queue from: *READ *ADD

Copy Queue (Replace) from: *READ
to: *OBJOPR and *UPD

n/a

Create Process (system default process) *READ *ADD

Create Process (Replace) (system default process) *READ
to: *OBJOPR and *UPD

n/a

Create Queue (system default queue) *READ *ADD

Create Queue (Replace) (system default queue) *READ
to: *OBJOPR and *UPD

n/a

Delete Process *OBJEXIST *DLT

Delete Queue *OBJEXIST *DLT

Inquire Queue *READ n/a

Inquire Queue Manager *READ n/a

Inquire Process *READ n/a

Reset Queue Statistics *UPD n/a

Escape see Note see Note

Note: The required authority is determined by the MQSC command defined by the
escape text, and it will be equivalent to one of the above.

MQSeries for OS/2 Warp
If there is no authorization service installed, or if the PCF command is a channel
command, OS/2 performs no additional security checking other than making sure
that the UserIdentifier of the message descriptor is not set to blanks. If there is
an installed authorization service, this controls access to the queue manager,
queue, and process objects, with access to channels unaffected.

MQSeries also has some channel security exit points so that you can supply your
own user exit programs for security checking. Details are given in the MQSeries
Intercommunication book.

132 MQSeries Programmable System Management

 Authority checking

| MQSeries for Windows NT, Digital OpenVMS, Tandem NSK, and UNIX
| systems
| In order to process any PCF command, the user ID must have dsp authority for the

queue manager object on the target system. In addition, MQSeries object authority
checks are performed for certain PCF commands, as shown in Table 17.

To process any of the following commands the user ID must belong to group
mqm, or for Windows NT only the user ID must belong to group Administrators:

 � Change Channel
 � Copy Channel
 � Create Channel
 � Delete Channel
 � Ping Channel
 � Reset Channel
 � Start Channel
 � Stop Channel
� Start Channel Initiator
� Start Channel Listener

 � Resolve Channel

Table 17 (Page 1 of 2). MQSeries for Windows NT, Digital OpenVMS, Tandem NSK,
and UNIX systems - object authorities

Command MQSeries object authority Class authority
(for object type)

Change Queue chg n/a

Change Queue Manager chg n/a

Change Process chg n/a

Clear Queue clr n/a

Copy Process from: dsp crt

Copy Process (Replace)
see Note 1

from: dsp
to: chg

n/a

Copy Queue from: dsp crt

Copy Queue (Replace)
see Note 1

from: dsp
to: chg

n/a

Create Process (system default process) dsp crt

Create Process (Replace)
see Note 1

(system default process) dsp
to: chg

n/a

Create Queue (system default queue) dsp crt

Create Queue (Replace)
see Note 1

(system default queue) dsp
to: n/a

crt

Delete Process dlt n/a

Delete Queue dlt n/a

Inquire Queue dsp n/a

Inquire Queue Manager dsp n/a

Inquire Process dsp n/a

Reset Queue Statistics dsp and chg n/a

 Chapter 7. Using PCFs 133

 Authority checking

MQSeries also supplies some channel security exit points so that you can supply
your own user exit programs for security checking. Details are given in the
MQSeries Intercommunication book.

Table 17 (Page 2 of 2). MQSeries for Windows NT, Digital OpenVMS, Tandem NSK,
and UNIX systems - object authorities

Command MQSeries object authority Class authority
(for object type)

Escape see Note 2 see Note 2

Notes:

1. This applies if the object to be replaced does already exist, otherwise the authority
check is as for Create without Replace.

2. The required authority is determined by the MQSC command defined by the escape
text, and it will be equivalent to one of the above.

134 MQSeries Programmable System Management

 Definitions of PCFs

Chapter 8. Definitions of the Programmable Command
Formats

This chapter contains reference material for the Programmable Command Formats
(PCFs) of commands and responses sent between an MQSeries systems
management application program and an MQSeries queue manager.

How the definitions are shown
For each PCF command or response there is a description of what the command
or response does, giving the command identifier in parentheses. See “MQCFH –
PCF header” on page 334 for details of the command identifier.

| Notes to users

| 1. The PCFs described in the reference section are available on all platforms
| except MVS/ESA , unless specific limitations are shown at the start of a
| structure.

| 2. MQSeries for Windows V2.0 does not support PCFs.

| 3. You cannot use PCF commands to work with MQ connections or channel
| groups on MQSeries for Windows V2.1.

 Commands
The required parameters and the optional parameters are listed. The parameters
must occur in the order:

1. All required parameters, in the order stated, followed by

2. Optional parameters as required, in any order, unless specifically noted in the
PCF definition.

 Responses
The response data attribute is always returned whether it is requested or not. This
parameter is required to identify, uniquely, the object when there is a possibility of
multiple reply messages being returned.

The other attributes shown are returned if requested as optional parameters on the
command. The response data attributes are not returned in a defined order.

Parameters and response data
Each parameter name is followed by its structure name in parentheses (details are
given in Chapter 9, “Structures used for commands and responses” on page 333).
The parameter identifier is given at the beginning of the description.

 Copyright IBM Corp. 1994,1998 135

 Definitions of PCFs

 Constants
The values of constants used by PCF commands and responses are included in
Appendix B, “Constants” on page 473.

 Error codes
At the end of each command format definition there is a list of error codes that may
be returned by that command. Full descriptions are given in the alphabetic list in
Appendix A, “Error codes” on page 455.

Error codes applicable to all commands
In addition to those listed under each command format, any command may return
the following in the response format header (descriptions of the MQRC_* error
codes are given in the MQSeries Application Programming Reference):

Reason (MQLONG)
The value may be:

MQRC_CONNECTION_BROKEN
(2009, X'7D9') Connection to queue manager lost.

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_STORAGE_NOT_AVAILABLE
(2071, X'817') Insufficient storage available.

MQRC_MSG_TOO_BIG_FOR_Q
(2030, X'7EE') Message length greater than maximum for queue.

MQRC_NONE
(0, X'000') No reason to report.

MQRCCF_COMMAND_FAILED
Command failed.

MQRCCF_CFH_COMMAND_ERROR
Command identifier not valid.

MQRCCF_CFH_CONTROL_ERROR
Control option not valid.

MQRCCF_CFH_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFH_MSG_SEQ_NUMBER_ERR
Message sequence number not valid.

MQRCCF_CFH_PARM_COUNT_ERROR
Parameter count not valid.

MQRCCF_CFH_TYPE_ERROR
Type not valid.

MQRCCF_CFH_VERSION_ERROR
Structure version number is not valid.

MQRCCF_ENCODING_ERROR
Encoding error.

MQRCCF_MD_FORMAT_ERROR
Format not valid.

136 MQSeries Programmable System Management

 Definitions of PCFs

MQRCCF_MSG_TRUNCATED
Message truncated.

MQRCCF_MSG_LENGTH_ERROR
Message length not valid.

MQRCCF_MSG_SEQ_NUMBER_ERROR
Message sequence number not valid.

PCF commands and responses in groups
The commands and data responses are given in alphabetic order in this chapter.
They can be usefully grouped as follows:

Queue Manager commands

Change Queue Manager (page 173)
Inquire Queue Manager (page 302)
Ping Queue Manager (page 317)

 Process commands

Change Process (page 156)
Copy Process (page 198)
Create Process (page 232)
Delete Process (page 251)
Inquire Process (page 283)
Inquire Process Names (page 287)

 Queue commands

Change Queue (page 160)
Clear Queue (page 179)
Copy Queue (page 202)
Create Queue (page 236)
Delete Queue (page 252)
Inquire Queue (page 289)
Inquire Queue Names (page 311)

 Channel commands

Change Channel (page 139)
Copy Channel (page 181)
Create Channel (page 215)
Delete Channel (page 249)
Inquire Channel (page 256)
Inquire Channel Names (page 268)
Inquire Channel Status (page 271)
Ping Channel (page 314)
Reset Channel (page 318)
Resolve Channel (page 323)
Start Channel (page 325)
Start Channel Initiator (page 327)
Start Channel Listener (page 329)
Stop Channel (page 330)

 Chapter 8. Definitions of PCFs 137

 Definitions of PCFs

 Statistics command

Reset Queue Statistics (page 320)

 Escape command

Escape (page 254)

Data responses to commands

Escape (Response) (page 255)
Inquire Channel (Response) (page 263)
Inquire Channel Names (Response) (page 270)
Inquire Channel Status (Response) (page 278)
Inquire Process (Response) (page 285)
Inquire Process Names (Response) (page 288)
Inquire Queue (Response) (page 295)
Inquire Queue Manager (Response) (page 305)
Inquire Queue Names (Response) (page 313)
Reset Queue Statistics (Response) (page 322)

138 MQSeries Programmable System Management

 Change Channel

 Change Channel
The Change Channel (MQCMD_CHANGE_CHANNEL) command changes the
specified attributes in a channel definition.

For any optional parameters that are omitted, the value does not change.

Required parameters:
ChannelName, ChannelType

Optional parameters (any ChannelType):
TransportType, ChannelDesc, SecurityExit, MsgExit, SendExit, ReceiveExit,
MaxMsgLength, SecurityUserData, MsgUserData, SendUserData,
ReceiveUserData

Optional parameters (sender or server ChannelType):
ModeName, TpName, ConnectionName, XmitQName, MCAName, BatchSize,
DiscInterval, ShortRetryCount, ShortRetryInterval, LongRetryCount,
LongRetryInterval, SeqNumberWrap, DataConversion, MCAType,
MCAUserIdentifier, UserIdentifier, Password, HeartbeatInterval,
NonPersistentMsgSpeed BatchInterval

Optional parameters (receiver ChannelType):
BatchSize, PutAuthority, SeqNumberWrap, MCAUserIdentifier, MsgRetryExit,
MsgRetryUserData, MsgRetryCount, MsgRetryInterval, HeartbeatInterval,
NonPersistentMsgSpeed

Optional parameters (requester ChannelType):
ModeName, TpName, ConnectionName, MCAName, BatchSize, PutAuthority,
SeqNumberWrap, MCAType, MCAUserIdentifier, UserIdentifier, Password,
MsgRetryExit, MsgRetryUserData, MsgRetryCount, MsgRetryInterval
HeartbeatInterval, NonPersistentMsgSpeed

Optional parameters (server-connection ChannelType):
MCAUserIdentifier,

Optional parameters (client-connection ChannelType):
ModeName, TpName QMgrName, ConnectionName UserIdentifier, Password

 Required parameters
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Specifies the name of the channel definition to be changed.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of the channel being changed. The value may be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

 Chapter 8. Definitions of PCFs 139

 Change Channel

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

This value is not supported in the following environment: 32-bit
Windows.

MQCHT_CLNTCONN
Client connection.

This value is not supported in the following environments: OS/400,
32-bit Windows.

 Optional parameters
TransportType (MQCFIN)

Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

No check is made that the correct transport type has been specified if the
channel is initiated from the other end. The value may be:

MQXPT_LU62
LU 6.2.

This value is not supported on 32-bit Windows.

MQXPT_TCP
TCP/IP.

This is the only value supported on 32-bit Windows.

MQXPT_NETBIOS
NetBIOS.

This value is supported in the following environments: OS/2, 32-bit
Windows, Windows NT.

MQXPT_SPX
SPX.

This value is supported in the following environments: OS/2,
Windows NT, Windows client, DOS client.

| MQXPT_DECNET
| DECnet.

| This value is supported in the following environment: OpenVMS.

ChannelDesc (MQCFST)
Channel description (parameter identifier: MQCACH_DESC).

The maximum length of the string is MQ_CHANNEL_DESC_LENGTH.

Use characters from the character set, identified by the coded character
set identifier (CCSID) for the message queue manager on which the
command is executing, to ensure that the text is translated correctly.

140 MQSeries Programmable System Management

 Change Channel

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

If a nonblank name is defined, the security exit is invoked at the following
times:

� Immediately after establishing a channel.

Before any messages are transferred, the exit is given the opportunity
to instigate security flows to validate connection authorization.

� Upon receipt of a response to a security message flow.

Any security message flows received from the remote processor on
the remote machine are passed to the exit.

The exit is given the entire application message and message descriptor
for modification.

The format of the string depends on the platform, as follows:

� On UNIX systems, it is of the form

libraryname(functionname)

� On OS/2, Windows NT, and Windows 3.1, it is of the form

dllname(functionname)

where dllname is specified without the suffix “.DLL”.

� On OS/400, it is of the form

progname libname

where progname occupies the first 10 characters, and libname the
second 10 characters (both blank-padded to the right if necessary).

| � On OpenVMS, it is of the form

| imagename(functionname)

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

MsgExit (MQCFST)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately after a
message has been retrieved from the transmission queue. The exit is
given the entire application message and message descriptor for
modification.

For channels with a channel type (ChannelType) of MQCHT_SVRCONN or
MQCHT_CLNTCONN, this parameter is not relevant, since message exits
are not invoked for such channels.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

In the following environments, a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure: AIX,

| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� The exits are invoked in the order specified in the list.

 Chapter 8. Definitions of PCFs 141

 Change Channel

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit names in the list (excluding trailing
blanks in each name) must not exceed
MQ_TOTAL_EXIT_NAME_LENGTH. An individual string must not
exceed MQ_EXIT_NAME_LENGTH.

SendExit (MQCFST)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately before data
is sent out on the network. The exit is given the complete transmission
buffer before it is transmitted; the contents of the buffer can be modified as
required.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

In the following environments, a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure: AIX,

| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� The exits are invoked in the order specified in the list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit names in the list (excluding trailing
blanks in each name) must not exceed
MQ_TOTAL_EXIT_NAME_LENGTH. An individual string must not
exceed MQ_EXIT_NAME_LENGTH.

ReceiveExit (MQCFST)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

If a nonblank name is defined, the exit is invoked before data received
from the network is processed. The complete transmission buffer is
passed to the exit and the contents of the buffer can be modified as
required.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

In the following environments, a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure: AIX,

| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� The exits are invoked in the order specified in the list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

142 MQSeries Programmable System Management

 Change Channel

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit names in the list (excluding trailing
blanks in each name) must not exceed
MQ_TOTAL_EXIT_NAME_LENGTH. An individual string must not
exceed MQ_EXIT_NAME_LENGTH.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH).

Specifies the maximum message length that can be transmitted on the
channel. This is compared with the value for the remote channel and the
actual maximum is the lowest of the two values.

The value zero means the maximum message length for the queue
manager.

The lower limit for this parameter is 0. The upper limit depends on the
environment:

� On AIX, HP-UX, OS/2, Sun Solaris, and Windows NT, the maximum
message length is 100 MB (104 857 600 bytes).

| � On OpenVMS, OS/400, Tandem NSK, UNIX systems not listed above,
and 32-bit Windows, the maximum message length is 4 MB (4 194 304
bytes).

SecurityUserData (MQCFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA).

Specifies user data that is passed to the security exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

MsgUserData (MQCFST)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA).

Specifies user data that is passed to the message exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure:

| AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� Each exit user data string is passed to the exit at the same ordinal
position in the MsgExit list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit user data in the list (excluding trailing
blanks in each string) must not exceed
MQ_TOTAL_EXIT_DATA_LENGTH. An individual string must not
exceed MQ_EXIT_DATA_LENGTH.

 Chapter 8. Definitions of PCFs 143

 Change Channel

SendUserData (MQCFST)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA).

Specifies user data that is passed to the send exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure:

| AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� Each exit user data string is passed to the exit at the same ordinal
position in the SendExit list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit user data in the list (excluding trailing
blanks in each string) must not exceed
MQ_TOTAL_EXIT_DATA_LENGTH. An individual string must not
exceed MQ_EXIT_DATA_LENGTH.

ReceiveUserData (MQCFST)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA).

Specifies user data that is passed to the receive exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure:

| AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� Each exit user data string is passed to the exit at the same ordinal
position in the ReceiveExit list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit user data in the list (excluding trailing
blanks in each string) must not exceed
MQ_TOTAL_EXIT_DATA_LENGTH. An individual string must not
exceed MQ_EXIT_DATA_LENGTH.

ModeName (MQCFST)
Mode name (parameter identifier: MQCACH_MODE_NAME).

This is the LU 6.2 mode name.

The maximum length of the string is MQ_MODE_NAME_LENGTH.

| � On OpenVMS, OS/400, Tandem NSK, UNIX systems, and Windows
NT, this can be set only to blanks. The actual name is taken instead

144 MQSeries Programmable System Management

 Change Channel

from the CPI-C Communications Side Object or (on Windows NT) from
the CPI-C symbolic destination name properties.

� On 32-bit Windows, this parameter is accepted but ignored.

This parameter is valid only for channels with a TransportType of
MQXPT_LU62. It is not valid for receiver channels.

TpName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

This is the LU 6.2 transaction program name.

The maximum length of the string is MQ_TP_NAME_LENGTH.

| On OpenVMS, OS/400, Tandem NSK, UNIX systems, and Windows
NT, this can be set only to blanks. The actual name is taken instead
from the CPI-C Communications Side Object or (on Windows NT) from
the CPI-C symbolic destination name properties.

� On 32-bit Windows, this parameter is accepted but ignored.

This parameter is valid only for channels with a TransportType of
MQXPT_LU62. It is not valid for receiver channels.

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

Specify the name of the machine as required for the stated
TransportType:

� For MQXPT_LU62 on OS/2, specify the fully-qualified name of the
partner LU. On OS/400, and UNIX systems, specify the name of the
CPI-C communications side object. On Windows NT specify the
CPI-C symbolic destination name.

� For MQXPT_TCP specify either the host name or the network address
of the remote machine.

� For MQXPT_NETBIOS specify the NetBIOS station name.

� For MQXPT_SPX specify the 4 byte network address, the 6 byte node
address, and the 2 byte socket number. These should be entered in
hexadecimal, with a period separating the network and node
addresses. The socket number should be enclosed in brackets, for
example:

CONNAME('ðaðbðcðd.8ð4abcde23a1(5e86)')

If the socket number is omitted, the MQSeries default value (5e86
hex) is assumed.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER or MQCHT_CLNTCONN.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

 Chapter 8. Definitions of PCFs 145

 Change Channel

A transmission queue name is required (either previously defined or
specified here) if ChannelType is MQCHT_SENDER or MQCHT_SERVER.
It is not valid for other channel types.

MCAName (MQCFST)
Message channel agent name (parameter identifier:
MQCACH_MCA_NAME).

This is reserved, and if specified can be set only to blanks.

The maximum length of the string is MQ_MCA_NAME_LENGTH.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, or MQCHT_REQUESTER.

BatchSize (MQCFIN)
Batch size (parameter identifier: MQIACH_BATCH_SIZE).

The maximum number of messages that should be sent down a channel
before a checkpoint is taken.

The batch size which is actually used is the lowest of the following:

� The BatchSize of the sending channel
� The BatchSize of the receiving channel
� The maximum number of uncommitted messages at the sending

queue manager
� The maximum number of uncommitted messages at the receiving

queue manager

The maximum number of uncommitted messages is specified by the
MaxUncommittedMsgs parameter of the Change Queue Manager command.

Specify a value in the range 1-9999.

This parameter is not valid for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

DiscInterval (MQCFIN)
Disconnection interval (parameter identifier: MQIACH_DISC_INTERVAL).

This defines the maximum number of seconds that the channel waits for
messages to be put on a transmission queue before terminating the
channel. A value of zero causes the message channel agent to wait
indefinitely.

Specify a value in the range 0 through 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

ShortRetryCount (MQCFIN)
Short retry count (parameter identifier: MQIACH_SHORT_RETRY).

The maximum number of attempts that are made by a sender or server
channel to establish a connection to the remote machine, at intervals
specified by ShortRetryInterval before the (normally longer)
LongRetryCount and LongRetryInterval are used.

Retry attempts are made if the channel fails to connect initially (whether it
is started automatically by the channel initiator or by an explicit command),
and also if the connection fails after the channel has successfully

146 MQSeries Programmable System Management

 Change Channel

connected. However, if the cause of the failure is such that retry is
unlikely to be successful, retries are not attempted.

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

ShortRetryInterval (MQCFIN)
Short timer (parameter identifier: MQIACH_SHORT_TIMER).

Specifies the short retry wait interval for a sender or server channel that is
started automatically by the channel initiator. It defines the interval in
seconds between attempts to establish a connection to the remote
machine.

The time is approximate; zero means that another connection attempt is
made as soon as possible.

Specify a value in the range 0 through 999 999. Values exceeding this
are treated as 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

LongRetryCount (MQCFIN)
Long retry count (parameter identifier: MQIACH_LONG_RETRY).

When a sender or server channel is attempting to connect to the remote
machine, and the count specified by ShortRetryCount has been
exhausted, this specifies the maximum number of further attempts that are
made to connect to the remote machine, at intervals specified by
LongRetryInterval.

If this count is also exhausted without success, an error is logged to the
operator, and the channel is stopped. The channel must subsequently be
restarted with a command (it is not started automatically by the channel
initiator), and it then makes only one attempt to connect, as it is assumed
that the problem has now been cleared by the administrator. The retry
sequence is not carried out again until after the channel has successfully
connected.

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

LongRetryInterval (MQCFIN)
Long timer (parameter identifier: MQIACH_LONG_TIMER).

Specifies the long retry wait interval for a sender or server channel that is
started automatically by the channel initiator. It defines the interval in
seconds between attempts to establish a connection to the remote
machine, after the count specified by ShortRetryCount has been
exhausted.

The time is approximate; zero means that another connection attempt is
made as soon as possible.

Specify a value in the range 0 through 999 999. Values exceeding this
are treated as 999 999.

 Chapter 8. Definitions of PCFs 147

 Change Channel

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

DataConversion (MQCFIN)
Whether sender should convert application data (parameter identifier:
MQIACH_DATA_CONVERSION).

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

The value may be:

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

MQCDC_SENDER_CONVERSION
Conversion by sender.

This value is not supported on 32-bit Windows.

PutAuthority (MQCFIN)
Put authority (parameter identifier: MQIACH_PUT_AUTHORITY).

Specifies whether the user identifier in the context information associated
with a message should be used to establish authority to put the message
on the destination queue.

This parameter is valid only for channels with a ChannelType value of
MQCHT_RECEIVER or MQCHT_REQUESTER

The value may be:

MQPA_DEFAULT
Default user identifier is used.

MQPA_CONTEXT
Context user identifier is used.

SeqNumberWrap (MQCFIN)
Sequence wrap number (parameter identifier:
MQIACH_SEQUENCE_NUMBER_WRAP).

Specifies the maximum message sequence number. When the maximum
is reached, sequence numbers wrap to start again at 1.

The maximum message sequence number is not negotiable; the local and
remote channels must wrap at the same number.

Specify a value in the range 100 through 999 999 999.

This parameter is not valid for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

MCAType (MQCFIN)
Message channel agent type (parameter identifier: MQIACH_MCA_TYPE).

Specifies the type of the message channel agent program.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, or MQCHT_REQUESTER.

The value may be:

148 MQSeries Programmable System Management

 Change Channel

MQMCAT_PROCESS
Process.

MQMCAT_THREAD
Thread (OS/2 and Windows NT only).

MCAUserIdentifier (MQCFST)
Message channel agent user identifier (parameter identifier:
MQCACH_MCA_USER_ID).

If this is nonblank, it is the user identifier which is to be used by the
message channel agent for authorization to access MQSeries resources,
including (if PutAuthority is MQPA_DEFAULT) authorization to put the
message to the destination queue for receiver or requester channels.

If it is blank, the message channel agent uses its default user identifier.

This user identifier can be overridden by one supplied by a channel
security exit.

This parameter is not valid for channels with a ChannelType of
MQCHT_CLNTCONN.

The maximum length of the string is MQ_USER_ID_LENGTH.

UserIdentifier (MQCFST)
Task user identifier (parameter identifier: MQCACH_USER_ID).

This is used by the message channel agent when attempting to initiate a
secure SNA session with a remote message channel agent. It is valid
only for ChannelType values of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_REQUESTER or MQCHT_CLNTCONN.

| � This parameter is supported in the following environments: OpenVMS,
| OS/2, Tandem NSK, UNIX systems.

� On 32-bit Windows, the parameter is accepted but ignored.

The maximum length of the string is MQ_USER_ID_LENGTH. However,
only the first 10 characters are used.

Password (MQCFST)
Password (parameter identifier: MQCACH_PASSWORD).

This is used by the message channel agent when attempting to initiate a
secure SNA session with a remote message channel agent. It is valid
only for ChannelType values of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_REQUESTER or MQCHT_CLNTCONN.

| � This parameter is supported in the following environments: OpenVMS,
| OS/2, Tandem NSK, UNIX systems.

� On 32-bit Windows, the parameter is accepted but ignored.

The maximum length of the string is MQ_PASSWORD_LENGTH.
However, only the first 10 characters are used.

MsgRetryExit (MQCFST)
Message retry exit name (parameter identifier:
MQCACH_MR_EXIT_NAME).

 Chapter 8. Definitions of PCFs 149

 Change Channel

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� On 32-bit Windows, the parameter is accepted but must be blank.

If a nonblank name is defined, the exit is invoked prior to performing a wait
before retrying a failing message.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

MsgRetryUserData (MQCFST)
Message retry exit user data (parameter identifier:
MQCACH_MR_EXIT_USER_DATA).

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� On 32-bit Windows, the parameter is accepted but ignored.

Specifies user data that is passed to the message retry exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

MsgRetryCount (MQCFIN)
Message retry count (parameter identifier: MQIACH_MR_COUNT).

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� On 32-bit Windows, the parameter is accepted but must be zero.

Specifies the number of times that a failing message should be retried.

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

MsgRetryInterval (MQCFIN)
Message retry interval (parameter identifier: MQIACH_MR_INTERVAL).

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� On 32-bit Windows, the parameter is accepted but must be zero.

Specifies the minimum time interval in milliseconds between retries of
failing messages.

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

150 MQSeries Programmable System Management

 Change Channel

QMgrName (MQCFST)
Queue-manager name (parameter identifier: MQCA_Q_MGR_NAME).

For channels with a ChannelType of MQCHT_CLNTCONN, this is the
name of a queue manager to which a client application can request
connection.

On 32-bit Windows, this parameter is accepted but ignored.

For channels of other types, this parameter is not valid. The maximum
length of the string is MQ_Q_MGR_NAME_LENGTH.

HeartbeatInterval (MQCFIN)
Heartbeat interval (parameter identifier: MQIACH_HB_INTERVAL).

The interpretation of this parameter depends on the channel type, as
follows:

� For a channel type of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_RECEIVER or MQCHT_REQUESTER, this is the time in
seconds between heartbeat flows passed from the sending MCA when
there are no messages on the transmission queue. This gives the
receiving MCA the opportunity to quiesce the channel. To be useful,
HeartbeatInterval should be significantly less than DiscInterval.
However, the only check is that the value is within the permitted range.

This type of heartbeat is supported in the following environments: AIX,
| HP-UX, MVS/ESA, OS/2, OS/400, Sun Solaris, Windows NT.

� For a channel type of MQCHT_CLNTCONN or MQCHT_SVRCONN,
this is the time in seconds between heartbeat flows passed from the
server MCA when that MCA has issued an MQGET call with the
MQGMO_WAIT option on behalf of a client application. This allows
the server MCA to handle situations where the client connection fails
during an MQGET with MQGMO_WAIT.

This type of heartbeat is supported in the following environments: AIX,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

The value must be in the range 0 through 999 999. A value of 0 means
that no heartbeat exchange occurs. The value that is actually used is the
larger of the values specified at the sending side and receiving side.

NonPersistentMsgSpeed (MQCFIN)
Speed at which nonpersistent messages are to be sent (parameter
identifier: MQIACH_NPM_SPEED).

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, 32-bit Windows, Windows NT.

Specifying MQNPMS_FAST means that nonpersistent messages on a
channel need not wait for a syncpoint before being made available for
retrieval. The advantage of this is that nonpersistent messages become
available for retrieval far more quickly. The disadvantage is that because
they do not wait for a syncpoint, they may be lost if there is a transmission
failure.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_RECEIVER or MQCHT_REQUESTER. The
value may be:

 Chapter 8. Definitions of PCFs 151

 Change Channel

MQNPMS_NORMAL
Normal speed.

MQNPMS_FAST
Fast speed.

BatchInterval (MQCFIN)
Batch interval (parameter identifier: MQIACH_BATCH_INTERVAL).

This is the approximate time in milliseconds that a channel will keep a
batch open, if fewer than BatchSize messages have been transmitted in
the current batch.

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

If BatchInterval is greater than zero, the batch is terminated by whichever
of the following occurs first:

� BatchSize messages have been sent, or
� BatchInterval milliseconds have elapsed since the start of the batch.

If BatchInterval is zero, the batch is terminated by whichever of the
following occurs first:

� BatchSize messages have been sent, or
� the transmission queue becomes empty.

BatchInterval must be in the range zero through 999 999 999.

This parameter applies only to channels with a ChannelType of:

 MQCHT_SENDER
 MQCHT_SERVER

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_BATCH_INT_ERROR
Batch interval not valid.

MQRCCF_BATCH_INT_WRONG_TYPE
Batch interval parameter not allowed for this channel type.

MQRCCF_BATCH_SIZE_ERROR
Batch size not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

152 MQSeries Programmable System Management

 Change Channel

MQRCCF_CFSL_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFSL_TOTAL_LENGTH_ERROR
Total string length error.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_DISC_INT_ERROR
Disconnection interval not valid.

MQRCCF_DISC_INT_WRONG_TYPE
Disconnection interval not allowed for this channel type.

MQRCCF_HB_INTERVAL_ERROR
Heartbeat interval not valid.

MQRCCF_HB_INTERVAL_WRONG_TYPE
Heartbeat interval parameter not allowed for this channel type.

MQRCCF_LONG_RETRY_ERROR
Long retry count not valid.

MQRCCF_LONG_RETRY_WRONG_TYPE
Long retry parameter not allowed for this channel type.

MQRCCF_LONG_TIMER_ERROR
Long timer not valid.

MQRCCF_LONG_TIMER_WRONG_TYPE
Long timer parameter not allowed for this channel type.

MQRCCF_MAX_MSG_LENGTH_ERROR
Maximum message length not valid.

MQRCCF_MCA_NAME_ERROR
Message channel agent name error.

MQRCCF_MCA_NAME_WRONG_TYPE
Message channel agent name not allowed for this channel type.

MQRCCF_MCA_TYPE_ERROR
Message channel agent type not valid.

MQRCCF_MISSING_CONN_NAME
Connection name parameter required but missing.

 Chapter 8. Definitions of PCFs 153

 Change Channel

MQRCCF_MR_COUNT_ERROR
Message retry count not valid.

MQRCCF_MR_COUNT_WRONG_TYPE
Message-retry count parameter not allowed for this channel type.

MQRCCF_MR_EXIT_NAME_ERROR
Channel message-retry exit name error.

MQRCCF_MR_EXIT_NAME_WRONG_TYPE
Message-retry exit parameter not allowed for this channel type.

MQRCCF_MR_INTERVAL_ERROR
Message retry interval not valid.

MQRCCF_MR_INTERVAL_WRONG_TYPE
Message-retry interval parameter not allowed for this channel type.

MQRCCF_MSG_EXIT_NAME_ERROR
Channel message exit name error.

MQRCCF_NPM_SPEED_ERROR
Nonpersistent message speed not valid.

MQRCCF_NPM_SPEED_WRONG_TYPE
Nonpersistent message speed parameter not allowed for this channel
type.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_PUT_AUTH_ERROR
Put authority value not valid.

MQRCCF_PUT_AUTH_WRONG_TYPE
Put authority parameter not allowed for this channel type.

MQRCCF_RCV_EXIT_NAME_ERROR
Channel receive exit name error.

MQRCCF_SEC_EXIT_NAME_ERROR
Channel security exit name error.

MQRCCF_SEND_EXIT_NAME_ERROR
Channel send exit name error.

MQRCCF_SEQ_NUMBER_WRAP_ERROR
Sequence wrap number not valid.

MQRCCF_SHORT_RETRY_ERROR
Short retry count not valid.

MQRCCF_SHORT_RETRY_WRONG_TYPE
Short retry parameter not allowed for this channel type.

MQRCCF_SHORT_TIMER_ERROR
Short timer value not valid.

154 MQSeries Programmable System Management

 Change Channel

MQRCCF_SHORT_TIMER_WRONG_TYPE
Short timer parameter not allowed for this channel type.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRCCF_XMIT_PROTOCOL_TYPE_ERR
Transmission protocol type not valid.

MQRCCF_XMIT_Q_NAME_ERROR
Transmission queue name error.

MQRCCF_XMIT_Q_NAME_WRONG_TYPE
Transmission queue name not allowed for this channel type.

 Chapter 8. Definitions of PCFs 155

 Change Process

 Change Process
The Change Process (MQCMD_CHANGE_PROCESS) command changes the
specified attributes of an existing MQSeries process definition.

| This PCF is not supported if you are using MQSeries for Windows Version 2.1.

For any optional parameters that are omitted, the value does not change.

Required parameters:
ProcessName

Optional parameters:
ProcessDesc, ApplType, ApplId, EnvData UserData

 Required parameters
ProcessName (MQCFST)

The name of the process definition to be changed (parameter identifier:
MQCA_PROCESS_NAME).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

 Optional parameters
ProcessDesc (MQCFST)

Description of process definition (parameter identifier:
MQCA_PROCESS_DESC).

A plain-text comment that provides descriptive information about the
process definition. It should contain only displayable characters.

The maximum length of the string is MQ_PROCESS_DESC_LENGTH.

If characters are used that are not in the coded character set identifier
(CCSID) for the queue manager on which the command is executing, they
may be translated incorrectly.

ApplType (MQCFIN)
Application type (parameter identifier: MQIA_APPL_TYPE).

Valid application types are:

MQAT_OS400
OS/400 application.

MQAT_OS2
OS/2 or Presentation Manager application.

MQAT_WINDOWS_NT
Windows NT or 32-bit Windows application.

MQAT_DOS
DOS client application.

MQAT_WINDOWS
Windows client or 16-bit Windows application.

MQAT_UNIX
UNIX application.

156 MQSeries Programmable System Management

 Change Process

MQAT_AIX
AIX application (same value as MQAT_UNIX).

MQAT_CICS
CICS transaction.

| MQAT_VMS
| OpenVMS application.

| MQAT_NSK
| Tandem NSK application.

MQAT_DEFAULT
Default application type.

user-value: User-defined application type in the range 65 536 through
999 999 999 (not checked).

Only application types (other than user-defined types) that are supported
on the platform at which the command is executed should be used:

| � On OpenVMS:

| MQAT_VMS (default),
| MQAT_DOS,
| MQAT_WINDOWS, and
| MQAT_DEFAULT are supported.

 � On OS/2:

MQAT_OS2 (default),
MQAT_DOS,
MQAT_WINDOWS,
MQAT_AIX,
MQAT_CICS, and
MQAT_DEFAULT are supported.

 � On OS/400:

MQAT_OS400 (default),
MQAT_CICS, and
MQAT_DEFAULT are supported.

| � On Tandem NSK:

| MQAT_NSK (default),
| MQAT_DOS,
| MQAT_WINDOWS, and
| MQAT_DEFAULT are supported.

� On UNIX systems:

MQAT_UNIX (default),
MQAT_OS2,
MQAT_DOS,
MQAT_WINDOWS,
MQAT_CICS, and
MQAT_DEFAULT are supported.

� On Windows NT:

MQAT_WINDOWS_NT (default),
MQAT_OS2

 Chapter 8. Definitions of PCFs 157

 Change Process

MQAT_DOS,
MQAT_WINDOWS,
MQAT_CICS, and
MQAT_DEFAULT are supported.

ApplId (MQCFST)
Application identifier (parameter identifier: MQCA_APPL_ID).

This is the name of the application to be started, on the platform for which
the command is executing, and might typically be a program name and
library name.

The maximum length of the string is MQ_PROCESS_APPL_ID_LENGTH.

EnvData (MQCFST)
Environment data (parameter identifier: MQCA_ENV_DATA).

A character string that contains environment information pertaining to the
application to be started.

The maximum length of the string is
MQ_PROCESS_ENV_DATA_LENGTH.

UserData (MQCFST)
User data (parameter identifier: MQCA_USER_DATA).

A character string that contains user information pertaining to the
application (defined by ApplId) that is to be started.

The maximum length of the string is
MQ_PROCESS_USER_DATA_LENGTH.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

158 MQSeries Programmable System Management

 Change Process

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_FORCE_VALUE_ERROR
Force value not valid.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

 Chapter 8. Definitions of PCFs 159

 Change Queue

 Change Queue
The Change Queue (MQCMD_CHANGE_Q) command changes the specified
attributes of an existing MQSeries queue.

For any optional parameters that are omitted, the value does not change.

Required parameters:
QName, QType,

Optional parameters (any QType):
QDesc, InhibitPut, DefPriority, DefPersistence

Optional parameters (alias QType):
Force, InhibitGet, BaseQName, Scope

Optional parameters (local QType):
Force, InhibitGet, ProcessName, MaxQDepth, MaxMsgLength, BackoutThreshold,
BackoutRequeueName, Shareability, DefInputOpenOption, HardenGetBackout,
MsgDeliverySequence, RetentionInterval, DistLists, Usage,
InitiationQName, TriggerControl, TriggerType, TriggerMsgPriority,
TriggerDepth, TriggerData, Scope, QDepthHighLimit, QDepthLowLimit,
QDepthMaxEvent, QDepthHighEvent, QDepthLowEvent, QServiceInterval,
QServiceIntervalEvent

Optional parameters (remote QType):
Force, RemoteQName, RemoteQMgrName, XmitQName, Scope

Optional parameters (model QType):
InhibitGet, ProcessName, MaxQDepth, MaxMsgLength, BackoutThreshold,
BackoutRequeueName, Shareability, DefInputOpenOption, HardenGetBackout,
MsgDeliverySequence, RetentionInterval, DistLists, Usage,
InitiationQName, TriggerControl, TriggerType, TriggerMsgPriority,
TriggerDepth, TriggerData, DefinitionType, QDepthHighLimit,
QDepthLowLimit, QDepthMaxEvent, QDepthHighEvent, QDepthLowEvent,
QServiceInterval, QServiceIntervalEvent

 Required parameters
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

The name of the queue to be changed. The maximum length of the string
is MQ_Q_NAME_LENGTH.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

The value specified must match the type of the queue being changed.

The value may be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

160 MQSeries Programmable System Management

 Change Queue

The following is supported on all platforms, but on OS/400 for receipt by
MQSeries for AS/400 V4R2:

MQQT_MODEL
Model queue definition.

 Optional parameters
Force (MQCFIN)

Force changes (parameter identifier: MQIACF_FORCE).

Specifies whether the command should be forced to complete when
conditions are such that completing the command would affect an open
queue. The conditions depend upon the type of the queue that is being
changed:

Alias QType: BaseQName is specified with a queue name and an
application has the alias queue open.

Local QType: Either of the following conditions indicate that a local queue
would be affected:

� Shareability is specified as MQQA_NOT_SHAREABLE and more
than one application has the local queue open for input.

� The Usage value is changed and one or more applications has the
local queue open, or there are one or more messages on the queue.
(The Usage value should not normally be changed while there are
messages on the queue; the format of messages changes when they
are put on a transmission queue.)

Remote QType: Either of the following conditions indicate that a remote
queue would be affected:

� XmitQName is specified with a transmission-queue name (or blank) and
an application has a remote queue open that would be affected by this
change.

� Any of the RemoteQName, RemoteQMgrName or XmitQName parameters is
specified with a queue or queue-manager name, and one or more
applications has a queue open that resolved through this definition as
a queue-manager alias.

Model QType: This parameter is not valid for model queues.

Note: A value of MQFC_YES is not required if this definition is in use as
a reply-to queue definition only.

The value may be:

MQFC_YES
Force the change.

MQFC_NO
Do not force the change.

QDesc (MQCFST)
Queue description (parameter identifier: MQCA_Q_DESC).

Text that briefly describes the object.

The maximum length of the string is MQ_Q_DESC_LENGTH.

 Chapter 8. Definitions of PCFs 161

 Change Queue

Use characters from the character set identified by the coded character set
identifier (CCSID) for the message queue manager on which the command
is executing to ensure that the text is translated correctly if it is sent to
another queue manager.

InhibitPut (MQCFIN)
Whether put operations are allowed (parameter identifier:
MQIA_INHIBIT_PUT).

Specifies whether messages can be put on the queue.

The value may be:

MQQA_PUT_ALLOWED
Put operations are allowed.

MQQA_PUT_INHIBITED
Put operations are inhibited.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

Specifies the default priority of messages put on the queue. The value
must be in the range zero through to the maximum priority value that is
supported (9).

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_DEF_PERSISTENCE).

Specifies the default for message-persistence on the queue. Message
persistence determines whether or not messages are preserved across
restarts of the queue manager.

The value may be:

MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

InhibitGet (MQCFIN)
Whether get operations are allowed (parameter identifier:
MQIA_INHIBIT_GET).

The value may be:

MQQA_GET_ALLOWED
Get operations are allowed.

MQQA_GET_INHIBITED
Get operations are inhibited.

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

This is the name of a local or remote queue that is defined to the local
queue manager.

The maximum length of the string is MQ_Q_NAME_LENGTH.

162 MQSeries Programmable System Management

 Change Queue

ProcessName (MQCFST)
Name of process definition for the queue (parameter identifier:
MQCA_PROCESS_NAME).

Specifies the local name of the MQSeries process that identifies the
application that should be started when a trigger event occurs.

| � On AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT, if the
queue is a transmission queue the process name can be left as all
blanks.

� On 32-bit Windows, this parameter is accepted but ignored.

� In other environments, the process name must be nonblank for a
trigger event to occur (although it can be set after the queue has been
created).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

The maximum number of messages allowed on the queue. Note that
other factors may cause the queue to be treated as full; for example, it will
appear to be full if there is no storage available for a message.

Specify a value in the range 0 through 640 000.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIA_MAX_MSG_LENGTH).

Specifies the maximum length for messages on the queue. Because
applications may use the value of this attribute to determine the size of
buffer they need to retrieve messages from the queue, the value should be
changed only if it is known that this will not cause an application to
operate incorrectly.

You are recommended not to set a value that is greater than the queue
manager’s MaxMsgLength attribute.

The lower limit for this parameter is 0. The upper limit depends on the
environment:

� On AIX, HP-UX, OS/2, Sun Solaris, and Windows NT, the maximum
message length is 100 MB (104 857 600 bytes).

| � On OpenVMS, OS/400, Tandem NSK, UNIX systems not listed above,
and 32-bit Windows, the maximum message length is 4 MB (4 194 304
bytes).

BackoutThreshold (MQCFIN)
Backout threshold (parameter identifier: MQIA_BACKOUT_THRESHOLD).

That is, the number of times a message can be backed out before it is
transferred to the backout queue specified by BackoutRequeueName.

If the value is subsequently reduced, any messages already on the queue
that have been backed out at least as many times as the new value
remain on the queue, but such messages are transferred if they are
backed out again.

 Chapter 8. Definitions of PCFs 163

 Change Queue

Specify a value in the range 0 through 999 999 999.

BackoutRequeueName (MQCFST)
Excessive backout requeue name (parameter identifier:
MQCA_BACKOUT_REQ_Q_NAME).

Specifies the local name of the queue (not necessarily a local queue) to
which a message is transferred if it is backed out more times than the
value of BackoutThreshold.

The backout queue does not need to exist at this time but it must exist
when the BackoutThreshold value is exceeded.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Shareability (MQCFIN)
Whether queue can be shared (parameter identifier:
MQIA_SHAREABILITY).

Specifies whether multiple instances of applications, can open this queue
for input.

The value may be:

MQQA_SHAREABLE
Queue is shareable.

MQQA_NOT_SHAREABLE
Queue is not shareable.

DefInputOpenOption (MQCFIN)
Default input open option (parameter identifier:
MQIA_DEF_INPUT_OPEN_OPTION).

Specifies the default share option for applications opening this queue for
input.

The value may be:

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

HardenGetBackout (MQCFIN)
Whether to harden backout count (parameter identifier:
MQIA_HARDEN_GET_BACKOUT).

Specifies whether the count of backed out messages should be saved
(hardened) across restarts of the message queue manager.

Note: MQSeries for AS/400 always hardens the count, regardless of the
setting of this attribute.

The value may be:

MQQA_BACKOUT_HARDENED
Backout count remembered.

MQQA_BACKOUT_NOT_HARDENED
Backout count may not be remembered.

164 MQSeries Programmable System Management

 Change Queue

MsgDeliverySequence (MQCFIN)
Whether priority is relevant (parameter identifier:
MQIA_MSG_DELIVERY_SEQUENCE).

The value may be:

MQMDS_PRIORITY
Messages are returned in priority order.

MQMDS_FIFO
Messages are returned in FIFO order (first in, first out).

RetentionInterval (MQCFIN)
Retention interval (parameter identifier: MQIA_RETENTION_INTERVAL).

The number of hours for which the queue may be needed, based on the
date and time when the queue was created.

This information is available to a housekeeping application or an operator
and may be used to determine when a queue is no longer required. The
queue manager does not delete queues nor does it prevent queues from
being deleted if their retention interval has not expired. It is the user’s
responsibility to take any required action.

Specify a value in the range 0 through 999 999 999.

DistLists (MQCFIN)
Distribution list support (parameter identifier: MQIA_DIST_LISTS).

Specifies whether distribution-list messages can be placed on the queue.

Note: This attribute is set by the sending message channel agent (MCA)
which removes messages from the queue; this happens each time
the sending MCA establishes a connection to a receiving MCA on
a partnering queue manager. The attribute should not normally be
set by administrators, although it can be set if the need arises.

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

The value may be:

MQDL_SUPPORTED
Distribution lists supported.

MQDL_NOT_SUPPORTED
Distribution lists not supported.

Usage (MQCFIN)
Usage (parameter identifier: MQIA_USAGE).

Specifies whether the queue is for normal usage or for transmitting
messages to a remote message queue manager.

The value may be:

MQUS_NORMAL
Normal usage.

MQUS_TRANSMISSION
Transmission queue.

 Chapter 8. Definitions of PCFs 165

 Change Queue

InitiationQName (MQCFST)
Initiation queue name (parameter identifier:
MQCA_INITIATION_Q_NAME).

The local queue for trigger messages relating to this queue. The initiation
queue must be on the same queue manager.

On 32-bit Windows, this parameter is accepted but ignored.

The maximum length of the string is MQ_Q_NAME_LENGTH.

TriggerControl (MQCFIN)
Trigger control (parameter identifier: MQIA_TRIGGER_CONTROL).

Specifies whether trigger messages are written to the initiation queue.

The value may be:

MQTC_OFF
Trigger messages not required.

MQTC_ON
Trigger messages required.

This value is not supported on 32-bit Windows.

TriggerType (MQCFIN)
Trigger type (parameter identifier: MQIA_TRIGGER_TYPE).

Specifies the condition that initiates a trigger event. When the condition is
true, a trigger message is sent to the initiation queue.

On 32-bit Windows, this parameter is accepted but ignored.

The value may be:

MQTT_NONE
No trigger messages.

MQTT_EVERY
Trigger message for every message.

MQTT_FIRST
Trigger message when queue depth goes from 0 to 1.

MQTT_DEPTH
Trigger message when depth threshold exceeded.

TriggerMsgPriority (MQCFIN)
Threshold message priority for triggers (parameter identifier:
MQIA_TRIGGER_MSG_PRIORITY).

Specifies the minimum priority that a message must have before it can
cause, or be counted for, a trigger event. The value must be in the range
of priority values that are supported (0 through 9).

On 32-bit Windows, this parameter is accepted but ignored.

TriggerDepth (MQCFIN)
Trigger depth (parameter identifier: MQIA_TRIGGER_DEPTH).

Specifies (when TriggerType is MQTT_DEPTH) the number of messages
that will initiate a trigger message to the initiation queue. The value must
be in the range 1 through 999 999 999.

166 MQSeries Programmable System Management

 Change Queue

On 32-bit Windows, this parameter is accepted but ignored.

TriggerData (MQCFST)
Trigger data (parameter identifier: MQCA_TRIGGER_DATA).

Specifies user data that the queue manager includes in the trigger
message. This data is made available to the monitoring application that
processes the initiation queue and to the application that is started by the
monitor.

On 32-bit Windows, this parameter is accepted but ignored.

The maximum length of the string is MQ_TRIGGER_DATA_LENGTH.

RemoteQName (MQCFST)
Name of remote queue as known locally on the remote queue manager
(parameter identifier: MQCA_REMOTE_Q_NAME).

If this definition is used for a local definition of a remote queue,
RemoteQName must not be blank when the open occurs.

If this definition is used for a queue-manager alias definition, RemoteQName
must be blank when the open occurs.

If this definition is used for a reply-to alias, this name is the name of the
queue that is to be the reply-to queue.

The maximum length of the string is MQ_Q_NAME_LENGTH.

RemoteQMgrName (MQCFST)
Name of remote queue manager (parameter identifier:
MQCA_REMOTE_Q_MGR_NAME).

If an application opens the local definition of a remote queue,
RemoteQMgrName must not be blank or the name of the connected queue
manager. If XmitQName is blank there must be a local queue of this name,
which is to be used as the transmission queue.

If this definition is used for a queue-manager alias, RemoteQMgrName is the
name of the queue manager, which can be the name of the connected
queue manager. Otherwise, if XmitQName is blank, when the queue is
opened there must be a local queue of this name, which is to be used as
the transmission queue.

If this definition is used for a reply-to alias, this name is the name of the
queue manager that is to be the reply-to queue manager.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCA_XMIT_Q_NAME).

Specifies the local name of the transmission queue to be used for
messages destined for either a remote queue or for a queue-manager
alias definition.

If XmitQName is blank, a queue with the same name as RemoteQMgrName is
used as the transmission queue.

This attribute is ignored if the definition is being used as a queue-manager
alias and RemoteQMgrName is the name of the connected queue manager.

 Chapter 8. Definitions of PCFs 167

 Change Queue

It is also ignored if the definition is used as a reply-to queue alias
definition.

The maximum length of the string is MQ_Q_NAME_LENGTH.

DefinitionType (MQCFIN)
Queue definition type (parameter identifier: MQIA_DEFINITION_TYPE).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

MQQDT_TEMPORARY_DYNAMIC
Dynamically defined temporary queue.

Scope (MQCFIN)
Scope of the queue definition (parameter identifier: MQIA_SCOPE).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

Specifies whether the scope of the queue definition does not extend
beyond the queue manager which owns the queue, or whether the queue
name is contained in a cell directory, so that it is known to all of the queue
managers within the cell.

If this attribute is changed from MQSCO_CELL to MQSCO_Q_MGR, the
entry for the queue is deleted from the cell directory.

Model and dynamic queues cannot be changed to have cell scope.

If it is changed from MQSCO_Q_MGR to MQSCO_CELL, an entry for the
queue is created in the cell directory. If there is already a queue with the
same name in the cell directory, the command fails. The command also
fails if no name service supporting a cell directory has been configured.

The value may be:

MQSCO_Q_MGR
Queue-manager scope.

MQSCO_CELL
Cell scope.

This value is not supported on OS/400 and 32-bit Windows.

QDepthHighLimit (MQCFIN)
High limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_HIGH_LIMIT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The threshold against which the queue depth is compared to generate a
Queue Depth High event.

This event indicates that an application has put a message to a queue,
and this has caused the number of messages on the queue to become
greater than or equal to the queue depth high threshold. See the
QDepthHighEvent parameter.

168 MQSeries Programmable System Management

 Change Queue

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and must be greater than or equal to zero and less
than or equal to 100.

QDepthLowLimit (MQCFIN)
Low limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_LOW_LIMIT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The threshold against which the queue depth is compared to generate a
Queue Depth Low event.

This event indicates that an application has retrieved a message from a
queue, and this has caused the number of messages on the queue to
become less than or equal to the queue depth low threshold. See the
QDepthLowEvent parameter.

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and must be greater than or equal to zero and less
than or equal to 100.

QDepthMaxEvent (MQCFIN)
Controls whether Queue Full events are generated (parameter identifier:
MQIA_Q_DEPTH_MAX_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

A Queue Full event indicates that an MQPUT call to a queue has been
rejected because the queue is full, that is, the queue depth has already
reached its maximum value.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthHighEvent (MQCFIN)
Controls whether Queue Depth High events are generated (parameter
identifier: MQIA_Q_DEPTH_HIGH_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

A Queue Depth High event indicates that an application has put a
message on a queue, and this has caused the number of messages on
the queue to become greater than or equal to the queue depth high
threshold. See the QDepthHighLimit parameter.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQEVR_DISABLED
Event reporting disabled.

 Chapter 8. Definitions of PCFs 169

 Change Queue

MQEVR_ENABLED
Event reporting enabled.

QDepthLowEvent (MQCFIN)
Controls whether Queue Depth Low events are generated (parameter
identifier: MQIA_Q_DEPTH_LOW_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

A Queue Depth Low event indicates that an application has retrieved a
message from a queue, and this has caused the number of messages on
the queue to become less than or equal to the queue depth low threshold.
See the QDepthLowLimit parameter.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QServiceInterval (MQCFIN)
Target for queue service interval (parameter identifier:
MQIA_Q_SERVICE_INTERVAL).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The service interval used for comparison to generate Queue Service
Interval High and Queue Service Interval OK events. See the
QServiceIntervalEvent parameter.

The value is in units of milliseconds, and must be greater than or equal to
zero, and less than or equal to 999 999 999.

QServiceIntervalEvent (MQCFIN)
Controls whether Service Interval High or Service Interval OK events are
generated (parameter identifier: MQIA_Q_SERVICE_INTERVAL_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

A Queue Service Interval High event is generated when a check indicates
that no messages have been retrieved from or put to the queue for at least
the time indicated by the QServiceInterval attribute.

A Queue Service Interval OK event is generated when a check indicates
that a message has been retrieved from the queue within the time
indicated by the QServiceInterval attribute.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQQSIE_HIGH
Queue Service Interval High events enabled.

� Queue Service Interval High events are enabled and
� Queue Service Interval OK events are disabled .

170 MQSeries Programmable System Management

 Change Queue

MQQSIE_OK
Queue Service Interval OK events enabled.

� Queue Service Interval High events are disabled and
� Queue Service Interval OK events are enabled .

MQQSIE_NONE
No queue service interval events enabled.

� Queue Service Interval High events are disabled and
� Queue Service Interval OK events are also disabled .

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

MQRCCF_CELL_DIR_NOT_AVAILABLE
Cell directory is not available.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_FORCE_VALUE_ERROR
Force value not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_DYNAMIC_Q_SCOPE_ERROR
Dynamic queue scope error.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

 Chapter 8. Definitions of PCFs 171

 Change Queue

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_Q_ALREADY_IN_CELL
Queue already exists in cell.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

172 MQSeries Programmable System Management

 Change Queue Manager

Change Queue Manager
The Change Queue Manager (MQCMD_CHANGE_Q_MGR) command changes the
specified attributes of the queue manager.

For any optional parameters that are omitted, the value does not change.

Required parameters:
None

Optional parameters:
Force, QMgrDesc, TriggerInterval, DeadLetterQName, MaxHandles,
MaxUncommittedMsgs, DefXmitQName, AuthorityEvent, InhibitEvent,
LocalEvent, RemoteEvent, StartStopEvent, PerformanceEvent, MaxMsgLength,
ChannelAutoDef, ChannelAutoDefEvent, ChannelAutoDefExit

 Optional parameters
Force (MQCFIN)

Force changes (parameter identifier: MQIACF_FORCE).

Specifies whether the command should be forced to complete if both of
the following are true:

� DefXmitQName is specified, and

� An application has a remote queue open, the resolution for which
would be affected by this change.

QMgrDesc (MQCFST)
Queue manager description (parameter identifier: MQCA_Q_MGR_DESC).

This is text that briefly describes the object.

The maximum length of the string is MQ_Q_MGR_DESC_LENGTH.

Use characters from the character set identified by the coded character set
identifier (CCSID) for the queue manager on which the command is
executing, to ensure that the text is translated correctly.

TriggerInterval (MQCFIN)
Trigger interval (parameter identifier: MQIA_TRIGGER_INTERVAL).

Specifies the trigger time interval, expressed in milliseconds, for use only
with queues where TriggerType has a value of MQTT_FIRST.

In this case trigger messages are normally only generated when a suitable
message arrives on the queue, and the queue was previously empty.
Under certain circumstances, however, an additional trigger message can
be generated with MQTT_FIRST triggering, even if the queue was not
empty. These additional trigger messages are not generated more often
than every TriggerInterval milliseconds.

Specify a value in the range 0 through 999 999 999.

On 32-bit Windows, this parameter is accepted but ignored.

DeadLetterQName (MQCFST)
Dead letter (undelivered message) queue name (parameter identifier:
MQCA_DEAD_LETTER_Q_NAME).

 Chapter 8. Definitions of PCFs 173

 Change Queue Manager

Specifies the name of the local queue that is to be used for undelivered
messages. Messages are put on this queue if they cannot be routed to
their correct destination. The maximum length of the string is
MQ_Q_NAME_LENGTH.

On 32-bit Windows, this parameter can be set only to blanks.

MaxHandles (MQCFIN)
Maximum number of handles (parameter identifier:
MQIA_MAX_HANDLES).

The maximum number of handles that any one job can have open at the
same time.

Specify a value in the range 0 through 999 999 999.

MaxUncommittedMsgs (MQCFIN)
Maximum uncommitted messages (parameter identifier:
MQIA_MAX_UNCOMMITTED_MSGS).

Specifies the maximum number of uncommitted messages. That is:

� The number of messages that can be retrieved, plus
� The number of messages that can be put, plus
� Any trigger messages generated within this unit of work

under any one syncpoint. This limit does not apply to messages that are
retrieved or put outside syncpoint.

Specify a value in the range 1 through 10 000.

DefXmitQName (MQCFST)
Default transmission queue name (parameter identifier:
MQCA_DEF_XMIT_Q_NAME).

This is the name of the default transmission queue that is used for the
transmission of messages to remote queue managers, if there is no other
indication of which transmission queue to use.

The maximum length of the string is MQ_Q_NAME_LENGTH.

AuthorityEvent (MQCFIN)
Controls whether authorization (Not Authorized) events are generated
(parameter identifier: MQIA_AUTHORITY_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

On 32-bit Windows, this value is not supported.

InhibitEvent (MQCFIN)
Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated
(parameter identifier: MQIA_INHIBIT_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

174 MQSeries Programmable System Management

 Change Queue Manager

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

LocalEvent (MQCFIN)
Controls whether local error events are generated (parameter identifier:
MQIA_LOCAL_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

RemoteEvent (MQCFIN)
Controls whether remote error events are generated (parameter identifier:
MQIA_REMOTE_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

StartStopEvent (MQCFIN)
Controls whether start and stop events are generated (parameter identifier:
MQIA_START_STOP_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

PerformanceEvent (MQCFIN)
Controls whether performance-related events are generated (parameter
identifier: MQIA_PERFORMANCE_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

 Chapter 8. Definitions of PCFs 175

 Change Queue Manager

MQEVR_ENABLED
Event reporting enabled.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIA_MAX_MSG_LENGTH).

Specifies the maximum length of messages allowed on queues on the
queue manager. No message that is larger than either the queue’s
MaxMsgLength or the queue manager’s MaxMsgLength can be put on a
queue.

If you reduce the maximum message length for the queue manager, you
should also reduce the maximum message length of the
SYSTEM.DEFAULT.LOCAL.QUEUE definition, and your other queues, to
ensure that the queue manager’s limit is not less than that of any of the
queues in the system. If you do not do this, and applications inquire only
the value of the queue’s MaxMsgLength, they may not work correctly.

| The lower limit for this parameter is 32 KB (32 768 bytes). The upper limit
| depends on the environment:

� On AIX, HP-UX, OS/2, Sun Solaris, and Windows NT, the maximum
message length is 100 MB (104 857 600 bytes).

| � On OS/400, the maximum message length is 4 MB (4 194 304 bytes).

ChannelAutoDef (MQCFIN)
Controls whether receiver and server-connection channels can be
auto-defined (parameter identifier: MQIA_CHANNEL_AUTO_DEF).

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

The value may be:

MQCHAD_DISABLED
Channel auto-definition disabled.

MQCHAD_ENABLED
Channel auto-definition enabled.

ChannelAutoDefEvent (MQCFIN)
Controls whether channel auto-definition events are generated (parameter
identifier: MQIA_CHANNEL_AUTO_DEF_EVENT).

Relevant only if channel auto-definition is enabled (see ChannelAutoDef).

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

176 MQSeries Programmable System Management

 Change Queue Manager

ChannelAutoDefExit (MQCFST)
Channel auto-definition exit name (parameter identifier:
MQCA_CHANNEL_AUTO_DEF_EXIT).

If a nonblank name is defined, and channel auto-definition is enabled (see
ChannelAutoDef), this exit is invoked when an inbound request for an
undefined channel is received.

The format of the name is the same as for the SecurityExit parameter
described in “Change Channel” on page 139.

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHAD_ERROR
Channel automatic definition error.

MQRCCF_CHAD_EVENT_ERROR
Channel automatic definition event error.

MQRCCF_CHAD_EVENT_WRONG_TYPE
Channel automatic definition event parameter not allowed for this
channel type.

MQRCCF_CHAD_EXIT_ERROR
Channel automatic definition exit name error.

MQRCCF_CHAD_EXIT_WRONG_TYPE
Channel automatic definition exit parameter not allowed for this
channel type.

 Chapter 8. Definitions of PCFs 177

 Change Queue Manager

MQRCCF_CHAD_WRONG_TYPE
Channel automatic definition parameter not allowed for this channel
type.

MQRCCF_FORCE_VALUE_ERROR
Force value not valid.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRCCF_UNKNOWN_Q_MGR
Queue manager not known.

178 MQSeries Programmable System Management

 Clear Queue

 Clear Queue
The Clear Queue (MQCMD_CLEAR_Q) command deletes all of the messages from
a local queue.

The command fails if the queue contains uncommitted messages.

Required parameters:
QName

Optional parameters:
None

 Required parameters
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

The name of the local queue to be cleared. The maximum length of the
string is MQ_Q_NAME_LENGTH.

Note: The target queue must be type local.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_Q_NOT_EMPTY
(2055, X'807') Queue contains one or more messages or
uncommitted put or get requests.

(For this command this reason only occurs if there are uncommitted
updates.)

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

 Chapter 8. Definitions of PCFs 179

 Clear Queue

MQRCCF_Q_WRONG_TYPE
Action not valid for the queue of specified type.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

180 MQSeries Programmable System Management

 Copy Channel

 Copy Channel
The Copy Channel (MQCMD_COPY_CHANNEL) command creates a new channel
definition using, for attributes not specified in the command, the attribute values of
an existing channel definition.

Required parameters:
FromChannelName, ToChannelName, ChannelType

Optional parameters (any ChannelType):
Replace, TransportType, ChannelDesc, SecurityExit, MsgExit, SendExit,
ReceiveExit, MaxMsgLength, SecurityUserData, MsgUserData, SendUserData,
ReceiveUserData

Optional parameters (sender or server ChannelType):
ModeName, TpName, ConnectionName, XmitQName, MCAName, BatchSize,
DiscInterval, ShortRetryCount, ShortRetryInterval, LongRetryCount,
LongRetryInterval, SeqNumberWrap, DataConversion, MCAType,
MCAUserIdentifier, UserIdentifier, Password, HeartbeatInterval,
NonPersistentMsgSpeed BatchInterval

Optional parameters (receiver ChannelType):
BatchSize, PutAuthority, SeqNumberWrap, MCAUserIdentifier, MsgRetryExit,
MsgRetryUserData, MsgRetryCount, MsgRetryInterval, HeartbeatInterval,
NonPersistentMsgSpeed

Optional parameters (requester ChannelType):
ModeName, TpName, ConnectionName, MCAName, BatchSize, PutAuthority,
SeqNumberWrap, MCAType, MCAUserIdentifier, UserIdentifier, Password,
MsgRetryExit, MsgRetryUserData, MsgRetryCount, MsgRetryInterval,
HeartbeatInterval, NonPersistentMsgSpeed

Optional parameters (server-connection ChannelType):
MCAUserIdentifier

Optional parameters (client-connection ChannelType):
ModeName, TpName, QMgrName, ConnectionName, UserIdentifier, Password

 Required parameters
FromChannelName (MQCFST)

From channel name (parameter identifier:
MQCACF_FROM_CHANNEL_NAME).

The name of the existing channel definition that contains values for the
attributes that are not specified in this command.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ToChannelName (MQCFST)
To channel name (parameter identifier: MQCACF_TO_CHANNEL_NAME).

The name of the new channel definition.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

Channel names must be unique; if a channel definition with this name
already exists, the value of Replace must be MQRP_YES. The channel
type of the existing channel definition must be the same as the channel
type of the new channel definition otherwise it cannot be replaced.

 Chapter 8. Definitions of PCFs 181

 Copy Channel

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of the channel being copied. The value may be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

This value is not supported in the following environment: 32-bit
Windows.

MQCHT_CLNTCONN
Client connection.

This value is not supported in the following environments: OS/400,
32-bit Windows.

 Optional parameters
Replace (MQCFIN)

Replace channel definition (parameter identifier: MQIACF_REPLACE).

The value may be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

No check is made that the correct transport type has been specified if the
channel is initiated from the other end. The value may be:

MQXPT_LU62
LU 6.2.

This value is not supported on 32-bit Windows.

MQXPT_TCP
TCP/IP.

This is the only value supported on 32-bit Windows.

MQXPT_NETBIOS
NetBIOS.

This value is supported in the following environments: OS/2, 32-bit
Windows, Windows NT.

182 MQSeries Programmable System Management

 Copy Channel

MQXPT_SPX
SPX.

This value is supported in the following environments: OS/2,
Windows NT, Windows client, DOS client.

| MQXPT_DECNET
| DECnet.

| This value is supported in the following environment: OpenVMS.

ModeName (MQCFST)
Mode name (parameter identifier: MQCACH_MODE_NAME).

LU 6.2 mode name.

The maximum length of the string is MQ_MODE_NAME_LENGTH.

| � On OpenVMS, OS/400, Tandem NSK, UNIX systems, and Windows
NT, this can be set only to blanks. The actual name is taken instead
from the CPI-C Communications Side Object or (on Windows NT) from
the CPI-C symbolic destination name properties.

� On 32-bit Windows, this parameter is accepted but ignored.

This parameter is valid only for channels with a TransportType of
MQXPT_LU62. It is not valid for receiver channels.

TpName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

LU 6.2 transaction program name.

The maximum length of the string is MQ_TP_NAME_LENGTH.

| � On OpenVMS, OS/400, Tandem NSK, UNIX systems, and Windows
NT, this can be set only to blanks. The actual name is taken instead
from the CPI-C Communications Side Object or (on Windows NT) from
the CPI-C symbolic destination name properties.

� On 32-bit Windows, this parameter is accepted but ignored.

This parameter is valid only for channels with a TransportType of
MQXPT_LU62. It is not valid for receiver channels.

QMgrName (MQCFST)
Queue-manager name (parameter identifier: MQCA_Q_MGR_NAME).

For channels with a ChannelType of MQCHT_CLNTCONN, this is the
name of a queue manager to which a client application can request
connection.

On 32-bit Windows, this parameter is accepted but ignored.

For channels of other types, this parameter is not valid. The maximum
length of the string is MQ_Q_MGR_NAME_LENGTH.

ChannelDesc (MQCFST)
Channel description (parameter identifier: MQCACH_DESC).

The maximum length of the string is MQ_CHANNEL_DESC_LENGTH.

 Chapter 8. Definitions of PCFs 183

 Copy Channel

Use characters from the character set identified by the coded character set
identifier (CCSID) for the message queue manager on which the command
is executing, to ensure that the text is translated correctly.

BatchSize (MQCFIN)
Batch size (parameter identifier: MQIACH_BATCH_SIZE).

The maximum number of messages that should be sent down a channel
before a checkpoint is taken.

The batch size which is actually used is the lowest of the following:

� The BatchSize of the sending channel
� The BatchSize of the receiving channel
� The maximum number of uncommitted messages at the sending

queue manager
� The maximum number of uncommitted messages at the receiving

queue manager

The maximum number of uncommitted messages is specified by the
MaxUncommittedMsgs parameter of the Change Queue Manager command.

Specify a value in the range one 1-9999.

This parameter is not valid for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

If a nonblank name is defined, the security exit is invoked at the following
times:

� Immediately after establishing a channel.

Before any messages are transferred, the exit is given the opportunity
to instigate security flows to validate connection authorization.

� Upon receipt of a response to a security message flow.

Any security message flows received from the remote processor on
the remote machine are passed to the exit.

The exit is given the entire application message and message descriptor
for modification.

The format of the string depends on the platform, as follows:

� On UNIX systems, it is of the form

libraryname(functionname)

� On OS/2, Windows NT, and Windows 3.1, it is of the form

dllname(functionname)

where dllname is specified without the suffix “.DLL”.

� On OS/400, it is of the form

progname libname

where progname occupies the first 10 characters, and libname the
second 10 characters (both blank-padded to the right if necessary).

| � On OpenVMS, it is of the form

184 MQSeries Programmable System Management

 Copy Channel

| imagename(functionname)

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

MsgExit (MQCFST)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately after a
message has been retrieved from the transmission queue. The exit is
given the entire application message and message descriptor for
modification.

For channels with a ChannelType of MQCHT_SVRCONN or
MQCHT_CLNTCONN, this parameter is not relevant, since message exits
are not invoked for such channels.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

In the following environments, a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure: AIX,

| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� The exits are invoked in the order specified in the list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit names in the list (excluding trailing
blanks in each name) must not exceed
MQ_TOTAL_EXIT_NAME_LENGTH. An individual string must not
exceed MQ_EXIT_NAME_LENGTH.

SendExit (MQCFST)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately before data
is sent out on the network. The exit is given the complete transmission
buffer before it is transmitted; the contents of the buffer can be modified as
required.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

In the following environments, a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure: AIX,

| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� The exits are invoked in the order specified in the list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

 Chapter 8. Definitions of PCFs 185

 Copy Channel

� The total length of all of the exit names in the list (excluding trailing
blanks in each name) must not exceed
MQ_TOTAL_EXIT_NAME_LENGTH. An individual string must not
exceed MQ_EXIT_NAME_LENGTH.

ReceiveExit (MQCFST)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

If a nonblank name is defined, the exit is invoked before data received
from the network is processed. The complete transmission buffer is
passed to the exit and the contents of the buffer can be modified as
required.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

In the following environments, a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure: AIX,

| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� The exits are invoked in the order specified in the list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit names in the list (excluding trailing
blanks in each name) must not exceed
MQ_TOTAL_EXIT_NAME_LENGTH. An individual string must not
exceed MQ_EXIT_NAME_LENGTH.

SeqNumberWrap (MQCFIN)
Sequence wrap number (parameter identifier:
MQIACH_SEQUENCE_NUMBER_WRAP).

Specifies the maximum message sequence number. When the maximum
is reached, sequence numbers wrap to start again at 1.

The maximum message sequence number is not negotiable; the local and
remote channels must wrap at the same number.

Specify a value in the range 100 through 999 999 999.

This parameter is not valid for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH).

Specifies the maximum message length that can be transmitted on the
channel. This is compared with the value for the remote channel and the
actual maximum is the lowest of the two values.

The value zero means the maximum message length for the queue
manager.

186 MQSeries Programmable System Management

 Copy Channel

The lower limit for this parameter is 0. The upper limit depends on the
environment:

� On AIX, HP-UX, OS/2, Sun Solaris, and Windows NT, the maximum
message length is 100 MB (104 857 600 bytes).

| � On OpenVMS, OS/400, Tandem NSK, UNIX systems not listed above,
and 32-bit Windows, the maximum message length is 4 MB (4 194 304
bytes).

SecurityUserData (MQCFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA).

Specifies user data that is passed to the security exit. The maximum
length of the string is MQ_EXIT_DATA_LENGTH.

MsgUserData (MQCFST)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA).

Specifies user data that is passed to the message exit. The maximum
length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure:

| AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� Each exit user data string is passed to the exit at the same ordinal
position in the MsgExit list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit user data in the list (excluding trailing
blanks in each string) must not exceed
MQ_TOTAL_EXIT_DATA_LENGTH. An individual string must not
exceed MQ_EXIT_DATA_LENGTH.

SendUserData (MQCFST)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA).

Specifies user data that is passed to the send exit. The maximum length
of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure:

| AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� Each exit user data string is passed to the exit at the same ordinal
position in the SendExit list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

 Chapter 8. Definitions of PCFs 187

 Copy Channel

� The total length of all of the exit user data in the list (excluding trailing
blanks in each string) must not exceed
MQ_TOTAL_EXIT_DATA_LENGTH. An individual string must not
exceed MQ_EXIT_DATA_LENGTH.

ReceiveUserData (MQCFST)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA).

Specifies user data that is passed to the receive exit. The maximum
length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure:

| AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� Each exit user data string is passed to the exit at the same ordinal
position in the ReceiveExit list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit user data in the list (excluding trailing
blanks in each string) must not exceed
MQ_TOTAL_EXIT_DATA_LENGTH. An individual string must not
exceed MQ_EXIT_DATA_LENGTH.

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

Specify the name of the machine as required for the stated
TransportType:

� For MQXPT_LU62 on OS/2, specify the fully-qualified name of the
partner LU. On OS/400, and UNIX systems, specify the name of the
CPI-C communications side object. On Windows NT specify the
CPI-C symbolic destination name.

� For MQXPT_TCP specify either the host name or the network address
of the remote machine.

� For MQXPT_NETBIOS specify the NetBIOS station name.

� For MQXPT_SPX specify the 4-byte network address, the 6-byte node
address, and the 2-byte socket number. These should be entered in
hexadecimal, with a period separating the network and node
addresses. The socket number should be enclosed in brackets, for
example:

CONNAME('ðaðbðcðd.8ð4abcde23a1(5e86)')

If the socket number is omitted, the MQSeries default value (5e86
hex) is assumed.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER or MQCHT_CLNTCONN.

188 MQSeries Programmable System Management

 Copy Channel

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

A transmission queue name is required (either previously defined or
specified here) if ChannelType is MQCHT_SENDER or MQCHT_SERVER.
It is not valid for other channel types.

MCAName (MQCFST)
Message channel agent name (parameter identifier:
MQCACH_MCA_NAME).

This is reserved, and if specified can be set only to blanks.

The maximum length of the string is MQ_MCA_NAME_LENGTH.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, or MQCHT_REQUESTER.

DiscInterval (MQCFIN)
Disconnection interval (parameter identifier: MQIACH_DISC_INTERVAL).

This defines the maximum number of seconds that the channel waits for
messages to be put on a transmission queue before terminating the
channel.

Specify a value in the range 0 through 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

ShortRetryCount (MQCFIN)
Short retry count (parameter identifier: MQIACH_SHORT_RETRY).

The maximum number of attempts that are made by a sender or server
channel to establish a connection to the remote machine, at intervals
specified by ShortRetryInterval before the (normally longer)
LongRetryCount and LongRetryInterval are used.

Retry attempts are made if the channel fails to connect initially (whether it
is started automatically by the channel initiator or by an explicit command),
and also if the connection fails after the channel has successfully
connected. However, if the cause of the failure is such that retry is
unlikely to be successful, retries are not attempted.

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

ShortRetryInterval (MQCFIN)
Short timer (parameter identifier: MQIACH_SHORT_TIMER).

Specifies the short retry wait interval for a sender or server channel that is
started automatically by the channel initiator. It defines the interval in
seconds between attempts to establish a connection to the remote
machine.

The time is approximate; zero means that another connection attempt is
made as soon as possible.

 Chapter 8. Definitions of PCFs 189

 Copy Channel

Specify a value in the range 0 through 999 999. Values exceeding this
are treated as 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

LongRetryCount (MQCFIN)
Long retry count (parameter identifier: MQIACH_LONG_RETRY).

When a sender or server channel is attempting to connect to the remote
machine, and the count specified by ShortRetryCount has been
exhausted, this specifies the maximum number of further attempts that are
made to connect to the remote machine, at intervals specified by
LongRetryInterval.

If this count is also exhausted without success, an error is logged to the
operator, and the channel is stopped. The channel must subsequently be
restarted with a command (it is not started automatically by the channel
initiator), and it then makes only one attempt to connect, as it is assumed
that the problem has now been cleared by the administrator. The retry
sequence is not carried out again until after the channel has successfully
connected.

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

LongRetryInterval (MQCFIN)
Long timer (parameter identifier: MQIACH_LONG_TIMER).

Specifies the long retry wait interval for a sender or server channel that is
started automatically by the channel initiator. It defines the interval in
seconds between attempts to establish a connection to the remote
machine, after the count specified by ShortRetryCount has been
exhausted.

The time is approximate; zero means that another connection attempt is
made as soon as possible.

Specify a value in the range 0 through 999 999. Values exceeding this
are treated as 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

DataConversion (MQCFIN)
Whether sender should convert application data (parameter identifier:
MQIACH_DATA_CONVERSION).

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

The value may be:

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

MQCDC_SENDER_CONVERSION
Conversion by sender.

This value is not supported on 32-bit Windows.

190 MQSeries Programmable System Management

 Copy Channel

PutAuthority (MQCFIN)
Put authority (parameter identifier: MQIACH_PUT_AUTHORITY).

Specifies whether the user identifier in the context information associated
with a message should be used to establish authority to put the message
on the destination queue.

This parameter is valid only for channels with a ChannelType value of
MQCHT_RECEIVER or MQCHT_REQUESTER The value may be:

MQPA_DEFAULT
Default user identifier is used.

MQPA_CONTEXT
Context user identifier is used.

MCAType (MQCFIN)
Message channel agent type (parameter identifier: MQIACH_MCA_TYPE).

Specifies the type of the message channel agent program.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, or MQCHT_REQUESTER.

The value may be:

MQMCAT_PROCESS
Process.

MQMCAT_THREAD
Thread (OS/2 and Windows NT only).

MCAUserIdentifier (MQCFST)
Message channel agent user identifier (parameter identifier:
MQCACH_MCA_USER_ID).

If this is nonblank, it is the user identifier which is to be used by the
message channel agent for authorization to access MQ resources,
including (if PutAuthority is MQPA_DEFAULT) authorization to put the
message to the destination queue for receiver or requester channels.

If it is blank, the message channel agent uses its default user identifier.

This user identifier can be overridden by one supplied by a channel
security exit.

This parameter is not valid for channels with a ChannelType of
MQCHT_CLNTCONN.

The maximum length of the string is MQ_USER_ID_LENGTH.

UserIdentifier (MQCFST)
Task user identifier (parameter identifier: MQCACH_USER_ID).

This is used by the message channel agent when attempting to initiate a
secure SNA session with a remote message channel agent.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER or MQCHT_CLNTCONN.

| � This parameter is supported in the following environments: OpenVMS,
| OS/2, Tandem NSK, UNIX systems.

 Chapter 8. Definitions of PCFs 191

 Copy Channel

� On 32-bit Windows, the parameter is accepted but ignored.

The maximum length of the string is MQ_USER_ID_LENGTH. However,
only the first 10 characters are used.

Password (MQCFST)
Password (parameter identifier: MQCACH_PASSWORD).

This is used by the message channel agent when attempting to initiate a
secure SNA session with a remote message channel agent.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER or MQCHT_CLNTCONN.

| � This parameter is supported in the following environments: OpenVMS,
| OS/2, Tandem NSK, UNIX systems.

� On 32-bit Windows, the parameter is accepted but ignored.

The maximum length of the string is MQ_PASSWORD_LENGTH.
However, only the first 10 characters are used.

MsgRetryExit (MQCFST)
Message retry exit name (parameter identifier:
MQCACH_MR_EXIT_NAME).

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� On 32-bit Windows, the parameter is accepted but must be blank.

If a nonblank name is defined, the exit is invoked prior to performing a wait
before retrying a failing message.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

MsgRetryUserData (MQCFST)
Message retry exit user data (parameter identifier:
MQCACH_MR_EXIT_USER_DATA).

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� On 32-bit Windows, the parameter is accepted but ignored.

Specifies user data that is passed to the message retry exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

MsgRetryCount (MQCFIN)
Message retry count (parameter identifier: MQIACH_MR_COUNT).

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

192 MQSeries Programmable System Management

 Copy Channel

� On 32-bit Windows, the parameter is accepted but must be zero.

Specifies the number of times that a failing message should be retried.

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

MsgRetryInterval (MQCFIN)
Message retry interval (parameter identifier: MQIACH_MR_INTERVAL).

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� On 32-bit Windows, the parameter is accepted but must be zero.

Specifies the minimum time interval in milliseconds between retries of
failing messages.

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

HeartbeatInterval (MQCFIN)
Heartbeat interval (parameter identifier: MQIACH_HB_INTERVAL).

The interpretation of this parameter depends on the channel type, as
follows:

� For a channel type of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_RECEIVER or MQCHT_REQUESTER, this is the time in
seconds between heartbeat flows passed from the sending MCA when
there are no messages on the transmission queue. This gives the
receiving MCA the opportunity to quiesce the channel. To be useful,
HeartbeatInterval should be significantly less than DiscInterval.
However, the only check is that the value is within the permitted range.

This type of heartbeat is supported in the following environments: AIX,
| HP-UX, MVS/ESA, OS/2, OS/400, Sun Solaris, Windows NT.

� For a channel type of MQCHT_CLNTCONN or MQCHT_SVRCONN,
this is the time in seconds between heartbeat flows passed from the
server MCA when that MCA has issued an MQGET call with the
MQGMO_WAIT option on behalf of a client application. This allows
the server MCA to handle situations where the client connection fails
during an MQGET with MQGMO_WAIT.

This type of heartbeat is supported in the following environments: AIX,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

The value must be in the range 0 through 999 999. A value of 0 means
that no heartbeat exchange occurs. The value that is actually used is the
larger of the values specified at the sending side and receiving side.

NonPersistentMsgSpeed (MQCFIN)
Speed at which nonpersistent messages are to be sent (parameter
identifier: MQIACH_NPM_SPEED).

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, 32-bit Windows, Windows NT.

 Chapter 8. Definitions of PCFs 193

 Copy Channel

Specifying MQNPMS_FAST means that nonpersistent messages on a
channel need not wait for a syncpoint before being made available for
retrieval. The advantage of this is that nonpersistent messages become
available for retrieval far more quickly. The disadvantage is that because
they do not wait for a syncpoint, they may be lost if there is a transmission
failure.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_RECEIVER or MQCHT_REQUESTER. The
value may be:

MQNPMS_NORMAL
Normal speed.

MQNPMS_FAST
Fast speed.

BatchInterval (MQCFIN)
Batch interval (parameter identifier: MQIACH_BATCH_INTERVAL).

This is the approximate time in milliseconds that a channel will keep a
batch open, if fewer than BatchSize messages have been transmitted in
the current batch.

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

If BatchInterval is greater than zero, the batch is terminated by whichever
of the following occurs first:

� BatchSize messages have been sent, or
� BatchInterval milliseconds have elapsed since the start of the batch.

If BatchInterval is zero, the batch is terminated by whichever of the
following occurs first:

� BatchSize messages have been sent, or
� The transmission queue becomes empty.

BatchInterval must be in the range 0 through 999 999 999.

This parameter applies only to channels with a ChannelType of:

 MQCHT_SENDER
 MQCHT_SERVER

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_BATCH_INT_ERROR
Batch interval not valid.

MQRCCF_BATCH_INT_WRONG_TYPE
Batch interval parameter not allowed for this channel type.

194 MQSeries Programmable System Management

 Copy Channel

MQRCCF_BATCH_SIZE_ERROR
Batch size not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFSL_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFSL_TOTAL_LENGTH_ERROR
Total string length error.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_ALREADY_EXISTS
Channel already exists.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_CONN_NAME_ERROR
Error in connection name parameter.

MQRCCF_DISC_INT_ERROR
Disconnection interval not valid.

MQRCCF_DISC_INT_WRONG_TYPE
Disconnection interval not allowed for this channel type.

MQRCCF_HB_INTERVAL_ERROR
Heartbeat interval not valid.

MQRCCF_HB_INTERVAL_WRONG_TYPE
Heartbeat interval parameter not allowed for this channel type.

MQRCCF_LONG_RETRY_ERROR
Long retry count not valid.

MQRCCF_LONG_RETRY_WRONG_TYPE
Long retry parameter not allowed for this channel type.

MQRCCF_LONG_TIMER_ERROR
Long timer not valid.

 Chapter 8. Definitions of PCFs 195

 Copy Channel

MQRCCF_LONG_TIMER_WRONG_TYPE
Long timer parameter not allowed for this channel type.

MQRCCF_MAX_MSG_LENGTH_ERROR
Maximum message length not valid.

MQRCCF_MCA_NAME_ERROR
Message channel agent name error.

MQRCCF_MCA_NAME_WRONG_TYPE
Message channel agent name not allowed for this channel type.

MQRCCF_MCA_TYPE_ERROR
Message channel agent type not valid.

MQRCCF_MISSING_CONN_NAME
Connection name parameter required but missing.

MQRCCF_MR_COUNT_ERROR
Message retry count not valid.

MQRCCF_MR_COUNT_WRONG_TYPE
Message-retry count parameter not allowed for this channel type.

MQRCCF_MR_EXIT_NAME_ERROR
Channel message-retry exit name error.

MQRCCF_MR_EXIT_NAME_WRONG_TYPE
Message-retry exit parameter not allowed for this channel type.

MQRCCF_MR_INTERVAL_ERROR
Message retry interval not valid.

MQRCCF_MR_INTERVAL_WRONG_TYPE
Message-retry interval parameter not allowed for this channel type.

MQRCCF_MSG_EXIT_NAME_ERROR
Channel message exit name error.

MQRCCF_NPM_SPEED_ERROR
Nonpersistent message speed not valid.

MQRCCF_NPM_SPEED_WRONG_TYPE
Nonpersistent message speed parameter not allowed for this channel
type.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_PUT_AUTH_ERROR
Put authority value not valid.

MQRCCF_PUT_AUTH_WRONG_TYPE
Put authority parameter not allowed for this channel type.

MQRCCF_RCV_EXIT_NAME_ERROR
Channel receive exit name error.

196 MQSeries Programmable System Management

 Copy Channel

MQRCCF_REPLACE_VALUE_ERROR
Replace value not valid.

MQRCCF_SEC_EXIT_NAME_ERROR
Channel security exit name error.

MQRCCF_SEND_EXIT_NAME_ERROR
Channel send exit name error.

MQRCCF_SEQ_NUMBER_WRAP_ERROR
Sequence wrap number not valid.

MQRCCF_SHORT_RETRY_ERROR
Short retry count not valid.

MQRCCF_SHORT_RETRY_WRONG_TYPE
Short retry parameter not allowed for this channel type.

MQRCCF_SHORT_TIMER_ERROR
Short timer value not valid.

MQRCCF_SHORT_TIMER_WRONG_TYPE
Short timer parameter not allowed for this channel type.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRCCF_XMIT_PROTOCOL_TYPE_ERR
Transmission protocol type not valid.

MQRCCF_XMIT_Q_NAME_ERROR
Transmission queue name error.

MQRCCF_XMIT_Q_NAME_WRONG_TYPE
Transmission queue name not allowed for this channel type.

 Chapter 8. Definitions of PCFs 197

 Copy Process

 Copy Process
The Copy Process (MQCMD_COPY_PROCESS) command creates a new
MQSeies process definition, using, for attributes not specified in the command, the
attribute values of an existing process definition.

| This PCF is not supported if you are using MQSeries for Windows Version 2.1.

Required parameters:
FromProcessName, ToProcessName

Optional parameters:
Replace, ProcessDesc, ApplType, ApplId, EnvData, UserData

 Required parameters
FromProcessName (MQCFST)

The name of the process definition to be copied from (parameter identifier:
MQCACF_FROM_PROCESS_NAME).

Specifies the name of the existing process definition that contains values
for the attributes not specified in this command.

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

ToProcessName (MQCFST)
To process name (parameter identifier: MQCACF_TO_PROCESS_NAME).

The name of the new process definition. If a process definition with this
name already exists, Replace must be specified as MQRP_YES.

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

 Optional parameters
Replace (MQCFIN)

Replace attributes (parameter identifier: MQIACF_REPLACE).

If a process definition with the same name as ToProcessName already
exists, this specifies whether it is to be replaced.

The value may be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

ProcessDesc (MQCFST)
Description of process definition (parameter identifier:
MQCA_PROCESS_DESC).

A plain-text comment that provides descriptive information about the
process definition. It should contain only displayable characters.

The maximum length of the string is MQ_PROCESS_DESC_LENGTH.

198 MQSeries Programmable System Management

 Copy Process

If characters that are not in the coded character set identifier (CCSID) for
the queue manager on which the command is executing are used, they
may be translated incorrectly.

ApplType (MQCFIN)
Application type (parameter identifier: MQIA_APPL_TYPE).

Valid application types are:

MQAT_OS400
OS/400 application.

MQAT_OS2
OS/2 or Presentation Manager application.

MQAT_WINDOWS_NT
Windows NT or 32-bit Windows application.

MQAT_DOS
DOS client application.

MQAT_WINDOWS
Windows client or 16-bit Windows application.

MQAT_UNIX
UNIX application.

MQAT_AIX
AIX application (same value as MQAT_UNIX).

MQAT_CICS
CICS transaction.

| MQAT_VMS
| OpenVMS application.

| MQAT_NSK
| Tandem NSK application.

MQAT_DEFAULT
Default application type.

user-value: User-defined application type in the range 65 536 through
999 999 999 (not checked).

Only application types (other than user-defined types) that are supported
on the platform at which the command is executed should be used:

| � On OpenVMS:

| MQAT_VMS (default),
| MQAT_DOS,
| MQAT_WINDOWS, and
| MQAT_DEFAULT are supported.

 � On OS/400:

MQAT_OS400 (default),
MQAT_CICS, and
MQAT_DEFAULT are supported.

 � On OS/2:

MQAT_OS2 (default),
MQAT_DOS,

 Chapter 8. Definitions of PCFs 199

 Copy Process

MQAT_WINDOWS,
MQAT_AIX,
MQAT_CICS, and
MQAT_DEFAULT are supported.

| � On Tandem NSK:

| MQAT_NSK (default),
| MQAT_DOS,
| MQAT_WINDOWS, and
| MQAT_DEFAULT are supported.

� On Windows NT:

MQAT_WINDOWS_NT (default),
MQAT_OS2
MQAT_DOS,
MQAT_WINDOWS,
MQAT_CICS, and
MQAT_DEFAULT are supported.

� On UNIX systems:

MQAT_UNIX (default),
MQAT_OS2,
MQAT_DOS,
MQAT_WINDOWS,
MQAT_CICS, and
MQAT_DEFAULT are supported.

ApplId (MQCFST)
Application identifier (parameter identifier: MQCA_APPL_ID).

This is the name of the application to be started, on the platform for which
the command is executing, and might typically be a program name and
library name.

The maximum length of the string is MQ_PROCESS_APPL_ID_LENGTH.

EnvData (MQCFST)
Environment data (parameter identifier: MQCA_ENV_DATA).

A character string that contains environment information pertaining to the
application to be started.

The maximum length of the string is
MQ_PROCESS_ENV_DATA_LENGTH.

UserData (MQCFST)
User data (parameter identifier: MQCA_USER_DATA).

A character string that contains user information pertaining to the
application (defined by ApplId) that is to be started.

The maximum length of the string is
MQ_PROCESS_USER_DATA_LENGTH.

200 MQSeries Programmable System Management

 Copy Process

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_OBJECT_ALREADY_EXISTS
Object already exists.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_REPLACE_VALUE_ERROR
Replace value not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

 Chapter 8. Definitions of PCFs 201

 Copy Queue

 Copy Queue
The Copy Queue (MQCMD_COPY_Q) command creates a new queue definition, of
the same type, using, for attributes not specified in the command, the attribute
values of an existing queue definition.

Required parameters:
FromQName, ToQName, QType

Optional parameters (any QType):
Replace, QDesc, InhibitPut, DefPriority, DefPersistence

Optional parameters (alias QType):
InhibitGet, BaseQName, Scope

Optional parameters (local QType):
InhibitGet, ProcessName, MaxQDepth, MaxMsgLength, BackoutThreshold,
BackoutRequeueName, Shareability, DefInputOpenOption, HardenGetBackout,
MsgDeliverySequence, RetentionInterval, DistLists, Usage,
InitiationQName, TriggerControl, TriggerType, TriggerMsgPriority,
TriggerDepth, TriggerData, Scope, QDepthHighLimit, QDepthLowLimit,
QDepthMaxEvent, QDepthHighEvent, QDepthLowEvent, QServiceInterval,
QServiceIntervalEvent

Optional parameters (remote QType):
RemoteQName, RemoteQMgrName, XmitQName, Scope

Optional parameters (model QType):
InhibitGet, ProcessName, MaxQDepth, MaxMsgLength, BackoutThreshold,
BackoutRequeueName, Shareability, DefInputOpenOption, HardenGetBackout,
MsgDeliverySequence, RetentionInterval, DistLists, Usage,
InitiationQName, TriggerControl, TriggerType, TriggerMsgPriority,
TriggerDepth, TriggerData, DefinitionType, QDepthHighLimit,
QDepthLowLimit, QDepthMaxEvent, QDepthHighEvent, QDepthLowEvent,
QServiceInterval, QServiceIntervalEvent

 Required parameters
FromQName (MQCFST)

From queue name (parameter identifier: MQCACF_FROM_Q_NAME).

Specifies the name of the existing queue definition.

The maximum length of the string is MQ_Q_NAME_LENGTH.

ToQName (MQCFST)
To queue name (parameter identifier: MQCACF_TO_Q_NAME).

Specifies the name of the new queue definition.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Queue names must be unique; if a queue definition already exists with the
name and type of the new queue, Replace must be specified as
MQRP_YES. If a queue definition exists with the same name as and a
different type from the new queue, the command will fail.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

The value specified must match the type of the queue being copied.

202 MQSeries Programmable System Management

 Copy Queue

The value may be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

The following is supported on all platforms, but on OS/400 for receipt by
MQSeries for AS/400 V4R2:

MQQT_MODEL
Model queue definition.

 Optional parameters
Replace (MQCFIN)

Replace attributes (parameter identifier: MQIACF_REPLACE).

If the object already exists, the effect is similar to issuing the Change
Queue command without the MQFC_YES option on the Force parameter,
and with all of the other attributes specified. In particular, note that any
messages which are on the existing queue are retained.

(The difference between the Change Queue command without
MQFC_YES on the Force parameter, and the Copy Queue command with
MQRP_YES on the Replace parameter, is that the Change Queue
command does not change unspecified attributes, but Copy Queue with
MQRP_YES sets all the attributes. When you use MQRP_YES,
unspecified attributes are taken from the queue specified by FromQName,
and the existing attributes of the object being replaced, if one exists, are
ignored.)

The command fails if both of the following are true:

� The command sets attributes that would require the use of
MQFC_YES on the Force parameter if you were using the Change
Queue command

� The object is open

The Change Queue command with MQFC_YES on the Force parameter
succeeds in this situation.

If MQSCO_CELL is specified on the Scope parameter on OS/2 or UNIX
systems, and there is already a queue with the same name in the cell
directory, the command fails, whether or not MQRP_YES is specified.

The value may be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

 Chapter 8. Definitions of PCFs 203

 Copy Queue

QDesc (MQCFST)
Queue description (parameter identifier: MQCA_Q_DESC).

Text that briefly describes the object. The maximum length of the string is
MQ_Q_DESC_LENGTH.

Use characters from the character set identified by the coded character set
identifier (CCSID) for the queue manager on which the command is
executing to ensure that the text is translated correctly.

InhibitPut (MQCFIN)
Whether put operations are allowed (parameter identifier:
MQIA_INHIBIT_PUT).

Specifies whether messages can be put on the queue.

The value may be:

MQQA_PUT_ALLOWED
Put operations are allowed.

MQQA_PUT_INHIBITED
Put operations are inhibited.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

Specifies the default priority of messages put on the queue. The value
must be in the range zero through to the maximum priority value that is
supported (this is 9).

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_DEF_PERSISTENCE).

Specifies the default for message-persistence on the queue. Message
persistence determines whether or not messages are preserved across
restarts of the queue manager.

The value may be:

MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

InhibitGet (MQCFIN)
Whether get operations are allowed (parameter identifier:
MQIA_INHIBIT_GET).

The value may be:

MQQA_GET_ALLOWED
Get operations are allowed.

MQQA_GET_INHIBITED
Get operations are inhibited.

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

204 MQSeries Programmable System Management

 Copy Queue

This is the name of a local or remote queue that is defined to the local
queue manager. The maximum length of the string is
MQ_Q_NAME_LENGTH.

ProcessName (MQCFST)
Name of process definition for the queue (parameter identifier:
MQCA_PROCESS_NAME).

Specifies the local name of the MQSeries process that identifies the
application that should be started when a trigger event occurs.

| � On AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT, if the
queue is a transmission queue the process name can be left as all
blanks.

� On 32-bit Windows, this parameter is accepted but ignored.

� In other environments, the process name must be nonblank for a
trigger event to occur (although it can be set after the queue has been
created).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

The maximum number of messages allowed on the queue. Note that
other factors may cause the queue to be treated as full; for example, it will
be appear to be full if there is no storage available for a message.

Specify a value in the range 0 through 640 000.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIA_MAX_MSG_LENGTH).

Specifies the maximum length for messages on the queue. Because
applications may use the value of this attribute to determine the size of
buffer they need to retrieve messages from the queue, the value should be
changed only if it is known that this will not cause an application to
operate incorrectly.

You are recommended not to set a value that is greater than the queue
manager’s MaxMsgLength attribute.

The lower limit for this parameter is 0. The upper limit depends on the
environment:

� On AIX, HP-UX, OS/2, Sun Solaris, and Windows NT, the maximum
message length is 100 MB (104 857 600 bytes).

| � On OpenVMS, OS/400, Tandem NSK, UNIX systems not listed above,
and 32-bit Windows, the maximum message length is 4 MB (4 194 304
bytes).

BackoutThreshold (MQCFIN)
Backout threshold (parameter identifier: MQIA_BACKOUT_THRESHOLD).

That is, the number of times a message can be backed out before it is
transferred to the backout queue specified by BackoutRequeueName.

 Chapter 8. Definitions of PCFs 205

 Copy Queue

If the value is subsequently reduced, any messages already on the queue
that have been backed out at least as many times as the new value
remain on the queue, but such messages are transferred if they are
backed out again.

Specify a value in the range 0 through 999 999 999.

BackoutRequeueName (MQCFST)
Excessive backout requeue name (parameter identifier:
MQCA_BACKOUT_REQ_Q_NAME).

Specifies the local name of the queue (not necessarily a local queue) to
which a message is transferred if it is backed out more times than the
value of BackoutThreshold.

The backout queue does not need to exist at this time but it must exist
when the BackoutThreshold value is exceeded.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Shareability (MQCFIN)
Whether queue can be shared (parameter identifier:
MQIA_SHAREABILITY).

Specifies whether multiple instances of applications, can open this queue
for input.

The value may be:

MQQA_SHAREABLE
Queue is shareable.

MQQA_NOT_SHAREABLE
Queue is not shareable.

DefInputOpenOption (MQCFIN)
Default input open option (parameter identifier:
MQIA_DEF_INPUT_OPEN_OPTION).

Specifies the default share option for applications opening this queue for
input.

The value may be:

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

HardenGetBackout (MQCFIN)
Whether to harden backout count (parameter identifier:
MQIA_HARDEN_GET_BACKOUT).

Specifies whether the count of backed out messages should be saved
(hardened) across restarts of the queue manager.

Note: MQSeries for AS/400 always hardens the count, regardless of the
setting of this attribute.

The value may be:

206 MQSeries Programmable System Management

 Copy Queue

MQQA_BACKOUT_HARDENED
Backout count remembered.

MQQA_BACKOUT_NOT_HARDENED
Backout count may not be remembered.

MsgDeliverySequence (MQCFIN)
Whether priority is relevant (parameter identifier:
MQIA_MSG_DELIVERY_SEQUENCE).

The value may be:

MQMDS_PRIORITY
Messages are returned in priority order.

MQMDS_FIFO
Messages are returned in FIFO order (first in, first out).

RetentionInterval (MQCFIN)
Retention interval (parameter identifier: MQIA_RETENTION_INTERVAL).

The number of hours for which the queue may be needed, based on the
date and time when the queue was created.

This information is available to a housekeeping application or an operator
and may be used to determine when a queue is no longer required. The
queue manager does not delete queues nor does it prevent queues from
being deleted if their retention interval has not expired. It is the user’s
responsibility to take any required action.

Specify a value in the range 0 through 999 999 999.

DistLists (MQCFIN)
Distribution list support (parameter identifier: MQIA_DIST_LISTS).

Specifies whether distribution-list messages can be placed on the queue.

Note: This attribute is set by the sending message channel agent (MCA)
which removes messages from the queue; this happens each time
the sending MCA establishes a connection to a receiving MCA on
a partnering queue manager. The attribute should not normally be
set by administrators, although it can be set if the need arises.

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

The value may be:

MQDL_SUPPORTED
Distribution lists supported.

MQDL_NOT_SUPPORTED
Distribution lists not supported.

Usage (MQCFIN)
Usage (parameter identifier: MQIA_USAGE).

Specifies whether the queue is for normal usage or for transmitting
messages to a remote queue manager.

The value may be:

 Chapter 8. Definitions of PCFs 207

 Copy Queue

MQUS_NORMAL
Normal usage.

MQUS_TRANSMISSION
Transmission queue.

InitiationQName (MQCFST)
Initiation queue name (parameter identifier:
MQCA_INITIATION_Q_NAME).

The local queue for trigger messages relating to the new, or changed,
queue. The initiation queue must be on the same queue manager.

On 32-bit Windows, this parameter is accepted but ignored.

The maximum length of the string is MQ_Q_NAME_LENGTH.

TriggerControl (MQCFIN)
Trigger control (parameter identifier: MQIA_TRIGGER_CONTROL).

Specifies whether trigger messages are written to the initiation queue.

The value may be:

MQTC_OFF
Trigger messages not required.

MQTC_ON
Trigger messages required.

This value is not supported on 32-bit Windows.

TriggerType (MQCFIN)
Trigger type (parameter identifier: MQIA_TRIGGER_TYPE).

Specifies the condition that initiates a trigger event. When the condition is
true, a trigger message is sent to the initiation queue.

On 32-bit Windows, this parameter is accepted but ignored.

The value may be:

MQTT_NONE
No trigger messages.

MQTT_EVERY
Trigger message for every message.

MQTT_FIRST
Trigger message when queue depth goes from 0 to 1.

MQTT_DEPTH
Trigger message when depth threshold exceeded.

TriggerMsgPriority (MQCFIN)
Threshold message priority for triggers (parameter identifier:
MQIA_TRIGGER_MSG_PRIORITY).

Specifies the minimum priority that a message must have before it can
cause, or be counted for, a trigger event. The value must be in the range
of priority values that are supported (0 through 9).

On 32-bit Windows, this parameter is accepted but ignored.

208 MQSeries Programmable System Management

 Copy Queue

TriggerDepth (MQCFIN)
Trigger depth (parameter identifier: MQIA_TRIGGER_DEPTH).

Specifies (when TriggerType is MQTT_DEPTH) the number of messages
that will initiate a trigger message to the initiation queue.

Specify a value in the range 1 through 999 999 999.

On 32-bit Windows, this parameter is accepted but ignored.

TriggerData (MQCFST)
Trigger data (parameter identifier: MQCA_TRIGGER_DATA).

Specifies user data that the queue manager includes in the trigger
message. This data is made available to the monitoring application that
processes the initiation queue and to the application that is started by the
monitor.

On 32-bit Windows, this parameter is accepted but ignored.

The maximum length of the string is MQ_TRIGGER_DATA_LENGTH.

RemoteQName (MQCFST)
Name of remote queue as known locally on the remote queue manager
(parameter identifier: MQCA_REMOTE_Q_NAME).

If this definition is used for a local definition of a remote queue,
RemoteQName must not be blank when the open occurs.

If this definition is used for a queue-manager alias definition, RemoteQName
must be blank when the open occurs.

If this definition is used for a reply-to alias, this name is the name of the
queue that is to be the reply-to queue.

The maximum length of the string is MQ_Q_NAME_LENGTH.

RemoteQMgrName (MQCFST)
Name of remote queue manager (parameter identifier:
MQCA_REMOTE_Q_MGR_NAME).

If an application opens the local definition of a remote queue,
RemoteQMgrName must not be blank or the name of the connected queue
manager. If XmitQName is blank there must be a local queue of this name,
which is to be used as the transmission queue.

If this definition is used for a queue-manager alias, RemoteQMgrName is the
name of the queue manager, which can be the name of the connected
queue manager. Otherwise, if XmitQName is blank, when the queue is
opened there must be a local queue of this name, which is to be used as
the transmission queue.

If this definition is used for a reply-to alias, this name is the name of the
queue manager that is to be the reply-to queue manager.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCA_XMIT_Q_NAME).

Specifies the local name of the transmission queue to be used for
messages destined for the remote queue, for either a remote queue or for
a queue-manager alias definition.

 Chapter 8. Definitions of PCFs 209

 Copy Queue

If XmitQName is blank, a queue with the same name as RemoteQMgrName is
used as the transmission queue.

This attribute is ignored if the definition is being used as a queue-manager
alias and RemoteQMgrName is the name of the connected queue manager.

It is also ignored if the definition is used as a reply-to queue alias
definition.

The maximum length of the string is MQ_Q_NAME_LENGTH.

DefinitionType (MQCFIN)
Queue definition type (parameter identifier: MQIA_DEFINITION_TYPE).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

MQQDT_TEMPORARY_DYNAMIC
Dynamically defined temporary queue.

Scope (MQCFIN)
Scope of the queue definition (parameter identifier: MQIA_SCOPE).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

Specifies whether the scope of the queue definition does not extend
beyond the queue manager which owns the queue, or whether the queue
name is contained in a cell directory, so that it is known to all of the queue
managers within the cell.

Model and dynamic queues cannot have cell scope.

The command fails if the new queue has a Scope attribute of
MQSCO_CELL, but no name service supporting a cell directory has been
configured.

The value may be:

MQSCO_Q_MGR
Queue-manager scope.

MQSCO_CELL
Cell scope.

This value is not supported on OS/400 and 32-bit Windows.

QDepthHighLimit (MQCFIN)
High limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_HIGH_LIMIT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The threshold against which the queue depth is compared to generate a
Queue Depth High event.

This event indicates that an application has put a message to a queue,
and this has caused the number of messages on the queue to become
greater than or equal to the queue depth high threshold. See the
QDepthHighEvent parameter.

210 MQSeries Programmable System Management

 Copy Queue

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and must be greater than or equal to zero and less
than or equal to 100.

QDepthLowLimit (MQCFIN)
Low limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_LOW_LIMIT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The threshold against which the queue depth is compared to generate a
Queue Depth Low event.

This event indicates that an application has retrieved a message from a
queue, and this has caused the number of messages on the queue to
become less than or equal to the queue depth low threshold. See the
QDepthLowEvent parameter.

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and must be greater than or equal to zero and less
than or equal to 100.

QDepthMaxEvent (MQCFIN)
Controls whether Queue Full events are generated (parameter identifier:
MQIA_Q_DEPTH_MAX_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

A Queue Full event indicates that an MQPUT call to a queue has been
rejected because the queue is full, that is, the queue depth has already
reached its maximum value.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthHighEvent (MQCFIN)
Controls whether Queue Depth High events are generated (parameter
identifier: MQIA_Q_DEPTH_HIGH_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

A Queue Depth High event indicates that an application has put a
message on a queue, and this has caused the number of messages on
the queue to become greater than or equal to the queue depth high
threshold (see the QDepthHighLimit parameter).

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQEVR_DISABLED
Event reporting disabled.

 Chapter 8. Definitions of PCFs 211

 Copy Queue

MQEVR_ENABLED
Event reporting enabled.

QDepthLowEvent (MQCFIN)
Controls whether Queue Depth Low events are generated (parameter
identifier: MQIA_Q_DEPTH_LOW_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

A Queue Depth Low event indicates that an application has retrieved a
message from a queue, and this has caused the number of messages on
the queue to become less than or equal to the queue depth low threshold
(see the QDepthLowLimit parameter).

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QServiceInterval (MQCFIN)
Target for queue service interval (parameter identifier:
MQIA_Q_SERVICE_INTERVAL).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The service interval used for comparison to generate Queue Service
Interval High and Queue Service Interval OK events. See the
QServiceIntervalEvent parameter.

The value is in units of milliseconds, and must be greater than or equal to
zero, and less than or equal to 999 999 999.

QServiceIntervalEvent (MQCFIN)
Controls whether Queue Service Interval High or Queue Service Interval
OK events are generated (parameter identifier:
MQIA_Q_SERVICE_INTERVAL_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

A Service Interval High event is generated when a check indicates that no
messages have been retrieved from the queue for at least the time
indicated by the QServiceInterval attribute.

A Queue Service Interval OK event is generated when a check indicates
that messages have been retrieved from the queue within the time
indicated by the QServiceInterval attribute.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQQSIE_HIGH
Queue Service Interval High events enabled.

� Queue Service Interval High events are enabled and

212 MQSeries Programmable System Management

 Copy Queue

� Queue Service Interval OK events are disabled .

MQQSIE_OK
Queue Service Interval OK events enabled.

� Queue Service Interval High events are disabled and
� Queue Service Interval OK events are enabled .

MQQSIE_NONE
No queue service interval events enabled.

� Queue Service Interval High events are disabled and
� Queue Service Interval OK events are also disabled .

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

MQRCCF_CELL_DIR_NOT_AVAILABLE
Cell directory is not available.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_DYNAMIC_Q_SCOPE_ERROR
Dynamic queue scope error.

MQRCCF_LIKE_OBJECT_WRONG_TYPE
New and existing objects have different type.

MQRCCF_OBJECT_ALREADY_EXISTS
Object already exists.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

 Chapter 8. Definitions of PCFs 213

 Copy Queue

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_OBJECT_WRONG_TYPE
Object has wrong type.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_Q_ALREADY_IN_CELL
Queue already exists in cell.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

MQRCCF_REPLACE_VALUE_ERROR
Replace value not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

214 MQSeries Programmable System Management

 Create Channel

 Create Channel
The Create Channel (MQCMD_CREATE_CHANNEL) command creates an
MQSeries channel definition. Any attributes that are not defined explicitly are set to
the default values on the destination queue manager. If a system default channel
exists for the type of channel being created, the default values are taken from
there.

Required parameters:
ChannelName, ChannelType

Optional parameters (any ChannelType):
Replace, TransportType, ChannelDesc, SecurityExit, MsgExit, SendExit,
ReceiveExit, MaxMsgLength, SecurityUserData, MsgUserData, SendUserData,
ReceiveUserData

Optional parameters (sender or server ChannelType):
ModeName, TpName, ConnectionName, XmitQName, MCAName, BatchSize,
DiscInterval, ShortRetryCount, ShortRetryInterval, LongRetryCount,
LongRetryInterval, SeqNumberWrap, DataConversion, MCAType,
MCAUserIdentifier, UserIdentifier, Password, HeartbeatInterval,
NonPersistentMsgSpeed BatchInterval

Optional parameters (receiver ChannelType):
BatchSize, PutAuthority, SeqNumberWrap, MCAUserIdentifier, MsgRetryExit,
MsgRetryUserData, MsgRetryCount, MsgRetryInterval, HeartbeatInterval,
NonPersistentMsgSpeed

Optional parameters (requester ChannelType):
ModeName, TpName, ConnectionName, MCAName, BatchSize, PutAuthority,
SeqNumberWrap, MCAType, MCAUserIdentifier, UserIdentifier, Password,
MsgRetryExit, MsgRetryUserData, MsgRetryCount, MsgRetryInterval,
HeartbeatInterval, NonPersistentMsgSpeed

Optional parameters (server-connection ChannelType):
MCAUserIdentifier,

Optional parameters (client-connection ChannelType):
ModeName, TpName, QMgrName, ConnectionName, UserIdentifier, Password

 Required parameters
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the new channel definition. The maximum length of the
string is MQ_CHANNEL_NAME_LENGTH.

Channel names must be unique; if a channel definition with this name
already exists, the value of Replace must be MQRP_YES. The channel
type of the existing channel definition must be the same as the channel
type of the new channel definition otherwise it cannot be replaced.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

Specifies the type of the channel being defined. The value may be:

MQCHT_SENDER
Sender.

 Chapter 8. Definitions of PCFs 215

 Create Channel

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

This value is not supported in the following environment: 32-bit
Windows.

MQCHT_CLNTCONN
Client connection.

This value is not supported in the following environments: OS/400,
32-bit Windows.

 Optional parameters
Replace (MQCFIN)

Replace channel definition (parameter identifier: MQIACF_REPLACE).

The value may be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

No check is made that the correct transport type has been specified if the
channel is initiated from the other end. The value may be:

MQXPT_LU62
LU 6.2.

This value is not supported on 32-bit Windows.

MQXPT_TCP
TCP/IP.

This is the only value supported on 32-bit Windows.

MQXPT_NETBIOS
NetBIOS.

This value is supported in the following environments: OS/2, 32-bit
Windows, Windows NT.

MQXPT_SPX
SPX.

This value is supported in the following environments: OS/2,
Windows NT, Windows client, DOS client.

216 MQSeries Programmable System Management

 Create Channel

| MQXPT_DECNET
| DECnet.

| This value is supported in the following environment: OpenVMS.

ModeName (MQCFST)
Mode name (parameter identifier: MQCACH_MODE_NAME).

This is the LU 6.2 mode name. The maximum length of the string is
MQ_MODE_NAME_LENGTH.

| � On OpenVMS, OS/400, Tandem NSK, UNIX systems, and Windows
NT, this can be set only to blanks. The actual name is taken instead
from the CPI-C Communications Side Object or (on Windows NT) from
the CPI-C symbolic destination name properties.

� On 32-bit Windows, this parameter is accepted but ignored.

This parameter is valid only for channels with a TransportType of
MQXPT_LU62. It is not valid for receiver channels.

TpName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

LU 6.2 transaction program name. The maximum length of the string is
MQ_TP_NAME_LENGTH.

| On OpenVMS, OS/400, Tandem NSK, UNIX systems, and Windows
NT, this can be set only to blanks. The actual name is taken instead
from the CPI-C Communications Side Object or (on Windows NT) from
the CPI-C symbolic destination name properties.

� On 32-bit Windows, this parameter is accepted but ignored.

This parameter is valid only for channels with a TransportType of
MQXPT_LU62. It is not valid for receiver channels.

QMgrName (MQCFST)
Queue-manager name (parameter identifier: MQCA_Q_MGR_NAME).

For channels with a ChannelType of MQCHT_CLNTCONN, this is the
name of a queue manager to which a client application can request
connection.

On 32-bit Windows, this parameter is accepted but ignored.

For channels of other types, this parameter is not valid. The maximum
length of the string is MQ_Q_MGR_NAME_LENGTH.

ChannelDesc (MQCFST)
Channel description (parameter identifier: MQCACH_DESC).

The maximum length of the string is MQ_CHANNEL_DESC_LENGTH.

Use characters from the character set, identified by the coded character
set identifier (CCSID) for the message queue manager on which the
command is executing, to ensure that the text is translated correctly.

BatchSize (MQCFIN)
Batch size (parameter identifier: MQIACH_BATCH_SIZE).

The maximum number of messages that can be sent down a channel
before a checkpoint is taken.

 Chapter 8. Definitions of PCFs 217

 Create Channel

The batch size which is actually used is the lowest of the following:

� The BatchSize of the sending channel
� The BatchSize of the receiving channel
� The maximum number of uncommitted messages at the sending

queue manager
� The maximum number of uncommitted messages at the receiving

queue manager

The maximum number of uncommitted messages is specified by the
MaxUncommittedMsgs parameter of the Change Queue Manager command.

Specify a value in the range 1-9999.

This parameter is not valid for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

If a nonblank name is defined, the security exit is invoked at the following
times:

� Immediately after establishing a channel.

Before any messages are transferred, the exit is given the opportunity
to instigate security flows to validate connection authorization.

� Upon receipt of a response to a security message flow.

Any security message flows received from the remote processor on
the remote machine are passed to the exit.

The exit is given the entire application message and message descriptor
for modification.

The format of the string depends on the platform, as follows:

� On UNIX systems, it is of the form

libraryname(functionname)

� On OS/2 and Windows, it is of the form

dllname(functionname)

where dllname is specified without the suffix “.DLL”.

� On OS/400, it is of the form

progname libname

where progname occupies the first 10 characters, and libname the
second 10 characters (both blank-padded to the right if necessary).

| � On OpenVMS, it is of the form

| imagename(functionname)

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

MsgExit (MQCFST)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately after a
message has been retrieved from the transmission queue. The exit is

218 MQSeries Programmable System Management

 Create Channel

given the entire application message and message descriptor for
modification.

For channels with a channel type (ChannelType) of MQCHT_SVRCONN or
MQCHT_CLNTCONN, this parameter is not relevant, since message exits
are not invoked for such channels.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

In the following environments, a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure: AIX,

| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� The exits are invoked in the order specified in the list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit names in the list (excluding trailing
blanks in each name) must not exceed
MQ_TOTAL_EXIT_NAME_LENGTH. An individual string must not
exceed MQ_EXIT_NAME_LENGTH.

SendExit (MQCFST)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

If a nonblank name is defined, the exit is invoked immediately before data
is sent out on the network. The exit is given the complete transmission
buffer before it is transmitted; the contents of the buffer can be modified as
required.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

In the following environments, a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure: AIX,

| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� The exits are invoked in the order specified in the list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit names in the list (excluding trailing
blanks in each name) must not exceed
MQ_TOTAL_EXIT_NAME_LENGTH. An individual string must not
exceed MQ_EXIT_NAME_LENGTH.

 Chapter 8. Definitions of PCFs 219

 Create Channel

ReceiveExit (MQCFST)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

If a nonblank name is defined, the exit is invoked before data received
from the network is processed. The complete transmission buffer is
passed to the exit and the contents of the buffer can be modified as
required.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

In the following environments, a list of exit names can be specified by
using an MQCFSL structure instead of an MQCFST structure: AIX,

| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� The exits are invoked in the order specified in the list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit names in the list (excluding trailing
blanks in each name) must not exceed
MQ_TOTAL_EXIT_NAME_LENGTH. An individual string must not
exceed MQ_EXIT_NAME_LENGTH.

SeqNumberWrap (MQCFIN)
Sequence wrap number (parameter identifier:
MQIACH_SEQUENCE_NUMBER_WRAP).

Specifies the maximum message sequence number. When the maximum
is reached, sequence numbers wrap to start again at 1.

The maximum message sequence number is not negotiable; the local and
remote channels must wrap at the same number.

Specify a value in the range 100 through 999 999 999.

This parameter is not valid for channels with a ChannelType of
MQCHT_SVRCONN or MQCHT_CLNTCONN.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH).

Specifies the maximum message length that can be transmitted on the
channel. This is compared with the value for the remote channel and the
actual maximum is the lowest of the two values.

The value zero means the maximum message length for the queue
manager.

The lower limit for this parameter is 0. The upper limit depends on the
environment:

� On AIX, HP-UX, OS/2, Sun Solaris, and Windows NT, the maximum
message length is 100 MB (104 857 600 bytes).

220 MQSeries Programmable System Management

 Create Channel

| � On OpenVMS, OS/400, Tandem NSK, UNIX systems not listed above,
and 32-bit Windows, the maximum message length is 4 MB (4 194 304
bytes).

SecurityUserData (MQCFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA).

Specifies user data that is passed to the security exit. The maximum
length of the string is MQ_EXIT_DATA_LENGTH.

MsgUserData (MQCFST)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA).

Specifies user data that is passed to the message exit. The maximum
length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure:

| AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� Each exit user data string is passed to the exit at the same ordinal
position in the MsgExit list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit user data in the list (excluding trailing
blanks in each string) must not exceed
MQ_TOTAL_EXIT_DATA_LENGTH. An individual string must not
exceed MQ_EXIT_DATA_LENGTH.

SendUserData (MQCFST)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA).

Specifies user data that is passed to the send exit. The maximum length
of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure:

| AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� Each exit user data string is passed to the exit at the same ordinal
position in the SendExit list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit user data in the list (excluding trailing
blanks in each string) must not exceed
MQ_TOTAL_EXIT_DATA_LENGTH. An individual string must not
exceed MQ_EXIT_DATA_LENGTH.

 Chapter 8. Definitions of PCFs 221

 Create Channel

ReceiveUserData (MQCFST)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA).

Specifies user data that is passed to the receive exit. The maximum
length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, a list of exit user data strings can be
specified by using an MQCFSL structure instead of an MQCFST structure:

| AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� Each exit user data string is passed to the exit at the same ordinal
position in the ReceiveExit list.

� A list with only one name is equivalent to specifying a single name in
an MQCFST structure.

� You cannot specify both a list (MQCFSL) and a single entry
(MQCFST) structure for the same channel attribute.

� The total length of all of the exit user data in the list (excluding trailing
blanks in each string) must not exceed
MQ_TOTAL_EXIT_DATA_LENGTH. An individual string must not
exceed MQ_EXIT_DATA_LENGTH.

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

Specify the name of the machine as required for the stated
TransportType:

� For MQXPT_LU62 on OS/2, specify the fully-qualified name of the
partner LU. On OS/400, and UNIX systems, specify the name of the
CPI-C communications side object. On Windows NT specify the
CPI-C symbolic destination name.

� For MQXPT_TCP specify either the host name or the network address
of the remote machine.

� For MQXPT_NETBIOS specify the NetBIOS station name.

� For MQXPT_SPX specify the 4 byte network address, the 6 byte node
address, and the 2 byte socket number. These should be entered in
hexadecimal, with a period separating the network and node
addresses. The socket number should be enclosed in brackets, for
example:

CONNAME('ðaðbðcðd.8ð4abcde23a1(5e86)')

If the socket number is omitted, the MQSeries default value (5e86
hex) is assumed.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER or MQCHT_CLNTCONN.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

222 MQSeries Programmable System Management

 Create Channel

A transmission queue name is required (either previously defined or
specified here) if ChannelType is MQCHT_SENDER or MQCHT_SERVER.
It is not valid for other channel types.

MCAName (MQCFST)
Message channel agent name (parameter identifier:
MQCACH_MCA_NAME).

This is reserved, and if specified can be set only to blanks.

The maximum length of the string is MQ_MCA_NAME_LENGTH.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, or MQCHT_REQUESTER.

DiscInterval (MQCFIN)
Disconnection interval (parameter identifier: MQIACH_DISC_INTERVAL).

This defines the maximum number of seconds that the channel waits for
messages to be put on a transmission queue before terminating the
channel.

Specify a value in the range 0 through 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

ShortRetryCount (MQCFIN)
Short retry count (parameter identifier: MQIACH_SHORT_RETRY).

The maximum number of attempts that are made by a sender or server
channel to establish a connection to the remote machine, at intervals
specified by ShortRetryInterval before the (normally longer)
LongRetryCount and LongRetryInterval are used.

Retry attempts are made if the channel fails to connect initially (whether it
is started automatically by the channel initiator or by an explicit command),
and also if the connection fails after the channel has successfully
connected. However, if the cause of the failure is such that retry is
unlikely to be successful, retries are not attempted.

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

ShortRetryInterval (MQCFIN)
Short timer (parameter identifier: MQIACH_SHORT_TIMER).

Specifies the short retry wait interval for a sender or server channel that is
started automatically by the channel initiator. It defines the interval in
seconds between attempts to establish a connection to the remote
machine.

The time is approximate; zero means that another connection attempt is
made as soon as possible.

Specify a value in the range 0 through 999 999. Values exceeding this
are treated as 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

 Chapter 8. Definitions of PCFs 223

 Create Channel

LongRetryCount (MQCFIN)
Long retry count (parameter identifier: MQIACH_LONG_RETRY).

When a sender or server channel is attempting to connect to the remote
machine, and the count specified by ShortRetryCount has been
exhausted, this specifies the maximum number of further attempts that are
made to connect to the remote machine, at intervals specified by
LongRetryInterval.

If this count is also exhausted without success, an error is logged to the
operator, and the channel is stopped. The channel must subsequently be
restarted with a command (it is not started automatically by the channel
initiator), and it then makes only one attempt to connect, as it is assumed
that the problem has now been cleared by the administrator. The retry
sequence is not carried out again until after the channel has successfully
connected.

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

LongRetryInterval (MQCFIN)
Long timer (parameter identifier: MQIACH_LONG_TIMER).

Specifies the long retry wait interval for a sender or server channel that is
started automatically by the channel initiator. It defines the interval in
seconds between attempts to establish a connection to the remote
machine, after the count specified by ShortRetryCount has been
exhausted.

The time is approximate; zero means that another connection attempt is
made as soon as possible.

Specify a value in the range 0 through 999 999. Values exceeding this
are treated as 999 999.

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

DataConversion (MQCFIN)
Whether sender should convert application data (parameter identifier:
MQIACH_DATA_CONVERSION).

This parameter is valid only for ChannelType values of MQCHT_SENDER
or MQCHT_SERVER.

The value may be:

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

MQCDC_SENDER_CONVERSION
Conversion by sender.

This value is not supported on 32-bit Windows.

PutAuthority (MQCFIN)
Put authority (parameter identifier: MQIACH_PUT_AUTHORITY).

Specifies whether the user identifier in the context information associated

224 MQSeries Programmable System Management

 Create Channel

with a message should be used to establish authority to put the message
on the destination queue.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER. The value may be:

MQPA_DEFAULT
Default user identifier is used.

MQPA_CONTEXT
Context user identifier is used.

MCAType (MQCFIN)
Message channel agent type (parameter identifier: MQIACH_MCA_TYPE).

Specifies the type of the message channel agent program.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, or MQCHT_REQUESTER.

The value may be:

MQMCAT_PROCESS
Process.

MQMCAT_THREAD
Thread (OS/2 and Windows NT only).

MCAUserIdentifier (MQCFST)
Message channel agent user identifier (parameter identifier:
MQCACH_MCA_USER_ID).

If this is nonblank, it is the user identifier which is to be used by the
message channel agent for authorization to access MQ resources,
including (if PutAuthority is MQPA_DEFAULT) authorization to put the
message to the destination queue for receiver or requester channels.

If it is blank, the message channel agent uses its default user identifier.

This user identifier can be overridden by one supplied by a channel
security exit.

This parameter is not valid for channels with a ChannelType of
MQCHT_CLNTCONN.

The maximum length of the string is MQ_USER_ID_LENGTH.

UserIdentifier (MQCFST)
Task user identifier (parameter identifier: MQCACH_USER_ID).

This is used by the message channel agent when attempting to initiate a
secure SNA session with a remote message channel agent.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER or MQCHT_CLNTCONN.

| � This parameter is supported in the following environments: OpenVMS,
| OS/2, Tandem NSK, UNIX systems.

� On 32-bit Windows, the parameter is accepted but ignored.

The maximum length of the string is MQ_USER_ID_LENGTH. However,
only the first 10 characters are used.

 Chapter 8. Definitions of PCFs 225

 Create Channel

Password (MQCFST)
Password (parameter identifier: MQCACH_PASSWORD).

This is used by the message channel agent when attempting to initiate a
secure SNA session with a remote message channel agent.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_REQUESTER or MQCHT_CLNTCONN.

| � This parameter is supported in the following environments: OpenVMS,
| OS/2, Tandem NSK, UNIX systems.

� On 32-bit Windows, the parameter is accepted but ignored.

The maximum length of the string is MQ_PASSWORD_LENGTH.
However, only the first 10 characters are used.

MsgRetryExit (MQCFST)
Message retry exit name (parameter identifier:
MQCACH_MR_EXIT_NAME).

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� On 32-bit Windows, the parameter is accepted but must be blank.

If a nonblank name is defined, the exit is invoked prior to performing a wait
before retrying a failing message.

The format of the string is the same as for SecurityExit.

The maximum length of the string is MQ_EXIT_NAME_LENGTH. Set
unused character positions to blanks.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

MsgRetryUserData (MQCFST)
Message retry exit user data (parameter identifier:
MQCACH_MR_EXIT_USER_DATA).

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� On 32-bit Windows, the parameter is accepted but ignored.

Specifies user data that is passed to the message retry exit.

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

MsgRetryCount (MQCFIN)
Message retry count (parameter identifier: MQIACH_MR_COUNT).

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� On 32-bit Windows, the parameter is accepted but must be zero.

Specifies the number of times that a failing message should be retried.

Specify a value in the range 0 through 999 999 999.

226 MQSeries Programmable System Management

 Create Channel

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

MsgRetryInterval (MQCFIN)
Message retry interval (parameter identifier: MQIACH_MR_INTERVAL).

� This parameter is supported in the following environments: AIX, AT&T
GIS UNIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

� On 32-bit Windows, the parameter is accepted but must be zero.

Specifies the minimum time interval in milliseconds between retries of
failing messages.

Specify a value in the range 0 through 999 999 999.

This parameter is valid only for ChannelType values of
MQCHT_RECEIVER or MQCHT_REQUESTER.

HeartbeatInterval (MQCFIN)
Heartbeat interval (parameter identifier: MQIACH_HB_INTERVAL).

The interpretation of this parameter depends on the channel type, as
follows:

� For a channel type of MQCHT_SENDER, MQCHT_SERVER,
MQCHT_RECEIVER or MQCHT_REQUESTER, this is the time in
seconds between heartbeat flows passed from the sending MCA when
there are no messages on the transmission queue. This gives the
receiving MCA the opportunity to quiesce the channel. To be useful,
HeartbeatInterval should be significantly less than DiscInterval.
However, the only check is that the value is within the permitted range.

This type of heartbeat is supported in the following environments: AIX,
| HP-UX, MVS/ESA, OS/2, OS/400, Sun Solaris, Windows NT.

� For a channel type of MQCHT_CLNTCONN or MQCHT_SVRCONN,
this is the time in seconds between heartbeat flows passed from the
server MCA when that MCA has issued an MQGET call with the
MQGMO_WAIT option on behalf of a client application. This allows
the server MCA to handle situations where the client connection fails
during an MQGET with MQGMO_WAIT.

This type of heartbeat is supported in the following environments: AIX,
| HP-UX, OS/2, OS/400, Sun Solaris, Windows NT.

The value must be in the range 0 through 999 999. A value of 0 means
that no heartbeat exchange occurs. The value that is actually used is the
larger of the values specified at the sending side and receiving side.

NonPersistentMsgSpeed (MQCFIN)
Speed at which non-persistent messages are to be sent (parameter
identifier: MQIACH_NPM_SPEED).

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, 32-bit Windows, Windows NT.

Specifying MQNPMS_FAST means that non-persistent messages on a
channel need not wait for a syncpoint before being made available for
retrieval. The advantage of this is that non-persistent messages become
available for retrieval far more quickly. The disadvantage is that because

 Chapter 8. Definitions of PCFs 227

 Create Channel

they do not wait for a syncpoint, they may be lost if there is a transmission
failure.

This parameter is valid only for ChannelType values of MQCHT_SENDER,
MQCHT_SERVER, MQCHT_RECEIVER or MQCHT_REQUESTER. The
value may be:

MQNPMS_NORMAL
Normal speed.

MQNPMS_FAST
Fast speed.

BatchInterval (MQCFIN)
Batch interval (parameter identifier: MQIACH_BATCH_INTERVAL).

This is the approximate time in milliseconds that a channel will keep a
batch open, if fewer than BatchSize messages have been transmitted in
the current batch.

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

If BatchInterval is greater than zero, the batch is terminated by whichever
of the following occurs first:

� BatchSize messages have been sent, or
� BatchInterval milliseconds have elapsed since the start of the batch.

If BatchInterval is zero, the batch is terminated by whichever of the
following occurs first:

� BatchSize messages have been sent, or
� the transmission queue becomes empty.

BatchInterval must be in the range 0 through 999 999 999.

This parameter applies only to channels with a ChannelType of:

 MQCHT_SENDER
 MQCHT_SERVER

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_BATCH_INT_ERROR
Batch interval not valid.

MQRCCF_BATCH_INT_WRONG_TYPE
Batch interval parameter not allowed for this channel type.

MQRCCF_BATCH_SIZE_ERROR
Batch size not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

228 MQSeries Programmable System Management

 Create Channel

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFSL_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFSL_TOTAL_LENGTH_ERROR
Total string length error.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_ALREADY_EXISTS
Channel already exists.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_CONN_NAME_ERROR
Error in connection name parameter.

MQRCCF_DISC_INT_ERROR
Disconnection interval not valid.

MQRCCF_DISC_INT_WRONG_TYPE
Disconnection interval not allowed for this channel type.

MQRCCF_HB_INTERVAL_ERROR
Heartbeat interval not valid.

MQRCCF_HB_INTERVAL_WRONG_TYPE
Heartbeat interval parameter not allowed for this channel type.

MQRCCF_LONG_RETRY_ERROR
Long retry count not valid.

MQRCCF_LONG_RETRY_WRONG_TYPE
Long retry parameter not allowed for this channel type.

MQRCCF_LONG_TIMER_ERROR
Long timer not valid.

MQRCCF_LONG_TIMER_WRONG_TYPE
Long timer parameter not allowed for this channel type.

MQRCCF_MAX_MSG_LENGTH_ERROR
Maximum message length not valid.

 Chapter 8. Definitions of PCFs 229

 Create Channel

MQRCCF_MCA_NAME_ERROR
Message channel agent name error.

MQRCCF_MCA_NAME_WRONG_TYPE
Message channel agent name not allowed for this channel type.

MQRCCF_MCA_TYPE_ERROR
Message channel agent type not valid.

MQRCCF_MISSING_CONN_NAME
Connection name parameter required but missing.

MQRCCF_MR_COUNT_ERROR
Message retry count not valid.

MQRCCF_MR_COUNT_WRONG_TYPE
Message-retry count parameter not allowed for this channel type.

MQRCCF_MR_EXIT_NAME_ERROR
Channel message-retry exit name error.

MQRCCF_MR_EXIT_NAME_WRONG_TYPE
Message-retry exit parameter not allowed for this channel type.

MQRCCF_MR_INTERVAL_ERROR
Message retry interval not valid.

MQRCCF_MR_INTERVAL_WRONG_TYPE
Message-retry interval parameter not allowed for this channel type.

MQRCCF_MSG_EXIT_NAME_ERROR
Channel message exit name error.

MQRCCF_NPM_SPEED_ERROR
Nonpersistent message speed not valid.

MQRCCF_NPM_SPEED_WRONG_TYPE
Nonpersistent message speed parameter not allowed for this channel
type.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_PUT_AUTH_ERROR
Put authority value not valid.

MQRCCF_PUT_AUTH_WRONG_TYPE
Put authority parameter not allowed for this channel type.

MQRCCF_RCV_EXIT_NAME_ERROR
Channel receive exit name error.

MQRCCF_REPLACE_VALUE_ERROR
Replace value not valid.

MQRCCF_SEC_EXIT_NAME_ERROR
Channel security exit name error.

230 MQSeries Programmable System Management

 Create Channel

MQRCCF_SEND_EXIT_NAME_ERROR
Channel send exit name error.

MQRCCF_SEQ_NUMBER_WRAP_ERROR
Sequence wrap number not valid.

MQRCCF_SHORT_RETRY_ERROR
Short retry count not valid.

MQRCCF_SHORT_RETRY_WRONG_TYPE
Short retry parameter not allowed for this channel type.

MQRCCF_SHORT_TIMER_ERROR
Short timer value not valid.

MQRCCF_SHORT_TIMER_WRONG_TYPE
Short timer parameter not allowed for this channel type.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRCCF_XMIT_PROTOCOL_TYPE_ERR
Transmission protocol type not valid.

MQRCCF_XMIT_Q_NAME_ERROR
Transmission queue name error.

MQRCCF_XMIT_Q_NAME_WRONG_TYPE
Transmission queue name not allowed for this channel type.

 Chapter 8. Definitions of PCFs 231

 Create Process

 Create Process
The Create Process (MQCMD_CREATE_PROCESS) command creates a new
MQSeries process definition. Any attributes that are not defined explicitly are set to
the default values on the destination queue manager.

| This PCF is not supported if you are using MQSeries for Windows Version 2.1.

Required parameters:
ProcessName

Optional parameters:
Replace, ProcessDesc, ApplType, ApplId, EnvData, UserData

 Required parameters
ProcessName (MQCFST)

The new process definition to be created (parameter identifier:
MQCA_PROCESS_NAME).

If a process definition with this name already exists, Replace must be
specified as MQRP_YES.

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

 Optional parameters
Replace (MQCFIN)

Replace process definition (parameter identifier: MQIACF_REPLACE).

If a process definition with the same name as ProcessName already exists,
this specifies whether it is to be replaced.

The value may be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

ProcessDesc (MQCFST)
Description of process definition (parameter identifier:
MQCA_PROCESS_DESC).

A plain-text comment that provides descriptive information about the
process definition. It should contain only displayable characters.

If characters that are not in the coded character set identifier (CCSID) for
the queue manager on which the command is executing are used, they
may be translated incorrectly.

The maximum length of the string is MQ_PROCESS_DESC_LENGTH.

ApplType (MQCFIN)
Application type (parameter identifier: MQIA_APPL_TYPE).

Valid application types are:

232 MQSeries Programmable System Management

 Create Process

MQAT_OS400
OS/400 application.

MQAT_OS2
OS/2 or Presentation Manager application.

MQAT_WINDOWS_NT
Windows NT or 32-bit Windows application.

MQAT_DOS
DOS client application.

MQAT_WINDOWS
Windows client or 16-bit Windows application.

MQAT_UNIX
UNIX application.

MQAT_AIX
AIX application (same value as MQAT_UNIX).

MQAT_CICS
CICS transaction.

| MQAT_VMS
| OpenVMS application.

| MQAT_NSK
| Tandem NSK application.

MQAT_DEFAULT
Default application type.

user-value: User defined application type in the range 65 536 through
999 999 999 (not checked).

Only application types (other than user-defined types) that are supported
on the platform at which the command is executed should be used:

| � On OpenVMS:

| MQAT_VMS (default),
| MQAT_DOS,
| MQAT_WINDOWS, and
| MQAT_DEFAULT are supported.

 � On OS/400:

MQAT_OS400 (default),
MQAT_CICS and
MQAT_DEFAULT are supported.

 � On OS/2:,

MQAT_OS2 (default),
MQAT_DOS,
MQAT_WINDOWS,
MQAT_AIX,
MQAT_CICS and
MQAT_DEFAULT are supported.

| � On Tandem NSK:

 Chapter 8. Definitions of PCFs 233

 Create Process

| MQAT_NSK (default),
| MQAT_DOS,
| MQAT_WINDOWS, and
| MQAT_DEFAULT are supported.

� On Windows NT:

MQAT_WINDOWS_NT (default),
MQAT_OS2
MQAT_DOS,
MQAT_WINDOWS,
MQAT_CICS and
MQAT_DEFAULT are supported.

� On UNIX systems:

MQAT_UNIX (default),
MQAT_OS2,
MQAT_DOS,
MQAT_WINDOWS,
MQAT_CICS and
MQAT_DEFAULT are supported.

ApplId (MQCFST)
Application identifier (parameter identifier: MQCA_APPL_ID).

This is the name of the application to be started, on the platform for which
the command is executing, and might typically be a program name and
library name.

The maximum length of the string is MQ_PROCESS_APPL_ID_LENGTH.

EnvData (MQCFST)
Environment data (parameter identifier: MQCA_ENV_DATA).

A character string that contains environment information pertaining to the
application to be started.

The maximum length of the string is
MQ_PROCESS_ENV_DATA_LENGTH.

UserData (MQCFST)
User data (parameter identifier: MQCA_USER_DATA).

A character string that contains user information pertaining to the
application (defined by ApplId) that is to be started.

The maximum length of the string is
MQ_PROCESS_USER_DATA_LENGTH.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

234 MQSeries Programmable System Management

 Create Process

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_OBJECT_ALREADY_EXISTS
Object already exists.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_REPLACE_VALUE_ERROR
Replace value not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

 Chapter 8. Definitions of PCFs 235

 Create Queue

 Create Queue
The Create Queue (MQCMD_CREATE_Q) command creates a queue definition
with the specified attributes. All attributes that are not specified are set to the
default value for the type of queue that is created.

Required parameters:
QName, QType

Optional parameters (any QType):
Replace, QDesc, InhibitPut, DefPriority, DefPersistence

Optional parameters (alias QType):
InhibitGet, BaseQName, Scope

Optional parameters (local QType):
InhibitGet, ProcessName, MaxQDepth, MaxMsgLength, BackoutThreshold,
BackoutRequeueName, Shareability, DefInputOpenOption, HardenGetBackout,
MsgDeliverySequence, RetentionInterval, DistLists, Usage,
InitiationQName, TriggerControl, TriggerType, TriggerMsgPriority,
TriggerDepth, TriggerData, Scope, QDepthHighLimit, QDepthLowLimit,
QDepthMaxEvent, QDepthHighEvent, QDepthLowEvent, QServiceInterval,
QServiceIntervalEvent

Optional parameters (remote QType):
RemoteQName, RemoteQMgrName, XmitQName, Scope

Optional parameters (model QType):
InhibitGet, ProcessName, MaxQDepth, MaxMsgLength, BackoutThreshold,
BackoutRequeueName, Shareability, DefInputOpenOption, HardenGetBackout,
MsgDeliverySequence, RetentionInterval, DistLists, Usage,
InitiationQName, TriggerControl, TriggerType, TriggerMsgPriority,
TriggerDepth, TriggerData, DefinitionType, QDepthHighLimit,
QDepthLowLimit, QDepthMaxEvent, QDepthHighEvent, QDepthLowEvent,
QServiceInterval, QServiceIntervalEvent

 Required parameters
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

The name of the queue to be created. The maximum length of the string
is MQ_Q_NAME_LENGTH.

Queue name must be unique; if a queue definition already exists with the
name and type of the new queue, Replace must be specified as
MQRP_YES. If a queue definition exists with the same name as and a
different type from the new queue, the command will fail.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

The value may be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

236 MQSeries Programmable System Management

 Create Queue

MQQT_REMOTE
Local definition of a remote queue.

The following is supported on all platforms, but on OS/400 for receipt by
MQSeries for AS/400 V4R2:

MQQT_MODEL
Model queue definition.

 Optional parameters
Replace (MQCFIN)

Replace attributes (parameter identifier: MQIACF_REPLACE).

If the object already exists, the effect is similar to issuing the Change
Queue command without the MQFC_YES option on the Force parameter,
and with all of the other attributes specified. In particular, note that any
messages which are on the existing queue are retained.

(The difference between the Change Queue command without
MQFC_YES on the Force parameter, and the Create Queue command
with MQRP_YES on the Replace parameter, is that the Change Queue
command does not change unspecified attributes, but Create Queue with
MQRP_YES sets all the attributes. When you use MQRP_YES,
unspecified attributes are taken from the default definition, and the
attributes of the object being replaced, if one exists, are ignored.)

The command fails if both of the following are true:

� The command sets attributes that would require the use of
MQFC_YES on the Force parameter if you were using the Change
Queue command

� The object is open

The Change Queue command with MQFC_YES on the Force parameter
succeeds in this situation.

If MQSCO_CELL is specified on the Scope parameter on OS/2 or UNIX
systems, and there is already a queue with the same name in the cell
directory, the command fails, whether or not MQRP_YES is specified.

The value may be:

MQRP_YES
Replace existing definition.

MQRP_NO
Do not replace existing definition.

QDesc (MQCFST)
Queue description (parameter identifier: MQCA_Q_DESC).

Text that briefly describes the object. The maximum length of the string is
MQ_Q_DESC_LENGTH.

Use characters from the character set identified by the coded character set
identifier (CCSID) for the queue manager on which the command is
executing to ensure that the text is translated correctly.

 Chapter 8. Definitions of PCFs 237

 Create Queue

InhibitPut (MQCFIN)
Whether put operations are allowed (parameter identifier:
MQIA_INHIBIT_PUT).

Specifies whether messages can be put on the queue.

The value may be:

MQQA_PUT_ALLOWED
Put operations are allowed.

MQQA_PUT_INHIBITED
Put operations are inhibited.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

Specifies the default priority of messages put on the queue. The value
must be in the range zero through to the maximum priority value that is
supported (9).

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_DEF_PERSISTENCE).

Specifies the default for message-persistence on the queue. Message
persistence determines whether or not messages are preserved across
restarts of the queue manager.

The value may be:

MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

InhibitGet (MQCFIN)
Whether get operations are allowed (parameter identifier:
MQIA_INHIBIT_GET).

The value may be:

MQQA_GET_ALLOWED
Get operations are allowed.

MQQA_GET_INHIBITED
Get operations are inhibited.

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

This is the name of a queue that is defined to the local queue manager.

The maximum length of the string is MQ_Q_NAME_LENGTH.

ProcessName (MQCFST)
Name of process definition for the queue (parameter identifier:
MQCA_PROCESS_NAME).

Specifies the local name of the MQSeries process that identifies the
application that should be started when a trigger event occurs.

238 MQSeries Programmable System Management

 Create Queue

| � On AIX, HP-UX, OS/2, OS/400, Sun Solaris, Windows NT, if the
queue is a transmission queue the process name can be left as all
blanks.

� On 32-bit Windows, this parameter is accepted but ignored.

� In other environments, the process name must be nonblank for a
trigger event to occur (although it can be set after the queue has been
created).

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

The maximum number of messages allowed on the queue. Note that
other factors may cause the queue to be treated as full; for example, it will
be appear to be full if there is no storage available for a message.

Specify a value in the range 0 through 640 000.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIA_MAX_MSG_LENGTH).

Specifies the maximum length for messages on the queue. Because
applications may use the value of this attribute to determine the size of
buffer they need to retrieve messages from the queue, the value should be
changed only if it is known that this will not cause an application to
operate incorrectly.

You are recommended not to set a value that is greater than the queue
manager’s MaxMsgLength attribute.

The lower limit for this parameter is 0. The upper limit depends on the
environment:

� On AIX, HP-UX, OS/2, Sun Solaris, and Windows NT, the maximum
message length is 100 MB (104 857 600 bytes).

| � On OpenVMS, OS/400, Tandem NSK, UNIX systems not listed above,
and 32-bit Windows, the maximum message length is 4 MB (4 194 304
bytes).

BackoutThreshold (MQCFIN)
Backout threshold (parameter identifier: MQIA_BACKOUT_THRESHOLD).

That is, the number of times a message can be backed out before it is
transferred to the backout queue specified by BackoutRequeueName.

If the value is subsequently reduced, any messages already on the queue
that have been backed out at least as many times as the new value
remain on the queue, but such messages are transferred if they are
backed out again.

Specify a value in the range 0 through 999 999 999.

BackoutRequeueName (MQCFST)
Excessive backout requeue name (parameter identifier:
MQCA_BACKOUT_REQ_Q_NAME).

 Chapter 8. Definitions of PCFs 239

 Create Queue

Specifies the local name of the queue (not necessarily a local queue) to
which a message is transferred if it is backed out more times than the
value of BackoutThreshold.

The backout queue does not need to exist at this time but it must exist
when the BackoutThreshold value is exceeded.

The maximum length of the string is MQ_Q_NAME_LENGTH.

Shareability (MQCFIN)
Whether queue can be shared (parameter identifier:
MQIA_SHAREABILITY).

Specifies whether multiple instances of applications, can open this queue
for input.

The value may be:

MQQA_SHAREABLE
Queue is shareable.

MQQA_NOT_SHAREABLE
Queue is not shareable.

DefInputOpenOption (MQCFIN)
Default input open option (parameter identifier:
MQIA_DEF_INPUT_OPEN_OPTION).

Specifies the default share option for applications opening this queue for
input.

The value may be:

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

HardenGetBackout (MQCFIN)
Whether to harden backout (parameter identifier:
MQIA_HARDEN_GET_BACKOUT).

Specifies whether the count of backed out messages should be saved
(hardened) across restarts of the queue manager.

Note: MQSeries for AS/400 always hardens the count, regardless of the
setting of this attribute.

The value may be:

MQQA_BACKOUT_HARDENED
Backout count remembered.

MQQA_BACKOUT_NOT_HARDENED
Backout count may not be remembered.

MsgDeliverySequence (MQCFIN)
Whether priority is relevant (parameter identifier:
MQIA_MSG_DELIVERY_SEQUENCE).

The value may be:

240 MQSeries Programmable System Management

 Create Queue

MQMDS_PRIORITY
Messages are returned in priority order.

MQMDS_FIFO
Messages are returned in FIFO order (first in, first out).

RetentionInterval (MQCFIN)
Retention interval (parameter identifier: MQIA_RETENTION_INTERVAL).

The number of hours for which the queue may be needed, based on the
date and time when the queue was created.

This information is available to a housekeeping application or an operator
and may be used to determine when a queue is no longer required. The
queue manager does not delete queues nor does it prevent queues from
being deleted if their retention interval has not expired. It is the user’s
responsibility to take any required action.

Specify a value in the range 0 through 999 999 999.

DistLists (MQCFIN)
Distribution list support (parameter identifier: MQIA_DIST_LISTS).

Specifies whether distribution-list messages can be placed on the queue.

Note: This attribute is set by the sending message channel agent (MCA)
which removes messages from the queue; this happens each time
the sending MCA establishes a connection to a receiving MCA on
a partnering queue manager. The attribute should not normally be
set by administrators, although it can be set if the need arises.

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

The value may be:

MQDL_SUPPORTED
Distribution lists supported.

MQDL_NOT_SUPPORTED
Distribution lists not supported.

Usage (MQCFIN)
Usage (parameter identifier: MQIA_USAGE).

Specifies whether the queue is for normal usage or for transmitting
messages to a remote message queue manager.

The value may be:

MQUS_NORMAL
Normal usage.

MQUS_TRANSMISSION
Transmission queue.

InitiationQName (MQCFST)
Initiation queue name (parameter identifier:
MQCA_INITIATION_Q_NAME).

 Chapter 8. Definitions of PCFs 241

 Create Queue

The local queue for trigger messages relating to the new, or changed,
queue. The initiation queue must be on the same queue manager.

On 32-bit Windows, this parameter is accepted but ignored.

The maximum length of the string is MQ_Q_NAME_LENGTH.

TriggerControl (MQCFIN)
Trigger control (parameter identifier: MQIA_TRIGGER_CONTROL).

Specifies whether trigger messages are written to the initiation queue.

The value may be:

MQTC_OFF
Trigger messages not required.

MQTC_ON
Trigger messages required.

This value is not supported on 32-bit Windows.

TriggerType (MQCFIN)
Trigger type (parameter identifier: MQIA_TRIGGER_TYPE).

Specifies the condition that initiates a trigger event. When the condition is
true, a trigger message is sent to the initiation queue.

On 32-bit Windows, this parameter is accepted but ignored.

The value may be:

MQTT_NONE
No trigger messages.

MQTT_EVERY
Trigger message for every message.

MQTT_FIRST
Trigger message when queue depth goes from 0 to 1.

MQTT_DEPTH
Trigger message when depth threshold exceeded.

TriggerMsgPriority (MQCFIN)
Threshold message priority for triggers (parameter identifier:
MQIA_TRIGGER_MSG_PRIORITY).

Specifies the minimum priority that a message must have before it can
cause, or be counted for, a trigger event. The value must be in the range
of priority values that are supported (0 through 9).

On 32-bit Windows, this parameter is accepted but ignored.

TriggerDepth (MQCFIN)
Trigger depth (parameter identifier: MQIA_TRIGGER_DEPTH).

Specifies (when TriggerType is MQTT_DEPTH) the number of messages
that will initiate a trigger message to the initiation queue. The value must
be in the range 1 through 999 999 999.

On 32-bit Windows, this parameter is accepted but ignored.

242 MQSeries Programmable System Management

 Create Queue

TriggerData (MQCFST)
Trigger data (parameter identifier: MQCA_TRIGGER_DATA).

Specifies user data that the queue manager includes in the trigger
message. This data is made available to the monitoring application that
processes the initiation queue and to the application that is started by the
monitor.

On 32-bit Windows, this parameter is accepted but ignored.

The maximum length of the string is MQ_TRIGGER_DATA_LENGTH.

RemoteQName (MQCFST)
Name of remote queue as known locally on the remote queue manager
(parameter identifier: MQCA_REMOTE_Q_NAME).

If this definition is used for a local definition of a remote queue,
RemoteQName must not be blank when the open occurs.

If this definition is used for a queue-manager alias definition, RemoteQName
must be blank when the open occurs.

If this definition is used for a reply-to alias, this name is the name of the
queue that is to be the reply-to queue.

The maximum length of the string is MQ_Q_NAME_LENGTH.

RemoteQMgrName (MQCFST)
Name of remote queue manager (parameter identifier:
MQCA_REMOTE_Q_MGR_NAME).

If an application opens the local definition of a remote queue,
RemoteQMgrName must not be blank or the name of the connected queue
manager. If XmitQName is blank there must be a local queue of this name,
which is to be used as the transmission queue.

If this definition is used for a queue-manager alias, RemoteQMgrName is the
name of the queue manager, which can be the name of the connected
queue manager. Otherwise, if XmitQName is blank, when the queue is
opened there must be a local queue of this name, which is to be used as
the transmission queue.

If this definition is used for a reply-to alias, this name is the name of the
queue manager that is to be the reply-to queue manager.

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCA_XMIT_Q_NAME).

Specifies the local name of the transmission queue to be used for
messages destined for the remote queue, for either a remote queue or for
a queue-manager alias definition.

If XmitQName is blank, a queue with the same name as RemoteQMgrName is
used as the transmission queue.

This attribute is ignored if the definition is being used as a queue-manager
alias and RemoteQMgrName is the name of the connected queue manager.

It is also ignored if the definition is used as a reply-to queue alias
definition.

The maximum length of the string is MQ_Q_NAME_LENGTH.

 Chapter 8. Definitions of PCFs 243

 Create Queue

DefinitionType (MQCFIN)
Queue definition type (parameter identifier: MQIA_DEFINITION_TYPE).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

MQQDT_TEMPORARY_DYNAMIC
Dynamically defined temporary queue.

Scope (MQCFIN)
Scope of the queue definition (parameter identifier: MQIA_SCOPE).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

Specifies whether the scope of the queue definition does not extend
beyond the queue manager which owns the queue, or whether the queue
name is contained in a cell directory, so that it is known to all of the queue
managers within the cell.

Model and dynamic queues cannot have cell scope.

The command fails if the new queue has a Scope attribute of
MQSCO_CELL, but no name service supporting a cell directory has been
configured.

The value may be:

MQSCO_Q_MGR
Queue-manager scope.

MQSCO_CELL
Cell scope.

This value is not supported on OS/400 and 32-bit Windows.

QDepthHighLimit (MQCFIN)
High limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_HIGH_LIMIT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The threshold against which the queue depth is compared to generate a
Queue Depth High event.

This event indicates that an application has put a message to a queue,
and this has caused the number of messages on the queue to become
greater than or equal to the queue depth high threshold. See the
QDepthHighEvent parameter.

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and must be greater than or equal to zero and less
than or equal to 100.

QDepthLowLimit (MQCFIN)
Low limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_LOW_LIMIT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

244 MQSeries Programmable System Management

 Create Queue

The threshold against which the queue depth is compared to generate a
Queue Depth Low event.

This event indicates that an application has retreived a message from a
queue, and this has caused the number of messages on the queue to
become less than or equal to the queue depth low threshold. See the
QDepthLowEvent parameter.

The value is expressed as a percentage of the maximum queue depth
(MaxQDepth attribute), and must be greater than or equal to zero and less
than or equal to 100.

QDepthMaxEvent (MQCFIN)
Controls whether Queue Full events are generated (parameter identifier:
MQIA_Q_DEPTH_MAX_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

A Queue Full event indicates that an MQPUT call to a queue has been
rejected because the queue is full, that is, the queue depth has already
reached its maximum value.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthHighEvent (MQCFIN)
Controls whether Queue Depth High events are generated (parameter
identifier: MQIA_Q_DEPTH_HIGH_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

A Queue Depth High event indicates that an application has put a
message on a queue, and this has caused the number of messages on
the queue to become greater than or equal to the queue depth high
threshold (see the QDepthHighLimit parameter).

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthLowEvent (MQCFIN)
Controls whether Queue Depth Low events are generated (parameter
identifier: MQIA_Q_DEPTH_LOW_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

 Chapter 8. Definitions of PCFs 245

 Create Queue

A Queue Depth Low event indicates that an application has retrieved a
message from a queue, and this has caused the number of messages on
the queue to become less than or equal to the queue depth low threshold
(see the QDepthLowLimit parameter).

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QServiceInterval (MQCFIN)
Target for queue service interval (parameter identifier:
MQIA_Q_SERVICE_INTERVAL).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The service interval used for comparison to generate Queue Service
Interval High and Queue Service Interval OK events. See the
QServiceIntervalEvent parameter.

The value is in units of milliseconds, and must be greater than or equal to
zero, and less than or equal to 999 999 999.

QServiceIntervalEvent (MQCFIN)
Controls whether Queue Service Interval High or Queue Service Interval
OK events are generated (parameter identifier:
MQIA_Q_SERVICE_INTERVAL_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

A Queue Service Interval High event is generated when a check indicates
that no messages have been retrieved from the queue for at least the time
indicated by the QServiceInterval attribute.

A Queue Service Interval OK event is generated when a check indicates
that messages have been retrieved from the queue within the time
indicated by the QServiceInterval attribute.

Note: The value of this attribute can change implicitly. See Chapter 3,
“Understanding performance events” on page 17.

The value may be:

MQQSIE_HIGH
Queue Service Interval High events enabled.

� Queue Service Interval High events are enabled and
� Queue Service Interval OK events are disabled .

MQQSIE_OK
Queue Service Interval OK events enabled.

� Queue Service Interval High events are disabled and
� Queue Service Interval OK events are enabled .

246 MQSeries Programmable System Management

 Create Queue

MQQSIE_NONE
No queue service interval events enabled.

� Queue Service Interval High events are disabled and
� Queue Service Interval OK events are also disabled .

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

MQRCCF_CELL_DIR_NOT_AVAILABLE
Cell directory is not available.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_DYNAMIC_Q_SCOPE_ERROR
Dynamic queue scope error.

MQRCCF_LIKE_OBJECT_WRONG_TYPE
New and existing objects have different type.

MQRCCF_OBJECT_ALREADY_EXISTS
Object already exists.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_OBJECT_WRONG_TYPE
Object has wrong type.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

 Chapter 8. Definitions of PCFs 247

 Create Queue

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

MQRCCF_Q_ALREADY_IN_CELL
Queue already exists in cell.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

MQRCCF_REPLACE_VALUE_ERROR
Replace value not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

248 MQSeries Programmable System Management

 Delete Channel

 Delete Channel
The Delete Channel (MQCMD_DELETE_CHANNEL) command deletes the
specified channel definition.

Required parameters:
ChannelName

Optional parameters:
ChannelTable

 Required parameters
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel definition to be deleted. The maximum length of
the string is MQ_CHANNEL_NAME_LENGTH.

 Optional parameters
ChannelTable (MQCFIN)

Channel table (parameter identifier: MQIACH_CHANNEL_TABLE).

Specifies the ownership of the channel definition table that contains the
specified channel definition.

The value may be:

MQCHTAB_Q_MGR
Queue-manager table.

This is the default. This table contains channel definitions for
channels of all types except MQCHT_CLNTCONN.

MQCHTAB_CLNTCONN
Client-connection table.

This table only contains channel definitions for channels of type
MQCHT_CLNTCONN.

On OS/400 and 32-bit Windows, this value is not supported.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

 Chapter 8. Definitions of PCFs 249

 Delete Channel

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TABLE_ERROR
Channel table value not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

250 MQSeries Programmable System Management

 Delete Process

 Delete Process
The Delete Process (MQCMD_DELETE_PROCESS) command deletes an existing
MQSeries process definition.

| This PCF is not supported if you are using MQSeries for Windows Version 2.1.

Required parameters:
ProcessName

Optional parameters:
None

 Required parameters
ProcessName (MQCFST)

Process name (parameter identifier: MQCA_PROCESS_NAME).

The process definition to be deleted. The maximum length of the string is
MQ_PROCESS_NAME_LENGTH.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

 Chapter 8. Definitions of PCFs 251

 Delete Queue

 Delete Queue
The Delete Queue (MQCMD_DELETE_Q) command deletes an MQSeries queue.

Required parameters:
QName

Optional parameters (any QType):
QType

Optional parameters (local QType only):
Purge

 Required parameters
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

The name of the queue to be deleted.

If the Scope attribute of the queue is MQSCO_CELL, the entry for the
queue is deleted from the cell directory.

The maximum length of the string is MQ_Q_NAME_LENGTH.

 Optional parameters
QType (MQCFIN)

Queue type (parameter identifier: MQIA_Q_TYPE).

If this parameter is present, the queue must be of the specified type.

The value may be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

The following is supported on all platforms, but on OS/400 for receipt by
MQSeries for AS/400 V4R2:

MQQT_MODEL
Model queue definition.

Purge (MQCFIN)
Purge queue (parameter identifier: MQIACF_PURGE).

If there are messages on the queue MQPO_YES must be specified,
otherwise the command will fail. If this parameter is not present the queue
is not purged.

Valid only for queue of type local.

The value may be:

MQPO_YES
Purge the queue.

252 MQSeries Programmable System Management

 Delete Queue

MQPO_NO
Do not purge the queue.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_Q_NOT_EMPTY
(2055, X'807') Queue contains one or more messages or
uncommitted put or get requests.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_OBJECT_OPEN
Object is open.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PURGE_VALUE_ERROR
Purge value not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

 Chapter 8. Definitions of PCFs 253

 Escape

 Escape
The Escape (MQCMD_ESCAPE) command conveys any MQSeries command
(MQSC) to a remote queue manager. Use it when the queue manager (or
application) sending the command does not support the functionality of the
particular MQSeries command, and so does not recognize it and cannot construct
the required PCF command.

The Escape command can also be used to send a command for which no
Programmable Command Format has been defined.

The only type of command that can be carried is one that is identified as an MQSC,
that is recognised at the receiving queue manager.

| This PCF is not supported if you are using MQSeries for Windows Version 2.1.

Required parameters:
EscapeType, EscapeText

Optional parameters:
None

 Required parameters
EscapeType (MQCFIN)

Escape type (parameter identifier: MQIACF_ESCAPE_TYPE).

The only value supported is:

MQET_MQSC
MQSeries command.

EscapeText (MQCFST)
Escape text (parameter identifier: MQCACF_ESCAPE_TEXT).

A string to hold a command. The length of the string is limited only by the
size of the message.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_ESCAPE_TYPE_ERROR
Escape type not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

254 MQSeries Programmable System Management

 Escape (Response)

 Escape (Response)
The response to the Escape (MQCMD_ESCAPE) command consists of the
response header followed by two parameter structures, one containing the escape
type, and the other containing the text response. More than one such message
may be issued, depending upon the command contained in the Escape request.

The Command field in the response header MQCFH contains the MQCMD_*
command identifier of the text command contained in the EscapeText parameter in
the original Escape command. For example, if EscapeText in the original Escape
command specified PING QMGR, Command in the response has the value
MQCMD_PING_Q_MGR.

If it is possible to determine the outcome of the command, the CompCode in the
response header identifies whether the command was successful. The success or
otherwise can therefore be determined without the recipient of the response having
to parse the text of the response.

If it is not possible to determine the outcome of the command, CompCode in the
response header has the value MQCC_UNKNOWN, and Reason is MQRC_NONE.

This command is not supported on 32-bit Windows.

Always returned:
EscapeType, EscapeText

Returned if requested:
None

 Parameters
EscapeType (MQCFIN)

Escape type (parameter identifier: MQIACF_ESCAPE_TYPE).

The only value supported is:

MQET_MQSC
MQSeries command.

EscapeText (MQCFST)
Escape text (parameter identifier: MQCACF_ESCAPE_TEXT).

A string holding the response to the original command.

 Chapter 8. Definitions of PCFs 255

 Inquire Channel

 Inquire Channel
The Inquire Channel (MQCMD_INQUIRE_CHANNEL) command inquires about the
attributes of MQSeries channel definitions.

Required parameters:
ChannelName

Optional parameters:
ChannelType, ChannelAttrs

 Required parameters
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Generic channel names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all
channels having names that start with the selected character string. An
asterisk on its own matches all possible names.

The channel name is always returned, regardless of the attributes
requested.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

 Optional parameters
ChannelType (MQCFIN)

Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

If this parameter is present, eligible channels are limited to those of the
specified type. Any attribute selector specified in the ChannelAttrs list
which is only valid for channels of a different type or types is ignored; no
error is raised.

If this parameter is not present (or if MQCHT_ALL is specified), channels
of all types except MQCHT_CLNTCONN are eligible. Each attribute
specified must be a valid channel attribute selector (that is, it must be one
of those in the following list), but it may not be applicable to all (or any) of
the channels actually returned. Channel attribute selectors that are valid
but not applicable to the channel are ignored, no error messages occur,
and no attribute is returned.

The value may be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

256 MQSeries Programmable System Management

 Inquire Channel

MQCHT_SVRCONN
Server-connection (for use by clients).

This value is not supported in the following environment: 32-bit
Windows.

MQCHT_CLNTCONN
Client connection.

This value is not supported in the following environments: OS/400,
32-bit Windows.

MQCHT_ALL
All types.

The default value if this parameter is not specified is MQCHT_ALL.

Note: If this parameter is present, it must occur immediately after the
ChannelName parameter. Failure to do this can result in a
MQRCCF_MSG_LENGTH_ERROR error message.

ChannelAttrs (MQCFIL)
Channel attributes (parameter identifier: MQIACF_CHANNEL_ATTRS).

The attribute list may specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

Relevant for any channel type:

MQCACH_CHANNEL_NAME
Channel name.

MQIACH_CHANNEL_TYPE
Channel type.

MQIACH_XMIT_PROTOCOL_TYPE
Transport (transmission protocol) type.

MQCACH_DESC
Description.

MQCACH_SEC_EXIT_NAME
Security exit name.

MQCACH_MSG_EXIT_NAME
Message exit name.

MQCACH_SEND_EXIT_NAME
Send exit name.

MQCACH_RCV_EXIT_NAME
Receive exit name.

MQIACH_MAX_MSG_LENGTH
Maximum message length.

MQCACH_SEC_EXIT_USER_DATA
Security exit user data.

 Chapter 8. Definitions of PCFs 257

 Inquire Channel

MQCACH_MSG_EXIT_USER_DATA
Message exit user data.

MQCACH_SEND_EXIT_USER_DATA
Send exit user data.

MQCACH_RCV_EXIT_USER_DATA
Receive exit user data.

Relevant for sender or server channel types:

MQCACH_XMIT_Q_NAME
Transmission queue name.

MQCACH_MCA_NAME
Message channel agent name.

MQCACH_MODE_NAME
Mode name.

MQCACH_TP_NAME
Transaction program name.

MQIACH_BATCH_SIZE
Batch size.

MQIACH_DISC_INTERVAL
Disconnection interval.

MQIACH_SHORT_RETRY
Short retry count.

MQIACH_SHORT_TIMER
Short timer.

MQIACH_LONG_RETRY
Long retry count.

MQIACH_LONG_TIMER
Long timer.

MQIACH_SEQUENCE_NUMBER_WRAP
Sequence number wrap.

MQIACH_DATA_CONVERSION
Whether sender should convert application data.

MQIACH_MCA_TYPE
MCA type.

MQCACH_MCA_USER_ID
MCA user identifier.

| The following is supported on OpenVMS, OS/2, OS/400, Tandem NSK,
UNIX systems, 32-bit Windows, and Windows NT:

MQCACH_CONNECTION_NAME
Connection name.

| The following are supported on OpenVMS, OS/2, Tandem NSK, UNIX
systems, and Windows NT:

MQCACH_USER_ID
User identifier.

258 MQSeries Programmable System Management

 Inquire Channel

MQCACH_PASSWORD
Password.

| The following are supported on AIX, HP-UX, OS/2, OS/400, Sun Solaris,
and Windows NT:

MQIACH_BATCH_INTERVAL
Batch wait interval (seconds).

MQIACH_HB_INTERVAL
Heartbeat interval (seconds).

| The following is supported on AIX, HP-UX, OS/2, OS/400, Sun Solaris,
32-bit Windows, and Windows NT:

MQIACH_NPM_SPEED
Speed of nonpersistent messages.

Relevant for requester channel type:

MQCACH_MCA_NAME
Message channel agent name.

MQCACH_MODE_NAME
Mode name.

MQCACH_TP_NAME
Transaction program name.

MQIACH_BATCH_SIZE
Batch size.

MQIACH_SEQUENCE_NUMBER_WRAP
Sequence number wrap.

MQIACH_PUT_AUTHORITY
Put authority.

MQCACH_MR_EXIT_NAME
Message-retry exit name.

MQCACH_MR_EXIT_USER_DATA
Message-retry exit user data.

MQIACH_MR_COUNT
Message retry count.

MQIACH_MR_INTERVAL
Message retry interval (milliseconds).

MQIACH_MCA_TYPE
MCA type.

MQCACH_MCA_USER_ID
MCA user identifier.

| The following is supported on OpenVMS, OS/2, OS/400, Tandem NSK,
UNIX systems, 32-bit Windows, and Windows NT:

MQCACH_CONNECTION_NAME
Connection name.

| The following are supported on OpenVMS, OS/2, Tandem NSK, UNIX
systems, and Windows NT:

 Chapter 8. Definitions of PCFs 259

 Inquire Channel

MQCACH_USER_ID
User identifier.

MQCACH_PASSWORD
Password.

| The following is supported on AIX, HP-UX, OS/2, OS/400, Sun Solaris,
and Windows NT:

MQIACH_HB_INTERVAL
Heartbeat interval (seconds).

| The following is supported on AIX, HP-UX, OS/2, OS/400, Sun Solaris,
32-bit Windows, and Windows NT:

MQIACH_NPM_SPEED
Speed of nonpersistent messages.

Relevant for receiver channel type:

MQIACH_BATCH_SIZE
Batch size.

MQIACH_SEQUENCE_NUMBER_WRAP
Sequence number wrap.

MQIACH_PUT_AUTHORITY
Put authority.

MQCACH_MR_EXIT_NAME
Message-retry exit name.

MQCACH_MR_EXIT_USER_DATA
Message-retry exit user data.

MQIACH_MR_COUNT
Message retry count.

MQIACH_MR_INTERVAL
Message retry interval (milliseconds).

MQCACH_MCA_USER_ID
MCA user identifier.

| The following is supported on AIX, HP-UX, OS/2, OS/400, Sun Solaris,
and Windows NT:

MQIACH_HB_INTERVAL
Heartbeat interval (seconds).

| The following is supported on AIX, HP-UX, OS/2, OS/400, Sun Solaris,
32-bit Windows, and Windows NT:

MQIACH_NPM_SPEED
Speed of nonpersistent messages.

Relevant for server-connection channel type

| The following is supported on OpenVMS, OS/2, OS/400, Tandem NSK,
UNIX systems, and Windows NT:

MQCACH_MCA_USER_ID
MCA user identifier.

260 MQSeries Programmable System Management

 Inquire Channel

Relevant for client-connection channel type

| The following are supported on OpenVMS, OS/2, Tandem NSK, UNIX
systems, and Windows NT:

MQCACH_MODE_NAME
Mode name.

MQCACH_TP_NAME
Transaction program name.

MQCA_Q_MGR_NAME
Name of local queue manager.

MQCACH_CONNECTION_NAME
Connection name.

| The following are supported on OpenVMS, OS/2 Tandem NSK, and UNIX
systems:

MQCACH_USER_ID
User identifier.

MQCACH_PASSWORD
Password.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRCCF_CFIL_COUNT_ERROR
Count of parameter values not valid.

MQRCCF_CFIL_DUPLICATE_VALUE
Duplicate parameter.

MQRCCF_CFIL_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIL_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

 Chapter 8. Definitions of PCFs 261

 Inquire Channel

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

262 MQSeries Programmable System Management

 Inquire Channel (Response)

Inquire Channel (Response)
The response to the Inquire Channel (MQCMD_INQUIRE_CHANNEL) command
consists of the response header followed by the ChannelName structure and the
requested combination of attribute parameter structures (where applicable). If a
generic channel name was specified, one such message is generated for each
channel found.

Always returned:
ChannelName

Returned if requested:
ChannelType, TransportType, ModeName, TpName, QMgrName, XmitQName,
ConnectionName, MCAName, ChannelDesc, BatchSize, DiscInterval,
ShortRetryCount, ShortRetryInterval, LongRetryCount, LongRetryInterval,
DataConversion, SecurityExit, MsgExit, SendExit, ReceiveExit,
PutAuthority, SeqNumberWrap, MaxMsgLength, SecurityUserData, MsgUserData,
SendUserData, ReceiveUserData, MCAType, MCAUserIdentifier,
UserIdentifier, Password, MsgRetryExit, MsgRetryUserData, MsgRetryCount,
MsgRetryInterval, HeartbeatInterval, NonPersistentMsgSpeed
BatchInterval

 Response data
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

The value may be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

MQCHT_CLNTCONN
Client connection.

TransportType (MQCFIN)
Transmission protocol type (parameter identifier:
MQIACH_XMIT_PROTOCOL_TYPE).

The value may be:

MQXPT_LU62
LU 6.2.

 Chapter 8. Definitions of PCFs 263

 Inquire Channel (Response)

MQXPT_TCP
TCP/IP.

MQXPT_NETBIOS
NetBIOS.

MQXPT_SPX
SPX.

| MQXPT_DECNET
| DECnet.

ModeName (MQCFST)
Mode name (parameter identifier: MQCACH_MODE_NAME).

The maximum length of the string is MQ_MODE_NAME_LENGTH.

TpName (MQCFST)
Transaction program name (parameter identifier: MQCACH_TP_NAME).

The maximum length of the string is MQ_TP_NAME_LENGTH.

QMgrName (MQCFST)
Queue manager name (parameter identifier: MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

MCAName (MQCFST)
Message channel agent name (parameter identifier:
MQCACH_MCA_NAME).

The maximum length of the string is MQ_MCA_NAME_LENGTH.

ChannelDesc (MQCFST)
Channel description (parameter identifier: MQCACH_DESC).

The maximum length of the string is MQ_CHANNEL_DESC_LENGTH.

BatchSize (MQCFIN)
Batch size (parameter identifier: MQIACH_BATCH_SIZE).

DiscInterval (MQCFIN)
Disconnection interval (parameter identifier: MQIACH_DISC_INTERVAL).

ShortRetryCount (MQCFIN)
Short retry count (parameter identifier: MQIACH_SHORT_RETRY).

ShortRetryInterval (MQCFIN)
Short timer (parameter identifier: MQIACH_SHORT_TIMER).

LongRetryCount (MQCFIN)
Long retry count (parameter identifier: MQIACH_LONG_RETRY).

264 MQSeries Programmable System Management

 Inquire Channel (Response)

LongRetryInterval (MQCFIN)
Long timer (parameter identifier: MQIACH_LONG_TIMER).

DataConversion (MQCFIN)
Whether sender should convert application data (parameter identifier:
MQIACH_DATA_CONVERSION).

The value may be:

MQCDC_NO_SENDER_CONVERSION
No conversion by sender.

MQCDC_SENDER_CONVERSION
Conversion by sender.

SecurityExit (MQCFST)
Security exit name (parameter identifier: MQCACH_SEC_EXIT_NAME).

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

MsgExit (MQCFST)
Message exit name (parameter identifier: MQCACH_MSG_EXIT_NAME).

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

In the following environments, if more than one message exit has been
defined for the channel, the list of names is returned in an MQCFSL

| structure instead of an MQCFST structure: AIX, HP-UX, OS/2, OS/400,
Sun Solaris, Windows NT.

SendExit (MQCFST)
Send exit name (parameter identifier: MQCACH_SEND_EXIT_NAME).

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

In the following environments, if more than one send exit has been defined
for the channel, the list of names is returned in an MQCFSL structure

| instead of an MQCFST structure: AIX, HP-UX, OS/2, OS/400, Sun Solaris,
Windows NT.

ReceiveExit (MQCFST)
Receive exit name (parameter identifier: MQCACH_RCV_EXIT_NAME).

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

In the following environments, if more than one receive exit has been
defined for the channel, the list of names is returned in an MQCFSL

| structure instead of an MQCFST structure: AIX, HP-UX, OS/2, OS/400,
Sun Solaris, Windows NT.

PutAuthority (MQCFIN)
Put authority (parameter identifier: MQIACH_PUT_AUTHORITY).

The value may be:

MQPA_DEFAULT
Default user identifier is used.

MQPA_CONTEXT
Context user identifier is used.

 Chapter 8. Definitions of PCFs 265

 Inquire Channel (Response)

SeqNumberWrap (MQCFIN)
Sequence wrap number (parameter identifier:
MQIACH_SEQUENCE_NUMBER_WRAP).

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIACH_MAX_MSG_LENGTH).

SecurityUserData (MQCFST)
Security exit user data (parameter identifier:
MQCACH_SEC_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

MsgUserData (MQCFST)
Message exit user data (parameter identifier:
MQCACH_MSG_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, if more than one message exit user data
string has been defined for the channel, the list of strings is returned in an
MQCFSL structure instead of an MQCFST structure: AIX, HP-UX, OS/2,

| OS/400, Sun Solaris, Windows NT.

SendUserData (MQCFST)
Send exit user data (parameter identifier:
MQCACH_SEND_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, if more than one send exit user data string
has been defined for the channel, the list of strings is returned in an
MQCFSL structure instead of an MQCFST structure: AIX, HP-UX, OS/2,

| OS/400, Sun Solaris, Windows NT.

ReceiveUserData (MQCFST)
Receive exit user data (parameter identifier:
MQCACH_RCV_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

In the following environments, if more than one receive exit user data
string has been defined for the channel, the list of strings is returned in an
MQCFSL structure instead of an MQCFST structure: AIX, HP-UX, OS/2,

| OS/400, Sun Solaris, Windows NT.

MCAType (MQCFIN)
Message channel agent type (parameter identifier: MQIACH_MCA_TYPE).

The value may be:

MQMCAT_PROCESS
Process.

MQMCAT_THREAD
Thread (OS/2 and Windows NT only).

MCAUserIdentifier (MQCFST)
Message channel agent user identifier (parameter identifier:
MQCACH_MCA_USER_ID).

266 MQSeries Programmable System Management

 Inquire Channel (Response)

The maximum length of the string is MQ_USER_ID_LENGTH.

UserIdentifier (MQCFST)
Task user identifier (parameter identifier: MQCACH_USER_ID).

The maximum length of the string is MQ_USER_ID_LENGTH. However,
only the first 10 characters are used.

Password (MQCFST)
Password (parameter identifier: MQCACH_PASSWORD).

If a nonblank password is defined, it is returned as asterisks. Otherwise, it
is returned as blanks.

The maximum length of the string is MQ_PASSWORD_LENGTH.
However, only the first 10 characters are used.

MsgRetryExit (MQCFST)
Message retry exit name (parameter identifier:
MQCACH_MR_EXIT_NAME).

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

MsgRetryUserData (MQCFST)
Message retry exit user data (parameter identifier:
MQCACH_MR_EXIT_USER_DATA).

The maximum length of the string is MQ_EXIT_DATA_LENGTH.

MsgRetryCount (MQCFIN)
Message retry count (parameter identifier: MQIACH_MR_COUNT).

MsgRetryInterval (MQCFIN)
Message retry interval (parameter identifier: MQIACH_MR_INTERVAL).

BatchInterval (MQCFIN)
Batch interval (parameter identifier: MQIACH_BATCH_INTERVAL).

HeartbeatInterval (MQCFIN)
Heartbeat interval (parameter identifier: MQIACH_HB_INTERVAL).

NonPersistentMsgSpeed (MQCFIN)
Speed at which non-persistent messages are to be sent (parameter
identifier: MQIACH_NPM_SPEED).

The value may be:

MQNPMS_NORMAL
Normal speed.

MQNPMS_FAST
Fast speed.

 Chapter 8. Definitions of PCFs 267

 Inquire Channel Names

Inquire Channel Names
The Inquire Channel Names (MQCMD_INQUIRE_CHANNEL_NAMES) command
inquires a list of MQSeries channel names that match the generic channel name,
and the optional channel type specified.

Required parameters:
ChannelName

Optional parameters:
ChannelType

 Required parameters
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Generic channel names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all
objects having names that start with the selected character string. An
asterisk on its own matches all possible names.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

 Optional parameters
ChannelType (MQCFIN)

Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

If present, this parameter limits the channel names returned to channels of
the specified type.

The value may be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

This value is not supported in the following environment: 32-bit
Windows.

MQCHT_CLNTCONN
Client connection.

This value is not supported in the following environments: OS/400,
32-bit Windows.

MQCHT_ALL
All types.

The default value if this parameter is not specified is MQCHT_ALL, which
means that channels of all types except MQCHT_CLNTCONN are eligible.

268 MQSeries Programmable System Management

 Inquire Channel Names

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

 Chapter 8. Definitions of PCFs 269

 Inquire Channel Names (Response)

Inquire Channel Names (Response)
The response to the Inquire Channel Names
(MQCMD_INQUIRE_CHANNEL_NAMES) command consists of the response
header followed by a single parameter structure giving zero or more names that
match the specified channel name.

Always returned:
ChannelNames

Returned if requested:
None

 Response data
ChannelNames (MQCFSL)

Channel names (parameter identifier: MQCACH_CHANNEL_NAMES).

270 MQSeries Programmable System Management

 Inquire Channel Status

Inquire Channel Status
The Inquire Channel Status (MQCMD_INQUIRE_CHANNEL_STATUS) command
inquires about the status of one or more MQSeries channel instances.

This command cannot be used for client-connection channels.

You must specify the name of the channel for which you want to inquire status
information. This can be a specific channel name or a generic channel name. By
using a generic channel name, you can inquire either:

� Status information for all channels, or
� Status information for one or more channels that match the specified name.

You must also specify whether you want:

� The current status data (of current channels only), or
� The saved status data of all channels.

Before explaining the syntax and options for this command, it is necessary to
describe the format of the status data that is available for channels and the states
that channels may have.

There are two classes of data available for channel status. These are saved and
current . The status fields available for saved data are a subset of the fields
available for current data and are called common status fields. Note that although
the common data fields are the same, the data values may be different for saved
and current status. The rest of the fields available for current data are called
current-only status fields.

� Saved data consists of the common status fields noted in the syntax diagram.
This data is reset at the following times:

– For all channels:
- When the channel enters or leaves STOPPED or RETRY state

– For a sending channel:
- Before requesting confirmation that a batch of messages has been

received
- When confirmation has been received

– For a receiving channel:
- Just before confirming that a batch of messages has been received

– For a server connection channel:
- No data is saved

Therefore, a channel which has never been current will not have any saved
status.

� Current data consists of the common status fields and current-only status fields
as noted in the syntax diagram. The data fields are continually updated as
messages are sent or received.

This method of operation has the following consequences:

� An inactive channel may not have any saved status –if it has never been
current or has not yet reached a point where saved status is reset.

� The “common” data fields may have different values for saved and current
status.

 Chapter 8. Definitions of PCFs 271

 Inquire Channel Status

� A current channel always has current status and may have saved status.

Channels may be current or inactive:

Current channels
These are channels that have been started, or on which a client has
connected, and that have not finished or disconnected normally. They may
not yet have reached the point of transferring messages, or data, or even of
establishing contact with the partner. Current channels have current status
and may also have saved status.

The term Active is used to describe the set of current channels which are not
stopped.

Inactive channels
These are channels that have either not been started or on which a client has
not connected, or that have finished or disconnected normally. (Note that if a
channel is stopped, it is not yet considered to have finished normally – and is,
therefore, still current.) Inactive channels have either saved status or no
status at all.

There can be more than one instance of a receiver, requester or server-connection
channel current at the same time (the requester is acting as a receiver). This
occurs if several senders, at different queue managers, each initiate a session with
this receiver, using the same channel name. For channels of other types, there
can only be one instance current at any time.

For all channel types, however, there can be more than one set of saved status
information available for a given channel name. At most one of these sets relates
to a current instance of the channel, the rest relate to previously current instances.
Multiple instances arise if different transmission queue names or connection names
have been used in connection with the same channel. This can happen in the
following cases:

� At a sender or server:

– If the same channel has been connected to by different requesters (servers
only),

– If the transmission queue name has been changed in the definition, or

– If the connection name has been changed in the definition.

� At a receiver or requester:

– If the same channel has been connected to by different senders or servers,
or

– If the connection name has been changed in the definition (for requester
channels initiating connection).

The number of sets returned for a given channel can be limited by using the
XmitQName, ConnectionName and ChannelInstanceType parameters.

Required parameters: ChannelName

Optional parameters: XmitQName, ConnectionName ChannelInstanceType,
ChannelInstanceAttrs

272 MQSeries Programmable System Management

 Inquire Channel Status

 Required parameters
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

Generic channel names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all
objects having names that start with the selected character string. An
asterisk on its own matches all possible names.

The channel name is always returned, regardless of the instance attributes
requested.

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

 Optional parameters
XmitQName (MQCFST)

Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

If this parameter is present, eligible channel instances are limited to those
using this transmission queue. If it is not specified, eligible channel
instances are not limited in this way.

The transmission queue name is always returned, regardless of the
instance attributes requested.

The maximum length of the string is MQ_Q_NAME_LENGTH.

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

If this parameter is present, eligible channel instances are limited to those
using this connection name. If it is not specified, eligible channel
instances are not limited in this way.

The connection name is always returned, regardless of the instance
attributes requested.

If the TransportType has a value of MQXPT_TCP, the saved channel
status omits any part number from the connection name. A connection
name specified when requesting saved channel status should therefore
never include a part number. It should only specify the TCP/IP address.

The maximum length of the string is MQ_CONN_NAME_LENGTH.

ChannelInstanceType (MQCFIN)
Channel instance type (parameter identifier:
MQIACH_CHANNEL_INSTANCE_TYPE).

It is always returned regardless of the channel instance attributes
requested.

The value may be:

MQOT_CURRENT_CHANNEL
Current channel status.

This is the default, and indicates that only current status information
for active channels is to be returned.

Both common status information and active-only status information
can be requested for current channels.

 Chapter 8. Definitions of PCFs 273

 Inquire Channel Status

MQOT_SAVED_CHANNEL
Saved channel status.

Specify this to cause saved status information for both active and
inactive channels to be returned.

Only common status information can be returned. Active-only status
information is not returned for active channels if this keyword is
specified.

The default value if this parameter is not specified is
MQOT_CURRENT_CHANNEL.

ChannelInstanceAttrs (MQCFIL)
Channel instance attributes (parameter identifier:
MQIACH_CHANNEL_INSTANCE_ATTRS).

If status information is requested which is not relevant for the particular
channel type, this is not an error. Similarly, it is not an error to request
status information that is applicable only to active channels for saved
channel instances. In both of these cases, no structure is returned in the
response for the information concerned.

For a saved channel instance, the MQCACH_CURRENT_LUWID,
MQIACH_CURRENT_MSGS, and MQIACH_CURRENT_SEQ_NUMBER
attributes have meaningful information only if the channel instance is in
doubt. However, the attribute values are still returned when requested,
even if the channel instance is not in-doubt.

The attribute list may specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

Common status

The following information applies to all sets of channel status, whether or
not the set is current.

MQCACH_CHANNEL_NAME
Channel name.

MQCACH_XMIT_Q_NAME
Transmission queue name.

MQCACH_CONNECTION_NAME
Connection name.

MQIACH_CHANNEL_INSTANCE_TYPE
Channel instance type.

MQCACH_CURRENT_LUWID
Logical unit of work identifier for current batch.

MQCACH_LAST_LUWID
Logical unit of work identifier for last committed batch.

MQIACH_CURRENT_MSGS
Number of messages sent or received in current batch.

274 MQSeries Programmable System Management

 Inquire Channel Status

MQIACH_CURRENT_SEQ_NUMBER
Sequence number of last message sent or received.

MQIACH_INDOUBT_STATUS
Whether the channel is currently in-doubt.

MQIACH_LAST_SEQ_NUMBER
Sequence number of last message in last committed batch.

MQCACH_CURRENT_LUWID, MQCACH_LAST_LUWID,
MQIACH_CURRENT_MSGS, MQIACH_CURRENT_SEQ_NUMBER,
MQIACH_INDOUBT_STATUS and MQIACH_LAST_SEQ_NUMBER do not
apply to server-connection channels, and no values are returned. If
specified on the command they are ignored.

Current-only status

The following information applies only to current channel instances. The
information applies to all channel types, except where stated.

MQCACH_CHANNEL_START_DATE
Date channel was started.

MQCACH_CHANNEL_START_TIME
Time channel was started.

MQCACH_LAST_MSG_DATE
Date last message was sent, or MQI call was handled.

MQCACH_LAST_MSG_TIME
Time last message was sent, or MQI call was handled.

MQCACH_MCA_JOB_NAME
Name of MCA job.

MQIACH_BATCHES
Number of completed batches.

MQIACH_BUFFERS_SENT
Number of buffers sent.

MQIACH_BUFFERS_RCVD
Number of buffers received.

MQIACH_BYTES_SENT
Number of bytes sent.

MQIACH_BYTES_RCVD
Number of bytes received.

MQIACH_LONG_RETRIES_LEFT
Number of long retry attempts remaining.

MQIACH_MCA_STATUS
MCA status.

MQIACH_MSGS
Number of messages sent or received, or number of MQI calls
handled.

MQIACH_SHORT_RETRIES_LEFT
Number of short retry attempts remaining.

 Chapter 8. Definitions of PCFs 275

 Inquire Channel Status

MQIACH_STOP_REQUESTED
Whether user stop request has been received.

| The following are supported on OpenVMS, OS/2, Tandem NSK, UNIX
systems, and Windows NT:

MQIACH_BATCH_SIZE
Batch size.

MQIACH_HB_INTERVAL
Heartbeat interval (seconds).

| The following is supported on OpenVMS, OS/2, Tandem NSK, UNIX
systems, 32-bit Windows, and Windows NT:

MQIACH_NPM_SPEED
Speed of nonpersistent messages.

MQIACH_BATCHES, MQIACH_LONG_RETRIES_LEFT,
MQIACH_SHORT_RETRIES_LEFT, MQIACH_BATCH_SIZE,
MQIACH_HB_INTERVAL and MQIACH_NPM_SPEED do not apply to
server-connection channels, and no values are returned. If specified on
the command they are ignored.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRCCF_CFIL_COUNT_ERROR
Count of parameter values not valid.

MQRCCF_CFIL_DUPLICATE_VALUE
Duplicate parameter.

MQRCCF_CFIL_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIL_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

276 MQSeries Programmable System Management

 Inquire Channel Status

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHL_INST_TYPE_ERROR
Channel instance type not valid.

MQRCCF_CHL_STATUS_NOT_FOUND
Channel status not found.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRCCF_XMIT_Q_NAME_ERROR
Transmission queue name error.

 Chapter 8. Definitions of PCFs 277

 Inquire Channel Status (Response)

Inquire Channel Status (Response)
The response to the Inquire Channel Status
(MQCMD_INQUIRE_CHANNEL_STATUS) command consists of the response
header followed by

� The ChannelName structure,
� The XmitQName structure,
� The ConnectionName structure,
� The ChannelInstanceType structure,
� The ChannelType structure, and
� The ChannelStatus structure

which are followed by the requested combination of status attribute parameter
structures. One such message is generated for each channel instance found which
matches the criteria specified on the command.

Always returned:
ChannelName, XmitQName, ConnectionName, ChannelInstanceType, ChannelType,
ChannelStatus

Returned if requested:
InDoubtStatus, LastSequenceNumber, LastLUWID, CurrentMsgs,
CurrentSequenceNumber, CurrentLUWID, LastMsgTime, LastMsgDate, Msgs,
BytesSent, BytesReceived, Batches, ChannelStartTime, ChannelStartDate,
BuffersSent, BuffersReceived, LongRetriesLeft, ShortRetriesLeft,
MCAJobName, MCAStatus, StopRequested, BatchSize, HeartbeatInterval,
NonPersistentMsgSpeed

 Response data
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The maximum length of the string is MQ_CHANNEL_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier:
MQCACH_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

ConnectionName (MQCFST)
Connection name (parameter identifier: MQCACH_CONNECTION_NAME).

The maximum length of the string is MQ_CONN_NAME_LENGTH.

ChannelInstanceType (MQCFIN)
Channel instance type (parameter identifier:
MQIACH_CHANNEL_INSTANCE_TYPE).

The value may be:

MQOT_CURRENT_CHANNEL
Current channel status.

MQOT_SAVED_CHANNEL
Saved channel status.

278 MQSeries Programmable System Management

 Inquire Channel Status (Response)

ChannelType (MQCFIN)
Channel type (parameter identifier: MQIACH_CHANNEL_TYPE).

The value may be:

MQCHT_SENDER
Sender.

MQCHT_SERVER
Server.

MQCHT_RECEIVER
Receiver.

MQCHT_REQUESTER
Requester.

MQCHT_SVRCONN
Server-connection (for use by clients).

This value is not supported in the following environment: 32-bit
Windows.

MQCHT_CLNTCONN
Client connection.

This value is not supported in the following environments: OS/400,
32-bit Windows.

ChannelStatus (MQCFIN)
Channel status (parameter identifier: MQIACH_CHANNEL_STATUS).

The value may be:

MQCHS_BINDING
Channel is negotiating with the partner.

MQCHS_STARTING
Channel is waiting to become active.

MQCHS_RUNNING
Channel is transferring or waiting for messages.

MQCHS_PAUSED
Channel is paused.

MQCHS_STOPPING
Channel is in process of stopping.

MQCHS_RETRYING
Channel is reattempting to establish connection.

MQCHS_STOPPED
Channel is stopped.

MQCHS_REQUESTING
Requester channel is requesting connection.

MQCHS_INITIALIZING
Channel is initializing.

 Chapter 8. Definitions of PCFs 279

 Inquire Channel Status (Response)

InDoubtStatus (MQCFIN)
Whether the channel is currently in doubt (parameter identifier:
MQIACH_INDOUBT_STATUS).

A sending channel is only in doubt while the sending Message Channel
Agent is waiting for an acknowledgment that a batch of messages, which it
has sent, has been successfully received. It is not in doubt at all other
times, including the period during which messages are being sent, but
before an acknowledgment has been requested.

A receiving channel is never in doubt.

The value may be:

MQCHIDS_NOT_INDOUBT
Channel is not in-doubt.

MQCHIDS_INDOUBT
Channel is in-doubt.

LastSequenceNumber (MQCFIN)
Sequence number of last message in last committed batch (parameter
identifier: MQIACH_LAST_SEQ_NUMBER).

LastLUWID (MQCFST)
Logical unit of work identifier for last committed batch (parameter identifier:
MQCACH_LAST_LUWID).

The maximum length is MQ_LUWID_LENGTH.

CurrentMsgs (MQCFIN)
Number of messages in-doubt (parameter identifier:
MQIACH_CURRENT_MSGS).

For a sending channel, this is the number of messages that have been
sent in the current batch. It is incremented as each message is sent, and
when the channel becomes in-doubt it is the number of messages that are
in-doubt.

For a receiving channel, it is the number of messages that have been
received in the current batch. It is incremented as each message is
received.

The value is reset to zero, for both sending and receiving channels, when
the batch is committed.

CurrentSequenceNumber (MQCFIN)
Sequence number of last message in in-doubt batch (parameter identifier:
MQIACH_CURRENT_SEQ_NUMBER).

For a sending channel, this is the message sequence number of the last
message sent. It is updated as each message is sent, and when the
channel becomes in-doubt it is the message sequence number of the last
message in the in-doubt batch.

For a receiving channel, it is the message sequence number of the last
message that was received. It is updated as each message is received.

CurrentLUWID (MQCFST)
Logical unit of work identifier for in-doubt batch (parameter identifier:
MQCACH_CURRENT_LUWID).

280 MQSeries Programmable System Management

 Inquire Channel Status (Response)

The logical unit of work identifier associated with the current batch, for a
sending or a receiving channel.

For a sending channel, when the channel is in-doubt it is the LUWID of the
in-doubt batch.

It is updated with the LUWID of the next batch when this is known.

The maximum length is MQ_LUWID_LENGTH.

LastMsgTime (MQCFST)
Time last message was sent, or MQI call was handled (parameter
identifier: MQCACH_LAST_MSG_TIME).

The maximum length of the string is MQ_CHANNEL_TIME_LENGTH.

LastMsgDate (MQCFST)
Date last message was sent, or MQI call was handled (parameter
identifier: MQCACH_LAST_MSG_DATE).

The maximum length of the string is MQ_CHANNEL_DATE_LENGTH.

Msgs (MQCFIN)
Number of messages sent or received, or number of MQI calls handled
(parameter identifier: MQIACH_MSGS).

BytesSent (MQCFIN)
Number of bytes sent (parameter identifier: MQIACH_BYTES_SENT).

BytesReceived (MQCFIN)
Number of bytes received (parameter identifier: MQIACH_BYTES_RCVD).

Batches (MQCFIN)
Number of completed batches (parameter identifier: MQIACH_BATCHES).

ChannelStartTime (MQCFST)
Time channel started (parameter identifier:
MQCACH_CHANNEL_START_TIME).

The maximum length of the string is MQ_CHANNEL_TIME_LENGTH.

ChannelStartDate (MQCFST)
Date channel started (parameter identifier:
MQCACH_CHANNEL_START_DATE).

The maximum length of the string is MQ_CHANNEL_DATE_LENGTH.

BuffersSent (MQCFIN)
Number of buffers sent (parameter identifier: MQIACH_BUFFERS_SENT).

BuffersReceived (MQCFIN)
Number of buffers received (parameter identifier:
MQIACH_BUFFERS_RCVD).

LongRetriesLeft (MQCFIN)
Number of long retry attempts remaining (parameter identifier:
MQIACH_LONG_RETRIES_LEFT).

ShortRetriesLeft (MQCFIN)
Number of short retry attempts remaining (parameter identifier:
MQIACH_SHORT_RETRIES_LEFT).

 Chapter 8. Definitions of PCFs 281

 Inquire Channel Status (Response)

MCAJobName (MQCFST)
Name of MCA job (parameter identifier: MQCACH_MCA_JOB_NAME).

The maximum length of the string is MQ_MCA_JOB_NAME_LENGTH.

MCAStatus (MQCFIN)
MCA status (parameter identifier: MQIACH_MCA_STATUS).

The value may be:

MQMCAS_STOPPED
Message channel agent stopped.

MQMCAS_RUNNING
Message channel agent running.

StopRequested (MQCFIN)
Whether user stop request is outstanding (parameter identifier:
MQIACH_STOP_REQUESTED).

The value may be:

MQCHSR_STOP_NOT_REQUESTED
User stop request has not been received.

MQCHSR_STOP_REQUESTED
User stop request has been received.

BatchSize (MQCFIN)
Negotiated batch size (parameter identifier: MQIACH_BATCH_SIZE).

HeartbeatInterval (MQCFIN)
Heartbeat interval (parameter identifier: MQIACH_HB_INTERVAL).

NonPersistentMsgSpeed (MQCFIN)
Speed at which nonpersistent messages are to be sent (parameter
identifier: MQIACH_NPM_SPEED).

The value may be:

MQNPMS_NORMAL
Normal speed.

MQNPMS_FAST
Fast speed.

282 MQSeries Programmable System Management

 Inquire Process

 Inquire Process
The Inquire Process (MQCMD_INQUIRE_PROCESS) command inquires about the
attributes of existing MQSeries processes.

| This PCF is not supported if you are using MQSeries for Windows Version 2.1.

Required parameters: ProcessName

Optional parameters: ProcessAttrs

 Required parameters
ProcessName (MQCFST)

Process name (parameter identifier: MQCA_PROCESS_NAME).

Generic process names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all
processes having names that start with the selected character string. An
asterisk on its own matches all possible names.

The process name is always returned regardless of the attributes
requested.

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

 Optional parameters
ProcessAttrs (MQCFIL)

Process attributes (parameter identifier: MQIACF_PROCESS_ATTRS).

The attribute list may specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_PROCESS_NAME
Name of process definition.

MQCA_PROCESS_DESC
Description of process definition.

MQIA_APPL_TYPE
Application type.

MQCA_APPL_ID
Application identifier.

MQCA_ENV_DATA
Environment data.

MQCA_USER_DATA
User data.

 Chapter 8. Definitions of PCFs 283

 Inquire Process

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_CFIL_COUNT_ERROR
Count of parameter values not valid.

MQRCCF_CFIL_DUPLICATE_VALUE
Duplicate parameter.

MQRCCF_CFIL_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIL_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

284 MQSeries Programmable System Management

 Inquire Process (Response)

Inquire Process (Response)
The response to the Inquire Process (MQCMD_INQUIRE_PROCESS) command
consists of the response header followed by the ProcessName structure and the
requested combination of attribute parameter structures. If a generic process name
was specified, one such message is generated for each process found.

This response is not supported on 32-bit Windows.

Always returned:
ProcessName

Returned if requested:
ProcessDesc, ApplType, ApplId, EnvData, UserData

 Response data
ProcessName (MQCFST)

The name of the process definition (parameter identifier:
MQCA_PROCESS_NAME).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

ProcessDesc (MQCFST)
Description of process definition (parameter identifier:
MQCA_PROCESS_DESC).

The maximum length of the string is MQ_PROCESS_DESC_LENGTH.

ApplType (MQCFIN)
Application type (parameter identifier: MQIA_APPL_TYPE).

The value may be:

MQAT_OS400
OS/400 application.

MQAT_OS2
OS/2 or Presentation Manager application.

MQAT_DOS
DOS client application.

MQAT_WINDOWS
Windows client or 16-bit Windows application.

MQAT_WINDOWS_NT
Windows NT or 32-bit Windows application.

MQAT_UNIX
UNIX application.

MQAT_AIX
AIX application (same value as MQAT_UNIX).

MQAT_CICS
CICS transaction.

user-value: User-defined application type in the range 65 536 through
999 999 999.

 Chapter 8. Definitions of PCFs 285

 Inquire Process (Response)

ApplId (MQCFST)
Application identifier (parameter identifier: MQCA_APPL_ID).

The maximum length of the string is MQ_PROCESS_APPL_ID_LENGTH.

EnvData (MQCFST)
Environment data (parameter identifier: MQCA_ENV_DATA).

The maximum length of the string is
MQ_PROCESS_ENV_DATA_LENGTH.

UserData (MQCFST)
User data (parameter identifier: MQCA_USER_DATA).

The maximum length of the string is
MQ_PROCESS_USER_DATA_LENGTH.

286 MQSeries Programmable System Management

 Inquire Process Names

Inquire Process Names
The Inquire Process Names (MQCMD_INQUIRE_PROCESS_NAMES) command
inquires for a list of process names that match the generic process name specified.

| This PCF is not supported if you are using MQSeries for Windows Version 2.1.

Required parameters:
ProcessName

Optional parameters:
None

 Required parameters
ProcessName (MQCFST)

Name of process-definition for queue (parameter identifier:
MQCA_PROCESS_NAME).

Generic process names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all
objects having names that start with the selected character string. An
asterisk on its own matches all possible names.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

 Chapter 8. Definitions of PCFs 287

 Inquire Process Names (Response)

Inquire Process Names (Response)
The response to the Inquire Process Names
(MQCMD_INQUIRE_PROCESS_NAMES) command consists of the response
header followed by a single parameter structure giving zero or more names that
match the specified process name.

This response is not supported on 32-bit Windows.

Always returned:
ProcessNames

Returned if requested:
None

 Response data
ProcessNames (MQCFSL)

Process Names (parameter identifier: MQCACF_PROCESS_NAMES).

288 MQSeries Programmable System Management

 Inquire Queue

 Inquire Queue
The Inquire Queue (MQCMD_INQUIRE_Q) command inquires about the attributes
of MQSeries queues.

Required parameters:
QName

Optional parameters:
QType, QAttrs

 Required parameters
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

Generic queue names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all
queues having names that start with the selected character string. An
asterisk on its own matches all possible names.

The queue name is always returned, regardless of the attributes
requested.

The maximum length of the string is MQ_Q_NAME_LENGTH.

 Optional parameters
QType (MQCFIN)

Queue type (parameter identifier: MQIA_Q_TYPE).

If this parameter is present, eligible queues are limited to those of the
specified type. Any attribute selector specified in the QAttrs list which is
only valid for queues of a different type or types is ignored; no error is
raised.

If this parameter is not present (or if MQQT_ALL is specified), queues of
all types are eligible. Each attribute specified must be a valid queue
attribute selector (that is, it must be one of those in the following list), but it
may not be applicable to all (or any) of the queues actually returned.
Queue attribute selectors that are valid but not applicable to the queue are
ignored, no error messages occur and no attribute is returned. The value
may be:

MQQT_ALL
All queue types.

MQQT_LOCAL
Local queue.

MQQT_ALIAS
Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

The following is supported on all platforms, but on OS/400 for receipt by
MQSeries for AS/400 V4R2:

MQQT_MODEL
Model queue definition.

 Chapter 8. Definitions of PCFs 289

 Inquire Queue

The default value if this parameter is not specified is MQQT_ALL.

Note: If this parameter is present, it must occur immediately after the
QName parameter.

QAttrs (MQCFIL)
Queue attributes (parameter identifier: MQIACF_Q_ATTRS).

The attribute list may specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

Relevant for any QType:

MQCA_Q_NAME
Queue name.

MQIA_Q_TYPE
Queue type.

MQCA_Q_DESC
Queue description.

MQIA_INHIBIT_PUT
Whether put operations are allowed.

MQIA_DEF_PRIORITY
Default message priority.

MQIA_DEF_PERSISTENCE
Default message persistence.

Relevant for alias QType:

MQIA_INHIBIT_GET
Whether get operations are allowed.

MQCA_BASE_Q_NAME
Name of queue that alias resolves to.

MQIA_SCOPE
Queue definition scope.

Relevant for local QType:

MQIA_INHIBIT_GET
Whether get operations are allowed.

MQCA_PROCESS_NAME
Name of process definition.

MQIA_MAX_Q_DEPTH
Maximum number of messages allowed on queue.

MQIA_MAX_MSG_LENGTH
Maximum message length.

MQIA_BACKOUT_THRESHOLD
Backout threshold.

290 MQSeries Programmable System Management

 Inquire Queue

MQCA_BACKOUT_REQ_Q_NAME
Excessive backout requeue name.

MQIA_SHAREABILITY
Whether queue can be shared.

MQIA_DEF_INPUT_OPEN_OPTION
Default open-for-input option.

MQIA_HARDEN_GET_BACKOUT
Whether to harden backout count.

MQIA_MSG_DELIVERY_SEQUENCE
Whether message priority is relevant.

MQIA_RETENTION_INTERVAL
Queue retention interval.

MQIA_DEFINITION_TYPE
Queue definition type.

MQIA_USAGE
Usage.

MQIA_OPEN_INPUT_COUNT
Number of MQOPEN calls that have the queue open for input.

MQIA_OPEN_OUTPUT_COUNT
Number of MQOPEN calls that have the queue open for output.

MQIA_CURRENT_Q_DEPTH
Number of messages on queue.

MQCA_CREATION_DATE
Queue creation date.

MQCA_CREATION_TIME
Queue creation time.

MQCA_INITIATION_Q_NAME
Initiation queue name.

MQIA_TRIGGER_CONTROL
Trigger control.

MQIA_TRIGGER_TYPE
Trigger type.

MQIA_TRIGGER_MSG_PRIORITY
Threshold message priority for triggers.

MQIA_TRIGGER_DEPTH
Trigger depth.

MQCA_TRIGGER_DATA
Trigger data.

MQIA_SCOPE
Queue definition scope.

MQIA_Q_DEPTH_HIGH_LIMIT
High limit for queue depth.

MQIA_Q_DEPTH_LOW_LIMIT
Low limit for queue depth.

 Chapter 8. Definitions of PCFs 291

 Inquire Queue

MQIA_Q_DEPTH_MAX_EVENT
Control attribute for queue depth max events.

MQIA_Q_DEPTH_HIGH_EVENT
Control attribute for queue depth high events.

MQIA_Q_DEPTH_LOW_EVENT
Control attribute for queue depth low events.

MQIA_Q_SERVICE_INTERVAL
Limit for queue service interval.

MQIA_Q_SERVICE_INTERVAL_EVENT
Control attribute for queue service interval events.

| The following is supported on AIX, HP-UX, OS/2, OS/400, Sun Solaris,
and Windows NT:

MQIA_DIST_LISTS
Distribution list support.

Relevant for remote QType:

MQCA_REMOTE_Q_NAME
Name of remote queue as known locally on the remote queue
manager.

MQCA_REMOTE_Q_MGR_NAME
Name of remote queue manager.

MQCA_XMIT_Q_NAME
Transmission queue name.

MQIA_SCOPE
Queue definition scope.

Relevant for model QType:

MQIA_INHIBIT_GET
Whether get operations are allowed.

MQCA_PROCESS_NAME
Name of process definition.

MQIA_MAX_Q_DEPTH
Maximum number of messages allowed on queue.

MQIA_MAX_MSG_LENGTH
Maximum message length.

MQIA_BACKOUT_THRESHOLD
Backout threshold.

MQCA_BACKOUT_REQ_Q_NAME
Excessive backout requeue name.

MQIA_SHAREABILITY
Whether queue can be shared.

MQIA_DEF_INPUT_OPEN_OPTION
Default open-for-input option.

MQIA_HARDEN_GET_BACKOUT
Whether to harden backout count.

292 MQSeries Programmable System Management

 Inquire Queue

MQIA_MSG_DELIVERY_SEQUENCE
Whether message priority is relevant.

MQIA_RETENTION_INTERVAL
Queue retention interval.

MQIA_DEFINITION_TYPE
Queue definition type.

MQIA_USAGE
Usage.

MQCA_CREATION_DATE
Queue creation date.

MQCA_CREATION_TIME
Queue creation time.

MQCA_INITIATION_Q_NAME
Initiation queue name.

MQIA_TRIGGER_CONTROL
Trigger control.

MQIA_TRIGGER_TYPE
Trigger type.

MQIA_TRIGGER_MSG_PRIORITY
Threshold message priority for triggers.

MQIA_TRIGGER_DEPTH
Trigger depth.

MQCA_TRIGGER_DATA
Trigger data.

MQIA_Q_DEPTH_HIGH_LIMIT
High limit for queue depth.

MQIA_Q_DEPTH_LOW_LIMIT
Low limit for queue depth.

MQIA_Q_DEPTH_MAX_EVENT
Control attribute for queue depth max events.

MQIA_Q_DEPTH_HIGH_EVENT
Control attribute for queue depth high events.

MQIA_Q_DEPTH_LOW_EVENT
Control attribute for queue depth low events.

MQIA_Q_SERVICE_INTERVAL
Limit for queue service interval.

MQIA_Q_SERVICE_INTERVAL_EVENT
Control attribute for queue service interval events.

| The following is supported on AIX, HP-UX, OS/2, OS/400, Sun Solaris,
and Windows NT:

MQIA_DIST_LISTS
Distribution list support.

 Chapter 8. Definitions of PCFs 293

 Inquire Queue

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_CFIL_COUNT_ERROR
Count of parameter values not valid.

MQRCCF_CFIL_DUPLICATE_VALUE
Duplicate parameter.

MQRCCF_CFIL_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIL_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

294 MQSeries Programmable System Management

 Inquire Queue (Response)

Inquire Queue (Response)
The response to the Inquire Queue (MQCMD_INQUIRE_Q) command consists of
the response header followed by the QName structure and the requested combination
of attribute parameter structures. If a generic queue name was specified, one such
message is generated for each queue found.

Always returned:
QName

Returned if requested:
QType, QDesc, InhibitGet, InhibitPut, DefPriority, DefPersistence,
ProcessName, MaxQDepth, MaxMsgLength, BackoutThreshold,
BackoutRequeueName, Shareability, DefInputOpenOption, HardenGetBackout,
MsgDeliverySequence, RetentionInterval, DefinitionType, DistLists,
Usage, OpenInputCount, OpenOutputCount, CurrentQDepth, CreationDate,
CreationTime, InitiationQName, TriggerControl, TriggerType,
TriggerMsgPriority, TriggerDepth, TriggerData, BaseQName, RemoteQName,
RemoteQMgrName, XmitQName, Scope, QDepthHighLimit, QDepthLowLimit,
QDepthMaxEvent, QDepthHighEvent, QDepthLowEvent, QServiceInterval,
QServiceIntervalEvent

 Response data
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

QType (MQCFIN)
Queue type (parameter identifier: MQIA_Q_TYPE).

The value may be:

MQQT_ALIAS
Alias queue definition.

MQQT_LOCAL
Local queue.

MQQT_REMOTE
Local definition of a remote queue.

MQQT_MODEL
Model queue definition.

QDesc (MQCFST)
Queue description (parameter identifier: MQCA_Q_DESC).

The maximum length of the string is MQ_Q_DESC_LENGTH.

InhibitGet (MQCFIN)
Whether get operations are allowed (parameter identifier:
MQIA_INHIBIT_GET).

The value may be:

MQQA_GET_ALLOWED
Get operations are allowed.

 Chapter 8. Definitions of PCFs 295

 Inquire Queue (Response)

MQQA_GET_INHIBITED
Get operations are inhibited.

InhibitPut (MQCFIN)
Whether put operations are allowed (parameter identifier:
MQIA_INHIBIT_PUT).

The value may be:

MQQA_PUT_ALLOWED
Put operations are allowed.

MQQA_PUT_INHIBITED
Put operations are inhibited.

DefPriority (MQCFIN)
Default priority (parameter identifier: MQIA_DEF_PRIORITY).

DefPersistence (MQCFIN)
Default persistence (parameter identifier: MQIA_DEF_PERSISTENCE).

The value may be:

MQPER_PERSISTENT
Message is persistent.

MQPER_NOT_PERSISTENT
Message is not persistent.

ProcessName (MQCFST)
Name of process definition for queue (parameter identifier:
MQCA_PROCESS_NAME).

The maximum length of the string is MQ_PROCESS_NAME_LENGTH.

MaxQDepth (MQCFIN)
Maximum queue depth (parameter identifier: MQIA_MAX_Q_DEPTH).

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIA_MAX_MSG_LENGTH).

BackoutThreshold (MQCFIN)
Backout threshold (parameter identifier: MQIA_BACKOUT_THRESHOLD).

BackoutRequeueName (MQCFST)
Excessive backout requeue name (parameter identifier:
MQCA_BACKOUT_REQ_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Shareability (MQCFIN)
Whether queue can be shared (parameter identifier:
MQIA_SHAREABILITY).

The value may be:

MQQA_SHAREABLE
Queue is shareable.

296 MQSeries Programmable System Management

 Inquire Queue (Response)

MQQA_NOT_SHAREABLE
Queue is not shareable.

DefInputOpenOption (MQCFIN)
Default input open option for defining whether queues can be shared
(parameter identifier: MQIA_DEF_INPUT_OPEN_OPTION).

The value may be:

MQOO_INPUT_EXCLUSIVE
Open queue to get messages with exclusive access.

MQOO_INPUT_SHARED
Open queue to get messages with shared access.

HardenGetBackout (MQCFIN)
Whether to harden backout (parameter identifier:
MQIA_HARDEN_GET_BACKOUT).

The value may be:

MQQA_BACKOUT_HARDENED
Backout count remembered.

MQQA_BACKOUT_NOT_HARDENED
Backout count may not be remembered.

MsgDeliverySequence (MQCFIN)
Whether priority is relevant (parameter identifier:
MQIA_MSG_DELIVERY_SEQUENCE).

The value may be:

MQMDS_PRIORITY
Messages are returned in priority order.

MQMDS_FIFO
Messages are returned in FIFO order (first in, first out).

RetentionInterval (MQCFIN)
Retention interval (parameter identifier: MQIA_RETENTION_INTERVAL).

DefinitionType (MQCFIN)
Queue definition type (parameter identifier: MQIA_DEFINITION_TYPE).

The value may be:

MQQDT_PREDEFINED
Predefined permanent queue.

MQQDT_PERMANENT_DYNAMIC
Dynamically defined permanent queue.

MQQDT_TEMPORARY_DYNAMIC
Dynamically defined temporary queue.

 Chapter 8. Definitions of PCFs 297

 Inquire Queue (Response)

DistLists (MQCFIN)
Distribution list support (parameter identifier: MQIA_DIST_LISTS).

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

The value may be:

MQDL_SUPPORTED
Distribution lists supported.

MQDL_NOT_SUPPORTED
Distribution lists not supported.

Usage (MQCFIN)
Usage (parameter identifier: MQIA_USAGE).

The value may be:

MQUS_NORMAL
Normal usage.

MQUS_TRANSMISSION
Transmission queue.

OpenInputCount (MQCFIN)
Number of MQOPEN calls that have the queue open for input (parameter
identifier: MQIA_OPEN_INPUT_COUNT).

OpenOutputCount (MQCFIN)
Number of MQOPEN calls that have the queue open for output (parameter
identifier: MQIA_OPEN_OUTPUT_COUNT).

CurrentQDepth (MQCFIN)
Current queue depth (parameter identifier: MQIA_CURRENT_Q_DEPTH).

CreationDate (MQCFST)
Queue creation date (parameter identifier: MQCA_CREATION_DATE).

The maximum length of the string is MQ_CREATION_DATE_LENGTH.

CreationTime (MQCFST)
Creation time (parameter identifier: MQCA_CREATION_TIME).

The maximum length of the string is MQ_CREATION_TIME_LENGTH.

InitiationQName (MQCFST)
Initiation queue name (parameter identifier:
MQCA_INITIATION_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

TriggerControl (MQCFIN)
Trigger control (parameter identifier: MQIA_TRIGGER_CONTROL).

The value may be:

MQTC_OFF
Trigger messages not required.

MQTC_ON
Trigger messages required.

298 MQSeries Programmable System Management

 Inquire Queue (Response)

TriggerType (MQCFIN)
Trigger type (parameter identifier: MQIA_TRIGGER_TYPE).

The value may be:

MQTT_NONE
No trigger messages.

MQTT_FIRST
Trigger message when queue depth goes from 0 to 1.

MQTT_EVERY
Trigger message for every message.

MQTT_DEPTH
Trigger message when depth threshold exceeded.

TriggerMsgPriority (MQCFIN)
Threshold message priority for triggers (parameter identifier:
MQIA_TRIGGER_MSG_PRIORITY).

TriggerDepth (MQCFIN)
Trigger depth (parameter identifier: MQIA_TRIGGER_DEPTH).

TriggerData (MQCFST)
Trigger data (parameter identifier: MQCA_TRIGGER_DATA).

The maximum length of the string is MQ_TRIGGER_DATA_LENGTH.

BaseQName (MQCFST)
Queue name to which the alias resolves (parameter identifier:
MQCA_BASE_Q_NAME).

This is the name of a queue that is defined to the local queue manager.

The maximum length of the string is MQ_Q_NAME_LENGTH.

RemoteQName (MQCFST)
Name of remote queue as known locally on the remote queue manager
(parameter identifier: MQCA_REMOTE_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

RemoteQMgrName (MQCFST)
Name of remote queue manager (parameter identifier:
MQCA_REMOTE_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

XmitQName (MQCFST)
Transmission queue name (parameter identifier: MQCA_XMIT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

Scope (MQCFIN)
Scope of the queue definition (parameter identifier: MQIA_SCOPE).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQSCO_Q_MGR
Queue-manager scope.

 Chapter 8. Definitions of PCFs 299

 Inquire Queue (Response)

MQSCO_CELL
Cell scope.

QDepthHighLimit (MQCFIN)
High limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_HIGH_LIMIT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The threshold against which the queue depth is compared to generate a
Queue Depth High event.

QDepthLowLimit (MQCFIN)
Low limit for queue depth (parameter identifier:
MQIA_Q_DEPTH_LOW_LIMIT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The threshold against which the queue depth is compared to generate a
Queue Depth Low event.

QDepthMaxEvent (MQCFIN)
Controls whether Queue Full events are generated (parameter identifier:
MQIA_Q_DEPTH_MAX_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthHighEvent (MQCFIN)
Controls whether Queue Depth High events are generated (parameter
identifier: MQIA_Q_DEPTH_HIGH_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

QDepthLowEvent (MQCFIN)
Controls whether Queue Depth Low events are generated (parameter
identifier: MQIA_Q_DEPTH_LOW_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

300 MQSeries Programmable System Management

 Inquire Queue (Response)

QServiceInterval (MQCFIN)
Target for queue service interval (parameter identifier:
MQIA_Q_SERVICE_INTERVAL).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The service interval used for comparison to generate Queue Service
Interval High and Queue Service Interval OK events.

QServiceIntervalEvent (MQCFIN)
Controls whether Service Interval High or Service Interval OK events are
generated (parameter identifier: MQIA_Q_SERVICE_INTERVAL_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQQSIE_HIGH
Queue Service Interval High events enabled.

MQQSIE_OK
Queue Service Interval OK events enabled.

MQQSIE_NONE
No queue service interval events enabled.

 Chapter 8. Definitions of PCFs 301

 Inquire Queue Manager

Inquire Queue Manager
The Inquire Queue Manager (MQCMD_INQUIRE_Q_MGR) command inquires
about the attributes of a queue manager.

Required parameters:
None

Optional parameters:
QMgrAttrs

 Optional parameters
QMgrAttrs (MQCFIL)

Queue manager attributes (parameter identifier:
MQIACF_Q_MGR_ATTRS).

The attribute list may specify the following on its own (this is the default
value used if the parameter is not specified):

MQIACF_ALL
All attributes.

or a combination of the following:

MQCA_Q_MGR_NAME
Name of local queue manager.

MQCA_Q_MGR_DESC
Queue manager description.

MQIA_PLATFORM
Platform on which the queue manager resides.

MQIA_COMMAND_LEVEL
Command level supported by queue manager.

MQIA_TRIGGER_INTERVAL
Trigger interval.

MQCA_DEAD_LETTER_Q_NAME
Name of dead-letter queue.

MQIA_MAX_PRIORITY
Maximum priority.

MQCA_COMMAND_INPUT_Q_NAME
System command input queue name.

MQCA_DEF_XMIT_Q_NAME
Default transmission queue name.

MQIA_CODED_CHAR_SET_ID
Coded character set identifier.

MQIA_MAX_HANDLES
Maximum number of handles.

MQIA_MAX_UNCOMMITTED_MSGS
Maximum number of uncommitted messages within a unit of work.

MQIA_MAX_MSG_LENGTH
Maximum message length.

302 MQSeries Programmable System Management

 Inquire Queue Manager

MQIA_SYNCPOINT
Syncpoint availability.

MQIA_AUTHORITY_EVENT
Control attribute for authority events.

MQIA_INHIBIT_EVENT
Control attribute for inhibit events.

MQIA_LOCAL_EVENT
Control attribute for local events.

MQIA_REMOTE_EVENT
Control attribute for remote events.

MQIA_START_STOP_EVENT
Control attribute for start stop events.

MQIA_PERFORMANCE_EVENT
Control attribute for performance events.

| The following attributes are supported on AIX, HP-UX, OS/2, OS/400, Sun
Solaris, Windows NT:

MQIA_DIST_LISTS
Distribution list support.

MQIA_CHANNEL_AUTO_DEF
Control attribute for automatic channel definition.

MQIA_CHANNEL_AUTO_DEF_EVENT
Control attribute for automatic channel definition events.

MQCA_CHANNEL_AUTO_DEF_EXIT
Automatic channel definition exit name.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_SELECTOR_ERROR
(2067, X'813') Attribute selector not valid.

MQRCCF_CFIL_COUNT_ERROR
Count of parameter values not valid.

MQRCCF_CFIL_DUPLICATE_VALUE
Duplicate parameter.

MQRCCF_CFIL_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIL_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

 Chapter 8. Definitions of PCFs 303

 Inquire Queue Manager

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

304 MQSeries Programmable System Management

 Inquire Queue Manager (Response)

Inquire Queue Manager (Response)
The response to the Inquire Queue Manager (MQCMD_INQUIRE_Q_MGR)
command consists of the response header followed by the QMgrName structure and
the requested combination of attribute parameter structures.

Always returned:
QMgrName

Returned if requested:
QmgrDesc, Platform, CommandLevel, TriggerInterval, DeadLetterQName,
MaxPriority, CommandInputQName, DefXmitQName, CodedCharSetId, MaxHandles,
MaxUncommittedMsgs, MaxMsgLength, DistLists, SyncPoint, AuthorityEvent,
InhibitEvent, LocalEvent, RemoteEvent, StartStopEvent, PerformanceEvent,
ChannelAutoDef, ChannelAutoDefEvent, ChannelAutoDefExit

 Response data
QMgrName (MQCFST)

Name of local queue manager (parameter identifier:
MQCA_Q_MGR_NAME).

The maximum length of the string is MQ_Q_MGR_NAME_LENGTH.

QmgrDesc (MQCFST)
Queue manager description (parameter identifier: MQCA_Q_MGR_DESC).

The maximum length of the string is MQ_Q_MGR_DESC_LENGTH.

Platform (MQCFIN)
Platform on which the queue manager resides (parameter identifier:
MQIA_PLATFORM).

The value may be:

MQPL_OS400
OS/400.

MQPL_OS2
OS/2.

MQPL_UNIX
UNIX systems.

MQPL_AIX
AIX (same value as MQPL_UNIX).

MQPL_WINDOWS_NT
Windows NT or 32-bit Windows.

| MQPL_NSK
| Tandem NSK.

| MQPL_VMS
| OpenVMS.

CommandLevel (MQCFIN)
Command level supported by queue manager (parameter identifier:
MQIA_COMMAND_LEVEL).

The value may be:

 Chapter 8. Definitions of PCFs 305

 Inquire Queue Manager (Response)

MQCMDL_LEVEL_1
Level 1 of system control commands.

This value is returned by the following:

� MQSeries for AIX version 2 release 2
� MQSeries for MVS/ESA:

– version 1 release 1.1
– version 1 release 1.2
– version 1 release 1.3

� MQSeries for OS/2 version 2 release 0
� MQSeries for OS/400:

– version 2 release 3
– version 3 release 1
– version 3 release 6

� MQSeries for Windows version 2 release 0.

MQCMDL_LEVEL_101
MQSeries for Windows version 2 release 0.1.

MQCMDL_LEVEL_110
MQSeries for Windows version 2 release 1.

MQCMDL_LEVEL_114
MQSeries for MVS/ESA version 1 release 1.4.

MQCMDL_LEVEL_120
MQSeries for MVS/ESA version 1 release 2.0.

MQCMDL_LEVEL_200
MQSeries for Windows NT version 2 release 0.

MQCMDL_LEVEL_201
MQSeries for OS/2 version 2 release 0.1.

MQCMDL_LEVEL_220
Level 220 of system control commands.

This value is returned by the following:

� MQSeries for AT&T GIS UNIX version 2 release 2.
� MQSeries for SINIX and DC/OSx version 2 release 2.
� MQSeries for Sun OS version 2 release 2.
� MQSeries for Tandem NonStop Kernel version 2 release 2.

MQCMDL_LEVEL_221
Level 221 of system control commands.

This value is returned by the following:

� MQSeries for AIX version 2 release 2.1.
� MQSeries for Digital OpenVMS version 2 release 2.

MQCMDL_LEVEL_320
MQSeries for OS/400 version 3 release 2, and version 3 release 7.

| MQCMDL_LEVEL_420
| MQSeries for AS/400 version 4 release 2.

MQCMDL_LEVEL_500
Level 500 of system control commands.

This value is returned by the following:

306 MQSeries Programmable System Management

 Inquire Queue Manager (Response)

� MQSeries for AIX version 5 release 0
� MQSeries for HP-UX version 5 release 0
� MQSeries for OS/2 version 5 release 0
� MQSeries for Solaris version 5 release 0
� MQSeries for Windows NT version 5 release 0

The set of system control commands that corresponds to a particular value
of the CommandLevel attribute varies according to the value of the Platform
attribute; both must be used to decide which system control commands
are supported.

TriggerInterval (MQCFIN)
Trigger interval (parameter identifier: MQIA_TRIGGER_INTERVAL).

Specifies the trigger time interval, expressed in milliseconds, for use only
with queues where TriggerType has a value of MQTT_FIRST.

In this case trigger messages are normally only generated when a suitable
message arrives on the queue, and the queue was previously empty.
Under certain circumstances, however, an additional trigger message can
be generated with MQTT_FIRST triggering, even if the queue was not
empty. These additional trigger messages are not generated more often
than every TriggerInterval milliseconds.

The value may be in the range 0 through 999 999 999.

DeadLetterQName (MQCFST)
Dead letter (undelivered message) queue name (parameter identifier:
MQCA_DEAD_LETTER_Q_NAME).

Specifies the name of the local queue that is to be used for undelivered
messages. Messages are put on this queue if they cannot be routed to
their correct destination.

The maximum length of the string is MQ_Q_NAME_LENGTH.

MaxPriority (MQCFIN)
Maximum priority (parameter identifier: MQIA_MAX_PRIORITY).

The value may be in the range 0-9.

CommandInputQName (MQCFST)
Command input queue name (parameter identifier:
MQCA_COMMAND_INPUT_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

DefXmitQName (MQCFST)
Default transmission queue name (parameter identifier:
MQCA_DEF_XMIT_Q_NAME).

This is the name of the default transmission queue that is used for the
transmission of messages to remote queue managers, if there is no other
indication of which transmission queue to use.

The maximum length of the string is MQ_Q_NAME_LENGTH.

CodedCharSetId (MQCFIN)
Coded character set identifier (parameter identifier:
MQIA_CODED_CHAR_SET_ID).

 Chapter 8. Definitions of PCFs 307

 Inquire Queue Manager (Response)

MaxHandles (MQCFIN)
Maximum number of handles (parameter identifier:
MQIA_MAX_HANDLES).

Specifies the maximum number of handles that any one job can have
open at the same time.

The value may be in the range 1 through 999 999 999.

MaxUncommittedMsgs (MQCFIN)
Maximum number of uncommitted messages within a unit of work
(parameter identifier: MQIA_MAX_UNCOMMITTED_MSGS).

That is:

� The number of messages that can be retrieved, plus
� The number of messages that can be put on a queue, plus
� Any trigger messages generated within this unit of work

under any one syncpoint. This limit does not apply to messages that are
retrieved or put outside syncpoint.

The value may be in the range 1 through 10 000.

MaxMsgLength (MQCFIN)
Maximum message length (parameter identifier:
MQIA_MAX_MSG_LENGTH).

DistLists (MQCFIN)
Distribution list support (parameter identifier: MQIA_DIST_LISTS).

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

The value may be:

MQDL_SUPPORTED
Distribution lists supported.

MQDL_NOT_SUPPORTED
Distribution lists not supported.

SyncPoint (MQCFIN)
Syncpoint availability (parameter identifier: MQIA_SYNCPOINT).

The value may be:

MQSP_AVAILABLE
Units of work and syncpointing available.

MQSP_NOT_AVAILABLE
Units of work and syncpointing not available.

AuthorityEvent (MQCFIN)
Controls whether authorization (Not Authorized) events are generated
(parameter identifier: MQIA_AUTHORITY_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

308 MQSeries Programmable System Management

 Inquire Queue Manager (Response)

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

InhibitEvent (MQCFIN)
Controls whether inhibit (Inhibit Get and Inhibit Put) events are generated
(parameter identifier: MQIA_INHIBIT_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

LocalEvent (MQCFIN)
Controls whether local error events are generated (parameter identifier:
MQIA_LOCAL_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

RemoteEvent (MQCFIN)
Controls whether remote error events are generated (parameter identifier:
MQIA_REMOTE_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

StartStopEvent (MQCFIN)
Controls whether start and stop events are generated (parameter identifier:
MQIA_START_STOP_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

 Chapter 8. Definitions of PCFs 309

 Inquire Queue Manager (Response)

PerformanceEvent (MQCFIN)
Controls whether performance-related events are generated (parameter
identifier: MQIA_PERFORMANCE_EVENT).

On OS/400, this is valid for receipt by MQSeries for AS/400 V4R2

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

ChannelAutoDef (MQCFIN)
Controls whether receiver and server-connection channels can be
auto-defined (parameter identifier: MQIA_CHANNEL_AUTO_DEF).

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

The value may be:

MQCHAD_DISABLED
Channel auto-definition disabled.

MQCHAD_ENABLED
Channel auto-definition enabled.

ChannelAutoDefEvent (MQCFIN)
Controls whether channel auto-definition events are generated (parameter
identifier: MQIA_CHANNEL_AUTO_DEF_EVENT).

Only relevant if channel auto-definition is enabled (see ChannelAutoDef).

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

The value may be:

MQEVR_DISABLED
Event reporting disabled.

MQEVR_ENABLED
Event reporting enabled.

ChannelAutoDefExit (MQCFST)
Channel auto-definition exit name (parameter identifier:
MQCA_CHANNEL_AUTO_DEF_EXIT).

If a nonblank name is defined, and channel auto-definiion is enabled (see
ChannelAutoDef), this exit is invoked when an inbound request for an
undefined channel is received.

The format of the name is the same as for the SecurityExit parameter
described in “Change Channel” on page 139.

The maximum length of the string is MQ_EXIT_NAME_LENGTH.

This parameter is supported in the following environments: AIX, HP-UX,
| OS/2, OS/400, Sun Solaris, Windows NT.

310 MQSeries Programmable System Management

 Inquire Queue Names

Inquire Queue Names
The Inquire Queue Names (MQCMD_INQUIRE_Q_NAMES) command inquires a
list of queue names that match the generic queue name, and the optional queue
type specified.

Required parameters:
QName

Optional parameters:
QType

 Required parameters
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

Generic queue names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all
objects having names that start with the selected character string. An
asterisk on its own matches all possible names.

The maximum length of the string is MQ_Q_NAME_LENGTH.

 Optional parameters
QType (MQCFIN)

Queue type (parameter identifier: MQIA_Q_TYPE).

If present, this parameter limits the queue names returned to queues of
the specified type. If this parameter is not present, queues of all types are
eligible. The value may be:

MQQT_ALL
All queue types.

MQQT_LOCAL
Local queue.

MQQT_ALIAS
Alias queue definition.

MQQT_REMOTE
Local definition of a remote queue.

The following is supported on all platforms, but on OS/400 for receipt by
MQSeries for AS/400 V4R2:

MQQT_MODEL
Model queue definition.

The default value if this parameter is not specified is MQQT_ALL.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

 Chapter 8. Definitions of PCFs 311

 Inquire Queue Names

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

312 MQSeries Programmable System Management

 Inquire Queue Names (Response)

Inquire Queue Names (Response)
The response to the Inquire Queue Names (MQCMD_INQUIRE_Q_NAMES)
command consists of the response header followed by a single parameter structure
giving zero or more names that match the specified queue name.

Always returned:
QNames

Returned if requested:
None

 Response data
QNames (MQCFSL)

Queue names (parameter identifier: MQCACF_Q_NAMES).

 Chapter 8. Definitions of PCFs 313

 Ping Channel

 Ping Channel
The Ping Channel (MQCMD_PING_CHANNEL) command tests a channel by
sending data as a special message to the remote message queue manager and
checking that the data is returned. The data is generated by the local queue
manager.

This command can only be used for channels with a ChannelType value of
MQCHT_SENDER or MQCHT_SERVER. It is not valid if the channel is running;
however it is valid if the channel is stopped or in retry mode.

| This PCF is not supported if you are using MQSeries for Windows Version 2.1.

Required parameters:
ChannelName

Optional parameters:
DataCount

 Required parameters
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be tested. The maximum length of the string
is MQ_CHANNEL_NAME_LENGTH.

 Optional parameters
DataCount (MQCFIN)

Data count (parameter identifier: MQIACH_DATA_COUNT).

Specifies the length of the data.

Specify a value in the range 16 through 32 768. The default value is 64
bytes.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_ALLOCATE_FAILED
Allocation failed.

MQRCCF_BIND_FAILED
Bind failed.

MQRCCF_CCSID_ERROR
Coded character-set identifier error.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

314 MQSeries Programmable System Management

 Ping Channel

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_IN_USE
Channel in use.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_CONFIGURATION_ERROR
Configuration error.

MQRCCF_CONNECTION_CLOSED
Connection closed.

MQRCCF_CONNECTION_REFUSED
Connection refused.

MQRCCF_DATA_TOO_LARGE
Data too large.

MQRCCF_ENTRY_ERROR
Invalid connection name.

MQRCCF_HOST_NOT_AVAILABLE
Remote system not available.

MQRCCF_NO_COMMS_MANAGER
Communications manager not available.

MQRCCF_NO_STORAGE
Not enough storage available.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_PING_DATA_COMPARE_ERROR
Ping Channel command failed.

MQRCCF_PING_DATA_COUNT_ERROR
Data count not valid.

MQRCCF_PING_ERROR
Ping error.

 Chapter 8. Definitions of PCFs 315

 Ping Channel

MQRCCF_RECEIVE_FAILED
Receive failed.

MQRCCF_RECEIVED_DATA_ERROR
Received data error.

MQRCCF_REMOTE_QM_TERMINATING
Remote queue manager terminating.

MQRCCF_REMOTE_QM_UNAVAILABLE
Remote queue manager not available.

MQRCCF_SEND_FAILED
Send failed.

MQRCCF_NO_STORAGE
Not enough storage available.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRCCF_TERMINATED_BY_SEC_EXIT
Channel terminated by security exit.

MQRCCF_UNKNOWN_REMOTE_CHANNEL
Remote channel not known.

MQRCCF_USER_EXIT_NOT_AVAILABLE
User exit not available.

316 MQSeries Programmable System Management

 Ping Queue Manager

Ping Queue Manager
The Ping Queue Manager (MQCMD_PING_Q_MGR) command tests whether the
queue manager and its command server is responsive to commands. If the queue
manager is responding a positive reply is returned.

Required parameters:
None

Optional parameters:
None

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

 Chapter 8. Definitions of PCFs 317

 Reset Channel

 Reset Channel
The Reset Channel (MQCMD_RESET_CHANNEL) command resets the message
sequence number for an MQSeries channel with, optionally, a specifed sequence
number to be used the next time that the channel is started.

This command can be issued to a channel of any type except (MQCHT_SVRCONN
and MQCHT_CLNTCONN). However, if it is issued to a sender
(MQCHT_SENDER) or server (MQCHT_SERVER) channel, then in addition to
resetting the value at the end at which the command is issued, the value at the
other (receiver or requester) end will also be reset to the same value, when this
channel is next initiated (and resynchronized if necessary).

If the command is issued to a receiver (MQCHT_RECEIVER) or requester
(MQCHT_REQUESTER) channel, the value at the other end is not reset as well;
this must be done separately if necessary.

Required parameters:
ChannelName

Optional parameters:
MsgSeqNumber

 Required parameters
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be reset. The maximum length of the string is
MQ_CHANNEL_NAME_LENGTH.

 Optional parameters
MsgSeqNumber (MQCFIN)

Message sequence number (parameter identifier:
MQIACH_MSG_SEQUENCE_NUMBER).

Specifies the new message sequence number.

The value may be in the range 1-999 999 999. The default value is one.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

318 MQSeries Programmable System Management

 Reset Channel

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_MSG_SEQ_NUMBER_ERROR
Message sequence number not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

 Chapter 8. Definitions of PCFs 319

 Reset Queue Statistics

Reset Queue Statistics
The Reset Queue Statistics (MQCMD_RESET_Q_STATS) command reports the
performance data for a queue and then resets the performance data.

| This PCF is not supported if you are using MQSeries for Tandem NSK
| version 2.2.

Performance data is maintained for each local queue (including transmission
queues). It is reset at the following times:

� When a Reset Queue Statistics command is issued
� When the queue manager is restarted

Required parameters:
QName

Optional parameters:
None

 Required parameters
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

The name of the local queue to be tested and reset.

Generic queue names are supported. A generic name is a character
string followed by an asterisk (*), for example ABC*, and it selects all
objects having names that start with the selected character string. An
asterisk on its own matches all possible names.

The maximum length of the string is MQ_Q_NAME_LENGTH.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRC_UNKNOWN_OBJECT_NAME
(2085, X'825') Unknown object name.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

320 MQSeries Programmable System Management

 Reset Queue Statistics

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_Q_WRONG_TYPE
Action not valid for the queue of specified type.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

 Chapter 8. Definitions of PCFs 321

 Reset Queue Statistics (Response)

Reset Queue Statistics (Response)
The response to the Reset Queue Statistics (MQCMD_RESET_Q_STATS)
command consists of the response header followed by the QName structure and the
attribute parameter structures shown below. If a generic queue name was
specified, one such message is generated for each queue found.

Always returned:
QName, TimeSinceReset, HighQDepth, MsgEnqCount, MsgDeqCount

 Response data
QName (MQCFST)

Queue name (parameter identifier: MQCA_Q_NAME).

The maximum length of the string is MQ_Q_NAME_LENGTH.

TimeSinceReset (MQCFIN)
Time since statistics reset in seconds (parameter identifier:
MQIA_TIME_SINCE_RESET).

HighQDepth (MQCFIN)
Maximum number of messages on a queue (parameter identifier:
MQIA_HIGH_Q_DEPTH).

This count is the peak value of the CurrentQDepth local queue attribute
since the last reset. The CurrentQDepth is incremented during an MQPUT
call, and during backout of an MQGET call, and is decremented during a
(nonbrowse) MQGET call, and during backout of an MQPUT call.

MsgEnqCount (MQCFIN)
Number of messages enqueued (parameter identifier:
MQIA_MSG_ENQ_COUNT).

This count includes messages that have been put to the queue, but have
not yet been committed. The count is not decremented if the put is
subsequently backed out.

MsgDeqCount (MQCFIN)
Number of messages dequeued (parameter identifier:
MQIA_MSG_DEQ_COUNT).

This count includes messages that have been successfully retrieved (with
a nonbrowse MQGET) from the queue, even though the MQGET has not
yet been committed. The count is not decremented if the MQGET is
subsequently backed out.

322 MQSeries Programmable System Management

 Resolve Channel

 Resolve Channel
The Resolve Channel (MQCMD_RESOLVE_CHANNEL) command requests a
channel to commit or back out in-doubt messages.

This command is used when the other end of a link fails during the confirmation
stage, and for some reason it is not possible to reestablish the connection. In this
situation the sending end remains in an in-doubt state, as to whether or not the
messages were received. Any outstanding units of work must be resolved using
Resolve Channel with either backout or commit.

Care must be exercised in the use of this command. If the resolution specified is
not the same as the resolution at the receiving end, messages can be lost or
duplicated.

This command can only be used for channels with a ChannelType value of
MQCHT_SENDER or MQCHT_SERVER.

Required parameters:
ChannelName, InDoubt

Optional parameters:
None

 Required parameters
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be resolved. The maximum length of the
string is MQ_CHANNEL_NAME_LENGTH.

 Optional parameters
InDoubt (MQCFIN)

Indoubt resolution (parameter identifier: MQIACH_IN_DOUBT).

Specifies whether to commit or back out the in-doubt messages.

The value may be:

MQIDO_COMMIT
Commit.

MQIDO_BACKOUT
Backout.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

 Chapter 8. Definitions of PCFs 323

 Resolve Channel

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_INDOUBT_VALUE_ERROR
In-doubt value not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

324 MQSeries Programmable System Management

 Start Channel

 Start Channel
The Start Channel (MQCMD_START_CHANNEL) command starts an MQSeries
channel.

This command can be issued to a channel of any type (except
MQCHT_CLNTCONN). If, however, it is issued to a channel with a ChannelType
value of MQCHT_RECEIVER or MQCHT_SVRCONN, the only action is to enable
the channel, not start it.

Required parameters:
ChannelName

Optional parameters:
None

 Required parameters
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be started. The maximum length of the string
is MQ_CHANNEL_NAME_LENGTH.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_INDOUBT
Channel in-doubt.

MQRCCF_CHANNEL_IN_USE
Channel in use.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

MQRCCF_MQCONN_FAILED
MQCONN call failed.

MQRCCF_MQINQ_FAILED
MQINQ call failed.

 Chapter 8. Definitions of PCFs 325

 Start Channel

MQRCCF_MQOPEN_FAILED
MQOPEN call failed.

MQRCCF_NOT_XMIT_Q
Queue is not a transmission queue.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

326 MQSeries Programmable System Management

 Start Channel Initiator

Start Channel Initiator
The Start Channel Initiator (MQCMD_START_CHANNEL_INIT) command starts an
MQSeries channel initiator.

| This PCF is not supported if you are using MQSeries for Windows Version 2.1.

Required parameters:
InitiationQName

Optional parameters:
None

 Required parameters
InitiationQName (MQCFST)

Initiation queue name (parameter identifier:
MQCA_INITIATION_Q_NAME).

The name of the initiation queue for the channel initiation process. That
is, the initiation queue that is specified in the definition of the transmission
queue.

The maximum length of the string is MQ_Q_NAME_LENGTH.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_MQCONN_FAILED
MQCONN call failed.

MQRCCF_MQGET_FAILED
MQGET call failed.

MQRCCF_MQOPEN_FAILED
MQOPEN call failed.

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

 Chapter 8. Definitions of PCFs 327

 Start Channel Initiator

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

328 MQSeries Programmable System Management

 Start Channel Listener

Start Channel Listener
The Start Channel Listener (MQCMD_START_CHANNEL_LISTENER) command
starts an MQSeries TCP/IP listener.

| This PCF is supported only if you are using MQSeries for AS/400 V4R2,
| MQSeries for OS/2 Warp V5, or MQSeries for Windows NT V5,

This command is valid only for TCP/IP transmission protocols.

Required parameters:
None

Optional parameters:
None

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_LISTENER_NOT_STARTED
Listener not started.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

 Chapter 8. Definitions of PCFs 329

 Stop Channel

 Stop Channel
The Stop Channel (MQCMD_STOP_CHANNEL) command stops an MQSeries
channel.

This command can be issued to a channel of any type (except
MQCHT_CLNTCONN).

Required parameters:
ChannelName

Optional parameters:
Quiesce

 Required parameters
ChannelName (MQCFST)

Channel name (parameter identifier: MQCACH_CHANNEL_NAME).

The name of the channel to be stopped. The maximum length of the
string is MQ_CHANNEL_NAME_LENGTH.

 Optional parameters
Quiesce (MQCFIN)

Quiesce channel (parameter identifier: MQIACF_QUIESCE).

Specifies whether the channel should be quiesced or stopped immediately.
If this parameter is not present the channel is quiesced. The value may
be:

MQQO_YES
Quiesce the channel.

MQQO_NO
Do not quiesce the channel.

 Error codes
In addition to the values for any command shown on page 136, for this command
the following may be returned in the response format header:

Reason (MQLONG)
The value may be:

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

330 MQSeries Programmable System Management

 Stop Channel

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

MQRCCF_CHANNEL_DISABLED
Channel disabled.

MQRCCF_CHANNEL_NOT_ACTIVE
Channel not active.

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

MQRCCF_MQCONN_FAILED
MQCONN call failed.

MQRCCF_MQOPEN_FAILED
MQOPEN call failed.

MQRCCF_MQSET_FAILED
MQSET call failed.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

MQRCCF_QUIESCE_VALUE_ERROR
Quiesce value not valid.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

 Chapter 8. Definitions of PCFs 331

 Stop Channel

332 MQSeries Programmable System Management

 Structures

Chapter 9. Structures used for commands and responses

Commands, responses, and events are of the form:

� PCF header (MQCFH) structure, (described on page 334) followed by

� Zero or more parameter structures. Each of these is one of the following:

– PCF integer parameter (MQCFIN, page 339)
– PCF string parameter (MQCFST, page 341)
– PCF integer list parameter (MQCFIL, page 345)
– PCF string list parameter (MQCFSL, page 347)

This chapter defines these parameter structures.

How the structures are shown
The structures are described in a language-independent form. The declarations are
shown in the following programming languages:

 � C
 � COBOL
 � PL/I
 � S/390 assembler

 Data types
For each field of the structure the data type is given in brackets after the field
name. These are the elementary data types described in the MQSeries Application
Programming Reference.

Initial values and default structures
The initial value of each field is shown under its description. This is the value of
the field in the default structure.

The default structures are supplied in the following header files:

C CMQCFC PL/I CMQCFP
COBOL CMQCFV

CMQCFHL
CMQCFHV
CMQCFINL
CMQCFINV
CMQCFSLL
CMQCFSLV
CMQCFSTL
CMQCFSTV
CMQCFILL
CMQCFILV

Assembler CMQCFA
CMQCFINA
CMQCFILA
CMQCFSTA
CMQCFSLA
CMQCFHA

 Copyright IBM Corp. 1994,1998 333

 MQCFH

 Usage notes
If all of the strings in a PCF message have the same coded character-set identifier,
the CodedCharSetId field in the message descriptor MQMD should be set to that
identifier when the message is put, and the CodedCharSetId fields in the MQCFST
and MQCFSL structures within the message should be set to MQCCSI_DEFAULT.

If some of the strings in the message have different character-set identifiers, the
CodedCharSetId field in MQMD should be set to MQCCSI_EMBEDDED when the
message is put, and the CodedCharSetId fields in the MQCFST and MQCFSL
structures within the message should be set to the identifiers that apply.

Do not specify MQCCSI_EMBEDDED in MQMD when the message is put, with
MQCCSI_DEFAULT in the MQCFST or MQCFSL structures within the message, as
this will prevent conversion of the message.

Note: Only single-byte character sets (SBCS) should be used for the strings in the
message. If a double-byte character set (DBCS) is specified, it will prevent
conversion of the message.

MQCFH – PCF header
The MQCFH structure describes the information that is present at the start of the
message data of a command message, or a response to a command message. In
either case, the message descriptor Format field is MQFMT_ADMIN.

The PCF structures are also used for event messages. In this case the message
descriptor Format field is MQFMT_EVENT.

The PCF structures can also be used for user-defined message data. In this case
the message descriptor Format field is MQFMT_PCF (see “Message descriptor for
a PCF command” on page 127). Also in this case, not all of the fields in the
structure are meaningful. The supplied initial values can be used for most fields,
but the application must set the StrucLength and ParameterCount fields to the
values appropriate to the data.

Type (MQLONG)
Structure type.

This indicates the content of the message. The following are valid:

MQCFT_COMMAND
Message is a command.

MQCFT_RESPONSE
Message is a response to a command.

MQCFT_EVENT
Message is reporting an event.

The initial value of this field is MQCFT_COMMAND.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFH structure. The value must be:

334 MQSeries Programmable System Management

 MQCFH

MQCFH_STRUC_LENGTH
Length of command format header structure.

The initial value of this field is MQCFH_STRUC_LENGTH.

Version (MQLONG)
Structure version number.

The value must be:

MQCFH_VERSION_1
Version number for command format header structure.

The following constant specifies the version number of the current version:

MQCFH_CURRENT_VERSION
Current version of command format header structure.

The initial value of this field is MQCFH_VERSION_1.

Command (MQLONG)
Command identifier.

For a command message, this identifies the function to be performed. For
a response message, it identifies the command to which this is the reply.
The following are valid:

MQCMD_CHANGE_Q_MGR
Change queue manager.

MQCMD_INQUIRE_Q_MGR
Inquire queue manager.

MQCMD_CHANGE_PROCESS
Change process.

MQCMD_COPY_PROCESS
Copy process.

MQCMD_CREATE_PROCESS
Create process.

MQCMD_DELETE_PROCESS
Delete process.

MQCMD_INQUIRE_PROCESS
Inquire process.

MQCMD_CHANGE_Q
Change queue.

MQCMD_CLEAR_Q
Clear queue.

MQCMD_COPY_Q
Copy queue.

MQCMD_CREATE_Q
Create queue.

MQCMD_DELETE_Q
Delete queue.

 Chapter 9. Structures for commands and responses 335

 MQCFH

MQCMD_INQUIRE_Q
Inquire queue.

MQCMD_RESET_Q_STATS
Reset queue statistics.

MQCMD_INQUIRE_Q_NAMES
Inquire queue names.

MQCMD_INQUIRE_PROCESS_NAMES
Inquire process-definition names.

MQCMD_INQUIRE_CHANNEL_NAMES
Inquire channel names.

MQCMD_CHANGE_CHANNEL
Change channel.

MQCMD_COPY_CHANNEL
Copy channel.

MQCMD_CREATE_CHANNEL
Create channel.

MQCMD_DELETE_CHANNEL
Delete channel.

MQCMD_INQUIRE_CHANNEL
Inquire channel.

MQCMD_PING_CHANNEL
Ping channel.

MQCMD_RESET_CHANNEL
Reset channel.

MQCMD_START_CHANNEL
Start channel.

MQCMD_STOP_CHANNEL
Stop channel.

MQCMD_START_CHANNEL_INIT
Start channel initiator.

MQCMD_START_CHANNEL_LISTENER
Start channel listener.

MQCMD_ESCAPE
Escape.

MQCMD_RESOLVE_CHANNEL
Resolve channel.

MQCMD_PING_Q_MGR
Ping queue manager.

MQCMD_INQUIRE_CHANNEL_STATUS
Inquire channel status.

MQCMD_Q_MGR_EVENT
Queue manager event.

MQCMD_PERFM_EVENT
Performance event.

336 MQSeries Programmable System Management

 MQCFH

MQCMD_CHANNEL_EVENT
Channel event.

The initial value of this field is ð.

MsgSeqNumber (MQLONG)
Message sequence number.

This is the sequence number of the message within a group of related
messages. For a command, this field must have the value one (because
a command is always contained within a single message). For a
response, the field has the value one for the first (or only) response to a
command, and increases by one for each successive response to that
command.

The last (or only) message in a group has the MQCFC_LAST flag set in
the Control field.

The initial value of this field is 1.

Control (MQLONG)
Control options.

The following are valid:

MQCFC_LAST
Last message in the group.

For a command, this value must always be set.

MQCFC_NOT_LAST
Not the last message in the group.

The initial value of this field is MQCFC_LAST.

CompCode (MQLONG)
Completion code.

This field is meaningful only for a response; its value is not significant for a
command. The following are possible:

MQCC_OK
Command completed successfully.

MQCC_WARNING
Command completed with warning.

MQCC_FAILED
Command failed.

MQCC_UNKNOWN
Whether command succeeded is not known.

The initial value of this field is MQCC_OK.

Reason (MQLONG)
Reason code qualifying completion code.

This field is meaningful only for a response; its value is not significant for a
command.

The possible reason codes that could be returned in response to a
command are listed at the end of each command format definition in

 Chapter 9. Structures for commands and responses 337

 MQCFH

Chapter 8, “Definitions of the Programmable Command Formats” on
page 135. The reason codes are listed in alphabetic order, with complete
descriptions in Appendix A, “Error codes” on page 455.

The initial value of this field is MQRC_NONE.

ParameterCount (MQLONG)
Count of parameter structures.

This is the number of parameter structures (MQCFIL, MQCFIN, MQCFSL,
and MQCFST) that follow the MQCFH structure. The value of this field is
zero or greater.

The initial value of this field is ð.

Table 18. Initial values of fields in MQCFH

Field name Name of constant Value of constant

Type MQCFT_COMMAND 1

StrucLength MQCFH_STRUC_LENGTH 36

Version MQCFH_VERSION_1 1

Command None ð

MsgSeqNumber None 1

Control MQCFC_LAST 1

CompCode MQCC_OK ð

Reason MQRC_NONE ð

ParameterCount None ð

Notes:

1. In the C programming language, the macro variable MQCFH_DEFAULT contains the
values listed above. It can be used in the following way to provide initial values for
the fields in the structure:

MQCFH MyCFH = {MQCFH_DEFAULT};

C language declaration
typedef struct tagMQCFH {
 MQLONG Type; /\ Structure type \/
 MQLONG StrucLength; /\ Structure length \/
 MQLONG Version; /\ Structure version number \/
 MQLONG Command; /\ Command identifier \/
 MQLONG MsgSeqNumber; /\ Message sequence number \/
 MQLONG Control; /\ Control options \/
 MQLONG CompCode; /\ Completion code \/
 MQLONG Reason; /\ Reason code qualifying completion code \/
 MQLONG ParameterCount; /\ Count of parameter structures \/
 } MQCFH;

COBOL language declaration
\\ MQCFH structure
 1ð MQCFH.
\\ Structure type

15 MQCFH-TYPE PIC S9(9) BINARY.
\\ Structure length

338 MQSeries Programmable System Management

 MQCFIN

15 MQCFH-STRUCLENGTH PIC S9(9) BINARY.
\\ Structure version number

15 MQCFH-VERSION PIC S9(9) BINARY.
\\ Command identifier

15 MQCFH-COMMAND PIC S9(9) BINARY.
\\ Message sequence number

15 MQCFH-MSGSEQNUMBER PIC S9(9) BINARY.
\\ Control options

15 MQCFH-CONTROL PIC S9(9) BINARY.
\\ Completion code

15 MQCFH-COMPCODE PIC S9(9) BINARY.
\\ Reason code qualifying completion code

15 MQCFH-REASON PIC S9(9) BINARY.
\\ Count of parameter structures

15 MQCFH-PARAMETERCOUNT PIC S9(9) BINARY.

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQCFH based,
3 Type fixed bin(31), /\ Structure type \/
3 StrucLength fixed bin(31), /\ Structure length \/
3 Version fixed bin(31), /\ Structure version number \/
3 Command fixed bin(31), /\ Command identifier \/
3 MsgSeqNumber fixed bin(31), /\ Message sequence number \/
3 Control fixed bin(31), /\ Control options \/
3 CompCode fixed bin(31), /\ Completion code \/
3 Reason fixed bin(31), /\ Reason code qualifying completion

 code \/
3 ParameterCount fixed bin(31); /\ Count of parameter structures \/

System/390 assembler-language declaration (MVS/ESA only)
MQCFH DSECT
MQCFH_TYPE DS F Structure type
MQCFH_STRUCLENGTH DS F Structure length
MQCFH_VERSION DS F Structure version number
MQCFH_COMMAND DS F Command identifier
MQCFH_MSGSEQNUMBER DS F Message sequence number
MQCFH_CONTROL DS F Control options
MQCFH_COMPCODE DS F Completion code
MQCFH_REASON DS F Reason code qualifying
\ completion code
MQCFH_PARAMETERCOUNT DS F Count of parameter
\ structures
MQCFH_LENGTH EQU \-MQCFH Length of structure
 ORG MQCFH
MQCFH_AREA DS CL(MQCFH_LENGTH)

MQCFIN – PCF integer parameter
The MQCFIN structure describes an integer parameter in a message that is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

The MQCFIN structure is also used for event messages. In this case the message
descriptor Format field is MQFMT_EVENT.

 Chapter 9. Structures for commands and responses 339

 MQCFIN

The MQCFIN structure can also be used for user-defined message data. In this
case the message descriptor Format field is MQFMT_PCF (see “Message
descriptor for a PCF command” on page 127). Also in this case, not all of the
fields in the structure are meaningful. The supplied initial values can be used for
most fields, but the application must set the Value field to the value appropriate to
the data.

Type (MQLONG)
Structure type.

This indicates that the structure is a MQCFIN structure describing an
integer parameter. The value must be:

MQCFT_INTEGER
Structure defining an integer.

The initial value of this field is MQCFT_INTEGER.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFIN structure. The value must be:

MQCFIN_STRUC_LENGTH
Length of command format integer-parameter structure.

The initial value of this field is MQCFIN_STRUC_LENGTH.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter whose value is contained in the structure.
The values that can occur in this field depend on the value of the Command
field in the MQCFH structure; see page 334 for details.

The initial value of this field is ð.

Value (MQLONG)
Parameter value.

This is the value of the parameter identified by the Parameter field.

The initial value of this field is ð.

Table 19. Initial values of fields in MQCFIN

Field name Name of constant Value of constant

Type MQCFT_INTEGER 3

StrucLength MQCFIN_STRUC_LENGTH 16

Parameter None ð

Value None ð

Notes:

1. In the C programming language, the macro variable MQCFIN_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

MQCFIN MyCFIN = {MQCFIN_DEFAULT};

340 MQSeries Programmable System Management

 MQCFST

C language declaration
typedef struct tagMQCFIN {
 MQLONG Type; /\ Structure type \/
 MQLONG StrucLength; /\ Structure length \/
 MQLONG Parameter; /\ Parameter identifier \/
 MQLONG Value; /\ Parameter value \/
 } MQCFIN;

COBOL language declaration
\\ MQCFIN structure
 1ð MQCFIN.
\\ Structure type

15 MQCFIN-TYPE PIC S9(9) BINARY.
\\ Structure length

15 MQCFIN-STRUCLENGTH PIC S9(9) BINARY.
\\ Parameter identifier

15 MQCFIN-PARAMETER PIC S9(9) BINARY.
\\ Parameter value

15 MQCFIN-VALUE PIC S9(9) BINARY.

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQCFIN based,
3 Type fixed bin(31), /\ Structure type \/
3 StrucLength fixed bin(31), /\ Structure length \/
3 Parameter fixed bin(31), /\ Parameter identifier \/
3 Value fixed bin(31); /\ Parameter value \/

System/390 assembler-language declaration (MVS/ESA only)
MQCFIN DSECT
MQCFIN_TYPE DS F Structure type
MQCFIN_STRUCLENGTH DS F Structure length
MQCFIN_PARAMETER DS F Parameter identifier
MQCFIN_VALUE DS F Parameter value
MQCFIN_LENGTH EQU \-MQCFIN Length of structure
 ORG MQCFIN
MQCFIN_AREA DS CL(MQCFIN_LENGTH)

MQCFST – PCF string parameter
The MQCFST structure describes a string parameter in a message that is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

The MQCFST structure is also used for event messages. In this case the message
descriptor Format field is MQFMT_EVENT.

The MQCFST structure can also be used for user-defined message data. In this
case the message descriptor Format field is MQFMT_PCF (see “Message
descriptor for a PCF command” on page 127). Also in this case, not all of the
fields in the structure are meaningful. The supplied initial values can be used for
most fields, but the application must set the StrucLength, StringLength, and String
fields to the values appropriate to the data.

 Chapter 9. Structures for commands and responses 341

 MQCFST

The structure ends with a variable-length character string; see the String field
below for further details.

See “Usage notes” on page 334 for further information on how the structure should
be used.

Type (MQLONG)
Structure type.

This indicates that the structure is an MQCFST structure describing a
string parameter. The value must be:

MQCFT_STRING
Structure defining a string.

The initial value of this field is MQCFT_STRING.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFST structure, including the
variable-length string at the end of the structure (the String field). The
length must be a multiple of four, and must be sufficient to contain the
string; any bytes between the end of the string and the length defined by
the StrucLength field are not significant.

The following constant gives the length of the fixed part of the structure,
that is the length excluding the String field:

MQCFST_STRUC_LENGTH_FIXED
Length of fixed part of command format string-parameter structure.

The initial value of this field is MQCFST_STRUC_LENGTH_FIXED.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter whose value is contained in the structure.
The values that can occur in this field depend on the value of the Command
field in the MQCFH structure; see page 334 for details.

The initial value of this field is ð.

CodedCharSetId (MQLONG)
Coded character set identifier.

This specifies the coded character set identifier of the data in the String
field. The following special value can be used:

MQCCSI_DEFAULT
Default coded character set identifier.

Character data is in the character set defined by the CodedCharSetId
field in the message descriptor MQMD.

The initial value of this field is MQCCSI_DEFAULT.

StringLength (MQLONG)
Length of string.

This is the length in bytes of the data in the String field; it must be zero
or greater. This length need not be a multiple of four.

342 MQSeries Programmable System Management

 MQCFST

The initial value of this field is ð.

String (MQCHAR×StringLength)
String value.

This is the value of the parameter identified by the Parameter field:

� In MQFMT_ADMIN command messages, if the specified string is
shorter than the standard length of the parameter, the omitted
characters are assumed to be blanks. If the specified string is longer
than the standard length, those characters in excess of the standard
length must be blanks.

� In MQFMT_ADMIN response messages, string parameters are
returned padded with blanks to the standard length of the parameter.

� In MQFMT_EVENT messages, trailing blanks are omitted from string
parameters (that is, the string may be shorter than the defined length
of the parameter).

In all cases, StringLength gives the length of the string actually present in
the message.

The string can contain any characters that are in the character set defined
by CodedCharSetId, and that are valid for the parameter identified by
Parameter.

Note: In the MQCFST structure, a null character in the string is treated
as normal data, and does not act as a delimiter for the string. This
means that when a receiving application reads a MQFMT_PCF,
MQFMT_EVENT, or MQFMT_ADMIN message, the receiving
application receives all of the data specified by the sending
application. The data may, of course, have been converted
between character sets (for example, by the receiving application
specifying the MQGMO_CONVERT option on the MQGET call).

In contrast, when the queue manager reads an MQFMT_ADMIN
message from the command input queue, the queue manager
processes the data as though it had been specified on an MQI call.
This means that within the string, the first null and the characters
following it (up to the end of the string) are treated as blanks.

The way that this field is declared depends on the programming language:

� For the C programming language, the field is declared as an array with
one element. Storage for the structure should be allocated
dynamically, and pointers used to address the fields within it.

� For the COBOL, PL/I, and System/390 assembler programming
languages, the field is omitted from the structure declaration. When
an instance of the structure is declared, the user should include
MQCFST in a larger structure, and declare additional field(s) following
MQCFST, to represent the String field as required.

In C, the initial value of this field is the null string.

 Chapter 9. Structures for commands and responses 343

 MQCFST

Table 20. Initial values of fields in MQCFST

Field name Name of constant Value of constant

Type MQCFT_STRING 4

StrucLength MQCFST_STRUC_LENGTH_FIXED 2ð

Parameter None ð

CodedCharSetId MQCCSI_DEFAULT ð

StringLength None ð

String
(present only in C)

None Null string

Notes:

1. In the C programming language, the macro variable MQCFST_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

struct {
 MQCFST Hdr;
 MQCHAR Data[99];
} MyCFST = {MQCFST_DEFAULT};

C language declaration
typedef struct tagMQCFST {
 MQLONG Type; /\ Structure type \/
 MQLONG StrucLength; /\ Structure length \/
 MQLONG Parameter; /\ Parameter identifier \/
 MQLONG CodedCharSetId; /\ Coded character set identifier \/
 MQLONG StringLength; /\ Length of string \/
 MQCHAR String[1]; /\ String value - first
 character \/
 } MQCFST;

COBOL language declaration
\\ MQCFST structure
 1ð MQCFST.
\\ Structure type

15 MQCFST-TYPE PIC S9(9) BINARY.
\\ Structure length

15 MQCFST-STRUCLENGTH PIC S9(9) BINARY.
\\ Parameter identifier

15 MQCFST-PARAMETER PIC S9(9) BINARY.
\\ Coded character set identifier

15 MQCFST-CODEDCHARSETID PIC S9(9) BINARY.
\\ Length of string

15 MQCFST-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQCFST based,
3 Type fixed bin(31), /\ Structure type \/
3 StrucLength fixed bin(31), /\ Structure length \/
3 Parameter fixed bin(31), /\ Parameter identifier \/
3 CodedCharSetId fixed bin(31), /\ Coded character set identifier \/
3 StringLength fixed bin(31); /\ Length of string \/

344 MQSeries Programmable System Management

 MQCFIL

System/390 assembler-language declaration (MVS/ESA only)
MQCFST DSECT
MQCFST_TYPE DS F Structure type
MQCFST_STRUCLENGTH DS F Structure length
MQCFST_PARAMETER DS F Parameter identifier
MQCFST_CODEDCHARSETID DS F Coded character set
\ identifier
MQCFST_STRINGLENGTH DS F Length of string
MQCFST_LENGTH EQU \-MQCFST Length of structure
 ORG MQCFST
MQCFST_AREA DS CL(MQCFST_LENGTH)

MQCFIL – PCF integer list parameter
The MQCFIL structure describes an integer-list parameter in a message that is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

The MQCFIL structure is also used for event messages. In this case the message
descriptor Format field is MQFMT_EVENT.

The MQCFIL structure can also be used for user-defined message data. In this
case the message descriptor Format field is MQFMT_PCF (see “Message
descriptor for a PCF command” on page 127). Also in this case, not all of the
fields in the structure are meaningful. The supplied initial values can be used for
most fields, but the application must set the StrucLength, Count, and Values fields
to the values appropriate to the data.

The structure ends with a variable-length array of integers; see the Values field
below for further details.

Type (MQLONG)
Structure type.

This indicates that the structure is an MQCFIL structure describing an
integer-list parameter. The value must be:

MQCFT_INTEGER_LIST
Structure defining an integer list.

The initial value of this field is MQCFT_INTEGER_LIST.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFIL structure, including the variable-
size array of integers at the end of the structure (the Values field). The
length must be a multiple of four, and must be sufficient to contain the
array; any bytes between the end of the array and the length defined by
the StrucLength field are not significant.

The following constant gives the length of the fixed part of the structure,
that is the length excluding the Values field:

MQCFIL_STRUC_LENGTH_FIXED
Length of fixed part of command format integer-list parameter
structure.

 Chapter 9. Structures for commands and responses 345

 MQCFIL

The initial value of this field is MQCFIL_STRUC_LENGTH_FIXED.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter whose values are contained in the structure.
The values that can occur in this field depend on the value of the Command
field in the MQCFH structure; see page 334 for details.

The initial value of this field is ð.

Count (MQLONG)
Count of parameter values.

This is the number of elements in the Values array; it must be zero or
greater.

The initial value of this field is ð.

Values (MQLONG×Count)
Parameter values.

This is an array of values for the parameter identified by the Parameter
field. For example, for MQIACF_Q_ATTRS, this is a list of attribute
selectors (MQCA_* and MQIA_* values).

The way that this field is declared depends on the programming language:

� For the C programming language, the field is declared as an array with
one element. Storage for the structure should be allocated
dynamically, and pointers used to address the fields within it.

� For the COBOL, PL/I, and System/390 assembler programming
languages, the field is omitted from the structure declaration. When
an instance of the structure is declared, the user should include
MQCFIN in a larger structure, and declare additional field(s) following
MQCFIN, to represent the Values field as required.

In C, the initial value of this field is a single ð.

Table 21. Initial values of fields in MQCFIL

Field name Name of constant Value of constant

Type MQCFT_INTEGER_LIST 5

StrucLength MQCFIL_STRUC_LENGTH_FIXED 16

Parameter None ð

Count None ð

Values
(present only in C)

None ð

Notes:

1. In the C programming language, the macro variable MQCFIL_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

struct {
 MQCFIL Hdr;
 MQLONG Data[99];
} MyCFIL = {MQCFIL_DEFAULT};

346 MQSeries Programmable System Management

 MQCFSL

C language declaration
typedef struct tagMQCFIL {
 MQLONG Type; /\ Structure type \/
 MQLONG StrucLength; /\ Structure length \/
 MQLONG Parameter; /\ Parameter identifier \/
 MQLONG Count; /\ Count of parameter values \/
 MQLONG Values[1]; /\ Parameter values - first element \/
 } MQCFIL;

COBOL language declaration
\\ MQCFIL structure
 1ð MQCFIL.
\\ Structure type

15 MQCFIL-TYPE PIC S9(9) BINARY.
\\ Structure length

15 MQCFIL-STRUCLENGTH PIC S9(9) BINARY.
\\ Parameter identifier

15 MQCFIL-PARAMETER PIC S9(9) BINARY.
\\ Count of parameter values

15 MQCFIL-COUNT PIC S9(9) BINARY.

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQCFIL based,
3 Type fixed bin(31), /\ Structure type \/
3 StrucLength fixed bin(31), /\ Structure length \/
3 Parameter fixed bin(31), /\ Parameter identifier \/
3 Count fixed bin(31); /\ Count of parameter values \/

System/390 assembler-language declaration (MVS/ESA only)
MQCFIL DSECT
MQCFIL_TYPE DS F Structure type
MQCFIL_STRUCLENGTH DS F Structure length
MQCFIL_PARAMETER DS F Parameter identifier
MQCFIL_COUNT DS F Count of parameter values
MQCFIL_LENGTH EQU \-MQCFIL Length of structure
 ORG MQCFIL
MQCFIL_AREA DS CL(MQCFIL_LENGTH)

MQCFSL – PCF string list parameter
The MQCFSL structure describes a string-list parameter in a message which is a
command or a response to a command. In either case, the format name in the
message descriptor is MQFMT_ADMIN.

The MQCFSL structure is also used for event messages. In this case the message
descriptor Format field is MQFMT_EVENT.

The MQCFSL structure can also be used for user-defined message data. In this
case the message descriptor Format field is MQFMT_PCF (see “Message
descriptor for a PCF command” on page 127). Also in this case, not all of the
fields in the structure are meaningful. The supplied initial values can be used for
most fields, but the application must set the StrucLength, Count, StringLength, and
Strings fields to the values appropriate to the data.

 Chapter 9. Structures for commands and responses 347

 MQCFSL

The structure ends with a variable-length array of character strings; see the Strings
field below for further details.

See “Usage notes” on page 334 for further information on how the structure should
be used.

Type (MQLONG)
Structure type.

This indicates that the structure is an MQCFSL structure describing a
string-list parameter. The value must be:

MQCFT_STRING_LIST
Structure defining a string list.

The initial value of this field is MQCFT_STRING_LIST.

StrucLength (MQLONG)
Structure length.

This is the length in bytes of the MQCFSL structure, including the
variable-length data at the end of the structure (the Strings field). The
length must be a multiple of four, and must be sufficient to contain all of
the strings; any bytes between the end of the strings and the length
defined by the StrucLength field are not significant.

The following constant gives the length of the fixed part of the structure,
that is the length excluding the Strings field:

MQCFSL_STRUC_LENGTH_FIXED
Length of fixed part of command format string-list parameter
structure.

The initial value of this field is MQCFSL_STRUC_LENGTH_FIXED.

Parameter (MQLONG)
Parameter identifier.

This identifies the parameter whose values are contained in the structure.
The values that can occur in this field depend on the value of the Command
field in the MQCFH structure; see page 334 for details.

The initial value of this field is ð.

CodedCharSetId (MQLONG)
Coded character set identifier.

This specifies the coded character set identifier of the data in the Strings
field. The following special value can be used:

MQCCSI_DEFAULT
Default coded character set identifier.

Character data is in the character set defined by the CodedCharSetId
field in the message descriptor MQMD.

The initial value of this field is MQCCSI_DEFAULT.

Count (MQLONG)
Count of parameter values.

This is the number of strings present in the Strings field; it must be zero
or greater.

348 MQSeries Programmable System Management

 MQCFSL

The initial value of this field is ð.

StringLength (MQLONG)
Length of one string.

This is the length in bytes of one parameter value, that is the length of one
string in the Strings field; all of the strings are this length. The length
must be zero or greater, and need not be a multiple of four.

The initial value of this field is ð.

Strings (MQCHAR×StringLength×Count)
String values.

This is a set of string values for the parameter identified by the Parameter
field. The number of strings is given by the Count field, and the length of
each string is given by the StringLength field. The strings are
concatenated together, with no bytes skipped between adjacent strings.
The total length of the strings is the length of one string multiplied by the
number of strings present (that is, StringLength×Count).

� In MQFMT_ADMIN command messages, if the specified string is
shorter than the standard length of the parameter, the omitted
characters are assumed to be blanks. If the specified string is longer
than the standard length, those characters in excess of the standard
length must be blanks.

� In MQFMT_ADMIN response messages, string parameters are
returned padded with blanks to the standard length of the parameter.

� In MQFMT_EVENT messages, trailing blanks are omitted from string
parameters (that is, the string may be shorter than the defined length
of the parameter).

In all cases, StringLength gives the length of the string actually present in
the message.

The strings can contain any characters that are in the character set
defined by CodedCharSetId, and that are valid for the parameter identified
by Parameter.

Note: In the MQCFSL structure, a null character in a string is treated as
normal data, and does not act as a delimiter for the string. This
means that when a receiving application reads a MQFMT_PCF,
MQFMT_EVENT, or MQFMT_ADMIN message, the receiving
application receives all of the data specified by the sending
application. The data may, of course, have been converted
between character sets (for example, by the receiving application
specifying the MQGMO_CONVERT option on the MQGET call).

In contrast, when the queue manager reads an MQFMT_ADMIN
message from the command input queue, the queue manager
processes the data as though it had been specified on an MQI call.
This means that within each string, the first null and the characters
following it (up to the end of the string) are treated as blanks.

The way that this field is declared depends on the programming language:

� For the C programming language, the field is declared as an array with
one element. Storage for the structure should be allocated
dynamically, and pointers used to address the fields within it.

 Chapter 9. Structures for commands and responses 349

 MQCFSL

� For the COBOL, PL/I, and System/390 assembler programming
languages, the field is omitted from the structure declaration. When
an instance of the structure is declared, the user should include
MQCFSL in a larger structure, and declare additional field(s) following
MQCFSL, to represent the Strings field as required.

In C, the initial value of this field is the null string.

Table 22. Initial values of fields in MQCFSL

Field name Name of constant Value of constant

Type MQCFT_STRING_LIST 6

StrucLength MQCFSL_STRUC_LENGTH_FIXED 24

Parameter None ð

CodedCharSetId MQCCSI_DEFAULT ð

Count None ð

StringLength None ð

Strings
(present only in C)

None Null string

Notes:

1. In the C programming language, the macro variable MQCFSL_DEFAULT contains
the values listed above. It can be used in the following way to provide initial values
for the fields in the structure:

struct {
 MQCFSL Hdr;
 MQCHAR Data[999];
} MyCFSL = {MQCFSL_DEFAULT};

C language declaration
typedef struct tagMQCFSL {
 MQLONG Type; /\ Structure type \/
 MQLONG StrucLength; /\ Structure length \/
 MQLONG Parameter; /\ Parameter identifier \/
 MQLONG CodedCharSetId; /\ Coded character set identifier \/
 MQLONG Count; /\ Count of parameter values \/
 MQLONG StringLength; /\ Length of one string \/
 MQCHAR Strings[1]; /\ String values - first
 character \/
 } MQCFSL;

COBOL language declaration
\\ MQCFSL structure
 1ð MQCFSL.
\\ Structure type

15 MQCFSL-TYPE PIC S9(9) BINARY.
\\ Structure length

15 MQCFSL-STRUCLENGTH PIC S9(9) BINARY.
\\ Parameter identifier

15 MQCFSL-PARAMETER PIC S9(9) BINARY.
\\ Coded character set identifier

15 MQCFSL-CODEDCHARSETID PIC S9(9) BINARY.
\\ Count of parameter values

350 MQSeries Programmable System Management

 MQCFSL

15 MQCFSL-COUNT PIC S9(9) BINARY.
\\ Length of one string

15 MQCFSL-STRINGLENGTH PIC S9(9) BINARY.

PL/I language declaration (AIX, MVS/ESA, OS/2, and Windows NT)
dcl
 1 MQCFSL based,
3 Type fixed bin(31), /\ Structure type \/
3 StrucLength fixed bin(31), /\ Structure length \/
3 Parameter fixed bin(31), /\ Parameter identifier \/
3 CodedCharSetId fixed bin(31), /\ Coded character set identifier \/
3 Count fixed bin(31), /\ Count of parameter values \/
3 StringLength fixed bin(31); /\ Length of one string \/

System/390 assembler-language declaration (MVS/ESA only)
MQCFSL DSECT
MQCFSL_TYPE DS F Structure type
MQCFSL_STRUCLENGTH DS F Structure length
MQCFSL_PARAMETER DS F Parameter identifier
MQCFSL_CODEDCHARSETID DS F Coded character set
\ identifier
MQCFSL_COUNT DS F Count of parameter values
MQCFSL_STRINGLENGTH DS F Length of one string
MQCFSL_LENGTH EQU \-MQCFSL Length of structure
 ORG MQCFSL
MQCFSL_AREA DS CL(MQCFSL_LENGTH)

 Chapter 9. Structures for commands and responses 351

 MQCFSL

352 MQSeries Programmable System Management

 PCF example

Chapter 10. Example of using PCFs

This is an example of how Programmable Command Formats could be used in a
program for administration of MQSeries queues.

Enquire local queue attributes
A C language program is listed here that uses MQSeries for OS/2 V2.0. It is given
as an example of using PCFs and has been limited to a simple case. This program
will be of most use as an example if you are considering the use of PCFs to
manage your MQSeries environment.

The program, once compiled, will inquire of the default queue manager about a
subset of the attributes for all local queues defined to it. It then produces an output
file, SAVEQMGR.TST, in the directory from which it was run. This file is of a
format suitable for use with RUNMQSC.

 Program listing
/\===\/
/\ \/
/\ (C) Copyright IBM Corporation 1995 \/
/\===\/
/\ v1.ð 12-ð5-95 NDC Created \/
/\===\/
/\ Module Name: MSð2.C \/
/\===\/
/\ \/
/\ This is a program to inquire of the default queue manager about the \/
/\ local queues defined to it. \/
/\ \/
/\ The program takes this information and appends it to a file \/
/\ SAVEQMGR.TST which is of a format suitable for RUNMQSC. It could, \/
/\ therefore, be used to recreate or clone a queue manager. \/
/\ \/
/\ It is offered as an example of using Programmable Command Formats (PCFs) \/
/\ as a method for administering a queue manager. \/
/\ \/
/\===\/

/\ Include standard libraries \/
#include <memory.h>
#include <stdio.h>

/\ Include MQSeries headers \/
#include <cmqc.h>
#include <cmqcfc.h>
#include <cmqxc.h>

typedef struct LocalQParms {
 MQCHAR48 QName;
 MQLONG QType;
 MQCHAR64 QDesc;
 MQLONG InhibitPut;
 MQLONG DefPriority;
 MQLONG DefPersistence;
 MQLONG InhibitGet;
 MQCHAR48 ProcessName;
 MQLONG MaxQDepth;
 MQLONG MaxMsgLength;

 Copyright IBM Corp. 1994,1998 353

 PCF example

 MQLONG BackoutThreshold;
 MQCHAR48 BackoutReqQName;
 MQLONG Shareability;
 MQLONG DefInputOpenOption;
 MQLONG HardenGetBackout;
 MQLONG MsgDeliverySequence;
 MQLONG RetentionInterval;
 MQLONG DefinitionType;
 MQLONG Usage;
 MQLONG OpenInputCount;
 MQLONG OpenOutputCount;
 MQLONG CurrentQDepth;
 MQCHAR12 CreationDate;
 MQCHAR8 CreationTime;
 MQCHAR48 InitiationQName;
 MQLONG TriggerControl;
 MQLONG TriggerType;
 MQLONG TriggerMsgPriority;
 MQLONG TriggerDepth;
 MQCHAR64 TriggerData;
 MQLONG Scope;
 MQLONG QDepthHighLimit;
 MQLONG QDepthLowLimit;
 MQLONG QDepthMaxEvent;
 MQLONG QDepthHighEvent;
 MQLONG QDepthLowEvent;
 MQLONG QServiceInterval;
 MQLONG QServiceIntervalEvent;
} LocalQParms;

void ProcessStringParm(MQCFST \pPCFString, LocalQParms \DefnLQ);

void ProcessIntegerParm(MQCFIN \pPCFInteger, LocalQParms \DefnLQ);

int AddToFileQLOCAL(LocalQParms DefnLQ);

void MQParmCpy(char \target, char \source, int length);

void PutMsg(MQHCONN hConn /\ Connection to queue manager \/
, MQCHAR8 MsgFormat /\ Format of user data to be put in msg \/
, MQHOBJ hQName /\ handle of queue to put the message to \/
, MQCHAR48 QName /\ name of queue to put the message to \/
, MQBYTE \UserMsg /\ The user data to be put in the message \/

 , MQLONG UserMsgLen /\ \/
);

void GetMsg(MQHCONN hConn /\ handle of queue manager \/
, MQLONG MQParm /\ Options to specify nature of get \/
, MQHOBJ hQName /\ handle of queue to read from \/
, MQCHAR48 QName /\ name of queue to read from \/
, MQBYTE \UserMsg /\ Input/Output buffer containing msg \/
, MQLONG ReadBufferLen /\ Length of supplied buffer \/

);
MQHOBJ OpenQ(MQHCONN hConn
 , MQCHAR48 QName
 , MQLONG OpenOpts
);

int main(int argc, char \argv[])
{
MQCHAR48 QMgrName; /\ Name of connected queue mgr \/
MQHCONN hConn; /\ handle to connected queue mgr \/

 MQOD ObjDesc; /\ \/
 MQLONG OpenOpts; /\ \/
MQLONG CompCode; /\ MQ API completion code \/

354 MQSeries Programmable System Management

 PCF example

MQLONG Reason; /\ Reason qualifying above \/
 /\ \/
MQHOBJ hAdminQ; /\ handle to output queue \/
MQHOBJ hReplyQ; /\ handle to input queue \/

 /\ \/
MQLONG AdminMsgLen; /\ Length of user message buffer \/
MQBYTE \pAdminMsg; /\ Ptr to outbound data buffer \/
MQCFH \pPCFHeader; /\ Ptr to PCF header structure \/
MQCFST \pPCFString; /\ Ptr to PCF string parm block \/
MQCFIN \pPCFInteger; /\ Ptr to PCF integer parm block \/
MQLONG \pPCFType; /\ Type field of PCF message parm \/

 LocalQParms DefnLQ; /\ \/
 /\ \/
 char ErrorReport[4ð]; /\ \/
MQCHAR8 MsgFormat; /\ Format of inbound message \/
short Index; /\ Loop counter \/

/\ Connect to default queue manager \/
memset(QMgrName, '\ð', sizeof(QMgrName));

 MQCONN(QMgrName /\ I : use default queue manager \/
, &hConn /\ O : queue manager handle \/
, &CompCode /\ O : Completion code \/
, &Reason /\ O : Reason qualifying CompCode \/

);

if (CompCode != MQCC_OK) {
printf("MQCONN failed for %s, CC=%d RC=%d\n"

 , QMgrName
 , CompCode
 , Reason
);

exit(-1);
} /\ endif \/

/\ Open all the required queues \/
hAdminQ = OpenQ(hConn, "SYSTEM.ADMIN.COMMAND.QUEUE\ð", MQOO_OUTPUT);

hReplyQ = OpenQ(hConn, "SAVEQMGR.REPLY.QUEUE\ð", MQOO_INPUT_EXCLUSIVE);

/\ \\ \/
/\ Put a message to the SYSTEM.ADMIN.COMMAND.QUEUE to inquire all \/
/\ the local queues defined on the queue manager. \/

 /\ \/
/\ The request consists of a Request Header and a parameter block \/
/\ used to specify the generic search. The header and the parameter \/
/\ block follow each other in a contiguous buffer which is pointed \/
/\ to by the variable pAdminMsg. This entire buffer is then put to \/
/\ the queue. \/

 /\ \/
/\ The command server, (use STRMQCSV to start it), processes the \/
/\ SYSTEM.ADMIN.COMMAND.QUEUE and puts a reply on the application \/
/\ ReplyToQ for each defined queue. \/
/\ \\ \/

/\ Set the length for the message buffer \/
AdminMsgLen = MQCFH_STRUC_LENGTH

+ MQCFST_STRUC_LENGTH_FIXED + MQ_Q_NAME_LENGTH
 + MQCFIN_STRUC_LENGTH
 ;

/\ --- \/
/\ Set pointers to message data buffers \/

 /\ \/
/\ pAdminMsg points to the start of the message buffer \/

 /\ \/
/\ pPCFHeader also points to the start of the message buffer. It is \/
/\ used to indicate the type of command we wish to execute and the \/

 Chapter 10. PCF example 355

 PCF example

/\ number of parameter blocks following in the message buffer. \/
 /\ \/
/\ pPCFString points into the message buffer immediatley after the \/
/\ header and is used to map the following bytes onto a PCF string \/
/\ parameter block. In this case the string is used to indicate the \/
/\ nameof the queue we want details about, \ indicating al queues. \/

 /\ \/
/\ pPCFInteger points into the message buffer immediately after the \/
/\ string block described above. It is used to map the following \/
/\ bytes onto a PCF integer parameter block. This block indicates \/
/\ the type of queue we wish to receive details about, thereby \/
/\ qualifying the generic search set up by passing the previous \/
/\ string parameter. \/

 /\ \/
/\ Note that this example is a generic search for all attributes of \/
/\ all local queues known to the queue manager. By using different, \/
/\ or more, parameter blocks in the request header it is possible \/
/\ to narrow the search. \/
/\ --- \/

pAdminMsg = (MQBYTE \)malloc(AdminMsgLen);

 pPCFHeader = (MQCFH \)pAdminMsg;

 pPCFString = (MQCFST \)(pAdminMsg
 + MQCFH_STRUC_LENGTH
);

pPCFInteger = (MQCFIN \)(pAdminMsg
 + MQCFH_STRUC_LENGTH

+ MQCFST_STRUC_LENGTH_FIXED + MQ_Q_NAME_LENGTH
);

/\ Setup request header \/
 pPCFHeader->Type = MQCFT_COMMAND;
 pPCFHeader->StrucLength = MQCFH_STRUC_LENGTH;
 pPCFHeader->Version = MQCFH_VERSION_1;
 pPCFHeader->Command = MQCMD_INQUIRE_Q;
 pPCFHeader->MsgSeqNumber = MQCFC_LAST;
 pPCFHeader->Control = MQCFC_LAST;
pPCFHeader->ParameterCount = 2;

/\ Setup parameter block \/
 pPCFString->Type = MQCFT_STRING;
pPCFString->StrucLength = MQCFST_STRUC_LENGTH_FIXED + MQ_Q_NAME_LENGTH;

 pPCFString->Parameter = MQCA_Q_NAME;
pPCFString->CodedCharSetId = MQCCSI_DEFAULT;

 pPCFString->StringLength = MQ_Q_NAME_LENGTH;
memset(pPCFString->String, ' ', MQ_Q_NAME_LENGTH);
memcpy(pPCFString->String, "\", 1);

/\ Setup parameter block \/
 pPCFInteger->Type = MQCFT_INTEGER;
pPCFInteger->StrucLength = MQCFIN_STRUC_LENGTH;

 pPCFInteger->Parameter = MQIA_Q_TYPE;
 pPCFInteger->Value = MQQT_LOCAL;

 PutMsg(hConn /\ Queue manager handle \/
, MQFMT_ADMIN /\ Format of message \/
, hAdminQ /\ Handle of command queue \/

 , "SYSTEM.ADMIN.COMMAND.QUEUE\ð"
, (MQBYTE \)pAdminMsg /\ Data part of message to put \/

 , AdminMsgLen
);

free(pAdminMsg);

/\ \\ \/
/\ Get and process the replies received from the command server onto \/
/\ the applications ReplyToQ. \/

356 MQSeries Programmable System Management

 PCF example

 /\ \/
/\ There will be one message per defined local queue. \/

 /\ \/
/\ The last message will have the Control field of the PCF header \/
/\ set to MQCFC_LAST. All others will be MQCFC_NOT_LAST. \/

 /\ \/
/\ An individual Reply message consists of a header followed by a \/
/\ number a parameters, the exact number, type and order will depend \/
/\ upon the type of request. \/

 /\ \/
/\ -- \/

 /\ \/
/\ The message is retrieved into a buffer pointed to by pAdminMsg. \/
/\ This buffer as been allocated to be large enough to hold all the \/
/\ parameters for a local queue definition. \/

 /\ \/
/\ pPCFHeader is then allocated to point also to the beginning of \/
/\ the buffer and is used to access the PCF header structure. The \/
/\ header contains several fields. The one we are specifically \/
/\ interested in is the ParameterCount. This tells us how many \/
/\ parameters follow the header in the message buffer. There is \/
/\ one parameter for each local queue attribute known by the \/
/\ queue manager. \/

 /\ \/
/\ At this point we do not know the order or type of each parameter \/
/\ block in the buffer, the first MQLONG of each block defines its \/
/\ type; they may be parameter blocks containing either strings or \/

 /\ integers. \/
 /\ \/
/\ pPCFType is used initially to point to the first byte beyond the \/
/\ known parameter block. Initially then, it points to the first byte \/
/\ after the PCF header. Subsequently it is incremented by the length \/
/\ of the identified parameter block and therefore points at the \/
/\ next. Looking at the value of the data pointed to by pPCFType we \/
/\ can decide how to process the next group of bytes, either as a \/
/\ string, or an integer. \/

 /\ \/
/\ In this way we parse the message buffer extracting the values of \/
/\ each of the parameters we are interested in. \/

 /\ \/
/\ \\ \/

/\ AdminMsgLen is to be set to the length of the expected reply \/
/\ message. This structure is specific to Local Queues. \/
AdminMsgLen = MQCFH_STRUC_LENGTH

+ (MQCFST_STRUC_LENGTH_FIXED \ 12)
+ (MQCFIN_STRUC_LENGTH \ 3ð)

 + MQ_Q_NAME_LENGTH
 + MQ_Q_DESC_LENGTH
 + MQ_PROCESS_NAME_LENGTH
 + MQ_Q_NAME_LENGTH
 + MQ_CREATION_DATE_LENGTH
 + MQ_CREATION_TIME_LENGTH
 + MQ_Q_NAME_LENGTH
 + MQ_TRIGGER_DATA_LENGTH
 + MQ_Q_NAME_LENGTH
 + MQ_Q_NAME_LENGTH
 + MQ_Q_MGR_NAME_LENGTH
 + MQ_Q_NAME_LENGTH
 ;

/\ Set pointers to message data buffers \/
pAdminMsg = (MQBYTE \)malloc(AdminMsgLen);

 do {

GetMsg(hConn /\ Queue manager handle \/
 , MQGMO_WAIT

/\ Parameters on Get \/
, hReplyQ /\ Get queue handle \/

 , "SAVEQMGR.REPLY.QUEUE\ð"
, (MQBYTE \)pAdminMsg /\ pointer to message area \/

 Chapter 10. PCF example 357

 PCF example

, AdminMsgLen /\ length of get buffer \/
);

/\ Examine Header \/
pPCFHeader = (MQCFH \)pAdminMsg;

/\ Examine first parameter \/
pPCFType = (MQLONG \)(pAdminMsg + MQCFH_STRUC_LENGTH);

Index = 1;

while (Index <= pPCFHeader->ParameterCount) {

/\ Establish the type of each parameter and allocate \/
/\ a pointer of the correct type to reference it. \/
switch (\pPCFType) {

 case MQCFT_INTEGER:
pPCFInteger = (MQCFIN \)pPCFType;
ProcessIntegerParm(pPCFInteger, &DefnLQ);

 Index++;
/\ Increment the pointer to the next parameter by the \/
/\ length of the current parm. \/
pPCFType = (MQLONG \)((MQBYTE \)pPCFType

 + pPCFInteger->StrucLength
);
 break;
 case MQCFT_STRING:

pPCFString = (MQCFST \)pPCFType;
ProcessStringParm(pPCFString, &DefnLQ);

 Index++;
/\ Increment the pointer to the next parameter by the \/
/\ length of the current parm. \/
pPCFType = (MQLONG \)((MQBYTE \)pPCFType

 + pPCFString->StrucLength
);
 break;

} /\ endswitch \/

} /\ endwhile \/

/\ \\\ \/
/\ Message parsed, append to output file \/
/\ \\\ \/
AddToFileQLOCAL(DefnLQ);

/\ \\\ \/
/\ Finished processing the current message, do the next one. \/
/\ \\\ \/

} while (pPCFHeader->Control == MQCFC_NOT_LAST); /\ enddo \/

free(pAdminMsg);

/\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \/
/\ Processing of the local queues complete \/
/\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \/

}

void ProcessStringParm(MQCFST \pPCFString, LocalQParms \DefnLQ)
{

switch (pPCFString->Parameter) {
 case MQCA_Q_NAME:

MQParmCpy(DefnLQ->QName, pPCFString->String, 48);
 break;
 case MQCA_Q_DESC:

MQParmCpy(DefnLQ->QDesc, pPCFString->String, 64);
 break;
 case MQCA_PROCESS_NAME:

MQParmCpy(DefnLQ->ProcessName, pPCFString->String, 48);

358 MQSeries Programmable System Management

 PCF example

 break;
 case MQCA_BACKOUT_REQ_Q_NAME:

MQParmCpy(DefnLQ->BackoutReqQName, pPCFString->String, 48);
 break;
 case MQCA_CREATION_DATE:

MQParmCpy(DefnLQ->CreationDate, pPCFString->String, 12);
 break;
 case MQCA_CREATION_TIME:

MQParmCpy(DefnLQ->CreationTime, pPCFString->String, 8);
 break;
 case MQCA_INITIATION_Q_NAME:

MQParmCpy(DefnLQ->InitiationQName, pPCFString->String, 48);
 break;
 case MQCA_TRIGGER_DATA:

MQParmCpy(DefnLQ->TriggerData, pPCFString->String, 64);
 break;

} /\ endswitch \/
}

void ProcessIntegerParm(MQCFIN \pPCFInteger, LocalQParms \DefnLQ)
{

switch (pPCFInteger->Parameter) {
 case MQIA_Q_TYPE:

DefnLQ->QType = pPCFInteger->Value;
 break;
 case MQIA_INHIBIT_PUT:

DefnLQ->InhibitPut = pPCFInteger->Value;
 break;
 case MQIA_DEF_PRIORITY:

DefnLQ->DefPriority = pPCFInteger->Value;
 break;
 case MQIA_DEF_PERSISTENCE:

DefnLQ->DefPersistence = pPCFInteger->Value;
 break;
 case MQIA_INHIBIT_GET:

DefnLQ->InhibitGet = pPCFInteger->Value;
 break;
 case MQIA_SCOPE:

DefnLQ->Scope = pPCFInteger->Value;
 break;
 case MQIA_MAX_Q_DEPTH:

DefnLQ->MaxQDepth = pPCFInteger->Value;
 break;
 case MQIA_MAX_MSG_LENGTH:

DefnLQ->MaxMsgLength = pPCFInteger->Value;
 break;
 case MQIA_BACKOUT_THRESHOLD:

DefnLQ->BackoutThreshold = pPCFInteger->Value;
 break;
 case MQIA_SHAREABILITY:

DefnLQ->Shareability = pPCFInteger->Value;
 break;
 case MQIA_DEF_INPUT_OPEN_OPTION:

DefnLQ->DefInputOpenOption = pPCFInteger->Value;
 break;
 case MQIA_HARDEN_GET_BACKOUT:

DefnLQ->HardenGetBackout = pPCFInteger->Value;
 break;
 case MQIA_MSG_DELIVERY_SEQUENCE:

DefnLQ->HardenGetBackout = pPCFInteger->Value;
 break;
 case MQIA_RETENTION_INTERVAL:

DefnLQ->RetentionInterval = pPCFInteger->Value;
 break;
 case MQIA_DEFINITION_TYPE:

DefnLQ->DefinitionType = pPCFInteger->Value;
 break;
 case MQIA_USAGE:

DefnLQ->Usage = pPCFInteger->Value;
 break;
 case MQIA_OPEN_INPUT_COUNT:

 Chapter 10. PCF example 359

 PCF example

DefnLQ->OpenInputCount = pPCFInteger->Value;
 break;
 case MQIA_OPEN_OUTPUT_COUNT:

DefnLQ->OpenOutputCount = pPCFInteger->Value;
 break;
 case MQIA_CURRENT_Q_DEPTH:

DefnLQ->CurrentQDepth = pPCFInteger->Value;
 break;
 case MQIA_TRIGGER_CONTROL:

DefnLQ->TriggerControl = pPCFInteger->Value;
 break;
 case MQIA_TRIGGER_TYPE:

DefnLQ->TriggerType = pPCFInteger->Value;
 break;
 case MQIA_TRIGGER_MSG_PRIORITY:

DefnLQ->TriggerMsgPriority = pPCFInteger->Value;
 break;
 case MQIA_TRIGGER_DEPTH:

DefnLQ->TriggerDepth = pPCFInteger->Value;
 break;
 case MQIA_Q_DEPTH_HIGH_LIMIT:

DefnLQ->QDepthHighLimit = pPCFInteger->Value;
 break;
 case MQIA_Q_DEPTH_LOW_LIMIT:

DefnLQ->QDepthLowLimit = pPCFInteger->Value;
 break;
 case MQIA_Q_DEPTH_MAX_EVENT:

DefnLQ->QDepthMaxEvent = pPCFInteger->Value;
 break;
 case MQIA_Q_DEPTH_HIGH_EVENT:

DefnLQ->QDepthHighEvent = pPCFInteger->Value;
 break;
 case MQIA_Q_DEPTH_LOW_EVENT:

DefnLQ->QDepthLowEvent = pPCFInteger->Value;
 break;
 case MQIA_Q_SERVICE_INTERVAL:

DefnLQ->QServiceInterval = pPCFInteger->Value;
 break;
 case MQIA_Q_SERVICE_INTERVAL_EVENT:

DefnLQ->QServiceIntervalEvent = pPCFInteger->Value;
 break;

} /\ endswitch \/
}

/\ -- \/
/\ \/
/\ This process takes the attributes of a single local queue and adds them \/
/\ to the end of a file, SAVEQMGR.TST, which can be found in the current \/
/\ directory. \/
/\ \/
/\ The file is of a format suitable for subsequent input to RUNMQSC. \/
/\ \/
/\ -- \/
int AddToFileQLOCAL(LocalQParms DefnLQ)
{

char ParmBufferffl12ð“; /\ Temporary buffer to hold for output to file \/
 FILE \fp; /\ Pointer to a file \/

/\ Append these details to the end of the current SAVEQMGR.TST file \/
fp = fopen("SAVEQMGR.TST", "a");

sprintf(ParmBuffer, "DEFINE QLOCAL ('%s') REPLACE +\n", DefnLQ.QName);
fputs(ParmBuffer, fp);

sprintf(ParmBuffer, " DESCR('%s') +\n" , DefnLQ.QDesc);
fputs(ParmBuffer, fp);

if (DefnLQ.InhibitPut == MQQA_PUT_ALLOWED) {
sprintf(ParmBuffer, " PUT(ENABLED) +\n");
fputs(ParmBuffer, fp);

} else {

360 MQSeries Programmable System Management

 PCF example

sprintf(ParmBuffer, " PUT(DISABLED) +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

sprintf(ParmBuffer, " DEFPRTY(%d) +\n", DefnLQ.DefPriority);
fputs(ParmBuffer, fp);

if (DefnLQ.DefPersistence == MQPER_PERSISTENT) {
sprintf(ParmBuffer, " DEFPSIST(YES) +\n");
fputs(ParmBuffer, fp);

} else {
sprintf(ParmBuffer, " DEFPSIST(NO) +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

if (DefnLQ.InhibitGet == MQQA_GET_ALLOWED) {
sprintf(ParmBuffer, " GET(ENABLED) +\n");
fputs(ParmBuffer, fp);

} else {
sprintf(ParmBuffer, " GET(DISABLED) +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

sprintf(ParmBuffer, " MAXDEPTH(%d) +\n", DefnLQ.MaxQDepth);
fputs(ParmBuffer, fp);

sprintf(ParmBuffer, " MAXMSGL(%d) +\n", DefnLQ.MaxMsgLength);
fputs(ParmBuffer, fp);

if (DefnLQ.Shareability == MQQA_SHAREABLE) {
sprintf(ParmBuffer, " SHARE +\n");
fputs(ParmBuffer, fp);

} else {
sprintf(ParmBuffer, " NOSHARE +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

if (DefnLQ.DefInputOpenOption == MQOO_INPUT_SHARED) {
sprintf(ParmBuffer, " DEFSOPT(SHARED) +\n");
fputs(ParmBuffer, fp);

} else {
sprintf(ParmBuffer, " DEFSOPT(EXCL) +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

if (DefnLQ.MsgDeliverySequence == MQMDS_PRIORITY) {
sprintf(ParmBuffer, " MSGDLVSQ(PRIORITY) +\n");
fputs(ParmBuffer, fp);

} else {
sprintf(ParmBuffer, " MSGDLVSQ(FIFO) +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

if (DefnLQ.HardenGetBackout == MQQA_BACKOUT_HARDENED) {
sprintf(ParmBuffer, " HARDENBO +\n");
fputs(ParmBuffer, fp);

} else {
sprintf(ParmBuffer, " NOHARDENBO +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

if (DefnLQ.Usage == MQUS_NORMAL) {
sprintf(ParmBuffer, " USAGE(NORMAL) +\n");
fputs(ParmBuffer, fp);

} else {
sprintf(ParmBuffer, " USAGE(XMIT) +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

if (DefnLQ.TriggerControl == MQTC_OFF) {
sprintf(ParmBuffer, " NOTRIGGER +\n");
fputs(ParmBuffer, fp);

 Chapter 10. PCF example 361

 PCF example

} else {
sprintf(ParmBuffer, " TRIGGER +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

switch (DefnLQ.TriggerType) {
 case MQTT_NONE:

sprintf(ParmBuffer, " TRIGTYPE(NONE) +\n");
fputs(ParmBuffer, fp);

 break;
 case MQTT_FIRST:

sprintf(ParmBuffer, " TRIGTYPE(FIRST) +\n");
fputs(ParmBuffer, fp);

 break;
 case MQTT_EVERY:

sprintf(ParmBuffer, " TRIGTYPE(EVERY) +\n");
fputs(ParmBuffer, fp);

 break;
 case MQTT_DEPTH:

sprintf(ParmBuffer, " TRIGTYPE(DEPTH) +\n");
fputs(ParmBuffer, fp);

 break;
} /\ endswitch \/

sprintf(ParmBuffer, " TRIGDPTH(%d) +\n", DefnLQ.TriggerDepth);
fputs(ParmBuffer, fp);

sprintf(ParmBuffer, " TRIGMPRI(%d) +\n", DefnLQ.TriggerMsgPriority);
fputs(ParmBuffer, fp);

sprintf(ParmBuffer, " TRIGDATA('%s') +\n", DefnLQ.TriggerData);
fputs(ParmBuffer, fp);

sprintf(ParmBuffer, " PROCESS('%s') +\n", DefnLQ.ProcessName);
fputs(ParmBuffer, fp);

sprintf(ParmBuffer, " INITQ('%s') +\n", DefnLQ.InitiationQName);
fputs(ParmBuffer, fp);

sprintf(ParmBuffer, " RETINTVL(%d) +\n", DefnLQ.RetentionInterval);
fputs(ParmBuffer, fp);

sprintf(ParmBuffer, " BOTHRESH(%d) +\n", DefnLQ.BackoutThreshold);
fputs(ParmBuffer, fp);

sprintf(ParmBuffer, " BOQNAME('%s') +\n", DefnLQ.BackoutReqQName);
fputs(ParmBuffer, fp);

if (DefnLQ.Scope == MQSCO_Q_MGR) {
sprintf(ParmBuffer, " SCOPE(QMGR) +\n");
fputs(ParmBuffer, fp);

} else {
sprintf(ParmBuffer, " SCOPE(CELL) +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

sprintf(ParmBuffer, " QDEPTHHI(%d) +\n", DefnLQ.QDepthHighLimit);
fputs(ParmBuffer, fp);

sprintf(ParmBuffer, " QDEPTHLO(%d) +\n", DefnLQ.QDepthLowLimit);
fputs(ParmBuffer, fp);

if (DefnLQ.QDepthMaxEvent == MQEVR_ENABLED) {
sprintf(ParmBuffer, " QDPMAXEV(ENABLED) +\n");
fputs(ParmBuffer, fp);

} else {
sprintf(ParmBuffer, " QDPMAXEV(DISABLED) +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

if (DefnLQ.QDepthHighEvent == MQEVR_ENABLED) {

362 MQSeries Programmable System Management

 PCF example

sprintf(ParmBuffer, " QDPHIEV(ENABLED) +\n");
fputs(ParmBuffer, fp);

} else {
sprintf(ParmBuffer, " QDPHIEV(DISABLED) +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

if (DefnLQ.QDepthLowEvent == MQEVR_ENABLED) {
sprintf(ParmBuffer, " QDPLOEV(ENABLED) +\n");
fputs(ParmBuffer, fp);

} else {
sprintf(ParmBuffer, " QDPLOEV(DISABLED) +\n");
fputs(ParmBuffer, fp);

} /\ endif \/

sprintf(ParmBuffer, " QSVCINT(%d) +\n", DefnLQ.QServiceInterval);
fputs(ParmBuffer, fp);

switch (DefnLQ.QServiceIntervalEvent) {
 case MQQSIE_OK:

sprintf(ParmBuffer, " QSVCIEV(OK)\n");
fputs(ParmBuffer, fp);

 break;
 case MQQSIE_NONE:

sprintf(ParmBuffer, " QSVCIEV(NONE)\n");
fputs(ParmBuffer, fp);

 break;
 case MQQSIE_HIGH:

sprintf(ParmBuffer, " QSVCIEV(HIGH)\n");
fputs(ParmBuffer, fp);

 break;
} /\ endswitch \/

sprintf(ParmBuffer, "\n");
fputs(ParmBuffer, fp);

 fclose(fp);

}

/\ -- \/
/\ \/
/\ The queue manager returns strings of the maximum length for each \/
/\ specific parameter, padded with blanks. \/
/\ \/
/\ We are interested in only the non-blank characters so will extract them \/
/\ from the message buffer, and terminate the string with a null, \ð. \/
/\ \/
/\ -- \/
void MQParmCpy(char \target, char \source, int length)
{
 int counter=ð;

while (counter < length && source[counter] != ' ') {
target[counter] = source[counter];

 counter++;
} /\ endwhile \/

if (counter < length) {
targetfflcounter“ = '\ð';

} /\ endif \/
}

 Chapter 10. PCF example 363

 PCF example

364 MQSeries Programmable System Management

 Part 3. Installable services

Chapter 11. Installable services and components 367
Why installable services? . 367
Functions and components . 368
Initialization . 370
Configuring services and components . 371
Creating your own service component . 372
Using multiple service components . 373

Chapter 12. Authorization service . 375
| Object authority manager (OAM) . 375
| Authorization service on UNIX systems . 376
| Authorization service on Windows NT . 377
| Authorization service on MQSeries for OS/2 Warp 378
| Authorization service on Digital OpenVMS . 378
| Authorization service on Tandem NSK . 379

Authorization service interface . 380

Chapter 13. Name service . 383
How the name service works . 383
Using DCE to share queues on different queue managers 386
DCE configuration . 387

Chapter 14. User identifier service . 389
User identifier service interface . 390
Sample program for user identifier service . 391

Chapter 15. Installable services interface 395
How the functions are shown . 395
MQZEP – Add component entry point . 396
MQZ_CHECK_AUTHORITY – Check authority 399
MQZ_COPY_ALL_AUTHORITY – Copy all authority 405
MQZ_DELETE_AUTHORITY – Delete authority 408
MQZ_GET_AUTHORITY – Get authority . 411
MQZ_GET_EXPLICIT_AUTHORITY – Get explicit authority 415
MQZ_INIT_AUTHORITY – Initialize authorization service component 419
MQZ_SET_AUTHORITY – Set authority . 422
MQZ_TERM_AUTHORITY – Terminate authorization service component . . 426
MQZ_DELETE_NAME – Delete name from service 429
MQZ_INIT_NAME – Initialize name service component 432
MQZ_INSERT_NAME – Insert name in service 435
MQZ_LOOKUP_NAME – Lookup name in service 438
MQZ_TERM_NAME – Terminate name service component 441
MQZ_FIND_USERID – Find user ID . 444
MQZ_INIT_USERID – Initialize user identifier service component 447
MQZ_TERM_USERID – Terminate user identifier service component 450

 Copyright IBM Corp. 1994,1998 365

366 MQSeries Programmable System Management

 Installable services

Chapter 11. Installable services and components

This chapter introduces the installable services and the functions and components
associated with them. The interface to these functions is documented so that you
can supply components, or so that components can be provided by software
vendors. This interface is described in Chapter 15, “Installable services interface”
on page 395. Installable services and components are supported by:

| MQSeries for AIX
| MQSeries for AT&T GIS UNIX
| MQSeries for Digital OpenVMS
| MQSeries for HP-UX
| MQSeries for OS/2 Warp
| MQSeries for SINIX and DC/OSx
| MQSeries for SunOS
| MQSeries for Sun Solaris
| MQSeries for Tandem NonStop Kernel
| MQSeries for Windows NT

Why installable services?
The major reasons for providing MQSeries installable services are:

� To provide you with the flexibility of choosing whether to use components
provided by MQSeries products, or replace, or augment, them with others.

� To allow vendors to participate, by providing components that may be using
new technologies, without making internal changes to MQSeries products.

� To allow MQSeries to exploit new technologies faster and cheaper, and so
provide products earlier and at lower prices.

Installable services and service components are part of the MQSeries product
structure. At the center of this structure is the part of the queue manager that
implements the function and rules associated with the Message Queue Interface
(MQI). This central part requires a number of service functions, called installable
services, in order to perform its work. The following installable services are
defined:

 � Authorization service
 � Name service
� User identifier service (MQSeries for OS/2 Warp only)

Each installable service is a related set of functions that are implemented using one
or more service components. Each component is invoked using a properly
architected, publicly available interface. This enables independent software
vendors and other third parties to provide installable components to augment or
replace those provided by the MQSeries products. Table 23 on page 368
summarizes the services and components that can be used on the various
platforms.

 Copyright IBM Corp. 1994,1998 367

 Functions and components

Table 23. Installable services and components summary

Platform Supplied
component

Function Requirements

Authorization Service

| Digital OpenVMS,
| Tandem NSK, UNIX
| systems, and
| Windows NT

| Object Authority
| Manager (OAM)
| Provides authorization checking
| on commands and MQI calls.
| Users can write their
| component to augment or
| replace the OAM.

| (Appropriate platform
| authorization facilities are
| assumed)

OS/2 None User defined A third-party or
user-written authority
manager

Name Service

| AIX, Digital
| OpenVMS, HP-UX,
| OS/2, Sun Solaris,
| and Windows NT

| DCE name service
| component
| Allows queue managers to
| share queues
| or:
| User defined. Shared queues
| must have their Scope attribute
| set to CELL.

| DCE is required for the
| supplied component.
| or:
| A third-party or
| user-written name
| manager.

| AT&T GIS UNIX,
| SINIX and DC/OSx,
| and SunOS

| None| User defined. Shared queues
| must have their Scope attribute
| set to CELL.

| A third-party or
| user-written name
| manager.

User Identifier Service

| UNIX systems,
| Digital OpenVMS,
| TandemNSK, and
| Windows NT

| None| Because these systems provide
| the required user IDs, this
| service is not required.

| –

OS/2 DLL and (modified)
sample source

Provides a user ID that is
automatically inserted into an
MQSeries message

None—uses OS/2
environment variables

Functions and components
Each service consists of a set of related functions. For example, the name service
contains function for:

� Looking up a queue name, returning the name of the queue manager at which
the queue is defined

� Inserting a queue name into the service’s directory

� Deleting a queue name from the service’s directory

It also contains an initialization function and a termination function.

An installable service is provided by one or more service components. Each
component is capable of performing some or all of the functions that are defined for
that service. For example, in MQSeries for AIX, the supplied authorization service
component, the OAM, performs all seven of the available functions. See
“Authorization service interface” on page 380 for more information. The component
is also responsible for managing any underlying resources or software (for
example, DCE name services) that it needs to implement the service.

368 MQSeries Programmable System Management

 Functions and components

Configuration files provide a standard method for loading the component, and
determining the addresses of the functional routines that it provides.

Figure 10 shows how services and components are related:

� A service is defined to a queue manager by stanzas in a configuration file.

� Each service is supported by supplied code in the queue manager. Users
cannot change this code and therefore cannot create their own services.

� Each service is implemented by one or more components; these may be
supplied with the product or user-written. Multiple components for a service
can be invoked, each supporting different facilities within the service.

� Entry points ‘connect’ the service components to the supporting code in the
queue manager.

ABC name service

XYZ name service

Service
Components

MQZ INIT NAME

MQZ TERM NAME
MQZ INSERT NAME
MQZ DELETE NAME

MQZ LOOKUP NAME

Queue Manager

Service stanza
defines the service
to the queue manager

Supplied or
user-written code

Entry points
to the service

Figure 10. Understanding services, components, and entry points

 Entry-points
Each service component is represented by a list of the entry-point addresses of the
routines that support a particular installable service. The installable service defines
the function to be performed by each routine.

The ordering of the service components when they are configured defines the order
in which entry-points are called in an attempt to satisfy a request for the service.

In the supplied header file cmqzc.h, the supplied entry points to each service have
an MQZID_ prefix.

 Chapter 11. Installable services and components 369

 Initialization

 Return codes
Service components provide return codes to the queue manager to report on a
variety of conditions. They report the success or failure of the operation, and
indicate whether or not the queue manager is to proceed to the next service
component, or whether the queue manager itself should make that decision. A
separate Continuation parameter carries this indication.

 Component data
A single service component may require data to be shared between its various
functions. Installable services provide an optional data area to be passed on each
invocation of a given service component. This data area is for the exclusive use of
the service component. It is shared by all the invocations of a given function, even
if they are made from different address spaces or processes. It is guaranteed to be
addressable from the service component whenever it is called. You must declare
the size of this area in the ServiceComponent stanza.

 Initialization
When the component initialization routine is invoked, it must call the queue
manager MQZEP function for each entry-point supported by the component.
MQZEP defines an entry-point to the service. All the undefined exit points are
assumed to be NULL.

 Primary initialization
A component is always invoked with this option once, before it is invoked in any
other way.

 Secondary initialization
A component may be invoked with this option, on certain platforms. For example, it
may be invoked once for each operating system process, thread or task by which
the service is accessed.

If secondary initialization is used:

� The component may be invoked more than once for secondary initialization.
For each such call, a matching call for secondary termination is issued when
the service is no longer needed.

For naming services this is the MQZ_TERM_NAME call.

For authorization services this is the MQZ_TERM_AUTHORITY call.

� The entry points must be respecified (by calling MQZEP) each time the
component is called for primary and secondary initialization.

� Only one copy of component data is used for the component; there is not a
different copy for each secondary initialization.

� The component is not invoked for any other calls to the service (from the
operating system process, thread or task, as appropriate) before secondary
initialization has been carried out.

� The Version parameter must be set by the component to the same value for
primary and secondary initialization.

370 MQSeries Programmable System Management

 Configuring

 Secondary termination
A component is invoked with this option, if it has been invoked for secondary
initialization.

 Primary termination
A component is always invoked with this option once, when it is no longer required.
No further calls are made to this component.

Configuring services and components
Service components are configured using the queue manager configuration files.

The configuration information for a queue manager is included in the queue
manager configuration file. For each service to be used, this file must contain a
Service stanza, which defines the service to the queue manager. For each
component within a service, there must be a ServiceComponent stanza. This
identifies the name and path of the module containing the code for that component.

The authorization service component for MQSeries for AIX, known as the Object
Authority Manager (OAM), is supplied with the product. When you create a queue
manager, the queue manager configuration file is automatically updated to include
the appropriate stanzas for the authorization service and for the default component
(the OAM). For the other components, you must configure the queue manager
configuration file manually.

The code for each service component is loaded into the queue manager when the
queue manager is started, using dynamic binding, where this is supported on the
platform.

Service stanza format
The format of the Service stanza is:

 Service:
 Name=<service_name>
 EntryPoints=<entries>

where:

<service_name> The name of the service. This is defined by the service.

<entries> The number of entry-points defined for the service. This
includes the initialization and termination entry points.

Service component stanza format
The format of the Service component stanza is:

 ServiceComponent:
 Service=<service_name>
 Name=<component_name>
 Module=<module_name>
 ComponentDataSize=<size>

 Chapter 11. Installable services and components 371

 Creating a service component

where:

<service_name> The name of the service. This must match the Name specified
in a service stanza.

<component_name> A descriptive name of the service component. This must be
unique, and contain only the characters that are valid for the
names of MQSeries objects (for example, queue names).
This name occurs in operator messages generated by the
service. It is recommended. therefore, that the name starts
with a company trademark or similar distinguishing string.

<module_name> The name of the module to contain the code for this
component.

Note: Specify a full path name.

<size> The size in bytes of the component data area passed to the
component on each call. Specify zero if no component data
is required.

These two stanzas can appear in any order and the stanza keys under them can
also appear in any order. For either of these stanzas, all the stanza keys must be
present. If a stanza key is duplicated, the last one is used.

At startup time, the queue manager processes each service component entry in the
configuration file in turn. It attempts to load the specified component module. If
successful, it invokes the entry-point of the component (which must be the
entry-point for initialization of the component), passing it a configuration handle.

Creating your own service component
To create your own service component:

� Write the component using the sample provided (see page 391). You must
ensure that the header file cmqzc.h is included in your program.

� For UNIX systems : Create the shared library by compiling the program, and
linking it with the shared libraries libmqm\ and libmqmzf\ (the threading suffixes
and file extensions vary by platform).

Note: On Version 2.2.1 of the MQSeries products for UNIX systems, the agent
typically runs in an unthreaded environment.

On Version 5 of the MQSeries products for UNIX systems, the agent
runs in a threaded environment and the OAM and Name Service must
be built to run in a threaded environment.

This includes using the threaded versions of libmqm and libmqmzf.

Threaded Sun Solaris installable services

If the MQ DCE option is not currently installed, threaded installable services
on Sun Solaris must be threaded with Posix** V10 threading.

If the MQ DCE option is currently installed, threaded installable services on
Sun Solaris must be threaded with DCE threading.

� For OS/2 and Windows NT : Create a DLL by compiling the program, and
linking it with the libraries MQM.LIB and MQMZF.LIB.

372 MQSeries Programmable System Management

 Using multiple service components

See the section on data-conversion exits in the MQSeries Application
Programming Guide for details of how to compile and link code for shared
libraries.

� Add stanzas to the queue manager configuration file to define the service to the
queue manager and to specify the location of the module. Refer to the
individual chapters for each service, for more information.

� Stop and restart the queue manager to activate the component.

Using multiple service components
This section may be omitted at first reading.

You can install more than one component for a given service. This allows
components to provide only partial implementations of the service, and to rely on
other components to provide the remaining functions.

For example, suppose you create a new name service component called
XYZ_name_serv. This component supports looking up a queue name, but does not
support inserting a name in or deleting a name from the service directory.

What the component does
This component uses a simple algorithm that returns a fixed queue-manager name
for any queue name with which it is invoked. This component does not hold a
database of queue names, and therefore does not support the insert and delete
functions.

How the component is used
The component XYZ_name_serv is then installed on the same queue manager as the
MQSeries DCE-based name services component. The ServiceComponent stanzas
are ordered so that the DCE-based component is invoked first. Any calls to insert
or delete a queue in a component directory are handled by the DCE-based
component—it is the only one that implements these functions. However, a lookup
call—which the DCE-based component is unable to resolve—is passed on to the
lookup-only component, XYZ_name_serv. This component supplies a
queue-manager name from its simple algorithm.

Omitting entry points
You can design a service component not to implement some functions. The
installable services framework places no restrictions on which functions may be
omitted. However, for specific installable services, omission of one or more
functions might be logically inconsistent with the purpose of the service.

Example of entry points
Table 24 on page 374 shows an example of the installable name service for which
the two components have been installed. Each supports a different set of functions
associated with this particular installable service. For insert function, the ABC
component entry-point is invoked first. Entry points that have not been defined to
the service (using MQZEP) are assumed to be NULL. An entry-point for
initialization is provided in the table, but this is not required because initialization is
carried out by the main entry-point of the component.

 Chapter 11. Installable services and components 373

 Using multiple service components

When the queue manager has to use an installable service, it uses the entry-points
defined for that service (the columns in Table 24 on page 374). Taking each
component in turn, the queue manager determines the address of the routine that
implements the required function. It then calls the routine, if it exists. If the
operation is successful, any results and status information are used by the queue
manager.

If the routine does not exist, the queue manager may repeat this process for the
next component in the list. In addition, if the routine does exist but returns a code
indicating that it could not perform the operation, the attempt continues with the
next available component. Routines in service components may return a code that
indicates that no further attempts to perform the operation should be made.

Table 24. Example of entry-points for an installable service

Function number ABC name service
component

XYZ name service
component

MQZID_INIT_NAME
(Initialize)

ABC_initialize() XYZ_initialize()

MQZID_TERM_NAME
(Terminate)

ABC_terminate() XYZ_terminate()

MQZID_INSERT_NAME
(Insert)

ABC_Insert() NULL

MQZID_DELETE_NAME
(Delete)

ABC_Delete() NULL

MQZID_LOOKUP_NAME
(Lookup)

NULL XYZ_Lookup()

374 MQSeries Programmable System Management

 Authorization service

 Chapter 12. Authorization service

The authorization service is an installable service that is available on:

| MQSeries for AIX
| MQSeries for AT&T GIS UNIX
| MQSeries for Digital OpenVMS
| MQSeries for HP-UX
| MQSeries for OS/2 Warp
| MQSeries for SINIX and DC/OSx
| MQSeries for SunOS
| MQSeries for Sun Solaris
| MQSeries for Tandem NonStop Kernel
| MQSeries for Windows NT

| This service enables queue managers to invoke authorization facilities, for example,
| checking that a user ID has authority to open a queue.

| The authorization service is a component of the MQSeries security enabling
| interface (SEI), which is part of the MQSeries framework.

| Object authority manager (OAM)
| The authorization service component supplied with the MQSeries products is called
| the Object Authority Manager (OAM). By default, the OAM is active and works with
| the control commands dspmqaut (display authority) and setmqaut (set/reset
| authority).

| The syntax of these commands and how to use them are described in detail in the
| following manuals:

| � For UNIX systems and Windows NT – MQSeries System Administration.

| � For Digital OpenVMS – the MQSeries for Digital OpenVMS System
| Management Guide.

| � For Tandem NSK – the MQSeries for Tandem NonStop Kernel System
| Management Guide.

| The OAM works with the entity of a principal or group, except on Tandem NSK
| which works only at the group level. These entities vary from platform to platform.

| When an MQI request is made or a command is issued, the OAM checks the
| authorization of the entity associated with the operation to see whether it can:

| � Perform the requested operation.
| � Access the specified queue manager resources.

| The authorization service enables you to augment or replace the authority checking
| provided for queue managers by writing your own authorization service component.

 Copyright IBM Corp. 1994,1998 375

 UNIX systems

| Defining the service to the operating system
| The authorization service stanzas in the the queue manager configuration file
| qm.ini define the authorization service to the queue manager. See “Configuring
| services and components” on page 371 for information about the types of stanza.

| Authorization service on UNIX systems
| On these platforms:

| Principal
| Is a UNIX system user ID, or an ID associated with an application program
| running on behalf of a user.

| Group
| Is a UNIX system-defined collection of principals.

| Authorizations can be granted or revoked at the group level.

| Configuring authorization service stanzas: UNIX systems
| On MQSeries for UNIX systems, each queue manager has its own queue manager
| configuration file. For example, on AIX, the default path and file name of the queue
| manager configuration file for queue manager QMNAME is
| /var/mqm/qmgrs/QMNAME/qm.ini.

| The Service stanza and the ServiceComponent stanza for the default authorization
| component are added to qm.ini automatically, but can be overridden through the
| use of mqsnoaut. Any other ServiceComponent stanzas must be added manually.

| For example, the following stanzas in the queue manager configuration file define
| two authorization service components on MQSeries for AIX:

| Service:
| Name=AuthorizationService
| EntryPoints=7

| ServiceComponent:
| Service=AuthorizationService
| Name=MQSeries.UNIX.authorization.service
| Module=/usr/lpp/mqm/lib/amqzfu
| ComponentDataSize=ð

| ServiceComponent:
| Service=AuthorizationService
| Name=user.defined.authorization.service
| Module=/usr/bin/udasð1
| ComponentDataSize=96

| Figure 11. Authorization service stanzas in qm.ini

| The first service component stanza, MQSeries.UNIX.authorization.service defines
| the default authorization service component, the OAM. If you remove this stanza
| and restart the queue manager, the OAM is disabled and no authorization checks
| are made.

376 MQSeries Programmable System Management

 Windows NT

| In the second (user-defined) service component stanza, /usr/bin/udasð1 is the
| path and file name of the code module for the user-defined component. For the
| user-defined service, the size of the data area that the component requires is
| specified as 96 bytes.

| You must add the second service component stanza manually to the configuration
| file before you start the queue manager. The configuration file is read when the
| queue manager is started, therefore, if you change a stanza, the changes can only
| take effect when the queue manager is restarted.

| Authorization service on Windows NT
| On this platform:

| Principal
| Is a Windows NT user ID, or an ID associated with an application program
| running on behalf of a user.

| Group
| Is a Windows NT group.

| Authorizations can be granted or revoked at the principal or group level.

| Configuring authorization service stanzas: Windows NT
| On MQSeries for Windows NT each queue manager has its own queue manager
| configuration file. The default path and file name of the queue manager
| configuration file for queue manager QMNAME is C:\MQM\QMGRS\QMNAME\qm.ini.

| The Service stanza and the ServiceComponent stanza for the default authorization
| component are added to qm.ini automatically, but can be overridden through the
| use of mqsnoaut. Any other ServiceComponent stanzas must be added manually.

| Service:
| Name=AuthorizationService
| EntryPoints=9

| ServiceComponent:
| Service=AuthorizationService
| Name=MQSeries.WindowsNT.auth.service
| Module=C:\MQM\BIN\AMQZFU.DLL
| ComponentDataSize=ð

| Figure 12. Authorization service stanzas (Windows NT)

| The service component stanza, MQSeries.WindowsNT.auth.service defines the
| default authorization service component, the OAM. If you remove this stanza and
| restart the queue manager, the OAM is disabled and no authorization checks are
| made.

 Chapter 12. Authorization service 377

 OS/2 Warp � Digital OpenVMS

| Authorization service on MQSeries for OS/2 Warp
| On MQSeries for OS/2, no authorization service component is supplied with the
| product. However, the facilities are there if you want to do this for yourself by
| writing your own authorization service component.

| If you write your own authorization component, you must define what your
| component does, and implement it using the interface provided.

| Configuring authorization service stanzas: OS/2
| On MQSeries for OS/2 each queue manager has its own queue manager
| configuration file. For example, the default path and file name of the queue
| manager configuration file for queue manager QMNAME is
| C:\MQM\QMGRS\QMNAME\qm.ini.

| By default, the Service and ServiceComponent stanzas for the authorization
| service are not present in qm.ini.

| To implement a user-written service, you must add these stanzas manually. For
| example, the following stanzas in the queue manager configuration file define an
| authorization service component on MQSeries for OS/2:

| Service:
| Name=AuthorizationService
| EntryPoints=7

| ServiceComponent:
| Service=AuthorizationService
| Name=user.defined.authorization.service
| Module=C:\MQM\DLL\UDASð1.DLL
| ComponentDataSize=128

| Figure 13. Authorization service stanzas in qm.ini (OS/2)

| These stanzas must be defined in qm.ini before you start the queue manager.
| The configuration file is read when the queue manager is started, therefore, if you
| change a stanza, the changes can only take effect when the queue manager is
| restarted.

| Authorization service on Digital OpenVMS
| On this platform:

| Principal
| Is a Digital OpenVMS system user ID, or an ID associated with an application
| program running on behalf of a user.

| Group
| Is a Digital OpenVMS system-defined collection of principals.

| Authorizations can be granted or revoked at the group level.

378 MQSeries Programmable System Management

 Tandem NSK

| Configuring authorization service stanzas: Digital OpenVMS
| On MQSeries for Digital OpenVMS each queue manager has its own queue
| manager configuration file. The default path and file name of the queue manager
| configuration file for queue manager QMNAME is
| MQS_ROOT:[MQM.QMGRS.QMNAME]QM.INI.

| The Service stanza and the ServiceComponent stanza for the default authorization
| component are added to qm.ini automatically, but can be overridden through the
| use of mqsnoaut. Any other ServiceComponent stanzas must be added manually.

| Service:
| Name=AuthorizationService
| EntryPoints=9

| ServiceComponent:
| Service=AuthorizationService
| Name=MQSeries.UNIX.Auth.Service
| Module=amqzfu
| ComponentDataSize=1ð24

| Figure 14. Authorization service stanzas (Digital OpenVMS)

| The service component stanza, MQSeries.UNIX.auth.service defines the default
| authorization service component, the OAM. If you remove this stanza and restart
| the queue manager, the OAM is disabled and no authorization checks are made.

| Authorization service on Tandem NSK
| On this platform:

| Group
| Is a Tandem NSK system-defined group.

| Authorizations can be granted or revoked at the group level.

| Configuring authorization service stanzas: Tandem NSK
| On MQSeries for Tandem NSK each queue manager has its own queue manager
| configuration file. The path and file name of the queue manager configuration file
| depends on the name of the queue manager. You should look in the mqs.ini file
| to find the name of the file. For example, the sub-volume of queue manager QMQM
| is QMQMD.

| The Service stanza and the ServiceComponent stanza for the default authorization
| component are added to qm.ini automatically, but can be overridden through the
| use of mqsnoaut. Any other ServiceComponent stanzas must be added manually.

 Chapter 12. Authorization service 379

| Service:
| Service=AuthorizationService
| EntryPoints=9

| ServiceComponent:
| Service=AuthorizationService
| Name=MQSeries.TANDEM.auth.service
| Module=MQOAM
| ComponentDataSize=ð
| ComponentID=ð

| Figure 15. Authorization service stanzas (Tandem NSK)

| The service component stanza, MQSeries.TANDEM.auth.service defines the default
| authorization service component, the OAM. If you remove this stanza and restart
| the queue manager, the OAM is disabled and no authorization checks are made.

Authorization service interface
The authorization service provides the following entry points for use by the queue
manager:

MQZ_INIT_AUTHORITY
Initialize authorization service component.

MQZ_TERM_AUTHORITY
Terminate authorization service component.

MQZ_CHECK_AUTHORITY
Checks whether an entity has authority to perform one or more operations on a
specified object.

MQZ_SET_AUTHORITY
Sets the authority that an entity has to a specified object.

MQZ_GET_AUTHORITY
Gets the authority that an entity has to access a specified object.

MQZ_GET_EXPLICIT_AUTHORITY
Gets either the authority that a named group has to access a specified object
(but without the additional authority of the nobody group) or the authority that the
primary group of the named principal has to access a specified object.

MQZ_COPY_ALL_AUTHORITY
Copy all the current authorizations that exist for a referenced object to another
object.

MQZ_DELETE_AUTHORITY
Deletes all authorizations associated with a specified object.

These names are defined as typedef s, in the header file cmqzc.h, which can be
used to prototype the component functions.

The initialization function (MQZ_INIT_AUTHORITY) must be the main entry point
for the component. The other functions are invoked through the entry point
address that the initialization function has added into the component entry point
vector.

380 MQSeries Programmable System Management

See “Creating your own service component” on page 372 for more information.
The supplied sample, “Sample program for user identifier service” on page 391,
shows how to write a program for an installable service. Use this example as a
basis for your own programs, bearing in mind that this sample is written for OS/2.

 Chapter 12. Authorization service 381

382 MQSeries Programmable System Management

 Name service

 Chapter 13. Name service

The MQSeries name service provides support to the queue manager for looking up
the name of the queue manager that owns a specified queue. No other queue
attributes can be retrieved from a name service.

The name service is an installable service, which enables an application to open
remote queues for output as if they were local queues. A name service is not
invoked for objects other than queues.

Note: The remote queues must have their Scope attribute set to CELL.

The name service is available on:

| MQSeries for AIX
| MQSeries for AT&T GIS UNIX
| MQSeries for Digital OpenVMS
| MQSeries for HP-UX
| MQSeries for OS/2 Warp
| MQSeries for SINIX and DC/OSx
| MQSeries for SunOS
| MQSeries for Sun Solaris
| MQSeries for Windows NT

When an application opens a queue, the name of the queue is first looked for in the
queue manager’s directory. If it is not found there, it is then looked for in as many
name services as have been configured, until one is found that recognizes the
queue name. If none recognizes the name, the open fails.

The name service returns the owning queue manager for that queue. The queue
manager then continues with the MQOPEN request as if the command had
specified the queue and queue manager name in the original request.

The name service interface (NSI) is part of the MQSeries framework.

How the name service works
If a queue definition specifies the Scope attribute as queue manager
(SCOPE(QMGR) in MQSC) the queue definition (along with all the queue
attributes) is stored in the queue manager’s directory only; this cannot be replaced
by an installable service.

If a queue definition specifies the Scope attribute as cell (SCOPE(CELL) in MQSC)
the queue definition is also stored in the queue manager's directory, along with all
the queue attributes. However, the queue and queue-manager name are also
stored in a name service. If no service is available that can store this information,
a queue with the Scope cell cannot be defined.

The directory in which the information is stored may be managed by the service, or
the service may use an underlying service (such as a DCE directory) for this
purpose. In either case, however, definitions stored in the directory must persist,
even after the component and queue manager have terminated, until they are
explicitly deleted.

 Copyright IBM Corp. 1994,1998 383

 Name service

Notes:

1. You do need to define the channel to send a message to a remote host’s local
queue definition (with a scope of CELL) on a different queue manager within a
naming directory cell.

2. You cannot get messages directly from the remote queue, even when it has a
scope of CELL.

3. No remote queue definition is required when sending to a queue with a scope
of CELL.

The point of the naming service is that the destination queue is defined
centrally, although you still need a transmission queue to the destination queue
manager.

| The transmission queue on the local system must have the same name as the
| queue manager owning the target queue, with the scope of cell, on the remote
| system.

| For example, if the remote queue manager has the name QM01, then the
| transmission queue on the local system must also have the name QM01. See

the section on “Queue name resolution” in the MQSeries Intercommunication
book for further information.

Name service interface
A name service provides the following entry points for use by the queue manager:

MQZ_INIT_NAME Initialize the name service component.

MQZ_TERM_NAME Terminate the name service component.

MQZ_LOOKUP_NAME Look up the queue-manager name for the specified
queue.

MQZ_INSERT_NAME Insert an entry containing the owning queue-manager
name for the specified queue into the directory used by
the service.

MQZ_DELETE_NAME Delete the entry for the specified queue from the
directory used by the service.

If there is more than one name service configured:

� For lookup, the MQZ_LOOKUP_NAME function is invoked for each service in
the list until the queue name is resolved (unless any component indicates that
the search should stop).

� For insert, the MQZ_INSERT_NAME function is invoked for the first service in
the list that supports this function.

� For delete, the MQZ_DELETE_NAME function is invoked for the first service in
the list that supports this function.

It is not therefore useful to have more than one component that supports the insert
and delete functions. However, a component that only supports lookup is feasible,
and could be used, for example, as the last component in the list to resolve any
name, that is not known by any other name service component, to a queue
manager at which the name may be defined.

384 MQSeries Programmable System Management

 Name service

In the C programming language the names are defined as function datatypes using
the typedef statement. These can be used to prototype the service functions, to
ensure that the parameters are correct.

The header file that contains all the material specific to installable services is
cmqzc.h for the C language.

Apart from the initialization function (MQZ_INIT_NAME) – which must be the
component’s main entry point – functions are invoked by the entry point address
that the initialization function has added, using the MQZEP call.

The following examples of configuration file stanzas for the name service specify a
name service component provided by the (fictitious) ABC company.

| # Stanza for name service
| Service:
| Name=NameService
| EntryPoints=5

| # Stanza for name service component, provided by ABC
| ServiceComponent:
| Service=NameService
| Name=ABC.Name.Service
| Module=disk:[dir.dir]abcname
| ComponentDataSize=1ð24

| Figure 16. Name service stanzas in qm.ini (for Digital OpenVMS)

Stanza for name service
 Service:
 Name=NameService
 EntryPoints=5

Stanza for name service component, provided by ABC
 ServiceComponent:
 Service=NameService
 Name=ABC.Name.Service
 Module=C:\MQM\DLL\ABCNAME.DLL
 ComponentDataSize=1ð24

Figure 17. Name service stanzas in qm.ini (for OS/2)

 Chapter 13. Name service 385

 Using DCE

| Service:
| Name=NameService
| EntryPoints=5

| ServiceComponent:
| Service=NameService
| Name=MQSeries.DCE.name.service
| Module=C:\MQM\BIN\AMQNFA
| ComponentDataSize=1ð24

| Figure 18. Name service stanzas in qm.ini (for Windows NT)

Stanza for name service
 Service:
 Name=NameService
 EntryPoints=5

Stanza for name service component, provided by ABC
 ServiceComponent:
 Service=NameService
 Name=ABC.Name.Service
 Module=/usr/lib/abcname
 ComponentDataSize=1ð24

Figure 19. Name service stanzas in qm.ini (for UNIX systems)

Using DCE to share queues on different queue managers
IBM supplies an implementation of a name service that uses DCE (Distributed
Computing Environment), although you are free to write your own component that
does not use DCE.

To use the supplied name service component, you must define the name service
and its installed component to the queue manager. You do this by inserting the
appropriate stanza in the queue manager configuration file (qm.ini) file. See the
MQSeries System Administration book for details. You must also do some DCE
configuration.

If your queue managers are located on nodes within a Distributed Computing
Environment (DCE) cell, you can configure them to share queues. Applications can
then connect to one queue manager and open a queue for output on another
queue manager on another node.

Normally the queue manager rejects open requests from a local application if the
queue is not defined on that queue manager. However, when DCE names is in
use the remote queue does not need to be defined on the local queue manager.
Also if an appropriate set of transmission queues are defined the queue may be
moved between remote queue managers within the DCE cell without any changes
being required to the local definitions.

386 MQSeries Programmable System Management

 DCE configuration

Configuration tasks for shared queues
This section describes how you set up shared queues on queue managers that
reside on nodes that are within the DCE cell.

For each queue manager:

1. Use the endmqm command to stop the queue manager if it is running.

2. Configure the name service by adding the required name service stanza to the
queue manager configuration file. The contents of this stanza are described in
the MQSeries System Administration book. To invoke the name service, you
have to restart the queue manager.

3. Use the strmqm command to restart the queue manager.

4. Set up channels for messaging between queue managers; see the MQSeries
Intercommunication book for further details.

For any queue that you want to be shared, specify the SCOPE attribute as CELL.
For example, use these MQSC commands:

DEFINE QLOCAL (GREY.PUBLIC.QUEUE) SCOPE(CELL)
or
ALTER QLOCAL (PINK.LOCAL.QUEUE) SCOPE(CELL)

The queue created or altered must belong to a queue manager on a node within
the DCE cell.

 DCE configuration
To use the supplied name service component, you must have the OSF Distributed
Computing Environment (DCE) Directory Service configured. This service enables
applications that connect to one queue manager to open queues that belong to
another queue manager in the same DCE cell.

The name service stanzas in the queue manager configuration file qm.ini define
the name service to the queue manager.

Scripts are supplied that set up the DCE keytables, principal, and directory entries
so that the supplied name service can run:

dcesetsv
Sets up a principal, and directory entries, on the DCE cell servers. It can be
run from any host in the cell, and it is run once for the entire DCE cell

dcesetkt
Sets up a system keytable on the local host. It must be run on every host in
the DCE cell on which the MQSeries DCE Naming Service is run.

 Chapter 13. Name service 387

 DCE configuration

These scripts are placed in the following directories:

For OS/2 and Windows NT
| C:\MQM\TOOLS\DCE\SAMPLES, where C:\ is the installation drive.

| For UNIX systems
| /mqmtop/samp

| where mqmtop is:

| � /usr/lpp/mqm on AIX

| � /opt/mqm on AT&T GIS UNIX, HP-UX, SINIX and DC/OSx, Sun OS, and
| Sun Solaris.

| For Digital OpenVMS
| mqs_examples;dcesetup.com

Note to users

You need to install the MQ DCE option if you are using AIX or Sun Solaris.

388 MQSeries Programmable System Management

 User identifier service

Chapter 14. User identifier service

This service is available only on MQSeries for OS/2 Warp.

The user identifier service enables queue managers running under OS/2 to obtain a
user-defined user ID.

By default, the user ID associated with MQI applications running under OS/2 is OS2.

This user ID is used by the local queue manager when an application issues an
MQCONN request. That is, the queue manager inserts this user ID into the context
fields of any messages that are sent by the application.

The user identification service enables a user-defined user ID to be substituted in
place of the supplied one. The mechanism for doing this must be defined by the
user.

Defining the service to OS/2
The user identifier service stanzas in the queue manager configuration file qm.ini
defines the User Identifier service to the queue manager. By default, this file is
located in C:\mqm\qmgrs\QMNAME\qm.ini. You must add these stanzas manually to
the configuration file before you start the queue manager.

For example, the following queue manager stanza defines the supplied user
identifier service component.

 Service:
 Name=UserIdentifierService
 EntryPoints=3

 ServiceComponent:
 Service=UserIdentifierService
 Name=MQSeries.environment.UserID.Service
 Module=C:\MQM\DLL\AMQZFCB2.DLL
 ComponentDataSize=24

For the example shown in “Sample program for user identifier service” on
page 391, the following assignments must be made:

Name=UserIdentifierService
Specifies the type of service as a user identifier service.

EntryPoints=3
There are three entry points in the service. See “MQZEP – Add component
entry point” on page 396 for more information.

Service=UserIdentifierService
Specifies that this component belongs to the user identifier service. The
name must match the name in the service stanza.

 Copyright IBM Corp. 1994,1998 389

 User identifier service interface

Name=MQSeries.environment.UserID.Service
The name of the service componenent. This name identifies the component
in any messages that are generated from it.

Module=C:\mqm\dll\AMQZFCB2.DLL
The path and name of the DLL containing the component functions.

ComponentDataSize=24
The size of the data to be passed between the module and the queue
manager. In this case, 24 bytes, 12 each for the user ID and the (optional)
password respectively.

The queue manager configuration file—and therefore the user identifier service
stanza—is read when the queue manager is started. Therefore, if you change the
stanza, the changes can only take effect when the queue manager is restarted.

User identifier service interface
The user identifier service provides the following entry points for use by the queue
manager:

MQZ_INIT_USERID Initialize user identifier service. This routine must be called
before any others.

MQZ_FIND_USERID Find user ID.

MQZ_TERM_USERID Terminate user identifier service.

These names are defined as typedef s in cmqzc.h, which can be used to prototype
the component functions.

The initialization function (MQZ_INIT_USERID), is the main entry point for the
component. Other functions are invoked by the entry point address which the
initialization function has added into the component entry point vector.

User identifier service samples
MQSeries for OS/2 provides two user identifier samples, a source sample
AMQSZFCð.C and a DLL AMQZFCB2.DLL.

The supplied sample AMQSZFCð.C shows how to use environmental variables to
specify a user ID and password. See “Sample program for user identifier service”
on page 391, for an explanation and a source file listing.

You can use AMQZFCB2.DLL directly, by simply specifying the path and filename in
the ServiceComponent stanza in qm.ini. “Defining the service to OS/2” on
page 389 shows the appropriate stanzas.

Note: This sample is distinct from the supplied sample user identifier service DLL
AMQZFCB2.DLL, which has a similar, but not identical function.

390 MQSeries Programmable System Management

 Sample program

Sample program for user identifier service
The sample AMQZFCð.C is supplied with MQSeries for OS/2. Although it is not
available on other platforms, it does show you how to create an installable service.
You can, therefore, use it as a basis for your own installable services.

To use the user identifier service, you must set the user identifier service stanza in
the qm.ini file. See “Defining the service to OS/2” on page 389 for details.

 Purpose
AMQSZFCð.C enables a queue manager to insert a user-defined user ID into
messages sent by applications connected to this queue manager. The mechanism
for this is user-defined (OS/2) environment variables. You could replace this with
your own mechanism.

Setting the environment variables
The user-defined environment variables are MQS_USERID and
MQS_PASSWORD, which are used for the user ID and password respectively.
You must set these, before you start the queue manager. Use the following OS/2
commands:

 SET MQS_USERID=LEMON
 SET MQS_PASSWORD=ABC123

You can, for example, add these lines to your CONFIG.SYS file.

The sample copies these variables into shared memory where they can be
accessed by MQSeries internal processes.

Note: The password you supply is not used by MQSeries for OS/2 Warp.

How the sample works
The sample consists of the following:

� Initialize the service entry point vectors, using the MQZEP function to pass the
address of a user-written function entry point. MQZEP is called for each such
function.

� Initialize this instance of the service.

� For the primary initialization, obtain the user ID and password and put them
into this component's shared memory.

The MQZ_FIND_USERID (Find User ID) function is invoked by the local queue
manager whenever an application makes an MQCONN request. In this case, the
function retrieves the user ID and password from shared memory.

Note: Changing the environment variables after the queue manager is started has
no effect. The original ones are used.

 Chapter 14. User identifier service 391

 Sample program

/\\/
/\ \/
/\ Program name: AMQSZFCð \/
/\ \/
/\ Description : Sample program for the UserIdentifierService \/
/\ using the environment variables to get the \/
/\ password and userID \/
/\ \/
/\ Statement: Licensed Materials - Property of IBM \/
/\ \/
/\ 33H22ð5, 5622-9ð8 \/
/\ 33H2267, 5765-623 \/
/\ 29Hð99ð, 5697-176 \/
/\ (C) Copyright IBM Corp. 1994, 1995 \/
/\ \/
/\\/

/\---\/
/\ Includes \/
/\---\/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <cmqc.h> /\ MQI API \/
#include <cmqzc.h> /\ MQI API for installable services \/

/\---\/
/\ Typedefs \/
/\---\/

typedef struct tag_USERDATA USERDATA, \PUSERDATA;

struct tag_USERDATA
{
 MQCHAR12 UserID; /\ UserID \/
 MQCHAR12 Password; /\ Password \/
};

/\---\/
/\ Prototypes \/
/\---\/

MQZ_INIT_USERID mqs_userid_init;
MQZ_FIND_USERID mqs_userid_find;

/\\\/
/\ \/
/\ Function Name: mqs_userid_init \/
/\ \/
/\ Description: Initialise the instance of the Userid Pluggable \/
/\ Service \/
/\ \/
/\\\/
void MQENTRY mqs_userid_init (MQHCONFIG hconfig,
 MQLONG options,
 MQCHAR48 QMgrName,
 MQLONG ComponentDataLength,
 PMQBYTE data,
 PMQLONG Version,
 PMQLONG CompCode_ptr,
 PMQLONG Reason_ptr)
{
MQLONG cc = MQCC_OK;
MQLONG rc = MQRC_NONE;

 /\\\/
/\ Initialise the Entry point vector \/

 /\\\/

if (cc == MQCC_OK) MQZEP(hconfig, MQZID_INIT_USERID, (PMQFUNC) mqs_userid_init, &cc, &rc);

392 MQSeries Programmable System Management

 Sample program

if (cc == MQCC_OK) MQZEP(hconfig, MQZID_TERM_USERID, (PMQFUNC) NULL, &cc, &rc);
if (cc == MQCC_OK) MQZEP(hconfig, MQZID_FIND_USERID, (PMQFUNC) mqs_userid_find, &cc, &rc);

if (cc != MQCC_OK)
 {

cc = MQCC_FAILED;
rc = MQRC_INITIALIZATION_FAILED;

 }

 /\\\/
/\ For the primary initialisation, Obtain the Userid and Password \/
/\ and put it into this components shared storage \/

 /\\\/

if ((cc == MQCC_OK) && (options == MQZIO_PRIMARY))
 {
 char \env_userid = getenv("MQS_USERID");

char \env_password = getenv("MQS_PASSWORD");

if ((ComponentDataLength == sizeof(USERDATA)) &&
(env_userid != NULL) &&
(env_password != NULL))

 {
PUSERDATA UserData = (PUSERDATA) data;

 strncpy(UserData->UserID, env_userid , sizeof(MQCHAR12));
strncpy(UserData->Password, env_password, sizeof(MQCHAR12));

 }
 else
 {

cc = MQCC_FAILED;
rc = MQRC_INITIALIZATION_FAILED;

 }
 }

 /\\\/
/\ Set the return code and reason \/

 /\\\/

\CompCode_ptr = cc;
 \Reason_ptr = rc;

 return;
}

/\\\/
/\ \/
/\ Function Name: mqs_userid_find \/
/\ \/
/\ Description: Find the userID/password \/
/\ \/
/\\\/
void MQENTRY mqs_userid_find (MQCHAR48 QMgrName,
 MQCHAR12 UserID,
 MQCHAR12 Password,
 PMQBYTE ComponentData,
 PMQLONG Continuation,
 PMQLONG CompCode_ptr,
 PMQLONG Reason_ptr)
{
PUSERDATA pUserData = (PUSERDATA) ComponentData;

 /\\\/
/\ Return the UserID & password to the caller \/

 /\\\/

memcpy (UserID, pUserData->UserID, sizeof(MQCHAR12));
memcpy (Password, pUserData->Password, sizeof(MQCHAR12));

 /\\\/
/\ Set the continuation, return code & reason codes \/

 /\\\/

 Chapter 14. User identifier service 393

 Sample program

\Continuation = MQZCI_DEFAULT;
\CompCode_ptr = MQCC_OK;

 \Reason_ptr = MQRC_NONE;

 return;
}

394 MQSeries Programmable System Management

 Installable services

Chapter 15. Installable services interface

This chapter provides reference information for the installable services.

The functions and data types are in alphabetic order within the group for each
service type.

Table 25. Installable services functions

Service type Functions page

All MQZEP - Add component entry point
MQHCONFIG – Configuration handle
PMQFUNC – Pointer to function

396
398
398

Authorization MQZ_CHECK_AUTHORITY
MQZ_COPY_ALL_AUTHORITY
MQZ_DELETE_AUTHORITY
MQZ_GET_AUTHORITY
MQZ_GET_EXPLICIT_AUTHORITY
MQZ_INIT_AUTHORITY
MQZ_SET_AUTHORITY
MQZ_TERM_AUTHORITY

399
405
408
411
415
419
422
426

Name MQZ_DELETE_NAME
MQZ_INIT_NAME
MQZ_INSERT_NAME
MQZ_LOOKUP_NAME
MQZ_TERM_NAME

429
432
435
438
441

User Identifier MQZ_FIND_USERID
MQZ_INIT_USERID
MQZ_TERM_USERID

444
447
450

How the functions are shown
For each function there is a description, including the function identifier (for
MQZEP).

The parameters are shown listed in a box. The parameters must occur in the order
shown and they must all be present.

Parameters and data types
Each parameter name is followed by its data type in parentheses. These are the
elementary data types described in the MQSeries Application Programming
Reference.

The C language invocation is also given, after the description of the parameters.

 Copyright IBM Corp. 1994,1998 395

 MQZEP – Add component entry point

 MQZEP – Add component entry point
This function is invoked by a service component, during initialization, to add an
entry point to the entry point vector for that service component.

MQZEP (Hconfig, Function, EntryPoint, CompCode, Reason)

 Parameters
Hconfig (MQHCONFIG) – input

Configuration handle.

This handle represents the component which is being configured for this
particular installable service. It must be the same as the one passed to
the component configuration function by the queue manager on the
component initialization call.

Function (MQLONG) – input
Function identifier.

Valid values for this are defined for each installable service.

If MQZEP is called more than once for the same function, the last call
made provides the entry point which is used.

EntryPoint (PMQFUNC) – input
Function entry point.

This is the address of the entry point provided by the component to
perform the function.

The value NULL is valid, and indicates that the function is not provided by
this component. NULL is assumed for entry points which are not defined
using MQZEP.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_FUNCTION_ERROR
(2281, X'8E9') Function identifier not valid for service.

396 MQSeries Programmable System Management

 MQZEP – Add component entry point

MQRC_HCONFIG_ERROR
(2280, X'8E8') Configuration handle not valid.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

 Chapter 15. Installable services interface 397

 MQZEP – Add component entry point

 C invocation
MQZEP (Hconfig, Function, EntryPoint, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONFIG Hconfig; /\ Configuration handle \/
MQLONG Function; /\ Function identifier \/
PMQFUNC EntryPoint; /\ Function entry point \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

MQHCONFIG – Configuration handle
The MQHCONFIG data type represents a configuration handle, that is, the
component that is being configured for a particular installable service. A
configuration handle must be aligned on its natural boundary.

Note: Applications must test variables of this type for equality only.

MQHCONFIG C declaration
typedef MQLONG MQHCONFIG;

PMQFUNC – Pointer to function
Pointer to a function.

PMQFUNC C declaration
typedef void MQPOINTER PMQFUNC;

398 MQSeries Programmable System Management

 MQZ_CHECK_AUTHORITY – Check authority

 MQZ_CHECK_AUTHORITY – Check authority
This function is provided by an authorization service component, and is invoked by
the queue manager to check whether an entity has authority to perform a particular
action, or actions, on a specified object.

The function identifier for this function (for MQZEP) is
MQZID_CHECK_AUTHORITY.

MQZ_CHECK_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,
ObjectType, Authority, ComponentData, Continuation,
CompCode, Reason)

 Parameters
QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make
use of it in any defined manner.

EntityName (MQCHAR12) – input
Entity name.

The name of the entity whose authorization to the object is to be checked.
The maximum length of the string is 12 characters; if it is shorter than that
it is padded to the right with blanks. The name is not terminated by a null
character.

It is not essential for this entity to be known to the underlying security
service. If it is not known, the authorizations of the special nobody group
(to which all entities are assumed to belong) are used for the check. An
all-blank name is valid and can be used in this way.

EntityType (MQLONG) – input
Entity type.

The type of entity specified by EntityName. It is one of the following:

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input
Object name.

The name of the object to which access is required. The maximum length
of the string is 48 characters; if it is shorter than that it is padded to the
right with blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

 Chapter 15. Installable services interface 399

 MQZ_CHECK_AUTHORITY – Check authority

ObjectType (MQLONG) – input
Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_CHANNEL
Channel.

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

Authority (MQLONG) – input
Authority to be checked.

If one authorization is being checked, this field is equal to the appropriate
authorization operation (MQZAO_* constant). If more than one
authorization is being checked, it is the bitwise OR of the corresponding
MQZAO_* constants.

The following authorizations apply to use of the MQI calls:

MQZAO_CONNECT
Ability to use the MQCONN call.

MQZAO_BROWSE
Ability to use the MQGET call with a browse option.

This allows the MQGMO_BROWSE_FIRST,
MQGMO_BROWSE_MSG_UNDER_CURSOR, or
MQGMO_BROWSE_NEXT option to be specified on the MQGET
call.

MQZAO_INPUT
Ability to use the MQGET call with an input option.

This allows the MQOO_INPUT_SHARED,
MQOO_INPUT_EXCLUSIVE, or MQOO_INPUT_AS_Q_DEF option
to be specified on the MQOPEN call.

MQZAO_OUTPUT
Ability to use the MQPUT call.

This allows the MQOO_OUTPUT option to be specified on the
MQOPEN call.

MQZAO_INQUIRE
Ability to use the MQINQ call.

This allows the MQOO_INQUIRE option to be specified on the
MQOPEN call.

MQZAO_SET
Ability to use the MQSET call.

This allows the MQOO_SET option to be specified on the MQOPEN
call.

400 MQSeries Programmable System Management

 MQZ_CHECK_AUTHORITY – Check authority

MQZAO_PASS_IDENTITY_CONTEXT
Ability to pass identity context.

This allows the MQOO_PASS_IDENTITY_CONTEXT option to be
specified on the MQOPEN call, and the
MQPMO_PASS_IDENTITY_CONTEXT option to be specified on the
MQPUT and MQPUT1 calls.

MQZAO_PASS_ALL_CONTEXT
Ability to pass all context.

This allows the MQOO_PASS_ALL_CONTEXT option to be specified
on the MQOPEN call, and the MQPMO_PASS_ALL_CONTEXT
option to be specified on the MQPUT and MQPUT1 calls.

MQZAO_SET_IDENTITY_CONTEXT
Ability to set identity context.

This allows the MQOO_SET_IDENTITY_CONTEXT option to be
specified on the MQOPEN call, and the
MQPMO_SET_IDENTITY_CONTEXT option to be specified on the
MQPUT and MQPUT1 calls.

MQZAO_SET_ALL_CONTEXT
Ability to set all context.

This allows the MQOO_SET_ALL_CONTEXT option to be specified
on the MQOPEN call, and the MQPMO_SET_ALL_CONTEXT option
to be specified on the MQPUT and MQPUT1 calls.

MQZAO_ALTERNATE_USER_AUTHORITY
Ability to use alternate user authority.

This allows the MQOO_ALTERNATE_USER_AUTHORITY option to
be specified on the MQOPEN call, and the
MQPMO_ALTERNATE_USER_AUTHORITY option to be specified
on the MQPUT1 call.

MQZAO_ALL_MQI
All of the MQI authorizations.

This enables all of the authorizations described above.

The following authorizations apply to administration of a queue manager:

MQZAO_CREATE
Ability to create objects of a specified type.

MQZAO_DELETE
Ability to delete a specified object.

MQZAO_DISPLAY
Ability to display the attributes of a specified object.

MQZAO_CHANGE
Ability to change the attributes of a specified object.

MQZAO_CLEAR
Ability to delete all messages from a specified queue.

MQZAO_AUTHORIZE
Ability to authorize other users for a specified object.

 Chapter 15. Installable services interface 401

 MQZ_CHECK_AUTHORITY – Check authority

MQZAO_ALL_ADMIN
All of the administration authorizations.

The following authorizations apply to both use of the MQI and to
administration of a queue manager:

MQZAO_NONE
No authorizations.

MQZAO_ALL
All authorizations.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output
Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_CHECK_AUTHORITY this has the same effect as
MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

402 MQSeries Programmable System Management

 MQZ_CHECK_AUTHORITY – Check authority

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

 Chapter 15. Installable services interface 403

 MQZ_CHECK_AUTHORITY – Check authority

 C invocation
MQZ_CHECK_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,

ObjectType, Authority, ComponentData,
&Continuation, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /\ Queue manager name \/
MQCHAR12 EntityName; /\ Entity name \/
MQLONG EntityType; /\ Entity type \/
MQCHAR48 ObjectName; /\ Object name \/
MQLONG ObjectType; /\ Object type \/
MQLONG Authority; /\ Authority to be checked \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Continuation; /\ Continuation indicator set by
 component \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

404 MQSeries Programmable System Management

 MQZ_COPY_ALL_AUTHORITY – Copy all authority

 MQZ_COPY_ALL_AUTHORITY – Copy all authority
This function is provided by an authorization service component. It is invoked by
the queue manager to copy all of the authorizations that are currently in force for a
reference object to another object.

The function identifier for this function (for MQZEP) is
MQZID_COPY_ALL_AUTHORITY.

MQZ_COPY_ALL_AUTHORITY (QMgrName, RefObjectName, ObjectName,
ObjectType, ComponentData, Continuation, CompCode,
Reason)

 Parameters
QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make
use of it in any defined manner.

RefObjectName (MQCHAR48) – input
Reference object name.

The name of the reference object, the authorizations for which are to be
copied. The maximum length of the string is 48 characters; if it is shorter
than that it is padded to the right with blanks. The name is not terminated
by a null character.

ObjectName (MQCHAR48) – input
Object name.

The name of the object for which accesses are to be set. The maximum
length of the string is 48 characters; if it is shorter than that it is padded to
the right with blanks. The name is not terminated by a null character.

ObjectType (MQLONG) – input
Object type.

The type of object specified by RefObjectName and ObjectName. It is one of
the following:

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

 Chapter 15. Installable services interface 405

 MQZ_COPY_ALL_AUTHORITY – Copy all authority

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output
Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_COPY_ALL_AUTHORITY this has the same effect as
MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

MQRC_UNKNOWN_REF_OBJECT
(2294, X'8F6') Reference object unknown.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

406 MQSeries Programmable System Management

 MQZ_COPY_ALL_AUTHORITY – Copy all authority

 C invocation
MQZ_COPY_ALL_AUTHORITY (QMgrName, RefObjectName, ObjectName, ObjectType,

ComponentData, &Continuation, &CompCode,
 &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /\ Queue manager name \/
MQCHAR48 RefObjectName; /\ Reference object name \/
MQCHAR48 ObjectName; /\ Object name \/
MQLONG ObjectType; /\ Object type \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Continuation; /\ Continuation indicator set by
 component \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 Chapter 15. Installable services interface 407

 MQZ_DELETE_AUTHORITY – Delete authority

 MQZ_DELETE_AUTHORITY – Delete authority
This function is provided by an authorization service component, and is invoked by
the queue manager to delete all of the authorizations associated with the specified
object.

The function identifier for this function (for MQZEP) is
MQZID_DELETE_AUTHORITY.

MQZ_DELETE_AUTHORITY (QMgrName, ObjectName, ObjectType,
ComponentData, Continuation, CompCode, Reason)

 Parameters
QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make
use of it in any defined manner.

ObjectName (MQCHAR48) – input
Object name.

The name of the object for which accesses are to be deleted. The
maximum length of the string is 48 characters; if it is shorter than that it is
padded to the right with blanks. The name is not terminated by a null
character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input
Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

408 MQSeries Programmable System Management

 MQZ_DELETE_AUTHORITY – Delete authority

Continuation (MQLONG) – output
Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_DELETE_AUTHORITY this has the same effect as
MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

 Chapter 15. Installable services interface 409

 MQZ_DELETE_AUTHORITY – Delete authority

 C invocation
MQZ_DELETE_AUTHORITY (QMgrName, ObjectName, ObjectType, ComponentData,

&Continuation, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /\ Queue manager name \/
MQCHAR48 ObjectName; /\ Object name \/
MQLONG ObjectType; /\ Object type \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Continuation; /\ Continuation indicator set by
 component \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

410 MQSeries Programmable System Management

 MQZ_GET_AUTHORITY – Get authority

 MQZ_GET_AUTHORITY – Get authority
This function is provided by an authorization service component, and is invoked by
the queue manager to retrieve the authority that an entity has to access the
specified object.

The function identifier for this function (for MQZEP) is MQZID_GET_AUTHORITY.

MQZ_GET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,
ObjectType, Authority, ComponentData, Continuation,
CompCode, Reason)

 Parameters
QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make
use of it in any defined manner.

EntityName (MQCHAR12) – input
Entity name.

The name of the entity whose access to the object is to be retrieved. The
maximum length of the string is 12 characters; if it is shorter than that it is
padded to the right with blanks. The name is not terminated by a null
character.

EntityType (MQLONG) – input
Entity type.

The type of entity specified by EntityName. The following value can be
specified:

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input
Object name.

The name of the object for which the entity’s authority is to be retrieved.
The maximum length of the string is 48 characters; if it is shorter than that
it is padded to the right with blanks. The name is not terminated by a null
character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

 Chapter 15. Installable services interface 411

 MQZ_GET_AUTHORITY – Get authority

ObjectType (MQLONG) – input
Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

Authority (MQLONG) – output
Authority of entity.

If the entity has one authority, this field is equal to the appropriate
authorization operation (MQZAO_* constant). If it has more than one
authority, this field is the bitwise OR of the corresponding MQZAO_*
constants.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output
Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_GET_AUTHORITY this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

412 MQSeries Programmable System Management

 MQZ_GET_AUTHORITY – Get authority

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

MQRC_UNKNOWN_AUTH_ENTITY
(2293, X'8F5') Authorization entity unknown to service.

MQRC_UNKNOWN_ENTITY
(2292, X'8F4') Entity unknown to service.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

 Chapter 15. Installable services interface 413

 MQZ_GET_AUTHORITY – Get authority

 C invocation
MQZ_GET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,

ObjectType, &Authority, ComponentData,
&Continuation, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /\ Queue manager name \/
MQCHAR12 EntityName; /\ Entity name \/
MQLONG EntityType; /\ Entity type \/
MQCHAR48 ObjectName; /\ Object name \/
MQLONG ObjectType; /\ Object type \/
MQLONG Authority; /\ Authority of entity \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Continuation; /\ Continuation indicator set by
 component \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

414 MQSeries Programmable System Management

 MQZ_GET_EXPLICIT_AUTHORITY – Get explicit authority

 MQZ_GET_EXPLICIT_AUTHORITY – Get explicit authority
This function is provided by an authorization service component, and is invoked by
the queue manager to retrieve the authority that a named group has to access a
specified object (but without the additional authority of the nobody group), or the
authority that the primary group of the named principal has to access a specified
object.

The function identifier for this function (for MQZEP) is
MQZID_GET_EXPLICIT_AUTHORITY.

MQZ_GET_EXPLICIT_AUTHORITY (QMgrName, EntityName, EntityType,
ObjectName, ObjectType, Authority, AuthorityMask,
ComponentData, Continuation, CompCode, Reason)

 Parameters
QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make
use of it in any defined manner.

EntityName (MQCHAR12) – input
Entity name.

The name of the entity whose access to the object is to be retrieved. The
maximum length of the string is 12 characters; if it is shorter than that it is
padded to the right with blanks. The name is not terminated by a null
character.

EntityType (MQLONG) – input
Entity type.

The type of entity specified by EntityName. The following value can be
specified:

MQZAET_PRINCIPAL
Principal.

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input
Object name.

The name of the object for which the entity’s authority is to be retrieved.
The maximum length of the string is 48 characters; if it is shorter than that
it is padded to the right with blanks. The name is not terminated by a null
character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

 Chapter 15. Installable services interface 415

 MQZ_GET_EXPLICIT_AUTHORITY – Get explicit authority

ObjectType (MQLONG) – input
Object type.

The type of entity specified by ObjectName. It is one of the following:

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

Authority (MQLONG) – output
Authority of entity.

If the entity has one authority, this field is equal to the appropriate
authorization operation (MQZAO_* constant). If it has more than one
authority, this field is the bitwise OR of the corresponding MQZAO_*
constants.

AuthorityMask (MQLONG) – input
Mask for relevant authorities.

Only the authorities which correspond to a bit which is set on this mask
should be affected by this call.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output
Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_GET_EXPLICIT_AUTHORITY this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

416 MQSeries Programmable System Management

 MQZ_GET_EXPLICIT_AUTHORITY – Get explicit authority

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

MQRC_UNKNOWN_AUTH_ENTITY
(2293, X'8F5') Authorization entity unknown to service.

MQRC_UNKNOWN_ENTITY
(2292, X'8F4') Entity unknown to service.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

 Chapter 15. Installable services interface 417

 MQZ_GET_EXPLICIT_AUTHORITY – Get explicit authority

 C invocation
MQZ_GET_EXPLICIT_AUTHORITY (QMgrName, EntityName, EntityType,

ObjectName, ObjectType, &Authority,
 AuthorityMask, ComponentData,
 &Continuation, &CompCode,
 &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /\ Queue manager name \/
MQCHAR12 EntityName; /\ Entity name \/
MQLONG EntityType; /\ Entity type \/
MQCHAR48 ObjectName; /\ Object name \/
MQLONG ObjectType; /\ Object type \/
MQLONG Authority; /\ Authority of entity \/
MQLONG AuthorityMask; /\ Mask for relevant authorities \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Continuation; /\ Continuation indicator set by
 component \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

418 MQSeries Programmable System Management

 MQZ_INIT_AUTHORITY – Initialize authorization service component

 MQZ_INIT_AUTHORITY – Initialize authorization service component
This function is provided by an authorization service component, and is invoked by
the queue manager during configuration of the component. It is expected to call
MQZEP in order to provide information to the queue manager.

The function identifier for this function (for MQZEP) is MQZID_INIT_AUTHORITY.

MQZ_INIT_AUTHORITY (Hconfig, Options, QMgrName, ComponentDataLength,
ComponentData, Version, CompCode, Reason)

 Parameters
Hconfig (MQHCONFIG) – input

Configuration handle.

This handle represents the particular component being initialized. It is to
be used by the component when calling the queue manager with the
MQZEP function.

Options (MQLONG) – input
Initialization options.

It is one of the following:

MQZIO_PRIMARY
Primary initialization.

MQZIO_SECONDARY
Secondary initialization.

QMgrName (MQCHAR48) – input
Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make
use of it in any defined manner.

ComponentDataLength (MQLONG) – input
Length of component data.

Length in bytes of the ComponentData area. This length is defined in the
component configuration data.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This is initialized to all zeroes before calling the component’s primary
initialization function. This data is kept by the queue manager on behalf of
this particular component; any changes made to it by any of the functions
(including the initialization function) provided by this component are
preserved, and presented the next time one of this component’s functions
is called.

 Chapter 15. Installable services interface 419

 MQZ_INIT_AUTHORITY – Initialize authorization service component

Version (MQLONG) – input/output
Version number.

On input to the initialization function, this identifies the highest version
number that the queue manager supports. The initialization function must
change this, if necessary, to the version of the interface which it supports.
If on return the queue manager does not support the version returned by
the component, it calls the component’s MQZ_TERM_AUTHORITY
function and makes no further use of this component.

The following value is suppported:

MQZAS_VERSION_1
Version 1.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_INITIALIZATION_FAILED
(2286, X'8EE') Initialization failed for an undefined reason.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

420 MQSeries Programmable System Management

 MQZ_INIT_AUTHORITY – Initialize authorization service component

 C invocation
MQZ_INIT_AUTHORITY (Hconfig, Options, QMgrName, ComponentDataLength,

ComponentData, &Version, &CompCode,
 &Reason);

Declare the parameters as follows:

MQHCONFIG Hconfig; /\ Configuration handle \/
MQLONG Options; /\ Initialization options \/
MQCHAR48 QMgrName; /\ Queue manager name \/
MQLONG ComponentDataLength; /\ Length of component data \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Version; /\ Version number \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 Chapter 15. Installable services interface 421

 MQZ_SET_AUTHORITY – Set authority

 MQZ_SET_AUTHORITY – Set authority
This function is provided by an authorization service component, and is invoked by
the queue manager to set the authority that an entity has to access the specified
object.

The function identifier for this function (for MQZEP) is MQZID_SET_AUTHORITY.

Note: This function overrides any existing authorities. To preserve any existing
authorities you must set them again with this function.

MQZ_SET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,
ObjectType, Authority, ComponentData, Continuation,
CompCode, Reason)

 Parameters
QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make
use of it in any defined manner.

EntityName (MQCHAR12) – input
Entity name.

The name of the entity whose access to the object is to be set. The
maximum length of the string is 12 characters; if it is shorter than that it is
padded to the right with blanks. The name is not terminated by a null
character.

EntityType (MQLONG) – input
Entity type.

The type of entity specified by EntityName. The following value can be
specified:

MQZAET_GROUP
Group.

ObjectName (MQCHAR48) – input
Object name.

The name of the object to which access is required. The maximum length
of the string is 48 characters; if it is shorter than that it is padded to the
right with blanks. The name is not terminated by a null character.

If ObjectType is MQOT_Q_MGR, this name is the same as QMgrName.

ObjectType (MQLONG) – input
Object type.

The type of entity specified by ObjectName. It is one of the following:

422 MQSeries Programmable System Management

 MQZ_SET_AUTHORITY – Set authority

MQOT_PROCESS
Process definition.

MQOT_Q
Queue.

MQOT_Q_MGR
Queue manager.

Authority (MQLONG) – input
Authority to be checked.

If one authorization is being set, this field is equal to the appropriate
authorization operation (MQZAO_* constant). If more than one
authorization is being set, it is the bitwise OR of the corresponding
MQZAO_* constants.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_AUTHORITY call.

Continuation (MQLONG) – output
Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_SET_AUTHORITY this has the same effect as
MQZCI_STOP.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

 Chapter 15. Installable services interface 423

 MQZ_SET_AUTHORITY – Set authority

MQRC_NOT_AUTHORIZED
(2035, X'7F3') Not authorized for access.

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

MQRC_UNKNOWN_AUTH_ENTITY
(2293, X'8F5') Authorization entity unknown to service.

MQRC_UNKNOWN_ENTITY
(2292, X'8F4') Entity unknown to service.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

424 MQSeries Programmable System Management

 MQZ_SET_AUTHORITY – Set authority

 C invocation
MQZ_SET_AUTHORITY (QMgrName, EntityName, EntityType, ObjectName,

ObjectType, Authority, ComponentData,
&Continuation, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /\ Queue manager name \/
MQCHAR12 EntityName; /\ Entity name \/
MQLONG EntityType; /\ Entity type \/
MQCHAR48 ObjectName; /\ Object name \/
MQLONG ObjectType; /\ Object type \/
MQLONG Authority; /\ Authority to be checked \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Continuation; /\ Continuation indicator set by
 component \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 Chapter 15. Installable services interface 425

 MQZ_TERM_AUTHORITY – Terminate authorization service component

 MQZ_TERM_AUTHORITY – Terminate authorization service
component

This function is provided by an authorization service component, and is invoked by
the queue manager when it no longer requires the services of this component. The
function must perform any cleanup required by the component.

The function identifier for this function (for MQZEP) is MQZID_TERM_AUTHORITY.

MQZ_TERM_AUTHORITY (Hconfig, Options, QMgrName, ComponentData,
CompCode, Reason)

 Parameters
Hconfig (MQHCONFIG) – input

Configuration handle.

This handle represents the particular component being terminated.

Options (MQLONG) – input
Termination options.

It is one of the following:

MQZTO_PRIMARY
Primary termination.

MQZTO_SECONDARY
Secondary termination.

QMgrName (MQCHAR48) – input
Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
authorization service interface does not require the component to make
use of it in any defined manner.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter on the MQZ_INIT_AUTHORITY call.

When the MQZ_TERM_AUTHORITY call has completed, the queue
manager discards this data.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

426 MQSeries Programmable System Management

 MQZ_TERM_AUTHORITY – Terminate authorization service component

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

MQRC_TERMINATION_FAILED
(2287, X'8FF') Termination failed for an undefined reason.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

 Chapter 15. Installable services interface 427

 MQZ_TERM_AUTHORITY – Terminate authorization service component

 C invocation
MQZ_TERM_AUTHORITY (Hconfig, Options, QMgrName, ComponentData,
 &CompCode, &Reason);

Declare the parameters as follows:

MQHCONFIG Hconfig; /\ Configuration handle \/
MQLONG Options; /\ Termination options \/
MQCHAR48 QMgrName; /\ Queue manager name \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

428 MQSeries Programmable System Management

 MQZ_DELETE_NAME – Delete name from service

 MQZ_DELETE_NAME – Delete name from service
This function is provided by a name service component, and is invoked by the
queue manager to delete an entry for the specified queue.

The function identifier for this function (for MQZEP) is MQZID_DELETE_NAME.

MQZ_DELETE_NAME (QMgrName, QName, ComponentData, Continuation,
CompCode, Reason)

 Parameters
QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
name service interface does not require the component to make use of it
in any defined manner.

QName (MQCHAR48) – input
Queue name.

The name of the queue for which an entry is to be deleted. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_NAME call.

Continuation (MQLONG) – output
Continuation indicator set by component.

For MQZ_DELETE_NAME, the queue manager does not attempt to invoke
another component, whatever is returned in Continuation.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

 Chapter 15. Installable services interface 429

 MQZ_DELETE_NAME – Delete name from service

MQCC_OK
Successful completion.

MQCC_WARNING
Warning (partial completion).

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_WARNING:

MQRC_UNKNOWN_Q_NAME
(2288, X'8F0') Queue name not found.

Note: It may not be possible to return this code if the underlying
service simply responds with success for this case.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

430 MQSeries Programmable System Management

 MQZ_DELETE_NAME – Delete name from service

 C invocation
MQZ_DELETE_NAME (QMgrName, QName, ComponentData, &Continuation,
 &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /\ Queue manager name \/
MQCHAR48 QName; /\ Queue name \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Continuation; /\ Continuation indicator set by
 component \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 Chapter 15. Installable services interface 431

 MQZ_INIT_NAME – Initialize name service component

 MQZ_INIT_NAME – Initialize name service component
This function is provided by a name service component, and is invoked by the
queue manager during configuration of the component. It is expected to call
MQZEP in order to provide information to the queue manager.

The function identifier for this function (for MQZEP) is MQZID_INIT_NAME.

MQZ_INIT_NAME (Hconfig, Options, QMgrName, ComponentDataLength,
ComponentData, Version, CompCode, Reason)

 Parameters
Hconfig (MQHCONFIG) – input

Configuration handle.

This handle represents the particular component being initialized. It is to
be used by the component when calling the queue manager with the
MQZEP function.

Options (MQLONG) – input
Initialization options.

It is one of the following:

MQZIO_PRIMARY
Primary initialization.

MQZIO_SECONDARY
Secondary initialization.

QMgrName (MQCHAR48) – input
Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
name service interface does not require the component to make use of it
in any defined manner.

ComponentDataLength (MQLONG) – input
Length of component data.

Length in bytes of the ComponentData area. This length is defined in the
component configuration data.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This is initialized to all zeroes before calling the component’s primary
initialization function. This data is kept by the queue manager on behalf of
this particular component; any changes made to it by any of the functions
(including the initialization function) provided by this component are
preserved, and presented the next time one of this component’s functions
is called.

432 MQSeries Programmable System Management

 MQZ_INIT_NAME – Initialize name service component

Component data is in shared memory accessible to all processes.
Therefore primary initialization is the first process initialization and
secondary initialization is any subsequent process initialization.

Version (MQLONG) – input/output
Version number.

On input to the initialization function, this identifies the highest version
number that the queue manager supports. The initialization function must
change this, if necessary, to the version of the interface which it supports.
If on return the queue manager does not support the version returned by
the component, it calls the component’s MQZ_TERM_NAME function and
makes no further use of this component.

The following value is suppported:

MQZNS_VERSION_1
Version 1.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_INITIALIZATION_FAILED
(2286, X'8EE') Initialization failed for an undefined reason.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

 Chapter 15. Installable services interface 433

 MQZ_INIT_NAME – Initialize name service component

 C invocation
MQZ_INIT_NAME (Hconfig, Options, QMgrName, ComponentDataLength,

ComponentData, &Version, &CompCode, &Reason);

Declare the parameters as follows:

MQHCONFIG Hconfig; /\ Configuration handle \/
MQLONG Options; /\ Initialization options \/
MQCHAR48 QMgrName; /\ Queue manager name \/
MQLONG ComponentDataLength; /\ Length of component data \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Version; /\ Version number \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

434 MQSeries Programmable System Management

 MQZ_INSERT_NAME – Insert name in service

 MQZ_INSERT_NAME – Insert name in service
This function is provided by a name service component, and is invoked by the
queue manager to insert an entry for the specified queue, containing the name of
the queue manager that owns the queue. If the queue is already defined in the
service, the call fails.

The function identifier for this function (for MQZEP) is MQZID_INSERT_NAME.

MQZ_INSERT_NAME (QMgrName, QName, ResolvedQMgrName, ComponentData,
Continuation, CompCode, Reason)

 Parameters
QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
name service interface does not require the component to make use of it
in any defined manner.

QName (MQCHAR48) – input
Queue name.

The name of the queue for which an entry is to be inserted. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

ResolvedQMgrName (MQCHAR48) – input
Resolved queue manager name.

The name of the queue manager to which the queue resolves. This name
is padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_NAME call.

Continuation (MQLONG) – output
Continuation indicator set by component.

For MQZ_INSERT_NAME, the queue manager does not attempt to invoke
another component, whatever is returned in Continuation.

The following values can be specified:

 Chapter 15. Installable services interface 435

 MQZ_INSERT_NAME – Insert name in service

MQZCI_DEFAULT
Continuation dependent on queue manager.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_Q_ALREADY_EXISTS
(2290, X'8F2') Queue object already exists.

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

436 MQSeries Programmable System Management

 MQZ_INSERT_NAME – Insert name in service

 C invocation
MQZ_INSERT_NAME (QMgrName, QName, ResolvedQMgrName, ComponentData,

&Continuation, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /\ Queue manager name \/
MQCHAR48 QName; /\ Queue name \/
MQCHAR48 ResolvedQMgrName; /\ Resolved queue manager name \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Continuation; /\ Continuation indicator set by
 component \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 Chapter 15. Installable services interface 437

 MQZ_LOOKUP_NAME – Lookup name in service

 MQZ_LOOKUP_NAME – Lookup name in service
This function is provided by a name service component, and is invoked by the
queue manager to retrieve the name of the owning queue manager, for a specified
queue.

The function identifier for this function (for MQZEP) is MQZID_LOOKUP_NAME.

MQZ_LOOKUP_NAME (QMgrName, QName, ResolvedQMgrName, ComponentData,
Continuation, CompCode, Reason)

 Parameters
QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
name service interface does not require the component to make use of it
in any defined manner.

QName (MQCHAR48) – input
Queue name.

The name of the queue which is to be resolved. This name is padded
with blanks to the full length of the parameter; the name is not terminated
by a null character.

ResolvedQMgrName (MQCHAR48) – output
Resolved queue manager name.

If the function completes successfully, this is the name of the queue
manager that owns the queue.

The name returned by the service component must be padded on the right
with blanks to the full length of the parameter; the name must not be
terminated by a null character, or contain leading or embedded blanks.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

Component data is in shared memory accessible to all processes.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_NAME call.

438 MQSeries Programmable System Management

 MQZ_LOOKUP_NAME – Lookup name in service

Continuation (MQLONG) – output
Continuation indicator set by component.

For MQZ_LOOKUP_NAME, the queue manager decides whether to invoke
another name service component, as follows:

� If CompCode is MQCC_OK, no further components are invoked,
whatever value is returned in Continuation.

� If CompCode is not MQCC_OK, a further component is invoked, unless
Continuation is MQZCI_STOP. This value should not be set without
good reason.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

MQRC_UNKNOWN_Q_NAME
(2288, X'8F0') Queue name not found.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

 Chapter 15. Installable services interface 439

 MQZ_LOOKUP_NAME – Lookup name in service

 C invocation
MQZ_LOOKUP_NAME (QMgrName, QName, ResolvedQMgrName, ComponentData,

&Continuation, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /\ Queue manager name \/
MQCHAR48 QName; /\ Queue name \/
MQCHAR48 ResolvedQMgrName; /\ Resolved queue manager name \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Continuation; /\ Continuation indicator set by
 component \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

440 MQSeries Programmable System Management

 MQZ_TERM_NAME – Terminate name service component

 MQZ_TERM_NAME – Terminate name service component
This function is provided by a name service component, and is invoked by the
queue manager when it no longer requires the services of this component. The
function must perform any cleanup required by the component.

The function identifier for this function (for MQZEP) is MQZID_TERM_NAME.

MQZ_TERM_NAME (Hconfig, Options, QMgrName, ComponentData, CompCode,
Reason)

 Parameters
Hconfig (MQHCONFIG) – input

Configuration handle.

This handle represents the particular component being terminated.

Options (MQLONG) – input
Termination options.

It is one of the following:

MQZTO_PRIMARY
Primary termination.

MQZTO_SECONDARY
Secondary termination.

QMgrName (MQCHAR48) – input
Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
name service interface does not require the component to make use of it
in any defined manner.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

Component data is in shared memory accessible to all processes.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter on the MQZ_INIT_NAME call.

When the MQZ_TERM_NAME call has completed, the queue manager
discards this data.

 Chapter 15. Installable services interface 441

 MQZ_TERM_NAME – Terminate name service component

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

MQRC_TERMINATION_FAILED
(2287, X'8FF') Termination failed for an undefined reason.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

442 MQSeries Programmable System Management

 MQZ_TERM_NAME – Terminate name service component

 C invocation
MQZ_TERM_NAME (Hconfig, Options, QMgrName, ComponentData, &CompCode,
 &Reason);

Declare the parameters as follows:

MQHCONFIG Hconfig; /\ Configuration handle \/
MQLONG Options; /\ Termination options \/
MQCHAR48 QMgrName; /\ Queue manager name \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 Chapter 15. Installable services interface 443

 MQZ_FIND_USERID – Find user ID

 MQZ_FIND_USERID – Find user ID
This function is provided by a user ID service component, and is invoked by the
queue manager to find the user ID, and optionally the password, to be associated
with an application, when the application issues an MQCONN call.

The function identifier for this function (for MQZEP) is MQZID_FIND_USERID.

MQZ_FIND_USERID (QMgrName, Userid, Password, ComponentData,
Continuation, CompCode, Reason)

 Parameters
QMgrName (MQCHAR48) – input

Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
user ID service interface does not require the component to make use of it
in any defined manner.

Userid (MQCHAR12) – output
User identifier.

The user identifier to be associated with this application. The value
returned by the service component must be padded on the right with
blanks to the full length of the parameter; the value must not be terminated
by a null character.

Password (MQCHAR12) – output
Password.

The password associated with the user identifier. The value returned by
the service component must be padded on the right with blanks to the full
length of the parameter; the value must not be terminated by a null
character.

If it is not necessary to return a password, the parameter should be set to
blanks.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter of the MQZ_INIT_USERID call.

444 MQSeries Programmable System Management

 MQZ_FIND_USERID – Find user ID

Continuation (MQLONG) – output
Continuation indicator set by component.

The following values can be specified:

MQZCI_DEFAULT
Continuation dependent on queue manager.

For MQZ_FIND_USERID this has the same effect as
MQZCI_CONTINUE.

MQZCI_CONTINUE
Continue with next component.

MQZCI_STOP
Do not continue with next component.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_ERROR
(2289, X'8F1') Unexpected error occurred accessing service.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

MQRC_USER_ID_NOT_AVAILABLE
(2291, X'8F3') Unable to determine the user ID.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

 Chapter 15. Installable services interface 445

 MQZ_FIND_USERID – Find user ID

 C invocation
MQZ_FIND_USERID (QMgrName, Userid, Password, ComponentData,

&Continuation, &CompCode, &Reason);

Declare the parameters as follows:

MQCHAR48 QMgrName; /\ Queue manager name \/
MQCHAR12 Userid; /\ User identifier \/
MQCHAR12 Password; /\ Password \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Continuation; /\ Continuation indicator set by
 component \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

446 MQSeries Programmable System Management

 MQZ_INIT_USERID – Initialize user identifier service component

 MQZ_INIT_USERID – Initialize user identifier service component
This function is provided by a user ID service component, and is invoked by the
queue manager during configuration of the component. It is expected to call
MQZEP in order to provide information to the queue manager.

MQZ_INIT_USERID (Hconfig, Options, QMgrName, ComponentDataLength,
ComponentData, Version, CompCode, Reason)

 Parameters
Hconfig (MQHCONFIG) – input

Configuration handle.

This handle represents the particular component being initialized. It is to
be used by the component when calling the queue manager with the
MQZEP function.

Options (MQLONG) – input
Initialization options.

It always has the following value:

MQZIO_PRIMARY
Primary initialization.

QMgrName (MQCHAR48) – input
Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
user identifier service interface does not require the component to make
use of it in any defined manner.

ComponentDataLength (MQLONG) – input
Length of component data.

Length in bytes of the ComponentData area. This length is defined in the
component configuration data.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This is initialized to all zeroes before calling the component’s primary
initialization function. This data is kept by the queue manager on behalf of
this particular component; any changes made to it by any of the functions
(including the initialization function) provided by this component are
preserved, and presented the next time one of this component’s functions
is called.

Version (MQLONG) – input/output
Version number.

On input to the initialization function, this identifies the highest version
number that the queue manager supports. The initialization function must

 Chapter 15. Installable services interface 447

 MQZ_INIT_USERID – Initialize user identifier service component

change this, if necessary, to the version of the interface which it supports.
If on return the queue manager does not support the version returned by
the component, it calls the component’s MQZ_TERM_USERID function
and makes no further use of this component.

The following value is suppported:

MQZUS_VERSION_1
Version 1.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_INITIALIZATION_FAILED
(2286, X'8EE') Initialization failed for an undefined reason.

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

448 MQSeries Programmable System Management

 MQZ_INIT_USERID – Initialize user identifier service component

 C invocation
MQZ_INIT_USERID (Hconfig, Options, QMgrName, ComponentDataLength,

ComponentData, &Version, &CompCode,
 &Reason);

Declare the parameters as follows:

MQHCONFIG Hconfig; /\ Configuration handle \/
MQLONG Options; /\ Initialization options \/
MQCHAR48 QMgrName; /\ Queue manager name \/
MQLONG ComponentDataLength; /\ Length of component data \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG Version; /\ Version number \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

 Chapter 15. Installable services interface 449

 MQZ_TERM_USERID – Terminate user identifier service component

 MQZ_TERM_USERID – Terminate user identifier service component
This function is provided by a user identifier service component, and is invoked by
the queue manager when it no longer requires the services of this component. The
function must perform any cleanup required by the component.

The function identifier for this function (for MQZEP) is MQZID_TERM_USERID.

MQZ_TERM_USERID (Hconfig, Options, QMgrName, ComponentData,
CompCode, Reason)

 Parameters
Hconfig (MQHCONFIG) – input

Configuration handle.

This handle represents the particular component being terminated.

Options (MQLONG) – input
Termination options.

This always has the following value:

MQZTO_PRIMARY
Primary termination.

QMgrName (MQCHAR48) – input
Queue manager name.

The name of the queue manager calling the component. This name is
padded with blanks to the full length of the parameter; the name is not
terminated by a null character.

The queue-manager name is passed to the component for information; the
user ID service interface does not require the component to make use of it
in any defined manner.

ComponentData (MQBYTE×ComponentDataLength) – input/output
Component data.

This data is kept by the queue manager on behalf of this particular
component; any changes made to it by any of the functions provided by
this component are preserved, and presented the next time one of this
component’s functions is called.

The length of this data area is passed by the queue manager in the
ComponentDataLength parameter on the MQZ_INIT_USERID call.

When the MQZ_TERM_USERID call has completed, the queue manager
discards this data.

CompCode (MQLONG) – output
Completion code.

It is one of the following:

MQCC_OK
Successful completion.

450 MQSeries Programmable System Management

 MQZ_TERM_USERID – Terminate user identifier service component

MQCC_FAILED
Call failed.

Reason (MQLONG) – output
Reason code qualifying CompCode.

If CompCode is MQCC_OK:

MQRC_NONE
(0, X'000') No reason to report.

If CompCode is MQCC_FAILED:

MQRC_SERVICE_NOT_AVAILABLE
(2285, X'8ED') Underlying service not available.

MQRC_TERMINATION_FAILED
(2287, X'8FF') Termination failed for an undefined reason.

For more information on these reason codes, see the MQSeries
Application Programming Reference.

 Chapter 15. Installable services interface 451

 MQZ_TERM_USERID – Terminate user identifier service component

 C invocation
MQZ_TERM_USERID (Hconfig, Options, QMgrName, ComponentData,
 &CompCode, &Reason);

Declare the parameters as follows:

MQHCONFIG Hconfig; /\ Configuration handle \/
MQLONG Options; /\ Termination options \/
MQCHAR48 QMgrName; /\ Queue manager name \/
MQBYTE ComponentData[n]; /\ Component data \/
MQLONG CompCode; /\ Completion code \/
MQLONG Reason; /\ Reason code qualifying CompCode \/

452 MQSeries Programmable System Management

 Part 4. Appendixes

Appendix A. Error codes . 455
Completion code . 455
Reason code . 455

Appendix B. Constants . 473
List of constants . 473

Appendix C. Header, COPY, and INCLUDE files 485
C header files . 485
COBOL COPY files . 485
PL/I INCLUDE files . 486
System/390 Assembler COPY files . 486

Appendix D. Notices . 489
Programming interface information . 489
Trademarks . 490

 Copyright IBM Corp. 1994,1998 453

454 MQSeries Programmable System Management

 Error codes

 Appendix A. Error codes

This book contains the return codes associated with PCFs. The return codes
associated with the Application Programming Interface (API) are listed in the
MQSeries Application Programming Reference.

For each command message a completion code and a reason code are set by the
command server to indicate success or failure.

Applications must not depend upon errors being checked for in a specific order,
except where specifically noted. If more than one completion code or reason code
could arise from a call, the particular error reported depends on the implementation.

In the descriptions that follow, references to a remote system mean a system that
is remote from the system to which the command was issued.

 Completion code
This is returned in the CompCode field of the MQCFH – PCF header of the response
message. The following are the completion codes:

MQCC_OK
Command completed successfully.

MQCC_WARNING
Command completed with warning.

MQCC_FAILED
Command failed.

MQCC_UNKNOWN
Whether command succeeded is not known.

The initial value of this field is MQCC_OK.

 Reason code
This is returned in the Reason field of the MQCFH – PCF header of the response
message. The reason code is a qualification to the CompCode.

If there is no special reason to report, MQRC_NONE is returned. Typically, a
successful call returns MQCC_OK and MQRC_NONE.

If the CompCode is either MQCC_WARNING or MQCC_FAILED, the command
server always reports a qualifying reason.

Reason codes are returned with MQCC_FAILED unless otherwise stated.

Descriptions of the MQRC_* error codes are given in the MQSeries Application
Programming Reference. The following is a list, in alphabetic order, of the
MQRCCF_* reason codes:

 Copyright IBM Corp. 1994,1998 455

 Error codes

MQRCCF_ALLOCATE_FAILED
Allocation failed.

An attempt to allocate a conversation to a remote system failed. The error
may be due to an invalid entry in the channel definition, or it may be that the
listening program at the remote system is not running.

Corrective action: Ensure that the channel definition is correct, and start the
listening program if necessary. If the error persists, consult your systems
administrator.

MQRCCF_ATTR_VALUE_ERROR
Attribute value not valid.

One or more of the attribute values specified was not valid. The error
response message contains the failing attribute selectors (with parameter
identifier MQIACF_PARAMETER_ID).

Corrective action: Specify only valid attribute values.

MQRCCF_BATCH_INT_ERROR
Batch interval not valid.

The batch interval specified was not valid.

Corrective action: Specify a valid batch interval value.

MQRCCF_BATCH_INT_WRONG_TYPE
Batch interval parameter not allowed for this channel type.

The BatchInterval parameter is allowed only for sender and server channels.

Corrective action: Remove the parameter.

MQRCCF_BATCH_SIZE_ERROR
Batch size not valid.

The batch size specified was not valid.

Corrective action: Specify a valid batch size value.

MQRCCF_BIND_FAILED
Bind failed.

The bind to a remote system during session negotiation has failed.

Corrective action: Consult your systems administrator.

MQRCCF_CCSID_ERROR
Coded character-set identifier error.

In a command message, one of the following occurred:

� The CodedCharSetId field in the message descriptor of the command does
not match the coded character-set identifier of the queue manager at
which the command is being processed, or

� The CodedCharSetId field in a string parameter structure within the
message text of the command is not

 – MQCCSI_DEFAULT, or
– the coded character-set identifier of the queue manager at which the

command is being processed, as in the CodedCharSetId field in the
message descriptor.

The error response message contains the correct value.

456 MQSeries Programmable System Management

 Error codes

This reason can also occur if a ping cannot be performed because the coded
character-set identifiers are not compatible. In this case the correct value is
not returned.

Corrective action: Construct the command with the correct coded
character-set identifier, and specify this in the message descriptor when
sending the command. For ping, use a suitable coded character-set identifier.

MQRCCF_CELL_DIR_NOT_AVAILABLE
Cell directory is not available.

The Scope attribute of the queue is to be MQSCO_CELL, but no name service
supporting a cell directory has been configured.

Corrective action: Configure the queue manager with a suitable name service.

MQRCCF_CFH_COMMAND_ERROR
Command identifier not valid.

The MQCFH Command field value was not valid.

Corrective action: Specify a valid command identifier.

MQRCCF_CFH_CONTROL_ERROR
Control option not valid.

The MQCFH Control field value was not valid.

Corrective action: Specify a valid control option.

MQRCCF_CFH_LENGTH_ERROR
Structure length not valid.

The MQCFH StrucLength field value was not valid.

Corrective action: Specify a valid structure length.

MQRCCF_CFH_MSG_SEQ_NUMBER_ERR
Message sequence number not valid.

The MQCFH MsgSeqNumber field value was not valid.

Corrective action: Specify a valid message sequence number.

MQRCCF_CFH_PARM_COUNT_ERROR
Parameter count not valid.

The MQCFH ParameterCount field value was not valid.

Corrective action: Specify a valid parameter count.

MQRCCF_CFH_TYPE_ERROR
Type not valid.

The MQCFH Type field value was not valid.

Corrective action: Specify a valid type.

MQRCCF_CFH_VERSION_ERROR
Structure version number is not valid.

The MQCFH Version field value was not valid.

Corrective action: Specify a valid structure version number.

 Appendix A. Error codes 457

 Error codes

MQRCCF_CFIL_COUNT_ERROR
Count of parameter values not valid.

The MQCFIL Count field value was not valid.

Corrective action: Specify a valid count of parameter values.

MQRCCF_CFIL_DUPLICATE_VALUE
Duplicate parameter.

In the MQCFIL structure, a duplicate parameter was detected in the list
selector.

Corrective action: Check for and remove duplicate parameters.

MQRCCF_CFIL_LENGTH_ERROR
Structure length not valid.

The MQCFIL StrucLength field value was not valid.

Corrective action: Specify a valid structure length.

MQRCCF_CFIL_PARM_ID_ERROR
Parameter identifier is not valid.

The MQCFIL Parameter field value was not valid.

Corrective action: Specify a valid parameter identifier.

MQRCCF_CFIN_DUPLICATE_PARM
Duplicate parameter.

A MQCFIN duplicate parameter was detected.

Corrective action: Check for and remove duplicate parameters.

MQRCCF_CFIN_LENGTH_ERROR
Structure length not valid.

The MQCFIN StrucLength field value was not valid.

Corrective action: Specify a valid structure length.

MQRCCF_CFIN_PARM_ID_ERROR
Parameter identifier is not valid.

The MQCFIN Parameter field value was not valid.

Corrective action: Specify a valid parameter identifier.

MQRCCF_CFSL_DUPLICATE_PARM
Duplicate parameter.

A MQCFSL duplicate parameter was detected.

Corrective action: Check for and remove duplicate parameters.

This reason can occur if the same parameter is repeated with an MQCFST
structure followed by an MQCFSL structure.

MQRCCF_CFSL_TOTAL_LENGTH_ERROR
Total string length error.

The total length of the strings (not including trailing blanks) in a MQCFSL
structure exceeds the maximum allowable for the parameter.

Corrective action: Check that the structure has been specified correctly, and if
so reduce the number of strings.

458 MQSeries Programmable System Management

 Error codes

MQRCCF_CFST_DUPLICATE_PARM
Duplicate parameter.

A MQCFST duplicate parameter was detected.

Corrective action: Check for and remove duplicate parameters.

This reason can occur if the same parameter is repeated with an MQCFSL
structure followed by an MQCFST structure.

MQRCCF_CFST_LENGTH_ERROR
Structure length not valid.

The MQCFST StrucLength field value was not valid. The value was not a
multiple of four or was inconsistent with the MQCFST StringLength field
value.

Corrective action: Specify a valid structure length.

MQRCCF_CFST_PARM_ID_ERROR
Parameter identifier is not valid.

The MQCFST Parameter field value was not valid.

Corrective action: Specify a valid parameter identifier.

MQRCCF_CFST_STRING_LENGTH_ERR
String length not valid.

The MQCFST StringLength field value was not valid. The value was
negative or greater than the maximum permitted length of the parameter
specified in the Parameter field.

Corrective action: Specify a valid string length for the parameter.

MQRCCF_CHAD_ERROR
Channel automatic definition error.

The ChannelAutoDef value was not valid.

Corrective action: Specify MQCHAD_ENABLED or MQCHAD_DISABLED.

MQRCCF_CHAD_EVENT_ERROR
Channel automatic definition event error.

The ChannelAutoDefEvent value was not valid.

Corrective action: Specify MQEVR_ENABLED or MQEVR_DISABLED.

MQRCCF_CHAD_EVENT_WRONG_TYPE
Channel automatic definition event parameter not allowed for this channel
type.

The ChannelAutoDefEvent parameter is allowed only for receiver and
server-connection channels.

Corrective action: Remove the parameter.

MQRCCF_CHAD_EXIT_ERROR
Channel automatic definition exit name error.

The ChannelAutoDefExit value contained characters that are not allowed for
program names on the platform in question.

Corrective action: Specify a valid name.

 Appendix A. Error codes 459

 Error codes

MQRCCF_CHAD_EXIT_WRONG_TYPE
Channel automatic definition exit parameter not allowed for this channel type.

The ChannelAutoDefExit parameter is allowed only for receiver and
server-connection channels.

Corrective action: Remove the parameter.

MQRCCF_CHAD_WRONG_TYPE
Channel automatic definition parameter not allowed for this channel type.

The ChannelAutoDef parameter is allowed only for receiver and
server-connection channels.

Corrective action: Remove the parameter.

MQRCCF_CHANNEL_ALREADY_EXISTS
Channel already exists.

An attempt was made to create a channel but the channel already existed
and Replace was not specified as MQRP_YES.

Corrective action: Specify Replace as MQRP_YES or use a different name for
the channel to be created.

MQRCCF_CHANNEL_DISABLED
Channel disabled.

An attempt was made to use a channel, but the channel was disabled.

Corrective action: Start the channel.

MQRCCF_CHANNEL_IN_USE
Channel in use.

An attempt was made to perform an operation on a channel, but the channel
is currently active.

Corrective action: Stop the channel or wait for it to terminate.

MQRCCF_CHANNEL_INDOUBT
Channel in-doubt.

The requested operation cannot complete because the channel is in doubt.

Corrective action: Examine the status of the channel, and either restart a
channel to resolve the in-doubt state, or resolve the channel.

MQRCCF_CHANNEL_NAME_ERROR
Channel name error.

The ChannelName parameter contained characters that are not allowed for
channel names.

Corrective action: Specify a valid name.

MQRCCF_CHANNEL_NOT_ACTIVE
Channel not active.

An attempt was made to stop a channel, but the channel was already
stopped.

Corrective action: No action is required.

460 MQSeries Programmable System Management

 Error codes

MQRCCF_CHANNEL_NOT_FOUND
Channel not found.

The channel specified does not exist.

Corrective action: Specify the name of a channel which exists.

MQRCCF_CHANNEL_TABLE_ERROR
Channel table value not valid.

The ChannelTable specified was not valid, or was not appropriate for the
channel type specified on an Inquire Channel or Inquire Channel Names
command.

Corrective action: Specify a valid channel table value.

MQRCCF_CHANNEL_TYPE_ERROR
Channel type not valid.

The ChannelType specified was not valid, or did not match the type of an
existing channel being copied, changed or replaced.

Corrective action: Specify a valid channel type.

MQRCCF_CHL_INST_TYPE_ERROR
Channel instance type not valid.

The ChannelInstanceType specified was not valid.

Corrective action: Specify a valid channel instance type.

MQRCCF_CHL_STATUS_NOT_FOUND
Channel status not found.

For Inquire Channel Status, no channel status is available for the specified
channel. This may indicate that the channel has not been used.

Corrective action: None, unless this is unexpected, in which case consult your
systems administrator.

MQRCCF_COMMAND_FAILED
Command failed.

The command has failed.

Corrective action: Refer to the previous error messages for this command.

MQRCCF_COMMIT_FAILED
Commit failed.

An error was received when an attempt was made to commit a unit of work.

Corrective action: Consult your systems administrator.

MQRCCF_CONFIGURATION_ERROR
Configuration error.

A configuration error was detected in the channel definition or communication
subsystem, and allocation of a conversation was not possible. This may be
caused by one of the following:

� For LU 6.2, either the ModeName or the TpName is incorrect. The ModeName
must match that on the remote system, and the TpName must be specified.
(On OS/400, these are held in the communications Side Object.)

� For LU 6.2, the session may not be established.

 Appendix A. Error codes 461

 Error codes

� For TCP/IP, the ConnectionName in the channel definition cannot be
resolved to a network address. This may be because the name has not
been correctly specified, or because the name server is not available.

Corrective action: Identify the error and take appropriate action.

MQRCCF_CONN_NAME_ERROR
Error in connection name parameter.

The ConnectionName parameter contains one or more blanks at the start of the
name.

Corrective action: Specify a valid connection name.

MQRCCF_CONNECTION_CLOSED
Connection closed.

An error occurred while receiving data from a remote system. The connection
to the remote system has unexpectedly terminated.

Corrective action: Contact your systems administrator.

MQRCCF_CONNECTION_REFUSED
Connection refused.

The attempt to establish a connection to a remote system was rejected. The
remote system might not be configured to allow a connection from this
system.

� For LU 6.2 either the user ID or the password supplied to the remote
system is incorrect.

� For TCP/IP the remote system may not recognize the local system as
valid, or the TCP/IP listener program may not be started.

Corrective action: Correct the error or restart the listener program.

MQRCCF_DATA_CONV_VALUE_ERROR
Data conversion value not valid.

The value specified for DataConversion is not valid.

Corrective action: Specify a valid value.

MQRCCF_DATA_TOO_LARGE
Data too large.

The data to be sent exceeds the maximum that can be supported for the
command.

Corrective action: Reduce the size of the data.

MQRCCF_DISC_INT_ERROR
Disconnection interval not valid.

The disconnection interval specified was not valid.

Corrective action: Specify a valid disconnection interval.

MQRCCF_DISC_INT_WRONG_TYPE
Disconnection interval not allowed for this channel type.

The DiscInterval parameter is only allowed for sender or server channel
types.

Corrective action: Remove the parameter.

462 MQSeries Programmable System Management

 Error codes

MQRCCF_DYNAMIC_Q_SCOPE_ERROR
Dynamic queue scope error.

The Scope attribute of the queue is to be MQSCO_CELL, but this is not
allowed for a dynamic queue.

Corrective action: Predefine the queue if it is to have cell scope.

MQRCCF_ENCODING_ERROR
Encoding error.

The Encoding field in the message descriptor of the command does not match
that required for the platform at which the command is being processed.

Corrective action: Construct the command with the correct encoding, and
specify this in the message descriptor when sending the command.

MQRCCF_ENTRY_ERROR
Invalid connection name.

The connection name in the channel definition could not be resolved into a
network address. Either the name server does not contain the entry, or the
name server was not available.

Corrective action: Ensure that the connection name is correctly specified and
that the name server is available.

MQRCCF_ESCAPE_TYPE_ERROR
Escape type not valid.

The value specified for EscapeType is not valid.

Corrective action: Specify a valid value.

MQRCCF_FORCE_VALUE_ERROR
Force value not valid.

The force value specified was not valid.

Corrective action: Specify a valid force value.

MQRCCF_HB_INTERVAL_ERROR
Heartbeat interval not valid.

The HeartbeatInterval value was not valid.

Corrective action: Specify a value in the range 0-999 999.

MQRCCF_HB_INTERVAL_WRONG_TYPE
Heartbeat interval parameter not allowed for this channel type.

The HeartbeatInterval parameter is allowed only for receiver and requester
channels.

Corrective action: Remove the parameter.

MQRCCF_HOST_NOT_AVAILABLE
Remote system not available.

An attempt to allocate a conversation to a remote system was unsuccessful.
The error may be transitory, and the allocate may succeed later.

This reason can occur if the listening program at the remote system is not
running.

Corrective action: Ensure that the listening program is running, and retry the
operation.

 Appendix A. Error codes 463

 Error codes

MQRCCF_INDOUBT_VALUE_ERROR
In-doubt value not valid.

The value specified for InDoubt is not valid.

Corrective action: Specify a valid value.

MQRCCF_LIKE_OBJECT_WRONG_TYPE
New and existing objects have different type.

An attempt was made to create an object based on the definition of an
existing object, but the new and existing objects had different types.

Corrective action: Ensure that the new object has the same type as the one
on which it is based.

MQRCCF_LISTENER_NOT_STARTED
Listener not started.

The listener program could not be started. Either the communications
subsystem has not been started or there are too many jobs waiting in the
queue.

Corrective action: Ensure the communications subsystem is started or retry
the operation later.

MQRCCF_LONG_RETRY_ERROR
Long retry count not valid.

The long retry count value specified was not valid.

Corrective action: Specify a valid long retry count value.

MQRCCF_LONG_RETRY_WRONG_TYPE
Long retry parameter not allowed for this channel type.

The LongRetryCount parameter is only allowed for sender or server channel
types.

Corrective action: Remove the parameter.

MQRCCF_LONG_TIMER_ERROR
Long timer not valid.

The long timer (long retry wait interval) value specified was not valid.

Corrective action: Specify a valid long timer value.

MQRCCF_LONG_TIMER_WRONG_TYPE
Long timer parameter not allowed for this channel type.

The LongRetryInterval parameter is only allowed for sender or server
channel types.

Corrective action: Remove the parameter.

MQRCCF_MAX_MSG_LENGTH_ERROR
Maximum message length not valid.

The maximum message length value specified was not valid.

Corrective action: Specify a valid maximum message length.

464 MQSeries Programmable System Management

 Error codes

MQRCCF_MCA_NAME_ERROR
Message channel agent name error.

The MCAName value contained characters that are not allowed for program
names on the platform in question.

Corrective action: Specify a valid name.

MQRCCF_MCA_NAME_WRONG_TYPE
Message channel agent name not allowed for this channel type.

The MCAName parameter is only allowed for sender, server or requester
channel types.

Corrective action: Remove the parameter.

MQRCCF_MCA_TYPE_ERROR
Message channel agent type not valid.

The MCAType value specified was not valid.

Corrective action: Specify a valid value.

MQRCCF_MD_FORMAT_ERROR
Format not valid.

The MQMD Format field value was not MQFMT_ADMIN.

Corrective action: Specify the valid format.

MQRCCF_MISSING_CONN_NAME
Connection name parameter required but missing.

The ConnectionName parameter is required for sender or requester channel
types, but is not present.

Corrective action: Add the parameter.

MQRCCF_MQCONN_FAILED
MQCONN call failed.

Corrective action: Check whether the queue manager is active.

MQRCCF_MQGET_FAILED
MQGET call failed.

Corrective action: Check whether the queue manager is active, and the
queues involved are correctly set up, and enabled for MQGET.

MQRCCF_MQINQ_FAILED
MQINQ call failed.

Corrective action: Check whether the queue manager is active.

MQRCCF_MQOPEN_FAILED
MQOPEN call failed.

Corrective action: Check whether the queue manager is active, and the
queues involved are correctly set up.

MQRCCF_MQPUT_FAILED
MQPUT call failed.

Corrective action: Check whether the queue manager is active, and the
queues involved are correctly set up, and not inhibited for puts.

 Appendix A. Error codes 465

 Error codes

MQRCCF_MQSET_FAILED
MQSET call failed.

Corrective action: Check whether the queue manager is active.

MQRCCF_MR_COUNT_ERROR
Message retry count not valid.

The MsgRetryCount value was not valid.

Corrective action: Specify a value in the range 0-999 999 999.

MQRCCF_MR_COUNT_WRONG_TYPE
Message-retry count parameter not allowed for this channel type.

The MsgRetryCount parameter is allowed only for receiver and requester
channels.

Corrective action: Remove the parameter.

MQRCCF_MR_EXIT_NAME_ERROR
Channel message-retry exit name error.

The MsgRetryExit value contained characters that are not allowed for
program names on the platform in question.

Corrective action: Specify a valid name.

MQRCCF_MR_EXIT_NAME_WRONG_TYPE
Message-retry exit parameter not allowed for this channel type.

The MsgRetryExit parameter is allowed only for receiver and requester
channels.

Corrective action: Remove the parameter.

MQRCCF_MR_INTERVAL_ERROR
Message retry interval not valid.

The MsgRetryInterval value was not valid.

Corrective action: Specify a value in the range 0-999 999 999.

MQRCCF_MR_INTERVAL_WRONG_TYPE
Message-retry interval parameter not allowed for this channel type.

The MsgRetryInterval parameter is allowed only for receiver and requester
channels.

Corrective action: Remove the parameter.

MQRCCF_MSG_EXIT_NAME_ERROR
Channel message exit name error.

The MsgExit value contained characters that are not allowed for program
names on the platform in question.

Corrective action: Specify a valid name.

MQRCCF_MSG_LENGTH_ERROR
Message length not valid.

A message length error was detected. The message data length was
inconsistent with the length implied by the parameters in the message, or a
positional parameter was out of sequence.

466 MQSeries Programmable System Management

 Error codes

Corrective action: Specify a valid message length, and check that positional
parameters are in the correct sequence.

MQRCCF_MSG_SEQ_NUMBER_ERROR
Message sequence number not valid.

The message sequence number parameter value was not valid.

Corrective action: Specify a valid message sequence number.

MQRCCF_MSG_TRUNCATED
Message truncated.

The command server received a message that is larger than its maximum
valid message size.

Corrective action: Check the message contents are correct.

MQRCCF_NO_COMMS_MANAGER
Communications manager not available.

The communications subsystem is not available.

Corrective action: Ensure that the communications subsystem has been
started.

MQRCCF_NO_STORAGE
Not enough storage available.

Insufficient storage is available.

Corrective action: Consult your systems administrator.

MQRCCF_NOT_XMIT_Q
Queue is not a transmission queue.

The queue specified in the channel definition is not a transmission queue.

Corrective action: Ensure that the queue is specified correctly in the channel
definition, and that it is correctly defined to the queue manager.

MQRCCF_NPM_SPEED_ERROR
Nonpersistent message speed not valid.

The NonPersistentMsgSpeed value was not valid.

Corrective action: Specify MQNPMS_NORMAL or MQNPMS_FAST.

MQRCCF_NPM_SPEED_WRONG_TYPE
Nonpersistent message speed parameter not allowed for this channel type.

The NonPersistentMsgSpeed parameter is allowed only for sender, receiver,
server, and requester channels.

Corrective action: Remove the parameter.

MQRCCF_OBJECT_ALREADY_EXISTS
Object already exists.

An attempt was made to create an object, but the object already existed and
the Replace parameter was not specified as MQRP_YES.

Corrective action: Specify Replace as MQRP_YES, or use a different name for
the object to be created.

 Appendix A. Error codes 467

 Error codes

MQRCCF_OBJECT_NAME_ERROR
Object name not valid.

An object name was specified using characters that were not valid.

Corrective action: Specify only valid characters for the name.

MQRCCF_OBJECT_OPEN
Object is open.

An attempt was made to delete or change an object that was in use.

Corrective action: Wait until the object is not in use, and then retry the
operation. Alternatively specify Force as MQFC_YES for a change
command.

MQRCCF_OBJECT_WRONG_TYPE
Object has wrong type.

An attempt was made to replace a queue object with one of a different type.

Corrective action: Ensure that the new object is the same type as the one it is
replacing.

MQRCCF_PARM_COUNT_TOO_BIG
Parameter count too big.

The MQCFH ParameterCount field value was more than the maximum for the
command.

Corrective action: Specify a parameter count that is valid for the command.

MQRCCF_PARM_COUNT_TOO_SMALL
Parameter count too small.

The MQCFH ParameterCount field value was less than the minimum required
for the command.

Corrective action: Specify a parameter count that is valid for the command.

MQRCCF_PARM_SEQUENCE_ERROR
Parameter sequence not valid.

The sequence of parameters is not valid for this command.

Corrective action: Specify the positional parameters in a valid sequence for
the command.

MQRCCF_PING_DATA_COMPARE_ERROR
Ping Channel command failed.

The Ping Channel command failed with a data compare error. The data
offset that failed is returned in the message (with parameter identifier
MQIACF_ERROR_OFFSET).

Corrective action: Consult your systems administrator.

MQRCCF_PING_DATA_COUNT_ERROR
Data count not valid.

The Ping Channel DataCount value was not valid.

Corrective action: Specify a valid data count value.

468 MQSeries Programmable System Management

 Error codes

MQRCCF_PING_ERROR
Ping error.

A ping operation can only be issued for a sender or server channel. If the
local channel is a receiver channel, you must issue the ping from a remote
queue manager.

Corrective action: Reissue the ping request for a different channel of the
correct type, or for a receiver channel from a different queue manager.

MQRCCF_PURGE_VALUE_ERROR
Purge value not valid.

The Purge value was not valid.

Corrective action: Specify a valid purge value.

MQRCCF_PUT_AUTH_ERROR
Put authority value not valid.

The PutAuthority value was not valid.

Corrective action: Specify a valid authority value.

MQRCCF_PUT_AUTH_WRONG_TYPE
Put authority parameter not allowed for this channel type.

The PutAuthority parameter is only allowed for receiver or requester channel
types.

Corrective action: Remove the parameter.

MQRCCF_Q_ALREADY_IN_CELL
Queue already exists in cell.

An attempt was made to define a queue with cell scope, or to change the
scope of an existing queue from queue-manager scope to cell scope, but a
queue with that name already existed in the cell.

Corrective action: Do one of the following:

� Delete the existing queue and retry the operation.
� Change the scope of the existing queue from cell to queue-manager and

retry the operation.
� Create the new queue with a different name.

MQRCCF_Q_TYPE_ERROR
Queue type not valid.

The QType value was not valid.

Corrective action: Specify a valid queue type.

MQRCCF_Q_WRONG_TYPE
Action not valid for the queue of specified type.

An attempt was made to perform an action on a queue of the wrong type.

Corrective action: Specify a queue of the correct type.

MQRCCF_QUIESCE_VALUE_ERROR
Quiesce value not valid.

The Quiesce value was not valid.

Corrective action: Specify a valid quiesce value.

 Appendix A. Error codes 469

 Error codes

MQRCCF_RCV_EXIT_NAME_ERROR
Channel receive exit name error.

The ReceiveExit value contained characters that are not allowed for program
names on the platform in question.

Corrective action: Specify a valid name.

MQRCCF_RECEIVE_FAILED
Receive failed.

The receive operation failed.

Corrective action: Correct the error and retry the operation.

MQRCCF_RECEIVED_DATA_ERROR
Received data error.

An error occurred while receiving data from a remote system. This may be
caused by a communications failure.

Corrective action: Consult your systems administrator.

MQRCCF_REMOTE_QM_TERMINATING
Remote queue manager terminating.

The channel is ending because the remote queue manager is terminating.

Corrective action: Restart the remote queue manager.

MQRCCF_REMOTE_QM_UNAVAILABLE
Remote queue manager not available.

The channel cannot be started because the remote queue manager is not
available.

Corrective action: Start the remote queue manager.

MQRCCF_REPLACE_VALUE_ERROR
Replace value not valid.

The Replace value was not valid.

Corrective action: Specify a valid replace value.

MQRCCF_SEC_EXIT_NAME_ERROR
Channel security exit name error.

The SecurityExit value contained characters that are not allowed for
program names on the platform in question.

Corrective action: Specify a valid name.

MQRCCF_SEND_EXIT_NAME_ERROR
Channel send exit name error.

The SendExit value contained characters that are not allowed for program
names on the platform in question.

Corrective action: Specify a valid name.

MQRCCF_SEND_FAILED
Send failed.

An error occurred while sending data to a remote system. This may be
caused by a communications failure.

Corrective action: Consult your systems administrator.

470 MQSeries Programmable System Management

 Error codes

MQRCCF_SEQ_NUMBER_WRAP_ERROR
Sequence wrap number not valid.

The SeqNumberWrap value was not valid.

Corrective action: Specify a valid sequence wrap number.

MQRCCF_SHORT_RETRY_ERROR
Short retry count not valid.

The ShortRetryCount value was not valid.

Corrective action: Specify a valid short retry count value.

MQRCCF_SHORT_RETRY_WRONG_TYPE
Short retry parameter not allowed for this channel type.

The ShortRetryCount parameter is only allowed for sender or server channel
types.

Corrective action: Remove the parameter.

MQRCCF_SHORT_TIMER_ERROR
Short timer value not valid.

The ShortRetryInterval value was not valid.

Corrective action: Specify a valid short timer value.

MQRCCF_SHORT_TIMER_WRONG_TYPE
Short timer parameter not allowed for this channel type.

The ShortRetryInterval parameter is only allowed for sender or server
channel types.

Corrective action: Remove the parameter.

MQRCCF_STRUCTURE_TYPE_ERROR
Structure type not valid.

The structure Type value was not valid.

Corrective action: Specify a valid structure type.

MQRCCF_SUPPRESSED_BY_EXIT
Action suppressed by exit program.

An attempt was made to define a channel automatically, but this was inhibited
by the channel automatic definition exit. The AuxErrorDataInt1 parameter
contains the feedback code from the exit indicating why it inhibited the
channel definition.

Corrective action: Examine the value of the AuxErrorDataInt1 parameter, and
take any action that is appropriate.

MQRCCF_TERMINATED_BY_SEC_EXIT
Channel terminated by security exit.

A channel security exit terminated the channel.

Corrective action: Check that the channel is attempting to connect to the
correct queue manager, and if so that the security exit is specified correctly,
and is working correctly, at both ends.

 Appendix A. Error codes 471

 Error codes

MQRCCF_UNKNOWN_Q_MGR
Queue manager not known.

The queue manager specified was not known.

Corrective action: Specify the name of the queue manager to which the
command is sent, or blank.

MQRCCF_UNKNOWN_REMOTE_CHANNEL
Remote channel not known.

There is no definition of the referenced channel at the remote system.

Corrective action: Ensure that the local channel is correctly defined. If it is,
add an appropriate channel definition at the remote system.

MQRCCF_USER_EXIT_NOT_AVAILABLE
User exit not available.

The channel was terminated because the user exit specified does not exist.

Corrective action: Ensure that the user exit is correctly specified and the
program is available.

MQRCCF_XMIT_PROTOCOL_TYPE_ERR
Transmission protocol type not valid.

The TransportType value was not valid.

Corrective action: Specify a valid transmission protocol type.

MQRCCF_XMIT_Q_NAME_ERROR
Transmission queue name error.

The XmitQName parameter contains characters that are not allowed for queue
names.

This reason code also occurs if the parameter is not present when a sender
or server channel is being created, and no default value is available.

Corrective action: Specify a valid name, or add the parameter.

MQRCCF_XMIT_Q_NAME_WRONG_TYPE
Transmission queue name not allowed for this channel type.

The XmitQName parameter is only allowed for sender or server channel types.

Corrective action: Remove the parameter.

472 MQSeries Programmable System Management

 Constants

 Appendix B. Constants

This appendix specifies the values of the named constants that apply to events,
commands, responses, and installable services.

The constants are grouped according to the parameter or field to which they relate.
All of the names of the constants in a group begin with a common prefix of the form
“MQxxxx_”, where xxxx represents a string of 0 through 4 characters that indicates
the nature of the values defined in that group. The constants are ordered
alphabetically by the prefix.

Notes:

1. For constants with numeric values, the values are shown in both decimal and
hexadecimal forms.

2. Hexadecimal values are represented using the notation X'hhhh', where each
“h” denotes a single hexadecimal digit.

3. Character values are shown delimited by single quotation marks; the quotation
marks are not part of the value.

4. Blanks in character values are represented by one or more occurrences of the
symbol “␣”.

List of constants
The following sections list all of the named constants mentioned in this book, and
show their values.

MQ_* (Lengths of character string and byte fields)
MQ_ACCOUNTING_TOKEN_LENGTH 32 X'ðððððð2ð'
MQ_APPL_IDENTITY_DATA_LENGTH 32 X'ðððððð2ð'
MQ_APPL_NAME_LENGTH 28 X'ðððððð1C'
MQ_APPL_ORIGIN_DATA_LENGTH 4 X'ððððððð4'
MQ_AUTHENTICATOR_LENGTH 8 X'ððððððð8'
MQ_BRIDGE_NAME_LENGTH 24 X'ðððððð18'
MQ_CHANNEL_DATE_LENGTH 12 X'ðððððððC'
MQ_CHANNEL_DESC_LENGTH 64 X'ðððððð4ð'
MQ_CHANNEL_NAME_LENGTH 2ð X'ðððððð14'
MQ_CHANNEL_TIME_LENGTH 8 X'ððððððð8'
MQ_CONN_NAME_LENGTH 264 X'ððððð1ð8'
MQ_CORREL_ID_LENGTH 24 X'ðððððð18'
MQ_CREATION_DATE_LENGTH 12 X'ðððððððC'
MQ_CREATION_TIME_LENGTH 8 X'ððððððð8'
MQ_EXIT_DATA_LENGTH 32 X'ðððððð2ð'
MQ_EXIT_NAME_LENGTH (environment

specific)
MQ_EXIT_USER_AREA_LENGTH 16 X'ðððððð1ð'
MQ_FORMAT_LENGTH 8 X'ððððððð8'
MQ_LTERM_OVERRIDE_LENGTH 8 X'ððððððð8'
MQ_LUWID_LENGTH 16 X'ðððððð1ð'
MQ_MCA_JOB_NAME_LENGTH 28 X'ðððððð1C'
MQ_MCA_NAME_LENGTH 2ð X'ðððððð14'

 Copyright IBM Corp. 1994,1998 473

 Constants

MQ_MFS_MAP_NAME_LENGTH 8 X'ððððððð8'
MQ_MODE_NAME_LENGTH 8 X'ððððððð8'
MQ_MSG_HEADER_LENGTH 4ððð X'ðððððFAð'
MQ_MSG_ID_LENGTH 24 X'ðððððð18'
MQ_NAMELIST_DESC_LENGTH 64 X'ðððððð4ð'
MQ_NAMELIST_NAME_LENGTH 48 X'ðððððð3ð'
MQ_OBJECT_INSTANCE_ID_LENGTH 24 X'ðððððð18'
MQ_PASSWORD_LENGTH 12 X'ðððððððC'
MQ_PROCESS_APPL_ID_LENGTH 256 X'ððððð1ðð'
MQ_PROCESS_DESC_LENGTH 64 X'ðððððð4ð'
MQ_PROCESS_ENV_DATA_LENGTH 128 X'ðððððð8ð'
MQ_PROCESS_NAME_LENGTH 48 X'ðððððð3ð'
MQ_PROCESS_USER_DATA_LENGTH 128 X'ðððððð8ð'
MQ_PUT_APPL_NAME_LENGTH 28 X'ðððððð1C'
MQ_PUT_DATE_LENGTH 8 X'ððððððð8'
MQ_PUT_TIME_LENGTH 8 X'ððððððð8'
MQ_Q_DESC_LENGTH 64 X'ðððððð4ð'
MQ_Q_MGR_DESC_LENGTH 64 X'ðððððð4ð'
MQ_Q_MGR_NAME_LENGTH 48 X'ðððððð3ð'
MQ_Q_NAME_LENGTH 48 X'ðððððð3ð'
MQ_SHORT_CONN_NAME_LENGTH 2ð X'ðððððð14'
MQ_STORAGE_CLASS_LENGTH 8 X'ððððððð8'
MQ_TOTAL_EXIT_DATA_LENGTH 999 X'ððððð3E7'
MQ_TOTAL_EXIT_NAME_LENGTH 999 X'ððððð3E7'
MQ_TP_NAME_LENGTH 64 X'ðððððð4ð'
MQ_TRAN_INSTANCE_ID_LENGTH 16 X'ðððððð1ð'
MQ_TRIGGER_DATA_LENGTH 64 X'ðððððð4ð'
MQ_USER_ID_LENGTH 12 X'ðððððððC'

MQBT_* (Bridge type)
MQBT_OTMA 1 X'ððððððð1'

MQCACF_* (Character attribute command format parameter)
MQCACF_FIRST 3ðð1 X'ðððððBB9'
MQCACF_FROM_Q_NAME 3ðð1 X'ðððððBB9'
MQCACF_TO_Q_NAME 3ðð2 X'ðððððBBA'
MQCACF_FROM_PROCESS_NAME 3ðð3 X'ðððððBBB'
MQCACF_TO_PROCESS_NAME 3ðð4 X'ðððððBBC'
MQCACF_FROM_CHANNEL_NAME 3ðð7 X'ðððððBBF'
MQCACF_TO_CHANNEL_NAME 3ðð8 X'ðððððBCð'
MQCACF_Q_NAMES 3ð11 X'ðððððBC3'
MQCACF_PROCESS_NAMES 3ð12 X'ðððððBC4'
MQCACF_ESCAPE_TEXT 3ð14 X'ðððððBC6'
MQCACF_LOCAL_Q_NAMES 3ð15 X'ðððððBC7'
MQCACF_MODEL_Q_NAMES 3ð16 X'ðððððBC8'
MQCACF_ALIAS_Q_NAMES 3ð17 X'ðððððBC9'
MQCACF_REMOTE_Q_NAMES 3ð18 X'ðððððBCA'
MQCACF_SENDER_CHANNEL_NAMES 3ð19 X'ðððððBCB'
MQCACF_SERVER_CHANNEL_NAMES 3ð2ð X'ðððððBCC'
MQCACF_REQUESTER_CHANNEL_NAMES 3ð21 X'ðððððBCD'
MQCACF_RECEIVER_CHANNEL_NAMES 3ð22 X'ðððððBCE'
MQCACF_OBJECT_Q_MGR_NAME 3ð23 X'ðððððBCF'
MQCACF_APPL_NAME 3ð24 X'ðððððBDð'

474 MQSeries Programmable System Management

 Constants

MQCACF_USER_IDENTIFIER 3ð25 X'ðððððBD1'
MQCACF_AUX_ERROR_DATA_STR_1 3ð26 X'ðððððBD2'
MQCACF_AUX_ERROR_DATA_STR_2 3ð27 X'ðððððBD3'
MQCACF_AUX_ERROR_DATA_STR_3 3ð28 X'ðððððBD4'
MQCACF_BRIDGE_NAME 3ð29 X'ðððððBD5'
MQCACF_LAST_USED 3ð29 X'ðððððBD5'

MQCACH_* (Channel character attribute command format parameter)
MQCACH_FIRST 35ð1 X'ðððððDAD'
MQCACH_CHANNEL_NAME 35ð1 X'ðððððDAD'
MQCACH_DESC 35ð2 X'ðððððDAE'
MQCACH_MODE_NAME 35ð3 X'ðððððDAF'
MQCACH_TP_NAME 35ð4 X'ðððððDBð'
MQCACH_XMIT_Q_NAME 35ð5 X'ðððððDB1'
MQCACH_CONNECTION_NAME 35ð6 X'ðððððDB2'
MQCACH_MCA_NAME 35ð7 X'ðððððDB3'
MQCACH_SEC_EXIT_NAME 35ð8 X'ðððððDB4'
MQCACH_MSG_EXIT_NAME 35ð9 X'ðððððDB5'
MQCACH_SEND_EXIT_NAME 351ð X'ðððððDB6'
MQCACH_RCV_EXIT_NAME 3511 X'ðððððDB7'
MQCACH_CHANNEL_NAMES 3512 X'ðððððDB8'
MQCACH_SEC_EXIT_USER_DATA 3513 X'ðððððDB9'
MQCACH_MSG_EXIT_USER_DATA 3514 X'ðððððDBA'
MQCACH_SEND_EXIT_USER_DATA 3515 X'ðððððDBB'
MQCACH_RCV_EXIT_USER_DATA 3516 X'ðððððDBC'
MQCACH_USER_ID 3517 X'ðððððDBD'
MQCACH_PASSWORD 3518 X'ðððððDBE'
MQCACH_LAST_MSG_TIME 3524 X'ðððððDC4'
MQCACH_LAST_MSG_DATE 3525 X'ðððððDC5'
MQCACH_MCA_USER_ID 3527 X'ðððððDC7'
MQCACH_CHANNEL_START_TIME 3528 X'ðððððDC8'
MQCACH_CHANNEL_START_DATE 3529 X'ðððððDC9'
MQCACH_MCA_JOB_NAME 353ð X'ðððððDCA'
MQCACH_LAST_LUWID 3531 X'ðððððDCB'
MQCACH_CURRENT_LUWID 3532 X'ðððððDCC'
MQCACH_FORMAT_NAME 3533 X'ðððððDCD'
MQCACH_MR_EXIT_NAME 3534 X'ðððððDCE'
MQCACH_MR_EXIT_USER_DATA 3535 X'ðððððDCF'
MQCACH_LAST_USED (environment

specific)

MQCDC_* (Channel data conversion)
MQCDC_NO_SENDER_CONVERSION ð X'ðððððððð'
MQCDC_SENDER_CONVERSION 1 X'ððððððð1'

MQCFC_* (Command format control options)
MQCFC_NOT_LAST ð X'ðððððððð'
MQCFC_LAST 1 X'ððððððð1'

 Appendix B. Constants 475

 Constants

MQCFH_* (Command format header structure length)
MQCFH_STRUC_LENGTH 36 X'ðððððð24'

MQCFH_* (Command format header version)
MQCFH_VERSION_1 1 X'ððððððð1'
MQCFH_CURRENT_VERSION 1 X'ððððððð1'

MQCFIL_* (Command format integer-list parameter structure length)
MQCFIL_STRUC_LENGTH_FIXED 16 X'ðððððð1ð'

MQCFIN_* (Command format integer parameter structure length)
MQCFIN_STRUC_LENGTH 16 X'ðððððð1ð'

MQCFSL_* (Command format string-list parameter structure length)
MQCFSL_STRUC_LENGTH_FIXED 24 X'ðððððð18'

MQCFST_* (Command format string parameter structure length)
MQCFST_STRUC_LENGTH_FIXED 2ð X'ðððððð14'

MQCFT_* (Command structure type)
MQCFT_COMMAND 1 X'ððððððð1'
MQCFT_RESPONSE 2 X'ððððððð2'
MQCFT_INTEGER 3 X'ððððððð3'
MQCFT_STRING 4 X'ððððððð4'
MQCFT_INTEGER_LIST 5 X'ððððððð5'
MQCFT_STRING_LIST 6 X'ððððððð6'
MQCFT_EVENT 7 X'ððððððð7'

MQCHAD_* (Channel auto-definition event reporting)
MQCHAD_DISABLED ð X'ðððððððð'
MQCHAD_ENABLED 1 X'ððððððð1'

MQCHS_* (Channel status)
MQCHS_BINDING 1 X'ððððððð1'
MQCHS_STARTING 2 X'ððððððð2'
MQCHS_RUNNING 3 X'ððððððð3'
MQCHS_STOPPING 4 X'ððððððð4'
MQCHS_RETRYING 5 X'ððððððð5'
MQCHS_STOPPED 6 X'ððððððð6'
MQCHS_REQUESTING 7 X'ððððððð7'
MQCHS_PAUSED 8 X'ððððððð8'
MQCHS_INITIALIZING 13 X'ðððððððD'

476 MQSeries Programmable System Management

 Constants

MQCHT_* (Channel type)
MQCHT_SENDER 1 X'ððððððð1'
MQCHT_SERVER 2 X'ððððððð2'
MQCHT_RECEIVER 3 X'ððððððð3'
MQCHT_REQUESTER 4 X'ððððððð4'
MQCHT_ALL 5 X'ððððððð5'
MQCHT_CLNTCONN 6 X'ððððððð6'
MQCHT_SVRCONN 7 X'ððððððð7'

MQCMD_* (Command identifier)
MQCMD_CHANGE_Q_MGR 1 X'ððððððð1'
MQCMD_INQUIRE_Q_MGR 2 X'ððððððð2'
MQCMD_CHANGE_PROCESS 3 X'ððððððð3'
MQCMD_COPY_PROCESS 4 X'ððððððð4'
MQCMD_CREATE_PROCESS 5 X'ððððððð5'
MQCMD_DELETE_PROCESS 6 X'ððððððð6'
MQCMD_INQUIRE_PROCESS 7 X'ððððððð7'
MQCMD_CHANGE_Q 8 X'ððððððð8'
MQCMD_CLEAR_Q 9 X'ððððððð9'
MQCMD_COPY_Q 1ð X'ðððððððA'
MQCMD_CREATE_Q 11 X'ðððððððB'
MQCMD_DELETE_Q 12 X'ðððððððC'
MQCMD_INQUIRE_Q 13 X'ðððððððD'
MQCMD_RESET_Q_STATS 17 X'ðððððð11'
MQCMD_INQUIRE_Q_NAMES 18 X'ðððððð12'
MQCMD_INQUIRE_PROCESS_NAMES 19 X'ðððððð13'
MQCMD_INQUIRE_CHANNEL_NAMES 2ð X'ðððððð14'
MQCMD_CHANGE_CHANNEL 21 X'ðððððð15'
MQCMD_COPY_CHANNEL 22 X'ðððððð16'
MQCMD_CREATE_CHANNEL 23 X'ðððððð17'
MQCMD_DELETE_CHANNEL 24 X'ðððððð18'
MQCMD_INQUIRE_CHANNEL 25 X'ðððððð19'
MQCMD_PING_CHANNEL 26 X'ðððððð1A'
MQCMD_RESET_CHANNEL 27 X'ðððððð1B'
MQCMD_START_CHANNEL 28 X'ðððððð1C'
MQCMD_STOP_CHANNEL 29 X'ðððððð1D'
MQCMD_START_CHANNEL_INIT 3ð X'ðððððð1E'
MQCMD_START_CHANNEL_LISTENER 31 X'ðððððð1F'
MQCMD_ESCAPE 38 X'ðððððð26'
MQCMD_RESOLVE_CHANNEL 39 X'ðððððð27'
MQCMD_PING_Q_MGR 4ð X'ðððððð28'
MQCMD_INQUIRE_CHANNEL_STATUS 42 X'ðððððð2A'
MQCMD_Q_MGR_EVENT 44 X'ðððððð2C'
MQCMD_PERFM_EVENT 45 X'ðððððð2D'
MQCMD_CHANNEL_EVENT 46 X'ðððððð2E'

MQET_* (Escape type)
MQET_MQSC 1 X'ððððððð1'

 Appendix B. Constants 477

 Constants

MQEVR_* (Event reporting)
MQEVR_DISABLED ð X'ðððððððð'
MQEVR_ENABLED 1 X'ððððððð1'

MQFC_* (Force control)
MQFC_NO ð X'ðððððððð'
MQFC_YES 1 X'ððððððð1'

MQIACF_* (Integer attribute command format parameter)
MQIACF_FIRST 1ðð1 X'ððððð3E9'
MQIACF_Q_MGR_ATTRS 1ðð1 X'ððððð3E9'
MQIACF_Q_ATTRS 1ðð2 X'ððððð3EA'
MQIACF_PROCESS_ATTRS 1ðð3 X'ððððð3EB'
MQIACF_FORCE 1ðð5 X'ððððð3ED'
MQIACF_REPLACE 1ðð6 X'ððððð3EE'
MQIACF_PURGE 1ðð7 X'ððððð3EF'
MQIACF_QUIESCE 1ðð8 X'ððððð3Fð'
MQIACF_ALL 1ðð9 X'ððððð3F1'
MQIACF_PARAMETER_ID 1ð12 X'ððððð3F4'
MQIACF_ERROR_ID 1ð13 X'ððððð3F5'
MQIACF_ERROR_IDENTIFIER 1ð13 X'ððððð3F5'
MQIACF_SELECTOR 1ð14 X'ððððð3F6'
MQIACF_CHANNEL_ATTRS 1ð15 X'ððððð3F7'
MQIACF_ESCAPE_TYPE 1ð17 X'ððððð3F9'
MQIACF_ERROR_OFFSET 1ð18 X'ððððð3FA'
MQIACF_REASON_QUALIFIER 1ð2ð X'ððððð3FC'
MQIACF_COMMAND 1ð21 X'ððððð3FD'
MQIACF_OPEN_OPTIONS 1ð22 X'ððððð3FE'
MQIACF_AUX_ERROR_DATA_INT_1 1ð7ð X'ððððð42E'
MQIACF_AUX_ERROR_DATA_INT_2 1ð71 X'ððððð42F'
MQIACF_CONV_REASON_CODE 1ð72 X'ððððð43ð'
MQIACF_BRIDGE_TYPE 1ð73 X'ððððð431'
MQIACF_LAST_USED 1ð73 X'ððððð431'

MQIACH_* (Channel Integer attribute command format parameter)
MQIACH_FIRST 15ð1 X'ððððð5DD'
MQIACH_XMIT_PROTOCOL_TYPE 15ð1 X'ððððð5DD'
MQIACH_BATCH_SIZE 15ð2 X'ððððð5DE'
MQIACH_DISC_INTERVAL 15ð3 X'ððððð5DF'
MQIACH_SHORT_TIMER 15ð4 X'ððððð5Eð'
MQIACH_SHORT_RETRY 15ð5 X'ððððð5E1'
MQIACH_LONG_TIMER 15ð6 X'ððððð5E2'
MQIACH_LONG_RETRY 15ð7 X'ððððð5E3'
MQIACH_PUT_AUTHORITY 15ð8 X'ððððð5E4'
MQIACH_SEQUENCE_NUMBER_WRAP 15ð9 X'ððððð5E5'
MQIACH_MAX_MSG_LENGTH 151ð X'ððððð5E6'
MQIACH_CHANNEL_TYPE 1511 X'ððððð5E7'
MQIACH_DATA_COUNT 1512 X'ððððð5E8'
MQIACH_MSG_SEQUENCE_NUMBER 1514 X'ððððð5EA'
MQIACH_DATA_CONVERSION 1515 X'ððððð5EB'
MQIACH_IN_DOUBT 1516 X'ððððð5EC'
MQIACH_MCA_TYPE 1517 X'ððððð5ED'

478 MQSeries Programmable System Management

 Constants

MQIACH_CHANNEL_INSTANCE_TYPE 1523 X'ððððð5F3'
MQIACH_CHANNEL_INSTANCE_ATTRS 1524 X'ððððð5F4'
MQIACH_CHANNEL_ERROR_DATA 1525 X'ððððð5F5'
MQIACH_CHANNEL_TABLE 1526 X'ððððð5F6'
MQIACH_CHANNEL_STATUS 1527 X'ððððð5F7'
MQIACH_INDOUBT_STATUS 1528 X'ððððð5F8'
MQIACH_LAST_SEQ_NUMBER 1529 X'ððððð5F9'
MQIACH_CURRENT_MSGS 1531 X'ððððð5FB'
MQIACH_CURRENT_SEQ_NUMBER 1532 X'ððððð5FC'
MQIACH_MSGS 1534 X'ððððð5FE'
MQIACH_BYTES_SENT 1535 X'ððððð5FF'
MQIACH_BYTES_RCVD 1536 X'ððððð6ðð'
MQIACH_BATCHES 1537 X'ððððð6ð1'
MQIACH_BUFFERS_SENT 1538 X'ððððð6ð2'
MQIACH_BUFFERS_RCVD 1539 X'ððððð6ð3'
MQIACH_LONG_RETRIES_LEFT 154ð X'ððððð6ð4'
MQIACH_SHORT_RETRIES_LEFT 1541 X'ððððð6ð5'
MQIACH_MCA_STATUS 1542 X'ððððð6ð6'
MQIACH_STOP_REQUESTED 1543 X'ððððð6ð7'
MQIACH_MR_COUNT 1544 X'ððððð6ð8'
MQIACH_MR_INTERVAL 1545 X'ððððð6ð9'
MQIACH_NPM_SPEED 1562 X'ððððð61A'
MQIACH_HB_INTERVAL 1563 X'ððððð61B'
MQIACH_BATCH_INTERVAL 1564 X'ððððð61C'

MQOT_* (Object type)
MQOT_Q 1 X'ððððððð1'
MQOT_PROCESS 3 X'ððððððð3'
MQOT_Q_MGR 5 X'ððððððð5'
MQOT_CHANNEL 6 X'ððððððð6'

MQOT_ALL 1ðð1 X'ððððð3E9'
MQOT_ALIAS_Q 1ðð2 X'ððððð3EA'
MQOT_MODEL_Q 1ðð3 X'ððððð3EB'
MQOT_LOCAL_Q 1ðð4 X'ððððð3EC'
MQOT_REMOTE_Q 1ðð5 X'ððððð3ED'
MQOT_SENDER_CHANNEL 1ðð7 X'ððððð3EF'
MQOT_SERVER_CHANNEL 1ðð8 X'ððððð3Fð'
MQOT_REQUESTER_CHANNEL 1ðð9 X'ððððð3F1'
MQOT_RECEIVER_CHANNEL 1ð1ð X'ððððð3F2'
MQOT_CURRENT_CHANNEL 1ð11 X'ððððð3F3'
MQOT_SAVED_CHANNEL 1ð12 X'ððððð3F4'

MQPO_* (Purge option)
MQPO_NO ð X'ðððððððð'
MQPO_YES 1 X'ððððððð1'

 Appendix B. Constants 479

 Constants

MQQO_* (Quiesce option)
MQQO_NO ð X'ðððððððð'
MQQO_YES 1 X'ððððððð1'

MQQSIE_* (Service interval events)
MQQSIE_NONE ð X'ðððððððð'
MQQSIE_HIGH 1 X'ððððððð1'
MQQSIE_OK 2 X'ððððððð2'

MQQT_* (Queue type)
MQQT_LOCAL 1 X'ððððððð1'
MQQT_MODEL 2 X'ððððððð2'
MQQT_ALIAS 3 X'ððððððð3'
MQQT_REMOTE 6 X'ððððððð6'

MQQT_ALL 1ðð1 X'ððððð3E9'

MQRCCF_* (Reason code for command format)
Note: the following list is in numeric order .

MQRCCF_CFH_TYPE_ERROR 3ðð1 X'ðððððBB9'
MQRCCF_CFH_LENGTH_ERROR 3ðð2 X'ðððððBBA'
MQRCCF_CFH_VERSION_ERROR 3ðð3 X'ðððððBBB'
MQRCCF_CFH_MSG_SEQ_NUMBER_ERR 3ðð4 X'ðððððBBC'
MQRCCF_CFH_CONTROL_ERROR 3ðð5 X'ðððððBBD'
MQRCCF_CFH_PARM_COUNT_ERROR 3ðð6 X'ðððððBBE'
MQRCCF_CFH_COMMAND_ERROR 3ðð7 X'ðððððBBF'
MQRCCF_COMMAND_FAILED 3ðð8 X'ðððððBCð'
MQRCCF_CFIN_LENGTH_ERROR 3ðð9 X'ðððððBC1'
MQRCCF_CFST_LENGTH_ERROR 3ð1ð X'ðððððBC2'
MQRCCF_CFST_STRING_LENGTH_ERR 3ð11 X'ðððððBC3'
MQRCCF_FORCE_VALUE_ERROR 3ð12 X'ðððððBC4'
MQRCCF_STRUCTURE_TYPE_ERROR 3ð13 X'ðððððBC5'
MQRCCF_CFIN_PARM_ID_ERROR 3ð14 X'ðððððBC6'
MQRCCF_CFST_PARM_ID_ERROR 3ð15 X'ðððððBC7'
MQRCCF_MSG_LENGTH_ERROR 3ð16 X'ðððððBC8'
MQRCCF_CFIN_DUPLICATE_PARM 3ð17 X'ðððððBC9'
MQRCCF_CFST_DUPLICATE_PARM 3ð18 X'ðððððBCA'
MQRCCF_PARM_COUNT_TOO_SMALL 3ð19 X'ðððððBCB'
MQRCCF_PARM_COUNT_TOO_BIG 3ð2ð X'ðððððBCC'
MQRCCF_Q_ALREADY_IN_CELL 3ð21 X'ðððððBCD'
MQRCCF_Q_TYPE_ERROR 3ð22 X'ðððððBCE'
MQRCCF_MD_FORMAT_ERROR 3ð23 X'ðððððBCF'
MQRCCF_REPLACE_VALUE_ERROR 3ð25 X'ðððððBD1'
MQRCCF_CFIL_DUPLICATE_VALUE 3ð26 X'ðððððBD2'
MQRCCF_CFIL_COUNT_ERROR 3ð27 X'ðððððBD3'
MQRCCF_CFIL_LENGTH_ERROR 3ð28 X'ðððððBD4'
MQRCCF_QUIESCE_VALUE_ERROR 3ð29 X'ðððððBD5'
MQRCCF_MSG_SEQ_NUMBER_ERROR 3ð3ð X'ðððððBD6'
MQRCCF_PING_DATA_COUNT_ERROR 3ð31 X'ðððððBD7'
MQRCCF_PING_DATA_COMPARE_ERROR 3ð32 X'ðððððBD8'
MQRCCF_CHANNEL_TYPE_ERROR 3ð34 X'ðððððBDA'

480 MQSeries Programmable System Management

 Constants

MQRCCF_PARM_SEQUENCE_ERROR 3ð35 X'ðððððBDB'
MQRCCF_XMIT_PROTOCOL_TYPE_ERR 3ð36 X'ðððððBDC'
MQRCCF_BATCH_SIZE_ERROR 3ð37 X'ðððððBDD'
MQRCCF_DISC_INT_ERROR 3ð38 X'ðððððBDE'
MQRCCF_SHORT_RETRY_ERROR 3ð39 X'ðððððBDF'
MQRCCF_SHORT_TIMER_ERROR 3ð4ð X'ðððððBEð'
MQRCCF_LONG_RETRY_ERROR 3ð41 X'ðððððBE1'
MQRCCF_LONG_TIMER_ERROR 3ð42 X'ðððððBE2'
MQRCCF_SEQ_NUMBER_WRAP_ERROR 3ð43 X'ðððððBE3'
MQRCCF_MAX_MSG_LENGTH_ERROR 3ð44 X'ðððððBE4'
MQRCCF_PUT_AUTH_ERROR 3ð45 X'ðððððBE5'
MQRCCF_PURGE_VALUE_ERROR 3ð46 X'ðððððBE6'
MQRCCF_CFIL_PARM_ID_ERROR 3ð47 X'ðððððBE7'
MQRCCF_MSG_TRUNCATED 3ð48 X'ðððððBE8'
MQRCCF_CCSID_ERROR 3ð49 X'ðððððBE9'
MQRCCF_ENCODING_ERROR 3ð5ð X'ðððððBEA'
MQRCCF_DATA_CONV_VALUE_ERROR 3ð52 X'ðððððBEC'
MQRCCF_INDOUBT_VALUE_ERROR 3ð53 X'ðððððBED'
MQRCCF_ESCAPE_TYPE_ERROR 3ð54 X'ðððððBEE'
MQRCCF_CHANNEL_TABLE_ERROR 3ð62 X'ðððððBF6'
MQRCCF_MCA_TYPE_ERROR 3ð63 X'ðððððBF7'
MQRCCF_CHL_INST_TYPE_ERROR 3ð64 X'ðððððBF8'
MQRCCF_CHL_STATUS_NOT_FOUND 3ð65 X'ðððððBF9'
MQRCCF_CFSL_DUPLICATE_PARM 3ð66 X'ðððððBFA'
MQRCCF_CFSL_TOTAL_LENGTH_ERROR 3ð67 X'ðððððBFB'
MQRCCF_OBJECT_ALREADY_EXISTS 4ðð1 X'ðððððFA1'
MQRCCF_OBJECT_WRONG_TYPE 4ðð2 X'ðððððFA2'
MQRCCF_LIKE_OBJECT_WRONG_TYPE 4ðð3 X'ðððððFA3'
MQRCCF_OBJECT_OPEN 4ðð4 X'ðððððFA4'
MQRCCF_ATTR_VALUE_ERROR 4ðð5 X'ðððððFA5'
MQRCCF_UNKNOWN_Q_MGR 4ðð6 X'ðððððFA6'
MQRCCF_Q_WRONG_TYPE 4ðð7 X'ðððððFA7'
MQRCCF_OBJECT_NAME_ERROR 4ðð8 X'ðððððFA8'
MQRCCF_ALLOCATE_FAILED 4ðð9 X'ðððððFA9'
MQRCCF_HOST_NOT_AVAILABLE 4ð1ð X'ðððððFAA'
MQRCCF_CONFIGURATION_ERROR 4ð11 X'ðððððFAB'
MQRCCF_CONNECTION_REFUSED 4ð12 X'ðððððFAC'
MQRCCF_ENTRY_ERROR 4ð13 X'ðððððFAD'
MQRCCF_SEND_FAILED 4ð14 X'ðððððFAE'
MQRCCF_RECEIVED_DATA_ERROR 4ð15 X'ðððððFAF'
MQRCCF_RECEIVE_FAILED 4ð16 X'ðððððFBð'
MQRCCF_CONNECTION_CLOSED 4ð17 X'ðððððFB1'
MQRCCF_NO_STORAGE 4ð18 X'ðððððFB2'
MQRCCF_NO_COMMS_MANAGER 4ð19 X'ðððððFB3'
MQRCCF_LISTENER_NOT_STARTED 4ð2ð X'ðððððFB4'
MQRCCF_BIND_FAILED 4ð24 X'ðððððFB8'
MQRCCF_CHANNEL_INDOUBT 4ð25 X'ðððððFB9'
MQRCCF_MQCONN_FAILED 4ð26 X'ðððððFBA'
MQRCCF_MQOPEN_FAILED 4ð27 X'ðððððFBB'
MQRCCF_MQGET_FAILED 4ð28 X'ðððððFBC'
MQRCCF_MQPUT_FAILED 4ð29 X'ðððððFBD'
MQRCCF_PING_ERROR 4ð3ð X'ðððððFBE'
MQRCCF_CHANNEL_IN_USE 4ð31 X'ðððððFBF'
MQRCCF_CHANNEL_NOT_FOUND 4ð32 X'ðððððFCð'

 Appendix B. Constants 481

 Constants

MQRCCF_UNKNOWN_REMOTE_CHANNEL 4ð33 X'ðððððFC1'
MQRCCF_REMOTE_QM_UNAVAILABLE 4ð34 X'ðððððFC2'
MQRCCF_REMOTE_QM_TERMINATING 4ð35 X'ðððððFC3'
MQRCCF_MQINQ_FAILED 4ð36 X'ðððððFC4'
MQRCCF_NOT_XMIT_Q 4ð37 X'ðððððFC5'
MQRCCF_CHANNEL_DISABLED 4ð38 X'ðððððFC6'
MQRCCF_USER_EXIT_NOT_AVAILABLE 4ð39 X'ðððððFC7'
MQRCCF_COMMIT_FAILED 4ð4ð X'ðððððFC8'
MQRCCF_CHANNEL_ALREADY_EXISTS 4ð42 X'ðððððFCA'
MQRCCF_DATA_TOO_LARGE 4ð43 X'ðððððFCB'
MQRCCF_CHANNEL_NAME_ERROR 4ð44 X'ðððððFCC'
MQRCCF_XMIT_Q_NAME_ERROR 4ð45 X'ðððððFCD'
MQRCCF_MCA_NAME_ERROR 4ð47 X'ðððððFCF'
MQRCCF_SEND_EXIT_NAME_ERROR 4ð48 X'ðððððFDð'
MQRCCF_SEC_EXIT_NAME_ERROR 4ð49 X'ðððððFD1'
MQRCCF_MSG_EXIT_NAME_ERROR 4ð5ð X'ðððððFD2'
MQRCCF_RCV_EXIT_NAME_ERROR 4ð51 X'ðððððFD3'
MQRCCF_XMIT_Q_NAME_WRONG_TYPE 4ð52 X'ðððððFD4'
MQRCCF_MCA_NAME_WRONG_TYPE 4ð53 X'ðððððFD5'
MQRCCF_DISC_INT_WRONG_TYPE 4ð54 X'ðððððFD6'
MQRCCF_SHORT_RETRY_WRONG_TYPE 4ð55 X'ðððððFD7'
MQRCCF_SHORT_TIMER_WRONG_TYPE 4ð56 X'ðððððFD8'
MQRCCF_LONG_RETRY_WRONG_TYPE 4ð57 X'ðððððFD9'
MQRCCF_LONG_TIMER_WRONG_TYPE 4ð58 X'ðððððFDA'
MQRCCF_PUT_AUTH_WRONG_TYPE 4ð59 X'ðððððFDB'
MQRCCF_MISSING_CONN_NAME 4ð61 X'ðððððFDD'
MQRCCF_CONN_NAME_ERROR 4ð62 X'ðððððFDE'
MQRCCF_MQSET_FAILED 4ð63 X'ðððððFDF'
MQRCCF_CHANNEL_NOT_ACTIVE 4ð64 X'ðððððFEð'
MQRCCF_TERMINATED_BY_SEC_EXIT 4ð65 X'ðððððFE1'
MQRCCF_DYNAMIC_Q_SCOPE_ERROR 4ð67 X'ðððððFE3'
MQRCCF_CELL_DIR_NOT_AVAILABLE 4ð68 X'ðððððFE4'
MQRCCF_MR_COUNT_ERROR 4ð69 X'ðððððFE5'
MQRCCF_MR_COUNT_WRONG_TYPE 4ð7ð X'ðððððFE6'
MQRCCF_MR_EXIT_NAME_ERROR 4ð71 X'ðððððFE7'
MQRCCF_MR_EXIT_NAME_WRONG_TYPE 4ð72 X'ðððððFE8'
MQRCCF_MR_INTERVAL_ERROR 4ð73 X'ðððððFE9'
MQRCCF_MR_INTERVAL_WRONG_TYPE 4ð74 X'ðððððFEA'
MQRCCF_NPM_SPEED_ERROR 4ð75 X'ðððððFEB'
MQRCCF_NPM_SPEED_WRONG_TYPE 4ð76 X'ðððððFEC'
MQRCCF_HB_INTERVAL_ERROR 4ð77 X'ðððððFED'
MQRCCF_HB_INTERVAL_WRONG_TYPE 4ð78 X'ðððððFEE'
MQRCCF_CHAD_ERROR 4ð79 X'ðððððFEF'
MQRCCF_CHAD_WRONG_TYPE 4ð8ð X'ðððððFFð'
MQRCCF_CHAD_EVENT_ERROR 4ð81 X'ðððððFF1'
MQRCCF_CHAD_EVENT_WRONG_TYPE 4ð82 X'ðððððFF2'
MQRCCF_CHAD_EXIT_ERROR 4ð83 X'ðððððFF3'
MQRCCF_CHAD_EXIT_WRONG_TYPE 4ð84 X'ðððððFF4'
MQRCCF_SUPPRESSED_BY_EXIT 4ð85 X'ðððððFF5'
MQRCCF_BATCH_INT_ERROR 4ð86 X'ðððððFF6'
MQRCCF_BATCH_INT_WRONG_TYPE 4ð87 X'ðððððFF7'

482 MQSeries Programmable System Management

 Constants

MQRP_* (Replace option)
MQRP_NO ð X'ðððððððð'
MQRP_YES 1 X'ððððððð1'

MQRQ_* (Reason qualifier)
MQRQ_CONN_NOT_AUTHORIZED 1 X'ððððððð1'
MQRQ_OPEN_NOT_AUTHORIZED 2 X'ððððððð2'
MQRQ_CLOSE_NOT_AUTHORIZED 3 X'ððððððð3'
MQRQ_CMD_NOT_AUTHORIZED 4 X'ððððððð4'
MQRQ_Q_MGR_STOPPING 5 X'ððððððð5'
MQRQ_Q_MGR_QUIESCING 6 X'ððððððð6'
MQRQ_CHANNEL_STOPPED_OK 7 X'ððððððð7'
MQRQ_CHANNEL_STOPPED_ERROR 8 X'ððððððð8'
MQRQ_CHANNEL_STOPPED_RETRY 9 X'ððððððð9'
MQRQ_CHANNEL_STOPPED_DISABLED 1ð X'ðððððððA'
MQRQ_BRIDGE_STOPPED_OK 11 X'ðððððððB'
MQRQ_BRIDGE_STOPPED_ERROR 12 X'ðððððððC'

MQZAET_* (Authority service entity type)
MQZAET_PRINCIPAL 1 X'ððððððð1'
MQZAET_GROUP 2 X'ððððððð2'

MQZAO_* (Authority service authorization type)
MQZAO_CONNECT 1 X'ððððððð1'
MQZAO_BROWSE 2 X'ððððððð2'
MQZAO_INPUT 4 X'ððððððð4'
MQZAO_OUTPUT 8 X'ððððððð8'
MQZAO_INQUIRE 16 X'ðððððð1ð'
MQZAO_SET 32 X'ðððððð2ð'
MQZAO_PASS_IDENTITY_CONTEXT 64 X'ðððððð4ð'
MQZAO_PASS_ALL_CONTEXT 128 X'ðððððð8ð'
MQZAO_SET_IDENTITY_CONTEXT 256 X'ððððð1ðð'
MQZAO_SET_ALL_CONTEXT 512 X'ððððð2ðð'
MQZAO_ALTERNATE_USER_AUTHORITY 1ð24 X'ððððð4ðð'
MQZAO_ALL_MQI 2ð47 X'ððððð7FF'
MQZAO_CREATE 65536 X'ððð1ðððð'
MQZAO_DELETE 131ð72 X'ððð2ðððð'
MQZAO_DISPLAY 262144 X'ððð4ðððð'
MQZAO_CHANGE 524288 X'ððð8ðððð'
MQZAO_CLEAR 1ð48576 X'ðð1ððððð'
MQZAO_AUTHORIZE 83886ð8 X'ðð8ððððð'
MQZAO_ALL_ADMIN 1ð354688 X'ðð9Eðððð'
MQZAO_NONE ð X'ðððððððð'
MQZAO_ALL 1ð356735 X'ðð9Eð7FF'

MQZAS_* (Authority service version)
MQZAS_VERSION_1 1 X'ððððððð1'

 Appendix B. Constants 483

 Constants

MQZCI_* (Continuation indicator)
MQZCI_DEFAULT ð X'ðððððððð'
MQZCI_CONTINUE ð X'ðððððððð'
MQZCI_STOP 1 X'ððððððð1'

MQZID_* (Function identifier, all services)
MQZID_INIT ð X'ðððððððð'
MQZID_TERM 1 X'ððððððð1'

MQZID_* (Function identifier, authority service)
MQZID_INIT_AUTHORITY ð X'ðððððððð'
MQZID_TERM_AUTHORITY 1 X'ððððððð1'
MQZID_CHECK_AUTHORITY 2 X'ððððððð2'
MQZID_COPY_ALL_AUTHORITY 3 X'ððððððð3'
MQZID_DELETE_AUTHORITY 4 X'ððððððð4'
MQZID_SET_AUTHORITY 5 X'ððððððð5'
MQZID_GET_AUTHORITY 6 X'ððððððð6'
MQZID_GET_EXPLICIT_AUTHORITY 7 X'ððððððð7'

MQZID_* (Function identifier, name service)
MQZID_INIT_NAME ð X'ðððððððð'
MQZID_TERM_NAME 1 X'ððððððð1'
MQZID_LOOKUP_NAME 2 X'ððððððð2'
MQZID_INSERT_NAME 3 X'ððððððð3'
MQZID_DELETE_NAME 4 X'ððððððð4'

MQZID_* (Function identifier, userid service)
MQZID_INIT_USERID ð X'ðððððððð'
MQZID_TERM_USERID 1 X'ððððððð1'
MQZID_FIND_USERID 2 X'ððððððð2'

MQZIO_* (Initialization options)
MQZIO_PRIMARY ð X'ðððððððð'
MQZIO_SECONDARY 1 X'ððððððð1'

MQZNS_* (Name service version)
MQZNS_VERSION_1 1 X'ððððððð1'

MQZTO_* (Termination options)
MQZTO_PRIMARY ð X'ðððððððð'
MQZTO_SECONDARY 1 X'ððððððð1'

MQZUS_* (Userid service version)
MQZUS_VERSION_1 1 X'ððððððð1'

484 MQSeries Programmable System Management

 Header files � COBOL COPY files

Appendix C. Header, COPY, and INCLUDE files

Various header, COPY, and INCLUDE files are provided to assist applications with
the processing of:

 � Event messages
� PCF commands and responses

 � Installable services

These are described below for each of the supported programming languages. Not
all of the files are available in all environments.

C header files
The following header files are provided for the C programming language.

Table 26. C header files

Filename Contents relating to this book

CMQC Elementary data types, some named constants for events and PCF
commands

CMQCFC PCF structures, additional named constants for events and PCF
commands

CMQXC Named constants for events and PCF commands relating to
channels

CMQZC Function prototypes, data types, and named constants for installable
services (available only on OS/2, UNIX systems, and Windows NT)

COBOL COPY files
The following COPY files are provided for the COBOL programming language.
Two COPY files are provided for each structure; one COPY file has initial values,
the other does not.

 Copyright IBM Corp. 1994,1998 485

 PL/I INCLUDE files � S/390 Assembler COPY files

Table 27. COBOL COPY files

File name
(with initial
values)

File name
(without initial
values)

Contents relating to this book

CMQV – Some named constants for events and PCF
commands (not available on DOS clients and
Windows clients)

CMQCFV – Additional named constants for events and PCF
commands (available only on MVS/ESA)

CMQXV – Named constants for events and PCF commands
relating to channels (available only on MVS/ESA
and OS/400)

CMQCFHV CMQCFHL Header structure for events and PCF commands
(available only on MVS/ESA)

CMQCFINV CMQCFINL Single-integer parameter structure for events and
PCF commands (available only on MVS/ESA)

CMQCFILV CMQCFILL Integer-list parameter structure for events and
PCF commands (available only on MVS/ESA)

CMQCFSTV CMQCFSTL Single-string parameter structure for events and
PCF commands (available only on MVS/ESA)

CMQCFSLV CMQCFSLL String-list parameter structure for events and
PCF commands (available only on MVS/ESA)

PL/I INCLUDE files
The following INCLUDE files are provided for the PL/I programming language.
These files are available only on AIX, MVS/ESA, OS/2, and Windows NT.

Table 28. PL/I INCLUDE files

Filename Contents relating to this book

CMQP Some named constants for events and PCF commands

CMQCFP PCF structures, and additional named constants for events and PCF
commands

CMQXP Named constants for events and PCF commands relating to
channels

System/390 Assembler COPY files
The following COPY files are provided for the System/390 Assembler programming
language. These files are available only on MVS/ESA.

486 MQSeries Programmable System Management

 S/390 Assembler COPY files

Table 29. System/390 Assembler COPY files

Filename Contents relating to this book

CMQA Some named constants for events and PCF commands

CMQCFA Additional named constants for events and PCF commands

CMQXA Named constants for events and PCF commands relating to
channels

CMQCFHA Header structure for events and PCF commands

CMQCFINA Single-integer parameter structure for events and PCF commands

CMQCFILA Integer-list parameter structure for events and PCF commands

CMQCFSTA Single-string parameter structure for events and PCF commands

CMQCFSLA String-list parameter structure for events and PCF commands

 Appendix C. Header, COPY, and INCLUDE files 487

 S/390 Assembler COPY files

488 MQSeries Programmable System Management

 Notices

 Appendix D. Notices

The following paragraph does not apply to any country where such
provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM’s valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact Laboratory Counsel, MP151, IBM
United Kingdom Laboratories, Hursley Park, Winchester, Hampshire, England SO21
2JN. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New York 10594,
U.S.A.

Programming interface information
This book is intended to help you to write application programs that run under:

� MQSeries for AIX Version 5
� MQSeries for AS/400 Version 4 Release 2
� MQSeries for AT&T GIS UNIX Version 2 Release 2
� MQSeries for Digital OpenVMS Version 2 Release 2
� MQSeries for HP-UX Version 5
� MQSeries for MVS/ESA Version 1 Release 2
� MQSeries for OS/2 Warp Version 5
� MQSeries for SINIX and DC/OSx Version 2 Release 2
� MQSeries for SunOS Version 2 Release 2
� MQSeries for Sun Solaris Version 5
� MQSeries for Tandem NonStop Kernel Version 2 Release 2
� MQSeries for Windows NT Version 5
� MQSeries for Windows Version 2 Release 1

 Copyright IBM Corp. 1994,1998 489

 Notices

This book documents General-use Programming Interface and Associated
Guidance Information provided by the MQSeries products listed above.

General-use Programming Interfaces allow the customer to write programs that
obtain the services of the MQSeries products listed above.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks
of Microsoft Corporation.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

AIX AS/400 BookManager
C/400 CICS IBM
MQ MQSeries MVS/ESA
NetView OS/400 SAA

490 MQSeries Programmable System Management

Part 5. Glossary and Index

 Copyright IBM Corp. 1994,1998 491

492 MQSeries Programmable System Management

 abend reason code � authorization service

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not find the
term you are looking for, see the Index or the IBM
Dictionary of Computing, New York: McGraw-Hill, 1994.

This glossary includes terms and definitions from the
American National Dictionary for Information Systems,
ANSI X3.172-1990, copyright 1990 by the American
National Standards Institute (ANSI). Copies may be
purchased from the American National Standards
Institute, 11 West 42 Street, New York, New York
10036. Definitions are identified by the symbol (A) after
the definition.

A
abend reason code . A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for
MVS/ESA. A complete list of MQSeries for MVS/ESA
abend reason codes and their explanations is contained
in the MQSeries for MVS/ESA Messages and Codes
manual.

active log . See recovery log.

adapter . An interface between MQSeries for MVS/ESA
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

add-in task . A function provided by MQSeries on
UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT that coordinates the passing
of data between a Lotus Notes application and an
MQSeries application.

address space . The area of virtual storage available
for a particular job.

address space identifier (ASID) . A unique,
system-assigned identifier for an address space.

administrator commands . MQSeries commands used
to manage MQSeries objects, such as queues,
processes, and namelists.

alert . A message sent to a management services focal
point in a network to identify a problem or an impending
problem.

alert monitor . In MQSeries for MVS/ESA, a
component of the CICS adapter that handles
unscheduled events occurring as a result of connection
requests to MQSeries for MVS/ESA.

alias queue object . An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue
manager uses an alias queue, the alias name is
resolved and the requested operation is performed on
the associated base queue.

allied address space . See ally.

ally . An MVS address space that is connected to
MQSeries for MVS/ESA.

alternate user security . A security feature in which
the authority of one user ID can be used by another
user ID; for example, to open an MQSeries object.

APAR . Authorized program analysis report.

application environment . The software facilities that
are accessible by an application program. On the MVS
platform, CICS and IMS are examples of application
environments.

application log . In Windows NT, a log that records
significant application events.

application queue . A queue used by an application.

archive log . See recovery log.

ASID. Address space identifier.

asynchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

attribute . One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks . Security checks that are
performed when a user tries to open an MQSeries
object.

authorization file . In MQSeries on UNIX systems, a
file that provides security definitions for an object, a
class of objects, or all classes of objects.

authorization service . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a service that provides authority checking of
commands and MQI calls for the user identifier
associated with the command or call.

 Copyright IBM Corp. 1994,1998 493

 authorized program analysis report (APAR) � command prefix (CPF)

authorized program analysis report (APAR) . A
report of a problem caused by a suspected defect in a
current, unaltered release of a program.

B
backout . An operation that reverses all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with commit.

basic mapping support (BMS) . An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS) . A VSAM data set that
contains:

� An inventory of all active and archived log data sets
known to MQSeries for MVS/ESA

� A wrap-around inventory of all recent MQSeries for
MVS/ESA activity

The BSDS is required if the MQSeries for MVS/ESA
subsystem has to be restarted.

browse . In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor . In message queuing, an indicator
used when browsing a queue to identify the message
that is next in sequence.

BSDS. Bootstrap data set.

buffer pool . An area of main storage used for
MQSeries for MVS/ESA queues, messages, and object
definitions. See also page set.

C
call back . In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel . See message channel.

channel control function (CCF) . In MQSeries, a
program to move messages from a transmission queue

to a communication link, and from a communication link
to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF) . In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event . An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint . (1) A time when significant information is
written on the log. Contrast with syncpoint. (2) In
MQSeries on UNIX systems, the point in time when a
data record described in the log is the same as the data
record in the queue. Checkpoints are generated
automatically and are used during the system restart
process.

CI. Control interval.

circular logging . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping all restart data in a ring of
log files. Logging fills the first file in the ring and then
moves on to the next, until all the files are full. At this
point, logging goes back to the first file in the ring and
starts again, if the space has been freed or is no longer
needed. Circular logging is used during restart
recovery, using the log to roll back transactions that
were in progress when the system stopped. Contrast
with linear logging.

CL. Control Language.

client . A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application . An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type . The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

coded character set identifier (CCSID) . The name of
a coded set of characters and their code point
assignments.

command . In MQSeries, an instruction that can be
carried out by the queue manager.

command prefix (CPF) . In MQSeries for MVS/ESA, a
character string that identifies the queue manager to
which MQSeries for MVS/ESA commands are directed,

494 MQSeries Programmable System Management

 command processor � dual logging

and from which MQSeries for MVS/ESA operator
messages are received.

command processor . The MQSeries component that
processes commands.

command server . The MQSeries component that
reads commands from the system-command input
queue, verifies them, and passes valid commands to
the command processor.

commit . An operation that applies all the changes
made during the current unit of recovery or unit of work.
After the operation is complete, a new unit of recovery
or unit of work begins. Contrast with backout.

completion code . A return code indicating how an
MQI call has ended.

configuration file . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a file that contains configuration information related
to, for example, logs, communications, or installable
services. Synonymous with .ini file. See also stanza.

connect . To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
call, or automatically by the MQOPEN call.

connection handle . The identifier or token by which a
program accesses the queue manager to which it is
connected.

context . Information about the origin of a message.

context security . In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control command . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, a command that can be entered interactively from
the operating system command line. Such a command
requires only that the MQSeries product be installed; it
does not require a special utility or program to run it.

control interval (CI) . A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

Control Language (CL) . In MQSeries for AS/400, a
language that can be used to issue commands, either
at the command line or by writing a CL program.

controlled shutdown . See quiesced shutdown.

CPF. Command prefix.

D
DAE. Dump analysis and elimination.

data conversion interface (DCI) . The MQSeries
interface to which customer- or vendor-written programs
that convert application data between different machine
encodings and CCSIDs must conform. A part of the
MQSeries Framework.

datagram . The simplest message that MQSeries
supports. This type of message does not require a
reply.

DCE. Distributed Computing Environment.

DCI. Data conversion interface.

dead-letter queue (DLQ) . A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

dead-letter queue handler . An MQSeries-supplied
utility that monitors a dead-letter queue (DLQ) and
processes messages on the queue in accordance with
a user-written rules table.

default object . A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection . A pending event that is
activated when a CICS subsystem tries to connect to
MQSeries for MVS/ESA before MQSeries for MVS/ESA
has been started.

distributed application . In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

Distributed Computing Environment (DCE) .
Middleware that provides some basic services, making
the development of distributed applications easier. DCE
is defined by the Open Software Foundation (OSF).

distributed queue management (DQM) . In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dual logging . A method of recording MQSeries for
MVS/ESA activity, where each change is recorded on
two data sets, so that if a restart is necessary and one

 Glossary of terms and abbreviations 495

 dual mode � get

data set is unreadable, the other can be used. Contrast
with single logging.

dual mode . See dual logging.

dump analysis and elimination (DAE) . An MVS
service that enables an installation to suppress SVC
dumps and ABEND SYSUDUMP dumps that are not
needed because they duplicate previously written
dumps.

dynamic queue . A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic
queue.

E
environment . See application environment.

ESM. External security manager.

ESTAE. Extended specify task abnormal exit.

event . See channel event, instrumentation event,
performance event, and queue manager event.

event data . In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header . In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event log . See application log.

event message . Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics)
relating to the origin of an instrumentation event in a
network of MQSeries systems.

event queue . The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Event Viewer . A tool provided by Windows NT to
examine and manage log files.

extended specify task abnormal exit (ESTAE) . An
MVS macro that provides recovery capability and gives
control to the specified exit routine for processing,
diagnosing an abend, or specifying a retry address.

external security manager (ESM) . A security product
that is invoked by the MVS System Authorization
Facility. RACF is an example of an ESM.

F
FFST. First Failure Support Technology.

FIFO. First-in-first-out.

First Failure Support Technology (FFST) . Used by
MQSeries on UNIX systems, MQSeries for OS/2 Warp,
MQSeries for Windows NT, and MQSeries for AS/400
to detect and report software problems.

first-in-first-out (FIFO) . A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

forced shutdown . A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for MVS/ESA, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

Framework . In MQSeries, a collection of programming
interfaces that allow customers or vendors to write
programs that extend or replace certain functions
provided in MQSeries products. The interfaces are:

� MQSeries data conversion interface (DCI)
� MQSeries message channel interface (MCI)
� MQSeries name service interface (NSI)
� MQSeries security enabling interface (SEI)
� MQSeries trigger monitor interface (TMI)

FRR. Functional recovery routine.

functional recovery routine (FRR) . An MVS
recovery/termination manager facility that enables a
recovery routine to gain control in the event of a
program interrupt.

G
GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC) . An
MQSeries for MVS/ESA component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF) . An MVS service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get . In message queuing, to use the MQGET call to
remove a message from a queue. See also browse.

496 MQSeries Programmable System Management

 global trace � log

global trace . An MQSeries for MVS/ESA trace option
where the trace data comes from the entire MQSeries
for MVS/ESA subsystem.

GTF. Generalized Trace Facility.

H
handle . See connection handle and object handle.

I
immediate shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,
but new MQI calls fail after an immediate shutdown has
been requested. Contrast with quiesced shutdown and
preemptive shutdown.

in-doubt unit of recovery . In MQSeries for MVS/ESA,
the status of a unit of recovery for which a syncpoint
has been requested but not yet performed.

.ini file . See configuration file.

initialization input data sets . Data sets used by
MQSeries for MVS/ESA when it starts up.

initiation queue . A local queue on which the queue
manager puts trigger messages.

input/output parameter . A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter . A parameter of an MQI call in which
you supply information when you make the call.

installable services . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, additional functionality provided as independent
components. The installation of each component is
optional: in-house or third-party components can be
used instead. See also authorization service, name
service, and user identifier service.

instrumentation event . A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be
used by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS) . A
component of MVS that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF) . An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user.

IPCS. Interactive Problem Control System.

ISPF. Interactive System Productivity Facility.

L
linear logging . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the process of keeping restart data in a sequence
of files. New files are added to the sequence as
necessary. The space in which the data is written is
not reused until the queue manager is restarted.
Contrast with circular logging.

listener . In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition . An MQSeries object belonging to a
local queue manager.

local definition of a remote queue . An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

locale . On UNIX systems, a subset of a user’s
environment that defines conventions for a specific
culture (such as time, numeric, or monetary formatting
and character classification, collation, or conversion).
The queue manager CCSID is derived from the locale
of the user ID that created the queue manager.

local queue . A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager . The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

log . In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages.

 Glossary of terms and abbreviations 497

 log control file � MQSeries commands (MQSC)

log control file . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the file containing information needed to monitor
the use of log files (for example, their size and location,
and the name of the next available file).

log file . In MQSeries on UNIX systems, MQSeries for
OS/2 Warp, and MQSeries for Windows NT, a file in
which all significant changes to the data controlled by a
queue manager are recorded. If the primary log files
become full, MQSeries allocates secondary log files.

logical unit of work (LUW) . See unit of work.

M
machine check interrupt . An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

mail-in database . A Lotus Notes database for sole
use by the add-in task. It holds the request from a
Lotus Notes application before the request is passed to
the MQSeries application.

MCA. Message channel agent.

MCI. Message channel interface.

media image . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the sequence of log records that contain an image
of an object. The object can be recreated from this
image.

message . (1) In message queuing applications, a
communication sent between programs. See also
persistent message and nonpersistent message. (2) In
system programming, information intended for the
terminal operator or system administrator.

message channel . In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises
two message channel agents (a sender and a receiver)
and a communication link. Contrast with MQI channel.

message channel agent (MCA) . A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue.

message channel interface (MCI) . The MQSeries
interface to which customer- or vendor-written programs
that transmit messages between an MQSeries queue
manager and another messaging system must conform.
A part of the MQSeries Framework.

message descriptor . Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority . In MQSeries, an attribute of a
message that can affect the order in which messages
on a queue are retrieved, and whether a trigger event is
generated.

message queue . Synonym for queue.

message queue interface (MQI) . The programming
interface provided by the MQSeries queue managers.
This programming interface allows application programs
to access message queuing services.

message queuing . A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering . A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging . See synchronous messaging and
asynchronous messaging.

model queue object . A set of queue attributes that
act as a template when a program creates a dynamic
queue.

MQI. Message queue interface.

MQI channel . Connects an MQSeries client to a
queue manager on a server system, and transfers only
MQI calls and responses in a bidirectional manner.
Contrast with message channel.

MQSC. MQSeries commands.

MQSeries . A family of IBM licensed programs that
provides message queuing services.

MQSeries client . Part of an MQSeries product that
can be installed on a system without installing the full
queue manager. The MQSeries client accepts MQI
calls from applications and communicates with a queue
manager on a server system.

MQSeries commands (MQSC) . Human readable
commands, uniform across all platforms, that are used
to manipulate MQSeries objects. Contrast with
programmable command format (PCF).

498 MQSeries Programmable System Management

 namelist � point of recovery

N
namelist . An MQSeries for MVS/ESA object that
contains a list of queue names.

name service . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, the facility that determines which queue manager
owns a specified queue.

name service interface (NSI) . The MQSeries
interface to which customer- or vendor-written programs
that resolve queue-name ownership must conform. A
part of the MQSeries Framework.

name transformation . In MQSeries on UNIX systems,
MQSeries for OS/2 Warp, and MQSeries for Windows
NT, an internal process that changes a queue manager
name so that it is unique and valid for the system being
used. Externally, the queue manager name remains
unchanged.

New Technology File System (NTFS) . A Windows
NT recoverable file system that provides security for
files.

nonpersistent message . A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

NSI. Name service interface.

NTFS. New Technology File System.

null character . The character that is represented by
X'00'.

O
OAM. Object authority manager.

object . In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist
(MVS/ESA only), or a storage class (MVS/ESA only).

object authority manager (OAM) . In MQSeries on
UNIX systems and MQSeries for Windows NT, the
default authorization service for command and object
management. The OAM can be replaced by, or run in
combination with, a customer-supplied security service.

object descriptor . A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle . The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading . In MQSeries for MVS/ESA, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

output log-buffer . In MQSeries for MVS/ESA, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter . A parameter of an MQI call in
which the queue manager returns information when the
call completes or fails.

P
page set . A VSAM data set used when MQSeries for
MVS/ESA moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

PCF. Programmable command format.

PCF command . See programmable command format.

pending event . An unscheduled event that occurs as
a result of a connect request from a CICS adapter.

percolation . In error recovery, the passing along a
preestablished path of control from a recovery routine to
a higher-level recovery routine.

performance event . A category of event indicating
that a limit condition has occurred.

performance trace . An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue . A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered
if the queue manager fails, so they can contain
persistent messages. Contrast with temporary dynamic
queue.

persistent message . A message that survives a
restart of the queue manager. Contrast with
nonpersistent message.

ping . In distributed queuing, a diagnostic aid that uses
the exchange of a test message to confirm that a
message channel or a TCP/IP connection is functioning.

platform . In MQSeries, the operating system under
which a queue manager is running.

point of recovery . In MQSeries for MVS/ESA, the
term used to describe a set of backup copies of
MQSeries for MVS/ESA page sets and the
corresponding log data sets required to recover these
page sets. These backup copies provide a potential

 Glossary of terms and abbreviations 499

 preemptive shutdown � relative byte address (RBA)

restart point in the event of page set loss (for example,
page set I/O error).

preemptive shutdown . In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

principal . In MQSeries on UNIX systems, MQSeries
for OS/2 Warp, and MQSeries for Windows NT, a term
used for a user identifier. Used by the object authority
manager for checking authorizations to system
resources.

process definition object . An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

programmable command format (PCF) . A type of
MQSeries message used by:

� User administration applications, to put PCF
commands onto the system command input queue
of a specified queue manager

� User administration applications, to get the results
of a PCF command from a specified queue
manager

� A queue manager, as a notification that an event
has occurred

Contrast with MQSC.

program temporary fix (PTF) . A solution or by-pass
of a problem diagnosed by IBM field engineering as the
result of a defect in a current, unaltered release of a
program.

PTF. Program temporary fix.

Q
queue . An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager . (1) A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. See also local queue manager and
remote queue manager. (2) An MQSeries object that
defines the attributes of a particular queue manager.

queue manager event . An event that indicates:

� An error condition has occurred in relation to the
resources used by a queue manager. For example,
a queue is unavailable.

� A significant change has occurred in the queue
manager. For example, a queue manager has
stopped or started.

queuing . See message queuing.

quiesced shutdown . (1) In MQSeries, a shutdown of
a queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. (2) A type of shutdown of the
CICS adapter where the adapter disconnects from
MQSeries, but only after all the currently active tasks
have been completed. Contrast with forced shutdown.

quiescing . In MQSeries, the state of a queue
manager prior to it being stopped. In this state,
programs are allowed to finish processing, but no new
programs are allowed to start.

R
RBA . Relative byte address.

reason code . A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel . In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log . In MQSeries for MVS/ESA, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
MVS/ESA writes each record to a data set called the
active log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

recovery termination manager (RTM) . A program
that handles all normal and abnormal termination of
tasks by passing control to a recovery routine
associated with the terminating function.

Registry . In Windows NT, a secure database that
provides a single source for system and application
configuration data.

Registry Editor . In Windows NT, the program item
that allows the user to edit the Registry.

Registry Hive . In Windows NT, the structure of the
data stored in the Registry.

relative byte address (RBA) . The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

500 MQSeries Programmable System Management

 remote queue � server channel

remote queue . A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager . To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object . See local definition of a remote
queue.

remote queuing . In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message . A type of message used for replies to
request messages.

reply-to queue . The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message . A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason.

requester channel . In message queuing, a channel
that may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the
message. See also server channel.

request message . A type of message used to request
a reply from another program.

RESLEVEL . In MQSeries for MVS/ESA, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for MVS/ESA.

resolution path . The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource . Any facility of the computing system or
operating system required by a job or task. In
MQSeries for MVS/ESA, examples of resources are
buffer pools, page sets, log data sets, queues, and
messages.

resource manager . An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

responder . In distributed queuing, a program that
replies to network connection requests from another
system.

resynch . In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes . The collective name for completion
codes and reason codes.

rollback . Synonym for back out.

RTM. Recovery termination manager.

rules table . A control file containing one or more rules
that the dead-letter queue handler applies to messages
on the DLQ.

S
SAF. System Authorization Facility.

SDWA. System diagnostic work area.

security enabling interface (SEI) . The MQSeries
interface to which customer- or vendor-written programs
that check authorization, supply a user identifier, or
perform authentication must conform. A part of the
MQSeries Framework.

SEI. Security enabling interface.

sender channel . In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery . In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value . In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a
sequence number ensures that the receiving channel
can reestablish the message sequence when storing
the messages.

server . (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel . In message queuing, a channel that
responds to a requester channel, removes messages

 Glossary of terms and abbreviations 501

 server connection channel type � SYS1.LOGREC

from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type . The type of MQI
channel definition associated with the server that runs a
queue manager. See also client connection channel
type.

service interval . A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event . An event related to the service
interval.

session ID . In MQSeries for MVS/ESA, the
CICS-unique identifier that defines the communication
link to be used by a message channel agent when
moving messages from a transmission queue to a link.

shutdown . See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling . In MQSeries for MVS/ESA and MQSeries
for Windows 2.1, a feature that allows the operating
system to notify a program when an expected message
arrives on a queue.

single logging . A method of recording MQSeries for
MVS/ESA activity where each change is recorded on
one data set only. Contrast with dual logging.

single-phase backout . A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit . A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

stanza . A group of lines in a configuration file that
assigns a value to a parameter modifying the behavior
of a queue manager, client, or channel. In MQSeries
on UNIX systems, MQSeries for OS/2 Warp, and
MQSeries for Windows NT, a configuration (.ini) file
may contain a number of stanzas.

storage class . In MQSeries for MVS/ESA, a storage
class defines the page set that is to hold the messages
for a particular queue. The storage class is specified
when the queue is defined.

store and forward . The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem . In MVS, a group of modules that provides
function that is dependent on MVS. For example,
MQSeries for MVS/ESA is an MVS subsystem.

supervisor call (SVC) . An MVS instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

switch profile . In MQSeries for MVS/ESA, a RACF
profile used when MQSeries starts up or when a refresh
security command is issued. Each switch profile that
MQSeries detects turns off checking for the specified
resource.

symptom string . Diagnostic information displayed in a
structured format designed for searching the IBM
software support database.

synchronous messaging . A method of
communication between programs in which programs
place messages on message queues. With
synchronous messaging, the sending program waits for
a reply to its message before resuming its own
processing. Contrast with asynchronous messaging.

syncpoint . An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

System Authorization Facility (SAF) . An MVS facility
through which MQSeries for MVS/ESA communicates
with an external security manager such as RACF.

system.command.input queue . A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands . Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system diagnostic work area (SDWA) . Data
recorded in a SYS1.LOGREC entry, which describes a
program or hardware error.

system initialization table (SIT) . A table containing
parameters used by CICS on start up.

SYS1.LOGREC. A service aid containing information
about program and hardware errors.

502 MQSeries Programmable System Management

 TACL � utility

T
| TACL . Tandem Advanced Command Language.

target library high-level qualifier (thlqual) . High-level
qualifier for MVS/ESA target data set names.

task control block (TCB) . An MVS control block used
to communicate information about tasks within an
address space that are connected to an MVS
subsystem such as MQSeries for MVS/ESA or CICS.

task switching . The overlapping of I/O operations and
processing between several tasks. In MQSeries for
MVS/ESA, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

temporary dynamic queue . A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast
with permanent dynamic queue.

termination notification . A pending event that is
activated when a CICS subsystem successfully
connects to MQSeries for MVS/ESA.

thlqual . Target library high-level qualifier.

thread . In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging . See asynchronous
messaging.

TMI. Trigger monitor interface.

trace . In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See
also global trace and performance trace.

tranid . See transaction identifier.

transaction identifier . In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transmission program . See message channel agent.

transmission queue . A local queue on which
prepared messages destined for a remote queue
manager are temporarily stored.

trigger event . An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering . In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message . A message containing information
about the program that a trigger monitor is to start.

trigger monitor . A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI) . The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit . A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
UIS. User identifier service.

undelivered-message queue . See dead-letter queue.

undo/redo record . A log record used in recovery.
The redo part of the record describes a change to be
made to an MQSeries object. The undo part describes
how to back out the change if the work is not
committed.

unit of recovery . A recoverable sequence of
operations within a single resource manager. Contrast
with unit of work.

unit of work . A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends
either at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

user identifier service (UIS) . In MQSeries for OS/2
Warp, the facility that allows MQI applications to
associate a user ID, other than the default user ID, with
MQSeries messages.

utility . In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

 Glossary of terms and abbreviations 503

504 MQSeries Programmable System Management

 Index

 Index

A
algorithms for queue service interval events 21
Alias Base Queue Type Error 40
ApplId parameter

Change Process command 158
Copy Process command 200
Create Process command 234
Inquire Process (Response) command 286

ApplType parameter
Change Process command 156
Copy Process command 199
Create Process command 232
Inquire Process (Response) command 285

authority checking 131
Digital OpenVMS 133
OS/2 132
OS/400 131
Tandem NSK 133
UNIX systems 133
Windows NT 133

authority events 12
Authority parameter

MQZ_CHECK_AUTHORITY call 400
MQZ_GET_AUTHORITY call 412
MQZ_GET_EXPLICIT_AUTHORITY call 416
MQZ_SET_AUTHORITY call 423

AuthorityEvent parameter
Change Queue Manager command 174
Inquire Queue Manager (Response) command 308

AuthorityMask parameter
MQZ_GET_EXPLICIT_AUTHORITY call 416

authorization service 375
defining to Digital OpenVMS 376
defining to MQSeries for OS/2 376
defining to MQSeries for UNIX systems 376
defining to MQSeries for Windows NT 376
defining to Tandem NSK 376
stanza, Digital OpenVMS 379
stanza, OS/2 Warp 378
stanza, Tandem NSK 379
stanza, UNIX systems 376
stanza, Windows NT 377
user interface 380

authorization service component 375
auto-definition of channels 48, 50

B
BackoutRequeueName parameter

Change Queue command 164
Copy Queue command 206

BackoutRequeueName parameter (continued)
Create Queue command 239
Inquire Queue (Response) command 296

BackoutThreshold parameter
Change Queue command 163
Copy Queue command 205
Create Queue command 239
Inquire Queue (Response) command 296

BaseQName parameter
Change Queue command 162
Copy Queue command 204
Create Queue command 238
Inquire Queue (Response) command 299

Batches parameter
Inquire Channel Status (Response) command 281

BatchInterval parameter
Change Channel command 152
Copy Channel command 194
Create Channel command 228
Inquire Channel (Response) command 267

BatchSize parameter
Change Channel command 146
Copy Channel command 184
Create Channel command 217
Inquire Channel (Response) command 264
Inquire Channel Status (Response) command 282

bibliography x
BookManager xiv
Bridge Started 42
Bridge Stopped 44
BuffersReceived parameter

Inquire Channel Status (Response) command 281
BuffersSent parameter

Inquire Channel Status (Response) command 281
BytesReceived parameter

Inquire Channel Status (Response) command 281
BytesSent parameter

Inquire Channel Status (Response) command 281

C
cell, DCE and queues 386
Change Channel 139
Change Process 156
Change Queue 160
Change Queue Manager 173
Channel Activated 46
Channel Auto-definition Error 48
Channel Auto-definition OK 50
Channel Conversion Error 52
channel event queue 6

 Copyright IBM Corp. 1994,1998 505

 Index

channel events 6, 14
enabling 15

channel events queue 14
Channel Not Activated 55
Channel Started 57
Channel Stopped 59
ChannelAttrs parameter

Inquire Channel command 257
ChannelAutoDef parameter

Change Queue Manager command 176
Inquire Queue Manager (Response) command 310

ChannelAutoDefEvent parameter
Change Queue Manager command 176
Inquire Queue Manager (Response) command 310

ChannelAutoDefExit parameter
Change Queue Manager command 177
Inquire Queue Manager (Response) command 310

ChannelDesc parameter
Change Channel command 140
Copy Channel command 183
Create Channel command 217
Inquire Channel (Response) command 264

ChannelInstanceAttrs parameter
Inquire Channel Status command 274

ChannelInstanceType parameter
Inquire Channel Status (Response) command 278
Inquire Channel Status command 273

ChannelName parameter
Change Channel command 139
Create Channel command 215
Delete Channel command 249
Inquire Channel (Response) command 263
Inquire Channel command 256
Inquire Channel Names command 268
Inquire Channel Status (Response) command 278
Inquire Channel Status command 273
Ping Channel command 314
Reset Channel command 318
Resolve Channel command 323
Start Channel command 325
Stop Channel command 330

ChannelNames parameter
Inquire Channel Names (Response) command 270

ChannelStartDate parameter
Inquire Channel Status (Response) command 281

ChannelStartTime parameter
Inquire Channel Status (Response) command 281

ChannelStatus parameter
Inquire Channel Status (Response) command 279

ChannelTable parameter
Delete Channel command 249

ChannelType parameter
Change Channel command 139
Copy Channel command 182
Create Channel command 215
Inquire Channel (Response) command 263

ChannelType parameter (continued)
Inquire Channel command 256
Inquire Channel Names command 268
Inquire Channel Status (Response) command 279

Clear Queue 179
CodedCharSetId field

MQCFSL structure 348
MQCFST structure 342

CodedCharSetId parameter
Inquire Queue Manager (Response) command 307

Command field 335
command queue

SYSTEM.ADMIN.COMMAND.QUEUE 127
command structures 333
CommandInputQName parameter

Inquire Queue Manager (Response) command 307
CommandLevel parameter

Inquire Queue Manager (Response) command 305
commands

constants 473
CompCode field 337, 455
CompCode parameter

MQZ_CHECK_AUTHORITY call 402
MQZ_COPY_ALL_AUTHORITY call 406
MQZ_DELETE_AUTHORITY call 409
MQZ_DELETE_NAME call 429
MQZ_FIND_USERID call 445
MQZ_GET_AUTHORITY call 412
MQZ_GET_EXPLICIT_AUTHORITY call 416
MQZ_INIT_AUTHORITY call 420
MQZ_INIT_NAME call 433
MQZ_INIT_USERID call 448
MQZ_INSERT_NAME call 436
MQZ_LOOKUP_NAME call 439
MQZ_SET_AUTHORITY call 423
MQZ_TERM_AUTHORITY call 426
MQZ_TERM_NAME call 442
MQZ_TERM_USERID call 450
MQZEP call 396

completion code 455
ComponentData parameter

MQZ_CHECK_AUTHORITY call 402
MQZ_COPY_ALL_AUTHORITY call 406
MQZ_DELETE_AUTHORITY call 408
MQZ_DELETE_NAME call 429
MQZ_FIND_USERID call 444
MQZ_GET_AUTHORITY call 412
MQZ_GET_EXPLICIT_AUTHORITY call 416
MQZ_INIT_AUTHORITY call 419
MQZ_INIT_NAME call 432
MQZ_INIT_USERID call 447
MQZ_INSERT_NAME call 435
MQZ_LOOKUP_NAME call 438
MQZ_SET_AUTHORITY call 423
MQZ_TERM_AUTHORITY call 426
MQZ_TERM_NAME call 441

506 MQSeries Programmable System Management

 Index

ComponentData parameter (continued)
MQZ_TERM_USERID call 450

ComponentDataLength parameter
MQZ_INIT_AUTHORITY call 419
MQZ_INIT_NAME call 432
MQZ_INIT_USERID call 447

conditions giving events 5
configuration file 376, 387, 389

authorization service 376
ConnectionName parameter

Change Channel command 145
Copy Channel command 188
Create Channel command 222
Inquire Channel (Response) command 264
Inquire Channel Status (Response) command 278
Inquire Channel Status command 273

constants 473
constants, values of 473—484
Continuation parameter 370

MQZ_CHECK_AUTHORITY call 402
MQZ_COPY_ALL_AUTHORITY call 406
MQZ_DELETE_AUTHORITY call 409
MQZ_DELETE_NAME call 429
MQZ_FIND_USERID call 445
MQZ_GET_AUTHORITY call 412
MQZ_GET_EXPLICIT_AUTHORITY call 416
MQZ_INSERT_NAME call 435
MQZ_LOOKUP_NAME call 439
MQZ_SET_AUTHORITY call 423

control attribute for queue service interval events 20
Control field 337
Control Language

OS/400 124
Copy Channel 181
COPY files 485
Copy Process 198
Copy Queue 202
Count field

MQCFIL structure 346
MQCFSL structure 348

Create Channel 215
Create Process 232
Create Queue 236
creating service components 372
CreationDate parameter

Inquire Queue (Response) command 298
CreationTime parameter

Inquire Queue (Response) command 298
CurrentLUWID parameter

Inquire Channel Status (Response) command 280
CurrentMsgs parameter

Inquire Channel Status (Response) command 280
CurrentQDepth parameter

Inquire Queue (Response) command 298
CurrentSequenceNumber parameter

Inquire Channel Status (Response) command 280

D
data conversions 9
data response 130
data structures

MQCFH 38
MQMD 37

data types, detailed description
elementary

MQHCONFIG 398
PMQFUNC 398

data, event 35, 36
DataConversion parameter

Change Channel command 148
Copy Channel command 190
Create Channel command 224
Inquire Channel (Response) command 265

DataCount parameter
Ping Channel command 314

DCE
cell 386
sharing queues 386

DCE name service 368
DeadLetterQName parameter

Change Queue Manager command 173
Inquire Queue Manager (Response) command 307

default structures 333
Default Transmission Queue Type Error 63
Default Transmission Queue Usage Error 65
definitions of PCFs 135
DefinitionType parameter

Change Queue command 168
Copy Queue command 210
Create Queue command 244
Inquire Queue (Response) command 297

DefInputOpenOption parameter
Change Queue command 164
Copy Queue command 206
Create Queue command 240
Inquire Queue (Response) command 297

DefPersistence parameter
Change Queue command 162
Copy Queue command 204
Create Queue command 238
Inquire Queue (Response) command 296

DefPriority parameter
Change Queue command 162
Copy Queue command 204
Create Queue command 238
Inquire Queue (Response) command 296

DefXmitQName parameter
Change Queue Manager command 174
Inquire Queue Manager (Response) command 307

Delete Channel 249
Delete Process 251

 Index 507

 Index

Delete Queue 252
descriptor, message 127, 130
disabling

queue manager events 11
disabling events 7
DiscInterval parameter

Change Channel command 146
Copy Channel command 189
Create Channel command 223
Inquire Channel (Response) command 264

DistLists parameter
Change Queue command 165
Copy Queue command 207
Create Queue command 241
Inquire Queue (Response) command 298
Inquire Queue Manager (Response) command 308

distributed monitoring 9
dynamic binding 371

E
enabling

Queue Depth High events 28
Queue Depth Low events 28
Queue Full events 29
queue manager events 11, 14
queue service interval events 20

enabling events 7
enquire local queue attributes 353
EntityName parameter

MQZ_CHECK_AUTHORITY call 399
MQZ_GET_AUTHORITY call 411
MQZ_GET_EXPLICIT_AUTHORITY call 415
MQZ_SET_AUTHORITY call 422

EntityType parameter
MQZ_CHECK_AUTHORITY call 399
MQZ_GET_AUTHORITY call 411
MQZ_GET_EXPLICIT_AUTHORITY call 415
MQZ_SET_AUTHORITY call 422

entry points
user identifier service 389

EntryPoint parameter
MQZEP call 396

EnvData parameter
Change Process command 158
Create Process command 234
Inquire Process (Response) command 286

error codes 455
error response 129
errors

channels 8
on event queues 8

Escape 254
Escape (Response) 255
EscapeText parameter

Escape (Response) command 255

EscapeText parameter (continued)
Escape command 254

EscapeType parameter
Escape (Response) command 255
Escape command 254

event data 17, 36
event header 36
event message 17
event messages

event queues 6
format 9
formats 35
lost 7
unit of work 8

event queue 17
unavailable 7

event queue names 6
event queues

errors 8
transmission queues 8
trigger messages 8
triggered 7

event statistics 17, 18
example summary 23, 25, 26
resetting 18

event timer 19
events

attribute setting 7
authority 12
channel 6, 14
constants 473
enabling and disabling 7
inhibit 12
local. 13
message data 35
overview 4
platforms supported 3
queue depth events 27

Queue Depth High 27
Queue Depth Low 27
Queue Full 27

queue manager 11
enabling 11

queues 6
queues for 6
remote 13
service interval 18
start and stop events 13
trigger 6
types 6
use for 3
useful things 8

example using PCFs 353
examples

queue depth events 29

508 MQSeries Programmable System Management

 Index

F
Force parameter

Change Queue command 161
Change Queue Manager command 173

Format field 129, 334
format of event messages 9
formats

event messages 35
FromChannelName parameter

Copy Channel command 181
FromProcessName parameter

Copy Process command 198
FromQName parameter

Copy Queue command 202
Function parameter

MQZEP call 396

G
Get Inhibited 67
glossary 493
groups for PCFs 137

H
HardenGetBackout parameter

Change Queue command 164
Copy Queue command 206
Create Queue command 240
Inquire Queue (Response) command 297

Hconfig parameter
MQZ_INIT_AUTHORITY call 419
MQZ_INIT_NAME call 432
MQZ_INIT_USERID call 447
MQZ_TERM_AUTHORITY call 426
MQZ_TERM_NAME call 441
MQZ_TERM_USERID call 450
MQZEP call 396

header file 385
header files 485
header, event 36
HeartbeatInterval parameter

Change Channel command 151
Copy Channel command 193
Create Channel command 227
Inquire Channel (Response) command 267
Inquire Channel Status (Response) command 282

high (service interval) event 18
high events (service interval)

algorithm 21
HighQDepth parameter

Reset Queue Statistics (Response) command 322
HTML (Hypertext Markup Language) xiv
Hypertext Markup Language (HTML) xiv

I
INCLUDE files 485
InDoubt parameter

Resolve Channel command 323
InDoubtStatus parameter

Inquire Channel Status (Response) command 280
Information Presentation Facility (IPF) xiv
inhibit events 12
InhibitEvent parameter

Change Queue Manager command 174
Inquire Queue Manager (Response) command 309

InhibitGet parameter
Change Queue command 162
Copy Queue command 204
Create Queue command 238
Inquire Queue (Response) command 295

InhibitPut parameter
Change Queue command 162
Copy Queue command 204
Create Queue command 238
Inquire Queue (Response) command 296

initialization
primary 370
secondary 370

InitiationQName parameter
Change Queue command 160, 166
Copy Queue command 208
Create Queue command 241
Inquire Queue (Response) command 298
Start Channel Initiator command 327

Inquire Channel 256
Inquire Channel (Response) 263
Inquire Channel Names 268
Inquire Channel Names (Response) 270
Inquire Channel Status 271
Inquire Channel Status (Response) 278
Inquire Process 283
Inquire Process (Response) 285
Inquire Process Names 287
Inquire Process Names (Response) 288
Inquire Queue 289
Inquire Queue (Response) 295
Inquire Queue Manager 302
Inquire Queue Manager (Response) 305
Inquire Queue Names 311
Inquire Queue Names (Response) 313
installable service

component
MQZ_CHECK_AUTHORITY 399
MQZ_COPY_ALL_AUTHORITY 405
MQZ_DELETE_AUTHORITY 408
MQZ_DELETE_NAME 429
MQZ_FIND_USERID 444
MQZ_GET_AUTHORITY 411
MQZ_GET_EXPLICIT_AUTHORITY 415
MQZ_INIT_AUTHORITY 419

 Index 509

 Index

installable service (continued)
component (continued)

MQZ_INIT_NAME 432
MQZ_INIT_USERID 447
MQZ_INSERT_NAME 435
MQZ_LOOKUP_NAME 438
MQZ_SET_AUTHORITY 422
MQZ_TERM_AUTHORITY 426
MQZ_TERM_NAME 441
MQZ_TERM_USERID 450
MQZEP 396

configuring services 371
user identifier 389

installable services 367
authorization service 375
Component data 370
component entry-points 369
components 368
constants 473
example configuration file 387
functions 368
initialization 370
interface 395
multiple components 373
name service 383
Name service interface 384
return information 370
user identifier service 389

IPF (Information Presentation Facility) xiv

L
LastLUWID parameter

Inquire Channel Status (Response) command 280
LastMsgDate parameter

Inquire Channel Status (Response) command 281
LastMsgTime parameter

Inquire Channel Status (Response) command 281
LastSequenceNumber parameter

Inquire Channel Status (Response) command 280
limits

queue depth 30
local events 13
LocalEvent parameter

Change Queue Manager command 175
Inquire Queue Manager (Response) command 309

LongRetriesLeft parameter
Inquire Channel Status (Response) command 281

LongRetryCount parameter
Change Channel command 147
Copy Channel command 190
Create Channel command 224
Inquire Channel (Response) command 264

LongRetryInterval parameter
Change Channel command 147
Copy Channel command 190

LongRetryInterval parameter (continued)
Create Channel command 224
Inquire Channel (Response) command 265

M
MaxHandles parameter

Change Queue Manager command 174
Inquire Queue Manager (Response) command 308

maximum depth reached 27
MaxMsgLength parameter

Change Channel command 143
Change Queue command 163
Change Queue Manager command 176
Copy Channel command 186
Copy Queue command 205
Create Channel command 220
Create Queue command 239
Inquire Channel (Response) command 266
Inquire Queue (Response) command 296
Inquire Queue Manager (Response) command 308

MaxPriority parameter
Inquire Queue Manager (Response) command 307

MaxQDepth parameter
Change Queue command 163
Copy Queue command 205
Create Queue command 239
Inquire Queue (Response) command 296

MaxUncommittedMsgs parameter
Change Queue Manager command 174
Inquire Queue Manager (Response) command 308

MCAJobName parameter
Inquire Channel Status (Response) command 282

MCAName parameter
Change Channel command 146
Copy Channel command 189
Create Channel command 223
Inquire Channel (Response) command 264

MCAStatus parameter
Inquire Channel Status (Response) command 282

MCAType parameter
Change Channel command 148
Copy Channel command 191
Create Channel command 225
Inquire Channel (Response) command 266

MCAUserIdentifier parameter
Change Channel command 149
Copy Channel command 191
Create Channel command 225
Inquire Channel (Response) command 266

message descriptor 127, 130
events 36

ModeName parameter
Change Channel command 144
Copy Channel command 183
Create Channel command 217

510 MQSeries Programmable System Management

 Index

ModeName parameter (continued)
Inquire Channel (Response) command 264

monitoring queue managers 3
MQ_* values 473
MQBT_* values 474
MQCACF_* values 474
MQCACH_* values 475
MQCDC_* values 475
MQCFC_* values 475
MQCFH 334

Format field 334
MQCFH data structure 38
MQCFH_* values 476
MQCFH_DEFAULT 338
MQCFIL 345
MQCFIL_* values 476
MQCFIL_DEFAULT 346
MQCFIN 339
MQCFIN_* values 476
MQCFIN_DEFAULT 340
MQCFSL 347
MQCFSL_* values 476
MQCFSL_DEFAULT 350
MQCFST 341
MQCFST_* values 476
MQCFST_DEFAULT 344
MQCFT_* values 334, 476
MQCHAD_* values 476
MQCHS_* values 476
MQCHT_* values 477
MQCMD_* values 477
MQCMDL_* values 305
MQET_* values 477
MQEVR_* values 478
MQFC_* values 478
MQHCONFIG 398
MQIACF_* values 478
MQIACH_* values 478
MQMD message descriptor 37
MQOT_* values 479
MQPO_* values 479
MQQO_* values 480
MQQSIE_* values 480
MQQT_* values 480
MQRCCF_* values 456, 480
MQRP_* values 483
MQRQ_* values 483
MQSeries Commands (MQSC) 124
MQSeries name service interface (NSI) 383
MQSeries publications x
MQSeries security enabling interface (SEI) 375
MQZ_CHECK_AUTHORITY 399
MQZ_COPY_ALL_AUTHORITY 405
MQZ_DELETE_AUTHORITY 408
MQZ_DELETE_NAME 429

MQZ_FIND_USERID 444
MQZ_GET_AUTHORITY 411
MQZ_GET_EXPLICIT_AUTHORITY 415
MQZ_INIT_AUTHORITY 419
MQZ_INIT_NAME 432
MQZ_INIT_USERID 447
MQZ_INSERT_NAME 435
MQZ_LOOKUP_NAME 438
MQZ_SET_AUTHORITY 422
MQZ_TERM_AUTHORITY 426
MQZ_TERM_NAME 441
MQZ_TERM_USERID 450
MQZAET_* values 483
MQZAO_* values 483
MQZAS_* values 483
MQZCI_* values 484
MQZEP 396
MQZID_* values 484
MQZIO_* values 484
MQZNS_* values 484
MQZTO_* values 484
MQZUS_* values 484
MsgDeliverySequence parameter

Change Queue command 165
Copy Queue command 207
Create Queue command 240
Inquire Queue (Response) command 297

MsgDeqCount parameter
Reset Queue Statistics (Response) command 322

MsgEnqCount parameter
Reset Queue Statistics (Response) command 322

MsgExit parameter
Change Channel command 141
Copy Channel command 185
Create Channel command 218
Inquire Channel (Response) command 265

MsgRetryCount parameter
Change Channel command 150
Copy Channel command 192
Create Channel command 226
Inquire Channel (Response) command 267

MsgRetryExit parameter
Change Channel command 149
Copy Channel command 192
Inquire Channel (Response) command 267

MsgRetryInterval parameter
Change Channel command 150
Copy Channel command 193
Create Channel command 227
Inquire Channel (Response) command 267

MsgRetryUserData parameter
Change Channel command 150
Copy Channel command 192
Create Channel command 226
Inquire Channel (Response) command 267

 Index 511

 Index

Msgs parameter
Inquire Channel Status (Response) command 281

MsgSeqNumber field 337
MsgSeqNumber parameter

Reset Channel command 318
MsgUserData parameter

Change Channel command 143
Copy Channel command 187
Create Channel command 221
Inquire Channel (Response) command 266

multiple service components 373

N
name service 383

configuration 387
interface (NSI) 384

name service interface (NSI) 383
names, of event queues 6
NonPersistentMsgSpeed parameter

Change Channel command 151
Copy Channel command 193
Create Channel command 227
Inquire Channel (Response) command 267
Inquire Channel Status (Response) command 282

Not Authorized (type 1) 69
Not Authorized (type 2) 71
Not Authorized (type 3) 73
Not Authorized (type 4) 75
notification of events 6
NSI (MQSeries name service interface) 383

O
object authority manager 375
Object Authority Manager (OAM) 375
ObjectName parameter

MQZ_CHECK_AUTHORITY call 399
MQZ_COPY_ALL_AUTHORITY call 405
MQZ_DELETE_AUTHORITY call 408
MQZ_GET_AUTHORITY call 411
MQZ_GET_EXPLICIT_AUTHORITY call 415
MQZ_SET_AUTHORITY call 422

ObjectType parameter
MQZ_CHECK_AUTHORITY call 400
MQZ_COPY_ALL_AUTHORITY call 405
MQZ_DELETE_AUTHORITY call 408
MQZ_GET_AUTHORITY call 412
MQZ_GET_EXPLICIT_AUTHORITY call 416
MQZ_SET_AUTHORITY call 422

OK (service interval) event 18
OK events

algorithm 21
OK response 129
OpenInputCount parameter

Inquire Queue (Response) command 298

OpenOutputCount parameter
Inquire Queue (Response) command 298

Options parameter 426
MQZ_INIT_AUTHORITY call 419
MQZ_INIT_NAME call 432
MQZ_INIT_USERID call 447
MQZ_TERM_AUTHORITY call 426
MQZ_TERM_NAME call 441
MQZ_TERM_USERID call 450

OS/2 user identifier 389
OS/400 Control Language 124

P
Parameter field

MQCFIL structure 346
MQCFIN structure 340
MQCFSL structure 348
MQCFST structure 342

ParameterCount field 338
Password parameter

Change Channel command 149
Copy Channel command 192
Create Channel command 226
Inquire Channel (Response) command 267
MQZ_FIND_USERID call 444

PCF definitions
Change Channel 139
Change Process 156
Change Queue 160
Change Queue Manager 173
Clear Queue 179
Copy Channel 181
Copy Process 198
Copy Queue 202
Create Channel 215
Create Process 232
Create Queue 236
Delete Channel 249
Delete Process 251
Delete Queue 252
Escape 254
Escape (Response) 255
Inquire Channel 256
Inquire Channel Names 268
Inquire Channel Status 271
Inquire Process 283
Inquire Process Names 287
Inquire Queue 289
Inquire Queue Manager 302
Inquire Queue Names 311
Ping Channel 314
Ping Queue Manager 317
Reset Channel 318
Reset Queue Statistics 320
Resolve Channel 323

512 MQSeries Programmable System Management

 Index

PCF definitions (continued)
Start Channel 325
Start Channel Initiator 327
Start Channel Listener 329
Stop Channel 330

PCF example program 353
PCFs

constants 473
PCFs in groups 137
performance event queue 6
performance events 17—34

control attribute 20
enabling 20
event data 17
event statistics 18
types of 17

PerformanceEvent parameter
Change Queue Manager command 175
Inquire Queue Manager (Response) command 310

Ping Channel 314
Ping Queue Manager 317
Platform parameter

Inquire Queue Manager (Response) command 305
platforms for events 3
PMQFUNC 398
PostScript format xiv
primary initialization 370
primary termination 371
ProcessAttrs parameter

Inquire Process command 283
ProcessDesc parameter

Change Process command 156
Copy Process command 198
Create Process command 232
Inquire Process (Response) command 285

ProcessName parameter
Change Process command 156
Change Queue command 163
Copy Queue command 205
Create Process command 232
Create Queue command 238
Delete Process command 251
Inquire Process (Response) command 285
Inquire Process command 283
Inquire Process Names command 287
Inquire Queue (Response) command 296

ProcessNames parameter
Inquire Process Names (Response) command 288

publications
MQSeries x

Purge parameter
Delete Queue command 252

Put Inhibited 77
PutAuthority parameter

Change Channel command 148
Copy Channel command 191

PutAuthority parameter (continued)
Create Channel command 224
Inquire Channel (Response) command 265

Q
QAttrs parameter

Inquire Queue command 290
QDepthHighEvent parameter

Change Queue command 169
Copy Queue command 211
Create Queue command 245
Inquire Queue (Response) command 300

QDepthHighLimit parameter
Change Queue command 168
Copy Queue command 210
Create Queue command 244
Inquire Queue (Response) command 300

QDepthLowEvent parameter
Change Queue command 170
Copy Queue command 212
Create Queue command 245
Inquire Queue (Response) command 300

QDepthLowLimit parameter
Change Queue command 169
Copy Queue command 211
Create Queue command 244
Inquire Queue (Response) command 300

QDepthMaxEvent parameter
Change Queue command 169
Copy Queue command 211
Create Queue command 245
Inquire Queue (Response) command 300

QDesc parameter
Change Queue command 161
Copy Queue command 204
Create Queue command 237
Inquire Queue (Response) command 295

QMgrAttrs parameter
Inquire Queue Manager command 302

QMgrDesc parameter
Change Queue Manager command 173
Inquire Queue Manager (Response) command 305

QMgrName parameter
Change Channel command 151
Copy Channel command 183
Create Channel command 217
Inquire Channel (Response) command 264
Inquire Queue Manager (Response) command 305
MQZ_CHECK_AUTHORITY call 399
MQZ_COPY_ALL_AUTHORITY call 405
MQZ_DELETE_AUTHORITY call 408
MQZ_DELETE_NAME call 429
MQZ_FIND_USERID call 444
MQZ_GET_AUTHORITY call 411
MQZ_GET_EXPLICIT_AUTHORITY call 415

 Index 513

 Index

QMgrName parameter (continued)
MQZ_INIT_AUTHORITY call 419
MQZ_INIT_NAME call 432
MQZ_INIT_USERID call 447
MQZ_INSERT_NAME call 435
MQZ_LOOKUP_NAME call 438
MQZ_SET_AUTHORITY call 422
MQZ_TERM_AUTHORITY call 426
MQZ_TERM_NAME call 441
MQZ_TERM_USERID call 450

QName parameter
Clear Queue command 179
Create Queue command 236
Delete Queue command 252
Inquire Queue (Response) command 295
Inquire Queue command 289
Inquire Queue Names command 311
MQZ_DELETE_NAME call 429
MQZ_INSERT_NAME call 435
MQZ_LOOKUP_NAME call 438
Reset Queue Statistics (Response) command 322
Reset Queue Statistics command 320

QNames parameter
Inquire Queue Names (Response) command 313

QServiceInterval parameter
Change Queue command 170
Copy Queue command 212
Create Queue command 246
Inquire Queue (Response) command 301

QServiceIntervalEvent parameter
Change Queue command 170
Copy Queue command 212
Create Queue command 246
Inquire Queue (Response) command 301

QType parameter
Change Queue command 160
Copy Queue command 202
Create Queue command 236
Delete Queue command 252
Inquire Queue (Response) command 295
Inquire Queue command 289
Inquire Queue Names command 311

queue
channel events 14

queue depth events
examples 29

Queue Depth High 79
Queue Depth High events 27

enabling 28
Queue Depth Low 81
Queue Depth Low events 27

enabling 28
Queue Full 83
Queue Full events 27

enabling 29

Queue Manager Active 85
queue manager event queue 6
queue manager events 11

enabling 11, 14
start and stop 13

queue manager ini file 376, 387, 389
Queue Manager Not Active 86
queue managers

monitoring 3
queue service interval events

algorithm for 21
enabling 20
examples 21
high 18
OK 18

Queue Service Interval High 88
Queue Service Interval High events

algorithm 21
Queue Service Interval OK 90
Queue Service Interval OK events

algorithm 21
Queue Type Error 92
queues

shared
configuration tasks 387

shared on different queue managers 386
Quiesce parameter

Stop Channel command 330

R
reason codes 455

characters 37
reason codes for command format

numeric list 480
Reason field 455

MQCFH structure 337
Reason parameter

Change Channel command 152
Change Process command 158
Change Queue command 171
Change Queue Manager command 177
Clear Queue command 179
Copy Channel command 194
Copy Process command 201
Copy Queue command 213
Create Channel command 228
Create Process command 234
Create Queue command 247
Delete Channel command 249
Delete Process command 251
Delete Queue command 253
Escape command 254
Inquire Channel command 261
Inquire Channel Names command 269
Inquire Channel Status command 276

514 MQSeries Programmable System Management

 Index

Reason parameter (continued)
Inquire Process command 284
Inquire Process Names command 287
Inquire Queue command 294
Inquire Queue Manager command 303
Inquire Queue Names command 311
MQZ_CHECK_AUTHORITY call 402
MQZ_COPY_ALL_AUTHORITY call 406
MQZ_DELETE_AUTHORITY call 409
MQZ_DELETE_NAME call 430
MQZ_FIND_USERID call 445
MQZ_GET_AUTHORITY call 412
MQZ_GET_EXPLICIT_AUTHORITY call 417
MQZ_INIT_AUTHORITY call 420
MQZ_INIT_NAME call 433
MQZ_INIT_USERID call 448
MQZ_INSERT_NAME call 436
MQZ_LOOKUP_NAME call 439
MQZ_SET_AUTHORITY call 423
MQZ_TERM_AUTHORITY call 427
MQZ_TERM_NAME call 442
MQZ_TERM_USERID call 451
MQZEP call 396
Ping Channel command 314
Ping Queue Manager command 317
Reset Channel command 318
Reset Queue Statistics command 320
Resolve Channel command 323
Start Channel command 325
Start Channel Initiator command 327
Start Channel Listener command 329
Stop Channel command 330

ReceiveExit parameter
Change Channel command 142
Copy Channel command 186
Create Channel command 220
Inquire Channel (Response) command 265

ReceiveUserData parameter
Change Channel command 144
Copy Channel command 188
Create Channel command 222
Inquire Channel (Response) command 266

RefObjectName parameter
MQZ_COPY_ALL_AUTHORITY call 405

remote events 13
Remote Queue Name Error 94
RemoteEvent parameter

Change Queue Manager command 175
Inquire Queue Manager (Response) command 309

RemoteQMgrName parameter
Change Queue command 167
Copy Queue command 209
Create Queue command 243
Inquire Queue (Response) command 299

RemoteQName parameter
Change Queue command 167

RemoteQName parameter (continued)
Copy Queue command 209
Create Queue command 243
Inquire Queue (Response) command 299

Replace parameter
Copy Channel command 182
Copy Process command 198
Copy Queue command 203
Create Channel command 216
Create Process command 232
Create Queue command 237

reporting events 3
Reset Channel 318
Reset Queue Statistics 320
Reset Queue Statistics (Response) 322
reset service timer 20
Resolve Channel 323
ResolvedQMgrName parameter

MQZ_INSERT_NAME call 435
MQZ_LOOKUP_NAME call 438

response
data 130
error 129
OK 129

response structures 333
Responses

Alias Base Queue Type Error 40
Bridge Started 42
Bridge Stopped 44
Channel Activated 46
Channel Auto-definition Error 48
Channel Auto-definition OK 50
Channel Conversion Error 52
Channel Not Activated 55
Channel Started 57
Channel Stopped 59
constants 473
Default Transmission Queue Type Error 63
Default Transmission Queue Usage Error 65
Get Inhibited 67
Inquire Channel (Response) 263
Inquire Channel Names (Response) 270
Inquire Channel Status (Response) 278
Inquire Process (Response) 285
Inquire Process Names (Response) 288
Inquire Queue (Response) 295
Inquire Queue Manager (Response) 305
Inquire Queue Names (Response) 313
Not Authorized (type 1) 69
Not Authorized (type 2) 71
Not Authorized (type 3) 73
Not Authorized (type 4) 75
Put Inhibited 77
Queue Depth High 79
Queue Depth Low 81
Queue Full 83

 Index 515

 Index

Responses (continued)
Queue Manager Active 85
Queue Manager Not Active 86
Queue Service Interval High 88
Queue Service Interval OK 90
Queue Type Error 92
Remote Queue Name Error 94
Reset Queue Statistics (Response) 322
Transmission Queue Type Error 96
Transmission Queue Usage Error 98
Unknown Alias Base Queue 100
Unknown Default Transmission Queue 102
Unknown Object Name 104
Unknown Remote Queue Manager 106
Unknown Transmission Queue 109

RetentionInterval parameter
Change Queue command 165
Copy Queue command 207
Create Queue command 241
Inquire Queue (Response) command 297

return codes 455

S
Scope parameter

Change Queue command 168
Copy Queue command 210
Create Queue command 244
Inquire Queue (Response) command 299

secondary initialization 370
secondary termination 371
security enabling interface (SEI) 375
SecurityExit parameter

Change Channel command 141
Copy Channel command 184
Create Channel command 218
Inquire Channel (Response) command 265

SecurityUserData parameter
Change Channel command 143
Copy Channel command 187
Create Channel command 221
Inquire Channel (Response) command 266

SEI (MQSeries security enabling interface) 375
SendExit parameter

Change Channel command 142
Copy Channel command 185
Create Channel command 219
Inquire Channel (Response) command 265

SendUserData parameter
Change Channel command 144
Copy Channel command 187
Create Channel command 221
Inquire Channel (Response) command 266

SeqNumberWrap parameter
Change Channel command 148
Copy Channel command 186

SeqNumberWrap parameter (continued)
Create Channel command 220
Inquire Channel (Response) command 266

service component
authorization 375
creating your own 372

service components
multiple 373

service interval 19
service interval events 18
service timer 19

algorithm for 21
resetting 20

services 367
components 367

Shareability parameter
Change Queue command 164
Copy Queue command 206
Create Queue command 240
Inquire Queue (Response) command 296

shared queues
configuration tasks 387

sharing queues 386
ShortRetriesLeft parameter

Inquire Channel Status (Response) command 281
ShortRetryCount parameter

Change Channel command 146
Copy Channel command 189
Create Channel command 223
Inquire Channel (Response) command 264

ShortRetryInterval parameter
Change Channel command 147
Copy Channel command 189
Create Channel command 223
Inquire Channel (Response) command 264

softcopy books xiv
stanza

authorization service, Digital OpenVMS 379
authorization service, OS/2 Warp 378
authorization service, Tandem NSK 379
authorization service, UNIX systems 376
authorization service, Windows NT 377
user identifier service 389

start and stop events 13
Start Channel 325
Start Channel Initiator 327
Start Channel Listener 329
StartStopEvent parameter

Change Queue Manager command 175
Inquire Queue Manager (Response) command 309

statistics for events 17
statistics, for events 18
Stop Channel 330
StopRequested parameter

Inquire Channel Status (Response) command 282

516 MQSeries Programmable System Management

 Index

String field
MQCFST structure 343

StringLength field
MQCFSL structure 349
MQCFST structure 342

Strings field
MQCFSL structure 349

StrucLength field
MQCFH structure 334
MQCFIL structure 345
MQCFIN structure 340
MQCFSL structure 348
MQCFST structure 342

structure of event messages 36
structures 333

MQCFH 334
MQCFIL 345
MQCFIN 339
MQCFSL 347
MQCFST 341

SyncPoint parameter
Inquire Queue Manager (Response) command 308

SYSTEM.ADMIN.COMMAND.QUEUE 127

T
termination

primary 371
secondary 371

terminology used in this book 493
threading in Sun Solaris 372
thresholds for queue depth 30
TimeSinceReset parameter 18

Reset Queue Statistics (Response) command 322
ToChannelName parameter

Copy Channel command 181
ToProcessName parameter

Copy Process command 198
ToQName parameter

Copy Queue command 202
TpName parameter

Change Channel command 145
Copy Channel command 183
Create Channel command 217
Inquire Channel (Response) command 264

Transmission Queue Type Error 96
Transmission Queue Usage Error 98
transmission queues, as event queues 8
TransportType parameter

Change Channel command 140
Copy Channel command 182
Create Channel command 216
Inquire Channel (Response) command 263

trigger events 6
trigger messages, from event queues 8

TriggerControl parameter
Change Queue command 166
Copy Queue command 208
Create Queue command 242
Inquire Queue (Response) command 298

TriggerData parameter
Change Queue command 167
Copy Queue command 209
Create Queue command 243
Inquire Queue (Response) command 299

TriggerDepth parameter
Change Queue command 166
Copy Queue command 209
Create Queue command 242
Inquire Queue (Response) command 299

triggered event queues 7
TriggerInterval parameter

Change Queue Manager command 173
Inquire Queue Manager (Response) command 307

TriggerMsgPriority parameter
Change Queue command 166
Copy Queue command 208
Create Queue command 242
Inquire Queue (Response) command 299

TriggerType parameter
Change Queue command 166
Copy Queue command 208
Create Queue command 242
Inquire Queue (Response) command 299

Type field
MQCFH structure 334
MQCFIL structure 345
MQCFIN structure 340
MQCFSL structure 348
MQCFST structure 342

types of event 6

U
unit of work, and events 8
Unknown Alias Base Queue 100
Unknown Default Transmission Queue 102
Unknown Object Name 104
Unknown Remote Queue Manager 106
Unknown Transmission Queue 109
Usage parameter

Change Queue command 165
Copy Queue command 207
Create Queue command 241
Inquire Queue (Response) command 298

user data 129
user identifier service 389

defining to OS/2 389
stanza 389
user interface 390

 Index 517

 Index

UserData parameter
Change Process command 158
Copy Process command 200
Create Process command 234
Inquire Process (Response) command 286

Userid parameter
MQZ_FIND_USERID call 444

UserIdentifier parameter
Change Channel command 149
Copy Channel command 191
Create Channel command 225
Inquire Channel (Response) command 267

using events 3

V
Value field

MQCFIN structure 340
Values field

MQCFIL structure 346
Version field

MQCFH structure 335
Version parameter

MQZ_INIT_AUTHORITY call 420
MQZ_INIT_NAME call 433
MQZ_INIT_USERID call 447

W
Windows Help xiv
Windows products vii

X
XmitQName parameter

Change Channel command 145
Change Queue command 167
Copy Channel command 189
Copy Queue command 209
Create Channel command 222
Create Queue command 243
Inquire Channel (Response) command 264
Inquire Channel Status (Response) command 278
Inquire Channel Status command 273
Inquire Queue (Response) command 299

518 MQSeries Programmable System Management

Sending your comments to IBM
MQSeries

Programmable System Management

SC33-1482-06

If you especially like or dislike anything about this book, please use one of the methods listed below to
send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the accuracy,
organization, subject matter, or completeness of this book. Please limit your comments to the information
in this book and the way in which the information is presented.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate, without incurring any obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form

 � By fax:

– From outside the U.K., after your international access code use 44 1962 870229
– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: WINVMD(IDRCF)
 – Internet: idrcf@winvmd.vnet.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name and address/telephone number/fax number/network ID.

Readers’ Comments
MQSeries

Programmable System Management

SC33-1482-06
Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

MQSeries

MQSeries Programmable System Management SC33-1482-06

IBM

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

NameFrom:

Fold along this line

Fold along this line

C
ut along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-1482-ð6

S
pine inform

ation:

I
B

M
M

Q
Series

P
rogram

m
able System

 M
anagem

ent

